ML072670374

From kanterella
Jump to navigation Jump to search

Jersey Central Power & Light Company. 1978. Oyster Creek and Forked River Nuclear Generating Stations 316(a) and (B) Demonstration, Zooplankton of Barnegat Bay: the Effect of Oyster Creek Nuclear Power Plant Through Literature Cited
ML072670374
Person / Time
Site: Oyster Creek
Issue date: 12/31/1978
From:
Jersey Central Power & Light Co
To:
Office of Nuclear Reactor Regulation
References
2130-07-20506, TAC MC7624
Download: ML072670374 (216)


Text

ZOOPLANKTON OF BARNEGAT BAY: THE EFFECT OF THE OYSTER CREEK NUCLEAR POWER PLANT BY PHILLIP H. SANDINE A thesis submitted to The Graduate School of Rutgers University in partial fulfillment of the requirements for the degree of Master of Science Written under the direction of Professor Robert E.

Loveland of the Department of Zoology New Brunswick, New Jersey October, 1973

TABLE OF CONTENTS Page Introduction .......................................................... I Area of Study ........................................................ 4 Methods and Materials ................................................ S A. Survey .......................................................

5 B. Thermal Study................................................

1. General Procedure for Determining Mortality of Zooplankters .......................................
2. Procedures for Determining the Effects of Elevated Temperatures on Specific Zooplankters ..... 7 Results and Discussion .............................. ................. 10 A. Survey....................................................... 10
1. Copepods ............ ............................. 10 2.. Other Holoplankters . . . . . . . . . . . . . . . . . . . . . . . . . . .

18

3. Maroplankton ........ ............................. 22 B. Thermal Study ................ ............................. 33
1. Copepods ............. ............................. 33
2. Other Holoplankters.. ............................. 46
3. Meroplankton ........ ............................. 50 General Discussion .................... ............................. 56 A. Survey ........................ ............................. 56 B. Thermal Study ................ .............................. 63 Conclusions ........................... ............................. 68 Literature Cited .............. ............................. 69

x; YOD!CTIOM The demand for electrical pvewr in the United Staten in presently doubling about every seven years. To neet the needs projected for 1990, sa 340 new pC~er plants must be built in the next twenty years (Cains, 1972). Many of these units will be large nuclear-powered plants requiring large quantities of water for coolant use. This wll result in most units being built on estuaries or in the coastal vats" of the ocean. but it is just such areas which usually support large populations of zooplanktars, which will undoubtedly be pumped through the coolnLg condensers of these plants in astronanuical numbers.

The literature concerned with the problem of thermal addition to the aquatic environnt has grown in the last few yearsi this is attested to in the annual Uteratuxe reviews of Coutant (1968, 1969, 1970, 1971). Kinne (1970) specifically reviews the effects of temperature on marine invertebrates. That segment of the literature concerned with the effects of thermal addition an zooplaiton, however, is decidedly small. In addition, most studies investigating the effect of temperature on zooplankton have been conducted in the labora-tory, and often in a manner that did not simulate either the temperature regime that would be produced by a power plant over a year's time or the natural variation in the physiological condition of the aoo-plAnkters themselves.

Peeve and Cosper (1970), while conducting laboratory simulation studies on the copeopod Acartia tonsa collected frao a suutropical bay, found mortalities of 30 to 50% and higher in their controls during the summer months. They concludeo that when ambient temreeatures 2

exceed 30 Ci one is confronted with Organisms that are highly sensitive to even the slightest modificatiou, includ*in removal and isolation from the natural system. Heinle (1969), working with pumped sooplank-ton directly, found extensive fortaslity of A. tonsa even though dis-charge temperatures were below the upper lnits of thermal tolerance for this species. However, chlorine gas was applied at relatively high rates at the plant and was suspected to be the cause of death.

Marko**ki (1962), working in an enclosed docking area in England which received the discharge from a power plant, noted that Acartia clausi W totally replaced by A. tonsa after the power plant became operational.

Ralmont and Carrie (cited in Maylo, 1965) presented evidenc, that a shift in the copepod population towards war= water species can occur in a bay receiving the discharge of a power plant.

In togland, where a number of power plants have been located an estuaries or coastal waters for a decade or more, investigatiors into the effects of thermal addition on the benthic fauna have been conducted. The findings of these investiqations have smetimes pro-duced confla.tig results. For example, Markowski (1962) found no harmful eff ets from heated effluents on the benthic fauna in an enclosed brax4Lsh area, while Saylor (1965), working in an enclosed salin area, noted considerable changes; some native species were elimilated "A replaced by subtropical species introduced by commercial shipping opeations. However, as Barnett (1972) points out, the maximm terp ature Of Most English coastal waters, about 20 C, is low enough V &atelevations of 8 to 10 C do not exceed the thermal tolerance of most organisms present. In Barnegat Bay maim=m water S

3 temperature is about 28 C. This t-mparature approaches the upper lethal limit of many temperate invertebrates (Yannedy and Mikursky, 1971). But since the heated effluent from power plants generally reainas near the surface, benthic organisms are not mmually, affeoted directly by the effluent. Most coastal benthic forma, however, have

& pl*nktoniO larval stage. It iS the larval stage, which is lose tolerant of tpertare extrems than the adult (Ushakov, 1"8) ,

that vill be subject to antralnment.

This study, in addition to presenting a general survey of the zooplankton of Barnegat Bay, attempts to evaluate the effects of short-term exposures to a 10 C elevr.tion above ambient an holo- and meroplanktoni tforms. The survey is based on samples taken approxi-mately every two weeks at the end of the discharge pipe of the Oyster Croek Power Plant. The sampling site was chosen in order to determine the composition of the soaplankton pumped through the cooling system of the power plant.. The thermal effects were investigated by various experiments, such as mortality of copepods viability of copepod eggq and mortality of meropl*ankto larva*.

4 Sarnegat Bay is located behind a barrier island along the Mew jeksy coast. The Bay is classified as a shallow, laqoon-type estuary, approximately 39 km long and 2 to 6.5 km wide, with an average depth of about 1.5 m. The Bay has one main inlet, Barnogat Inlet, with an exchange rate of about 7% par tidal cycle and a net discharge rate of approximately 56.7 a 3 /sec. The northern end of the Bay conacto with the Manasquan River by a navigational canal and the southern end is continuous with Little Egg Harbor Bay. Salinity in the sampling area ranged from 12 ppt, after period* of heavy runoff, to 27 ppt. Temperature in the intae canal ranged from -0.6 to 29.2 C.

Mountford (1971) has an excellent su ary of the phytoplankton of the Bay. Phillips (1971) examined the benthic invertebrates and Taylor (1970) the b"thio algae.

The Oyster Creek Power Plant is located on the western shore of the Bay, about 3 km inland adjacent to Route 9 in Lacey Township.

Two tidal creeks, the south branch of Forked River and Oyster Creek, have been modified so that they now serve as the intake and discharge canals respectively. With the plant in operation a one-directional flow of watel results. Of the 1860 = 3 /min that are pumped through the condenseis, the fresh water runoff from Forked River contributes about 2%. T-perature elevation across the condensers is 10 C.

Dilution pumý) at the plant site have a capacity of 3800 = 3/in.

5 KRUOB dD 1AT2RIALS Sarpling was conducted at the discharge pipe of the Oyster Creak Power Plant during tho pericd January 1971 to August 1972 at approximately two week intervals. Samples, obtained bT bucket, consisted of two 50 litar surface uamples poured through a #20 nesh (0.076 zm) plankton not. The net was al at totally Irmor ed in another bucket of water to winimize the forcing through of small soft-bodiod forms. To obtain a qualitative estimate of the less c n forns, a 3 to 5 minute tow was taken in the discharge water with a 1/6 a net. Sawplea were preserved in 5% neutralized formalin.

The samples were concentrated to 10 nI, except during perioda of abundant detritus when concentration was to 15 ml. Two 1 =l sub-samples ware taken from a thoroughly mixed concentrate. A Sedgwick-Rafter chamber was used for enumeration which was done under a com-pound microscope at 100x, the entire chazber being examined.

3. Thermal Study
1. General Procedure for Determining Mortalityp of Zooplankters Under normal operating conditions of the Oyster Creek Plant a 10 C temperature elevation is registered across the condensers.

During the first half of 1972 however, one of the circulating pumps broke down and this resulted in approximately a 13 C increase. To offset this abnormal increase a dilution pu~p was run. Normally a dilution pump in not used until the temperature of the discharge ex-coeds 34 C. To determine the effects of these temperature elevations

8 onommon zooplanktars, duplicato aamples of from 5 to 50 liters were takan from both the intake rd discharge, ccacentrated 5- to 50-fold and placod in culture tubes. Size of the sample taken depanded on the conce-ntration of the zooplankton rri3ant. WhMn ctenoeph*oex or hyduomadusae were present, the samples were poured through a piece of plastic screening. If these organisms were not removed from the test samples their predatory activity would invali-date the results.

Tbe intake samples constituted the controls and they were maintalined at the temperature of the intake for the duration of the experiment. Samples from the disctarge were held at the elevated temperature for two hours before they were returned to the teperature of the ccntrols. The two hour interval u3ed was based on the estimated travel time for a portion of water to move dawn Oyster Creek.

When dilution pmps were in use, the ea2osure for the two hours was to the temperature of the diluted water, approximately 4 C below that of the discharge water. Decrease in tmparatuxe of the dis-charge water during transit down Oyster Creek was negligible. Additional experiments with a shorter time ex'poeure were conducted in t-he labora-Within four to six hours after collection of the samples, a 5 ml wide bore pipet was used to draw off any erganiss which ware at the bottom of the culture tubea. Two such 5 nzl samplez per tube were sufficient to draw off 95% or battar of tha Odead* ozganisms. In this study, any orgamnism which did not show either normal swimming behavior or an escape response from a probe was oszidared dead. The

7 motents of the cultuze tubes, Lito vwhich the 5 rl samples had been returned, were fix&e by the addit.on of forzalin, concentrated, and a total count of the organisms was made For laboratory simulation stadies, suhsamplex of organis* s collected from the intzko vere placed in t*bes contalring filtered bay water, salinity 21 ppt, vithin two to six hours aftar collection.

They wear then subjected to the temperature elevation measured in the field on that date. These expexrienta were run to deterzine if lAboratory s1=1lation would produce results sizxilar to field cxperi-mints conducted on the same day. The need for this information was in anticipation of plant "down-tiz,," for refueling and aintaonance, and was an attempt to separate plant effects (biocide, turbulence) fro that of teparature alone.

2. Proedures for Detet-xini:1n- the Effacta of Elecvatedc Th=nera-tures cn, specific taooplan*tors To determine what influence passage through the condensers had on the ability of Acartia clausi to lay viable eggs, adults ob-tained from the intake and outfall were placed in beakers containing filtered bay water. A piece of plankton netting confined the adults to the upper leavel of the beaker but allowed the eggs to fall to the bottom. After an eg laying interval of approximatly eighteen hours, random samples of eggs obtained by a capillary Pasteur pipet wera placed in 37 m culture bowls c=ntaining filtered bay water for incuabation.

Evaluation of tenperature effects upon A. clausi eggs directly was done by subjecting recently laid eggs, obtained fro

8 individuals collected at the inta, to temperat:re increases of 10, 15, 20, or 25 C above an ambient of 5 C. Exposure to the elevated toeeratures was for two hours. .fter treatment, incubation of the eggs vaas. at 5 C, with the water being changed every secnd. day.

To deter*ine if the rate of eg productica by E. clau.i was changed after pAssage through the condensers, intake and dis-charge specimens were collected. These individuals were then either placed in culture tubes i--diately after collection or hold in one litar jaxs for four hours prior to placmaent in culture tubes. In either case discharge individuals were hold at the elevated tampera-ture for the first two hours after capture. After a period of egg laying (4 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />), the samples were fixed and a total count mad of females and eggs.

To test the effect of temperature on Brtemorapp and their eggs, individual famales with eggs were placed in 37 m culture bowls containing 8 rul of filtered bay water. They were then sub-jected to temperature elevations of 10, 15, 20, or 25 C above an ambient of 5 C for two hours. Yndividuals were examined twice daily until they died and/or their egg hatched.

mortality of Mulinia lataralis larvae of different ages was investigated by spawning adults in the laboratory. This species was chosen because it sapawns well under laboratory conditions. Also, it is the dominant bivalve (number/= 2 ) in tha study area (Loveland et al., 1970). Adults wer" collected frc the bay at water temperatures of 8 to 15 C. The individuals collected were not ready to spawn and thus it wa3 necessary to condition them. This waa accompished by

9 holding them in filtored bay wat#ý at a temperature of 15 C for a period of tvo to three weeks.. Du-*ing this time no food was given and the water was changod evary third day. Spawnming wax induxced by thermal stimulationi temperatures of 22 to 24.5 C were used.

These temperatures are within the ra.ngs at -ich i uliuia larva.

occurred in Barnegat Bay. Eggs and sperm obtained from a spawn were placed in culture tubes containing filtered bay water. Density of larvae did not exceed 45/mi.

At fifteen minutes, four hours, and eight hours after spawning, duplicate culture tubes containing developing larvae of these respective ages were placed I-a controlled temperature baths of 27.5, 30, 32.5 or 35 C. Controls were maintained at the spawning temperature. Exposure to the elevated temperature was for either S fifteen miniites or two hours. When the larvae reached the age of 25 or 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br /> they were killed by the addition of formalin. The contents of the oa-plOa were then concentrated and total counts of the larvae were made. In addition, the straight hinge larvae received a classification of either morphologically normal or abnormal, based on the appeArance of the shell, All larvae used in the fifteen minute expoeurra were obtained from the same epawning while those used in the hour exoosures were not.

The effect of temperature on larvae which had already reached the traight hinge stage was tested by subjecting 24-hcur-old larva* to th est termaratures for one hour. Affter this exposure they were re* and to the control teape*atura for two hours. Then

  • dead4 larva were en--erated as preiously desc!ibed.

10 USULTS -ND DXSCUSSION A. Survey The copepod population of Barnegat Bay In dominated by Acartia tonsa and A. clausi, with meabers of Euz-tircra and Oithona attimes; accounting for up to 30% of the adult copepod populations.

A listing of other foras identified are Cant .qes ticus, C.

hamatus, Temora longicornis, Pseudcdiapto=4s coronatus, Tort-anus discandatus and Pftudocalanus airnutus. Earpa.cticoids were taken throughout =st of the year, but adult densities did --ot oxceed 2000/a 3. A plot of the copepod der.3ity noted during this study ix shown in Figure 1. A comparison of the data for the period of January through February troc both years of sampling shown the average density of copepods (adults and copepoditev) to differ by an orde=

of magnitude for this period. But apeciation of copepods was not dcae in early 1971 and thus it is not known whether this difference is a reflection of a different species comosition or of a larger population of Acartia app.

The seasonal occurrence of A. tonsa and A. clausi has been documented for other Mid-Atlantic estuaries (Herman et al.,

1968, Deevey, 1 9 6 01 Jefferies, 19621 and Conover, 1956). Data fron the int arval of July 1971 to June 1972 gave the follcwing pattern of occvu*ence for A. tonna and A. clausi. At the end of October A. tonga constituted the total adult Acartia population, as it had all su*zer. On the firat of December it still accounted for 74% of this populaticn, but by the first of March its contribution had

11 FZGURZ 1 Density of copepods per a 3 at the intake of the Oyster Creek Power Plant. Period of sampling was from January 1971 to August 1972.

4 - Adults and copepodites;

  • (----) - Nlaupl~i.

0 0 1 0 01 0

10 A,.

cee I I

zE r

13 fallen to less than 1%. Acartia -..onsa was not taken again until 8 June, at which time it represented 5% vf the population. On 14 June it had increased to 10% and by 28 June it again constituted 100% of the adult Acartia population. This pattern is similar to that found by Conover (1956) iz Long Island Sound, except that A. tonsa did not show an April peak nor did A. clausi linger until July or early August ae it did in the Sound. The earlier disappearance of A. clausl in Barneqat Bay is probably a function of the Bay's mor rapid warning. Jeffries (1962) feels that 20-22 C is the mazimu limit for A. clauvi repro-duction. For A. tonsa, Heinle (1966) givea 12 C as the lower limit for reproduction.

Heavy infestation of copepods during their wspringm bloom by a peritrichous ciliate, Zoothamnium, wax noted. Herman and Mihursky (1964) had suggested that such an infestation was a factor in the decline of A. tonoa and the consequent succession of A. clazsi.

In Sarnegat Day however, the replacement of A. tonza by A. clauxi began pri=r to infestation by Zootha=nium. In addition, the converse re-placement in the late spring began after the percent of infestation of A. clausei ha;d dropped to minimal levels

{ comparison of generation time for A. clausi from Barnagat Bay with a1us for the same species in Raritan Bay (Jeffries, 1962) and Long Is and Sound (Conover, 1965) is given in Tabla 1. Estimation of generation time for the BarneqaE Acar-tia population was based on ti dstri*ution of the adults (Figure 2-A). In addition, it was found that rcent infestation of adults with Zoothanium also qave an izdicatic of generation time (Figure 2-B and C). The anomaly in

14 XAzLE 1 Zatimaadt Date of atauration of .*ccosslve CenaraXLions of Acartia clausi frua Raritan Bay*, Long Iqlaz-d Sound* and .arnegat bay Generation Number Location 1 2 3 4 5 Raritan May Station 6 2/6 3/25 5/10-5/30 (47) (47+)

4 2/6 4/10 5/30 (63)- (50) 5 1/20 3/75 5/10 (64) (47)

Long island Sound 1952 - 4/10 5/15 7/5 (35) (50) 1953 2/10 4/20 6/1 7/1 (70) (40) (30)

Baxnegat Bay" Aduts/u3 1/26 3/15 4/22 5/11 6/8 (49) (3O) (20) (28)

Zoothamaium 1/11 2/21 4/26 5/16 -.

