ML060960568

From kanterella
Jump to navigation Jump to search

2006/04/07-Oyster Creek, License Renewal AMP-AMR Audit Questions AMP-210 Set 2
ML060960568
Person / Time
Site: Oyster Creek
Issue date: 04/07/2006
From: Beck G
Exelon Corp
To: Ashley D, Beck G, Roy Mathew
Exelon Corp, NRC/NRR/ADRO/DLR/RLRA
Ashley D
Shared Package
ML060600344 List:
References
%dam200606, TAC MC7624
Download: ML060960568 (166)


Text

I D. Ashley -RE: Audit Q & A (Question.Numbers AMP-1 41, 210, 356)---- --Paqe 1...D. Asle .RE: Aui .Qeto ubr MPi4,2036 ai From: <George.Beck

@ exeloncorp.com>

To: <George.Beck@exeloncorp.com>, <djal @nrc.gov>, <rkm@nrc.gov>

Date: 04/05/2006 5:09:53 PM

Subject:

RE: Audit Q & A (Question Numbers AMP-141, 210, 356)Attached is second part of AMP-21 0.<<Pages from AMP-210-3.pdf>>


Original Message-----

> From: Beck, George> Sent: Wednesday, April 05, 2006 5:02 PM> To: Donnie Ashley (E-mail);

'Roy Mathew (E-mail) '(E-mail)> Cc: Ouaou, Ahmed; Hufnagel Jr, John G; Warfel Sr, Donald B; Polaski, Frederick W>

Subject:

FW: Audit Q & A (Question Numbers AMP-141, 210,356)> Note: As originally transmitted this email was undeliverable to the NRC; it exceeded the size limit. It is being retransmitted without the AMP-21 0.pdf. This file will be reconstituted and sent in smaller ".pdf"s; the first 11 pages are attached.> George-------Original Message-----

> From: Beck, George> Sent: Wednesday, April 05, 2006 4:39 PM> To: Donnie Ashley (E-mail);

'Roy Mathew (E-mail) '(E-mail)> Cc: Ouaou, Ahmed; Hufnagel Jr, John G; Warfel Sr, Donald B; Polaski, Frederick W>

Subject:

Audit 0 & A (Question Numbers AMP-141, 210, 356)> Donnio/Roy,> Attached are the responses to AMP-210 and AMP-356 in an updated version of the reports from the AMP/AIR Audit database.

Also included is a revised version of AMP-141. These answers have been reviewed and approved by Technical Lead, Don Warfel.> Regarding AMP-210, please note:> As poiuted out in our response to NRC Question AMP-210, (8a)(1), "The 0.806" minimum average thickness verbally discussed with the Staff during the AMP audit was recorded in location 19A in 1994.Additional reviews after the audit noted that lower minimum average thickness values were recorded at the same' location in 1991 (0.803") and in September 1992 (0.800").

However, the three values are within the tolerance of +/- 0.010" discussed with the Staff."> Regarding AMP-141, please note:> Our response to AMP-141 has been revised to reflect additional information developed during the ongoing preparation of RAI responses.

> Please let John Hufnagel or me know if you have any questions.

> Georgo FD-. Ashley -RE: Audit Q& A(Question Numbers AMP-141, 210, 356)Page 2.-D. Ashley -RE: Audit 0 & A (Question Numbers AMP-141, 210, 356) Pacie 2:********, ***************************************************************

This e-mail and any of its attachments may contain Exelon Corporation proprietary information, which is privileged, confidential, or subject to copyright belonging to the Exelon Corporation family of Companies.

This e-mail is intended solely for the use of the individual or entity to which it is addressed.

If you are not the intended recipient of this e-mail, you are hereby notified that any dissemination, distribution, copying, or action taken in relation to the contents of and attachments to this e-mail is strictly prohibited and may be unlawful.

If you have received this e-mail in error, please notify the sender immediately and permanently delete the original and any copy of this e-mail and any printout.

Thank You.*********

                  • .******************************************************

CC: <ahmed.ouaou@exeloncorp.com>, <john.hufnagelOexeloncorp.com>,<donald.warfel

© exeloncorp.com>, <fred.polaski

@ exeloncorp.com>

Evtemp\GW)00002.TMP 7c temp\GW}00002ITM P Page 1 Mail Envelope Properties (443431FE.D08:13:

7432)

Subject:

Creation Date: From: Created By: RE: Audit Q & A (Question Numbers AMP-141, 210, 356)04/05/2006 5:07:50 PM<George.Beck@exeloncorp.com>

George.Beck@exeloncorp.com Recipients nrc.gov OWGWPO01.HQGWDO01 DJA1 (D. Ashley)nrc.gov TWG WPOO1.HQGWDO01 RKMvI (Roy Mathew)exeloncorp.com fred.polaski CC donald.warfel CC john.hufnagel CC ahm d.ouaou CC Post Office OWGWPO00I.HQGWDO01 TWGWPO010.HQGWDO01 Files MESSAGE TEXT. htm Pages from AMP-210-3.pdf Mime.822 Options Expiration Date: Priorit y: Reply Requested:

Return Notification:

Concealed

Subject:

Security: Route nrc.gov nrc.gov exeloncorp.com Size 2998 6218 7350464 10070879 Date & Time 05 April, 2006 5:07:50 PM None Standard No None No Standard Attachment 1

OYSTER CR28 NUCXL= LICINSfla REGULITORr CORPZPOVDISCZ DISTRIBUTION SKIZT C32o W3S OC PFILE l10 __3__ COMSPO~SzwmNc so: 5e01-1/-240 LZTE DATE:: 3AY9

SUBJECT:

v cr/ Vjorll -vj's 1-$49 * / /A/ 441Jes COGNUA1NI LXCENBING ZNGxNUKR? Z*41 ACTION AgSZGNED TO: Ad/Iz~DITRZU=: TO XGXT 8UVZCES ON _____1V XWT 8RVCS DIST I El ON _/___9 I OR= ZILING WSTRUCTIQNS:

(; )LZI rR XOR J. Thopscu4-D P. ClSak D. Moroney, 13CC J. 1arton R. Barrett M. Zudaj P.L.D.A.w.T.T.P.W.A.K.a.ceteuba/TSCR DeblaSlo Lammers Ranft Rone Stewart Deftpsey scailon Oarvey BarJn lWuligazn Talluto 270 NOR H03 vmu V=300 PU PZ PZu 300 303 NOR HOD HOB P03 ix x W/o WA', Jl. zildebraml K. Slabod on P. Penti J. Kowalski R. Markowski S. Ricm S. Alatary o. cropper D. MacFarlta t. Sullivan G. Young Blg X Bldg R#3#250 F'Bldg 3 Bldg 'FR#250 FEI SI nsxnzS I. Vinfrock Jl. ruv Bldg#300 J a. L. Sulllvazi Dldg*. PaOlA I 105MG Tlr 2!a. Los Bldg E 56 z X.= ._aS 6X VST v Myers BLd F K. C. Cutler Ridt 3 J. DaVini D. slear B. Debris J. Langenbach D. Croanborger

1. Camira Ru3g, P 314; r#300#250 Bldg r Bldg P Bldg 7 Bida P'40 r X v Rl.J.0.L.C.R-L. Long Knubel laggart busch O'Donnell Wolff Ter.is Gostlka (3)ists aidg x Bldg 3 S=g Da-1 Dldg B dl f A5 WiJl/ a. Tosch UE&C/A. Friedman-1US EPMI/Elke rXXV Mn/P. UZPUI WV1/A. cflT0U WV/S. GoD o2/ml. MUIU~z 10/p.wk z 1. Jollst 3sqV XQ K. Yacaboniz IQ S. -..WA#I R.T.V.fruia waspil Popow/vAA-v iiiJ X WJ. c /,fz di. £__-~I distt ist/2 3. 7A40I R// F.SYa P x /

-I OPU Nuclear Corporation

  • ll i l SOne UJpper Pono Roac Parsiooany.

New Jolsey O7a5d 201.316.7000 TELEX 136-482 Writers Direct DialN-t-e, March 4, 1991 5000-91-2026 C320-91-2035 U. S. Nlclear Regulatory Commission Att: Documont Control Desk Washingt:on, DC 20555 Gentlemiin2

Subject:

Oyster Creek Nuclear ,Genrating Station (OCNGS)Docket No. 50-219 License No. DPR-16 Oyster Creek Drywall Containment Ritferences:

(1) GUPN letter dated December 5, 1990 -Drywell Structural Reports and Water Intrusion Summary In the Rteference 1 letter, OPUN conmitted to provide to you the structural design reports supporting drywell sand removal at Oyster Creek. As you know, our invtstigations indicate strongly that the presence of sand is a major contributor to th- high corrosion rates observed In the sandbed region (elevation 8'-11" to 12'-30) of the drywall) for that reason we consider sand removal to be an important element in our program to eliminate the corrosion threat to drywoll integrity.

Attachmitnt I to this letter provides this information in the form of GE Roports Index No. 9-3 and 9-4, Mft ASH! Section VIU1 evaluation of the Oyster Creek Drywell for Without Sand Came Stress and Stability Analysis," This two (2)part report covers the structural analysis of the Oyster Creek drywell with the sand cusihion removed and conservatively annumes a uniform drywell sandbad region corroded thickness of 0.736w at the end of Cycle 13 operation.

The report clemonstrates that if the sand cushion were removed the drywell would remain in full compliance with ASME Codo roquirements.

Further measurements of the drywell shell thickness are being made during tho current 13R outage and will serve as a basia for refined corrosion rate projections Assuming that these updated corrocion rate projections are consistant with the Attachment I analysis, CPUN plans to proceed with the removal of the drywell sand cushion during Cycle 13 operation as a prudent and positive step in arresting corrosion at 0Oyter Creek.RZ:C3202O3!

GPU Nuclear Corporanon is a subsidiary cf General Public Utilities Corporation C320-9 -203S Drywll ContaLinment page 2 If you have any questions or comments on this submittal or the overall drywQll corrogion program, pleas. contact Mr. Michael Laggart, Manager, Corporate Nuclear Licensing at (201) 316-7968.Sincarely, X lvL J. C. DeVina, Jr.vice President, Technical Functions Attachment JCD/RZ/plp ccz Adcninistrator, Regiori 1 SOeiior NRC Resident Inspector oyister Creek NRC Project Manager RZ:C3202055 ORF # 00664 INDEX No. 9-3 REV. 0 AN ASME SECTION VIII EVALUATION OF OYSTER CREEK DRYWELL FOR WITHOUT SAND CASE PART I STRESS ANALYSIS February 1991 prepared for GPU Nuclear Parsippany, Corporation New Jersey prepared by GE Nuclear Energy San Jose, California BN'ex 8N. 9-3, REV. D AN ASME SECTION VI1I EVALUATION OF OYSTER CREEK DRYWELL FOR WITHOUT SAND CASE PART I STRESS ANALYSIS Prepared by: C.D. Frederickson, Senior Engineer Materials Monitoring

&Structural Analysis Services G. W. Contreras, Engineer Materials Monitoring

&Structural Analysis Services Reviewed by:_______

___H. S. Mehta, Principal Engineer Materials Monitoring

&Structural Analysis Services Approved by:__S. Ranganath, Manager Materials Monitoring

&Structural Analysis Services gEX N869-3, REV. 0 TABLE OF CONTENTS Pane No.1. INTRODUCTION 1-1 1.1 Background 1-1 1.2 Supplementary Code Stress Analyses 1-2 1.3 Scope of Present Analysis 1-3 1.4 Report Outline 1-3 1.5 References 1-3 2'. ANALYSIS BASES 2-1 2.1 Drywell Geometry and Materials 2-1 2.2 ASME Code Allowable Values 2-3 2.2.1 Thickness Reductions From Local Corrosion 2-4 Effects 2.2.2 Allowable Stresses for Post-Accident 2-5 Condition 2.3 Load Magnitudes and Combinations 2-5 2.4 Temperature Gradients 2-6 2.5 References 7.1. DRYWELL FINITE ELEMENT ANALYSIS 3-1 3.1 Description of Finite Element Models 3-1 3.1.1 Axisymmetric Model 3-1 3.1.2 Pie Slice Finite Element Model 3-1 3.2 Load Application on Pie Slice Model 3-2 3.2.1 Gravity Loads 3-3 3.2.2 Pressure Load 3-3 3.2.3 Seismic Loads 3-4 3.3 Stress Results for Various L.oad Cases and 3-4 Combinations I

WgEX 98¶6693, REV. 0 TABLE OF CONTENTS (CONT'D)Pane No., 3.4 Temperature Stress Analysis 3-5 3.5 References 3-6 4. SEISMIC LOAD DEFINITION 4-1 4.1 Finite Element Model 4-1 4.2 Dynamic Analys.is Methodology and Response Spectra 4-1 4.3 Post-Accident Seismic Analysis 4-2 4.4 Analysis for Relative Support Displacement Effects 4-2 4.5 References 4-3 5. CODE STRESS EVALUATION 5-1 5.1 Code Stress Evaluation of Regions Above the Lower 5-1 Sphere 5.2 Elastic Stress Analysis of Sandbed and Lower 5.2 Sphere 5.2.1 Small Displacement Solution Results 5-2.5.2.2 Large Displacement Solution Results 5-4 5.3 Code Evaluation of the Sandbed and Lower Sphere 5-4 5.3.1 Primary Stress Evaluation 5-4 5.3.2 Extent of Local Primary Membrane Stress 5-5 5.3.3 Primary Plus Secondary Stress Evaluation 5-6 6.

SUMMARY

AND CONCLUSIONS 6-1 APPENDIX A DETAILED RESULTS FOR AXISYMMETRIC MODEL TEMPERATURE STRESS ANALYSIS ii

?'NES N8.6 -3, REV. 0 LIST OF TABLES Table Page.No. Title No.As-designed and Projected 95% Confidence 2-8 thicknesses used in the Code Stress Evaluation 2-2 Allowable Stresses for Drywell Shell in 2-9 Section VIII Analysis 2_-3 Allowable Stresses for Post-Accident Condition 2-10 Load Combinations specified in the Parsons 2-11 Report -(Reference 2-3)2-5a Dead Weight Loads 2-12 ,-5b Penetration Loads 2-13'!*-c Live Loads 2-15'I-l Load Cases Considered in the Finite Element 3-7 Analysis 3t-2 Adjusted Weight Densities of Shell to Account 3-8 for Compressible Material Weight 3-g3 Oyster Creek Drywell Additional Weights 9 Refueling Condition:1-4 Oyster Creek Drywell Additional Weights 10 Accident and Post-Accident Condition:-5 Hydrostatic Pressures for Post-Accident 3-11 Condition iii

%F X 086 3-3, REV. 0 LIST OF TABLES (CONT'D)Table Page No. Title No.3-6 Meridional Seismic Stresses at Four Sections 3-12 3-7 Application of Loads to Match Seismic 3-13 Stresses -Accident Condition 3-8 Application of Loads to Match Seismic 3-14 Stresses -Post-Accident Condition 3-9 Description of Load Combinations in Terms of 3-15 Unit Load Case Sum 5-la Comparison of Calculated Stresses to Code 5-7 Allowable Values (Nominal Drywall Wall Thicknesses Above Lolser Sphere)5-lb Comparison of Calculated Stresses to Code 5-8 Allowable Values (95% Projected Drywell Wall Thicknesses Above Lower Sphere)5-2a Comparison of Calculated Primary Stresses to 5-9 Code Allowable Values (Small Displacement; Lower Sphere and Sandbed)S-2b Comparison of Calculated Primary Stresses to 5-10 Code Allowable Values (Large Displacement; Lower Sphere and Sandbed)5-3a Comparison of Calculated Primary Plus Secondary 5-11 Stresses to Code Allowable Values (Small Displacement; Lower Sphere and Sandbed)iv VNC 88N. 9-3, REV. 0 LIST OF TABLES (CONT'D)7abl e Page No. Title No.5i-3b Comparison of Calculated Primary Plus Secondary 5-12 Stresses to Code Allowable Values (Large;Displacement; Lower Sphere and Sandbed)q/

?RF # 00664 NDEX NU. 9-3, REV. 0 LIST OF FIGURES Figure Page No. FIGURE No.1-1 Drywell Configuration 1-5 3-1 Complete Axisymietric Finite Element 3-16 Model of Drywell 3-2 Sand Bed Region of Drywell Finite Element 3-17 Model 3-3 Knuckle Region of Drywell Finite Element 3-18 Model 3-4 Cylindrical Region of Drywell Finite 3-19 Element Model 3-5 Upper Cylindricakl Region of Drywell 3-20 Finite Element Model 3-6 Oyster Creek Drywell Pie Slice Finite 3-21 Element Model 3-7 Inside Closeup View of Lower Orywell 3-22 Section 3-8 Application of Loading to Simulate 3-23 Seismic Stresses 3-9 Below Curb Drywell Model Nodalization 3-24 for Temperature Analysis During Accident Condition vi INDEX N .3-3, REV. 0 LIST OF FIGURES (CONT'D)Figure Page No. FIGURE No.'¢-10 Example of Calculated Temperature 3-25 Distribution at Various Elapsed Times Meridional Stress Distribution in the 3-26 Sand Bed Region from Temperature Distribution at t-210 Seconds Circumferential Stress Distribution 3-27 in the Sand Bed Region from Temperature Distribution at t-210 Seconds 5-I Circumferential Stresses for Accident 5-13 Condition V-1 in 'With Sand' and 'Without Sand' Cases -Small Oisplacement 5-2 Plot of Accident Condition V-1 Meridional 5-14 Stresses for 'Without Sand' Case -Small Displacement

,-3 Circumferential Membrane Stress 5-15 Distribution Using Small Displacement Option 5j-4 Circumferential Membrane Stress Magnitudes 5-16 at Four Meridional Planes in Sandbed Region-Small Displacement i-5 Beam With Transverse Plus Axial Loading 5-17'-6 Circumferential Membrane Stress 5-18 Distribution Using Large Displacement Option vii

?Rg.# 08664 NEX N8. 9-3, REV. 0 LIST OF FIGURES (CONT'D)Figure Page No. -i:IGURE NO.5-7 Comparison of Circumferential Membrane 5.19 Stress Magnitudes With Large and Small Displacement Options 5-8 Circumferential Membrane Stress Magnitudes 5-20 at Four Meridional Planes in Sandbed Region-Large Displacement v iii

%E'X 98. -3, REV. 0 1. INTRODUCTION

1.1 Background

The Oyster Creek Nuclear Generating Station utilizes a GE BWR Nuclear, Steam Supply System and a steel Mark i pressure suppression type Containment vessel system. The pressure suppression system consists of a drywell, a pressure suppression chamber (torus) which stores a large volume of water and a connecting vent system between the drywell and the water pool. The drywell, sometimes referred to as the containment vessel or containment structure, houses the reactor'vessel, reactor coolant recirculation loops, and other components

associated with the reactor system.Figure 1-1 shows the drywell along with the pertinent dimensions.

The drywell is a combination of a sphere, cylinder and 2:1 ellipsoidal dome and it resembles an inverted light bulb. The spherical portion of drywell near the base includes a sandbed region that provides an lastlc transition zone which is intended to ameliorate abrupt thermal and mechanical discontinuities.

The pressure suppression system was designed, analyzed and constructed by Chicago Bridge & Iron Company (CBI).A recent inspection of the steel shell (November 1986) prior to restart from the 11R outage in the sandbed region revealed that some degradation of the shell had taken place during the years since Completion of construction.

Subsequent inspections also indicated minor thickness degradations in the upper spherical and cylindrical S;ections of the drywell.A detailed description of the previous analyses pertaining to Oyster Creek drywell is given in Reference 1-1. An ASME Code stress analysis addressing the drywell thickness degradation is documented in Reference 1-2. The analyses in Reference 1-2 are based on the present Configuration in the sandbed region, i.e.. it is assumed that the sand*is present. One of the option GPUN is exploring to mitigate further 1-1 iNOEX N86. 9-3, REV. 0:orrosion in the sandbed region, is to remove the sand. The purpose o)f the stress analyses presented in this report is to evaluate the drywell per ASME Section VIII for this modification.

1.2 Supplementary Code Stress Analyses rhe Code of record for the stress analysis of Oyster Creek drywell isSection VIII, 1962 Edition and Nuclear case Interpretations 1270 N-5, 1274 N-5 and 1272 N-5. The CBI stress report (Reference 1-3) augmented by the recent GE report (Reference 1-2) constitutes the Section Vtil Code stress report of record for the drywell. The GE report is a supplementary stress report to the CBI stress report and addresses aspects of Code compliance as they relate to the local wall thinning observed in the Oyster Creek drywell. The stress analyses in this report as in the previous GE report [1-2] are guided by GPUN Technical Specification for primary containment analysis [1-4].Based on the ultrasonic (UT) inspection results, the projected 95%:onfidence thickness value for the drywell shell in the sandbed region is 0.736 inch. However, in several previous Oyster Creek drywell analyses, as discussed in Reference 1-1, a conservative thickness value of 0.700 inch was used. A shell thickness of 0.700 inch in the:;andbed region was used in the stress analyses documented in Reference I-2.in the first part-of the stress analysis report of Reference 1-Z, the nominal or as-designed thicknesses were assumed everywhere except in the sand bed region. The thickness in the sand bed region was assumed Is 0.700 inch compared to the as-designed thickness of 1.154 inch.Later, the local thinning in areas other than the sand bed region of drywell was addressed.

The second part of Reference 1-2 report.addressed the buckling evaluation of drywell shell.1-2 bEX N0. 9-3, REV. 0 1.3 Scope of Present Analysis The stress analyses describeo in this report address the case when the sand has been removed from the sandbed region (called the 'without sand case'). A companion report [1-51 addresses the buckling evaluation for this case.The finite element models used in the Reference 1-2 analyses were modified for this case by removing the spring elements representing sand stiffness.

It will be shown that this change affects only the stresses in the sandbed and adjacent region. The stresses in the other regions of the drywell are essentially unaffected.

1.4 Report Outline Section 2 of the report describes the drywell geometry, materials, ASME Code allowables and load combinations used in the evaluation of applied stresses.

Also discussed is the temperature gradient definition in the sand bed region under OBA conditions.

Section 3 includes the details of drywell finite element analysis.

Seismic load analyses are covered in Section 4.Section 5 presents the Code stress evaluation results to meet the Code criteria.

Finally,-

the summary and conclusions are discussed in Section 6. The Appendix includes calculated stresses from some of the unit load cases.1.5 References 1-1 Yekta, Of., "OC Drywell Structural Evaluations," GPUN Technical Data Report No. 926, Rev. 1, February 6,1989.1-3 QRF # 00664 INDEX NO. 9-3, REV. 0 1-2 a. "An ASME Section VIII Evaluation of the Oyster Creek Drywell -Part 1 -Stress Analysis," GE Index # 9-1, DRF # 00664 (November 1990).b. "An ASME Section VIII Evaluation of the Oyster Creek Drywell -Part 2 -Stability Evaluation," GE Index # 9-2, DRF # 00664 (November 1990).1-3 "Structural Design of the Pressure Suppression Containment Vessels," by Chicago Bridge & Iron Co..Contract

  1. 9-0971, 1965.1-4 GPUN Specification SP-1302-53-044, Technical Specification for Primary Containment Analysis -Oyster Creek Nuclear Generating Station; Rev. 2, October 1990.1-5 "An ASME Section VIII Evaluation of the Oyster Creek Drywell for Without Sand Case -Part 2 -Stability Evaluation," GE Index #9-4, DRF # 00664 (February 1991).1-4 Esex 8. 3-3 , REV. a_.~ Uto .Voidq__ Ewrvv qq-'1 Evxv sco-Iit: Ea_ --q) It. .I74--1-t-- a fb ,pi;Eulltv e-s i'foot 2 I*-r , Figure 1-1 Drywall Configuration 1-5 N6EX N8& 9-3, REV. 0 2. ANALYSIS BASES 2.1 Drywell Geometry and Materials The spherical section has an inside diameter of 70 ft. which intersects the 33 ft. diameter cylindrical portion. A transition knuckle is provided at the connection of the sphere to the cylinder (Figure 1-1). The drywell is 105'-6" high. The plate thicknesses vary from a maximum of 2.625 in. at the transition between the sphere and the cylinder down to a minimum of 0.640 in. in the cylinder.

The.head wall thickness is 1.188 in.The head, which is 33 ft. in diameter, is made with a double tongue and groove seal which permits periodic checks for tightness.

Ten vent.pipes, 6'-6" in diameter, are equally spaced around the circumference to connect the drywell to the vent header inside the pressure suppression chamber.The drywell interior is filled with concrete to elevation 10'-3" to provide a level floor. Concrete curbs follow the contour of the vessel up to elevation 12'-3" with cutouts around the vent lines.On the exterior, the drywell is encapsulated in concrete of varying thickness from the base elevation up to the elevation of the top head.From there, the concrete continues vertically to the level of the top of the spent fuel pool.The base of the drywell is supported on a concrete pedestal conforming to the curvature of the vessel. A structural steel skirt was first installed to provide interim support for the vessel during erection.A portion of the steel skirt was left in place which serves as one of the shear rings that provides horizontal restraint for the drywell during an earthquake.

The proximity of the biological shield concrete surface to the steel shell varies with the elevation.

The concrete is in full contact with the shell over the bottom of the sphere at its invert elevation 2'-3" 2-l

?NOEX N 8.6-3, REVI up to elevation 8'-11 1/4". At that point, the concrete is stepped aack 15 inches radially to form a pocket which continues up to elevation 12'-3". That pocket is currently filled with sand which Forms a cushion which is intended to smooth the transition of the.shell plate from a condition of fully clamped between two concrete masses to a free standing condition.

This sand filled pocket is referred to here as the sandbed. In the analyses described in this report it is assumed that the sand has been removed. Up from elevation 12'-3' there is a 3-inch gap between the drywell and the concrete biological shield wall which is filled with foam material that provides insulation but no structural support.An upper lateral seismic restraint, attached to the cylindrical portion of the drywell at elevation 82'-6", allows for thermal, deadweight, and pressure radial deflection, but not for lateral novement due to seismic excitation.

All penetrations for piping, instrumentation lines, vent ducts, electrical lines, equipment accesses, and personnel entrance have expansion joints and double seals where applicable.

rhe materials of construction for the drywell are given in Specification S-2299-4 (2-1]. The drywell shell, i.e., the sphere.cylinder, dome, and transitions, was constructed from SA-212, Grade B High Tensile Strength Carbon-Silicon Steel Plates for Boilers and other Pressure Vessels ordered to SA-300 specification.

The following steels were used in the construction of penetrations, reinforcements, and appurtenances:

!;A-300 Steel Plates for Pressure Vessels for Service at Low Temperatures.

M;A-333 Seamless and Welded Steel Pipe for Low Temperature Service.SA-350 Forged or Rolled Carbon and Alloy Steel Flanges, Forged Fittings, and Valves and Parts for Low Temperature Service.2-.2 NdEX '8"'9-3, REV. 0 ASTM A-36 Structural Steel.Table 2-1 shows the as-designed thicknesses used in the Code stress evaluation of the drywell shell 11-2]. Also shown in the same Table are the projected 957 confidence thickness values in the locally corroded areas (2-2]. These latter thicknesses are used in the primary stress evaluation presented in Subsection 5.2.2.2 ASME Code Allowable Values The Oyster Creek drywell vessel was designed, fabricated and erected in accordance with the 1962 Edition of ASME Code,Section VIII and Code Cases 1270N-5, 1271N and 1272N-5.The Code Case 1272 N-S limits the general membrane stresses to 1.1 times the allowable stress values given in Table UCS-23 of Section VIII. The combined general membrane, general bending, and local.membrane stresses are limited to 1.5 times the general membrane stress allowables.

Finally, the Code Case limits the sum of the primary plus secondary stresses to three times the allowable stresses given in Table UCS-23. The allowable stress value given in Table UCS-23 for SA 212, Grade 8 is 17500 psi. Accordingly, the allowable stress values for various categories of stresses are shown in Table 2-2.The original Code of record and the Code Cases do not provide specific: guidance in two areas. The first relates to the size of a region 1f increased membrane stress due to thickness reductions from local Ar general corrosion effects, and the second pertains to the allowable stresses for service level C or post-accident conditions.

In the first case, guidance was sought from Subsection HE of Section III..The justification for the use of this guidance is provided in a report prepared by Dr. W.E. Cooper of Teledyne [2-5]. In the latter case, the Standard Review Plan document was used as guidance with details discussed in Reference 2-6. The allowable limits obtained are discussed next.2-3 RF O0664 INDEX KNO.9-3, REV. 0 2.2.1 Thickness Reductions from Local Corrosion Effects Consideration of local corrosion effects can be achieved by application of the requirements for Local Primary Membrane Stresses.A thorough discussion of this is presented in Reference 2-5. The discussion presented here is extracted from that reference.