(63) (36) (35)

    • (Conover, 1956)1 LValuts are babod on tho nu.bar of adultz/m 3 and innfestation of adults by Zoothamnium (see text for explanation).

Time, in d-aya, for davalopc*nt of ea-h g~enration is givan in parentheses.

15 FIGU=. 2 Zatimat-d .,encration ti-zos for Acr&-ti?! clauni cOurinq the in-terval January to micd-June base! -Onnu~bfr of A. cla-ui *per M3 (.A) and percent infestation of male (B) and feuzJle (C) A.

clausi by zcothqamnium.

11

0 0 60 1 0000 40 20

-:ý. z S1000 L LUU

-- i 40 D

17 in this study, of the fifth generotioa taking longer to develop than the fourth is no doubt a result op, th lack of sampling between May Ufih &adJunim 8th, whiuh resulted in the peak of the fifth generation being missed.

The use of percent infestation of adult A. clausi by Zocthamnium for determining generation ti=m is sunpect since the population dynaaica of this organisa are not known to the author.

Navertheless, if it is assuuad that the percent infestation of adult A. clausi is primarily a function of the length of ti since the adult molt, then it appears that the poak of infestation would occur Just prior to the re~lacement of one. adult generation by the naxt.

The general agreement between tha two methods, time distribution and percent infestation, for estimating generation times gives some credence for the lautor 's una.

uryte.or.a spy, predominantly 2. afffinis, ware takan during 1972 from mid-February to mid-May. But only during the interval of 31 March to 18 April did they account for more t2an 10% of the adult copepod population. They reached a ma*xi=u dansity o.C ll,200/m3 on 11 April. A similar pattern of occurrence for H. affinis was observed In Raritan fay by Sage and Herman (1972). Tho infestation by Zoothnitum of adult EuD5,ejwra during their period of abundance in Barnegat Bay was a phanocenal 93%.

Members of Oithona, prinarily 0. similis, were often pesezt in the plankton and at tizes accounted for 30% or -ora of the adult.

copepod population. This generally occurred during intervals of an overall low copepod population, mainly during the summar months. The

18 only significant outburst of 0. s.milis occu-rred in September 1971, when adult density reached 12,200/a 3. It wai also on this date that A. tonsa had its peak for the season. Infestation of Oithona spp by Zoothamnium was not observed.

2. Other Hooplan1tters Tintinnids, a group of marine ciliates, showed pronounced fluctuations in nuber per meter cubed. The .aximu density of 163,000/--3 was noted in July 1972. Maximu density in 1971 also occurred in July. Because many of these forms were not retained by the plankton not used, due to their small size, their enumeration values are conservative. These forms occurred in all months sampled.

Rotifers also showed large fluctuations in density. In fact, during one two and one-half month period in early 1971, the abundance of rotifers went through a change exceeding three orders of magnitude three times (Figure 3). Jeffriea (1964) noted similar fluc-tuations for members of this group in Raritan Bay.

Since male rotifers may be as small as 40 Ridcronz (Donner, 1966), estimation of rotifers in this study should be considered conservative. Speciation was not conducted but there occurred at least four different soft-bodied forms and two loricate forms. The latter group included the banana-shaped one mentioned by Jeffries (1959) for PIaritan Bay. Rotifers accounted for 15%of the total szo-plankton co un~ity during this study, excluding tintinnids.

Cladocerans occurred with regUarity in may and June of both years but never in large numbers; maximum density noted was 2,000/m 3 . Qualitative samples indicated that they are present in the fall also.

19 FIGURE 3 Hulbez of rotifers P"x=3 at the intake of the Oyster Crook Pover Pla=t. Poriod of sa=pling wazs trm January 1971 to August 1972.

0 10 0

x 10 LU CL.

cz z.J I z

IA

21 p both years.

Rhabdocc.ls also occutrrd with requ larity in Their density did n,ýýt exceed 4000/a 3 .

the spring of In addition, it appeared to be the only zooplankter which found 1971 to be a mre favorable" year. Density of this form exceeded 500/r 3 on six sampling dates in 1971, but only once in 1972.

Macrozooplanktors noted in this study, excluding fish larvae, weres the arrow worm, Sagitta olega.i, the hydrcmedusae, Sarsia mira-bilis, Newopsis bachel, Pathkea octopunct.ata and Obelia sp; the ctenophores, Mnaniopsis leidyi and Beroe ovate; .and the coelentarate, Cyanea capillata. The hydrctedusae, Sarsia, Rathkaa and Cbelia were taken prizmarily at temperatures be! w 15 C, as was Sagitta. Of these four forms, only Sagitta was noted by Herman et al. (1963) in their study of the Patuxent River Estuary, a part of the Cheaapeake. Neither Jeffries (1959) nor Sage and Herman (1972) noted Rathkea, a boreal form, in their surveys of Raritan Bay. Hemopsis, which Jeffries reported to be comn in Raritan Bay, as did Berman et el. for the Patuxent, var not o n in Barnegat Bay. Xountford (1971) makes no mention of its occurrence in Barnegat Bay.

The ctenophore Hnomiopsiu reached maximum densities in Barne=gat Say in the late spring/su&-er interval, while Bero. occurred primarily in the fall, but not in as large numbers as Mnemiopsoi. The colenterate Cyanea appeared each "spring" when Bay temperatures ex-ceeded 10 C and had all but disappeared when it passed 20 C. gountford (1971) reported Cy&nea to have been comon in the spring of 1968 and 1969, but not in 1970. My observations found it to be c in 1971 but not in 1972.

22

3. laroplankton The occurrence of bivvlve larvae in the plankton of RmAagat Bay for a sixteen month interval is shown in Figure 4.

In 1971 there were two spring pulses of bivalve larvaes, followed by a sumer lull and one fall pulse. In 1972 only one spring pulse occurred and it continued into the summer. The firs3t pulse in 1971 consisted almost entirely of Ensis directus larvae. The success of this spawn was reflected by the fact that in June, juvenile Ensis were obtained in benthic samples at densities up to 130/m 3 (Lovelamnd, unpublished). In 1972 no pulse occurred in April, nor were any Ensis larvae noted in the plankton samples. Xn addition, no juvenile Ensis were taken by benthic samp.ling in 1972. The second pulse of 1971 and the first one of 1972 were generated by the larvae of Mulinia lateralis. In 1972 production of Mulinia larvae did not drop. off in the summer as happened in the preceding year (Figure 5). The fall pulse in 1971 also consisted wainly of Mulinia larvae. This was probably a result of s?awning by the young-of-the-yoar. Calabrese (1970) found that Mlnia could reach maturity under natural conditions in six weeks. Since Mulinia is the dominant bivalve in the Bay off of Forked River and Oyster Creek, on a number per square meter basis (Loveland et al., 1970), it is not surprising to find it constituting the majority of the bivalve larval population in this study. A listing of bivalve larvae identified and their tiUe of occurrence during this study is preaante4 in Table 2. The large number of unknown* (Table 2) is due to the author's lack of expertise in identifying bivalve larvas, the use of a key (Chanely and Andrews, 1971) notwithstanding.

23 F!GUTI 4 Number of bivalve C- and ga-stropod (---) larvae per m at the intake of the Oyster Creek Power Plant during the period April 1971 to August 1972.

S

0 00 ft II x

ft

,r I cr 10 i

w CL 1, 1 1A~

  • I

.11 I

z A

25 FIGURE 3 Nu=bax of Mulinia lateralis larvae perm3 at the intake Oyajtax Crook Power Plant during of the the period of May 1971 to Aug*wt 1972.

0.

I0 Cle) zý 100 10 MA A

27 TO1nev 2 Occuzrrence of Biva.1 ro Larvae in Barznegat Day P-4 0 ~-4d tý It C

-4 0- u.1. -4 -. ..

V1 V4 0 -4 1971 Apw 13 9 9 21 35 20 14 27 35 7* 27 6 2 may 6 i5  ?* 5 10 28 66 56 1 9 J~o 3 52 39 12 1 54 27 10 5 14 29 23 18 1 4 July 1 is 11 7 0 15 21 15 7 6 29 23 16 3  ? 4 4

Aug 11 6 2 30 16 10 I 2 3 Sept 20 3 3 oct 4 37 29 2 6 11 36 31 5 20 31 26 26 13 9 3 nov 1u 5 2 3 Doc 4 17 S 12 27 4 7 1 S

20 TA=LE 2 - (Cont'd) f0 0 0 -4

-H1 p -

F.4 C5 4J0 0 r-4 W d) 0 I

  • -H 4 (01 W > m 44 0

045 $4p 010 d 1972 Jan 11 '1  ?

rob15 2 220 Xar-Avr 0 may 5 2 7 2 1.1 6 1 1 7 7 4 16 19 a 1 juneB 37 29  ? 7 7 14 51 34 4 13 26 23 12 2 5 4 July 12 116 10 1 1 4 17 26 24 1 1 0O Aug 10 14 13 1 0

  • Indicates that som of the unknowns may be the upecias in question.

29 W in a comparative atudy of thre. estuaries Jeffries (1964) found the relative abundance of bivalve larvae to be greatest in the estuary where he used the net with the smallest mesh opening. In ths study,.of 481 bivalve larvae measured from 1971 samples, only 6% exceeded 180 microns in length while 884 had a length of less than 130 microns.

Polychaete larvae were most comon during the interval April through June (Figure 6). Jeffries (1959) gave 11 C as the temperature for the initial as well as the numerically largest burst of reproductive activity by Molycha&Mte, mainly Polydora, in Raritan Bay. In Barn*egat Bay the greatest densities of polychaste larvae were noted at about 12 C. This temperature occurred in late April in 1971 and in early may in 1972. However, on 8 April 1971 the density of larvae was acm three times that of the previous sample taken on 24 March, while on 11 April the density of larvae was aLmost an order of magnitude greater than the previous sample of 21 March.1972.

Ambient temperature on 8 April 1971 and 11 April 1972 was approximately 6 C. Thus the occurrence of polychaete larvae starts in earnest in Barinegat Bay well below 11 C. Orth (personal comunication) found that Folydora ligni larvae first appeared in the plankton in the York River at a temperature of about 7 C.

ioed on data from benthic samples, Pectinaria gouldii La on. of Ce cw----on polychaetas in arnagat Say, at ti=.e-s occurTrirg in dansitioe exceeding 1000/32 (Loveland at al., 1970). However, the larvae of V is species were rarely noted in the plankton. This is S moat likely due to the fact that Pectinaria larvae spend only a few

30 FIGURE 6 Humber of polychaete larvae (--a-) nd barnacle nauplii {-)

per u3 at the intake of the Oystar Croek Power Plant during the period April 1971 to August 1972.

100 56 A

10j cm*I

  • .L
  • C9.

C-I

'18

32 houra to a few days in the plankton daat.n,, 19208). This results -

in loss wastage of larvae and comsequantly !ewer need to be rpoduced to maintain the population (Thorson, 1950).

An indicated in Figure 4, gastzopod larvae appear to be the least c n enumerated meroplankton form. The fact that many g9astropods have direct devalopcunt helps account for tWis. Never-th4l*ss, on 27 July 1972 the number of gastropod larvae did exceed that of any of the other three meroplanktars. In addition, of the twenty-three dates on which gastropod larvae wore taken in the quanti-tative samples, they outnumbered bivalve larvae in 43% of the samples.

In Raritan Bay though, the number of gastropod larvae did not equal that of bivalve larvae (Jeffries, 1959).

Barnaole nauliji were found throughout the year in the plankton of Barnegat Bay, with maximum densities occurring during the intexval of March through June (Figure 6). Jeffries (1959) found the occurrence of barnacle larvae in Raritan Day to be greatest in September. Of the ueroplankton, barnacle nauplil and gastropod larvae were the two forms which consistently showed higher densities in 1972 than in 1971. A plausible explanation for this difference of barnacle nauplil is that the winter of 1970/71 was cold, with extensive ice formation on the Bay, hut the winter of 1971/72 was mild with minimal ice formation. Consequently, mortality of inter-tidal barnazles by ice scouring should have been less in the winter.

of 1971/72. A larger brzeeding population was thus present in the spring of 1972.

33 UIumeration of the cypirid stage on a quantitative basis vas not possible due to the a31l sample size used. On a qualitative basis though, the cyprid stage appeared to be more common during the sumr months.

The density of decapod larvae was too low for enumeration

  • a a quantitative basis. On a qualitative basis they occurred pri-marily during the interval June to September. Decapod larvae have been found to be common in the plankton of other estuaries (Herman et al., 1968).

B. Thermal Study

1. ~2~

0osignificant difference in copepod mortality was found Sbetween laboratory experiments simulating the temperature regime created by the plant with those conducted in the field on the same day (Table 3). Thus, it is felt that the results from laboratory simulation experiments conducted when the plant van not in operation are indicative of what would have resulted from field experiments.

It also indiates that teprature accounts for the bulk of the nortality noted in the discharge samples.

.. f o*zqaesn were held overnight in the laboratory prior to testinq, L increase in mortality was noted. This increase was probably a fertion of a lack of food and/or a build-up of vwate products dur g the holding period. Result* fres such experiments are not used unless so stated.

The aw *age percent mortality of copepods, resulting from

34 TA.312 3 CMuPaxi2OZ Of C01.epod Mortality TProduced by Passage Thxouch t-he Cooling Candbbser3 of the Oy-star Creek. Power Pla.nt (field) with Laboratory SImulation Thereof (Lab)

Adult3 and MaUPlii Copepodi tes Field Lab Field Lab FAnge of organims36-131 32-240 9-76 13-126 per teat samypl Average percent 8.9 6.2 8.3 6.3 mortality Standard deviation 4.1 3.5 7.5 4.1 Rsaultx are frmi experi-ets conducted on four days.

0

35 passage through the plant's condeysers or laboratory simulation thereof for fourteen dates is shovn in Figurs 7. The p~ttern that 5s fxvm these data is the occurrence of peaks in early June of both years. These peaks coincide vith the beginning of the replacement of A. clausi by A. tonsa. Gon*ales (1972) found mortality of A. clausi to be significant only in J in his study of entrained zooplankton. Test te=paraturesa for early June 1971 and 1972 were 30 and 31 C respectively. If the exposure time is lessened to fifteen or thirty minutes, as was done on 8 June 1972, the percent mortality is substantially lowered (Table 4), indicating the importance of time/temperature relationships (ort, 1955). It should be noted hovever, that if the contents of the fifteen and thirty minute ex-posed tubes had been examined immediately after return to ambient temperature, a "morta1it-" of about 901 would have been recorded.

This apparent "mortality" was caused by a temporary loas of the oopepoda' swimming ability. Reeve and Cooper (1971) also observed this temporary loss of swimming ability in A. tonsa when exposed to.

a sublethal time/temperature interaction.

k by Jeffries (1969) showed that the free amino acid pool of A. ctausi changes prior to its replacement by A. tonsa. Such a change in the physiological state of A. clausi could result in the organism bei 'g more susceptible to enviromental stresses and thereby account for the high mortalities noted in early June.

T large percent mortality of copepods (and other zoo-planktars) o served on 17 July 1972 was due to an unusually high dis-charge tempe ýature. This was a result of tie hot spell occurring at

36 SIGU' 7 Percent =ortalit-' of adult cope.pods and corepodites (A) and nauplli (a) after passage throuqh the Oystar Creek cooling condensors (o) or by laborator, simulaticn thereof (e).

Ccntr-ol3 did not e:.ceed 51 mortality.

Exposure to the elevatod temperatures wam for two hours excent on 17 July 1972 when it wa3 fifte-en minutes.

On 1. arch, 13 ar4 26 April aid 5 May 1972 the temper-ature elevation was 13 C, and for all other dates it was 10 C.

A dilution pump- was in operation in July 1972 and March, April, May and July, 1973.

8 0--

0 60-40-20-0

!k-_0 B

I-- I I I I i

z.

LU 100. 0 a 0.

L. 0 a-60-40.

2 0-A 0 M J 0 0 a

38 TNBLT 4 Texcent Mortality of Copepods Exposed to a 10 C Elevation Above an Ambie*lt of 19.8 C for Fifteen Kinutes, Thirty Kinutes and Tvo Ho*rs on 8 Jume 1972 Exposure Nauwliil Cope.podites Adults Control 0.0 (19) 0.0 (150) 0.6 (156) 0.0 (16) 0.9 (109) 0.7 (130) rifteen mixnutes 0.0 ( 9) 5.8 (190) 6.9 (144) 6.6 (15) 4.0 (124) 4.8 (124)

Thirty,minutes 37.5 (16) 46.2 t186) 56.7 (231) 60.0 (5) 36.2 (102) 24.6 (126)

Two hours 80.0 (5) 100.0 ( 67) 100.0 ( 87) 90.0 (10) 99.0 (100) 100.0 (147)

Nwaber of organism. tested given in parentheses.

39 the time and the possible entrainwant of dischazge water. The latter phrw omen ia observed during perio~s of strong southerly winds. Intake and discharge temperatures on the above date were 29.9 and 40.4 C respectively. The need for decreasing the tamper-atltre elevation created by the power plant during such conditions is stressed by the decrease in mortality that resulta when the oz-posure temperature is lowered only 2.5 C (Table 5).

The effect of tenperature on A. clausi males and feazles was in£ e!tiqated on individuals collected on 26 April 1972 but hold ovrnight prior to testing. Discharge temperature was 25 C and an exposure to this temperature for bto hours resulted in 71% mortality for males but only 27% for the females. An exposure of thirty minutes decreased the mortality in males to 51%, but percent of females affected remained unchangod. The number of male or female individuals per test ranged from twenty-six to eighty-seven. Mor-tality of copepodites was equivalent to that of the females at both exposure times. These ro;ults, which should also be compared wvith those for 26 April 1972 (Figure 7), indicate that male A. clausi appear to be more readily influenced than females or oopepodites by adverse environmental conditions, which in this case was the confine-mert to a 2 liter glass jar for some twenty hours. Conover (1956) gave sow evidence for A. olausi males being less efficient feeders than females and assumed that they would be more susceptible to urn-favorable environmental conditions. In both this study and that of Conover, the n=iber of male A. clausi decreased more rapidly than females prior to the app.earance of A. tonsa.