The NE-3213.10 definition of Local Primary Membrane Stress is: Cases arise in which a membrane stress produced by pressure or other mechanical loading and associated with a primary or discontinuity effect produces excessive distortion in the transfer of load to other portions of the structure.

Conservatism requires that such a stress be classified as 'local primary membrane stress even though it has some characteristics of a secondary stress. A stress region may be considered local if the distance over which the membrane stress intensity exceeds 1.1 Smc does not extend in the meridional direction more than 1.0(Rt), where R is the minimum midsurface radius of curvature and t is the minimum thickness in the region considered.

Regions of local primary membrane stress intensity involving axisymmetric membrane stress distributions which exceed 1.1 Smc shall not be closer in the meridional direction than 2.5j(Rt), where R is defined as (R 1+R 2)/2 and t is defined as (tlt 2)/2, where tj and t2 are the minimum thicknesses at each of the regions considered, and R, and R 2 are the minimum midsurface radii of curvature at these regions where the membrane stress intensity exceeds 1.1 Smc. Discrete regions of local membrane stress intensity, such as those resulting from concentrated loads acting on brackets, where the membrane stress intensity exceeds 1.1 Smc shall tbe spaced so that there is no overlapping of the areas in which the membrane stress intensity exceeds 1.1 Sin.The value of SMC from NE of Section III is equivalent to 1.1 S from Section VIII.2-4 YDEX8 N08.-3, REV. 0 There is no Code limit for the extent of the region in which the membrane stress exceeds 1.0 SMc but is less than 1.lSmC* This iou;variation in the allowable stress was provided because of the "beam or elastic foundation" effects of such local regions, the stress decays as one moves away from the thin region, but overshoots general membrane stress value by a small amount as the effects dampen out with distance.

Thus, this provision is not equivalent to a 10% increase ire the allowable stress which can be taken advantage of in the original design. However, given a design which satisfies the general -Code intent, as the Oyster Creek drywell does as originally constructed, it.is not a violation of Subsection NE requirements for the membrane stress to be between 1. 0SMc and 1.lSmC over significant distances.

Based on the preceding discussion, a limit of 1.1Smc will be used ir, evaluating the general membrane stresses in areas of the drywell where reduced thicknesses are specified.

2.2.2 Allowable Stresses for Post-Accident Condition In the post-accident condition, the drywell is flooded to elevation 74'-6". The allowable stress values for this condition are given in Table 3.8.2-1 of Reference 2-4. Table 2-3 shows the allowable stress values used for the post-accident condition.

2.3 Load Magnitudes and Combinations The loads to be considered in the Oyster Creek drywell stress analysis, and the load combinations are specified in Reference 1-4.References 2-1 and 2-3 also contain similar descriptions of the loads and load combinations.

Table 2-4 shows these load combinations.

The Cases I and II pertain to test loads imposed on the drywell prior tc plant startup. These loads are enveloped by the loads specified in Case V -Accident Condition.

Therefore, separate calculations were not conducted for Cases 1 and LI.2-5 ORF # 08664 INDEX N .9-3, REV. 0 A comparison of the load combinations shown in Table 2-4 and those given in Reference 2-4 is covered in Reference 2-6. From that t:omparison it was concluded that the load combinations in Table 2-4 essentially envelope those described in Reference 2-4."he dead load, live load and other equipment loads used in the stress Calculations were obtained from an earlier study by CB1 (Reference No.,!.4.3 of Reference 1-4], and are shown in Tables 2-5a though 2-5c. In the dead weight loading, the weight of the compressible material attached to the drywell was separately added. This weight was taken is 10 lbs. per sq. ft. of drywell surface [Reference No. 2.4.2 of Reference 1-4]. The additional weight on the cylindrical portion of the drywell during the refueling was obtained from Reference No. 2.4.3 In Reference 1-4 as 561 lbs/inch of drywell cylindrical region circumference.

The stresses from seismic loads were separately calculated as cescribed in Section 4.2.4 Temperature Gradients the drywell shell is essentially at a uniform temperature during all cf the operating conditions except the accident condition.

During the accident condition it is assumed that the drywell shell except the region below the curb (i.e., the sand bed region) is at the same temperature as that of the environment inside the drywell. An analysis of the meridional temperature distribution in the sand bed region during the accident condition was reported in Reference 1-4.The meridional temperature results in Reference 1-4 are given as a function of elapsed time from the start of the accident condition to 4500 seconds. These temperature distributions are used in Section 3 to calculate the stresses.2- 6 MEX 08 9-3, REV. 0 2.5 References 2.1 Technical Specification S-2299-4; Design, Furnishing, Erection and Testing of the Reactor Drywell. and Suppression Chamber Containment Vessels (1964).2-2 "Forcasted Orywell Thicknesses to 14R," letter dated October 5, 1990 from S.C. Tumminelli of GPUN to H.S. Mehta of GE, dated.2-3 "Primary Containment Design Report," prepared by The Ralph M.Parsons Company, FSAR Amendment 15.2-4 Nuclear Regulatory Commission Standard Review Plan, Section 3.8.2, Steel Containment, Rev. 1, July 1981.2-5 'Justification for use of Section III, Subsection NE, Guidance in Evaluating the Oyster Creek Drywell," Appendix A to letter dated December 21, 1990 from H.S. Mehta of GE to S.C. Tumminelli of GPUN.2-6 "Comparison of FDSAR and SRP Load Combinations," Appendix 0 to letter dated December 21, 1990 from H.S. Mehta of GE to S.C.Tumminelli of GPUN.2-7 RF#00664 NOEX NO. 9-3, REV. 0 TABLE 2-1 As-designed and Projected 95% Confidence thicknesses used in the Code Stress Evaluation Dr-we1 Region Cylindrical Region Knuckle Upper Spherical Region Middle Spherical Region Lower Spherical Region Except Sand Bed Area Sand Bed Region As-designed Thicknesses lini 0.640 2.625 0,722 0.770 1.154 1.154 Projected 95%14R Thicknesses Lin)0.619*2.625 0.677 0.723 1.154 0.736* no on-going corrosion 2-8 RNDF4 N .9-3, REV. 0 TABLE 2-2 Allowable Stresses for Drywell Shell in Section VIII Analysis (Except Post-Accident Condition)

Primary Stresses General membrane General membrane plus bending 19300 psi 29000 psi Primary Dlus SecondAry Stresses Surface stresses including thermal effects 3x17500 or 52500 psi NOTE: The general membrane stress allowable value of 19300 psi is equal to I.Ix17500, where 17500 psi is the allowable stress value for the drywell material in Table UCS-23 of Section VIII.2-9 RE#00664 INEX NO. 9-3, REV. 0 TABLE Z-3 Allowable Stresses for Post-Accident Condition primary Stresses General Membrane General Membrane plus'sendi ng 38000 psi 1.5x General membrane or 57000 psi 1ecgndary Stresses Primary plus Secondary 70000 psi YOTE: The above allowable stresses are based Standard Review Plan, Section 3.8.2., Steel Containment 2-10 NEX' 98. l-39 REV. 0 Table 2-4 Load Combinations specified in the Parsons Report (Reference 2-3)CASE I -INITIAL TEST CONDITION Deadweight

+ Design Pressure (62 psi)CASE II -FINAL TEST CONDITION Deadweight

+ Design Pressure (35 psi)+ Seismic (2 x DBE)+ Seismic (2 x DBE)CASE III -NORMAL OPERATING CONDITION Deadweight

+ Pressure (2 psi external)

+ Seismic (2 x DOBE)CASE IV -REFUELING CONDITION Deadweight

+ Pressure (2 psi external)

+@ 118'-3" + Seismic (2 x DBE)Water load at water seal CASE V -ACCIDENT CONDITION Deadweight

+ Pressure (62 psi & 175 F or 35 psi & 281 F) +Seismic (2 x DBE)CASE VI -POST ACCIDENT CONDITION Deadweight

+ Water Load @ 74' 6' + Seismic (2 x DBE)Notes: (1) The loads shown above predominate.

Reference 2-3 contains all of the loads.(2) DBE is the design basis earthquake.

2-11 NOWEX 8. 3-3, REV. 0 TABLE 2.5a Dead Weight Loads Item Elevation (ft.) Weight in lb$Jpper Header 60.00 36000 rower Header 40.00 41000 UIpper Weld Pads 65.00 40000 Middle Weld Pads 60.00 40000 Lower Weld Pads 56.00 48000 Top Flange 95.75 20100 Bottom Flange 93.75 20700 S;tabilizers 82.17 21650 tipper Beam Seats 50.00 1102000 Lower Beam Seats 22.00 556000 12 Ft Diam. EQ DOOR 30.25 48000 Personnel Lock 30.00 64100 V'ents 15.56 50000 1.3 Ft Diam EQ DOOR 30.25 57000 tipper Weld Pads 65.00 12000 Middle Weld Pads 60.00 19200 lower Weld Pads 56.00 8400 2-12 Rgul 981819-3, REV. 0 TABLE 2-5b Penetration Loads Penetration ID Elevationft. ) Weight inl><, x -54A 87.00 1000 x -5 A Thru H 16.00 150000 x -6 16.00 6000 x -7A Thru D 30.00 45600 x -8 26.00 2450 x -9A, 9B 34.00 22600 x -10, 11 26.00 8650 x -12, 45 31.00 16500 x -13A, 138 33.00 15450-14,15,39B 70.00 5750-43, 44 54.00 7850 X -16A,B 73.00 8850 x -17 90.00 2750 X -18, 19 20.00 900 x -20,21,22 40.00 850 x -23,24,34A,B 20.00 6000 X -25 90.00 3750-27 90.00 1000-28A-G .34.00 5450-30AB. 32A 16.00 3700-31AB, 53 16.00 3750-26 20.00 3900-35A Thru G 16.00 900 2-13 NDEX -8. 9-3, REV. 0 TABLE 2-Sb (Cont'd)Penetration Loads Panetration ID Eleyation (ftl Weight in lbs x -36 60.00 700 x -37 A Thru D 40.00 8100 x -38A Thru D 40.00 8100 x -42 20.00 400 x -39A 30.00 850 x -40 AB, 46A 30.00 2400 x -46B. 52 30.00 1650 x -49, 50 35.00 1500 x -51 32.00 750 x -IOOAB, 104B 40.00 2500 x -105A,D+107A 40.00 2500 x -lOOC,D,G+104 40.00 4150 x -105B,C+1068 40.00 2550 x -lOOE, 103A,10 40.00 2500 x -102B 40.00 850 x -lOlA-F 40.00 5100 x -104BD 40.00 1650 x -54B -90.00 1000 x -55 A+8 90.00 2000 x -102A,104A,10 40.00 2650 x -100F,103B 40.00 1850 x -29A,B,47,48 90.00 4000 x -328,33A,33B 16.00 3750 x -40CD 36.00 1550 x -41 90.00 500 2-14 YNE# 91664 3 REV. 0 TABLE 2-Sc Live Loads Item Elevation (ft,) Weight in Ubs Upper Header 60.00 4200 Lower Header 40.00 7150 Upper Weld Pads 65.00 20000 Middle Weld Pads 60.00 20000 Lower Weld Pads 56.00 24000 Equip Door 30.25 100000 Personnel Lock 30.00 15000 2-15 N0EX '".4-3, REV. 0 3. DRYWELL FINITE ELEMENT ANALYSIS:3.1 Oescription of Finite Element Models The drywell was modelled for finite element analysis using the ANSYS computer program (3.1]. Two finite element models, an axisymmetric model and a 36 pie slice model, were used in the stress analysis..

Both of these models are essentially the same as those used in the-;tress analyses [1-2] except that the elements representing sand s;tiffness were eliminated.

The axisymmetr1c model was used in determining the stresses for the seismic and the thermal gradient load c:ases. The pie slice model was used for dead weight and pressure load cases and to evaluate the stresses for load combinations.

The pie slice model includes the effect of vent pipes and the reinforcing ring (in the stress state in the sandbed and adjacent region.3.1.1 Axisymmetric Model The axisymmetric model is shown in Figures 3-1 through 3-5, where!Figure 3-1 is an overview, and Figures 3-2, 3-3, 3-4, and 3-5 show the Sand bed, knuckle, cylindrical, and upper most cylindrical regions, respectively.

The geometry as described in Subsection 2.1, along with References 3-2 and 3L3, was used in generating this model.The model was developed using axisymmetric solid elements (STIF 25), with the lower most portion being fixed in all directions.

This.element has asymmetric load capability which was required for the seismic evaluation.

Seismic evaluations are discussed in Section 4.3.1.2 Pie Slice Finite Element Model Taking advantage of symmetry of the drywell with 10 ventlines, a 36 section was modeled. Figure 3-6 shows the 36' pie slice finite element model of the drywell. This model includes the drywell shell 3-1 YRFE# 005664 INDEX N8. -3, REV. 0 from the base of the sandbed region to the top of the elliptical head and the vent and vent header. The torus is not included in this model because the bellows provide a very flexible connection which does not allow significant structural interaction between the drywell and torus. The various colors in Figure 3-6 represent the different shell thicknesses of the drywell and ventline.

Figure 3-7 shows the view from the inside of the drywell with the gussets and the vent jet deflector.

The drywell and vent shell are modeled using the 3-dimensional plastic quadrilateral shell (STIF43) element. At a distance of 76 inches from the drywell shell, the ventline modeling was simplified by using beam elements.

The transition from shell to beam elements is made by extending rigid beam elements from a node along the centerline of the vent radially outward to each of the shell nodes of the ventlinn.ANSYS STIF4 beam elements are then connected to this centerline node to model the axial and bending stiffness of the ventline and header.Spring (STIF14) elements are used to model the vertical header supports inside the torus. ANSYS STIF4 beam elements are also used t:o model the stiffeners in the cylindrical region of the drywell.Symmetric boundary conditions are defined for both edges of the 36'drywell segment. This allows the nodes at this boundary to move radially outward from the drywell centerline and vertically, but not in the circumferential direction.

Rotations are also fixed in two directions to prevent the boundary from rotating out of the plane of synmetry.

Nodes at the bottom edge of the drywell are fixed in all directions to simulate the fixity of the shell within the concrete foundation.

3.2 Load Application on Pie Slice Model The loads are applied to the drywell finite element model in the manner which most accurately represents the actual loads anticipated an the drywell. Details on the application of loads are discussed in the following paragraphs.

3-2 R&F # 00664 NIDEX NO. 9-3, REV. 0 5;.2.1 Gravity Loads The gravity loads include dead weight loads of the drywell shell, weight of the compressible material and penetrations and live loads.The drywell shell loads are imposed on the model by defining thil weight density of the shell material and applying a vertical acceleration of 1.0 g to simulate gravity. The ANSYS program Automatically distributes the loads consistent with the mass and acceleration.

The compressible material weight of 10 lb/ft 2 is added tby adjusting the weight density of the shell to also include the compressible material.

The adjusted weight densities for the various shell thicknesses are summarized in Table 3-2.The additional dead weights, penetration weights and live loads are applied as additional nodal masses to the model. As shown on Table'-3 for the refueling condition case, the total additional mass is summed for each 5 foot elevation of the drywell. The total is their civided by 10 for the 36' section assuming that the mass is evenly distributed around the perimeter of the drywell..

The resulting mass is then applied uniformly to a set of nodes at the desired elevation;.s shown in Table 3-3. These applied masses automatically impose cjravity loads on the drywell model with the defined acceleration of]g. The same method is used to apply the additional masses to the model for the accident and the post-accident conditions as summarizei in Table 3-4.3.2.2 Pressure Load The appropriate pressure load is applied to the internal/external faces of all of the drywell and vent shell elements.

The axial stress at the transition from vent shell to beam elements is simulated by applying equivalent axial forces to the nodes of the shell elements.In the post-accident condition, the drywell is assumed to be flooded to elevation 74'-6" (894 inches). Using a water density of 62.3 lb/ft 3 (0.0361 lb/in 3), the pressure gradient versus elevation is calculated as shown in Table 3-5. The hydrostatic pressure at the 3-3 BEX R. 9-3, REV. 0 bottom of the sandbed region is calculated to be 28.3 psi. According to the elevation of the element centerline, the appropriate pressures are applied to the inside surface of the shell elements.3.2.3 Seismic Loads Seismic inertia and displacement stresses were first calculated using the axisymmetric model. The seismic meridional stresses determined from the axisymmetric model were then imposed on the pie slice model by applying downward forces at four elevations of the model (A: 23'-7",B:

37'-3",C:

50,-11" and D: 88'-9") as shown on Figure 3-81.Using this method, the meridional stresses calculated from the axisymmetric model are duplicated at four sections of the pie slice model including

1) the mid-elevation of the sandbed region, 2) 17.250 below the equator, 3) 5.75- above the equator and 4) just above the knuckle region. These four sections were chosen to most accurately represent the loading in the lower drywell while also providing a reasonably accurate stress distribution in the upper drywell. Table 3-6 shows the meridional stress magnitudes at the four sections.Unit loads are then applied to the pie slice model in separate load steps at each elevation shown in Figure 3-8. The resulting stresses at the four sections of interest are then averaged for each of the applied unit loads. By solving four equations with four unknowns, the correct loads are determined to match the stresses shown in Table 3-6 at the four sections.

The calculation for the correct loads are shown in Tables 3-7 and 3-8 for the accident and post-accident conditions, respectively.

3.3 Stress Results for Various Load Cases and Combinations Only the two orthogonal stress components

-meridional and circumferential

-are significant at the maximum stress locations in the drywell shell. A review of the component stresses indicated that the calculated shear stress magnitudes are insignificant compared to the values for the total meridional and circumferential stresses.Therefore, the orthogonal stress magnitudes and the principal stress 3-4 TSE1 8'. 3-3, REV. 0 magnitudes were essentially the same. Also, the maximum stress was equivalent to the stress intensity at the locations evaluated.

  • rhe stresses for the seismic inertia, seismic displacement and:emperature load cases (see Table 3-1) were calculated using the axisymmetric model. The details of the temperature stress analysis is described in the next Subsection and the procedures used in the Calculation of the seismic stresses are covered in Section 4. The calculated values of the membrane and membrane plus bending stresses for temperature case are tabulated in Appendix A.The seismic stresses were incorporated in the pie slice model to determine the overall stress resultants for the accident and post-accident load combinations.

The temperature stresses determined from the axisymmetric model were separately added to the accident condition stresses obtained from the pie slice model. The multipliers applied to the various unit load cases (Table 3-1) to obtain total stresses for a particular load combination are shown in Table 3-9.The resulting stresses for these load combinations are discussed and compared with the Code allowables in Section S.';.4 Temperature Stress Analysis The thermal response in the sand bed region to a DBA LOCA has been analyzed by GPU in Reference 1-4. Figure 3-9 shows the meridional nodes below the drywell floor, for which the calculated temperatures zs a function of elapsed time are reported in Reference 1-4. An Example of the calculated temperatures is shown in Figure 3-10.From a review of the temperature distributions, two intermediate time steps were identified as possibly yielding the most severe thermal stresses.

At 60 seconds, the largest: temperature gradient occurs over a two inch meridional length. At 210 seconds, the maximum temperature is achieved.

In addition, a third time step, 690 seconds, was evaluated to verify that a more deeply penetrating temperature condition would not result in higher stresses than the first two cases.3-5

?NMEX N8. l-3, REV. 0 The predominant stresses for each of these cases occurred near the top of the sand bed region (near the 0,736" to I.154" transition) and were in the circumferential and meridional directions.

It was found that the thermal stresses at 210 seconds yielded the more severe stress condition.

Figures 3-11 and 3-12 show the meridional and circumferential stress distributions in the sand bed region.3.5 References 3-1 Gabriel J. DeSalvo, Ph.D. and John A. Swanson, Ph.D, "ANSYS Engineering Analysis System User's Manual," Revision 4.1, Swanson Analysis System, Inc. Houston, PA, March 1, 1983.3-2 CB&I Drwg. 9-0971 sheet number 4, Rev. 1, "Drywell -Field Weld Joint" 3-3 CB&I Drwg. 9-0971 sheet number 7,.Rev. 5, "Drywell -Cylindrical Shell & Top Head" 3-6 NOEX N .9-3, REV. 0 TABLE 3-1 Load Cases Considered in the Finite Element Analysis Case No. ioadina 1 Pressure 2 Gravity-I (Accident Condition) 3 Gravity-2 (Refueling) 4* Unflooded Seismic 5 Flooded Seismic 6 Flooded Hydrostatic Pressure 7 Seismic Relative Support Displacement a Temperature Gradient During DBA* Load Cases Analyzed by Axisymmetric Finite Element Model 3-7 Y'R'EX 98'.9-3, REV. 0 TABLE. 3-2 Adjusted Weight Densities of Shell to Account for Compressible Material Weight Shel 1 I higknes sLi-n. )1.154 0,770 0.722 2.563 0.640 1.250 Adjusted Weight Density (lb/In 3)0.343 0.373 0.379 0.310 0.392 0.339 3-8 b 8EXN. 3-3, REV. 0 TABLE 3-3 Additional Weights -Oyster Creek Drywell Refueling Condition L ELEVATION (feet)15.56 16 20't 15-20 229 21-251 26 30 30.25 at 26-30 31 32 33 34 35" 31.35 35 40' 36-40$0.4 0* 45-5011 54 51-55 56 60 56-60 65't 61-65 70 00 66-70 73 11 7l75 32.17 87 90*- 85-90 93.75 94.75d'9S.75 TOTALS: DEAD WEIGHT (lbf).5.._.00* sooa0 PENETR.WE I GHT ( Ibf)168100 11200.556000 64100 1OSOO0 41000 1102000 56400 95200 52000 11100 51500 16500 750 15450 250SO 1500 1550 43350 7850 MISC. TOTAL LOADS LOAD (Ibf) (whf).. __ -... ___...._50000 168100 11200 556000 11100 115600 100000 205000 15500 750 1S450 28060 1500 1550 64350 1102000 7850 24000 50400 20000 115900 20000 12000 5750 8850 21650 1000 15000 20700 198000 693000 20100 5 FOOT RANGE LOAD 229300 556000 LOAD PER 36 OEG.(lbf)22930 55600 6 a 115-119 161-169* OF NODES OF ELEMENTS APPLICATION

..-- ------------..

_______LOAD PER FULL MODt (lbf)3822 6950 4146 LOA3 PER HALF MODE (lbf)_.. .. ._..1911 34J5 2073 33110D 33170 6225' 6225 8 179-157 8 188-196 778 369 700 85900 1102000 7850 19630Q 72000 5750 8850 21650 8590 110200 785 19U30 7200 575 55 2165 57SO 8850 8 197-205 S 418-426 8 43"-444 8 454-462 8 472-450 8 508-516 8 526.534 8 553-561 8 571-579 a 589-597 1074 13775 98 2454 900 72 111 271 537 6888 49 1227 450 36 55 135 21850 lSGOD 16000 1600 200 100 20700 20100__84_5_ ..._..... ........ -- 3 2184150 3a$200 J62D000 3434350 738U8...,____3434350 73880 343435 9235 4618 J -LOAO TO SE APPLIED IN VERTICAL DIRECTIO1N ONLY.& -MISCELLANEOUS LOADS INCLUDE 696000 LB WATER h1EGHT AT 94.75 fT. ELEVATION 100000 LB EQUIPMENT DO WElSH? AT 30.25 FT. ELEVATION AND WELD PAD LIVE LOASM OF 24000. 20000 ANO 20000 AT C5. 60 AN( 65 FT. ELEVATIONS REFWGT.WKl 3-9

?AEEX N8. 9-3, REV. 0 TABLE 3-4 Oyster Creek Drywell Additional Weights Accident and Post-Accident Condition R. RisC. tOtAl S FOOT LOAD PER dT LOADS LOAD RAWN 36 DEG. # OF) Ilbf) (lbf) LOAD Olbf) WLtMENTS J.__ -------- -------- -- -- ---- --- -- -- -___._-ELEVATION (feet)15.58 15 20"- 15-20 221't Z1-ZSI 26 30 30.25 31 3Z 33 34 35" 31-3S 36 40' 36-40 50*s 45-S0 St** S1-55 55 60 CC 56-60 as' 61*65 70 66-70 73** 71-75 t2.1l N 81-8s t1 90' 8a-90 93.75'5.75 91-96 TOTALS: 0EAD WEIGHT (lbf)5..0000 50000 PENETI VEII ( IV......55s000 64100 10S000 41000 1I02000 56400 95O0 52000 168100 11200 11100 51500 18500 0SO 15450 28050 1500 1550 43350 7850 700 5750 6850 50000 168100 11200 5566000 11100 115600 105000 16500 730 15450 28050 1500 1550 84350 1102000 7850 S56400 95200 52000 5750 850 21650 1000 15000 20700 20100 229300 556000 NODES OF 4PPLICATION 116-119 181-169 ZZS30 55600 8 8 LOA0 PER FULL NODE 3822 6950 2896 LOAD PER HALF NODE (lbf)1911 3475 1448 231700 23170 82230 U225 S 179-1B7 8 188-196 776 389 85900 1102000 7850 152300 52000 5750 U850 21550 8590 110200 t05 8 a a 15230 SZOO 575 Us5 2165 a a 8 8 a 197-205 418-425 436-444 454-462 472-480 508-516 Z56-534 553-S61 1074 13775 98 1904 6S0 7z 111 271 537 6888 49 952 325 36 55 135 21550 1000 15000 16OO 1600 20700 20100 a 511-S79 a 589-597 2 zoo zoo 510 255 40600 2184150 388200 0 2572350 2572350 P -LOAD TO BE APPLIED IN VERTICAL DIRECTION ONLY.6 -NO MISCELLANEOUS LOADS FOR THIS CONDITION.

4080 2..57235 25723S FLOOMT.W1 3-10 nEd NX8'.9-3, REV. 0 TABLE 3-5 Hydrostatic Pressures for Post-Accident Condition WATER DENSITY: FLOODED ELEV: 62.32 lb/ft3 0.03606 lb/in3 74.5 ft 894 inches ELEMENTS ABOVE NODES 27 40 53 66 79 92 102 108 112 116 120 124 130 138 148 161 170 179 188 197 400 409 418 427 436 44S 454 463 472 481 490 499 508 517 526 ANGLE ABOVE EQUATOR (degrees)-53.32-51.97-50.62-49.27-47.50-46.20-44.35-41.89-39.43-36.93-34.40-31.87-29.33-26.80-24.27-20.13-14.38-8.63-2.88 2.88 8.63 14.38 20.13 25.50 30.50 35.50 40.50 45.50 50.50 54.86 ELEVATION (inch)110.2 116.2 122.4 128.8 137.3 143.9 153.4 166.6 180.2 194.6 209.7 225.2 241.3 257.6 274.4 302.5 342.7 384.0 425.9 468.1 510.0-551.3 S91.5 627.8 660.2 690.9 719.8 746.6 771.1 790.5 805.6 820.7 835.7 850.8 885.3 DEPTH (inch)783.8 777.8 771.6 765.2 756.7 750.1 740.6 727.4 713.8 699.4 684.3 668.8 652.7 636.4 619.6 591.5 551.3 510.0 468.1 425.9 384.0 342.7 302.5 266.2 233.8 203.1 174.2 147.4 122.9 103.5 88.4 73.3 58.3 43.2 8.7 PRESSURE (psi)28.3 28.1 27.8 27.6 21.3 27.1 26.7 26.2 25.7 25.2 24.7 24.1 23.5 23.0 22.3 21.3 19.9 18.4 16.9 15.4 13.8 12.4 10.9 9.6 8.4 7.3 6.3 5.3 4.4 3.7 3.2 2.6 2.1 1.6 0.3 ELEMENTS- ..... .............

...1-12 13-24 25-36 37-48 49-SI, 61-66 ,5S-57 52-54, 138-141 ,5E-60 142-147, 240-242, 257-259 148-151, 243, 256 152-155, 244, 255 156-159, 245, 254 160-165, 246, 25,3 166-173, 247, 252 174-183, 246:-251 184-195 196-207 208-215 216-223 224-231 232-239 430-437 438-446 446-453 454-461 462-469 470-477 478-485 486-493 494-S01 502-509 510-517 518-525 526-533 534-541 542-549 550-557 187.3 706.7 25.5 340-399 (Ventline)

FLOODP'.WK1 3-11.

?96EX 98',6t3, REV. 0 TABLE 3-6 Meridional Seismic Stresses at Four SectionsSection I I A) Middle of Sandbed B) 17.25 Below Equator C) 5.75' Above Equator 3) Above Knuckle l evatinon 119 323 489 1037 2-D Shel 1 Model 32 302 461 1037 Meridional Stresses Accident Post-Accident r(si ) J IL)1258 1288 295 585 214 616 216 808 3-12 dEt 98'.43, REV. 0 TABLE 3-7 Application of Loads to Match Seismic Stresses -Accident Condition SECTION: 2-D NWOE: ELEV: COMPRESSIVE STRESSES FOOM 2-D ANAlYSIS 0.058" SEISMIC DEFLECTION:

HORIZ. PLUS VERTICAL SEIShIC INERTIA: T _ _T. _L _EIS-- -______.__._____.SSE

--TOTAL SEISM#IC COM1PRESSIVE StRESSES: 2-0 SEISMIC STRESSES AT SECTION Psil)1 .2 3 4 32 302 461 lol;'119.3" 322.5" 489.1- IZ.X 768.61 1SS.U4 103.46 85.:11 469.55 139.44 110.13 130.!1 1258.2Z 294.98 213.59 215.i2 3-0 STRESSES AT SECT1O0 (psi)-..---.------------------_

--_.__--3-0 INPUT LOAD SECTIC.A C 0 SECTION: 3.0 NODES: ELEV: INPUT 3-0 UNIT LOAU DESCRIPTION

___.___- .-__.___.,___.___..__-..___.-___

1000 lbs ot nodes 563 through 569 500 lbs at 4271435. 1000 lb, At 428-434 500 lba at 1973205. 1000 lbs at 195-204 500 lbs at 1611169. 1000 lbs at 152-168 OESIRED COMPRESSIVE STRESSES (psi): 1 53-65 119.3 e5.43 89.88a 97.64 89. .2258.22 2 170-178 322.S-37.94 39.92 43.3t 0.00 ,__...9 294.95 3 400-40d 4$9.1" 34.94 36.75 0.00 0,00 213.59 4 526-534 912.:3-55.;!3 0.100 0.110 215.!2 3-0 INPUT LOAD SECT;ON LOAD TO BE APPLIED TO MATCH 2-0 STRESSES A 3902.2 B 2101.4 C 1453.8 0 6611.5 RESULTIN6 STRESSES AT SECTION (Wsi)333.37 145.05 136.34 215.62 188.87 83.89 77.25 0.(0 141.93 63.04 0.00 0.II0 594.05 0.00 0.00 0.1)0 158.......

.9, ...... ------1258.22 Z94.98 213.59 215.!i2 SLI: SEISUNFL.,KI 3-13 NEI .3-3, REV. 0 TABLE 3-8 Application of Loads to Hatch Seismic Stresses Post-Accident Condition SECTION: 2-0 NODE;ELEY: COWPRCSSIVE STRESSES FROM 2-D ANALYSIS 0.058" SEISMIC DEFLECTION:

HORIt. PLUS VCRTICAL SEISMIC INERTIA:_.___._____IC C_.__-PRE5S_-_--_ST-__SS_-:

TOTAL SEISHIC C014PRESSIVE StRESSES: 2-0 SEISMIC STRESSES AT SECTION fiDs)----_------

_- __--- ._------ _- .. -___-1 Z 3 4 3Z 302 481 1027 119.3" 322.5* 489.1' 912.3-__...____.__..

  • .. ----- -------788.67 155.54 103.46 85.31 499.79 429.39 512.76 723.14 1265. ...... ------ ----- .5 1299.46 584.93 616.22 80 .45 3-0 STRESSES AT SECTION (psi)_..--__..._____..,_______..__...___

3-D INPUT LOAO SECTION A C C 0 SECTION: 3-D NODES:[LEV: INPUT 3-0 UNIT LOAD DESCRIPTION 1000 lbs at nodes 563 throuqh 569 500 lbs at 427%435. 1000 lbs at 428-434 Soo lbs at 197L205. 1000 lbs at 198-2C4 S00 Ibs at 161&169. £000 bs at 162-16S I 53-65 119.3'-----., 85.43 59.38 91.64 89.85.1286.46 2 170-178 322.5-___.___37.94 39.92 43.37 0.00_____._564.93 3 400-405 489, 1"_..._._.34.94 36.76 0.00 0.00 616.ZZ.1 S25-534 912.3" 55.23 0 .00 0..00 0.00 808.-45 DESIRED COMPRESSIVE STRESSES (psi): 3-0 INPUT LOAD SECTION A C 0 LOAD TO BE APPLIED TO MATCH 2-0 STRESSES 14637.9 286C'.2-1941.7-316.8 RESULTING STRESSES AT SECTION pst)1250.51 555.36 511.45 808.45 256.17 113.78 104.71 0,00*-l9.58 -84.21 0.00 0.00-28.64 0:00 0.00 0.00___ ... _15.... __ ---__1Z83.46 5"193 6lt.22 568.45 SUI: SEISFLAIK1 3-14 N~EI 98'.69-3, REV. 0 I I I I TABLE 3-9 Description of Load Combinations in Terms of Unit Load Case Sum Load Comb.Lgad Combination Case(4) Constituent Load Cases Normal Operating III -(Case 1)xO.03226

+ Case 2 +/-.ondition(3) Case 4 i Case 7 Refueling Condition IV -(Case I)xO.03226

+ Case 3 +/-Case 4 +/- Case 7 kccident Condition

-I V-1 + Case 1 + Case 2 t Case 4 +/-Case 7 + Case 8 kccident Condition

-2 V-2 + (Case 1)x0.565 + Case 2 +/-Case 4 +/- Case 7 + Case 8'ost-Accident Condition VI + Case 2 +/- Case 5 + Case 6 +/-Case 7 Notes: (1) For load'combination definition see Reference 2-3.(2) For unit load case description see Table 3-1.(3) Normal Operation also includes live load due to personnel lock.(4) Load Combination Case Numbers are based on Table 2-44 I'3-15 ArtSYS 1 0/1 5/90 2.8923 PREP7 ELEMENTS nmumil AurO SCALING zu-1 DIST-SS3 XF-210 YF-700 EDGE C'OYSTER CREEK DRYYELL -FE_ _Figure 3-1 Complete Finite Element Model of Drywell Ati~sy 12' 4/90 14.0624 PREP7 ELEMENTS XHAX=2900 YIIAX 175 AUTO SCALING ZV-1 DISTr39.9 XF-283 YF-1 41 ZF--.e1 13 w SAND BED REGIOM -NO SPHD 1 Figure 3-2 Sand Bed Region of Drywell Finite Element Model Allsy5 10/tS/90 3.2315 PREP7 ELEMENTS XtAX=2000 Mtlflml97 AUTO SCALtING zv-'DIST-49. 4 XF-227 yr-825 w PYSTER CREEK DRYUELL -FE MODEL_ _-I _ ._.f_ -up Ib 1 .IU & a II. 3HJnm 3.09S6 PREP7 ELEMENTS Xr1RX=2E0DD I'YMAX-11 45 AUTO SCALING DIST-101 XF-280 YsT-1852 EDGE li Figure 3-4 Cylindrical Reciarn of flryvell Finita rlnmnnft Unde1 ANSYS 1 0/1 5/90 3.3621 PREP7 ELEMENTS XMAX=2080 YMlIN-1 064 YMRX-l 1ts AUTO SCRLING ZV-1 DIST-E7.9 XF-203 YF-1 090 N Figure 3-5 Upper Cylindrical Region of Drywell Finite Element Hodel J.L amvtY 4.4A~aN 4 1991 13:63:22 REAL NUNM XI, =3.vu =-8.8 Z3F =639.490 CDITRO1D HIDDENI-r OYSTER CREEX DRVIIUL' ANALYSIS -OYCRLM CHO SAtND. ACCIDENT)~

^ -lFigure 3-6 Oyster Creek Drywell Pie Slice Finite Element Model h.1&"SYS 44 a JAN 4 1991 13:14:26 PREP? RIXMENTS RAML RUN xVe =-I.YU =-B.a Mr =216. 528 ONC7298 CD$TJROID HIDDEN'N I I OYSTER CREEK DRYWAELL ANALYSIS -OYCRZN aNO Sato. ACCIDqT)-Figure 3-7 Inside Closeup View of Lower Drywell Section

.- ApgCVs 4. 4A JAN 4 1991 13:88:89 MPYE EWIEKTS mu =1_ B9YST=7PF

.78 6 XF =38.0331 2F -639.49m rRN1UOIb HIK1DD 04, La)i , i oirS? CRIEWC DR L AtALYSIS -OYCPLM CNO SAND, ACCIDENT)Figure 3-8 Application of Loading to Simulate Seismic Stresses NEI 0 9.-3 , REV. 0 Figure 3-9 Below Curb Drywell Model Analysis During Accident Nodalization for Temperature Condition 3-24 PHIEX 98.93, REV. 0 ti1 120 t50 10 210 240 270 0 g1it T[W13AT1JE 1i OUGgn F tM 1U 0 247.3 244. 250.5 251.3 211.8 231.? 231.? 251.7 0.23 228.6 M30.? 4.9 237.3 239.1 27.'0.1 240.9 241.5 2.5 21j.6 213.' 2'9.6 223.4 226-. 228.5 230.1 231.3 0.25 193.? 197.1 205 210.3 214.3 217.2 219.4 221.3 173 181.9 191 197.1 202.4 M06. 209 211.4 1.23 1t3.7 147.9 17. 181.4 M 195.4 t9s.# 201.8 ,'s i5s.9 15.3, '41.9 173.9 160.2 185.1 1810.2 192.5 t,?5 139.? I4 !54,9 163.3 17D 173.4 179.° 183.6 2 230.1 73.4 2 .9 253.3 16O.4 166.2 171 175 2.25 U11.3 121.7 136 tU4.3 151.1 117.4 142.4 166.9 2.5 ItI 11t.5 '21.1 136.5 1I3., 149.4 154.7 1S9.2..5 1C9.3 112.5 '.4 129.3 136.2 1Z.2 14;.4 112 3 104.7 107.5 .5 122,9 129,4 131.3 Is t. 145.3 3.25 llt 103. 10. 117.4 123.7 129.4 134.3 139 3.3 94.23 '00.2 '06.4 112.6 118.5 123.9 128. 13".3 3.73 94.03 97.44 103 108.5 13,9 119 123.7 128 4 94.35 93,4" 100.1 1Cr! 109.9 114.6 119.1 1.3.3 4.25 91.1 94.13 97.U 102.1 104.4 110.8 115 118.9 4.5 92.11 92.91 99.6 13.1 107.4 111.3 115 6.7M 91.51 92.12 94.54 97.19 101 104.5 106.1 111,4 5 91.03 91.49 "9.1 95.o 96." I 2 101.3 10.5.25 90,46 91.04 92.33 9.dJ 97.14 w.9n 102.8 10J.&5.5 9g.4. 90.71 91.15 93.4 91.-9 96,11 100.7 103.4 5.75 90.3 90-48 '1.-3$ "9.72 9".'S 9.39 so .tl1.3 4 90.2 90.32 90.9 92.06 9. 34 5.32 97.33 99.46 4.2 90.12 90.21 0.7 91.5S 92.7 927 401 97.92 6.5 90.0 90.14 90.9 91.15 92.14 93.41 94.91 9S.4.73 90.0s 90.09 90.3 90.13 91.6 9.7 -98.9 "9" 7 90.03 90.04 0.24 90.t4 91.25 9.132 ".21 94.48 7.25 90.02 9.04 90.16 90.15 ".9 901.6 92.57 ".7.5 90.01 90.02 90.11 90.33 90.71 91.29 92.05 92.9*7,73 90.01 90.01 90.07 90.23 90.33 91 91.63 92.41 8 90 90.01 90.05 90.14 90.9 90.74 91.23 91.f 8.25 90 90 90.03 90.11 0.29 90.5 91 91.6 8.5 90 90 90.02 90.03 90.21 90.44 90.7M 91.21 8.73 90 90 9001 9.0 90.11 90433 90.41 900.9 90 90 90.01 90.A 90.11 90.25 90.4? 90.78 9.25 90 90 90.01 90.0 90.06 90.1i 90.34 90.41 9.5 90 90 90 ".a0 90.06 "0.14 90.2? ".48 9.73 90 90 "9.01 9.0 ". 90.71 90.17 10 90 g0 90 90.01 90.0c 9o0? 90.1 10.29 10.25 90 90 90 90 ".02 ". 90.13 90.22 10.5 90 90 90 90 9.01 90.04 ."9 "..1 10.7 9 90 90 10 90.0190.01 0 ".0 90.13 11 90 90 90 9 90.0l 9.02 0.05 90.1 11.5 *0 90 90 90 90.01 0.01 90.07 11.5 0 90 0 9 90.01 90.01 9.05 11.73 90 90 0 i " "0.0 ".02 90.04 13 90 90 90 0 90 99 9" .l 90.01 12.73 9 9 90 Ila 90 "9 "0.01 13.5 0 90 90 90 90 M 90 14.25 90 90 *0 0 90 0 90 Is 9 110 go 9 90 90 90.71 0 90 90 90 S 90 90 90 10. 910 90 0 90 'PC0 1 0 90 17.23 90 so 90 90 *0 *0 0 90 Is g0 0 9 90 90 90 90 90 1.7 0 90 90 90 90 0 o I9.5 90 90 90 90 90 d 0 0 90 MIS.23 9 90 90 90 90 90 00 90 21 0 0 9e 90 90 90 90 90 21.71 90 90 910 0t 9o 22.9 9 0 90 90 9 0 90 23.23 90 -90 9 90 90 90 90 90 24 90 90 90 0 ct 90 90 90 24.n 90 90 90 90 g0 o o 9 25.5 9t g0 90 o 90 9 26.25 90 go 90 91 9 90 27 90 910 90 90 90 *0 27.73i 90 g0 9 28.5 90 99 0 0 90 90 2923 90 9o0-10 90 90 90 30 9 9 0 10 90 9 9 90 30.7 90 90 0 '0 9 .90 90 9 Figure 3-10 Example of Calculated Temperature Distribution at Various Elapsed Times 3-25 Arlsys 1' 4'91 14.9424 POSTI1 STEP=l ITER-t 0 STRESS PLOT AUTO SCALINIG ZU-1 DIST-8 .78 XF-292 YF=1 44 MX-11 01 MNI--9857 X _:^-5080" _ 5000 1 5080 OYSTER CREEK DRYWELL -THERMAL Tz210 5 Figure 3-11 Meridional Stress Distribution in the Sand Bed Region Frg. i atuT- D21t ,I- ulorut at tu-iG secofii3' ANSYS so 4'91 14.9778 Posrp.TEP=1 IrER=1 e STRESS PLOT 5z AUTO SCALInG ZV-1 DIST-8. 78 XF-292 YF-144 MX-1 3475 MMw-13916 100 OYSTER CREEK DRYWIELL -THERrMAL T=210 5 Figure 3-12 Circumferential Stress Distribution in the Sand Bed Recion From Temerature Distribtiinn at t-210 Specndc 796EX' '8. 33, REV. 0 4. SEISMIC LOAD DEFINITION This section briefly describes the general methodology followed in the seismic evaluation of the drywell. A detailed report on the seismic analysis methodology and the results is included in Reference 4-1.4.1 Finite Element Model The axisymmetric finite element model was used in the seismic analysis.

All of the concentrated loads listed in Tables 2-5a and 2-5b were included in both the flooded and unflooded seismic analyses.Since the lower and upper beams connect to the drywell through pads, the beam weights do not act during the horizontal earthquake excitation, Therefore, the beam weights are active only in the vertical direction.

In addition, the live loads listed in Table 2-Sc were included in the unflooded seismic analysis.The drywell is constrained at the "reactor building/drywell/star truss" interface at elevation 82'.6" and at its base. The upper constraint was implemented in the finite element analysis by restraining the middle node in the horizontal direction at this elevation.

The base constraint is as before, i.e., all nodes fixed.4.2 Dynamic Analysis Methodology and Response Spectra The seismic input motion spectra were provided by GPUN in Reference 1-4. The seismic motion spectra were for two locations:

at the mat foundation and at the upper constraint.

Since the ANSYS program can only accept one input spectrum, the input spectra at the two elevations were enveloped.

The response spectrum dynamic analyses were first conducted for frequencies up to the ZPA frequencies of the input motion spectra.The response contributions due to the truncated higher frequency modes 4-1 THEX 2".9-3, REV. 0 were calculated by static analyses in which the total model mass is subjected to support accelerations.

These were taken as ZPA accelerations for each of the orthogonal spatial directions.

All collnear modal response contributions were combined by the Double Sun: Method and the spatial contributions by the SRSS method. The response contributions due to the truncated higher frequency modes were!combined with the response totals due to the lower frequency modes, included in the analysis by the SRSS method. The resulting total colinear inertia responses were combined with the corresponding responses due to relative support motion by the absolute sum method.!These stresses were then combined with the stresses from other loads ie~g., pressure, thermal, etc.) for the Code evaluation.

4.3 Post-Accident Seismic Analysis Yn the post-accident condition, the drywell is flooded to elevation i74'-6". The weight of the water was lumped at several elevations; along the meridian of the drywell. Based on previous experience, the f'luid-structure interaction effects were assumed as negligible and the hydrodynamic mass of water was assumed as 80% of the total mass of'water which would fill an empty drywell. This exclusion of 20%Y mass reasonably accounts for the volume of RPV, shield wall and pedestal.4.4 Analysis for Relative Support Displacement Effects The drywell is fixed at its base and is laterally constrained by the reactor building'at elevation 82'-6". During seismic excitation, the reactor building would experience relative displacement between the drywell constraint elevation and the basemat. Since the reactor building is much stiffer and much more massive than the drywell, it will take the drywell for a 'ride' during relative support displacement.

Therefore, the stresses in the drywell due to relative support displacement were determined and added to those from the s;eismic inertia loads.4-2

  1. 00664?PDEX N0. 9-3, REV. 0 The horizontal relative displacement of the drywell upper support with respect to the drywell at the basemat was specified as 0.058 inch for 2xDBE condition

[1-4]. The stresses from this relative displacement were obtained by applying a horizontal displacement of 0.058 inch at the upper support elevation.

4.5 References 4-1 "Seismic Analysis Details," Appendix B of letter dated December 21, 1990 from H.S. Mehta of GE to S.C. Tumminelli of GPUN.4-3 DR i 08664 INDEX NO. 9-3, REV. 0 5. CODE STRESS EVALUATION Sections 3 and 4 describe the analyses for shell stresses for the various unit load cases and the limiting load combinations V and VI.The stress analysis for the 'with sand case' in Reference 1-2a has shown that the accident condition, load combination V-1, and this post-accident condition, load combination VI, represent the limiting load combinations for the Code stress evaluation.

This was also determined to be the case for the 'without sand' configuration considered in this report. The removal of sand from the sandbed region affects the stresses only in the sandbed and the adjacent lower spherical region. Therefore, the Code stress evaluation of these regions is described separately from the other regions of the drywell.5.1 Code Stress Evaluation of Regions Above the Lower Sphere Figure 5-1 shows a plot of the accident condition membranes circumferential stresses for the 'with' and 'without' sand cases as a function of meridional distance.

Stresses in both the sandbed and the other drywell regions are included in Figure 5-1. It is seen that inl the other regions the stress magnitudes for the two cases arms essentially identical.

From the preceding it is clear that the stresses in the other regions (i.e., other than the sandbed and the adjacent lower spherical region)are unaffected by removing the sand. Nevertheless, for completeness, the calculated stress magnitudes for these regions from Reference 1-2, are repeated in Tables 5-1a and 5-1b.The stress magnitudes shown in Tables 5-la and 5-lb are computed using elastic small displacement analysis.

As discussed in Subsection 5.2, the stresses in the sandbed and lower sphere regions were also evaluated using elastic large displacement analysis.

A comparison of:he component stresses from the small and large displacement solutions for the drywell regions above the lower sphere showed insignificant differences.

5-1 RF # 08664 NOEX N .9-3, REV. 0 In order to evaluate the impact on the penetration analyses, a, comparison of the radial and meridional displacements at the equator'plane of the sphere (elevation 37'-3") for the with and without sand cases was performed.

The comparison showed that the radial displacements in the two cases were essentially identical but the meridional or vertical displacements differed by = 0.042 inch for load combination V-1. This difference was judged to be small compared to the calculated vertical thermal displacement of = 0.5 inch for the accident condition load combination V-2.5.2 Elastic Stress Analysis of Sandbed and Lower Sphere 5.2.1 Small Displacement Solution Results The maximum stresses are along the meridional boundary of the model (i.e., the plane of symmetry between the vents), so the stresses along this boundary will be considered first. Figure 5-2 shows the plot of meridional membrane stress magnitudes for the accident condition V-1.as a function of meridional distance from the bottom of the sandbed.A comparison of the membrane stress magnitudes in Figures 5-1 'without sand' case and Figure 5-2 shows that the circumferential stress is higher than the meridional stress in both the sandbed region and the lower spherical region. This is expected since the absence of sand springs allows more' radial displacement of the drywell shell under dead weight and internal pressure.

Figure 5-3 shows a plot of thi membrane circumferential stress distribution.

The maximum value of the circumferential membrane stress is -23.0 ksi. Further, thi;stress exceeds 1.1 Smc (21.2 ksi) for a meridional distance of -26 inches (see Figure 5-1).The Code (NE-3213.10) states that cases arise in which a membranes stress produced by pressure or other mechanical loading and associated with a primary or discontinuity effect produces excessive distortion in the transfer of load to other portions of the structure.

Such a membrane stress is conservatively classified by the Code as local primary membrane stress. The Code limits the magnitude of th is stress to 1.5 SmC (29.0 ksi). A stressed region may be considered local if 5-2 RF # 08664 TNOEX N 8.9-3, REV. 0 the distance over which the membrane stress intensity exceeds 1.1 Smc does not extend in the meridional direction more than 1.O/(Rt).

With Rm420 in. and t-O.736 inch in the sandbed region, 1.0.(Rt) is equal to 17.6 inches. Thus, the maximum value of the circumferential membrane stress (23.0 ksi) meets the Code stress limit (29.0 ksi) but its meridional extent over 1.1 Smc is greater than .01/(Rt).The meridional extent of 26 in. occurs only at the plane of symmetry between the vent lines. The extent is less at other meridional planes. Figure 5-4 shows the meridional extent of circumferential membrane stress above 1.1 Smc at four meridional planes. Using a weighted average over the circumference of the model, the meridional extent was calculated as 14 inches. This average value is less than 1.O.(Rt) and, thus, meets the meridional extent criterion given in NE-3213.10.

The objective of the Code in limiting the meridional extent and magnitude of the local primary membrane stress is to preclude excessive distortion in the transfer of load to other portions of the structure, since such distortion could invalidate the elastic analysis.

The small displacement results showed that the maximum radial displacement in the sandbed region was 0.28 inch for the accident condition V-1. This is less than half the modeled thickness of the drywell in that region and, therefore, is judged not to be excessive.

The small displacement analysis conducted previously is conservative because the stiffening effect of the tensile in-plane stresses is nct considered.

This effect would tend to reduce the local radial deflection (thus, also the local circumferential stress) of the drywell shell in the sandbed region. For example, consider the case of a beam subjected to both transverse and tensile axial loads as shown in Figure 5-5. A small displacement analysis of this configuration considers the bending moments based on the transverse load only. The bending stresses and deflections of the beam are overpredicted based on these bending moments. In a real structure, tensile axial loads in combination with the deflections of the beam 5-3 RF # 00664 YNOEX NO. 9-3, REV. 0 produced by transverse loads creates an opposing bending moment. As a result the overall bending moment is reduced, leading to smaller bending deflections and stresses.

This stiffening effect can be included only by conducting a large displacement analysis.5.2.2 Large Displacement Solution Results Based on the preceding discussion, a large displacement analysis was conducted using the same pie slice model and the accident condition V-I loads. A large displacement analysis can be conducted using the ANSYS code by activating the KAY(6) key. When this option is chosen, the ANSYS program first calculates displacements of the structure based on a small displacement analysis.

The geometry of the structure is then updated based on the calculated displacements.

The loads are again applied to the structure and the displacements are recalculated.

The geometry of the structure is continually updated and the displacements are recalculated until the maximum displacement change between successive iterations is reduced below the selected convergence criteria.

A convergence criteria of 0.01 inch was chosen for this analysis.

In this manner, the ANSYS code accurately accounts for the stiffening of the structure due to in-plane tensile stresses.Figure 5-6 shows the distribution of membrane circumferential stress.Figure 5-7 shows a plot of membrane circumferential stress as a function of meridional distance when the large displacement option in ANSYS was used. For comparison, the stress results from the small displacement solution (Figure 5-1) are also shown in Figure 5-7. It is seen that the maximum value from the large displacement solution i;= 21.5 ksi (compared to 23 ksl in the small displacement analysis)

I and it exceeds 1.1 Smc (21.2 ksi) over a maximum distance of only 11 inches at the meridional plane between the vent lines. This is clearly less than the 1.0 1(Rt) distance of 17.6 in.Figure 5-8 shows the circumferential membrane stress magnitudes at four different meridional planes based on large displacement solution.Using a weighted average over the circumference of the model, the meridional extent was calculated as X 2 in.5-4 RF# 00664 TNDEX NO. 9-3, REV. 0 5.3 Code Evaluation of the Sandbed and Lower Sphere 5.3.1 Primary Stress Evaluation Tables 5-2a and 5-2b show the maximum values of primary stresses for the accident condition load combination V-1, and the Code allowable values for the small and large displacement solutions, respectively..

In the primary membrane stress category, the calculated stress intensities for the sandbed region are based on the average values..The peak value of the circumferential membrane stress in the sandbed region was compared with the local primary membrane stress limits.As expected, a comparison of Tables 5-2a and 5-2b shows that the calculated stress magnitudes using the large displacement option arm in general slightly lower than those obtained using the small displacement option. The differences in the stresses are larger iln the sandbed region where the radial displacements are larger. Thes calculated primary stress magnitudes in the sandbed region and lower sphere meet the Code stress limits.5.3.2 Extent of Local Primary Membrane Stress Paragraph NE-3213.10 of the Code states that a stresses region may be considered local if the distance over which the membrane stress intensity exceeds 1.1 Smc does not extend in the meridional direction more than 1.0/(Rt), which is 3: 17.6 inches. When the small displacement solution is used (5,.1), the membrane circumferential stress magnitude in the sandbed region exceeds 1.1 Smc over a meridional distance of -26 inches at the plane of symmetry between the vent lines. However, this distance was found to be 14 inches;using a weighted average considering other meridionals.

Furthermore, this distance of 26 inches at the plane of symmetry between the vent lines was reduced to = 11 inches when the large displacement solution was used in which the stiffness matrix is updated based on the deformed shape. Therefore, it is concluded that.5-5 HEX N8'.9-3, REV. 0 the circumferential stress in the sandbed region meets the meridional extent criterion of the Code Paragraph NE-3213.10.

5.3.3 Primary Plus Secondary Stress Evaluation Only two load cases result in significant secondary stresses in the shell. The first is the temperature gradient (accident condition V-1)which produces secondary stresses in the sandbed and lower sphere.The second is the post-accident condition which produces discontinuity bending moments in the shell at the bottom of the sandbed. The post-accident load combination case VI controls.

Tables 5-3a and 5-3b show the calculated values of primary plus secondary stresses and a comparison with the allowable values for small and large displacement solutions, respectively.