TADLE 5 Percent Hortality of Some Zooplanktore Exposed for Five or Fifteen Minutas to 40 or 37.5 C. The 40 C Exposure Represents the Abnormally High Discharge Timperature Recorded on 17 July 1972 Copepods Other Zooplan'ters Length of Exposure in Barnacle Gastropod Polychaete Mfnuter Tkmpnrattue Nau~li ,- Cope!rodite Larvae Larvae Larvae Trachophore 72.5 (214) 72.2 (18) 17.4 (23) 50.0 (4) 85.7 ( 7) 63.3 (11)

Fifteen 40 C 90.2 (142) 85.0 (40) 9.0 (11) - (0) 100.0 ( 2) 80.0 C5) 70.2 (93) 57.9 (19) 0.0 ( 6) 100.0 (2) 0.0 ( 6) 30.0 (10)

Five 40 C 85.3 (308) 65.7 (39) 0.0 (47) 100.0 (3) 16.6 ( 6) 17.r si 11.3 (231) 17.4 (23) 0.0 (35) 100.0 ( 4) 28.6 (7) 5.9 (17)

Fifteen 37.5 C 7.6 (290) 10.0 (10) 0.0 (41) 80.0 ( 5) 15.4 (13) 5.5 (36) 1.2 (253) 0.0 (16) 0.0 (16) 33.3 (6) 0.0 C5) 0.0 (31)

Five 37.5 C 0.7 (270) 0.0 (19) 0.0 (29) 0.0 ( 5) 11.1 ( 9) 0.0 (36) blumber of organium t.sted given in parentheses.

db Cb

41 p female A.

During Februaox 1971, ct arbient temperatures of 3 to 5 C, claunt collected from tV e intake end discharge showed no appatent difference in ability to lay viable eggs (Table F). The start of this experimental egg laying was four hours after collection.

Rasults of the egg production experiments .(Table 7) con-ducted in 1972 shoved that when the experimental egg laying interval included exposure to the elevated temperatures, discharge Individuals produced a greater number of eggs than intake individuals during the saem time interval. But when the start of the experimental egg laying interval was delayed until two hours after exposure to the elevated temperature, the discharge individue.ls then produced fewer eggs per time unit than intake females. That is, when exposure to the elevated temperature is included in the egg laying interval, a short-tarn increase in egg production by A. clausi femalee was noted. Whether this temporary stimulation of egg laying also results in a temporary increase in non-viable eggs was not determined.

The effect of 10, 15, 20 or 23 C elevations on A. clausi egg, approximately twenty-four hours old at the time of testing, is shown in Figure S. Although experiments were not conducted at ambient temperatures above an acclimation temperature of 5 C, the results indicate that when intake temperatures exceed 15 C, a two hour ex-posure to a 10 C elevation would prevent the hatching of most A. clausl eggs. An additional observation from this experiment is that syn-chronization of hatching occurred among those eoqs subjected to elevations of 10 and 15 C. That is, these eSgs hatched within a shorter time span and finished hatching sooner than the controls. (Figure 9).

42 Pexcot Hatching of Eggs cbtainv~! wrorn-A~~ c~ ?em.a1e3 Collected at the IntWka and Discr-her on 24 rebr',vrzy 1971 Sits of Collmction P'ercent rclcisaltching 75o o q intake 73 75 Outfall 78 intake taraperatura4.9 C.

incubation temperature 5 C.

43 A=noE 7 Comp*.riscm of Egg Layinq Ratest of P.cartia ci auri~ Femaales Collected NA02 the Int.ake (Ccntrols) and the Disclharge (Treatment)

CaDntrol Treatrent Duration of Egg # of 9 of gqu/s # of # of Eggs/

Date Layin; in !!cure r-ecalas 'e..ale ramanlee ?eale 15 .xah 1972 24* 78 9.2 25 4.6 28 11.0 18 6.9 21 March 1972 12* 59 5.3 48 3.9 54 5.5 80 3.8 24* 72 9.3 50 3.4 107 8.6 100 4.9 31 March 1972 4** 18 2.6 78 3.7 27 2.5 45 4.2 12** 56 2.7 70 5.8 56 6.0 33 6.7 2400 49 8.6 66 13.7 27 10.5 19 10.1 1S April 1972 0.8 61 1.9 26 April 1972 5"* 103 2.6 186 5.8 37 2.3 156 s.6

  • &Exeriment not started until four to five ho=zrs aftar collection and, thermfore, does not include the two hour exposure to elevated tempera-turas.
  • 'xperinent started i4 diatoly after collection and includes the two hour oxposure to elevated tomperatures.

42 INBIX 6 natching of Mg- cbtainc I ?ma  ;?.=rttLx ia-a.-2si remale3 Collected

.at th~e Ints~ke, a-rd Disc-h.rg on 24 rebriary 1971

'o~llmction Vwtber on! Eqqs P'ercent Eirrs 1Hatchin2 ike75 73

!all 75 78 izperaturia 4.9 C.

in temperature 5 C.

he

100-75 0.0 . "

z0 500 u 50 25 0

0 10 15 20 25 200 180-160-0 140" 1.20 0 10 15 20 TEMPERATURE ELEVATIONS C

46 The exposure of eJN bý"axing female Eurytamra app. to tazporatue alevations of 13, 15 zr 20 C akove an azbient of 5 C fox two hourn nroduced no mortalities within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after exposure.

Elevations of 22.5 and 25 C produced mortalities of 38% " 100%.

The number of indivi&ualn per eaposure temperaturs was sixteen.

Heinle (1969) found approximately 50% mortality for 2. affir-s exposed to 30 C for twenty-four hours when acclimated to 5 C, but little or no mortality if acclimation temperatures were between 10 I

and 20 C. Sgg hatching occurred in all grtoups but an analysis of whether fewer eggs hatched at the higher temperature elovations was not determined. This analysis was omitted because females were oh-served to. co-ume eggs which left the egg sac unhatched.

It Is of interest to note that of the sixteen Zurýezoa spy. fe.ales collected on 1 March 1972 and isolated for experimentation, none produced a second clutch of eggs after hatching the "first" one.

But of the aixteen individuals collected on 15 March and similarly isolated, 38% produced a second clutch, all of which showed hatching.

Heinle (cited in Wilson and Parrish, 1971) reported that female E.

affinis nee ed to remate before they could produce a second batch of eggs. Tho vexage incubation time of the second clutch was seven diys at SC.

2.. r Holo*lanktars Ebtifers were usually not present in sufficient numbers for exper *mtation. One date on which they were, was 15 July 1971.

The tempera e ragime at this t' wasa Intake 25.7 C, discharge 34.2 C and rlution 29.7 C. Average percent mortality was,

47 Cotrols 1.9%, .iold 10.6% and lab3z-ato/ simulation 12.3%. The

&=mb- of in" iridUIS e. teat

  • narg.d fzcM thirty to fifty-one.

Cladocezans were also not obtained in sufficient nwnb'r for experimentation, but the results of a run on 6 June i171 gave so indication of the group'*' teperature sensitivity. The total number of organizos involved was small: control 4, field 5, and laboa.toy simulation 4. Number dead was as follJtst control 0, field 4 and laboratory 3. Intake tonperature on this date was 21.8 C and dilution pum=2 were not in use. The absence of oladocerans in 3arnegat Bay during the summer might be further evidence of their aonsitivity to high tempoeratures. 5age and Herman (1972) found cladocerans in Raritan Bay during August oaly at their most oceanward stations. There, maximum sursar water tesapearature is 3 to 4 C below that of Barnegat Day.

The effect of temperature on Rhabdocoels In presented in Table 8. Actual number of individuals tested is not given due to their "proclivitf" to Cragment at Lhe higher test temperatures.

The reaults of taeperature elevations on Pathkeaoctopuncata and Sarsia sp. indicate their sensitivity to temperatures exceeding 22 C (Table 9). Rathkea octzpucata is classified as a boreal form by Gouner (1971).

Relatively large zoo-planktars, the maczo ooplanktars, encounter not only thermal stress with Iassage through t.%ie canden srs but also physical danago. ?or example, of sixteon Sagitta collected from the discharge, only one did not have its body distorted. It was also the only one that atten ted to escape if a probe was placed near it.

The Zffect of a T-Wo '.our txposira to VThrea Temperatuare Blevations~ Above an A.-abient of 10 C on R1iabdocoals Tertner aturn Elevation !o~r.,Ili t~V centrol 0 12 C 0 15 C 100 20 C 100,

49 TABLE 9 The Sffect of a Two Hour Zxp-surv to Three Taepsratura Elevations Above an Amubient of 10 C on the Hydrcnmedusm Sarsia and Rathkea Percent Mcrtalit7 Temperature Zlevation organiza Hlours After Exposure Control 12 C 15 C 20 C Sarsia 4 0 60 80 100 24 0 100 100 100 Rathkea 4 0 0* 100 24 0 0 100 100 eAlive, but no swimming activity.

3kiba of Sarvia per troatment, five.

Number of Rattpea per treatment, ten.

50 mine Sagitta collected fzom the .1utake in the sae nanner showed no body distortion or lack of an esvipe reaction. Large ctenophores and colenterates were also observed to be devastated by passage thtoogh the condensers.

3.* Hrv'lankton The results of exposing different age pre-straight hinge Kulinla lateralis larvae to a set of four tesperature elevations above the sptwning temprnture for either fifteen minutes or two hours are shown in Figure 10. The trends for both time exposures are similar but a two hour exposure is definitely more harmful, which again illustrates the inportance of the time/temperature intaraction.

The general decrease observed in the total n=sber of larvae counted in the higher teaperature treatz'onts is the result of fragmentation of the developing einbryos. This phencmenon does not occur if the larva* are at the straight hinge stage when tested (Table 10). The indication is that the pre-straight hinge larvae have a greater sensitivity to twmperature. Loosanoff et al. (1951) found .a similar pattern of sensitivity in their work with the larvae of Marconaria mercenaria as did Bayn. (1965) for the larvae of Mytilus edulis.

Kennedy (personal comwunication) noted significant nor-talities of i.ulinia larvae prinarily at temperatures of 35 C and above.

His larvae were maintained in filtered water with a salinity of 30 2pt.

In t-his study watar with a salinity of 20 ppt was used.

Factors not invostigated by this set of experiments were the long-term effects the higher te-eraturos, specifically 32.5 and.

35 C, may have had on the ability of the surviving larvae to feed,

51 FZGU2 10 The effect of a fifteen minuta (A) or two hour (B) exPOSure of different age Mulinia lateralis larvae to elevated tea-peratures.

Total number of larva* counted per treatrent (-- i number of straight hinge larvae counted (---)

number of straight hinge larvae appearing morpo-logically abnormal C , , , .

Control temperature was 22.5 C.

S.

LARVAL AGE IN HOURS 0.25 4 Q ' 2" 1200 -0 LU

~ 800- -

  • 0 N,,

.0, 4 0 0 ,.I l

< A 0 300-

"-'o*.

200. .d *4 "',-,

x \*

Z I100 EXPOSURE TEMPERATURE C

53

'INBXZ 10 Percentage of TVenty-four flo',r Old Mulinla laterall Larvae That Appeared Morphologioally Abnormal or Were Conmidered "Doad" After a One Hour Exposure to Test Temperature Indicated Exposure UUMber of Percent Appearinq Percent Considered Larvae MoKphologi callZ-Abnormal "Dead" Control 286 4.0 1.7 294 0.0 1.6 27.5 C 146 8.6 7.0 255 8.0 4.0 30 C 345 9.2 9.5 3U1 6.1 6.4 32.5 C 383 14.4 S.7 462 9.0 2.1 33 C 248 27.2 32.6 111 20.4 36.6

VIM* and maetamo~rphose into adul to.

In all test samples the number of gas tropod larvae was insufficient for adequate experimentation. But the possible sensi-tivity of this group is indicated asmhat by the results vresentsd in Table 5. In order to determina the effect of temperature elevation on members of this group the larvae need to be hatched in the labora-tory. This would all"w for adequate numbers and insure opeciation of the larvae.

Polycha*te larvae were present in test samples in adaquate numbers only at intako tszperatures of 22 C or loess. No detrimental effects were noted for these larvP1 forms when intake temperatures were below 22 C.

The exposure of barnacle nauplii to a 10 C elevation when ambient was 20 C or less produced no discernible effect.. At higher ambient temperatures barnacle nauplii were too few in number in the test samples for adequate interpretation of the results. However, on 17 July 1972 a sufficient number was present. The results (Table 5) stress the ability of those organiams to withstand a short-term exposure to abnrmally high tomperatureq. Others have found similar results (Fost*r, 1969). The explanaticn offered is that barnacles brood their yonmg during the embryonic stage. Thus it is necessary for a wide teperature tolerance mochanism to be present in the larvae since they too experience the same temperature fluctuations as do theit Inter- .

tidal parents.

To evaluate the effect of temperature on decapod larvae, it wa3 necessary to return egg bearing females to the laboratory. This

55 p wa" don with one Palaemonates vuAlario, the eggs of which hatched within eevanty-two hours at a temr*rature of 24 C. Temperature of the Bay at this time was approxzinately 25 C. Newly hatched Palaemonetes larvae were exposed to 35 C for ten minutes end then to 30 C for one hour and fifty minutes. Thbee, or 6%, o! the larvae died in the experinntal bowls within twent--four hours and none in the controls. surviving larvae were fed Artenia and kept for five days during which no additional mortality was observed and molting occurred.

S

~1.LDZ3SV3SSZ A. BtYX=

Whtil recently sooplankton 3-uxveys have usually eQ2phasizad the compeod component. This was due an p&t to the geronral =4ke of plank-ton nets with a mash opwndng of 203 microns ox grr-atar. These nets do not retain many of the microzooplanktars, -whose sizes range from 20 to 203 microns (UN'ESCO, 1968). Only recently have large-scale investigations of the mioroooplankteru been undertaken. Off the coast of California, Beers and Stewart (1967, 1969) have found con-centrations of mLc.o ooplankters exceeding 6 x 105/h . The majority of the organims, -rdceminantly cid.iates, war* less than 35 aliron in size. Margalef (cited in Beers and Stewart, 1969) found densities of ciliates exceeding 10 x 10 6/=3 in predominantly coastal areas of the rebditerranean. However, Deers and S.twart caution that, although knowledge of the numerical abundance of tho various groups of = 0cro-sooplanktQrs is of importance in providing 1nformation of the anins.1 populAtion structure in arine ccmtunities, it can be misleading and of little value as an index of the standi stock for trophodynamia considerations of marine food chains.

Nevertheless, factors do exist which indicate the importance of microscoplanktars in marine food chains. ?or ezxaple, much of the available phytoplankton in the sea is of a size which is marginally s&all for efficient use by the larger so-called herbivorous copepods (Aaraku and 0wori, 1963). But these same phytoplanktars could be utilized by nicrozoOplanktaers, which are then available as efficient prey for the larger omnivorous and carnivorous zooplankters. in

57 addition, the data of Johannes W1'64) indicatA4 that the contribution of alcroscoplankton to phospl-rov, regeneration can be much greater than their contribution to the total zoopl~n3ton biacass. This is a result of the pheno-enon that the smnaller the animal the greater the metabolic rate pr unit weight.

That the microzooplanktars are at least nwaerically important in Barnegat Day is indicated by the fact that just one member of this group, the tintinnids, wore found in densities equalling the maximum reached by the cope>ods. Hlowever, the tintinnid maximum occurred during the copepod minimu= and vice versa. Thus a possible grazing pressure is exerted by copepods on 'zintinnids in Barnegat Bay, but additional investigation is needed to verify this.

Another group, which has members smaller than 203 microns, include ace of the moroplankters enumerated in this study. A comparison of the meroplankters with conepods shows that the former group was more numerous than the latter on a few dates (Figure 11).

It is quite likely that the meroplankton group may have exceeded the co.eapod population on other dates as well. One reason for this is that the early larval stage of many banthiC invertebrates can pass through a 120 pl3nkton net.

Two groups of zooplanktars often "ignored4 in surveys are the ctenophores and hydrooedusae. In fact, devices have been desiqnead to prevent such foxms from entering the plankton nots. Consequently tia impo.rtance of these forms in the ecology of the marine environ-ment has not been adequately determined. o.'-ently Zelichbman et al.

(1969) ohtained data on two hydromeduiae, Tiareosis rrulticerrata and

55 FAlativ. density of z=ezoplanktoin expressed an a percentage of the total number of opepodi and neroplanktears.

75 50 z

LU Lu a-25

,60 Rathkoa octopuncata, which -uq7gsa1' d that during periods of abundance these forms are the main consumers of. plankton in inahore waters. In this study at least one, but most often two or more speciae of hydro-seduxes and/or ctenophores were taken in all months except February.

It is likely that these forms do esert a significant. influence on the plankton community of Barnegat Bay at times.

The fate of ctenophorem and hydromedusas themselves was, until recently most conjecture. MAnsuati (1963) stated that predation upon these foxms appeared to be limited to a few species of fish.

Phillips, Burke and Keener (19G9) presented evidence that ctenophores and hydromedusas constitute importrAt food sources for small pelagic fishes. They also found the following crustaceans to be medusas predators: Libinia dubia, Callinectes spidus, Ocyps quadrata, 4 P!2M floridanus and P. pollicaris.

Subba.raju and Krisknamurthy (1972) compared the results from ace investigators that had reported on the density of zooplankton in different regions of the world. But they caution that there is difficulty in making accurate comparisons, since the methods of sampling have not been uniform. This sturdy is comparable however, with respect to size of naet used, with the study conducted by Jeffries (1964). A comparison of the relative density of meroplankton, as a percent of the total zooplankton in Barnagat Bay, with that obtained by Jeffries for York River and .Raritan Say is given in Figure 12.

It appears that the contribution of meroplankton to the total zooplankton community is similar for the York River and Barneqat Bay.

61 FIGURE 12 Comparison of relative density of meroplankton an a percent of the total zooplankton for Darnu-at Bay 1971 data (--

with that found by Jeffries (1964) for Yr~k River --- )

and Raxitan Bay (it,,).

sarnegat Bay data for 1972 vwaLsimilar to that of 1971.

B

--- 6

-7 LAU LU

/

i.

2 IF IF$$,II[ ..

I

/

M

63 B. Therm al Study This study has shown that shiort-term eiposures to 10 C elevations above ambient can result in large mortalities of zooplankteru, depend-ing on the species, the ambient temperature of the intake water and the length of the exposure. In addItion to mortality however, temperatuires higher than the seasonal norm can induce subtle physiological and behavioral changes. Investigations of these effects have been con-ducted to some extant. For example, Barnett (1971) in his study of benthic organisms living near a discharge, found seasonal spawning to be earlier in Tellina tenuis, the dominant bivalve in the study aroa.

2 But he did not detect any abnormal decrease in the number of Tollina/m .

Since the location of this plant was along the Znglish coast ample opportuaity existed for recruitment of larvae from surrounding popu-lations of Thllina. rurtherznore, the passage of Tallina larvae through the plant's cooling system exposed them to a maxi-mum temperature so-ce 7 C below their LD 5 0 . In this study, hcwever, the dominant bivalve, Mulinia latexalis, spawns at temperatures which can result in its larval stages being! subjected to lethal temperatures if pumped through the Oyster Creek Power Plant's cooling condensers.

Iivest~gatior.- into the population dynamics of benthic bivalves have indiesatd that seemingly minute changes in pexcent survival of the larval s age can result in relatively large changes in the adult pcpulation. For axaz-ple, Ayars (1956) found that if the population -

of Mya arena ia in his study aroa wss to at least maintain itself, the percent iurvival of the larvae had to be .0013%. ".his assumed 3 x 106 fert Llized eg.s per female which in turn resulted in 40 spat

per year per adult pair. But if '. Percent survival was decreased only .0001%, the number of smat pý,r 7ear would be thirtv-seven, an inwuIflent number to maintain the population.

At this point it should be noted that when the Oyster Creek Power Plant b.cme operational, the adult po_*ulation of Amlinia lataralix in the Bay averaqed some 700/m 2 , with concentrations greater than 1030/m2 not being unc.ozon. tn the suer of 1970 the Mulinia population "crashed", with densities of over 100/^ 2 baccuing the exception. This low density level held throughout 1971 and continued through August 1972, when sampling was terinated (Loveland, unpub-lished). The *crash0 was partially a function of the 1969 met dying off since .ulinia has a life span of about eighteen months (Calabrese#

1970). But there was also mLnimal recruitment of spat from the spring spervn of 1970, Vie large adult poculation notwithstanding. Yet, this observed "crash" of Nulinia is not an unusual phsncen= for a benthic invertebrate which posoeuses a planktotrophio larval stage (Thorson, 1950). The fact that such 'crL-h s" occur naturally confounds an attempt to link the results of the prasent thermal stu-dies on Mulinia larvae with time distribution of adults observed by benthia samplinq.

However, there appears to be some indiract evidence t-aat the Oyster Creek Power Plant in capable of influencing the population dynamics of Mulinia in Barnegat Bay. For example, the voluws of the Bay frzu which the power plant can draw water for ccolant purposes is so 100 x 10 M3. This is based on the volume of the Say that exchanges with the the rmal plune during the course of a few days, which is estimated to be about 42 x 106 m3 by plant personnel. Of this volume, 2.6% is

65 puped through the condensers on 7. daily basis. Assuming that 20%

of the 4ulinia larvme . ped thrrb.,7h the condensers are killed when LntAke t& erat=us exce*4 U.5 C, an- apparently conservative asti-sate based on the results of this study, then 0.5% of the total Mulinla larvae within the 100 x 106 M3 are killed per twenty-four hours during the three months intake temperatures exceed 22.5 C.

Expressed in terms of nunbers, some 2.5 x 108 larvae per twenty-four homrs are killed based on a larval concentration of 5000/0, again a conservative estinate. The effect of the plant on KulinLa in the study area would be less debatable if kncwledge of what the population dynamics of ulirnia have been in re lions of the Bay outside the influence of the power plant.

Another aspect of temperature influence on biological promeses of some zooplankters concerns that of sex. Takeda (1950), working with the copepod Trigriopus japonicus, found that most of the nauplil of this species are sexually "neutral= and that it was the temperature at which they were raised that governed the sex ratio of the adults.

Theme findings indicate that heated effluents from power plants might at t preferentially 'select" one sex over another for same copepod species.

An aspect about which very little is known is the synergistic effects of exposure to artificially raised temperatures and chemical pollutants. This could be of particular importance in estuaries whirh have a small tidal exchange rate with the ocean and which are receiving chemical pollutants. In a paper Indicating the synergistic action of temperature and insecticides it was found that the higher test

66 temperaturmes increased the death :ate of three decaped crustaceans exposed to erganophosphorous and organochlorids in*ectlcidas (zislar, 1969).

Indirect evidence from thio study indicates that exposure to hiqh temperatures can increase mortality of certain orgar4axm when the food is inadequate. This idea is alluded to by the following observations on 18 April 1972 the percent mortality of copepods was ralatively high while the number of eggs laid by A. clausi was ias tWo times less than that observed on other dates for a four hour e"g laying interval (Figure 7, Table 7). BDased on the findings of Wilson and Parrish (1971) that egc laying by' A. tonsa will drop drastically within twenty-four hours when food is withheld, the results of the 18 April egg laying experiment imply a lack of sufficient 4 food on that date. But since the dynamics of the phytoplankton popu-lation were not followed in this study, the above idea remains con-jecture.

The influence of temperature on copeo4o developmental rates has been establi-had by laboratory studies (Crokett and XcLaren, 1970; Geilinq and Campbell, 1972). Observations in the field have also

,produced estimates of generation times of copepods. Dowever, aqree-meat between laboratory and field data for a given species is generally lacking, with the field data indicating longer generation times (B"yly, 191z Heinle, 166). Since labcratz.-y rearing of copapods usually occurs under cptJ al =n*ition = in a fairly uniform ez7ircnnnnt free of padato_, it is =ot szp+/--=sing that fiald pcpu-lation oould require a longer time to develop. The reaultu in this

67 study Indicate a docrease in gane ation time of A. clausl with 1.

increasing a=bient tezaerature (T:ble 1) The ninizum generation time for A. olau.9i of approxit-ately three weeks noted in this study is in agreement with that given by Subboraju and Krishnazukthy (1972). They do not however, state tho temperature at which the three week generation time vs noted. In this study the three week generation tim was noted when ambient temperature exceeded 12 C.

Of the TvaSt number of thermal studies found in the literature, a striking small percentage deal with the thezmal tolerance of the most sensitive life cycle stages of invertabrate.. gammtes, fertilized eggs and thelearly stages of oleavtage. istudy, the thermal in this sensitivity of different age larvae of Mulinia lateralis was determined.

Tte results showed that the youngest larva* - actually fortilized eggr - are the most sensitive to temazprature. But gameten were not teted. Works by other authors on the spermato*a and ova of taxo-acmically closely related species of molluacs and echinoderms have revealed species-specific differences in gamete thexzal tolerances, with the sper*ato.oa of a given species being more thermally tolerant than unferti zed eggs (Kinnxe, 1970). The fact is that the number of marine speci s which. have had thermal tolerances determined for their gaete. and nly cleavage stages is markedly small. Thus, if quaAtificati of the effect of heated effluents from power plants is to be acopplished, a "mountain of rosea ch" must be sunmounted by the scien -fic cctzmunit.,

68

,..SrTO

1. The copepod populatlon of Barnegat Day in the region of the Oyster Creek Power Plant is dominated by Acartia clausi and A. tonsa.
2. Numerically the microzooplankton dominate the zooplankton ccA=nity in Sarnegat Bay.
3. The planktonic larval forms of some benthic invertebrates, primarily Cirripedia, Mollusca and Polychaeta, periodically constitute a major portion of the xooplankton o=nunity.

B. Thermal Study

1. A two hour exposure of zooplankters tested to a temperature which is A 10 C elevation above ambient produced the following general results, a) little or no mortality at ambient tempera-tures below 15-20 Ci b) light to heavy mortality at ambient temperatur*s of 20-25 C. and O) heavy mortality for most.

species when ambient temperatures exceeded 25 C.

2. Mortality of copepods was fairly low throughout the stud7 Wtoept for the month of June.
3. Exposure of vazious aged Mulinia lateralis larvae to tempera-ture elevations above that at spawning showed the youngest vidduals to be the most seas itiv. to temperature.
4. The passage of macrozooplarn tars, such as a.-rraw rms, etano-ores and cole*terates, through the cooling condansars r sults in injury to these organism. from physical "abuse" azid turbulence.

69 LMIT ITURX CITED Anra~ku, H. and M. 0Omori. 1963. ?rellminary survey of the relationship between the feedln7 habit and the st.ructure of the mouth-parts of marine copepods. Limnol. Oceanogr. 8,116-126.

Ayers, J. C. 1956. Population dynamics of the marine slam, Hya arenaria. Lim 1. Oceanogr. 1:26-41.

Barnett, P. R. 0. 1971. Sce changes in Litertidal sand communities due to thermal pollution. Proc. Roy. Soc. London B. 177s353-364.

1972. Iftectz of varm water effluents frcm power stations on marina life. Proc. Roy. Soc. London B. 180t497-509.

Bayne, B. L. 1965. Growth and delay of nmtamorphosis of the larvae of Mytilus edulis. Ophelia 2t1-48.

Beers, J. R. and G. L. Stewart. 1967. Micro-zooplenkton in the .uphot-Ic sone at five locations across the California Current. J. Fish Ras. Dd. Canada. 24s2053-2058.

and 1969. .licro-sooplankton and its abundance relative to the larger zooplanktan and other seston cocponents. Mar. Biol. 4s132-189.

Calab-rse, &. 1970. Reproductive cycle of the coat Clam, Mulinia lateralis, in Long Island Sound. Veliger 12t265-269.

Cairns, J., Jr. 1972. Coping with heated waste water discharge from steam-electric power plants. Bio. Sci. 22:411-419.

C*anely, P. and J. D. Andrews. 1971. Aids for identification of bivalve larvae of Virginia. Malacologia 11:45-119.

Conover, R. J. 1956. Oceanography of Long Island Sound. VI. Biology of APcartia clausi and A. tonsa. Bull. Bingham Oceanoqr. Coll.

15t15-233._

Ctdkett, C.tJ. and I. A. McLaren. 1970. Relationships between develop-ment iats of eggs and older stages of copapods. J. Mar. Biol.

Assn. U. K. 50,161-168.

Coutant, C. C. 1960. Thermal pollution - biological effects. A review of the literature of 1967. J. U'ater Poll. Control Fed. 40:

1969. Thermal pollution - biological effects. A review of thl litera=*e of 1968. J. Water Poll. Control Fed. 41s1036-1050.

70 O~utant, C. 'C. 1170. rharnal ': .ution - biological effaecta. A review of the literature of 1969. J. Water Poll. Control Fed. 42,1025-1057.

17-.

1___1.___-_ .-ollutocn -!iological offecta. A rviav of the literature of 1970. J. Water Poll. Control Fed. 431l292-1334.

Dearey,

G. 3. 1960. The zooplanktcn of th. surface watern of the Dalawaxe Bay region. Bull. Bingham Oceanoqr. Coll. 17s5-53.

D~ner, 0. C. 1966. Rotifers. Fredrick Warns and Co., Ltd. London-New York. 30 p.

Eislar, R. 1969. Acute toxicities of inmecticides to marino deca)od crustaceans. Crustaceana 16:302-310.

POSter, B. A. 1959. Tolerance of high tenrporatures by so" inertidal barnacles. MLar. Biol. 4s326-332.

Gelling, W. T. and R. S. C~apbell. 1972. The effect of tenperature on the development rate of the major life stages of Diaptomus pallidus. Limnol. Oceanogr. 17:304-306.

Gonzalez, J. G. 1972. Seasonal variaticn in the respones of estuarine populations to heated water in the vicinity of a steam generating plant.' Ph.D. thesli. University of Rhode Island.

Beinle, D. R. 1966. Production of a calanoid coperod, Acartia tonsm, In the Patuxent River Estuary. Chesapeake Sci. 7159-74.

1969. Tehperature and scoplankton. Chesapeake Sci. 10i 186-209.

Harman, S. 5. and J. A. Mthursky. 1964. Infestation of the copepod Acartia tonsa with the stalked ciliate Zoothamniun. Science 1461 543-544 saivi ,-.S.. ,J. A. Mihursky and A. J. McErlean. 1968. Zooplankton Sand e ironmental characteris tics of the Patuxent River Estuary.

Mesa.a ake Soi. 9:67-02.

Jaffrins, H. P. 1959. The plsnmton biology of Rarita* ay. Ph.D.

thesis. Rutgars University.

1962. Succession of two Acartia sp"cies in estuarias.

Limnol. 0ctano'r. 70354-364.

1964. Comparative studies on estuarine zooplankton.

Lix4= . Oceanog:. 9t346-358.

I-- 1 1969. Seasonal cc=position of tenperate plazkton comunitiass free azino acids. Limnol. Oceanogr. 14141-52.

71 Johasnes, R, S. 1964. Phosphorti's excretion and body size in marine aninalss mncrozooplankton 111 nutrient regeneration. Science 146t923-924.

Uennedy, V. S. and J. A. .nihuroky. 1971. Upper teagerature tolerances of sm estuarine bivalves. Chesapeake Sci. 121193-204.

Kie, 0. 1970. Temperature - invertebrates. In 0. Kinn (ed.)

Maxina Ecology, Environmental Factors, Vol. 1, Part 1. Wiley-Int*macience, Mew York. p. 407-514..

Loos* off, V. L., W. S. Miller and P. B. Smith. 1951. Growth and setting of larvae of Venu mercenaria in relation to temperature.

J. Mar. Rae. 10259-81.

Loeland, R. R., E. T. Ioul, D. A. Busch, P. H. Sandine, S. A. Shafto and J. McCarty. 1970. The qualitative and quantitative analysis of the benthic flor4 and fauna of Barnegat Bay before and after the onset of thermal addition. Sixth progress report, Contract

  • 27-4656. Rutgers University.

Mansusti, R. 1 1963. Symbiotic behavior between small fishes and jelly-fishes, with new data on that between the Strcmateid, Penriluz alepidotus and the Scyphomedusa, Chrysaora quin~quecirrha. Cepaia 1140-80.

markowsli, S. 1962. Faunistio and ecoloqical investigationn in Cavendish Dock, Barrow-in-Furness. J. Anim. Ecol. 31343-51.

Nountford, K. 1971. Plankton studies in Darnegat Say. Ph.D. thesis.

supters University. 110 p.

Naylor. Z. 1965. Biological effects of a heated effluent in Docks at Swansea, S. Wales. Proc. Zool. Soc. London. 144t253-268.

Orr, P. R. 1955. Heat death. 1. Time-temy'mrature relationzhips in marine animals. Physiol. Zool. 28s290-293.

Phillips, T. I1. 1971. The ecology of the benthic macroinvertabrates of Bakegat Bay, H. J.

  • . Ph.D. thesis. Rutgers University. 139 p.

Phillips, P. J., W. D. Burke and E. J. Keener. 1969. Observations on the trophic significance of jellyfishes in Misaissippi Sound with quantiiative data on the associative behavior of small fishes with rdusbe. Trans. Amer. Fish. Soc. 99703-712.

Reeve, M. R. and E. C63per. 1970. Thi acute thermal effects of heated effluer ts on the copepod Acartia ton.3a from a Pub-tropical bay and acc pi$oblems of aasoss.ant. FAO technical conference on marine pollutjon and its effects cn living resources and fishing. (9-18 Decenbar 1970) Rome, Italy.

72 Sage, L. Z. and S. S. Herman. 1'72. Zooplankton of the Sandy Hook Day Area, N. J. ChesapeakA Sci. 13t29-39.

Smyly, W. J. P. 1961. The life-cycle of the freshwater copepod Cyclops laucharti in Eathwaito water. J. Aninal Ecol. 30:153-169.

Subbaraju, R. C. and K. Krishnomurthy. 1972. Ecological aspects of plankton production. Uar. Biol. 14s25-31.

Takeda, N. 1950. Experimental studies on the effect of external agencies on the sexuality of a marine copepod. Physiol. Zool.

23 e288-301.

Taylor, J. E. 1970. The ecology and seasonal periodicity of benthic marine algae from Barnegat Bay, N. J. Ph.D. thesis. Rutgers University. 194 p.

Thorson, G. 1950. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 2511-45.

UUESCO. 1960. Zooplankton sampling. Inprimeries Popudlaixeo, Genove.

174 p.

Ushakov, a. P. 1968. Cellular resistance adaptation to temperature and thermostability of somatic calls with special reference to marine animal . Mar. Biol. 1:153-160.

Volkmann-Rocco, 3. 1972. The effect of delayed fertilization in sComae species of the genau Tisbe. Biol. Bull. 142o520-529.

Wanton, A. T. 1928. Observations on the life habits and life history of Pectinaria koreni. Mgr. Proc. Trans. Liverpool Biol. Soc.

42125-60.

Wilson, D. F. and K. K. Parrish. 1971. Remating in a planktonic marine calanoid copepod. Mar. Biol. 9o202-204.