All of the calculated primary plus secondary stress values are within the Code allowable values.5-6 RF # 00664_?NOEX NO. 9-3, REV. 0 TABLE 5-la Comparison of Calculated Stresses to Code Allowable Values ( Nominal Drywell Wall Thicknesses Above Lower Sphere)Limiting Load Combination

-V-I Drywell Region Stress Categ.Calc. Stress Magnitude, Max.(psi)Allowable Stress (psi)Cylinder (t=0.640 in.)Prim. Memb.19200 19300 Prim. Memb. +Sending 20280 29000 Knuckle (t=2.625 in.)Prim. Memb.18430 19300 Prim. Memb. +Bending 20620 29000 Upper Sphere (tu0.722 in.)Prim. Memb.19090 19300 Prim. Memb. +Bending 26350 29000 Middle Sphere (t-0.770 in.)Prim. Memb.18460 19300 Prim. Memb. +Bending 23110 29000 5-7

~NKEX 8O. 9-3, REV. 0 TABLE 5-lb Comparison of Calculated Stresses to Code Allowable Values ( 95% Projected Orywell Wall Thicknesses Above Lower Sphere)Limiting Load Combination

-V-l Drywell Region Stress Categ.Cale. Stress Magnitude, Max.(psi)All owabl e Stress (psi)Cyl i nder (ts0.619 in.)Prim. Memb.19850 21200 Prim. Memb. +Bending 20970 29000 Upper Sphere (ta0.677 in.)Prim. Memb.20360 21200 Prim. Memb. +Bending 28100 29000 Middle Sphere (t-0.723 in.)~'rim. M~emb.19660 21200 Prim. Memb. +Bending 24610 29000 5-8 R # 4 9 R664 N JX Nu 9-3, REV. 0 TABLE 5-2a Comparison of Calculated Primary Stresses to Code Allowable Values ( Small ODsplacement; Lower Sphere and Sandbed )Limiting Load Combination

-V-1 Orywell Region Stress Categ.Caic. Stress Magnitude, Max.(psi)Allowable Stress (psi)Lower Sphere (t-1.154 in.)Prim. Memb.13800 21200 Local Prim. Memb.Prim. Memb. +Bending 17690 17800 29000 29000 Sandbed (t-0.736 in.)Prim. Memb.17430 21200 Local Prim. Memb.Prim. Memb. +Bending 22970 24950 29000 29000 5-9 EdEX N89'-3, REV. 0 TABLE 5-2b Comparison of Calculated Primary Stresses to Cade Allowable Values ( Large Displacement; Lower Sphere and Sandbed )Limiting Load Combination

-V-l Drywell Region Stress Categ.Calc. Stress Magnitude, Max.(psi)Allowable Stress (psi)Lower Sphere (t-1.154 in.)Prim. Memb.Local Prim. Memb.Prim. Memb. +Bending 13940 17530 17640 21200 29000 29000 Sandbed (t-0.736 in.)Prim. Memb.Local Prim. Memb.Prim. Memb. +Bending 16540 21540 23130 21200 29000 29000 5-10 YNEEX' 0.9-3, REV. 0 TABLE 5-3a Comparison of Calculated Primary Plus Secondary Stresses to Code Allowable Values ( Small Displacement -Lower Sphere and Sandbed )Drywell Region Stress Categ.Calc. Stress Magnitude, Max.(psi)Allowable Stress (psi)Lower Sphere (t-1.154 in.)Sandbed Region (t-0.736 in.)Prim. + Sec. 29020 (Acc. Load Cond. V-1)Prim. + Sec. 30280 (Post-Acc.

Load Cond. VI)52500 70000 Prim. + Sec.(Acc. Load Cond. V-1)Prim. + Sec. I (Post-Acc.

Load Cond.38420 52500 67020 VI)70000 5-11 RF # 00664 INDEX NO. 9-3, REV. 0 TABLE 5-3b Comparison of Calculated Primary Plus Secondary Stresses to Code Allowable Values ( Large Displacement -Lower Sphere and Sandbed )Drywell Region Stress Categ.Calc. Stress Magnitude, Max.(psi)All owabl e Stress (psi)Lower Sphere (t-1.154 in.)Sandbed Region (t=0.736 in.)Prim. + Sec. 28860 (Acc. Load Cond. V-1)Prim. + Sec. 30280 (Post-Acc.

Load Cond. VI)52500 70000 Prim. + Sec.(Acc. Load Cond. V-1)Prim. + Sec.(Post-Acc.

Load Cond.36600 52500 67020 VI)70000 5-12 I .I .. I I t i I I Cir-curnferel-111('11 W-111brolle , I)III, Sr-noll Dj'SL)I(ICeFIwrfl Accidoid Omd1hon \/ I 4v1 4-w C 0 in C Li E U1 30 26 24 22 20 18 16 1 4 12 10 a 6 4 2 0 0 10{) 200 31)0)Meridional Distlnce irorn SS Botlorii (irl)Figure 5-i Circifereniiai Stresses for Accident Condrition V-1 in'With Sand' and 'Without Sand' Cases -Small Displacement 4 ){)ACCDN14A.DRW the Idlio (Il '. (I ; I; I .)i'( " l.,lbu tli, i.;tiltl~t~llt{l

/\~t~ti'tl l()ltittio ll V- I 30 28 26 21 22 20 CA.'t_In a, L-S..U, 0C 4U t'18 16 14 12 1U 8 6 4 2 r" no#.Im 0 Lf 0 l00 200 Ast)400)Meridional Dislollce from S¶ UoUloIT (in)OYCR ) M2.DRW;-bb-Ar-fum e n ut o -".A uueqt iujilULiitj i-I nHeridional Siresses for 'Without Sand' Case -inal' Displacement I AhSYS 4.4A 13 0 54:47_ -- , -_ S TE ESS z5 (AIPG)41 MDLZ MN =.1159897 9ce =~2272 xv =1 e*01ST=2

  • 96_ XI =483.59 CEMAROID HIDDEN 0.115907 E2552 11761 17866 I S71 CREE IX VRVELL ANALYSIS 0OYU1M H SAND. ACCIDENT)Figure 5-3 Circumferential Membrane Stress Distribution Using Small Displacement Option.

II(,:1 ';unII (oer (Pfit Iu '2)1 t , f'! ,;" IS I (i 31.). ibI 1OI 1)k)I' )111 I)Vokiiceinwril A\(ccdent (ondilion V1--* I f:,)W2 U, M U, tg V C 4, L.ci 3JO 28 2b 24 22 20 18 16 14 12 10 8 6 4 2 0 en n 20 40 60 80 Meridlonol t)islonce hoin Si Uolloryi (in)ACCD1N5A.I)HW Fiarrp 5-4 Circumferential Membrane Stress Miagnitudes at Four Heridional Planes in Sandbed Region -Small Displacement 100-00 tT)~* oh 0'a at X N .9-3. REV. 0---m-rc e.- c -e any _c e_ -. r z e -:ee -eory: . . -, I :: b-. -. -e- e .eor)..-._*. --Figure 5-5 Beam With Transverse Plus Axial Loading 5-17 9:4Q: 91 PLOT tIC. 2&x (AUC)lIDDLX XLDE Cs SMX =2144 XU =-..IST=216..291

.*F =40.755'*BY =-24.421 s =T 250.228 At4GZ=-90 CUITROID HIDDENi 3.952 7104 OYSTZR CRxCK DRWWKLL ANALVISS -OYCRL h SIAND. ACCIDENT>)

Figure 5-6 Circumferential Membrane Stress Distribution Using Larqe Displacement Ootion.

moill1witit!

)(Iwi.; N-Jill)(111,f)II A ,.,.:. I N/ -I I I \, I%. I %Z ; I I t % A q .1 I I % I I % I %_j k I v I In V)L.UA E 404)100 U L)30 28 26 24 22 20 18 16 14 V)10 8 6 4 2 0 rn C0'tov 0 100 200 Meridionol Distance front SB Bolltorn (isi).300 400 ACCAI) I 7A.f)RW Figure 5-7 CoUnparfsuII UT Circumferential iembrane Stress Magnitudes With Large and Small Displacement Options

-'r(n !i\!fI, ;EItll AcciLdenl (Conld.itionf V 1 28 2 4 1_, I8 Ir\' Sni = K.0 20 6 2 106 A6 0) 1 4 C.0 10 A Mirritihal Aisjle fiolfl Ve(II C)6 4 " 00 0 20 4 0 60 80 100 Meridional tiskinice lrultr '.33 flolloim (in)ACCDNI`6A.O[?W Figure 5-8 Circumferential Membrane Stress Magnitudes at Four Meridional Planes in Sandbed Region -Large Displacement INDEX N .9-3, REV. 0 6.

SUMMARY

AND CONCLUSIONS This report is a supplementary report to the Code stress report (Reference 1-2) of record and addresses aspects of Code compliance as they relate to the local wall thinning observed and the removal of sand from the sandbed region in the Oyster Creek drywell. The loads and load combinations used in the analysis were based on the previous drywell stress analyses and the GPUN technical specification (Reference 1-4). In developing the allowable stress limits guidance was taken from Subsection NE of Section III, ASME Code where the Code of record,Section VIII and Code Case 1272N-5, is not explicit.The stress analysis first considered a model in which everywhere as-designed thicknesses were used except in the sandbed region where the thickness was assumed as 0.736 inch. This served as a basis for evaluating the stresses for the 95% confidence projected thicknesses to 14R.The highest stresses were determined to be from the Case V-1 and VI load combinations in all the different regions of the drywell. It was shown that the primary and secondary stresses are within the allowable limits for both conditions (as-designed thicknesses and 95% projected 14R thicknesses).

At the plane of symmetry between the vent lines, the meridional extent of the circumferential membrane stress above 1.15mc, was in excess of 1.O.(Rt).

However, using a weighted average considering other meridional planes, this distance was less than 1./(Rt). Furthermore, a large displacement solution indicated the extent at the symmetry plane to be also less than 1.O1(Rt).

This clearly satisfied the Code criterion for the extent of local primary membrane stress.It is concluded that the Oyster Creek drywell shell will continue to meet the Code of record requirements at least up to 14R with the sand removed from the sandbed region. The analysis for buckling capability of the drywell shell without sand is contained in a companion GE report (Reference 1-5).6-1 NdE N8. 9-3, REV. 0 APPENDIX A DETAILED RESULTS FOR AXISYMMETRIC MODEL TEMPERATURE STRESS ANALYSIS A-1

?WEX 98'.43, REV. 0 This appendix presents a summary of the finite element analysis results for the temperature stress case (Load Case No. 8 in Table 3-1). The stresses reported in these tables are the nodal stresses.Since there are three nodes across the thickness of the drywell shell (e.g., see Figure 3-3), the stress at the center node is essentially a membrane stress. The difference between the stress at an inner or the outer node and the middle node is indicative of the bending stress at that section.In each of the stress tables, the second and third columns from the left show the radial and vertical coordinates of the center nodes.Four stress components (three normal stresses and one shear stress)are listed for each of the inner, middle and the outer nodes.Table 2-1 shows the wall thicknesses in the various regions of the drywell. To help assess the maximum stress levels, the range of node numbers associated with each wall thickness are given below: Drvwell Region Node Number Range Sandbed Region Lower Spherical Region except Sandbed Area Middle Spherical Region Upper Spherical Region Knuckle Cylindrical Region 1 through 96 100 through 237 241 604 880 946 through through through through 603 876 942 1449 A-2 ter Creek Rai Data for Ttenmal Stress at 210 second% -lo Saud Outside lodes Radial Heridtonal Hoop SE ST S2 Middle xodes Radial Neridional Hoop ode x r thela "Ode (tinchd) ittch1 (degrees)IPsi) (PsI)(PSI)SXY (psI)Node 5K ST Ipsl) (PSI)St sUT (psI I (PSl $l[s Ide Nodes Radial heridlonal INop Node SE SY St (psI) (psI) psit)Sty (psi)2 247.06 06.93 5 245.58 106. 10 8 250.78 103.28 ll 25t.87 110.48 14 253.45 91i.66 17 255.03 112.88 t0 255.51 3)4.06 23 258.16 115.28 26 2S9.14 116.50 29 261.30 117.13 32 262.8S 33.S91 35 264.39 120.Zl 38 265.93 121.46 41 265.47 122.72 44 269.00 123.99 47 210.S2 12S.26 50 272.03 126.54 53 273.54 127.83 56 2rs.0s 129.13 59 Z71.54 133.43 U2 278.04 131.74 65 279.S4 133.01 6S 281.03 134.41 71 212.52 135.75 Y4 284.01 137.11 71 28M.48 138.47 so 28.936 132.03 83 288.42 141.21 81 289.84 142.59 a 291.33 143.96 92 292.77 145.37 9s 294.21 145.7?9t 294.65 147.04 101 29S.06 141.31 10? 297.92 150.14 36.00 36.27 36.54 36.81 37.08 37.35 37.S2 37.89 38.16 38.43 38.10 38.38 39. 5 39. S2 39.1g 40.06 40.33 40.60 40.51 41.14 41.41 41.68 41.36 42.23 42. 54 42. 1l 43.05 43.33 43.60 43.87 44.15 44.42 44.49 44.56;;.&4S.10 1 Z26.09 1034.01 380.65 -9.14 4 -52.03 985.03 211.56 -8.96 7 18.78 872.26 231.35 -8.94 10 -4.22 743.52 133.3D -9.02 13 1.0 U 09.16 Z3.71 -9.43 If -0.58 459.91 -106.18 -10.20 19 -0.61 258.40 -25?.49 -11.37 22 -1.40 85.81 -423.52 -12.97 25 -1.9J -1S5.1S -603.10 -14.98 28 -2.78 -439.16 -19S.23 -17.41 31 -3.4t -780.06 -993.71 -20.13 34 -4.36 -1182.93 -1113.91 -23.18 37 -4.91 -1652.58 -1317.74 -26.24 40 -S.91 -2192.89 -1565.96 -29.41 43 -5.20 -280c.51 -1715.52 -32.09 46 -1.30 -3478.59 -1822.06 -34.55 49 -5.85 -4206.92 -1665.J -35.65 52 -8.24 -4980.25 -1526.11 -36.18 SS -6.16 -S563.3? -1678.8 '-34.03 S8 -8.10 -6531.01 -1392.12 -30.95 St -3.20 -7230.80 -935.66 -23.06 64 -6.63 -?788.72 -27120 -14.20 61 3.57 -800.93 543.46 2.54 70 -2.54 -8313.58 1528.22 19.01 73 16.71 -5015.75 3341.44 48.55 76 3.35 -7240.83 5179.99 73.93 79 35.01 -5780.68 7407.65 120.94 t2 M2.42 -3599.93 31 3.31 153.88 JS 66.15 -427.51 12302.4? 221.60 88 52.43 3582.24 12454.55 246.39 91 -331.59 1521.28 6373.4S 306.60 94 743.92 11900.93 -8325.26 1694.61 57 1072.89 800.30 -8625.81 2643.90 100 31.35 5771.47 -9376.01 IS0.-78 1i -.c780 .2. -562 .w4 i3;.60 106 -S.45 78O2.93 -5629.43 3Z.02 2 -6.29 5 3.34 a 0.6S I 1.10 14 0.81 17 0.6f 20 0.46 23 0.18 Z5 -0.04 29 -0.46 32 -0.S 35 -1.39 38 -1.74 41 -2.69 44 -3.61 4? -4.46 so -4.49 53 -6.69 Ss -5.91 SS -9.34 62 -7.04 65 -13.01 68 -6.53 71 -16.73 74 -.78 I7 -21.43 sO 7.18 83 -27.11 56 23.22 89 -16.56 92 -20.60 95 86.aZ 96 -131.17 101 -391.55 10 ;.107 11.57-8.65 -3.20-8.66 -12.t3-8.90 -49.SS-9.26 -106.80-10.17 -512.09-11.55 -211.83-13.55 -372.39-16.11 -479.58-19.39 -588.S6-23.16 -693.60-21.65 -787.9?-32.38 -863.4S-37.71 -910.68-42.29 -916.57-48.36 -874.40-52.48 -763.87-57.06 -571.06-58.39 -276.98-60.51 130.50-56.11 Sy."8-53.90 1374.72-39.78 2254.64-31.34 3322.91-1.40 4581.72 13.73 6052.16 673.3 7J070.7 81.33 9S30.91 162.58 11429.45 215.99 12886. 35 394.74 1168.1C 3SS.34 4258.37-6.90-6.08-7.00-7.36-8.02-9.07-10.57-12.56-15.06-18.06-21.52-25.39-29.54-33.82-38.0a-41.85-44.97-46.96-47.29-4S.39-40.55-31.96-18.67 0.01?25.40 57.98 99.05 146.61 206.92 266.24 305.94 3 -238.43 -1053.61 -397.87 -4.?1 6 6S.72 -1004.52 -297.76 -4.42 9 -1, 18 -891.63 -331.27 -4.76 12 6.59 -764.10 -347.65 -5.42 B5 0.10 -631.41 -388.54 -6.38 IB 2.00 -484.13 -435.98 -7.76 21 1.63 -316.12 -487.59 -9.6S 24 1.81 -119.42 -53S.80 -12.09 27 I.81 114.41 -573.30 -15.16 30 13.8 393.fSS -591.68 -18.81 33 1.13 726.7Y1 .58.34 -23.13 36 1.30 2120.45 -532.04 -27.94 39 1.03 1S81.18 -431.99 -33.34 42 0.03 2111.54 -269.35 -38.90 45 -0.52 2713.00 -30.40 -44.81 48 -2.42 3380.10 297.28 -50.23 5! -3.22 41D6.08 728.07 -SS.56 54 -6.44 4872.00 1272.68 -53.2S 57 -7.28 5659.14 1944.74 -62.32 50 -12.29 6421.10 2743.54 -61.83 63 -12.78 7146.60 3694.30 -60.29 66 -21.46 1746.21 4754.93 -S2.12 69 -19.12 8IJI.78 6014.92 -42.49 72 -33.16 9308.43 7349.11 -21.43 75 -24.45 809.46 8779.96 -0.36 18 -45.2Z 735.A12 102311.17 39.01 S1 -25.38 6026.09 11671.57 15.06 14 -67.76 3865.39 12917.21 142.3?87 -10.11 669.81 4 -191.64 90 -84.7

  • 324J.12 11144.07 281.76 93 91.71 -7947.40 2150.06 307.36 96 2M9.b0 -9856.70 -13916.42

-182.15 99 200.09 -6526.92 -13138.37

-564.42 102 -253.59 -7181.1? -12462.12

-291.51 10S i3. J -620.i3i -i b9i49 .IS lu0.,[Da 43.1Z -1620.3s -9490.61 10W.21-12.80 -11318.26