Zelichmann, E. A., V. 1. Gelfand and M. A. Shifrin. 1969. Growth, reproduction and nutrition of some Barents Sea hydromedusae in natural aggregations. M4ar. Biol. 4:167-173.

SUPPORTIVE EXPERIMENTAL DATA ON RIS APPENDIX TABLE 1. RESULTS 0? HEAT 5I0CK STUDIS Co0WNrI VITH RICE SALINITY ESTUA tn AND MARINE ORCANIISMS FROM ICHETRTOLOICL ASSOICATES. ThC.

DELAWAREfXPIflD0ENTAL LABORATORY.

SIZE RANGE TItE(HRS.) CONTROL EXPERIMENTAL (TL IN NM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (PPT) TEMP(C) TEMP(C) TEMP(C) OF TEST ALIVE DEAD L;O.E. ALIVE DEAD L.O.E.

PREVOORTIA TYRANNUS 9 JUN 75 42 56 5 20' 20 32 0 10 - .- 10 - -

0.3 10. 0 0 10 0 10 0.5 10 0 0 5 5 5 0.8 10 0 0 1 9 0 22 to 0 0 0 10 0 14 JUN 75 44 62 5 22 22 31 0 10 - - 10 - -

24 10 0 0 0 10 0 a

17 OCT 75 56 110 6 19 19.5 30 0 10 . - - 10 - -

0.1 10 0 4 10 0. 4 27 7 3 0 0 10 0 17 OCT 75 56 113 6 19 19 32 0 10 - - 10 - -

1 10 0 0 5 5 2 1.5 10 0 0 4 6 0 4.5 10 0 0 "0 10 0 4 NOV 75 89 122 a 16 16 22.5 0 5 - 5 - -

16 5 0 0 3 2 0 40 5 0 0 2 3 0 96 5 0 0 2 3 0 4 NOV 75 86 121 a 16 16 23 0 10 - it - -

17 10 0 0 10 1 0 40 20 0 0 . a8 3 0

.72 10 0 0 6 5 0 96 10 0 0 6 .5 0 4 NOV 75 05 142 B 16 L6 27 0 10 - - 11 -

16 10 0 0 10 1 3 18 10 0 0 7 4 0 40 10 0 0 2 9 0 96 10 0 0 1 10 0 0 0

API*DIX TABLE 1. (cONT.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (PF'T) TENF'(C) TEMP(C) TEMF'(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

IREVOORTIA TYRANNUS 4 NOV 75 90 132 a 16 16 27.5 0 5 - - 5 - -

16 5 0 0 3 2 0 40 5 0 0 1 4 0 47 5 0 0 0 5 0 4 NOV 75 89 119 a 16 16 28 0 5 - - 10 - -

0.5 5 0 0 10 0 1 16 5 0 0 0 10 0 4 NOV 75 84 121 8 17 16 22 0 10 - - 10 - -

18 10 0 0 e 2 0 42 10 0 0 6 4 0 66 10 0 0 2 a 0 96 10 0 0 1 9. 0 19 NOV 75 96 175 5 14 14 31 0 4 - - 3 -

0.1 4 0 0 3 0 3 0.2 4 0 0 0 3 0 14 MAY 76 33 37 7 20 20 33 0 5 - - -

0.1 0 0 0 5 0 26 MAY 76 33 56 7.3 i8 16 30 0 13 - - 13 -

0.3 13 0 0 10 3 4 0.5 13 0 0 8 5 4 0.6 13 0 0 .4 9 4 1 13 0 0 2 11 2 1.2 13 0 0 0 13 0 22 19 Z 0 10 - - 10 -

2 JUN 76 36 !2 7 A 10 0 0 9 1 0 24 9 ] 0 7 3 0 32 0 to - - 10 -

7 JUL 76 54 64 6.5 27 26.5

.26 10 0 0 9 1 0 49 10 0 0 B 2 0 96 10 0 0 B 2 0

APPENDIX TABLE 1. (CoNT.)

SIZE RANGE TIMECHFS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXFER. PROM START NO. NO, NO. WITH NO. NO. NO. WITH DATE NIN. MAX. (PPT) TEMP(C) TEMP(C) TEMF(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

PREVOORTIA TYRANNUS 7 JUL 76 55 64 a 27 26.5 34.5 0 10 -- 10 - -

3 10 0 0 0 10 0 7JUL 76 55 64 B 27 26 37 0 10 - - 10 - -

0.1 10 0 0 10 0 10 0.2 10 0 0 0 10 0 22 JUL 76 69 97 7 27 26.5 32 0 30 - - 10 -

o.2 10 0 0 8 2 0

44. 9 1 0 8 2 0 96 9 1 0 5 5 0 30 JUL 76 52 70 8.5 27 26.5 32 0 10 - - 10 - -

26 10 0 .0 9 1 00 96 10 0 0 9 1 0 30 JUL 76 45 70 B.5 27 26.5 33.5 0 10 - - 10 -

26 10 0 0 2 a 0 57 10 0 0 1 9 0 96 10 0 0 1 9 0 SAUG 76 76 90 7.5 27 26.5 32 0 10 - - 10 -

7 10 0 0 9 10 32 10 0 0 9 1 0 5 AUG 76 45 89 7.5 27 26.5 33.5 0 10 - 10 - -

0.1 10 0 0 9 1 0 23 10 0 0 0 10 21SEP 76 61 83 8 24 23 2B 0 10 - - 10 2.5 10 0 0 9 1 0 6 10 0 0 8 2 0 96 10 0 0 8 2 0 21 SEP 76 61 83 8 24 23 30 0 10 - - 10 -

96 10 0 0 10 0 0

APF,,DIX TABL' 1. (CO'.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE NIN. MAX. (PPT) TEMFP(C TEMP(C) TEMP CC) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

BREVOORTIA TYRANNUS 21 SEP 76 61 83 9 24 23 33 0 10 - - 10 -

23 10 0 0 6 4 1 47 10 0 0 4 6 1 48 10 0 0 3 7 0 96 10 0 0 2 8 0 2 JUN 77 36 46 9 21 20.5 29 0 10 - - 10 - -

96 10 0 0 10 0 0

&a JUN 77 48 60 6.5 21 21 29 0 10 - - 10 --

26 9 1 0 9 1 0 96 9 1 0 9 1 0 10 JUN 77 49 62 6.5 21 21 29 0 10 - - 10 - -C 26 9 1 0 3 7 0 L 52 9 1 0 1 9 0 96 9 1 0 1 9 0 1O JUN 77 46 60 6 21 21 30.5 0 10 - - 10 - -

2.75 10 0 0 9 1 0 4 10 0 0 a 2 0 26 9 1 0 4 6 0 96 9 1 0 4 6 0 10 JUN 77 46 60 6 21 21 30.Z 0 10 - - 10 -

26 9 1 0 a 2 0 52 9 1 0 7 3 0 96 9 1 0 7 3 0 10 JUN 77 45 60 5 21 21 32 0 t0 - - to -

2.5 10 0 0. 9 1 2 26 9 1 0 2 8 0 52 9 1 0 0 10 0 10 JUN 77 51 60 5 21 21 32 0 10 - - 10 --

2.5 10 0 0 9 1 1 26 9 1 0 2 a 1

APpEn.oT TA*LI 1. (coan.)

SIZE RANGE TIME(HNS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXF'ER. FROM START NO, NO. NO. UITH NO. NO, NO. WITH DATE MIN. MAX. (P'T) TEMP(C) TEMP(C) TEMP(C) OF TEST ALIVE DEAD . L.O.E. ALIVE DEAD L.O.E.

BREVDORTIA TYRANNUS 10 JUN 77 48 60 6 21 21 33 0 10 - - 10 -

0.1 10 0 0 10 0 7 0.5 10 0 0 5 5 0.75 10 0 0 4 6 4 4 10 0 0 1 9 1 26 9 1 0 0 10 0 0

10 JUN 77 50 60 6 21 21 33 0 10 - 10 - -

0.1 10 0 0 10 0 10 2.5 20 0 0 5 5 5 3,75 10 0 0 3 7 3 26 7 3 0 0 10 0 13 JUL 77 46 75 7 30 28 35 0 10 - - "10 2.8 10 0 0 5 5 1 4.25 10 0 0 1 9 0 5 10 0 0 0 10 0 13 JUL 77 50 72 5.5 30 20 37 0 10 - - 10 - -

0.3 10 0 0 7 3 7 0.8 10 0 0 0 10 0 0

APPEMIX TAB 1. (crr.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXFER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH

'ATE MIN.. MAX. (PPT) TEMP(C) TEMP(C) TEMP(C) OF TEST ALIVE D'EAD L.O.E. ALIVE K'AI L.D.E.

ANCHOA MITCHILLI 9.JUN 75 47 57 5 20 20 32 0 10 - - 10 - -

0.3 to 0 0 5 5 5 0.5 10 0 0 .0 10 0 22 SEP 75 35 49 - 21 22 30.5 0 10 - - 10 - -

1.5 10 0 0 7 3 0 21 10 0 0 0 10 0 20 OCT 75 44 63 3 17 19 30 0 10 - - -

0.1 10 0 0 0 5 0 20 OCT 75 44 63 6 17 19 32 0 10 - - 5 - -

0.1 10 0 0 0 5 0 19 NOV 75 55 66 5 14 14 31 0 5 - 5 -

0.1 5 0 0 5 0 5 0.2 5 0 0 0 5 0 20 APR 76 40 70 6 19 15 26 0 5 - - 5 - -

0.1 5 0 0 5 0 4 0,3 5 0 0 4 1 2 0,5 5 0 0 3 2 2 2 5 0 1 2 3 0 5 0 3 0 5 0 23 JUL 76 22 37 7 26 27 32 0 9 - - 10 -

74 9 0 0 10 0 0 23 JUL 76 20 34 7 26 26.5 34 0 10 - - 10 - -

1.5 10 0 0 6 4 0 3.5 10 0 0 0 10 0

APPENDIX TABLE 1. (CONT.)

SIZE RANGE TINE(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH

'ATE MIN. MAX. (PPT) TEMP(C) TEMP(C) TEMP(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.0.E.

ANCHOA MITCHILLI 3 AUG 76 20 34 7.5 27 26.5 32 0 10 .- 5 - -

0.5 10 0 0 5 0 1 18 10 0 0 4 1 0 40 10 0 0 3 2 0 72 10 0 0 3 - 2 0 25 AUG 76 37 48 6.5 23.5 .26 34 0 10 - - 10 - -

0.1 10 0 0 4 6 4 0.2 10 0 0 3 7 3 0.3 10 0 0 0 10 0 31 AUG 76 28 42 7 23 23.5 33 0 10 - - 10 - -

0.5 10 0 0 9 1 1 o 1.5 10 0 1 8 .2 0 O0 4 10 0 1 6 4 0 18 8 2 0 1 9 0 26 8 2 0 1 9 0 14 SEP 76 35 56 7 25 22 33 0 10 - - 10 - -

0.1 10 0 0 10 0 3 1.3 10 0 0 1 9 0 22SEP 76 21 44 7.5 23 23 28 0 20 - - 20 - -

17 19 1 0 17 3 0 24 29 1 0 16 4 0 41 19 1 0 15 5 0 72 19 1 0 1: 5 0 22 SEP 76 23 61 7.5 23 23 30 0 20 - 20 -

1 20 0 0 19 1 0 17 19 1 0 5 15 3 24 19 1 0 2 10 1 41 19 1 0 .1 19 0 72 19 1 0 0 20 0 22 SE5 76 23 54 9 23 23 33 0 20 - - 20 - -

0.1 20 0 0 20 0 2 0.5 20 0 0 9 11 3 1 20 0 0 4 16 1 1.8 20 0 0 3 17 0 2.-5 20 0 0 0 20 0 S

APPEn.z TABLE 1. (CCaT.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (IL IN MMý SALINITY ACCLIM. CONTROL EXFER. FROM START NO. NO. NO. wITH NO. NO. NO..wITH DlATE MIN. MAX. (FPT) TEMP(C) TEMF (C) TEtF'(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.0.E.

ANCHOA MITCHILLI 26OCT 76 28 58 9.5 16 12 27 0 10 - - 10 -

0.3 10 0 0 10 0 4 0.5 10 0 0 8 2 2 1,5 10 0 0 0 47 10 0 0 4 6 0 96 9 1 0 4 6 0 27 OCT 76 28 55 12 12 12 21.5 0 10 - 10 --

6 10 0 2 10 0 2 22 9 1 0 7 3 0 96 9 1 0 7 3 C0 27 OCT 76 28 55 12 12 12 26 0 10 -10 - -

.0.1 10 0 0 10 0 3 6 10 0 0 9 1 1 22 9 1 .0 7 3 0 46 9 1 0 3 7 0 96 9 1 0 3. 7 0 1s AUG 77 28 51 6.5 27 27 30.5 0 9 - 10 0 0 96 9 0 0 10 19 AUG 77 30 48 6.5 27 27 34 0 9 - 10. - -

0.1 9 0 0 a 2 3 0.2 9 0 0 7 3 0 7 9 0 0 5 5 1 23 9 0 0 1 9 1 30 9 0 0 0 10 0 18 AUG 77 32 47 B 27 27 35.5 0 10 - 10 -

0.1 10 0 0 0 10 0

APPPDrIX TABU 1. (CON'.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL 4TL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (PFT) TEMP(C) TEMP(C) IEMP(C) OF TEST ALIVE DEAD L.o.E. ALIVE DEAD L.O.E.

POMATOMUS SALTATRIX 29 JUN 75 70 77 5 22 22 31 0 6 - - 7 -

96 6 0 0 5 2 0 0

APPENDIX TABLE 1. (COST.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO.

E 1ITH O.

DATE MIN. MAX. CPPT) TENP(C) TEMF(C) TEMPF(C ) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.0.E.

CYNOSCION REGALIS 9 JUL 75 52 72 22 22 32 0 10 10 4.5 10 0 0 4 6 0 48 9 I 0 3 7 0 96 9 0 3 7 0 15 JUL 75 36 87 24 24 32 0 5 10 0.5 z 0 0 10 0 20.5 5 0 0 5 0 5

96 5 0 0 0 19 AUG 75 90 115 5.5 30 27.5 34 0 5 fr-24 5 0 4 0 96 .5 0 4 0 29 JUL 76 40 79 27 26.5 32 0 10 10 6.8 10 0 0 10 0 0 23 10 0 0 9 1 0 81 10 0 0 a 2 0 96 10 0 0 7 3 0 29 JUL 76 44 79 27 26 35 0 10 10 0.1 10 0 0 4 6 0.8 10 0 0 3 7 I 10 0 0 0 10 0 0

29 JUL 76 40 79 7 28 26.5 33.5 0 9 10 9 0 0 7 3 0.1 I 9 0 0 6 4 0 9 0 0 5 5 0 2.5 9

26 9 0 0 00 46 9 0 0 0 10 0

0 t0 10 29 JUL 76 22 52 7 28 26 35 0.1 10 0 0 9 0.3 0 B 2 10 0 1.3 10 0 2 B 2 0 0 1.5 10 0 0 0O 10

APPENDIX TABLE 1. (CONT.)

SIZE RANGE TIZECHRS.) CONTROL EXPERIMENTAL (IL IN MM) SALINITY ACCLIM. CONTROL EXFER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (PPT) TEmP(CC TEMP(C) TEMP(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

CYNUSCION REGALIS 19 AUG 76 38 49 7.5 27 26.3 33 0 5 - - 4 - -

48 4 1 0 4 0 0 96 5 0 0 4 0 0 24 AUG 76 67 113 7.5 27 27 32 0 10 - - 9 -

4 10 0 0 8 1 0 96 10. 0 0 a 1 0

4 AUG 76 67 L16 6.5 27 26.5 34 0 10 - - 10. - -

2 10 0 0 8 2 0 3 10 0 0 6 4 0 4.3 10 0 0 5 5 0 N) 6.5 10 0 0 4 6 0 96 10 0 0 4 6 0 24 AUG 76 67 113 6.5 27 26.5 35 0 10 -- 10 - -

0.3 10 0 0 9 1 9 0.3 10 0 0 a 2 a 0.4 .10 0 0 5 5 5 0.5 10 0 0 3 7 3 0.6 10 0 0 0 10 0 25 AUG 76 As 113 6.5 26 27 34 0 10 - - 10 - -

0.1 10 0 0 10 0 1 2.5 10 0 0 .B 2 0 4.5 10 0 0 7 3 0 19 10 0 0 6 4 0 96 10 0 0 6 4 0 30 AUG 76 83 129 7 25 25 30.5 0 6 - - 10 -

96 6 0 0 10 0 0 30 AUG 76 62 129 7 26 25 34.5 0 6 - - 10 - -

0.1 6 0 0 9 1 4 0.5 *6 0 0 7 3 4 0.6 6 0 0 6 4 3 0.9 6 0 0 3 7 0 1.5 6 0 0 0 10 0 0 0 0

APPEM~tX TABLE 1.(COiN.)

SIZE RANGE TIME(NRS,.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (PPT) TEMI(C) TEMFI(C) TEMP(C) OF TEST ALIVE LEAD L.O.E. ALIVE DEAD L.O.E.

CYNOSCION REGALIS 31 AUG 76 75 129 7 23 25 33 0 6 10 2 6 0 0 1 0 4.5 6 0 0 7 3 0 65 6 0 0 5 0 S

96 6 0 0 S 0 I.-'

APPENDIX TABLE 2. SUMOMART OF HEAT SHOCK STUDIES CONDUCTED WITH HIGH SALINITY ESTUARINE AND MARINE ORGANISMS TROM ICHTHYOLOGICAL ASSOCIATES, INC.

DELAWAREZ *EP*EIDTAL LABOPRAORY.

TOTAL LENGTH (MM) SALINITY ACCLIM. TEMP. EXPER. TEMP. NO. OF 4 H HOUR -24HOUR 49 HOUR DATE MIN. MAX. MEAN (PPT) (C) (F) (C) (F) EXP. ORG. Z MORT. Z MORT. X MORT.