-267.26 561.36 -10877.87

-727.93 914.74 -10433.76

-116.71 155.66 -6i3.zi iu5.53 37.99 -7563.98 66.37 Page I IOSUlIO.K1-

?3-Oct-90 tier Craek Um Data far thermal Stress at 210 seconds -No Sand Outside Node Radial Hleridlonal Node x I theta Node Sl SY I &iddle Nodes l00p Radial Herldional Hoop St Sty Node st S (psil (pal) (psi) IP21) lpsl)Inside aodes Radial Weridional Ibop Sxv NOde SX Sr Sz (Psi) (psi) (p11) (pSl)(dit) (etnh) (degrees)(Pta) (pst)sxY feet)lI10 M.933 151.56 45.37 113 300.74 15?.99 4S.S5 lit 30Z.13 154.42 4S.9?119 303.52 MA5.81 46.19 122 304.91 157.31 46.4J 125 305.21 856.?? 46.?4 12% 30S.6s 160.23 47.01 131 309.01 151.10 47.28 134 312.35 16S.36 47.94 13 315.65 133.06 48.64 141 316.91 112.81 49.31 143 322.12 176.58 49.11 144 325.21 130.40 50.15 14S 328.40 184.25 51.34 15? 331.45 130.14 52.01 SS 334.51 112.01 52.8I ISO 337.49 196.03 53.36 181 340.00 11.4S 53.54 184 342.48 202.89 54.52 18? 344.93 206.34 SS.10 170 347.34 209.85 55.6 173 340.71 213.31 56.25 1N 352.05 215.90 56.83 175 354.35 220.43 57.41 102 356.62 224.05 57.99 isS 358.S5 227.58 58.57 1M8 361.04 231.29 S9.14 191 363.20 234.84 59.12 114 36S.32 2M3.1 50.30 191 361.41 242.31 40.8B too 389.45 245.43 6t.4S 203 3M1.46 241.76 62.03 206 373.43 253.52 62.61 209 375.36 257.30 53.19:25 :.:' 24.91 64.3 215 379.tl 264.91 64.34 1ts -26.01 8227.45 -411S.90 1t.4?112 2.54 .-2187.41 -18.7J 12 -.11.79 82.41 -1695.31 -33.2Z 335 0.80 848.45 -719.80 -51.47 121 -4.82 7519.44 -47.92 -60.21 324 5.32 ?172.89 536.22 -68.36 127 -26.25 1*591.59 9,44 -71.2 130 40.14 3741.13 1255.64 -82.07 133 23.07 4130.63 1137.09 -83.20 134 30.11 3020.75 1740.12 -15.92 133 21.10 US1.50 3528.91 -4.24 142 16.22 M66.99 )213.11 -33.25 145 10.49 3SI.91 982.13 -20.07 140 6.3S -34.53 W5.67 -10.24 151 3.11 -2?S.04 347.57 -3.43 154 0.74 -332.09 170.21 0.76 157 -o.2z -339.71 49.73 2.88.16 -0.54 -307.07 -14.99 3.56 169 -0.97 -257.44 -S2.87 3.74 15U -0.14 -0t2.4s -?Q.6t 3.41 169 -6.91 -143.60 -14.54 2.99 112 -0.71 -103.0 -6.67 2.40 175 -0.63 -U64.1 -59." 9 .83 I1l -0.46 -35.54 -46.29 1.28 181 -0.33 -14.29 -36.54 0.83 184 -0.21 -0.01 -25.87 0.46 181 -0.13 8.65 -1S.90 0.22 190 -0.06 13.0? -9.82 0.04 193 -0.01 14.49 -4.S6 -0.01 195 0.02 13.95 -0.16 .0.13 1" 0.03 12.28 1.34 -0.16 202 0.04 30.Ce 2.60 -0.16 205 0.04 7.78 3.13 -0.14 20o 0.04 S.54 3.15 -0.12 21 0.0? 3.35i 2.44 -0.0j 214 0.02 2.35 2.44 -0.07 110 -13.52 .58.61 -6216.64 33.43 113 13.59 I1 -3.55 t1s 6.37 122 0.31 125 6.23 328 -9.8S 131 32.25 134 32.1?137 IS.3S 140 11.03 143 S.40 246 t.U3 149 -0.3S 152 -1.51 155 -2.17 15t -1.82 I1I -I .06 164 -1.13 Is? -0.01 170 -0.13 173 -0.42 176 -0.27 179 -0.14 le -0.06 1J5 0.00 M 0.04 191 0.06 194 0.06 191 0.06 200 0.05 203 0.04 206 0.03 209 0.02 cii O.Ok 235 0.01 L.86 -5003.4? 6.9?-2.16 -3923.80 -14.30-26.78 -2976.28 -30.59-34.03 -2151.S5 -42.72-43.81 -3458,.3 -11.20-47.12 -811.11 -56.7?-49.2S -371.53 -59.80-44.56-39.01-30.65-22.34-14.76-8.94-4.54-I.11 0.14 0.99 1.39 1.44 1.35 1.13 0.11 0.67 0.48 0.31 0.38 0.09 0.03-0.01-0.03-0.04-0.04-0.04-0.02 462.63 -Ss.al 555.DS -50.73 366.51 -39.76 905.30 -?8.61 756.51 -18.78 517.73 -10.92 40S.00 -S.17 251.42 -1.31 142.91 1.00 11.33 2.04 20.11 2.49-11.90 2.51-30.52 2.29-38.85 1.93-40.15 1.53-3J.05 1.13-31.60 0.19-25.24 0.50-18.95 0.21-13.30 0.12-8.59 0.01-4.90 -0.06-?.18 -0.09-0.32 -0.51 0.85 -0.10 1.48 -0.09 1.71 -0.01 1.12 -0.06 lit SII 117 it?120 123 121 129 132 135 138 141 344 14?150 153 I5S 159 1,2 165 18 IJI 174 111 18 183 186 189 t9?'95 198 201 204 201 210 213 216 I.82 -8219.11 -6352.30 52.51 21.62 -8414.51 -1218.38 35.53 7.71 -5401.38 -61J1.Z5 J.7$14.03 -8161.44 -5180.58 -6.74 8.31 -1781.78 -4280.01 -22.35 6.09 -126S.8 -3462.41 -31.40 8.96 -5714.93 -2732.34 -39.72 26.44 -5856.08 -2005.51 -35.38 44.14 .453.62 -18I.54 -32.*5 3.01 -3109.95 -43.12 -33.40 1.7 -120. 23 401.13 -29.56-4.95 -1015.15 596.02 -23.50-6.62 -383.06 629.61 -17.34-7.01 11.20 588.64 -11.60-6.31 237.50 46?.71 -6, "-5.18 330.00 34S.14 -3.4-3.47 341.28 238.12 -0.99-1.6s 310.29 150.12 8.43-1.40 261.13 94.65 1.15-0.16 206.33 41.13 1.49-1.41 1SZ.33 33.?? 1.54-0.11 105.1? -7.86 1.43 0.06 6P.OO -20.21 1.22 0.1I 37.04 -25.75, 0." 0.21 15.29 -28.64 0.73 0.22. 0.63 -24.61 0.52 0.20 -e.32 -21.01 0.33 0.11 -12.14 -16.79 0.19 0.14 -14.19 -12.62 0.09 0.10 -14.02 -6.8 0.0at 0.01 -12.39 -S.12 -4.0 3 0.05 -10.20 -3.26 -0.06 0.03 -1.89 -1.45 -0.06 0.01 -5.74 -0.20 -0.06 0.00 -3.89 0.5S -0.06 0.00 -2.41 0.99 -n.05 fog* 2.2ISI210.4K1 23 -Oct-90 Ier Creek Rw Data for Thermal Stress at 210 seconds -lo S5nd OutsIde modes Radial Nerldlonal Hoop ode X Y thet* Node SN SY SZ tiddle Nodes Radl) Paeridlocul hoop SXY Node Sx SY sr[psi) (psi) (pS11 (psi) I Inside Nodes Rhd!.) HeridIonal ioop SxY Node SX SY St (Inch) (tIhl (degrees)(psi) psIj ( psI) 4 (PSI) (Psl)(psI) (psi)218 380.93 268.74 64.92 21? 0.02 221 382.71 272.59 55.50 220 0.01 224 383.49 274.32 65.76 223 0.8)221 384.26 216.04 66.02 226 0.00 230 3S1.03 277.78 66.?t 229 0.00 233 385.1S 219.51 66.53 232 D.00 236 '385.54 211 .2S 6".19 23S 0.00 239 386.15 282.00 66.90 238 -0.01 242 386.91 22e.74 61.00 24* -0.02 245 361.40 283J5 61.*S 244 0.00 248 383.12 204. 77 6.30 247 0.00 251 380.24 28S.17 61.45 250 0.00 2S4 386.6t 216.J8 67.60 253 0.00 257 38.06 287.61t t.?75 2S5 0.00 260 309.50 .288.64 67.90 259 0.00 263 3".91 28J.U8 68.05 262 0.00 266 390.32 90.688 68.20 265 0.00 269 380.13 291.90 68.3S 268 0.00 272 355.13 192.93 U1.50 211 0.00 27S 39Z.25 295.81 68.93 274 0.00 210 393.40 298.e2 69.36 211 0.00 281 394.50 301.77 69.75 2N0 0.00 264 395.58 304.14 10.2? 783 0.00 8t? 396.64 307.7) 10.11 285 0.00 290 391.67 310.59 71.06 289 0.00 293 398.48 313.68 11.53 252 0.00 295 399.5? 316.5 71.94 295 0.00 29 400.64 313.68 12.37 241 0.00 302 41.S9 322.U 72.10 301 0.00 305 402.51 325.71 13.23 304 0.00 306 403.J4 321.23 73.6$ 307 0.00 311 404.28 331.7$ 14.09 310 0.00 314 405.13 334.80 14.52 313 0.00 317 405.9? 331.84 74.91 316 0.00 j3ig .e.ii 340.89 75.38 319 0.00 373 401.5S 343.95 15.81 322 0.00 1.27 0.59 0.25 0.07-0.07-0.18-0.22-0.35-0.52-0.60-0.61-0.62-0.62-0.51*0.60-0.5-0.56-0.53-0.49-0.42-0.33-0.24-0.17-0.11-0.06-O.03 0.00 0.01 0.02 0.03 0.03 0.02 0.02 0.02 0.01 0.01 1,.5 -0.05 1.49 -0.03 1.21 -0.02 1.08 -0.02 0.91 -0.01 0.15 -0.01 0%61 0.02 0.St 0.06 0.41 0.03 0.32 0.00 0.25 0.00 0.19 0.00 0.14 0.00 5.09 0.00 0.0S 0.00 0.01 0.00-0.02 0.00-.01 0.00-0.07 0.00-0.11 0.01-0.13 0.00-0.33 0.00-0.12 0.00-0.10 0.00-0.09 0.00-0.07 0.00-0.05 0.00-0.03 0.00-0.02 0.00-0.01 0.00 0.00 0.00 o.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.00 218 0.40 221 0.00 224 0.00 221 0.00 230 0.00 233 0.00 236 0.01 239 0.01?42 -0.01 245 0.00 248 0.0W 251 0.00 254 0.00 25? 0.06 260 0.00 263 0.00 266 0.00 269 0.00 272 0.00 2J5 0.00 21S 0.00 261 0.00 264 0.00 28? 0.00 290 0.00 293 0.00 296 0.00 299 0,00 302 0.60 305 0.00 306 0.00 311 0.00 3t4 0.00 3t7 0.00 3UO 0.00 323 1.00-0.02-0.01-0.01-0.01 0.00 0.go-0.02-0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.55 -0.04 219 -0.01 1.30 -0.03 222 0.00 1.I -0.02 225 -0.01 1.04 -0.02 228 0.D0 0.91 -0.01 231 0.00 0.tS -0.01 234 0.00 0."6 -0.01 237 0.01 0.61 -0.03 240 0.00 0.56 -0.02 243 -0.01 0.49 0.00 246 0.00 0.43 0.00 749 0.00 0.37 0.00 252 0.00 0.31 0.00 255 0.00 0.21 0.00 258 0.00 0.22 0.00 261 n.00 0.18 0.00 264 0.00 0.14 0.00 267 0.00 0.11 0.00 270 5.00 0.08 0.00 23 8.00 0.01 0.00 275 0.00-0.03 0.00 Z79 0.00-0.D06 0.00 752 0.00-0.07 0.00 285 0.00-0.01 0.00 288 0.00-0.01 0.00 291 0.00-0.06 0.00 294 0.00-0.05 0.00 291 0.00-0.04 0.00 300 0.00-0.03 0.00 303 0.00-0.02 0.00 306 0.00-0.01 0.00 309 0.00-0.01 0.00 312 0.00 0.00 0.00 315 0.00 0.00 0.e0 31S 0.00 0.00 0.00 321 0.00 Q.01 0 13.00 374 0.05-1.31-0.61 0.27-0.06 0.05 0.15 0.25 0.31 0.50 0.S9 0.61 0.62 0.62 0.6l 0.58 0.56 0.53 0.49 0.42 0.33 0.25 0.17 0.11 0.07 0.03 0.C*0.01-0.02-0.03 0.03-0.02-0.02-0.6?-0.01-0.0t 1.15 1.40 1.07 1.0O 0.91 0.82 0.?2 0.11 0.70 0.66 0.6Q 0.55 0.49 0.44 0.39 0.35 0.30 0.26 0.z2 0.53 0.06 0.0t-0.52-0.04-5.05-O.05-0.05-O.04-0.03-0.03-0.02-0.01-0.01-0.01 0.00 0.00-0.04-0.02-0.02-0.02-0.01-0.01-0.02-0.03-O.0z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.0 O.W 0.w O.00 O.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.00 U.00 Page 3 05r210.UKI 2.3-0ct-so ter Creek Raw Data for Therml Stress at 210 seconds -go Sand fuPO ! I O mr6 '-zz. Isi5de 11bdes Radlal Herldioal Hoop Redli1 Merrdlonal Hoop Radial hiefidional ikop ode X V Theta Pode S Sy S 511 N1de SZ SY Si SM NO& S SY St I nch) (inch) (degrees) (Psi) lost) (psi) (psi) (psi) (Psi) fpsi) (psi) (psi) (psi) lpsil SXY (IPal 326 408.32 347.01 76.24 325 0.00 329 409.06 350.08 16.6? 325 0.00 332 409.7? 353.15 17.10 331 0.10 335 410.47 356.23 77.53 334 Q.00 335 411.14 359.3l 17.95 331 0.00 341 411.18 362.J40 1.39 340 0.00 344 412.41 365.49 18.62 343 0.00 341 413.01 365.S9 79.2S 34 e.o00 350 413.5a 311.69 79.66 349 0.00 353 414.14 314.80 84.tl 3S2 0.00 3M5 414.67 377.91 8.5.4 355 0.00 359 41S.1l 351.02 80.9 M58 0.00 362 415.66 386.14 S1.40 361 0.00 365 416.1? 351.25 8l.53 364 0.00 358 416.S6 390.33 82.2 35? 0.00 371 416.91 "39.51 82.19 310 e..o 34 417.3S 396.84 83.12 373 0.00 317 411.12 39.18 53.55 376 0.00 380 418.07 402.91 63.95 319 0.00 M3 418.39 406.0S 84.41 3C2 0.00 385 415.16 40.1I 84.84 315 0.00 389 418.9 412.33 85.21 388 0.00 392 419.20 415.45 S.10 391 0.00 395 419.43 411.63 84. 13 394 0.00 398 419.63 421.75 4s.56 311 (1.00 401 419.81 424.93 8.3 400 0.00 404 413.95 428.08 87.42 403 0.00 407 420.09 431.23 07.65 406 0.00 410 420.20 434.38 66.25 409 0.00 413 470.28 43P.54 89.11 412 0.00 416 420.34 440.69 69.14 415 0.00 419 420.37 443.4S 89.57 415 0.00 42? 420.39 447.00 90.00 421 0.00 425 420.37 4S0.15 90.43 424 0.00 428 420.34 453.31 n.R Al? n .n 431 420.?9 45S.45 91.29 430 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0M 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.00 0.00 0.00 0.00 o.0o 0.00 0.0t 0.00 0.00 0.00 0.00 0.00 0.00 e.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 fl Cl 0.00 0.00 326 0.00 0.00 329 0.00 0.00 332 0.00 0.00 335 O.0D 0.00 338 0.00 0.00 341 0.00 0.00 344 0.00 0.00 347 0.80 0.00 350 0.00 0.00. 35.3 0.00 0.00 356 0.00 0.00 359 0.00 0.00 362 0.00 0.00 365 0.00 0.00 368 0.00 0.0 31.1 C.00 0.00 374 0.00 0.00 371 0.00 0.00 350 0.00 0.00 m3 0.00 0.00 3BC 0.00 0.00 389 0.00 0.00 392 0.00 0.00 395 0.00 0.00 390 0.00 0.00 401 0.00 0.00 404 0.00 0.00 40? 0.00 0.00 410 0.00 0 00 413 0.00 0.00 416 0.00 0.00 419 0.00 0.00 422 0.00 0.00 425 0.00 0n nn 29 n 0.00 431 0.00 0.00 0.00 G. 00 0.00 0.00 0. 00 0.00 0.00 0.00 0.00G 0.00 0.00 0.00 0.00 0.00 (1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00.D00 0.00 A .A C.00 o.w0 0.00 0.00 32J 0.00 0.00 330 0.00 0.00 333 0.00 0.00 336 0.00 0.00 339 0.00 0.00 342 0.00 0.00 345 0.00 0.00 348 0.00 0.00 351 0.00 0.00 354 0.00 0.00 357 0.00 0.00 360 0.00 0.00 363 0.00 O.00 356 0.00 0.00 369 0. 00 0.00 3JS 0.00 0.00 37S 0.00 0.00 371 0.00 0.00 381 0.00 0.00 384 0.00 0.00 381 0.00 0.00 390 0.00 0.00 393 0.00 0,00 395 0.00 0.00 399 0.00 0.00 402 0.00 0.00 405 0.00 0.00 4O8 0.00 0.00 411 0.00 0.00 414 0.00 0.00 417 0.00 0.00 420 0.00 0.00 423 0.00 0.00 426 V.uv vI.w 432 0.00 0.00 *32.0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0O D.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00.*UU 0.00-^.01 0.00 0.00 0.00 0.00 0.Do 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.O0 0.00 0.00 0.00 0.0O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.O0 0.00 0.e0 0.00 0.00 0.D0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.oa O.00 0.00 0.00 0.00 0.00 0.00 0.00 C.00 u.W U.uu 0.00 0.00 Page 4 4OSrQ10A.c 23 0ct-90 Oyster Creek Raw Data for Thermal Stress at Z20 seconds -Jl Sand Outside Nodes Middle Modes Inside Nodes Radial Herldional Hoop Radial eridional Hoop Radi1a hertdloral tbop*Ode X Y Theta Iode Sl sr Sz SxT Node Sx SY Sz SxY *ode SK Sy sZ (t#ch) finch) (degrees) t(Pl) IP{1p (psiI (psi) (psi) (psi) (psi) pi (psi) (psi) (psi)SX1 (Psi)434 420.20 459.62 91.72 4U3 0.00 431 420.09 462.) 92.15 431 0.00 440 419.96 485.92 92.5 431 0.00 443 419.8! 469.01 93.01 442 0.00 446 413.63 412.22 93.44 445 0.00 449 419.43 415.3? 13.51 445 0.00 452 411.20 476.5? 94.30 451 0.00 455 415.9S 481.6? 94.73 454 0.00 458 418.8 484.01 95.1 451 0.00 461 415.39 487.1S 95.58 460 0.00 464 410.01 4.109 16.0? 483 0.00 461 4?.?? 494.22 96.48 A6" 0.00 470 417.34 497.36 SS.88 *S9 0.00 4*1 41b.17 500.41 97.31 4*7 0.00 416 416.SS 50.36 11.74 475 0.00;79 416.12 SM.14 6,11 410 0.00 482 4156 505." 18.60 481 0.00 48S5 415.1J 512.6 99.03 454 0.00 48 414.67 S16.09 "9.46 487 0.00 491 414.14 511.20 99.81 490 0.00 494 413.58 S22.31 100.3? 43 0.00 491 413.81 525.41 t0.75 49 0.00 500 412.41 52S.51 101.15 49f 0.00 503 411.18 531.50 101.61 502 0.00 506 411.14 534.69 102.04 505 0.00 50§ 410.47 53Y.71 102.41 50S 0.00 512 409.71 W4A.0S 102.90 S5t 0.00 515 406.06 543.12 103.33 5)4 0.00 st5 40e.3* 546.99 103. 51 0.00 52t 407.5$S 550.S 104.19 520 0.00 524 406.71 SS3.1 104.62 S23 O.00 52f 405.91 555.16 105.05 525 0.00 530 40S.13 559.20 15.48 529 0.00 533 404.?a 5U.24 105.91 532 0.00'EV 45!,! S-I, 01. 41, 41 I; .S3 4, .5J2 C.=539 402.51 568.25 106.11 538 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00.10 0.00 0.00 0.00 0.Do 0.00 0.00 0.00 0.00 0.00 0.00 0.o0 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00_ .0.00 0.00 0.00 434 0.00 0.00 0.00 437 D.00 0.00 0.00 440 0.00 0.00 0.00 443 0.00 0.00 0.00 446 0.00 0.00 0.00 449 0.60 p.W0 0.00 452 0.00 0.00 0.00 45S 0.00 0.00 0.00 458 0.00 0.00 0.00 461 0.00 0.00 0.00 464 5.00 8.00 0.00 467 0.00 0.00 0.00 470 0.00 0.00 0.00 473 0.00 0.00 0.00 416 0.00 0.00 0.00 419 0.00 0.00 0.00 482 0.00 0.00 0.00 455 0.00 0.00 0.00 408 0.00 0.00 0.00 4I 0.00 5.00 0.0O 494 0.00 0.00 0.00 49? 0.00 0.00 0.00 0so 0.00 0.00 0.00 503 0.00 0.00 0.00 506 0.00 00oa 0.00 509 0.00 0.00 0.00 S12 0.00 o.00 0.00 St5 , 0.00 0.00 0.00 SI 0.00 0.00 0.00 S2t 0.00 0.00 0.00 524 0.00 0.00 0.00 52Y 0.00 0.04 0.00 530 0.00 0.00 0.00 533 0.00 D. W V0.= W h;.IW 0.00 0.00 539 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.00 415 0.00 0.00 0.00 438 0.00 0.00 0.00 441 0.00 0.00 0.00 444 0.00 0.00 0.00 441 0.00 0-00 0.00 450 0.00 0.00 0.00 453 0.00 0.00 0.00 456 0.00 0.00 0.00 459 0.00 0.00 0.00 462 0.00 0.00 0.00 46S 0.00 0.00 0.00 466 0.00 0.00 0.00 41 0.W0 0.00 0.00 4)4 0.00 0.00 0.00 4fl 0.00 0.00 0.00 40 D.00 0.00 0.00 483 0.00 0.00 0.0o 486 0.00 0.00 0.00 488 0.00 8.00 0.o0 49? 0.00 0.00 0.00 495 0.00 0.00 0.00 49< 0.00 0.00 0.00 SOl 0.00 0.00 0.00 504 0.00 0.00 0.00 50 0.00 0.00 0.00 510 0.00 0.00 0.00 513 0.00 0.00 0.00 56 0.00 8.00 0.00 sit 0.00 0.00 0.00 522 0.00 0.00 0.00 525 0.00 0.00 0.00 520 0.00 0.00 0.00 sit 0.00 0.00 0.00 534 0.00 g.Wg U1.09 U U.00 0.00 0.00 540 e.00 o.0o 0.00 0.00 0.00 o.o O.00 0.w o.oo 0.00 0.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.00 0.00 0.00 0,09 0.00 0.00 0.00 0.00.00 0.00 o.00 0.w 8.0 0.00 0.00 0.00 u.w 8.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0o 0.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.o0 0.00 0.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.0 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 o.00 0.00 P. 04 0.00 0.00 0.0w 0.00 0.00 0.0D 0.00 0.0o 0.DO 0.oo 0.0 0.00 0.00 u.w.000 Page S 150512 E tO .t 23-act-94 Oyster Creek RAw Date for Therm) Stress at 210 seconds -No Sarod uUtside Noon Radlal Merldional Poop Nods X Y theta Mode SX SY Sz SXr Wde (Inich) Inchl (degrees)

Ips1 (pit) (PSI) (psi)Middle Nodes inside Nodes Radial Merldional Hoop Radial Herldlonal Hoop SX SY SZ XT Node 51 S Si fpsi) (psi) (p51) (psil (psi) (psi) (psi)SIU (psl 542 401.58 571.31 107.20 541 0.00 545 400.64 574.32 107.83 544 0.00 S48 199.67 571.3Z 10.06 547 0.00 551 398.68 S60.32 106.49 550 0.00 5S4 397.67 503.31 106.92 553 0.00 551 396.64 586.29 109.35 SS5 0.00 510 395.58 589.26 109.78 S59 0.00 563 394.S0 52.23 110.21 562 0.00 565 393.40 595.18 110.64 565 0.00 569 392.28 5UM.13 111.07 Su 0.00 St2 391.13 601.01 111.50 S11 0.00 515 390.?3 SW2.10 111.65 574 0.00 578 390.32 603.12 111.80 517 0.00 561 389.91 SU.14 111.95 SW 0.00 584 389.50 605.16 112.10 583 0.00 SUr 389.06 606.1a 112.25 Su 0.00 5S0 306.61 607.20 112.40 S59 0.00 593 388.24 608.21 112.55 592 0.00 596 38'.02 609.23 I1t.70 59S 0.00 599 387.40 610.24 112.95 SS 0.00 502 386.91 611.26 113.00 601 0.00 605 366.88 £11.39 113.02 604 0.00 606 386.11 113.20 1)3.29 507 0.00 811 385.33 615.01 113.56 610 0.00 614 384.54 61b.S1 113.83 613 0.00 817 383.74 515.51 114.09 616 0.00 620 382.93 6*20.41 114.36 61 05.00 623 382.11 622.20 114.63 622 0.00 626 381.29 623.96 114.90 625 0.00 629 380.45 525.77 115.11 6US 0.00 632 31%.51 6t .5L 1lS.44 631 0.00 535 168.76 829.3? IIS.JS 634 0.00 636 317.91 531.09 115.91 631 0.00 641 311.04 632.85 116.24 640 0.00 644 316.16 634.53 1163.1 643 0.00 647 315.20 636.39 231.78 46 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 542 0.00 0.00 545 0.00 0.00 545 0.00 0.00 SS1 0.00 0.00 554 0.00 0.00 557 q.oo 0.00 5so 0.00 0.00 563 0.00 0.00 566 0.00 0.00 589 0.00 0.00 512 0.00 0.00 515 0.00 0.00 58W 0.00 0.00 Sek 0.00 0.00 584 0.00 0.00 56?0.00 0.00 590 0.00 0.00 593 0.00 ' 0.00 585 0.00 0.00 599 0.00 0.00 602 0.00 0.00 S0S 0.00 0.00 S6 0.00 0.00 511 0.00 0.00 614 0.00 0.00 W 17 0.00 0.00 620 0.00 0.00 623 0.00 0.00 626 0.00 0.00 629 0.00 0.00 632 0.00 0.00 535 0.00 0.00 638 0.00 0.00 54t 0.00 0.00 644 0.00 0.00 647 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 6.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n no 0.00 0.00 0.00 0.00 543 0.00 0.00 546 a.oCo 0.0 549 0.00 0.00 5S2 0.00 0.00 555 0.00 0.00 558 0.00 0.00 561 0.00 0.00 564 0.00 0.00 5S7 0.00 0.00 510 0.00 0.00 513 0.00 0.00 S6 0.00 0.00 579 0.00 0.00 582 0.00 o.w 585 0.00 0.00 5g8 0.00 0.00 591 0.00 0.00 594 0.00 0.00 591 0.00 0.00 60o 0.00 0.00 503 0.00 0.00 606 0.o 0.00 60s 0.00 0.00 612 0.00 0.00 615 0.00 0.00 615 0.00 0.00 C21 0.00 0.00 624 0.00 0.00 621 0.00 0.00 630 0.00 0.00 633 0.00 0.00 536 0.00 0.00 619 0.00 0.00 646 0.00 0.00 648 0.00 0.00 0.00 0.00 a.0u 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ft. n 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O."o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n.NW 0.00 5. on 0.00 0.00 0.00 0.00 5.00 o.o0 0.00 0.00 0.00 0.0o 0.0o 0.00 0.00 0.00 0.-n o.00 0.00 0.00 0.00*.00 0.00 0.00 0.00 0.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 a n 0.00 0.00 Page 6 1N05IZ10.WKI 23-&c t -90

)Ystor Ctek law Data for Theroul Stress at 210 seconds -Me Sand Outside Nodes IIddle modes Inside Nodns Rullal heridional Hoop Radial eridlona Noop Radial Nerldional Ibo0 Nods l Y Thet& Node SX SY Sz SlT Node SX Sy St S1(Y lode Sx Sy 5'dih) (inch) (degrets) (psi) (psi) (plI I(Psi) (PI) (PSI) (ppsi) Ctp (pst) (psi) (psi)SKY (psi)$S0 374.39 535.14 111.05 549 0.06 IS3 373.49 63t.t8 117.31 Su C0.0 656 372.58 641.64 111.58 855 0.00 t59 311.6? 643.38 11.es 5ss 5.00 662 3)0.14 145.12 116.12 661 0.00 6"5 36.81 646.85 118.39 56 0.00 668 368.61 64.58 118." 667 0.00 51 368.50 "4a.i2 le.68 510 0.00 674 361." 650.U 119.00 all 0.00 617 365.48 SS2.S) 119.33 61 0.00 6S0 345.30 454.99 1B.66 679 0.00 683 354.11 557.06 lit." r# 5.00 US 362.51 659.13 320.32 685 0.00 68 361.10 661.J9 120.63 GU 0.00 1 360.4 663.2S 128." 96 I 0.00"Is 35S.24 665.30 121.2S 594 0.00 a" 357.99 667.34 121.13 fo? 0.00 701 3S4.13 69.37 121.64 700

  • 0.00 704 355.45 571.40 122.6 103 0.00 701 354.11 673.42 122.53 106 0.00 J1D 35Z.68 V5.45 I2t.t2 709 0.00 713 351.SJ 07J.43 123.24 112 0.00 JIg 350.26 619.43 123.57 11S 5.00 119 348.93 681.4t 123." 715 o.0o 722 341.59 613.40 124.22 121 0.00 iS 348.24 88S.3 124.55 724 0.00 729 344.68 6. 124.87 flY 0.00 731 343.50 689.30 125.20 730 0.00 134 342.1? "6.2S 125.S2 733 0.00 73? 340.72 13.19 12S.8S t36 0.00 140 339.32 89S.13 125.16 732 0.00 143 331.90 W.0s M2A.5O 142 0.00 746 336.41 698.9? 126.83 ids 0.00 714 335.03 700.U 121.1S 748 0.00 75z -W38 102.n7 121.48 751 0.00 755 332.12 704.68 127.61 754 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 OAO 0.00 0.00 0.00 0.00 650 0.00 0.00 0.00 653 0.00 0.00 0.00 56 0.00 0.00 0.00 659 0.00 0.00 0.00 652 0.00 0.00 0.00 665 0.00 Q.GO 0.00 668 0.00 0.00 0.00 6fl 0.00 0.00 0.00 674 0.00 0.00 0.00 677 0.00 0.00 o.00 6o0 6.00 0.00 0.00 683 0.00 0.0o.00 606 0.00 0.00 0.00 6s8 0.00 0.00 0.06 692 0.00 0.00 0.00 8s 0.00 0.00 0.o0 "a 0.00 0.00 0.00 101 0.00 0.00 0.00 704 0.00 0.00 0.00 701 0.00 0.00 0.00 710 0.00 0.00 0.00 113 0.00 0.00 0.00 16 0.00 0.00 0.00 119 0.00 0.00 0.00 722 0.00 0.00 0.00 125 0.00 0.00 0.00 128 0.00 0.00 0.00 131 .0.00 0.00 0.00 734 0.00 0.00 0.00 131 0.00 0.00 0.00 740 0.00 0.00 0.00 143 0.00 0.00 0.00 746 0.04 0.00 0.00 749 0.00 0.00 0.00 752 0.00 0.00 0.00 5ss 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 a.og 0.00 01.0 651 0.00 0.00 0.00 654 0.00 0.oa 0.00 65s 0.00 0.00 0.00 66S 0.00 0.00 0.00 663 0.00 0.00 0.00 666 0.00 0.00 0.00 669 0.00 0.00 0.00 672 0.00 0.00 0.00 615 0.00 0.00 0.00 618 0.00 0.00 0.00 $81 0.00 0.00 0.00 68 0.00 0.00 0.00 68O 0.00 0.00 0.00 690 0.00 0t.0 Lt.0R0 593 0.00 0.00 0.130 696 0.00 0.00 0.00 69 0.00 0.00 0.00 702 0.00 0.00 0.00 705 0.00 0.00 0.00 706 0.00 0.00 0.00 7lt 0.00 0.00 0.00 71 0.00 0.00 0.00 III 0.00 0.00 0.00 720 0.00 0.00 0.00 123 0.00 0.00 0.00 125 0.00 0.00 0.00 125 0.00 0.00 0.00 732 0.00 0.00 0.00 35 0.0o 0.00 0.00 13. 0.00 0.00 0.00 741 O.00 0.00 0.00 144 0.00 0.05 0.00 747 0.0 0.00 0.00 7SO 0.00 0.00 0.00 753 0.00 0.00 0.00 153 0.00 0.00 0p.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 D.OO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.eo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 o.00 0.0o 0.00 5.00 0. 0 0.00 O.00 0.00 0.00 D.00 0.00 0.00 0.00 0.00 0.00.o00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.oo 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Page 7 7NOST2I1o.1A 23-ect ge0 tstar Creek RNw Date for Thermal Stress at Z10 aecond% -No land Outside Nodus 1biddi Nodes InsIde Nodes Rtidla) Hrldlonal Hoop Rd1ia Merdlonhl Hoop Radial I4erldlonl Hoop Nodr I I lhto lNode SX ST S2 SXY Node SX SY S SxT Nods U SY SZ SXy Olnchl (inch) (degrees) (Ott l19* W (P s,]( )l (Ps&) lsp) 1pil) jp311 Wps') (psl) (pot) 1Ps11 756 330.65 708.51 126.13 757 0.00 618 329.17 786.4 128.45 156 0.00 784 3V7.87 70.31 12u.sa i63 0.o 761 325.17 712.11 In.11 75 0.00 770 324.66 114.02 129.44 its 0.00 713 323.13 715.81 121.76 ?72 0.C0 J77 321.50 117.10 130.09 715 6.00 719 321.05 719.53 130.41 775 0.00 t82 315.S0 121.34 130.14 761 0.60 75S 316.13 123.1S 131.07 744 0.00 156 31S.3S 724.95 133.39 787 0.10 711 313.11 124.74 131.72 110 0.00 794 312.17 725.52 132.04 793 0.00 117 310.556 13.21 132.37 196 0.00 556 308.14 732.01 132.10 7JS 0.00 50 307.3? 73.81 133.02 a02 0.00 68 305.68 73S.5S 133.3S so0 0.00 OM 304,03 731.21 133.68 we 0.30 J12 302,J3 73S.01 134.00 a11 0.00 515 300.71 740.1J3 134.31 114 0.00 8)5 231.03 742.44 134.55 817 0.00 U21 29.35 744.13 134.96 820 0.00 824 Z55.65 145.82 135.31 623 0.00 u21 293.s 741.5S 135.63 82S 0.00 830 292.23 149.16 13S.94 62 0.00 63 290.51 150.82 138.2s 832 O.0 3 286.11 75M.4? 136.61 535 0.00 us 26r.03 154.11 36M94 83 0.00 642 2SS.2S 755.14 131.26 541 0.00 U4S 23.5? 117.35 1337.58 44 0.00 845 280.S? 78.0? 133.)3 84 0.00 St 2V7.60 762." 138.6? 850 0.00 8S4 274.61 765.?7 139.21 Su 0.00 657 271.59 767.5S 139.15 58 0.00 ea s se. 5n,.i0. M s su .0>563 265.48 f2l.92 140.84 862 0.00 0.00 0.00 6.00 0.00 6.06 0.00 O.U 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 S."4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.110 0.00 0.00 0.00 7JS 0.00 0.00 0.00 162 0.00 0.00 0.00 764 0.00 0.00 0.00 797 0.50 0.00 0.00 170 O.D0 0.00 0.00 773 0.00 ,o00 0.00 776 0.00 0.00 0.00 779 0.00 0.00 0.o0 752 0.00 0.00 0.00 185 0.00 0.00 0.00 75 0.00 0.00 0.00 191 0.00 0.00 0.00 794 0.00 0.00 0.00 197 0.0 0.00 0.00 600 0.00 0.00 0.00 83 0.00 0.00 0.0o 805 0.00 6.00 0.00 1 0.00 0.00 0.00 812 0.00 0.06 0.00 81, 0.00 0.00 0.00 5te 0.00 0.00 0.0t 821 0.00 0.00 0.00 024 0.00 0.00 0.00 827 0.00 0.00 0.00 830 0.0e 0.00 0.00 633 0.00 0.00 0.00 835 0.00 0.00 0.00 831 O.M0 0.00 0.00 642 0.00 0.00 0.00 4S5 0.00 0.00 0.00 648 0.00 0.00 0.00 BS1 0.00 0.00 0.00 854 #.o0 0.00 0.00 65? 0.00 0.00 u.w U 0a 0.09 0.00 0.00 853 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 iQ 9 0.00 0.00 762 0.00 0.00 165 0.00 0.00 768 0.00 0.00 711 0.00 0.00 M3 0.00 0.00 777 0.00 0.00 760 0.00 0.00 783 0.00 0.00 786 0.00 0.00 1t5 0.00 0.00 I9!0.00 0.00 195 0.00 0.00 796 0.00 0.00 601 0.00 0.00 so 0.00 0.00 007 0.00 0.00 810 0.o00 0.00 t3 0.00 0.00 Ott 0.00 0.00 319 0.00 0.00 D 22 0.00 0.00 825 0.00 0.00 628 0.00 0.00 831 0.00 0.00 634 0.00 0.00 837 0.00 0.00 840 0.00 0.00 543 0.00 0.00 846 0.00 0.00 84 0.00 0.00 852 0.00 0.00 855 0.00 0.00 S8W 0.00 0.00 861 0.00 0.00 664 0.0D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.D0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 G.W 0.00 o.0 0.00 0.00 0.00 0.00 6.00 0.00 C.0 0.00 6.W 0.00 0.00 9.00 0.00 0.00 9.00 0.00 3.00 0.00 0.10 0.00 3.01 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.08 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.oo 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 #.00 0.00 0.00 0.00 0.00 0.00 0.00 Peq S MOST210.W1KI 23 -Oct -9 tster Creek Raw Date for Therml Stress 4t 210 seconds -No Und Outside Nodes tiddle Modes Inside Nodes Radial Herldaona)

Hoop Radias Plerldional Hoop Radial Merldional Hoop Node X v Theta Node SX SY SZ SiT Node SX Sy SZ SlY Node SX Si Sz SET (inch) (inch) (degrees) fps$) (psi) (PAi) (psi) (psi) (pift (PSi) (P51) (psli IPSiI (psi) (PS11 866 M61.39 775.41 141.38 68 0.00 859 2S9.28 711.88 141.92 a" 0.00 81? 256.14 180.31 142.46 8?1 0.00 875 252.98 782.7t 143.00 814 0.00 868 251.49 783.8S 143.26 all 0.00 all 49.9S 84.97 143.51 880 0.00 64 t41.27 786.96 143.97 61 0.0 887 744.SS 788.9t 144.43 as 0.00 890 241.61 190.8? 144.89 189 0.00 893 239.05 J9z.19 14S.34 892 0.00 696 231.28 794.68 145.80 895 0.00 899 233.49 796.51 146.26 e98 0.00 902 230.69 798.42 146.1t 90! 0.00 901 225.88 801.86 141.52 204 0.00 909 221.39 005.58 148.32 901 0.00 911 711.22 51.81 149.09 sic 0.00 914 213.41 614.35t i'9.85 913 0.00 917 209.99 819.19 ISO.$? 11 0.00 920 206.91 04.21 1I;.25 919 0.00 W33 204.38 029.S7 151.89 922 0.00 926 202.23 835.0 152.47 925 0.00 92) 200.SS 140.14 IS3.01 928 0.W0 932 199.34 665?2 153.48 931 0.00 935 198.61 85W.36 153.90 934 0.00 938 196.31 858.2S I54.25 931 0.00 941 19f.31 f5.78 154.2z 940 0.00 944 196.32 650.75 154.31 943 0.00 94 198.32 U2.18 154.50 s4n 0.00 950 198.32 63.78 154.55 949 0.00 953 198.32 I54.78 154.1 952 0.00 956 t19.32 851.J1 154.6$ 955 0.09 959 198.32 846. 7 154.11 958 0.W0 962 131.32 867.18 154.76 961 0.00 965 (98.32 86.83 154.82 964 0.00 at. .n.64 .ra. r.VW 97

  • B'a.w1r 5-9 IJ Me 913 19fl.32 810.93 154.93 9J0 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 066 0.00 0.00 0.00 869 0.00 0.00 0.00 872 0.00 0.00 0.00 87S 0.00 0.00 0.00 878 0.00 0.00 0.00 u8s 0,00 Q.00 0.00 884 0.00 0.00 0.00 887 0.00 0.00 0.oa 590 0.00 0.00 0.00 893 0.00 0.00 0.00 836 0.00 0.00 0.00 a"9 0.00 o.o0 0.00 902 0.00 0.00 0.00 g0s 0.00 0.00 0.00 908 0.00 D.D0 0.00 911 0.00 0.00 0.00 914 0.00 0.00 0.00 917 0.00 0.00 0.00 920 0.00 0.00 0.00 923 0.00 0.00 0.00 326 0.00 0.00 0.00 92t 0.00 0.00 0.00 932 0.00 0.00 0.00 935 0.0o 0.00 0.00 935 0.00 0.00 0.00 941 0.00 0.00 0.00 944 0.00 0.00 0.00 941 0.00 0.00 0.00 950 0.00 0.00 0.0 W 953 8.00 0.00 0.00 956 0.00 0.00 0.00 959 0.00 0.00 0.00 962 0.00 0.00 0.00 965 0.00 0.00 0.00 911 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.00 0.00 0.D0 v. CIO 0.00 0.00 D1.00 867 0.00 0.00 980 0.0o 0.00 873 0.00 0.00 976 0.00 0.00 859 0.00 0.00 982 0.00 0.00 8a5 0.00 0.00 888 0.00 0.00 as)0.00 0.00 894 0.00 0.00 891 0.00 0.00 9o0 0.00 0.C0 903 0.00 0.00 906 0.00 0.00 909 0.00 0.00 9)2 0.00 0.00 915 0.00 .0.00 910 0.00 0.00 921 0.00 0.00 924 0.00 0.00 927 0. 0 0.00 933 0.00 0.00 93)0.00 0.00 534 O. 0 0.00 933 0.00 0.00 942 0.00 0.00 945 0.00 0.00 948 0.00 0.00 951 0.001 0.00 954 0.00 0.00 95g 0.00 0.00 960 0.00 0.00 963 0.00 0.00 966 0.0w 0. 0 962 0.00 0.00 g5J 0.00 0.W0 0.00 0.00 0.00 0.00 0.0C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 fi.60i 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.00 0.00 0.00 0.00 0.0o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.W 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o1. 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 U. Uw 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.o0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Page 9 MOST21D.W1, Z3*Oct-90 Dystor Creek Mm Gets for 7hera Stress at 210 seconds -No Send Outside Wtdes tdia^ Herldions)

Hlop Node I T theta Node S Sx Sr S2 SxT mde (inch) (inth) (dogretsl tPsil (psi) (pill (psi)Plddle Nodes Inside Modes Radial )ierldlonal Hoop Radtal Serldional Hoop SX S SlY Node SI SY Sl S51 ipl} (psI) Ipsi) IpsI) IPs') (psil (pill (pot)914 198.32 611.98 £54.g8 973 5.00 sr1 le.32 873.03 155.04 M 0.00 g8m 198.3? 814.06 155.09 97N 0.00 983 198.32 875.13 155.15 99 0.00 9S5 398.32 WA.3S 155.20 95 0.00 98 I8.3? 8?7.23 155.25 VA 3.00 n2 5s9.32 7s8.28 155.31 991 0.00 995 196.32 00.5S 155.42 994 0.0 998 t98.32 882.61 SS.53 991 5.00 1001 198 32 885.08 I55654 1O00 0.00 1004 396.32 17.34 M.55 1003 0.00 1007 M98.32 89.61 IS5.88 1006 0.00 1010 198.32 WA1.8 15S.97 so1" 0.0 1013 196.1? 84.14 156.08 1012 0.00 1016 198.32 886.41 15. 19 1015 0.00 101S 138.32 69.5? 156.29 to0e 0.00 1022 196.32 900.94 56-.40 1021 0.00 1025 198.32 903.20 15.#5 10?4 0.00 1026 196.32 905.41 I55.61 1027 0.00 3031 198.32 907.J3 151.75 t0o 0.00 1034 198.32 910.00 156.-1 1033 10.00 1031 196.12 12.21 155.91 1031 0.00 1040 18.32 954.53 157.01 1035 0.00 043 198.32 916.80 357.11 1042 0.00 1044 198.3?2 99.06 MM1.5 1*4S 0.0 1049 395.32 921.33 157.31 1048 0.00 1052 I9".32 923.59 1S7.41 1OSI 0.00 1ess 198.32 92S.06 157.50 3054 0.00 1058 198.32 921.13 157.60 505J 0.00 1061 191.32 930.39 151.89 £560 0.00 1064 198.32 932.6 15?.77 1063 0.00 1067 398.32 934.92 IS3.8S 066 0.00 1070 118.32 931.19 157.9? 1068 0.00 1013 196.32 939.4S 158.08 101? 0.00 iWu isa.; Nii .c is.ii irin 5.00 1079 198.32 943.96 158.2S 101a 0.00 1.00 0.00 0.00 5.00 0.00 0. 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9g4 0.00 0.00 977 0.00 0.00 980 0.00 0.00 983 0.00 0.00 986 0.00 0.00 989 o.00 o.00 992 0 00 O.W 995 0.o0 0.00 998 0.00 0.00 0OO1 0.00 0.00 1004 0.00 0.00 100)0.00 0.00 1010 o.00 0.00 1013 0.00 0.00 1o0 0.00 0.00 1015 0.06 5.00 1022 0.0o 0.00 102s 0.00 0.00 l02t 0.00 5.00 1031 0.00 0.00 1034 0.00 0.00 1037 0.00 0.00 1040 0.00 0.00 1043 0.00 0.00 1046 0.00 0.00 1049 0.00 0.00 05?0.00 0.00 1OSS 0.00 0.00 10VA 0.00 0.00 5061 0.00 0.00 1064 0.00 0.00 10M7 0. 0.00 3070 0.00 0.00 1073 0.00 0.00 10)6 0.00 0.100 1079 0.00 0.00 0.00 0.00 0.00 0.0n 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.00 0.00 0.00 0.00 o.00 0.00 0.00 0.00 0.00 o.0o 0.00 0.00 0.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0o 0.00 0.00 0.00 0.0D 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 4,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. 0o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.0o 0.00 915 0.00 978 0.00 98g 0.00 964 0.00 W87 0.00 990 0.00 993 0.00 996 0.00 999 0.00 1002 0.00 1005 0.00 10S0 0.00 1011 0.00 1014 0.00 10i3 0.00 1020 0.00 £023 0.00 1028 0.00 3029 0.00 1032 0.00 1035 a.00 1030 a.00 1043 0.00 104 0.00 1041 0.00 1050 0.00 1053 0.00 1056 0.00 1059 5.00 1062 0.00 1065 0.00 1068 0.00 3071 0.00 1074 0.00 1IOJ 0.00 1080 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 s.00 0.00 0.00 0.00 0.00 0.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.no 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.A0 0.00 0.00 0.00 0.00 0.00 0.00 0.O0 0.00 o0.0 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Page to HOSTZlO.KI, Z3 0ct-90 Oyster Creek Raw Data for Thermal Stress at 210 seconds -No Sand fLndetA U Radial lerldlonl Hoop Nodr X V Theta NOde SX 57 St SXX Node (inch) (inch) (dgerees) (psi) (psi) IPSi) (Psil~ , , inside Nodes Rsdisl Meridional hoop Radial Nerldiomas iop SX ST Si SKY Nade SX ST 5! SIY tPs I {PS11 Itl}) (pit) .P- Ip 1 (w) (psi) (psi)1082 198.3t 946.25 158.34 1061 0.00 1085 198.32 948.2S 158.41 1084 0.00 1088 198.32 950.2S 158.49 3067 0.00 1091 199.32 952.25 158.57 1090 0.00 1094 196.3? 954.2s 1S.S5 1093 0.00 1091 £98.3? 956.25 258.72 I1 t.o lO1 198.32 951.20 IS8.1$6 099 0.00 1103 199.32 9S8.16 8.19 1102 0.00 1106 196.32 959.11 1511.3 1105 0.00 1109 196.3? 950.08 158.8? 1108 0.00 1112 198.32 961.01 Is1.90 till 0.00 1115 398.32 961.91 158.94 1114 0.00 1136 198.32 962.92 158.91? Ill 0.00 121 t198.32 963.87 159.01 1120 0.00 1124 198.32 98.3?2 359.04 1123 0.00 S127 1.32 95.78 1S9.06 11;28 .00 1)30 198.32 9S." 159.06 1129 0.00 1)33 198.3 968.25 159.10 1132 0.00 1136 198.3? 9".63 159.31 113S 0.00 1139 198.32 9.713 159.11 1138 0.00 1142 196.32 967.13 £59.15 1l41 0.00 1145 196.32 SU.13 359.11 1144 0.00 1148 198.32 959.13 159.22 1141 0.00 1151 198.32 910.73 159.25 1150 0.00 II34 196.32 971.13 159.30 1153 0.00 115s 198.32 972.73 5.3.3 33S5 0.00 3150 198.32 I73.13 159.37 1159 0.00 1163 194.32 914.73 159.40 1162 0.00 1166 198-.3 915.73 159.44 l15$ 0.00 1165 198.32 975.73 159.47 Il1S 0.00 3172 194.32 918.93 159.SS 1111 0.00 1115 196.32 S9Il.S 159.U3 1174 0.00 1171 190.32 983.33 159.71 1117 0.00 3381 198.32 985.53 159.78 1780 0.00 jo *. ; ..IJ iu.i6 iHa 0.00 Il8 195.3? 989.94 159.93 l3S 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.oe 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 O.W0 0.00 0.00 0.00 1082 0.00 0.00 0.00 108S 0.00 0.05 0.00 I308 0.00 0.00 0.00 1091 0.00 0.00 0.00 1094 0.00 0.00 0.00 1097 11.00 0.00 0.00 1100 0.00 0.00 0.00 1103 0.00 0.00 0.00 1106 0.00 0.00 0.00 1t09 0.00 0.00 0.00 1112 0.00 0.00 0.00 l1lS 0.00 0.00 0.00 Ill 0.00 0.00 0.00 1321 0.00 0.00 0.00 1124 0.00 0.00 0.00 1127 6.00 0.00 0.00 1130 0.00 0.00 0.00 1133 0.00 0.00 0.00 1138 0.00 0.00 0.00 1139 0.00 0.00 0.00 1142 0.00 0.00 0.00 334s 0.00 0.00 0.00 1146 0.00 0.00 0.00 1151 0.00 0.00 0.00 1154 0.00 0.00 0.00 1ts7 0.00 0.00 0.00 1160 0.00 0.00 0.00 1163 0.00 0.00 0.00 l185 0.00 0.00 0.00 1369 0.00 0.00 0.00 117Z 0.00 0.00 0.00 1175 0.00 0.00 o.00 1118 0.00 0.00 0.00 1181 0.00 0.00 0.00 1184 0.00 0.00 0.00 3157 0.00 0.00 0.00 0.00 0.00 0.00 a.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1083 0.00 0.00 1066 0.00 0.00 1089 0.00 0.00 1092 0.00 0.00 1095 0.00 0.00 1096 0.00 0.00 1101 0.00 0.00 1104 0.00 0.00 3301 0.00 0.00 1110 0.00 0.00 1113 0.00 0.00 £316 0.00 0.00 1119 0.00 0.00 122 0.00 0.00 1125 0.00 0.00 I128 0.00 0.00 1131 0.00 0.00 1134 0.00 0.00 1137 0.00 0.00 1140 0.00 0.00 1343 0.00 0.00 1146 0.00 0.00 1149 0.00 0.00 lS2 0.00 0.00 1155 0.00 0.00 1158 0.00 0.00 1161 0. 00 0.00 1164 0.00 0.00 1167 0.00 0.00 1310 0.00 0.00 1173 0.00 0.00 117 0.00 0.00 1179 0.00 0.00 1162 0.00 0.00 1185 0.00 0.00 1138 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 o.00 0,00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0o00 0.00 0.00 0.00 0.00 0.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0. D0 0.00 0.00 0.00 0.00 0.0W 0.08 0.00 0.0o 0.00 0.o0 0.00 0.00 0.0o 0.00 0.00 0.00 Page 11 NOST?30. Ul 23-Oc t 90 lyter Creek Raw Data for hrowl Stress at 210 seconds -No Sand Outside Loihe !AI.- u. ;... -RadIal Meridonal Hoop Radial erdloal Hoop RadIal Werdional Hoop Node X t Theta Node SI ST Sz Skt Node SX SY S Str sy ode SX Sr sz (inch) (Irch) (degrees) (pit) (psi) (psiJ IFPSI fISI) (psi) fpst) (psil (PsI) 0ps0 (psill SKt IPsI I 1190 198.32 992.14 160.01 118 0.00 1193 196.32 994.34 160.08 1132 0.00 1129 198.32 996.S4 158.38 1195 0.00 1399 198.32 "8.14 15.23 1196 0.00 1202 198.32 2000.94 160.30 1201 0.00 1206 196.32 1003.15 160.31 1204 0.00 120 1 M.32 305.3s I50.45 1201 0.00 M2I1 198.32 1007.55 110.52 1210 0.00 1234 196.3Z SO1 .15 1.G59 123 0.00 121? 190.32 1010.10 150.12 1235 0.00 12tO 193.32 1011.66 160.55 1219 0.00 1223 196.32 1012.61 160.18 1227 0.00 1226 196.32 1013.5S 150.11 122S 0.00 1229 198.32 014.St 150.14 1226 0.00 1232 198.32 1015.4t 160.77 123) 0.00 1235 1..3. 16.42 160.5a 123A 0.00 1238 194.32 1017.31 150.3) 1231 0.00 1241 18.32 1018.32 180.88 1240 0.00 1244 19.32 1019.2 16W.89 1243 0.00 1241 19R.3? 1019.38 150.89 1246 0.00 1250 398.3? I.8.90 1249 0.00 1253 198.32 1020.13 160.91 1252 0.00 258 196.32 1020.23 160.92 1255 0.00 1259 198.3t 1021.23 #50.95 1258 0.00 1252 191.32 1022.23 160.98 1261 0.00 1265 196.32 1023.23 16.01 1264 0.00 1268 198.3? 1024.23 151.04 ?767 0.00 1271 119.32 102S.23 151.07 1210 0.00 1214 196.32 1026.23 161.10 1273 0.00 I?2I 18.3? 10??.23 81.13 1278 0.00 1230 196.32 1028.23 161.11 1219 0.00 1263 198.32 1029.23 161.19 1282 0.00 1286 191.32 1030.23 251.22 l285 0.00 1289 196.32 103Z.65 161.29 1288 0.10 V. _ .3I. a .S -M.; i-si U.W 1295 198.3? 1037.S1 315.44 129z 0.00 0.00 0.00 0.00 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.00 0.00 0.00 0.00 Ii. Wi 0.00 0.00 0.00 1190 0.00 0.00 0.00 1193 0.00 0.00 0.00 1196 0.00 0.00 0.00 I1 0.00 0.00 0.00 7202 0.00 0.00 0.00 1205 0.00 0.00 0.00 1208*:00 0.0e *291 0.00 0.00 114 0.00 0.00 1211 0.00 0.00 220 0.00 0.00 1223 0.00 0.00 1225 0.00 0.00 1229 0.00 0.00 I232 0.00 0.00 123S 0.00 0.00 1238 0.00 0.00 1241 0.00 0.00 1244 0.00 0.00 114?0.00 0.00 1250 0.00 0.00 1253 0.00 0.00 1256 0.00 0.00 1250 0.00 0.00 I262 0.00 0.00 1265 0.00 0.0o 1258 0.00 0.00 1271 0.00 0.00 1274 0.00 0.00 1277 0.00 0.00 t280 a.0a 0.00 1283 0.00 0.00 1286 0.00 0.00 128S u.w0 0.00 InZ 0.00 0.00 1295 0.00 0.00 0.00 0.00 0.00 0.00 0.O0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00#.00 0.00 o.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00.o00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.00 191 0.00 0.00 1194 0.00 0.0W 1197 0,00 0.00 1200 0.00 0.00 1203 0.00 0.00 I206 0.00 0.00 1209 0.00 0.00 1212 0 00 0.00 1215 0.00 0.00 12(8 0.00 0.00 1221 0.00 0.00 1224 0.00 0.00 I227 0.00 0.00 1230 0.00 0.00 1233 0.00 0.00 1236 0.00 0.00 1239 0.00 0.00 1242 0.00 0.00 1245 0.00 0.00 1248 0.00 0.00 125l 0.00 0.00 1254 0.00 0.00 12s5 0.00 0.00 1260 0.00 0.00 1263 0.00 0.00 126 0.00 0.00 1269 0.00 0.00 12J2 0.00 0.00 1215 0.00 0.00 1215 0.00 0.00 Iz8 0.00 0.00 3284 0.00 0.00 128J 0.00 0.00 1t90 0.00 0.00 1293 0.00 0.00 1296 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 O.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 page [2 NOST210,WKI 23-Oct 90 3yster Creak Raw ltai for Thermal Stress at 210 seconds -No Sand Dvtside modes Kiddle Nodns Inside Nodes Radial Ilerldionsl Hoop W1dial Herldional Hoop Radial Nerldional Hoop Node X V Theta mIde SX S Sr SY Node SX ST Sz sxr Nado SX SY St SlT finch) tanchl (dSgres (P21) (psI) (psi) (PSI) (psi) (psi) (psl) (psi) (psi) (tpll (psi) (pst)1296 198.32 1039.94 16l.5 1291 0.00 1301 19Z.32 1042.36 181.58 1300 0.00 1304 196.)2 1044.79 161.65 1303 0.00 1301 19a.32 1041.22 161.72 136 0.00 1310 198.32 1049.6S 163.75 1309 0.00 1313 19.32 1052.07 1L1.S 1312 0.00 1316 I98.32 1054.50 161.22 1315 o.oe 1s3s 191.3Z 1055. 161.95 1118 0.00 1322 18.32 3058.43 161.97 1321 0.00 1325 180.32 165.40 162.00 1324 0.00 1328 190.3t IS8.36 162.03 1327 0.00 1333 198.32 109.33 16t.0 1330 0.00 1334 198.32 1060.29 162.01 1133 0.00 1333 190.32 1061.26 162.11 1331 0.O0 1340 198.32 1062.22 162.13 1338 0.00 1343 196.3Z 1063.11 162.16 1342 0.00 1346 196.32 1064.1S 162.I 9 134S 0.00 1341 198.32 1064.25 162.19 1348 0.0s 13S2 198.32 106.S0 162.11 £3SI 0.00 135S 194.32 1064.75 162.20 3S54 0.00 1358 I19.32 1064.S 162.20 1351 0.00 13t1 198.3! 1065.85 162.23 1380 0.00 1364 1S.32 IO-.8S 162.26 3363 0.00 1367 193.32 106."5 162.28 136 0.00 1310 19J.32 1068.85 112.31 1369 0.00 1313 398.32 169.I1S 16.34 1372 0.00 3316 196.32 10TO.S 12.36 1375 0.00 1311 138.32 Ofl.8S 162.39 1338 0.00 133 390.32 1022.55 152.42 181 0.00 1385 198.32 1073.65 162.44 13U 0.00 138 198.32 3194.6S 162.41 1381 0.00 1391 198.32 1077.0? 12.53 13SO 0.00 1394 198.32 1019.23 162.59 1393 0.00 (391 196.3? 1081.50 162.64 13S9 0.00 bwb iss.jZi 1553.7 162.70 I339 0.00 1403 198.32 1065.93 162.16 1402 o.0o 0.00 0.0o 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 000 0.00 0.00 0.00 0.00 1296 0.00 0.00 0.00 1301 0.00 0.00 0.00 1304 0.00 0.00 0.00 1301 0.00 0.00 0.00 1310 0.00 0.00 8.0D 1313 0.00 0.00 0.00 1316 0.00 0.00 0.00 1319 0.00 0.00 0.00 1322 .00 0.00 0.00 1325 0.00 0.00 0.00 1328 0.00 0.00 0.00 1331 0.00 0.00 0.00 1334 0.00 0.00 0.00 1337 0.00 0.00 0.00 1340 0.00 0.00 0.00 1343 0.00 0.00 0.00 1346 0.00 0.00 0.00 1349 0.06 0.00 0.00 1352 0.00 0.00 0.00 1355 0.00 0.00 O.W 1358 0.00 0.00 0.00 1361 0.00 0.00 0.00 1364 0.00 0.00 0.00 1381 0.00 0.00 0.00 1370 0.00 0.0O 0.00 3373 0.00 0.00 0.00 1316 0.00 0.00 0.00 1379 0.00 0.00 0.00 1332 0.00 0.00 0.00 1365 0.00 0.00 0.00 1388 0.00 0.00 0.00 1391 0.00 0.00 0.00 1394 0.00 0.00 0.00 1391 0.00 0.00 0.00 1400 0.00 0.00 0.0a 1403 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.-o 0.00 0.00 12" 0.00 0.00 0.00 1302 0.00 0.00 0.00 1305 0.00 0.00 0.00 1308 0.00 0.00 0.00 1331 0.00 0.00 0.00 1334 0.00 0.00 0.00 1317 0.00 0.00 0.00 1320 0.00 0.00 0.00 1373 0.00 0.00 0.00 T3IM 0.00 0.00 0.00 1339 0.00 0.00 0.00 1332 0.00 0.00 0.00 133S 0.00 0.00 0.00 1338 0.00 0.00 0.00 1341 0.00 0.00 0.00 13344 0.00 0.00 0.00 1341 0.00 0.00 0.00 1350 0.00 0.00 0.00 1353 0.00 0.00 0.00 13`5 0.00 0.00 0.00 1359 0.00 0.00 0.00 1352 0.00 0.00 0.00 136S 0.00 0.00 0.00 1388 0.00 0.00 0.00 1311 0.00 0.00 0.00 13?4 0.00 0.00 0.00 1377 0.00 0.00 0.00 1380 0.00 0.00 0.00 1383 0.00 0.00 0.00 1386 0.00 0.00 0.00 1389 0.00 0.00 0.00 1392 0.00 0.00 0.00 1395 0.00 0.00 0.00 1398 0.00 0.00 0.00 3401 0.00 0.00 0.00 1404 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0d 0.00 0.0o 0.00 0.0 0.00 0.00 0.00 0.00 0.0w 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 n0 0 0.00 0.00 0.00 0.o0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Page t3 aOSIZIO.K!tl 23-Oct-90 Oyster Creek Kms Ots, for Therml Strese at 210 seeonds -No S"d outstiM i1des 1 fiddle Wde Insjde Nlodes sock x T t Nimlerldl0a HoV Radial llerldial Iop Radial Merldional Hoop*Idr) X ST ( rz SXi C) S) Node Si ST 5tV AS) pdll ee SY Su SXT 1lech} (Inch) (degrees) tPS11 IPAI) tPstj (psi) tP8S} (psi] (psi) (psi) IPOI (pit) (S11 (pot)1406 ISO.3? 1O8.14 152.61 1485 0.00 100 1*.32 1090.36 167.8? 1406 0.90*412 196.* 1092t.S tat.9" 1411 6.00 1415 1 2A3 09.79 16.98 1434 0.09 1416 198.32 1891.00 163.03 3411 0.00 1047 19 I8.3? 30.00 1.06 1420 0.00 1424 198.32 1099.00 163.08 1423 0." 1421 196.32 1100.00 163.11 1425 0.00 1430 1".32 1101.00 163.13 1429 0.00 1433 196.32 1102.00 163.15 3432 0.00 1436 9.3t 1103.00 163.36 I43S 0.90 1430 198.3? 11040.0 183.20 1438 0.00 1442 190.31 11D5.00 113.23 1441 0.00 1445 198.32 1106.D0 163.25 1444 0.00 3448 196.32 110J.00 *13.28 1447 0.00 1451 196.41 106.25 163.19 1450 0.00 1454 198.63 1109.50 113.31 1453 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.00 0.90 5.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .1406 0.00 0.00 0.00 1409 0.00 0.00 0.00 1412 0.00 0.00 0.00 1415 0.00 0.00 0.00 141 0.00 0.00 O.00 1421 0.00.0.00 0.00 1474 0.00 0.00 0.00 1427 0.00 0.00 0.00 1430 0.00 0.00 0.00 1433 0.00 0.00 0.00 1436 0.00 0.00 0.00 1439. 0.00 0.00 0.00 1442 0.00 0.00 0.00 1445 0.00 0.04 0.00 1448 0.00 0.00 0.00 1451 0.00 0.00 0.00 1454 0.00.W00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1407 0.00 0.00 0.00 p4*0 0.00 0.00 0.00 3413 0.00 0.01 0.00 1416 0.00 0.00 0.00 1419 0.00 0.00 0.00 1422 0.W0 0.00 0.00 1425 0.00 0.00 0.00 1428 4.00 0.00 0.00 1431 0.00 0.00 0.00 1434 0.00 0.00 0.00 1437 0.00 0.00 0.00 440 0.00 0.00 0.00 1443 0.00 0.00 0.00 1446 0.00 0.00 0.00 1449 0.00 0.00 0.00 1452 0.00 0.00 0.00 1455 0.00 0.00 0.60 0.00 0.00 0.00 0.06 0.00 9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 a.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.0O 0.00 S7 94 88 97 1072.89 11000.93 12454.55 2643.90 101 101 S6 go-391.95 914.74 12836.75 -227.93 96 96 9C 99 289.00 -9656.70 -13916.42

-5644.4

?EX 900664 X9-4, REV. 0 AN ASME SECTION VIII EVALUATION OF THE OYSTER CREEK DRYWELL FOR WITHOUT SAND CASE PART 2 STABILITY ANALYSIS February 1991 prepared for GPU Nuclear Corporation Parsippany, New Jersey prepared by GE Nuclear Energy San Jose, California DRF# 00664 INDEX 9-4, REV. 0 AN ASME SECTION VIII EVALUATION OF THE OYSTER CREEK DRYWELL FOR WITHOUT SAND CASE PART 2 STABILITY ANALYSIS Prepared by: af ->2 C.D. Frederickson, Senior Engineer Materials Monitoring

&Structural.Analysis Services Reviewed by:_H. S. Mehta, Principal Engineer Materials Monitoring

&Structural Analysis Services Approved by_ __S. Ranganath, Manager Materials Monitoring

&Structural Analysis Services i TABLE OF CONTENTS Pa ci 1. INTRODUCTION 1-1 4.i General 1-l 1,2 Report Outline 1-1 1.3 References 1-2 2. BUCKLING ANALYSIS METHODOLOGY 2-1 2.1 Basic Approach 2-1 2.2 Determination of Capacity Reduction Factor 2-2 2,3 Modification of Capacity Reduction Factor for 2-3 Hoop Stress 2.4 Determination of Plasticity Reduction Factor 2-4 2.5 References 2-5 3. FINITE ELEMENT MODELING AND ANALYSIS 3-1 3.1 Finite Element Buckling Analysis Methodology 3-1 3.2 Finite Element Model 3-2 3.3 Drywell Materials 3-3 3.4 Boundary Conditions 3.3 3.5 Loads 3 -4 3.6 Stress Results 3-7 3.7 Theoretical Elastic Buckling Stress Results 3-9 3.8 References 3-10 4. !LLOWABLE BUCKLING STRESS EVALUATION 4-1 5.