Allantic menhaden, Brevoortis twrannus DELAWARE LABORATORIES 9 JUN 75 42 56 46.8 5 20 68 32 89 10 90 100 100 14 JUN 75 - - - 5 22 71 31 87 10 0 100 100 17 OCT 73 79 90 83.4 6 19 66 30 86 10 0 0 100 17 OCT 75 61 113 84.4 6 19 66 32 89 10 60 100 100 4 NOV 75 94 122 105.8 8 16 60 22.5 72 5 0 20 60 4 NOV 75 86 119 108.3 8 16 60 23 73 11 0 9 27 4 NOV 75 85 142 97.2 8 16 60 27 so 11 0 36 .82 4 NOV 75 97 132 110.6 8 16 60 27.5 81 5 0 40 100 4 NOV 75 92 112 98.6 8 16 60 28 82 10 0 100 100 4 NOV 75 92 109 99.2 0 17 62 22 71 10 0 20 40 19 NOV 75 98 175 130.3 5 14 57 31 87 3 100 100 100 14 MAY 76 35 37 35.6 7 20 68 33 91 5 100 100 100 26 MAY 76 42 56 50 7.3 18 64 30 86 13 100 100 100 2 JUN 76 36 52 44.7 7 22 71 24 75 10 10 30 -

7 JUL 76 54 62 58.2 6.5 27 80 32 .9 10 0 0 10 7 JUL 76 56 63 50.8 a 27 60 34.5 94 10 100 100 100 7 JUL 76 55 61 58 8 27 80 37 98 10 100 100 100 22 JUL 76 69 97 80.3 7 27 s0 32 89 10 20 20 20 30 JUL 76 52 67 60.7 8.5 27 so 32 89 10 0 0 10 30 JUL 76 45 69 58.9 8.5 27 80 33.5 92 10 0 0 80 0 e

APPENDIX TABLE 7. (CONT.)

TOTAL LENGTH (MM) SALINITY ACCLIN. TEMP. EXPER. TEMP. NO. OF 4 HOUR 24 HOUR 48 HOUR DATE MIN. MAX. MEAN (PPT) (C) (F) (C) (F) EXP. ORG. X MORT. X MORT. X MORT.

Atlantic manhadent brevoortia tvranraus DELAWARE LABORATORIES 5 AUG 76 76 90 81 7.5 27 90 32 89 10 0 10 -

5 AUG 76 45 92 75.1 7.5 27 9o 33.5 92 10 10 100 100 21 SEP 76 62 a1 57.4 a 24 75 28 82 10 10 20 20 21 SEP 76 67 77 73.3 a 24 75 30 " 6 10 0 0 0 21 SEP 76 61 93 69.3 9 24 75 33 91 10 0 40 70 2 JUN 77 36 46 40.4 9 21 69 28 82 10 0 0 0 VJ1 10 JUN 77 48 54 51.2 6.5 21 69 29 84 10 0 0 10 10 JUN 77 49 62 54.6 6.5 21 69 29 84 10 0 0 70 10 JUN 77 46 5s 51.7 6 21 69 30.5 86 10 20 .20 60 10 JUN 77 46 56 50 6 21 69 30.5 86 10 0 0 20 10 JUN 77 45 5s 52.1 5 21 69 32 89 10 10 10 s0 10 JUN 77 52 55 53.5 5 21 69 32 99 10 10 10 -

10 JUN. 77 48 59 53.3 6 21 69 33 91 10 90 90 100 10 JUN 77 50 60 54.3 6 21 69 33 91 10 70 70 100 13 JUL 77 46 75 62.3 7 30 86 35 95 10 50 100 100 13 JUL 77 50 72 59.2 5.5 30 86 37 99 10 100 100 100

APPENDIX TABlE 2. (cONT.)

TOTAL LENGTH (MM) SALINITY ACCLIM. TEMP. EXPER. TEMP. NC. OF 4 HOUR 24 HOUR 48 HOUR DATE MIN. MAX. MEAN (PPT) (C) (F) (C) (F) EXP. ORG. Z MORT. Z MORT. 2 MORT.

Paw anchovue Anchoa &itchl1l DELAWARE LABORATORIES 9 JUN 75 47 57 51.4 5 20 69 32 89 10 100 100 .100 22 SEP 75 37 49 41.1 - 21 69 30.5 96 10 30 100 100 20 OCT 75 51 57 54.9 3 17 62 30 86 5 100 100 100 20 OCT 75 52 57 53.8 6 17 62 32 99 5 100 100 100 19 NOV 75 55 66 39.9 5 14 57 31 67 5 100 100 100 20 APR 76 40 70 54 6 19 66 26 78 z 60 100 100 t, 23 JUL 76 22 37 25.7 7 26 78 32 99 10 0 0 0 23 JUL 76 20 34 24.2 7 26 79 34 93 10 100 100 100 3 AUG 76 20 31 25.6 7.5 27 B0 32 89 5 0 20 40 25 AUG 76 37 4B 43.6 6.5 23.5 74 34 93 10 100 100 100 31 AUG 76 28 42 37.2 7 23 73 33 91 10 20 90 -

14 SEP 76 35 53 44 7 25 77 33 91 10 - - -

22 SEP 76 21 44 35.8 7.5 23 73 28 82 20 0 20 25 22 SEP 76 29 61 38.9 7.5 23 73 30 86 20. 5 90 95 22 SEP 76 27 54 40.0 9 23 73 33 91 20 100 100 100 26 OCT 76 37 58 43.6 9.5 16 60 27 so 10 50 50 60 27 OCT 76 34 46 42 12 12 53 21.5 70 10 0 30 30 27 OCT 76 29 42 37.9 12 12 53 26 78 10 0 30 70 18 AUG 77 28 51 38.8 6.5 27 s0 30.5 86 10 .0 0 0 18 AUG 77 30 48 39.4 6.5 27 9o 34 93 10 30 90 100 19 AUG 77 32 47 39.2 a 27 s0 35.5 95 10 100 100 100 a .0

APPENDIT TABL! 2. (CONT.)

TOTAL LENGTH (MM) SALINITY ACCLIM. TEMP. EXPER, TEMP. NO. OF 4 HOUR 24 HOUR 48 HOUR DATE MIN. MAX. MEAN (PPT) (C) (F) (C) (F) EXP. ORG. % MORT. X MORT. % MORT.


D -----------------------------------------------

Bluetishp Pomatomus saltatrix DELAWARE LA~nRATORIES 29 JUN 75 70 77 73.5 5 22 71 31 87 .7 0 0 Weakfith, Cwnoscion DELAWARE LABORATORIES 9 JUL 75 54 72 64.7 5 22 71 32 99 10 0 60 70 15 JUL 75 56 70 63 5 24 75 32 89 10 0 50 50 19 AUG 75 90 104 96.4 5.5 30 86 34 93 5 0 20 20 29 JUL 76 40 78 53.4 7 27 so 32 89 10 0 10 10 29 JUL 76 49 78 63.9 7 27 s0 35 95 10 100 100 100 I-~1 29 JUL 76 40 65 52.3 7 28 82 33.5 92 10 50 50 100 29 JUL 76 22 48 34.2 7 28 82 35 95 10 100 100 100 19 AUG 76 40 49 43.5 7.5 27 80 33 91 4 0 0 0 24 AUG 76 67 100 79.6 7.5 27 80 32 89 9 11 12 11 24 AUG 76 67 116 81.9 6.5 27 90 34 93 10 40 60 60 24 AUG 76 102 85.2 27 90 35 95 10 100 100 100 67 6.5 25 AUG 76 68 103 B8 6.5 26 78 34 93 10 20 40 40 30 AUG 76 83 111 94.1 7 25 77 30.5 86 10 0 0 0 30 AUG 76 110 86. 7 78 34.5 94 10 100 100 62 26 100 31 AUG 76 112 90. 7" 23 73 33 91 10 10 30 30 75

APPLNDTI TA*IZ 3. IRSULTS OF COLD SHOCK STUDIES CONDU]CTEDIITH HIGH SALIJIIT*' ESTUAARINE AND HARIN* ORGAIMIS

  • P ICHTRYOLCICAL ASSOCIATES, INC.

DELAWARE EXP D(4tE".AL LABORATORY.

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO, NO. NO. WITH DATE MIN. MAX. (F'T) TEMP4C) TEMP(C) TEMPF(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

PREVOORTIA TYRANNUS 10 JUL 74 50 65 4 26 26.2 14 0 10 - - 10 - -

17,8 10 0 0 6 4 1 24.2 10 0 0 5 5 0 41.8 10 0 0 4 6 0 96 10 0 0 2 8 0 17 JUL 74 53 63 4 25 24.4 12.4 0 6 - 6 - -

S. 6 0 0 6 0 1 20.5 6 0 0 3 3 1 44.5 6 0 0 1 z 0 12 6 0 0 0 6 0 23 JUL 74 53 76 6 27 27 17.5 0 10 - - 10 - - CO 52.5 10 0 0 20 0 I 69.5 10 0 0 9 1 0 96 10 0 0 9 1 0 25 SEP 74 70 97 7.5 22 22.4 16.3 0 10 - - 10 -

96 10 0 0 10 0 0 25 SEP 74 70 97 7.5 22 22.4 12.3 0 10 - - 10 - -

96 10 0 0 10 0 0 30 OCT 74 69 127 6.5 14 14 5.8 0 5 - - 5-0.08 5 0 0 5 0 2 25.75 4 1 0 4 1 2 45.75 4 1 0 4 1 3 71.75 4 1 0 1 4 1 96 A 1 0 0 5 0 12 NOV 74 70 102 6.3 12 11.9 9.9 0 10 - - 10 - -

24 10 0 0 9 1 0 4< 10 0 1 9 1 1 69 a8 2 0 7 3 0 96 9 2 0 7 3 1

APPErIU TAw,. 3. (cONT.)

SIZE RANGE TImE(HRS.,. CONTROL EXPERIMENTAL ITL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (PPT) TEMP(C) TEMP(C) TEhP(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

PREVOORTIA TYRANNUS 12 NOV 74 71 104 6.3 12 11.9 7.6 0 10 10 45 10 0 10 0 2 69 8 2 0 B 2 3 96 B 2 0 2 3 12 NOV 74 .71 102 6.3 12 11.9 5.5 0 10 10 21 10 0 0 10 0 6 28 10 0 0 9 1 3 45 10 0 1 B 2 5 69 B 2 0 5 3 96 1 2 0 2 1 9 JUN 75 38 53 5 20 20 14 0 10 10 5 10 0 0 9 4 22 10 0 0 5 5 0 46 10 0 0 1 9 0 70 10 0 0 0 10 0 I-.

14 JUN 75 40 52 5 22 22 16 0 10 10 24 10 0 0 6 4 0 48.5 10 0 0 5 .5 0 96 10 0 0 3 .5 0

4 NOV 75 83 121 B 17 20.4 8.4 0 10 - . - 9 1.5 10 0 0 -9 0 2 17.5 10 0 0 0 9 0 4 NOU 75 60 137 a 17 21.2 8.4 0 10 10 2.2 10 0 0 10 0 3 17.5 20 0 0 0 10 0 25 MAY 76 38 54 3 17 18.6 6.6 0 10 10 5.25 10 0 0 4 6 4 7.775 10 0 0 1 9 1 10 10 0 0 0 10. 0 7 JUL 76 54 64 6.5 27 26.2 22 0 10 9 69 10 0 0 8 0 96 10 0 0 a I 0

APPIN011TABUZ 3. (CONT.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLZI. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. " PPT) TEMP(C) TEMP(C) TEMP(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

PREVOORTIA TYRANNUS 7 JUL 76 55 64 6 27 26.2 16.3 0 10 - - 10 - -

96 10 0 0 10 0 0 20 JUL 76 63 95 6. 27 27.1 16.4 0 10 - - 10 - -

45 9 1. 0 10 0 0 6.,5 a 2 0 10 0 0 96 8 2 0 10 0 0 21 JUL 76 72 95 6.5 26 26.9 20.9 0 10 - - 10 -

23 9 1 0 10 0 0 47.75 a 2 0 10 0 0 96 a 2 0 ID 0 0 22 JUL 76 71 87 6 27 26.6 16.6 0 10 - - 10 -

27.25 9 1 0 10 0 0 96 9 1 0 10 0 0 0

3 AUG 76 67 77 7.5 27 26.4 21.9 0 9 - - 10 - -

96 9 0 0 10 0 0 3 AUG 76 60 84 5.5 27 26.4 16.4 0 9 - - 10 96 9 0 0 10 0 0 17 MAY 77 32 43 6.5 20.5 19.5 10 0 10 - - 10 - -

28 10 0 0 10 0 1 45 10 0 0 9 1 0 80 10 0 0 9 1 1 96 10 0 0 a 2 0 17 MAY 77 32 47 6 20.5 19.5 a 0 10 - - 10 -

45 10 0 0 9 1 0 96 10 0 0 9 1 1 17 MAY 77 32 44 6 20.5 19.5 6 0 10 - 10 - -

4.3 10 0 0 7 3 0 21 10 0 0 6 4 0 45 10 0 0 4 6 0 67 10 0 0 3 7 0 96 10 0 0 2 a 0 0 0I

APPENDLXt TABLE 3. (comT.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXPER, FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (PPT) TEIPIC). TEMP(C) TEMP(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.0.E.

FREVOORTIA TYRANNUS 26 MAY 77 35 52 5.5 24 22 12 0 10 - - 10 --

24 9 1 0 7 3 0 96 9 1 0 7 3 0 26.MAY 77 36 51 6 24 22 9 0 10 - - 10 - -

1.3 10 0 0 9 1 1 7.5 9 1 0 7 3 0 24 9 1 0 4 6 0 76 9 1 0 2 a 0 96 9 1 0 1- 9 0 26 MAY 77 36 51 5.5 24 22 6 0 10 - - 10 --

0.1 10 0 0 6 4 6 0.2 10 0 0 2 a 2 0.25 10 0 0 1 9 1 1 10 0 0 0 10 0 3 JUN 77 35 49 5.5 21 20 12 0 10 - - .10 - -

96 10 0 0 i0 0 0 3 JUN 77 37 49 5.5 21 20 B 0 10 - - 10 - -

30 10 0 0 6 4 2 49 10 0 0 2 8 1 73 10 0 0 0 10 0 8 JUN 77 33 62 5.5 20 20 11 0 10 - - 10 - -

is a 2 0 9 1 0 42 7 3 0 a 2 0 73 7 3 0 4 6 0 96 7 3 0 3 7 0 8 JUN 77 33 56 5.5 20 20 90 10 - O" 10 - -

,42 7 3 0 10 0 1 so 7 3 0. 9 1 1 73 7 3 0 6 4 0 96 7 3 0 3 7 0

APPsMDIX TABLE 3. (CONT.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIN. CONTROL EXP'R. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (PPT) TEMP(C) TEMP(C) TEMP(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.D.E.

DREVOORTIA TYRANNUS 8 JUN 77 41 55 5.5 20 20 0 10 10 0.1 10 0 0 10 0 5 2 10 0 0 9 1 0 18 8 0 2 2 4 26 2 0 3 7 1 42 7 3 0 0 10 0 17 JUN 77 40 48 22 21.5 11.5 0 10 10 69 9 a 2 0 76 9 7 3 0 96 9 7 0 17 JUN 77 40 49 6 22 21.5 9.5 0 10 10 44 9 9 0 5 t.J 67 9 5 2 76 9 3 7 I 91 9 2 8 96 9 1 9 0 17 JUN 77 40 48 6 22 21.5 9 0 20 10 44 9 9 0 67 9 I 1 91 9 4 6 2 96 9 3 7 I 17JUN 77 39 48 5 . 22 21.5 0 10 10 26 9 5 5 2 44 9 0 10 0 17 JUN 77 40 48 5 22 21.5 7 0 10 - - 10 - -

0.1 10 0 0 10 0 3 26 9 1 0 0 10 0 6 JUL 77 57 67 7 27.: 27.5 10 0 10 - - 9 -

96 10 0 0 9 0 0 6 JUL 77 Z7 67 6 27.5 27.5 14.5 0 10 9  !

0 B 46 10 0  ! 0 0 9 96 10 0 0 0

ArIDWIZ TABLE 3. (CONT.)

SIZE RANGE TI E(HRS.) CONTROL EXPERIMENIAL (TL IN MM) SALINITY ACCLIM. CONTROL EXFER. FROM START NO. NO. NO. UITH NO. NO. NO. WITH DATE IN* MAX. (FPT) TEMF(C) TEMF(C) TEMF(C) OF TEST ALIVE LEAD L.O.E. ALIVE DEAD L.O.E.