SUMMARY

AND CONCLUSIONS 5-1 iii ORF: 00664 INDEX 9-4, REV. 0 LIST OF TABLES Table Paga No. Title No.3-1 Oyster Creek Drywell Shell Thicknesses 3-11 3-2 Cylinder Stiffener Locations and Section Properties 3-12 3-3 Material Properties for SA-212 Grade 8 Steel 3-12 3-4 Oyster Creek Drywell Load Combinations 3-13 3-5 Adjusted Weight Densities of Shell to Account for 3-1S Compressible Material Weight 3-6 Oyster Creek Drywell Additional Weights Refueling 3-15 3-7 Jvster Creek Drywell Additional Weights -Post-Accident 3-15 3-8 H4ydrostatic Pressures for Post-Accident, Flooded Cond. 3-17 3-9 Meridional Seismic Stresses at Four Sections 3-1'3 3-10 Application of Loads to Match Seismic Stresses 19 Refueling Case 3-11 Application of Loads to Match Seismic Stresses 2)Post-Accident Case 4-1 Calculation of Allowable Buckling Stresses -Refueling 4-2 4-2 Calculation of Allowable Buckling Stresses -Post-Accident 4-3 5-1 Buckling Analysis Summary 5-2 iv ORF= 006e4 INDEX 9.4. REV. 0 LIST OF FIGURES Figure Page No. Title no.1-1 Drywell Configuration 1-3 2-1 Capacity Reduction Factors for Local Buckling of 2-7 Stiffened and Unstiffened Spherical Shells 2-2 Experimental Data Showing Increase in Compressive 2-8 Buckling Stress Due to Internal Pressure 2-3 Design Curve to Account for Increase in Compressive 2-9 Buckling Stress due to Internal Pressure 2-4 Plasticity Reduction Factors for Inelastic Buckling 2-10 3-1 Oyster Creek Orywe1l Geometry 3-2.1 3-2 Oyster Creek Drywell 3-0 Finite Element Model 3-2.3-3 Closeup of Lower Drywell Section of FEM (Outside View). 3-23 3-4 Closeup of Lower Drywell Section of FEM (Inside View) 3-24 3-5 Boundary Conditions of Finite Element Model 3-25 3-6 Application of Loading to Simulate Seismic Bending 3-26 3-7 Meridional Stresses -Refueling Case 3-27 3-8 Lower Drywell Meridional Stresses -Refueling Case 3-213%V DRF' 00664 INDEX 9-4. REV. 0 LIST OF FIGURES Figure Page No. Title No.3-9 Circumferential Stresses -Refueling Case 3.29 3-10 Lower Drywell Circumferential Stresses -Refueling Case 3-30 3-11 Meridional Stresses -Post-Accident Case 3*31 3-12 Lower Drywell Meridional Stresses -Post-Accident Case 3-32 3-13 Circumferential Stresses -Post-Accident Case 3.33 3-14 Lower Drywell Circumferential Stresses -Post-Accident 3-34 Case 3-15 Symmetric and Asymmetric Buckling Modes 3-35 3-16 Symmetric Buckling Mode Shape -Refueling Case 3-36 3-17 Asymmetric Buckling Mode Shape -Refueling Case 3-37 3-18 Buckling Mode Shape -Post-Accident Case 3.38 vi YRF# 0s654 NDEX 9-4. REV. 0 1. INTRODUCTION 1.1 General To address local wall thinning of the Oyster Creek drywell. GPUN has prepared a supplementary report to the Code stress report of record[1-1] which is divided into two parts. Part 1 includes all of the Code stress analysis results other than the buckling capability for the drywell shell [1-2]. Part 2 addresses the buckling capability of the drywell shell shown in Figure 1-1 [1-3]. The supplementary report for -the degraded drywell is for the present configuration (with sand support in the lower sphere). One option which is being considered by GPUN to mitigate further corrosion in the sandbed region is to remove the sand. Reference 1-4 and this report evaluate the influence of removing the sand on the code stress analysis and buckling evaluation, respectively.

Buckling of the entire drywell shell is considered in this analysis with the sandbed region being the area of primary concern.1.2 Report Outline Section 2 of this report outlines the methodology used in the buckling capability evaluation.

Finite element modeling, analysis and results are described in section 3. Evaluation of the allowable compressive buckling stresses and comparisons with the calculated compressive stresses for the limiting.load combinations are covered in section 4.Sectipn 5 presents the summary of results and conclusions.

1-1 DRFd 00664 INDEX 9-4, REV. 0 1.3 References 1-1 'Structural Design of the Pressure Suppression Containment Vessels," by Chicago Bridge & Iron Co.,Contract

  1. 9-0971. 1965.1-2 "An ASME Section VIII Evaluation of the Oyster Creek Drywell -Part 1 Stress Analysis." GE Report No. 9-1, ORF# 00664, November 1990, prepared for GPUN.1-3 "An ASME Section VIII Evaluation of the Oyster Creek Drywell -Part 2 Stability Analysis," GE Reoort No. 9-2, DRFx 00664.November 1990, prepared for GPUN.1-4 "An ASME Section VIII Evaluation of the Oyster Creek Drywell -Part 1 Stress Analysis." GE Report io. 9-3, DRF# 00664. February 1991, prepared for GPUN.1 -2 t v .IC-I --N 0EX9-4, REV. 0:-i- 4 *...(A- E"O -s-- 9 47 ,LtL6o,. 34 APT(c)Figure 1-1 Drywell Configuration I -1

?RF#X00664 NDE 9-4, REV. 0 2. BUCKLING ANALYSIS METHODOLOGY 2.1 Basic Approach The basic approach used in the buckling evaluation follows the methodology outlined in the ASME Code Case N-284 (2-1 and 2-2].Following the procedure of this Code Case, the allowable compressive stress is evaluated in three steps.In the first step, a theoretical elastic buckling stress, ale, is determined.

This value may be calculated either by classical buckling equations or by finite element analysis.

Since the drywell shell geometry is complex, a three dimensional finite element analysis approach is followed using the eigenvalue extraction technique.

More details on the elgenvalue determination are given in Section 3.In the second step, the theoretical elastic buckling stress is modified by the appropriate capacity and plasticity reduction factors.The capacity reduction factor, mi, accounts for the difference between classical buckling theory and actual tested buckling stresses for fabricated shells. This difference is due to imperfections inherent in fabricated shells, not accounted for in classical buckling theory, which can cause significant reductions in the critical buckling stress. Thus, the 6lastic buckling stress for fabricated shells is given by the product of the theoretical elastic buckling stress and the capacity reduction factor, i.e., gie1i. When the elastic buckling stress exceeds the proportional limit of the material, a plasticity reduction factor, 1i, is used to account for non-linear material behavior.

The inelastic buckling stress for fabricated shells is given by yiy~ie.In the final step, the allowable compressive stress is obtained by dividing the buckling stress calculated in the second step by the safety factor, FS: Allowable Compressive Stress -njeaie/FS 2-1 REV. 0 In Reference 2-1, the safety factor for the Design and Level A & B service conditions is specified as 2.0. A safety factor of 1.67 is specified -for Level C service conditions (such as the post-accident condition).

The determination of appropriate values for capacity and plasticity reduction factors is discussed next.2.2 Determination of Capacity Reduction Factor The capacity reduction factor, ai, is used to account for reductions in actual buckling strength due to the existence of geometric imperfections.

The capacity reduction factors given in Reference 2-1 are based on extensive data compiled by Miller E2-3]. The factors appropriate for a spherical shell geometry such as that of the drywell in the sandbed region, are shown in Figure 2-1 (Figure 1512-1 of Reference 2-1). The tail (flat) end of the curves are used for unstiffened shells. The curve marked 'Uniaxial compression' is applicable since the stress state in the sandbed region is compressive in the meridional direction but tensile in the circumferential direction.

From this curve, ai is determined to be 0.207.The preceding value of the capacity reduction factor is very conservative for two reasons. First, it is based on the assumption that the spherical shell has a uniform thickness equal to the reduced thickness.

However, the drywell shell has a greater thickness above the sandbed region which would reinforce the sandbed region. Second, it is assumed that the circumferential stress is zero. The tensile circumferential stress has the effect of rounding the shell and reducing the effect of imperfections introduced during the fabrication and construction phase. A modification of the a. value to account for the presence of tensile circumferential stress is discussed in Subsection 2.3.The capacity reduction factor values given in Reference 2-1 are applicable to shells which meet the tolerance requirements of NE-4220 2-2

?R6#X 0664 INDEX 9-4, REV. 0 of Section III [2-4]. Reference Z-5 compares the tolerance requirements of NE-4220 to the requirements to which the Oyster Creek drywell shell was fabricated.

The comparison shows that the Oyster Creek drywell shell was erected to the tolerance requirements of NE-4220. Therefore, although the Oyster Creek drywell is not a Section III, NE vessel, it is justified to use the approach outlined in Code Case N-284.2.3 Modification of Capacity Reduction Factor for Hoop Stress The orthogonal tensile stress has the effect of rounding fabricated shells and reducing the effect of imperfections on the buckling strength.

The Code Case N-284 [2-1 and 2-2] notes in the last paragraph of Article 1500 that, "The influence of internal pressure on a shell structure may reduce the initial imperfections and therefore higher values of capacity reduction factors may be acceptable.

Justification for higher values of a 1 must be given in the Design report." Haris, et al [2-6] present the most comprehensive set of test data which clearly show that internal pressure in the form of hoop tension, increases the axial buckling stress. Reference 2-6 also contains data from References 2-7 and 2-8. Baker [2-9] and, in a recent book, Bushnell [2-10] also endorse References 2-6 and 2-7 in discussing the effect of internal pressure on the buckling capability of cylindrical shells. Based on References 2-6, Johnson [2-11] recommends a procedure to account for this increase in buckling capability.

The data reported in Reference 2-6 are first discussed to show the reasonableness of the procedure recommended by Johnson.Figure 2-2 (Figure 13 from Reference 2-6) shows the experimental data from several sources showing the increase in compressive buckling stress due to internal pressure.

The curve recommended by Johnson corresponds to the '90% Probability Curve' in Figure 2-2. As shown later in Tables 4-1 and 4-2, the values of nondimensional pressure parameter (the abscissa in Figure 2-2) in the buckling analysis 2-3 UNSEX BIt. REV. o presented in this report, are between 0.1 and 1.0. In this range, the!'90% Probability Curve' in Figure 2-2 is also a lower bound to the experimental data. This clearly shows that the use of Johnson's procedure in this report assures conservative results (i.e., the procedure predicts a smaller increase in the compressive buckling stress than that indicated by the experimental data). The implementation of Johnson's procedure in this evaluation is described next.The buckling stress in uniaxial compression for a sphere of uniform thickness is given by the following:

Sc -(O.605)(0.207)

Et/R Where, 0.605 is a constant, 0.207 is the capacity reduction factor and E,t and R are Young's Modulus, wall thickness and radius, respectively.

In the presence of a tensile stress such as that produced by an internal pressure, p, the modified buckling stress is as follows: Sc,mod -C((.605)(0.207)

+ AC] Et/R'#here AC is given in graphical form in Figure 2-3. As can be seen in Figure 2-3, AC is a function of the parameter X-(p/4E)(2R/t)2.

Whet the tensile stress magnitude, S. is known, the equivalent internal pressure can be calculated using the expression:

p a 2tS/R rhe AC term is then incorporated in the capacity reduction factor itself by defining a modified capacity reduction factor, *i mod:*i,mod -0.207 + AC/O.605;2.4 Determination of Plasticity Reduction Factor W4hen the elastic buckling stress exceeds the proportional limit of the 2-4

-RMIXYT -REV. 0 material, a plasticity reduction factor, By, is used to account for the non-linear material behavior.

The inelastic buckling stress for fabricated shells is given by 7 7 iolgie. Reference 2-2 gives the mathematical expressions shown below EArticle .1611 (a)] to calculate the plasticity reduction factor for the meridional direction elastic buckling stress. A is equal to ajar eoy and ay is the material yield strength.

Figure 2-4 shows the relationship in graphical form.lj a 1.0 if A c 0.55-(0.45/A) + 0.18 if 0.55 < A S 1.6= 1.31/(1+1.15A) if 1.6 < A < 6.25-1/A if & > 6.25 2.5 References 2-1 ASME Boiler and Pressure Vessel Code Case N-284, "Metal Containment Shell Buckling Design Methods, Section 1II, Division 1, Class MC", Approved August 25, 1980.2-2 Letter (1985) from C.D. Miller to P. Raju;

Subject:

Recommended Revisions to ASME Code Case N-284.2-3 Miller, C.D., "Comentary on the Metal Containment Shell Buckling Design Methods~ of the ASME Boiler and Pressure Vessel Code," December 1979.2-4 ASME Boiler & Pressure Vessel Code,Section III, Nuclear Power Plant Components.

2-5 "Justification for Use of Section III, Subsection NE, Guidance in Evaluating the Oyster Creek Drywell," Appendix A to letter dated December 21, 1990 from H.S. Mehta of GE to S.C. Tumminelli of GPUN.2-5 RE# 00664 NUEXg-4, REV. o 2-6 Harris, L.A., et al, "The Stability of Thin-Walled Unstiffened Circular Cylinders Under Axial Compression Including the Effects of Internal Pressure," Journal of the Aeronautical Sciences, Vol.24, No. 8 (August 1957), pp. 587-596.-i 7 Lo, H., Crate, H., and Schwartz, E.B., "Buckling of Thin-Walled Cylinder Under Axial Compression and Internal Pressure," NACA Th 2021, January 1950.C-8 Fung, Y.C., and Sechler, E.E., "Buckling of Thin-Walled Circular Cylinders Under Axial Compression and Internal Pressure," Journal of the Aeronautical Sciences, Vol. 24, No. 5, pp. 351-356, May 1957.2-9 Baker, E.H., et al., 'Shell Analysis Manual,' NASA, CR-912 (April 1968).2:-10 Bushnell, D., "Computerized Buckling Analysis of Shells," KMuwer Academic Publishers, 1989 (Chapter 5).2:-11 Johnson, B.G., "Guide to Stability Design Criteria for Metal Structures," Third Edition (1976), John Wiley & Sons.

OREXI'T4 REV. 0 0.3 11.0 0 4 a 12 i 20 24 2a w a 1, Ifh Figure 2-1 Capacity Reduction Factors for Local Buckling of Stiffened and Unstiffened Spherical Shells 2-7 ThbEX'17 4REV.. 0 acrcpq rl E t I0 8 6 4 2 1.0 6 6 4 2.10 6 4 2.01*_ _ *b.......

..- --I~ w ___. ___* _ _* _UY **NAA~ ~ FUNG a SECHLER L LOa CRATE SCHWARTZ----

oNAA_ _ ___ .II , ., :..__- -** -*.: -z: *4c .. so --- -----~_ ...- 4 -Q ca ril w0nvc Q _-:i , .q ,g.t ,__ .== .--. 4.-4-.--

--.- -~ -I 1' -1*n. -._ ._- -..-_. -THEORETICAL URVE2 90% PROBA,8ILTY CR%- -,-^t~ 77 __.. ^__'..01 0 .)2 E ( f Figure 2-2 Experimental Data Showing Increase in Compressive Buckling Stress Due to Internal Pressure (Reference 2-6)2-8 jRF# 00664 NDEX 9-4, REV. 0 I 0 a 6 4 z-I *1 1 i ! I I -, lI, I I I I I I , , ,.1 I.0 a 4 aC 2 IIii A IIHI_IiI ijil-Ii.-- -I -A ]--1 -A-.S-- -l I .~ -__ .4 _ _ _ U q^ _ __U_f00 Itg_ SSwM 0.10 8 6 4 2 0.01 I 4 OS0 040 z 4 0.ic-9 0 a 0.01 1.0 I0X rP Toi 2_k-I n Figure 2-3 Design Curve to Account for Increase in Compressive Buckling Stress Due to Internal Pressure (Reference 2-11)2-9 RR6E#X00664 INUE 9-4, REV. 0 j.0& a 'adwzq /as lFigure 2-4 Plasticity Reduction Factors for Inelastic Buckling 2-10 DRFz 00564 INDEX 9-4. REV.. 0 3. FINITE ELEMENT MODELING AND ANALYSIS 3.1 Finite Element Buckling Analysis Methodology This evaluation of the Oyster Creek Drywell buckling capability uses the Finite Element Analysis (FEA) program ANSYS [Reference 3-1]. The ANSYS program uses a two step eigenvalue formulation procedure to perform linear elastic buckling analysis.

The first step is a static analysis of the structure with all anticipated loads applied. The structural stiffness matrix, (K], the stress stiffness matrix. IS), and the applied stresses, cap, are developed and saved from this static analysis.

A buckling pass is then run to solve for the eigenvalue or load factor. A, for which elastic buckling is predicted using the equation: ( [K] + X [S] ) (u) = 0 where: X is the eigenvalue or load factor.(u) is the eigenvector representing the buckled shape of the structure.

This load factor is a multiplier for the applied stress state at which the onset of elastic buckling will theoretically occur. All applied loads (pressures, forces, gravity, etc ... ) are scaled equally. For example. a load factor of 4 would indicate that the structure would buckle for a load condition four times that defined in the stress pass. The critical stress, acr, at a certain location of the structure is thus calculated as: acr ' ap This theoretical elastic buckling stress is then -modified by the capacity and plasticity reduction factors to determine the predicted buckling stress of the fabricated structure as discussed in Section 2.This stress is further reduced by a factor of safety to determine the allowable compressive stress.3-1 DRF= 00664 INDEX 9-4, REV. 0 3.2 Finite Element Model The Oyster Creek drywell has been previously analyzed using a simplified axisymmetric model to evaluate the buckling capability in the sandbed region [Reference 3-2]. This type of analysis conservatively neglects the vents and reinforcements around the vents which significantly increase the stiffness of the shell near the sandbed region. In order to more accurately determine the bucklirg capability of the drywell, a three dimensional finite element model is developed.

The geometry of the Oyster Creek drywell is shown in Figure 3-1.Taking advantage of symmetry of the drywell with 10 vents, a 36'section is modeled. Figure 3-2 illustrates the finite element model of the drywell. This model includes the drywell shell from the base of the sandbed region to the top of the elliptical head and the vent and vent header. The torus is not included in this model because the bellows provide a very flexible connection which does not allow significant structural interaction between the drywell and torus.Figure 3-3 shows a more detailed view of the lower section of the drywell model.. The various colors on Figures 3-2 and 3-3 represent the different shell thicknesses of the drywell and vent. Nominal cr as-designed thicknesses, summarized in Table 3-1, are used for the drywell shell for all regions other than the sandbed region. The sandbed region shown In blue in Figure 3-3 is considered to have a thickness of 0.736 inch. This is the 95% confidence projected thickness to outage 14R. Figure 3-4 shows the view from the inside of the drywell with the gussets and the vent jet deflector.

The drywell and vent shell are modeled using the 3-dimensional plastic quadrilateral shell (STIF43) element. Although this element has plastic capabilities, this analysis is conducted using only elastic behavior.

This element type was chosen over the elastic quadrilateral shell (STIF63) element because it is better suited for modeling curved surfaces.3-2 DRF= 00654 INDEX 9-4, REV. o At a distance of 76 inches from the drywell shell, the vent is simplified using beam elements.

The transition from shell to beam elements is made by extending rigid beam elements from a node along the centerline of the vent radially outward to each of the shell nodes of the vent. ANSYS STIF4 beam elements are then connected to this centerline node to model the axial and bending stiffness of the velt and header. Spring (STIF14) elements are used to model the vertical header supports inside the torus. ANSYS STIF4 beam elements are also used to model the stiffeners in the cylindrical region of the upper drywell. The section properties of these stiffeners are summarized in Table 3-2.3.3 Drywell Materials The drywell shell is fabricated from SA-212, Grade B high tensile strength carbon-silicon steel plates for boilers and other pressure vessels ordered to SA-300 specifications.

The mechanical properties for this material at room temperature are shown in Table 3-3. These are the properties used in the finite element analysis.

For the perforated vent jet deflector, the material properties were modified to account for the reduction in stiffness due to the perforations.

3.4 Boundary Conditions Symmetric boundary conditions are defined for both edges of the 360 drywell model for the static stress analysis as shown on Figure 3-5.This allows the nodes at this boundary to expand radially outward from the drywell centerline and vertically, but not in the circumferential direction.

Rotations are also fixed in two directions to prevent the boundary from rotating out of the plane of symmetry.

Nodes at the bottom edge of the drywell are fixed in all directions to simulate the fixity of the shell within the concrete foundation.

Nodes at the end of the header support spring elements are also fixed.3 -3 DRF:- OO4 INUEX 9-4. REV. 0 3.5 Loads The loads are applied to the drywell finite element model in the manner which most accurately represents the actual loads anticipates on the arywell. Details on the application of loads are discussed in the following paragraphs.

3.5.1 Load Combinations All load combinations to be considered on the drywell are summarizea on Table 3-4. The most limiting load combinations in terms cf possible buckling are those which cause the most compressive stressEs in the sandbed region. Many of the design basis load combinations include high internal pressures which would create tensile stresses in the shell and help prevent buckling.

The most severe design load combination identified for the buckling analysis of the drywell is the refueling condition (Case IV). This load combination consists of the following loads: Dead weight of vessel, penetrations.

compressible material.equipment supports and welding pads.Live loads of welding pads and equipment door Weight of refueling water External Pressure of 2 psig Seismic inertia and deflection loads for unflooded condition The normal operation condition with seismic is very similar to this condition, however, it will be less severe due to the absence of the refueling water and equipment door weight.The most severe load combination for the emergency condition is for the post-accident (Case VI) load combination including:

3-4 DRF0 0664 iNOEX 9-., REV. 0 Dead weight of Vessel, penetrations.

compressible material and equipment supports Live load of personnel lock Hydrostatic Pressure of Water for Drywell Flooded to 74'-5'External Pressure of 2 psig Seismic inertia and deflection loads for flooded condition The application of these loads is described in more detail in the following sections.3.5.2 Gravity Loads The gravity loads include dead weight loads of the drywell shell, weight of the compressible material and penetrations and live loads.The drywell shell loads are imposed on the model by defining the weight density of the shell material and applying a vertical acceleration of 1.0 g to simulate gravity. The ANSYS program automatically distributes the loads consistent with the mass and acceleration.

The compressible material weight of 10 lb/ft 2 is added by adjusting the weight density of the shell to also include the compressible material.

The adjusted weight densities for the various shell thicknesses are summarized in Table 3-5. The compressible material is assumed to cover the entire drywell shell (not including the vent) up to the elevation of the flange.The additional dead weights, penetration weights and live loads are applied as additional nodal masses to the model. As shown on Table 3-6 for the refueling case, the total additional mass is summed for each 5 foot elevation of the drywell. The total is then divided by IC for the 36' section assuming that the mass is evenly distributed around the perimeter of the drywell. The resulting mass is then applied uniformly to a set of nodes at the desired elevation as shown on Table 3-6. These applied masses automatically impose gravity loads on the drywell model with the defined acceleration of 1g. The same method is used to apply the additional masses to the model for the post-accident case as summarized in Table 3-7.3-5 ORF= 00664 INDEX 9-4. REV. 0 3.5.3 Pressure Loads The 2 psi external pressure load for the refueling case is applied to the external faces of all of the drywell and vent shell elements.

The compressive axial stress at the transition from vent shell to beam elements is simulated by applying equivalent axial forces to the nodes of the shell elements.Considering the post-accident case, the drywell is assumed to te flooded to elevation 74'-6" (894 inches). Using a water density of 62.3 lb/ft 3 (0.0361 lb/in 3), the pressure gradient versus elevation is calculated as shown in Table 3-8. The hydrostatic pressure at the bottom of the sandbed region is calculated to be 28.3 psi. Accordirg to the elevation of the element centerline, the appropriate pressures are applied to the inside surface of the shell elements.3.5.4 Seismic Loads Seismic stresses have been calculated for the Oyster Creek Orywell in Part 1 of this report, Reference 3-3. Meridional stresses are imposed on the drywell during a seismic event due to a 0.058" deflection cf the reactor building and due to horizontal and vertical inertial loads on the drywell.The meridional stresses due to a seismic event are imposed on the 3-0 drywell model by applying downward forces at four elevations of the model (A: 23'-7",B:

37'-3",C:

50'-11" and D: 88'-9") as shown on Figure 3-6. Using this method, the meridional stresses calculated in Reference 3-3 are duplicated at four sections of the drywell including 1) the mid-elevation of the sandbed region, 2) 17.25' below the equator, 3) 5.75' above the equator and 4) just above the knuckle region. These four sections were chosen to most accurately represent the load distribution in the lower drywell while also providing a reasonably accurate stress distribution in the upper drywell.3 -6 ORF: 00664 INDEX 9-4. REV. 0 To find the correct loaas to match .qe seismic stresses, the totWl seismic stress (due to reactor building deflection and horizontal ar.d vertical inertia) are obtained from Reference 3-3 at the four sectiors of interest.

The four sections and the corresponding meridional stresses for the refueling and post-accident seismic cases are summarized in Table 3-9.Unit loads are then applied to the 3-0 model in separate load steps a.t each elevation shown in Figure 3-6. The resulting stresses at the four sections of interest are then averaged for each of the applied unit loads. By solving four equations with four unknowns, the correct loads are determined to match the stresses shown in Table 3-9 at the four sections.

The calculation for the correct loads are shown cn Tables 3-10 and 3-11 for the refueling and post-accident cases<, respectively.

3.6 Stress Results The resulting stresses for the two load combinations described in section 3.S are summarized in this section.3.5. 1 Refueling Condition Stress Results The resulting stress distributions for the refueling condition are shown in Figures 3-7 through 3-10. The red colors represent the most tensile stresses and the blue colors. the most compressive.

Figures 3-7 and 3-8 show the meridional stresses for the entire drywell ard lower drywell. The circumferential stresses for the same areas are shown on Figures 3-9 and 3-10. The resulting average meridional stress at the mid-elevation of the sanobed region was Found to be;0 Rm ' -7580 psi 3-7 DRf a00664 INDEX 9-4, REV. 0 The circumferential stress averaged from the Dottom to the top of th!>sandbed region is5"Rc = 4490 psi 3.6.2 Post-Accident Condition Stress Results The application of all of the loads described for the post-accident condition results in the stress distributions shown in Figures 3-IL through 3-14, The red colors represent the most tensile stresses and the blue colors, the most compressive.

Figures 3-11 and 3-12 show the meridional stresses for the entire drywell and lower drywell. The circumferential stresses for the same areas are shown on Figures 3-13 and 3-14. The resulting average meridional stress at mid-elevation of the sandbed region was found to be;UPAm W -11960 psi The circumferential stress averaged from the bottom to the top of the sandbed region is;IpAc X .20080 psi 3 -8 OR:006 ORF- 00664 INDEX 9-4, REV. 0 3.7 Theoretical Elastic Buckling Stress Results After completion of the stress runs for the Refueling and Post-Accident load combinations, the eigenvalue buckling runs are made as described in Section 3.1. This analysis determines the theoretical elastic buckling loads and buckling mode shapes.3.7.1 Refueling Condition Buckling Results As shown on Figure 3-15, it is possible for the drywell to buckle in two different modes. In the case of symmetric buckling shown on Figure 3-15, each edge of the 36' drywell model experiences radial displacement with no rotation.

This mode is simulated by applying symmetric boundary conditions to the 3-D model the same as used for the stress run. Using these boundary conditions for the refueling case, the critical load factor was found to be 7.67 with the critical buckling occurring in the sandbed region. The critical buckling mode shape is shown in Figure 3-16 for symmetric boundary conditions.

The red color indicates sections of the shell which displace radially outward and the blue, those areas which displace inward.The first four buckling modes were computed in this eigenvalue buckling analysis with no buckling modes found outside the sandbei region for a load factor as high as 9.94. Therefore, buckling is not a concern outside of the sandbed region.It is also possible for the drywell to buckle in the asymmetric manner shown in Figure 3-15. For this mode, the edges of the 3-0 model are allowed to rotate but are restrained from expanding radially.

This case is considered by applying asymmetric boundary conditions at the edges of the 3-D model. With the two pass approach used by ANSYS, it is possible to study asymmetric buckling of the drywell when the stresses are found based on symmetric boundary conditions.