&REVOORTZA TYRANNUS 6 JUL 77 53 73 6.5 27.5 27.5 12 0 10 - - 10 - -

71 10 0 0 9 1 0 96 10 0 0 a 2 1 6 JUL 77 57 68 6 27.5 27.5 10 0 10 - - 10 - -

0.1 10 0 0 10 0 1 0.2 10 0 0 9 1 1 22 10 0 0 3" 7 3 29 10 0 0 0 10 0 13 JUL 77 43 73 7 27.5 28 19 0 10 - 9 96 10 0 0 13 JUL 77 43 73 6 27.5 28 14 0 10 - - 10 -

96 10 0 0 10 0 0 13 JUL 77 43 73 6.5 27.5 28 12.5 0 10 - - 10 - -

24 10 0 0 9 1 0 96 10 0 0 7 3 2 13 JUL 77 43 72 5.5 27.5 28 9.5 0 10 - - 10 - -

3.5 10 0 0 . 10 0 5 6 10 0 0 9 1 4 13.5 10 0 0 0 10 0 24 AUG 77 44 65 6.5 25 24.5 17 0 10 - - 10 -

96 10 0 0 10 0 0 24 AUG 77 44 65 4.5 25 24.5 12.5 0 10 - - 10 - -

22 10 0 0 6 4 1 47 10 0 0 2 8 1 54 10 0 0 2 0 2 75 10 0 0 0 10 0

AfPINDIZ TABLI 3. (CONT.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXFER. FROM START NO. NO. NO. WITH NO. NO. N0O. WITH DATE MIN. MAX. (PPT) TEMP(C). TEMF(C) TEMF'(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

ANCHOA MITCHILLI 26 JUN 74 52 66 4 21 21 a 0 10 - - 20 - -

1 10 0 0 10 0 9 21 10 0 0 1 9 1

.24 10 0 0 0 10 0 3 JUL 74 54 64 4 24 24 10 0 10 - - 10 -

2 10 0 0 10 0 9 18 10 0 0 0 to 0 17 JUL 74 .50 66 4 25 24.5 12.5 0 10 - - 10 - -

20.5 10 0 0 4 6 3 24 10 0 0 3 7 3 28 9 1 0 2 8 44.5 8 2 0 1 9 0 48 B 2 0 0 10 0 23 JUL 74 47 62 6 27 27 17.5 0 10 - - 10 -

20 10 0 0 9 1 0 24 10 0 0 8 2 0 96 1O 0 0 . 8 2 0 22 AUG 74 23 70 a 24 24 17 0 5 - - 9 - -

19 5 0 0 9 0 1 24 0 0 8 I 0 48 5 0 0 7 2 0 91 5 0 0 3 6 0 96 z 0 0 3 6 0 22 AUG 74 35 72 a 24 24 15 0 5 - - 9 19 5 0 0 8 1 1 48 5 0 0 4 1 91 3 0 0 3 6 1 96 3 0 0 2 7 0

APPtDX! TAIL! 3. (CONT.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL CTL IN MM) SALINITY ACCLIM. CONTROL EXF'ER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH' P'ATE MIN. MAX. (PPT) TEMP(C) TEMP(C) TEMP(C) OF TEST ALIVE LEAD L.O.E. ALIVE [DEAD L.O.E.

ANCHOA IITCHILLI 2 OCT 74 28 52 7.2 20 20 14.5 0 10 - - 10 - -

21.5 10 0 0 9 1 1 49 10 0 0 6 4 1 75S.5 10 0 0 5 5 3 96 9 1 0 2 B 0 2 OCT 74 26 55 7.2 20 20 10 0 10 - - 10. - -

20.5 10 0 0 8 2 7 29 10 0 0 7 3 7 49 10 0 0 0 10 0 30 OCT 74 25 36 6.5 14 14 10 0 10 - - 10 - -

96 10 0 0 10 0 0 30OCT74 26 37 6.5 14 14 9 0 10 - - 10 - - NI 26 10 0 0 10 .0 1 L' 72 10 0 0 1 1 0 96 10 0 0 9 1 0 30 OCT 74 23 36 6.5 14 14 6 0 10 - - 10 - -

0.1 10 0 0 10 0 2 46 10 0 0 9 1 4 53 10 0 0 8 2 5 72 10 0 0 4 6 2 96 10 0 0 1 9 0 20 OCT 75 44 74 6 17 18.5 10 0 10 - - 5 - -

6.5 10 0 0 '3 2 1 22 10 0 3 0 5 0.

27 APR 76 45 56 4 15 15 3 0 10 - - 10 - -

0.1 10 0 0 0 10 0 4 JUN 76 41 74 4 18 1t 6 0 5 - - 5 - -

1.3 5 0 0 0 5 0

APPENDIX TABLE 3. (CONT.)

SIZE RANGE TIME(HkS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLrM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (PPT) TEMP(C) TEMP(C) TEMF(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

ANCHOA MITCHILLI 14 JUL 76 51 68 6.5 25 26 16.5 0 9 - 9 -

17 a 1 0 9 0 1 18.5 8 1 0 8 1 0 50 8 1 0 6 3 0 65 9 1 0 5 4 1

.96 1 0 4 5 0 20 JUL 76 22 39 6 27 27 16.5 0 10 - - 10 96 10 0 0 10 0 0 21 JUL 76 22 29 6.5 26 27 21 0 10 - - 10 - -

96 10 0 0 10 0 0 27 JUL 76 25 47 6.5 27 26.5 22 0 10 - - 9 - -

29 9 1 1 8 1 0

96. 9 1 0 8 1 0 c7%

27 JUL 76 25 47 6 27 26.5 16.5 0 10 - - 10 - -

0.1 10 0 0 10 0 2 4.8 10 0 0 9 1 0 29 9 1 0 a 2 0 96 9 1 0 8 2 0 3 AUG 76 22 35 7.5 25 26.5 22 0 10 - - 10 - -

25.3 10 0 0 10 0 1 41 9 1 0. 9 1 0 96 9 1 0 9 1 0 3 AUG 76 25 34 5.5 25 26.5 16.5 0 10 - - 10 -

is 10 0 0 9 1 0 96 10 0 0 a 2 0 1SEP 76 20 47 6 25 25 14 0 10 - - 10 - -

54 9 1 0 9 1 0 96 9 2 0 9 1 0

AMMIz TAILS 3. (CONT.)

SIZE RANGE TXME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (PPT) TEMP(C) TEMP(C). TE1P(C). OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

ANCHOA MZTCHILLI 26 OCT 76 28 55 8 16 12 3 0 10 - - 10 - -

0.1 10 0 10 10 0 10 3 10 0 0 5 5 5 a 10 0 0 2 a 2 23 10 0 0 1 9 1 25 10 0 0 0 so 0.

27 OCT 76 28 55 12 12 5 0 10 - - 20 - -

6 10 0 2 20 0 17 22 10 0 0 13 7 33 46 9 1 0 5 15 5 50.5 9 1 0 1 19 1 53.5 9 1 0 0 . 20 0 3 MAY 77 47 85 .6 17 17 4 0 10 - - 10 --

0.5 10 0 0 10 0 10 4 10 0 0 0 10 0 4 MAY 77 48 68 . 6.5 16. I 10 0 10 - - 10 - -

96 10 0 0 10 0 0 4 MAY 77 46 68 6 16.5 18 8 0 10 - - 10 - -

0.5 10 0 0 10 02 56 10 0 0 9 1 1 80 10 0 0 B 2 0 96 10: 0 0 7 3 0 4 MAY 77 47 6a 6 16.5 19 6 0 10 - 10 - -

0.1 10 0 0 10 0 7 24 10 0 0 z 5 2 31 10 0 0 3 7 1 47 10 0 0 2 8 0 96 s0 0 0 " 9 0 4MAY 77. 47 68 6 16.5 i1 4 0 10 - - 9 - -

0.1 10 0 0 9 0 9 6.9 10 0 0 7 2 7 23 10 0 0 2 7 2 47 10 0 0 1 a 1 79 10 0 0

  • 0 9 0

APPENDIX TABiLE 3. (CONT.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START.NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (PPT) TEMP(tC) TEMP(C) TEMP(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

ANCHOA MITCHILLI 17 MAY 77 45 69 5.5 21 19.5 12 0 10 10 28 9 1 0 10 0 44 9 2 1 9 0 66 0 9 1 0 96 8 2 9 1 0 1

17 MAY 77 45 73 6.5 21 19.5 10 0 10 10 20 9 0 10 00 0

66 a 9 0 9 0 96 1 2 9 17 MAY 77 45 75 6 21 19.5 8 0 10 0,25 10 10 0 0 10 0 20 9 0 9 3 44 9 4 1 6 0 80 a 2 6 0 4 96 18 2 0 4 6 17 MAY 77 45 66 21 19 6.5 0 10 10 0.25 10 0 0 10 0 10 I

3.8 10 0 0 e .2 8 20 9 0 0 10 0 26 MAY 77 44 65 5.5 24 23.5 12.5 0 10 10 0.1 10 0 0 10 0 I 30 10 0 .9 1 51 10 0 3 7 3 0 96 10 0 0 7 3 0

26 MAY 77 44 65 6 24 23.5 0 10 0 10 0.1 10 0 0 10 0 3 23 10 1 0 0 9 2 5.1 10 0 5 5 2 0 3 78 10 0 .1 1 0 9 96 10 1 0 0 9 0 10 1 JUN .77 42 77 5.5 21 21 12 0 10 10 54 10 0 10 0 1 77 10 0 9 0 96 10 0 9 0

APPNDI ThE 3. (CWN?.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXFER. FROM START NO. NO. NO. WITH NO. No. NO. WITNH DATE MIN. MAX. IPPT) TEMP(C) TEMP(C) TEMP(C) OF TEST ALIVE *DEAD L.O.E. ALIVE DEAD L.O.C.

ANCHOA MITCHILLI I JUN 77 42 71 5.5 21 21 0 10 - - 10 - -

0.1 10 0 0 10 0 10 20 10 0 0 6 4 3 30 10 0 0 3 7 0 46 10 0 0 2 B 2 54 10 0 0 0 10 0 22 JUN 77 38 71 7.5 25 23.5 12 0 10 - - 10 - -

79 10 0 1 9 1 0 96 10 0 1 9 1 1 22 JUN 77 s6 70 5.5 25 23.5 10 0 0 -- 10 --

0.1 10 0 0 10 0 2 24 10 0 1 6 4 4 32 s0 0 1 3 7 3 N 48 10 0 1 0 10 0 22 JUN 77 57 72 5.5 25 23.5 a 0 10 - - 9 -

6.3 J0 0 0 8 1 B 7.9 10 0 0 5 4 6 24 10 0 .1 2 7 2 32 10 0 1 1 a 1 48 10 0 1 0 9 0 22 JUN 77 56 76 3 25 23 6 0 10 - - 10 - -

0.1 10 0 0 10 0 10 0.5 10 0 0 6 4 6 1 10 0 0 0 10 0 6 JUL 77 55 76 7 27.5 27.5 16 0 10 - - 10 96 10 0 0 10 0 0 6 JUL 77 55 75 6 27.5 27.5 14.5 .0 10 - - 10 - -

71 10 0 0 9 1 0 96 10 0 0 9 1 0

APUDIX TJAEL 3. (CONT.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONIROL EXPER. FROM START NO. No. NO. WITH NO. NO. NO. WITH DATE MIN, MAX. (PPT) TEMP(C) TEMF'(C) TENF'(C) OF TEST ALIVE DEAD LO.E. ALIVE DEAD L.O.E.

ANCHOA hITCHZLLI 6 JUL 77 55 75 6.5 29 27.5 12 0 10 - - 9 -

.21 10 0 0 a 1 1 28 10 0 0 6 3 1 45 10 0. 0 4 5 1 70 10 0 0 3 6 0 96 20 0 0 1 8 1 6 JUL 77 55 76 6 29 27.5 10 0 10 - - 10- - -

0.1 10 0 0 10 0 20 5.5 10 0 0 9 1 8 21 10 0 0 0 10 0 21JUL 77 ..34 68 7 28 29 20 0 10 - 10 - -

23 10 0 0 7 3 0 48 10 0 0 5 0 96 9 1 0 5 5 0 w 0

21 JUL 77 34 45 5.5 28 29 16 0 10 - - 10 - -

23 10 0 0 8 2 1 31 .10 0 0 6 .4 0 76 9 1 0 5 5 0 96 9 1 0 4 .6 0 21 JUL 77 34 45 6 28 29 13 0 10 - - 10 - -

0.1 10 0 0 10 0 10 1 to 0 0 9 1 9 4 10 0 0 6 4 6 7 10 0 0 3. 7 3 23 10 0 0 0 10 0 21 JUL 77 32 43 5 28 29 10 0 10 - - 10 - -

0.1 10 0 0 10 0 10 0.2 10 0 0 4 6 4 1 10 0 0 2 B 2 4 10 0 0 0 10 0 27 JUL 77 39 90 5.5 25 25.5 is 0 20 - - 20 - -

CI5 10 0 0 9 2 3 24 10 0 0 3 7 1 31 9 1 0 2 8 1 48 a 2 0 1 9 0 96 7 3 0 0 10 0

AFPP. UX tXAIS 3. . (MT.)

SIZE RANGE TIME(HMS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXFER. FROM START NO. NO. NO. WITN NO. NO. NO. WITH DATE MIN. MAX. (PPT) TEMP(C) TEMPCC) TEPIP(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

ANCNOA MITCHILLI 2 AUG 77 22 44 7.5 26.5 26 13 0 10 10 -

0.2 10 0 0 10 0 3 2.6 10 0 0 10 0 0 6.6 10 0 0 10 - 0 4 10.6 10 0 0 10 0 22 9 0 1 0 s0 0 2.AUG 77 25 47 5 26.5 26 10 0 10 10 0.1 10 0 0 10 0 10 2.6 10 0 0 a 2 5.6 10 0 0 0 10 0 18 AUG 77 28 51 4.5 27 26.5 11.5 0 20 20 0.1 20 0 0 20 0 16 0.2 20 0 0 1i 2 15 3.1 20 0 0 14 6 12 5.6 20 0 0 is 7 20 0 0 0 20 0

APPEDI TABL 3. (CDNT.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL CTL IN NM) SALINITY .ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIH. MAX. (PPT) TEMF(C) TEMP(C) TEMPIC) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.


N T S---------------------- -----------------------------------------------------------------------------------

MORONE SAXATILIS 10 lEC 71 - 108 4.5 5 5 0 0 1

96 14 DEC 71 - 4.5 4.5 4.5 0 0 26 96 11 JAN 7.1 87 106 4.5 6 6 -0.5 0 24 48 13 OCT 7'4 79 138 9 16 16 5.5 0 96 I.'

30 NOV 76 108 145 5.5 9 8 3.5 0 96

30. NOV 76 102 147 3.5 9 0 2. 0 0.1 7.3 96 7 DEC 76 115 148 4 7 7.5 2 0 93 JUL 77 42 58 6.5 28 25 15 0 96 JUL 77 42 62 B 28 25 12.5 0 96 0

A*PENDIX TABLZ 3. (CONT.)

SIZE RANGE TIME(HRS.) CONTROL EXFERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (F'PT) TEMP(C) TEMP(C) TEMF(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.OE-.

MORONE SAXATILIS I JUL 77 42 66 7 20 25 11 0 10. - - 10 - -

0.2 10 0 0 10 0 2 75 10 0 0 a . 2 3 96 10 0 0 a 2 0 1 JUL 77 42 62 6.5 28 25 9 0 10 - - 30 - -

0.1. 10 0 0 10 0 10 2.3 10 0 0 9 1 3 23 10 0 0 5 5 5 59 10 0 0 0 30 0

APPL401X TABLE 3. (CONT.)

SIZE RANaE TIE(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO.. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (PPT) TEMPCC) TEMP(C) TEMP(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

POMATOMUS SALTATRIX 24 JUL 74 84 129 6 27 27 17.5 0 3 - -9. 9 96 3 0 0 B 0 0 t JUN 77 42 65 5.5 21 20 12 0 6 - - 6 - -

20 6 0 0 5 1 0 46 z 1 0 3 3 1 52 5 1 0 2 4 0 96 t 1 0 1 - 5 0 120 5 1 0 0 6 0 8 JUN 77 39 B0 5.5 20.5 20 11 0 B - - 9 -

19 B 0 2 5 4 0 43 6 2 0 3 6 0 96 6 2 0 2 7 0 8 JUN 77 53 96 5.5 20.5 20 9 0 9 - - 9 -

0.1 9 0 0 9 0 9 0,3 9 0 0 B 1 B 2.5 9 0 0 B 1 3 19 9 0 2 0 9 0 14 JUN 77 54 92 6 21 21 11 0 10 - - 10 - -

19 9 1 0 6 4 0 27 9 1 0 5 5 2 43 9 1 0 1 9 0 14 JUN 77 57 92 6 21 21 9 0 10 - - 10 - -

0.1 10 0 0 9 1 9 3.5 10 0 0 4 . 6 2 19 9 1 0 0 10 0 15 JUN 77 51 84 6 21 21 11 0 10 - - 10. - -

20 10 0 0 6 4 1 28 10 0 0 4 6 1 44 10 0 0 3 7 0 75 10 0 0 2 8 0 96 10 0 0 2 9 0

APPOIXP]"$ TA..ILZ 3. (CCH.W,)

SIZE RANGE TIME(HRS) CONTROL - EXPERENT-AL (TL IN MM) SALINITY ACCLIM. CONTROL EXFER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX- (PPT) TEMPCC) TEMP(C) TEMP(Cl OF TEST ALIVE DEAD L.D.E. ALIVE DEAD L.O.E.

PDOATOMUS SALTATRIX 2 AUG 77 120 165 6 26.5 27 18 0 4 - - 4 96 4 0 0 4 0 0 16 AUG 77 112 143 7 27 27 15 0 5 - - - -

78 5 0 0 5 0 1 96 5 0 0 4 1 0 Lit

APPflDIX TABLE 3. (CONT.)

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. WITH DATE MIN. MAX. (PPT) TEMP(C) TEMPCC) TEMPEC) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

CYNOSCION REGALIS aAUG 74 53 101 9 25 24.5 15 0 5 5 0.02 5 0 0 5 0 I 48 0 0 S 0 2 S

72 0 0 4 .0 96 5 0 0 4 0o 15 AUG 74 46 91 B 24 24 18 0 3 5 0.5 3 0 0 0 1 21 0 3 0 24 2 I 0 3 1 91 2 0 :3 2 3 96 0 3 2 10 JUL 75 44 94 5 22 22 is 0 10 - - 10 -

96 10 0 0 10 0 21 JUL 75 66 100 5 24 24 16.5 0 6 5 16.5 6 0 5 0 0 96 6 0 5 0 0 0

19 AUG 75 100 123 5.5 30 26.5 15 0 5 5 0.1 5 0 5 0 24 5 0 0 3 2 3 27 a 0 0 0 5 0 29 JUL 76 44 90 27 26.5 16.5 0 10 10 0.1 10 0 0 10 0 5 23.Z 10 0 0 9 1 2 0 50 10 0 0 B 61.5 10 0 0 7 3 0 96 10 0 0 7 3 0 17 AUG 76 67 98 25 26.5 16.5 0 7 0 1 0 1 24 4 0 4 0I 7B 4 0 4 2 96 4 0 3 2 a

APPE1 TAWJ1 3. (C..7.)