The resulting load factor found using asymmetric boundary conditions is 10.13. The mode shape for this case is shown on Figure 3-17.3-9 DRFr4 00664 INDEX 9-4, REV. 0 Because the load factor is lower for symmetric boundary conditions with the same applied stress. the symmetric buckling condition is more limiting.

Multiplying the load factor of 7.67 by the average meridional stress from section 3.6.1, the theoretical elastic bucklina stress is found to be;URie = 7.67 x (7580 psi) = 58,100 psi 3.7.2 Post-Accident Condition Buckling Results Considering the post-accident case with symmetric boundary conditions.

the load factor was calculated as 5.18. Multiplying this load factcor by the applied stress from section 3.6.2 results in a theoretical elastic buckling stress of OPAie = 5.18 x (11960 psi) 6 61,950 psi The critical mode shape for this condition is shown in Figure 3-16.Again. the critical buckling mode is in the sandbed region.3.8 References 3-1 DeSalvo, G.J., Ph.D, and Gorman. R.W., "ANSYS Engineering Analysis System User's Manual, Revision 4.4." Swanson Analysis Systems, Inc., May 1, 1989.3-2 GPUN Specification SP-1302-53-044, Technical Specification fcr Primary Containment Analysis -Oyster Creek Nuclear Generating Station; Rev. 2, October 1990.3-3 "An ASME Section VIII Evaluation of the Oyster Creek Drywell -Part l Stress Analysis," GE Report No. 9-1, DRF -00664, November 1990, prepared for GPUN.3-10

?NDX 9^4, REiV. 0 Table 3-1 Oyster Creek Drywell Shell Thicknesses Section Thickness (in.)Sandbed Region 0.736 Lower Sphere 1.154 Mid Sphere 0.770 Upper Sphere 0.722 Knuckle 2.5625 Cylinder 0.640 Reinforcement Below Flange 1.250 Reinforcement Above Flange 1.500 Elliptical Head 1.1875 Ventline Reinforcement 2.875 Gussets 0.875 Vent Jet Deflector 2.S00 Ventline Connection 2.500 Upper Ventline 0.4375 Lower Ventline 0.250* 95% confidence projected thickness to 14R.3-11 DRF# 00664 INDEX 9-4, REV. 0 Table 3-2 Cyl inder El evati on (in)966.3 1019.8 1064.5 1113.0(1)1131.0 Stiffener Height (in)0.75 0.7S 0.50 2.75 1.00 1.0 Locations Width (in)6.0 6.0 6.0 7.CI 7.38 12.01 and Section Properties Area Bending Inertia (in 4 .(in 2) Horizontal Yertical.4.5 13.5 0.211 4.5 13.5 0.211 3.0 9.0 0.063 26.6 387.5 12.75 12.0 144.0 1.000 (1) -This stiffener is made up of 2 beam sections, one 2.75x7" and one I.OXl.375" Table 3-3 Material Properties for SA-212 Grade B Steel Material Prooertv Value Young's Modulus 29.6x10 6 psi Yield Strength 38000 psi Poisson's Ratio 0.3 Density 0.283 lb/in3 3-12 9RF;; 00664 INDEX 9-4. REV. 0 Table 3-4 Oyster Creek Drywell Load Combinations CASE I -INITIAL TEST CONDITION Deadweight

+ Design Pressure (62 psi) + Seismic (2 x DBE)CASE II -FINAL TEST CONDITION Deadweight

+ Design Pressure (35 psi) + Seismic (2 x OBE)CASE III -NORMAL OPERATING CONDITION Deadweight

+ Pressure (2 psi external)

+ Seismic (2 x O8E)CASE IV -REFUELING CONDITION Deadweight

+ Pressure (2 psi external)

+ Water Load +Seismic (2 x OBE)CASE V -ACCIDENT CONDITION Deadweight

+ Pressure(62 psi @.175'F or 35 psi @ 281'F)Seismic (2 x DBE)CASE VI -POST ACCIDENT CONDITION Deadweight

+ Water Load @ 74'6" + Seismic (2 x DBE)3-13 DRF4 005O4 INDEX 9-4. REV. 0 Table 3-5 Adjusted Weight Densities of Shell to Account for Compressible Material Weight Shel I Thickness Lin.)Adjusted Weight Density (lb/in 3)I .154 0.770 0.722 2.563 0.640 1.250 0.343 0.373 0.379 0.310 0.392 0.339 3-14 ORF% 00664 INDEX 9-4, REV. 0 Table 3-6 Oyster Creek Drywe)l Additional Weights -Refueling Condition ELEVATION (feet)16 20 15-20 2Zo 21-25i 25 30 30.25 2s-30 31 32 33 34 35 31-3S 36 40 36-40 50*54** 51-55 56 60* 56-60 as 0* 61-65 70 NS 56-70 73 S* 71-75 82.17 at 1-85 87 90 8 86-90 93.75 94.7J 95.75 9* 91-96 TOTALS: OEAD WEIGh (lbf)500c I PENETR.IT WEIGHT (Ibf)I0 168100 11200 556000 RISC. TOTAL LOADS LOAD (lbf) (lbM)50000 168100 11200 556000 11100 115600 100000 20S000 16500 750 15450 26050 1500 5 FOOT RANGE LOAD-,._____LOAD PER 36 DEG.(lbf)1 1----# OF ELEMENTS____.__-NOOES OF APPLICATION

__________

116.119 161-169 LOA3 PER FULL NODE (Ibf)3822 6950 4146 229300 556000 22930 55600 6 a LOAO PER HkLF NODE (lbf)1911 3475 2073 11100 51500 54100 105000 331700 33170 1I500 750 15450 28050 1500 S 179-167 8 188-196'62250 6225 1550 778 389 1550 43350 41000 1102000 7850 56400 95200 52000 700 5750$$so 216S0 1000 15000 20700 20100 2184150 388200 84350 1102000 7650 24000 80400 20000 115900 20000 72000 5750 21650 1000 15000 20700 598000 698000 20100 862000 3434350 85900 1102000 7850 196300 72000 5750 8850 21550 8590.110200 785 19630 7200 575 8gs 2165 8 a 8 a a a 8 a 197-205 4158426 436-444 454-462 472-480 506-S6 526-534 553-561 1074 13775 98 2454 900 72 III 271 537&88a 49 1227 4S0 36 55 135 15000 1600 a 571-579 8 589-597 200 100 738800 4..3.43 3434350 73880 34343S 9235 4618* -LOAD TO BE APPLIED IN VERTICAL DIRECTION ONLY.I -HISCELLANEOUS LOADS INCLUDE 598000 LO WATER WEIGHT AT 94.75 FT. ELEVATION 100000 LO EQUIPMENT DOOR WEIGHT AT 30.2S FT. ELEVATIOH AND VELD PAD LIVE LOADS OF 24000. Z0000 AND 20000 AT 56, 60 A10 65 FT. ELEVATIONS REFWT .WK1 3-15 QRF# 00664 INDEX 9-4, REV. 0 Table 3-7 Oyster Creek ELEVATION (feet)15.55 16 20 30ZS*' 15-20 26 30 30.25** 26-30 31 32 33 34 35**31-35 38 40*' 35-40 501 0~4-500 54* 51-55 58 60*' 36-6D 65 0* t1-6S 70 66-70 73*0 71-75 5Z.17 81-85 87 90*' 56-90 93.75 95.7S RV 91-96 DEAD WEIGHT llbf)500WO PEMETR.WEIGHT ( lbf )168100 11200 Drywel MISC.LOADS (lbt)__ IV_556000 64100 105000 41000 1102000 56400 95200 52000 1 11100 51500 16500 750 15450 28050 1500 1550 43350 7850 700 Additional Weiqhts -Post-Accident Condition TOTAL LOAD (lbf)50000 168100 11200 556000 11100 115600 105000 16500 750 15450 28050 1500 1550 84350 1102000 7850 56400 95900 52000 5750 8850 21550 1000 15000 20100 20100 5 FOOT RAK6A LOAD_.......229300 555000 LOAD PER 36 DEG.(lbf)._____ _# OF EL EMENT5._,_____22930 55600 6 U NODES OF APPL ICATION.........115-119 j 61-169 LOAD PER FULL NODE 0lbf)3822 6950 2896 LOAD PER PALF NODE (lbf I..,___...1911 3475 1448 Z31700 23170 62250 6225 8 179-187 a 1t8-196 a 197-205 8 418-426 a 436-44 77n 3e9 85900 1102000 7850 152300 52000 5 750 8850 21650 6590 110200 785 15230*5200 575 865 2165 1074 13775 98 531 68"*9 5750 8s50 1000 15000 a a a a 454-462 472-480 503-516 526-534 553-S61 1904 650 72 11 271 952 325 36 55 135 16000 180 20700 20100 8 571-579 a 589-597 200 log 510 255.40800 4080.----- T _ _ -_ ........A _ T A OI. E___ N. ONLY.TOTALS: 2184150 388200 0 2572350 2572350 257235 I -LOAD TO BE APPLIED IN VERTICAL DIRECTION ONLY.I -NO MiSCELLANEOUS LOADS FOR THIS CO0DITION.

FLOODYST.W) 3-16 ORF: 00664 INDEX 9-4. REV. 0 Table 3-8 Hydrostatic Pressures for Post-Accident, Flooded Condition WAIER DENSITY: FLOODED ELEV: 62.32 tb/ft3 0.03606 lb/in3 74.5 ft 894 inches ELEMEN1 S ABOVE NODES 27 40 53 66 79 92 102 10o 112 116 120 124 130 138 148 161 170 179 188 197 400 409 41E 427 43E 44t,.454.463 47Z.481 49C'495'506 51 '52fE ANGLE ABOVE EQUATOR (degrees)-53 .32-51.97-50.62-49.27-47.50-46.20-44.35-41.89-39.43-36.93-34.40-31.87-29.33-26.80-24.27-20.13-14 .38-8.63-2.88 2.88 8.63 14.38 20.13 25.50 30.50 35.50 40.50 45.50 50.50 54.86 ELEVATION (inch)110.2 116.2 122.4 128.8 137.3 143.9 153.4 166.6 180.2 194.6 209.7 225.2 241.3 257.6 274.4 302.5 342.7 384A0 425.9 468.1 510.0 551.3 591.5 627.8 660.2 690.9 719.8 746.6 771.1 790.5 805.6 820.7 835.7 850.8 88S.3 DEPTH (inch)783.8 777.8 771.6 765.2 756.7 750.1 740.6 727.4 713.8 699.4 684.3 668.8 652.7 636.4 619.6 S91 .5 551.3 510.0 468.1 425.9 384.0 342.7 302.5 266.2 233.8 203.1 174.2 147.4 122.9 103.5 88.4 73.3 58.3 43.2 8.7 PRESSURE (psi)28.3 28.1 27.8 27.6 27.3 27.1 26.7.26.2 25.7 25.2 24.7 24.1 23 .S 23.0 2.2.3 21.3 19.9 18.4 16.9 15.4 13.8 12.4 10.9 9.6 8.4 7.3 6.3 5.3 4.4 3.7 3.2 2.6 2.1 1.6 0.3 ELEMENTS..........

-. .1-12 13-24 25-36 37-48 49-51, 61-66 55-57 52-54, 138-141 ,5B-60 142-147, 240-242, 257-259 148-151, 243, 256 152-155, 244, 255 156-159, 245, 254 160-165, 246, 253 166-173, 247, 252 174-183, 248-251 184-19S 196-207 208-215 216-223 224-231 232-239 430-437 438-445 446-453 454-461 462-469 470-477 478-485 486-493 494-501 502-509 510-517 518-525 526-533 534-541 542-549 550-557 187.3 706.7 25.5 340-399 (Ventline)

FLOOOP.WI'1 3-17 DRFF 00664 INDEX 9-4, RE'I. 0 Table 3-9 Meridional Seismic Stresses 2-0 Shell Elevation Model Section (inches) Node A) Middle of Sandbed 119 32 B) 17.25* Below Equator 323 302 C) 5.75 Above Equator 489 461 D) Above Knuckle 1037 1037 at Four Sections Meridional Stresse _Refueling Post-Accident (psi) DSi)12S8 1288 295 585 214 616 216 808 3-18 RF* 00664 TNDEX 9-4, REV. 0 Table 3-10 Application of Loads :o Match Seismic Stresses -Refueling Case COMPRESSIVE STRESSES rtM 2-D AALYSIS 0.058" SEISMIC DEFLECT::N:

HORIZ. PLUS VERTICAL SE:SMIC INERTIA: TOTAL SEISMIC COMPRESSIVE STRESSES: SECTION: 2-0 NOOE: ELEV: SECTION: 3-D NOOES: ELEY: 3-0 INPUT LOAD SECTION A 8 C 0 2-D SEISMIC STRESSES AT SECTIOh (psi)I 2 3 4 3Z 302 461 1'37 119.3" 322.5- 489.1" 911.3" 788.67 155.54 103.48 8!.31 489.55 138.44 110.13 1311.21 1258.22 294.95 213.59 21.52 3-0 STRESSES AT SECTION (pvi)-_---..----------------------..--__-

1 2 3 4 5365 170-178 400-40o 5211-534___-- --- -- .. ___..__.___.

85.43 37.94 34.94 5!i.23 9.6U 39.92 36.75 (1.00 97.U4 43.37 0.00 01.00 89.85 0.00 0.00 (1.00 l258.22 294.98 213.59 21!i.52 RESILTING STRESSES AT SECTION (psi)_ ____.................______....................

,_INPUT 3-D UNIT LOAD DESCRIPTION 1000 lbs at nodes 563 tnrough 569 500 lbs at 427&435. lOCO lbs at 428-434 500 lbs at 197J205. 1000 lbs at 198-204 500 lbs at 1611L69. I003 lbs at 162-168 3-0 INPUT LOAD SECTION._ ___A 9 C 0 OESIREO C:(PRESSIVE STRESSES (psi): LOAD TO BE APPLIED TO MATCH 2-0 STRESSES-_ ----------------


_______ ......3902.2 2101.4 1453.6 6611.6 333.37 188.07 141.93 594.05 1258.22 141.05 83.89 63.04 0.00 294.98 135.34 77.2S 0.00 0.00 2..3.5_213.59 21.5.52 -1'.00 D.00 0.00 215.52 SUN: SEISUNFL ,KI 3.19 DRF#00664 INDEX 9-4, REV. 0 table 3-11 Application of Loads to Match Seismic Stresses -Post-Accident Case SECTION: 2-0 NODE: ELEV: COMPRESSIVE STRESSES FROM 2-O ANALYSIS 0.058' SEISMIC DEFLECTION:

HORIZ. PLUS VERTICAL 5EISMIC INERTIA: TOTAL SEISMIC COMPRESStVE STRESSES: 2-0 SEISMIC STRESSES AT SECTION (Psi)1 2 3 4 32 302 461 1037 119.3" 322.5' 489.1' 912.3" 788.67 15$.54 103.46 8S.31 499.79 429.39 512.76 723.14 128_.48 ---.-- --6.2 _ ._......1280.48 584.93 E16.22 808.45 3-0 STRESSES AT SECTION (psi)INPUT LOAD SECTION A B C 0 SECTIOX: 3-0 MODES!ELEv: INPUT 3-0 UNIT LOAD OESCRIPTION 1000 lbs at nodes 563 through 569 S00 lbs at 4271435. 1000 lbs at 426-434 500 lbs *t 1971205. 1000 Ths At 191-204 SOO lbs at 161S169. 1000 lbs at 162-168 I 53-66 119.3-85.43 89.65 97.64$9.85.12C8.46 2 170-118 322.5S._____.37,94 39.92 43.37 0.00$84.93 3 400-408 409.1" 34.94 36.75 0.00 0.00 61S.2Z 4 526-534 912.3" 55.23 0.00 0.00 0.00 0..8.4 808.45 DESIRED COMPRESSIVE STRESSES (psi): 3-0 I NPUT tOAD SICTION A C 0 LOAD TO OE APPLIED TO MATCH 2-0 StRESSES__-__.___-_--..._---..._

_-_..____

-.-.__14637.9 2850.2-1941.7-318.8 RESULTING STRESSES At SECTION (psi)1250.51 555.36 511.4S 805.45.256.17 113.7B 104.77 0.00-169.58 -84.21 0.00 0.00-28.64 0.00 0.00 0.00 1288.46 584.93 616.22 808.45 SUN: SEI'FL.WK1 A _ t RF# 006.INDEX 9-41. REV. 0 DRYWELL i ELEV. 51'0 IL THK. .676" Figure 3-1.Oyster Creek Drywell Geometry 3-21 I 01ESTEA CaIX DRYWELL AMLYSIS -OVCR1LO (1MO SAMD, ?OST-ACC.AMSiIS 4.4 DEC 4 1990 PLOT HO. I1 PREP7 VMTS I REAL MUMl MCU =1 Yu --a a XCF =383.031 2F =639.499 CENTROID HIDDENI Fiour-% 3-7.nvvtar rrooir nwaii i-n rinitz Clafflont btA-4-1 I DEC 4 1990a i5066:41 REAL ~MM WuI =1 xr =429.:45a 2F =2+/-4 .20 QriC2=-9O CENTROID 11IDDCH w I--OYSTER CREEK DRYWdELL ANA~LYSIS

-OYCH1O CHO SANDA POST-ACCj Figure 3-3.Closeup of Lower Orywell Section of FEM (Outside vifwi I OMSVlS 4.4 DEC 4 1ggo PLOT 140 3 PREP7 KZLMENTS RlEAL NUN Xct =-J.Wu =-G. a DISTh=e9 .376 Xv =429.43a 2r =216.528 aMG2=98 C1E4TROID HIDDIN w.0.---I I OYSTER CREEX DRYI4ELL ANALYSIS -OYCRIO CR10 SAND, POST-ACC.*i-.- I A rl -- -,C I ---c-#_ C CCU uc-,..i-I M4S.S 4.13: 18:37 g!LO1N 6*PRKP7 iLDIENTS TYPE M"R BC SYND*LSc kVU =1 YU =-B. a DlS?=718.

786 XF =303.

  • 31 Zr =6319.458 cXMIOIDHIDDEN U'MMjTER CPREX DRYWELL AHALYSIS -CVCRILO (MO SAND. POST-ACC.Fivillro anti Antindiirv rnnefitinn' nf Finitp F1#LrnLnt HMO1 1 OCT 15 1990 09:32:Z. 6 PLOT MO. 2 APEP XELD94hTS flC Sv"BoLs YIU =-O..3 DIS??718 .786 XF =303.931 27 =639.498 c no DHIDDUN;x)le OVSTER CREVX DRYWELL ANALYSIS -OYCRIA CSAND,. UNIT LOAD-CA-I ..-II --1 ---'r I &_ rz_'l ---1 __. -

I-~HJOt LG A99 PSTE1.Szl 5 ITER m-l SY C*UG)>D"qX =9.221779 SM4 =-174 sme =695. 847 XU =1 Yui =-3. a DIST=78. 7066 XI =363.631 CZ"morv HIDDEN--0174-7168-:W3m-3247 I-.1276 6 95. 047 1-I lt @lwi%~R.O. lip .14 , oVSTZ~t CREXX DAVHELL ANALYSIS -QC~IUS CMO SAHV, MEFUELING F {nllra 61-7 F~n.,~ 1~7 MariiAinnal Stresses -Reftelina Case

_oi z. 199_130: 57S.29;*: (AUG)xs~ITEM~3 t I

  • AWE DIX =9. 139473 SM. =-9174 SNX =695.947 XU =.YU =-o. a Dt ST=20 .376 X =429. 452 328 C_ TROIID HIDDU4* 8174-7188--3247-J.276 695.047 I., tS .aI.OYSTER GCRER DRYSELL ANALYSIS -OYiCHIS C(f SAND, R=ULING

__ ANSYS 4.4"O4 .16 1996 OSTEF1ums STEP--sM ( AUG>mIIX =a.22.1779 CNN =-3547 SMX =6754 MU =1 DIS=7=19.*786 XF =33.6331 CXN""ID HIIDDDE-3547-2493 4465 6754 C& ------ r---A:

ANSe 4Eb4~l~ i w. n 69: 57: 15 Post 55 STEP_1 IT71=1 Sx <AU<)DNX =G. 394?3 SMt =-3547_SX =6754 xCU =-1.YU =-s.s DIST=200.376 XY =429.452 CZNHTR=OID; HIDDEN-3547 mr -240 Fi4465 6754 t _b 0 Figure 3-10.Lower Orywell Circumferential Stresses -Refueling Case II"'U.M 9Y e@ vV C@IVee II gIl II I Or O* Vs f ?0'e OY1STER cmEX( DRYMILL A~mLfsIs-ANSVS 4.4 NW04 1.9 1990 POST I,. STRSS STEP--I ST C Au )DIIX =9.479734 SMN =-13J.5S SPIX =3894 XII =1 YU =-G.s UT' =3S3.831 CENVTO11 H1IDIKN-1-3j55-11260-:8 1 3683 E 95.1:36 2094 La)'a, SAHD, POST-ACC.

P Ficure 3-11. Heridional Stresses -Post-Accident Case

'I a S Is. lie ft ml I* f I I* 3 3 5 2 5 IAft I I I 1 I I S iAMY~S 4.4 NOU 19 .19903 16:33: 46 Ir UOT no d POSTL SIMMSS ST'EPZI K TERt=+/-SY (AUG)l MI DILE LEL" CZ D"X=847?S734 SMX =3894 XU =1 YU, =-9.8 DI S7=09 .376 X. =42m.452 CXNTROID HIUDSV--11260,~ 3683 15136 3894 to1 4., p*1 OYSTZR CRIEEX DRYWIELL ANALYSIS -OYCRLO (NO SANID, POST-iCC4.

Figure 3-12. Lower Drywell Jeridional Stresses -Post-Accident Case I!mom my me;3-m me--w--w Cal--In-He---------c------.--r Mu -----F hMSVS 4.4 16:30: 42 PLOI MO.POST I STIR2 STKP~l ITER=1 IC = 9.47g9734 Saws =-52OM SMX =27791 XU =1 YU =-m.s DlST=718 .70G RrCZ=7tj3 490 CENThOID NIODDI-5295--1538 13126 2059_2x791 wa taL OYSTER CTE1 DRYIELL ANALYSIS SIND. POST-ACC.1 Figure 3-13. Circumferential Stresses -Post-Accident Case N ov 19 .199S 1 1PO<S ti£71st STEp=1 t TER~--I SX C OUHG D_"X =9.479734 SHMf =-5265 SMX =27791 YU =-G. a DIS-2806 .376 XCF =429.452 CENTROIM HIDDENI--152-WS 13126 2045g OVST C31EIX DRYI4KLL ANALYSIS OiVCR1O C?1G SA M o.P:T4C Figure 3-14. Lower Drywell Circumferential Stresses -Post-Accident Case UNEX 9-4, REV. 0 DryweiU Sphere Planes of Symmetry L Ubudded Shape, Buckled Shape Vent CRadal Displacement No Rotation)Symmetric Buckring of Drywell LUbudxed Shape Bucked Shape Vent ( Rotation kNo Radal Disp.)Asymmetric Budding of Drywel SWA. DRW Figure 3-15.Symmetric and Asymnetric Buckling Modes 3-35 NWU LS 1996 13:23:92 STK?~1 C TF.=1 VACT=7 .663 ux D MODAL DMI =G. 0361 CMN =-863890)(U =1 YU =-G.sa DIST=196 059 XF =327.422=-6.603868-B 603147-S. 02486 0 .15?E-93 OYSTER CMEIX DRYWZLL ANALYSIS -OVCR1T CNO SAND, REFUELIN 4-Fioure 3-16. Symmetric Suckling Mode Shape -Refueling Case DEC 11 1990 STEPl ITER=l VAkCT=IU.

1:34 ux D MODAL DWAX =Q. O3744 SHit =-430.152 SMCx Wa. 6R744 XI, =1 Wtu =-is.XT =327.422 RT 277128-0. 350E-03 U a:Wii", 8 .001989 g.GW574 G.083744 GI AsyM. 3-4 OVSTEN C2EXX DRYWELL ANALYSIS -OVCRJCC CHO SAN~D, REFUELIM_-l q I V-4 __ U.A- Ck- -n- 4C..-'l 9 -- P ---

ANSYS 4.4 MWO 39 1I"W GM: 27:14 STEtP=l ITEXRI 7aCr=5

  • 181 DMC =S. 8666 SlIM =-S.W1173 SMWA996 XIIu YU -s Dts7=196 .859 X =32.2-0O.ML173--0. 7243-93-0.2753-03
9. eall52 9. 0=867 w OYSTER C2m( DRVWELL ANALYSIS -OieCR+/-P CHo SA "D. POST-pACC.

Finilra _1Q~inuu~u ~ 1R f r, eliun" Mnds 'Ch~no .p n~ct rri-uianit r in=

DRF= 00664 INDEX 9-4, REV. 0 4. ALLOWABLE BUCKLING STRESS EVALUATION Applying the methodology described in Section 2 for the modification of the theoretical elastic buckling stress, the allowable compressive stresses are now calculated.

Tables 4-1 and 4-2 summarize the calculation of the allowable buckling stresses for the Refueling and Post-Accident conditions.

respectively.

The modified capacity reduction factors are first calculated as described in sections 2.2 and 2.3. After reducing the theoretical instability stress by this reduction factor, the plasticity reduction factor is calculated and applied. The resulting inelastic buckling stresses are then divided by the factor of safety of 2.0 for the Refueling case and 1.67 for the Post-Accident case to obtain the final allowable compressive stresses.The allowable compressive stress for the Refueling case is 10.65 ksi.Since the applied compressive stress is 7.58 ksi, there is a 41%margin. The allowable compressive stress for the Post-Accident, flooded case is 13.77 ksi. This results in a margin of 15% for the applied compressive stress of 11.96 Ws;.4-1 RF-00564?NDEX 9-4. REV. 0 Table 4-1 Calculation of Allowable Buckling Stresses -Refueling Case Parameter LVaIue Theoretical Elastic Instability Stress, aie (ksi) 58.10 Capacity Reduction Factor, a; 0.207 Circumferential Stress, cc (ksi) 4.49 Equivalent Pressure, p (psi) 15.74"X" Parameter 0.173 AC 0.118 Modified Capacity Reduction Factor, ai mod 0.402 Elastic Buckling Stress, ae 0 imod aie (ksi) Z3.34 Proportional Limit Ratio, A aeIy 0.614 Plasticity Reduction Factor, a; 0.913 Inelastic Buckling Stress, aj = ija'e (ksi) 21.30 Factor of Safety, FS 2.0 Allowable Compressive Stress, aall -ai/FS (ksi) 10.65 Applied Compressive Meridional Stress, am (ksi) 7.s8 Margin -[(a(i/m) -1] x 100% 41%4-2 NDEX 9-4, REV. 0 Table 4-2 Calculation of Allowable Buckling Stresses -Post-Accident Case Parameter Value Theoretical Elastic Instability Stress, aie (ksi) 61.95 Capacity Reduction Factor, a; 0.207 Circumferential Stress, ac (ksi) 20.08 Equivalent Pressure, p (psi) 70.38"X" Parameter 0.774 AC 0.195 Modified Capacity Reduction Factor, Aidmod 0.529 Elastic Buckling Stress, ae = aimod ale (ksi) 32.74 Proportional Limit Ratio, A = ae/ay 0.862 Plasticity Reduction Factor, ni 0.702 Inelastic Buckling Stress, a; = niae (ksi) 22.99 Factor of Safety, FS 1.67 Allowable Compressive Stress, ral, ' ao/FS (ksi) 13.77 Applied Compressive Meridional Stress, am (ksi) 11.96 Margin ( C(ai/qm) 1] x 100% 15%4-3 QRF.# 006b4 INDEX 9-4, REV. 0 S.

SUMMARY

AND CONCLUSIONS The results of this buckling analysis for the refueling and post-accident load combinations are summarized in Table 5-1. The applied and allowable compressive meridional stresses shown in Table ;-1 are for the sandbed region which is the most limiting region in terms Of buckling.

This analysis demonstrates that the Oyster Creek drywell has adequate margin against buckling with no sand support for cm assumed sandbed shell thickness of 0.736 inch. This thickness is the 95% confidence projected thickness for the 14R outage.5-1 INDEX "94, REI. 0 Table 5-1 Buckling Analysis Summary Load Combination

_Refueling Post-Accident Service Condition Design Level C Factor of Safety Applied 2.00 1.67 Applied Compressive Meridional Stress (ksi) 7.58 11.96 Allowable Compressive Meridional Stress (ksi) 10.65 13.77 Buckling Margin 41% 15%5-2