SIZE RANGE TIME(NRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIM. CONTROL EXPER. FROM START NO. NO. NO. WITH NO. NO. NO. HU1H DATE MIN. MAX. (PPT) TENP(C) TEMP(C) TEMP(C) OF TEST ALIVE DEAD L.O.C. ALIVE DEAD L.O.E.

CYNOSCION REGALIS 24 AUG 76 42 113 5 27 27 14 0 10 10 0.03 10 9 2 22 10 8 2 2 45 10 5 5 1 70 10 3 7 0 96 10 I 9 22 JUN 77 20 5s 7.5 25 23.5 12 0 18 20 24 19 lBe 7 31 16 1i 6 48 17 7 13 6 56 17 4 16 3 96 17 2 19 0 22 JUN 77 21 58 5.5 25 23 20 10 0 20 0.1 20 20 0 20 0.25 20 19 1 1Y 4 20 a 12 -.j 5.5 20 3 17 3 6.5 20 0 20 0 22 JUN 77 17 56 5.3 25 23 a 0 .20 20 0.2 20 3 17 3 0.7 20 0 20 0 22 JUN 77 19 58 5 25 23 20 6 0 20 0.1 20 1 19 1 3 20 0 20 0 28 JUN 77 35 58 7 29 24 12 0 20 26 0.1 20 19 1 19 1.3 20 11 9 11 3.5 20 2 18 2 5.5 20 0 19 1 24 20 0 20 0 28 JUN 77 35 56 7 29 24 10 0. 20 20 0.1 20 16 4 16 20 12 8 12 1.5 20 5 15 I 2 20 19 20 0 20 0 3.5

APMKXDZ TABLZ 3. (CONT.)

SIZE RANGE TINE(HRS.) CONTROL EXPERIMENTAL (TL IN MM) SALINITY ACCLIN. CONTROL EXPER, FROM START NO. NO. NO. UITH NO. NO. NO. WITH DATE MIN. MAX. (PPT) TEMP(C) TEMP(C) 1EI4P(C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.O.E.

CYNOSCION REGALIS 20 JUN 77 35 59 6.5 29 24 0 0 20 20 0.1 20 0 0 a 12 a 0.5 20 0 0 0 20 0 I JUL 77 36 65 6.5 27.5 27 1.f 0 10 10 3.5 10 0 0 9 1. 1 4.5 10 0 0 S 2 24 10 0 0 6 4 0 60 10 0 0 2 8 0

96 10 0 0 2 0 I JUL 77 38 52 7 27.5 26.5 13 0 10 10 2.s 10 0 0 6 4 6 3.5 10 0 0 4 6 4 4.5 10 0 0 B 2 6.3 10 0 0 1 9 24 10 0 0 0 10 0 0o I JUL 77 38 52 27.5 26.5 11 0 10 10 0.1 10 10 10 0 10 0.6 10 0 9 1 9 2 10 0 9 1 3 10 0 0 10 0 13 JUL 77 57 94 29 28 is 0 7 7 71 7 0 3 4 0 96 7 0 0 7 0 19 JUL 77 62 105 7 29.5 29 20 0 7 .7 78 7 0 7 0 96 7 0 3 4 27 JUL 77 50 89 7 26 25 20 0 9 9 24 1 0 8 0 8 31 9 0 .6 3 48 B 0 4 5 56 0 3 6 0 8

96 0 3 6 0 a

S A.lEDIM .U3L3 3. (CWiT.)

-AINT COTO------------------------ -------------------

SIZE RANGE TIME(HRS.) CONTROL EXPERIMENTAL ACCLIM. CONTROL (TL IN MM) SALINITY EXF'ER. FROM START NO. NO. NO. UITH NO. NO. NO. VITH DATE MIN. MAX. (PPT) TEMP(C) TEMP(C) TEMP C) OF TEST ALIVE DEAD L.O.E. ALIVE DEAD L.D.E.

CYNOSCION REGALIS 8 AUG 77 73 115 6 28 28 24 0 9 9 -

21 9 0 0 a 1 .. 0 24 9 0 0 e 1 0 8 AUG 77 67 128 5 20 28 22 0 9 - -

24 0 0 9 0 0 9

8 AUG 77 69 122 6 28 28 20 0 9 -

9 21 9 0 0 24 0 0 (..)

28 9 8 AUG 77 66 129 2B 17.5 0 10 - -

9 21 9 0 0 10 .0 1 24 0 0. 10 0 1

AFPFENDIXTABLE 4. SUM(ARTOF COLD SHOC STUDIES CONDUCTED WITE HIGH SAL111ITY ESTUARINE AND MARINE ORGANISMSFinK ICHMTOWGICAL ASSOCIATES.*INC.

DELAWARtE tDKE*MTAL, LABORATORY.

TOTAL LENGTH (MM) SALINITY ACCLIM. TEMP. EXPER. TEMP. NO. OF 4 HOUR 24 HOUR 48 HOUR 96 HOUR DATE MIN. MAX. . MEAN (PPT) (C) (F) (C) (F) EXP. ORD. X MORT. X MORT. Z MORT. 2 MORT Atlantic mennadent grevoortia twirannue DELAWARE LABORATORIES 10 JUL 74 50 65 54.7. 4 26 78 14 57 40 60 80 17 JUL 74 53 63 57 4. 25 77 12.4 54 50 - 83 1oo 23 JUL 74 57 73 59.5 6 27 90 17.3 63 0 0 10 25 SEP 74 so 94 88.3 7.5 22 71 16.3 61 0 0 0 25 SEP 74 77 94 83.2 7.5. 22 71 12.3 34 0 0 0 30 OCT 74 78 127 98 6.5 14 37 5.8 42 20 100 12 NOV 74 10 70 94 83.5 6.3 12 53 9.9 49 0 10 30 10 12 NOV 74 71 104 86.1 6.3 12 53 7.6 45 0 20 0

12 NOV 74 71 99 85.3 6.3 12 33 5.5 41 20 80 50 9 JUN 73 38 53. 48 5 20 68 14 57 90 100 14 JUN 75 40 52 45.6 3* 22 71 16 60 -40 40 30 4 NOV 75 93 120 101.6 17 62 .. 9.4 47 100 100 100 4 NOV 75 83 137 97.3 8 17 62 8.4 47 100 100 100 25 MAY 76 39 34 47.4 3 17 62 6.6 43 100 100 1o0 7 JUL 76 34 63 37.3 6.3 27 go 22 71 0 0 1o 7 JUL 76 55 61 59.5 6 27 90 16.3. 61 0 0 0 20 JUL 76 63 95 82.2 6 27 80 16.4 61 0 0 0 21 JUL 76 93 93 8994 6.5 26 79 20.9 69 0 0 0 22 JUL 76 71 87 77.4 6 27 80 16.6 61 0 0 0 3 AUG 76 67 77 71 7.5 27 8o 21.9 71 0

MTEIP EXPER..COT TOTAL LENGTH (IN) SALINITY ACCLIN. TEMP. EXPER, TEMP. . NO. OF 4 HOUR 24 HOUR 48 HOUR 96 HOUR DATE HiN. MAX. MEAN (PPT) (C) IF) (C) (F) EXP. ORO. Z MORT. I MORT. Z MORT. Z MORT Atlantic menhaden. Drevoortla twrannus DELAWARE LABORATORIES 3 AUO 76 60 75 69.7 5.5 27 80 16.4 61 0 0 0.

17 MAY 77 33 43 40 6.5 20.5 68 10 50 0 0 10 20 17 MAY 77 33 47 39.3 6 20.5 68 8 .46 0 0 10 10 17 MAY 77 35 44 38

  • 6 68 6 20.5 42 0 40 60 D0 26 MAY 77 35 52 42.2 5.5 24 75 12 53 0 30 30 30 26 HAY 77 36 51 44.8 6 24 75 9 48 10 60 &0 90 26 MAY 77 42 49 45 35.5 24 75 6 42 100 100 100 100 3 JUN 77 35 42 39.6 5.5 21 69 12 53 0 0 0 0 3 JUN 77 38 .47 42.4 21 69 9 46 0 5.5 0 40 100 a JUN 77 39 62 3D.2 68 11 51 0 10 20 5.5 20 70 9 JUN 77 41 56 48.2 5.5 20 68 9 48 0 0 0 70 8 JUN 77 42 55 49.2 5.5 20 68 7 44 10 20 100 100 17 JUN 77 41 45 42.9 6 22 71 11.5 52 0 0 0 30 17 JUN 77 40 46 43 6 22 71 9.5 49 0 0 10 .90 17 JUN 77* 40 45 41.9 6 22 71 9 48 0 0 10 70 17 JUN 77 39 47 43 5 22 71 7 44 0 0 100 100 17 JUN 77 40 45 42.8 3 22 71 7 44 0 0 100 100 6 JUL 77 61 .66 63 7 27.5 61 19 64 0 0 0 0 6 JUL 77 60 65 62.3 6 27.5 a1 14.5 58 0 0 11 11 6 JUL 77 53 73 62.7 6.5 27.5 a1 L2 53 0 0 0 20

APP)M~tI TAShZ 4. (CO~k.)

TOTAL LENGTH (MM) SALINITY ACCLIM. TEMP. EXPER. TEMP. NO. OF 4 HOUR 24 HOUR 48 HOUR 96 HOUR DATE MIN. MAX. MEAN (PPT) (F)

(C) (C) (F) EXP. ORG. 2 MORT. 2 MORT. 2 MORT. Z MORT Atlantic ounhaden, Drevoortia twrannus DELAWARE LABORATORIES 6 JUL 77 59 69 63.4 6 27.5 91 10 50 10 10 70 100 100 13 JUL 77 50 73 60.1 7 27.5 91 19 64 0 0 0 0 13 JUL 77 46 73 62 6 27.5 al 14 57 10 0 o" 0 0 13 JUL 77 45 73 57.8 6.5 27.5 a1 12.5 54 10 0 10 10 30 13 JUL 77 57

  • 72 65.1 5.5 27.5 91 9.5 49 10 0 10 0 100 100 24 AUG 77 50 65 60.6 6.5 25 77 17 62 10 0 0 0 0 24 AUG 77 53 65 59.1 4.5 25 77 12.5 54 10 0 40 s0 l00 Daw anchovwy Ancho a mitchil1l DELAWARE LABORATORIES 26 JUN 74 52 A6 58.4 4 21 69 9 46 10 0 I0'0 io0 100 3 JUL 74 67 54 64.4 4 24 75 10 so 10 0 10 0 100 100 17 JUL 74 52 66 56.2 .4 25 77 12.5 54 0 70 100 100 s0 23 JUL74 50 62 55.7 6 27 so 17.5 63 10 0 20 20 20 22 AUG 74 25 70 43.6 9 24 75 .17 62 9 0 1.1.1 22.2 66.6 22 AUG 74 36 72 45.3 24 .75 15 59 9 0 1 1.1 44.4 77.7 2 OCT 74 28 52 36.9 7.2 20 68 14.5 5B 10 0 0 10 80 10 0 2 20 30 100 2 OCT 74 26 .55 40.4 7.2 20 68 10 50 30 OCT 74 25 36 31.9 6.5 14 57 10 50 10 0 0 0 0 30 OCT 74 27 37 31.1 6.5 14 57 9 49 10 0 0 0 10 6.5 14 57 42 10 0 0 10 90 30 OCT 74 23 34 27.8 6 20 OCT 75 47 74 54 6 17 62 10 50 5 0 100 100 100

APPENDID TABLE 4. (CONT.)

TOTAL LENGTH (MM) SALINITY ACCLIM. TEMP. EXPER. TEMP. NO. OF 4 HOUR 24 HOUR 48 HOUR 96 HOUR DATE HIN. MAX. MEAN (PPT) (C) (F) (C) (F) EXP. ORG. Z MORT. X MORT. Z MORT. Z MORT Vav anchovwp Anchoa mitchllli DELAWARE LABORATORIER 27 APR 76 45 56 50.3 4 15 59 3 37 10 100 100 100 100 4 JUN 76 41 74 53.6 4 15 64 6 42 5 100 100 100 100 14 JUL 76 51 68 5894 6.5 25 77 16.5 61 9 0 1-1.1 11.1 55.5 20 JUL 76 22 39 29.8 6 27 so 16.5 61 10 0 0 0 0 21JUL 76 22 29 24.5 6.5 26 78 21 69 10 0 0 0 0 27 JUL 76 27 41 32.7 6.5 27 s0 22 71 9 0 0 11.1 11.1 27 JUL 76 28 37 33.3 6 27 80 16.5 61 10 0 10 20 20 3 AUG 76 22 35 28.3 7.5 25 77 22 71 10 0 0 10 10 32AUG576 2 31 28 5.5 25 77 16.5 61 10 0 10 10 20 I SEP 76 20 47 31.7 6 25 77 14 57 10 0 0 0 10

.26 OCT 76 30 49 41.1 8 16 60 3 37 10 50 90 100 100 27 OCT 76 40 50 45.1 a 12 53 5 41 20 0 35 75 100 3 MAY 77 50 73 64.9 6 17 62 4 39 10 100 100 100 100 4 MAY 77 48 61 54.9 6.5. 16.5 61 10 50 10 0 0 0 0 4 MAY 77 46 68 55.9 6 16.5 61 8 46 10 0 0 0 30 4 MAY 77 47 67 57 6 16.5 61 6 42 10 0 50 90 90 4 MAY 77 47 65 55.2 6 16.5 61 4 39 9 0 78 89 100 17 MAY 77 53 69 58.8 5.5 21 69 12 53 10 0 0 10 10 17 MAY 77 47 73 57 6.5 21 69 10 50 10 0 0 0 10 17 MAY 77 50 75 59.3 6 21 69 a 46 10 0 10 40 60

APPENDIX TABLE A. (CONT.)

TOTAL LENGTH (MMI SALINITY ACCLIM. TEMP. EXPER, TEMP. NO. OF 4 HOUR 24 HOUR 48 HOUR 96 HOUR

.DATE MIN. MAX. MEAN (PPT) (C) (F) CC) (F) EXP. ORG. Z MORT. X MORT. 2 MORT. Z MORT Dow arichovwt Anchoa mit~chilli DELAWARE LABIORATORIES 17 nAY 77 45 60 50.7 6 21 69 6.5 43 20 100 100 IOU 26 MAY 77 45 59 52.9 5.5 24 75 12.5 54 0 30 0 10 so 26 MAY 77 44 63 53.7 6 24 75 9 48 0 10 10 90 1 JUN 77 F6 77 62.6 5.5 21 69 12 53 0 .0 0 10 I JUN 77 48 71 61.1 5.5 21 69 B 46 0 40 8o 100 22 JUN 77 58 71 65*5 7.5 25 77 12 53 0 0 0 10 22 JUN 77 58 66 62.5 5.5 25 77 10 50 0 40 100 100 22 JUN 77 57 72 64.9 5.5 25 77 8 46 0 78 100 100 22 JUN 77 56 76 67.7 5 25 77 6 42 O00 1oo 100 100 .1>.

6 JUL 77 64 76 70.1 7 27.5 81 18 64 0 0 0 0 6 JUL 77 63 69 66.8 6 27.5 81 14.5 58 0 0 10 6 JUL 77 59 72 65.8 6.5 29 84 12 53 0 11 56 89 6 JUL 77 59 76 66.9 6 29 84 10 50 0 100 100 *100 21 JUL 77 35 68 43.9 7 28 82 20 69 0 30 50 50 21 JUL 77 35 45 39.3 5.5 28 82 16 60 0 20 40 60 21 JUL 77 34 41 38.3 6 28 82 13 55 40 100 100 100 21 JUL 77 32 44 37.8 5 28 82 10 50 100 100 100 100 27 JUL 77 39 90 55.9 5.5 25 77 15 59 0 70 90 100 2 AUG 77 22 44 30.7 7.5 26.5 79 13 I5 0 100 100 100 2 AUG 77 27 47. 34.1 5 26.5 79 10 50 20 - -

18 AUG 77 28 48 38.5 4.5 27 90 11.5 52 20 30 100 100 100

AM, X, T?.IZ 4. (CONT.)

TOTAL LENGTH (MM) SALINITY ACCLIM. TEMP. EXPER. TEMP. NO. OF 4 HOUR 24 HOUR 48 HOUR 96 HOUR DATE MIN. MAX. MEAN (PPT) (C) (F) (C) (F) EXP. ORG. Z MORT. Z MORT. X MORT. Z MORT Striped bass. Morons saMat111s DELAWARE LABORATORIES 10 DEC 71 - 109 - 4.5 5 41 0 32 1 0 0 0 100 14 DEC 71 - - 4.5 4.5 40 0 32 2 0 0 0 0 11 JAN 72 97 79 a6 4.5 6 42 -0.5 31 4 0 25 100 100 15 OCT 74 79 138 10 9 9 16 60 5.5 41 2 0 0 0 0 30 NOV 76 109 149 12 9 5.5 9 48 3.5 38 9 0 0 0 0 30 NOV 76 102 147 12 5 3.5 9 48 2 35 .10 0 0 0 0 7 DEC 76 115 145 12 7 4 7 44 2 35 10 0 0 0 a I JUL 77 45 58 5 0.4 6.5 28 82 15 .59 10 0 0 0 0 I JUL 77 47 62 5 4.3 8 28 82 12.5 54. 10 0 0 0 0 I JUL 77 46 66 S 4.6 7 29 92 11 51 10 0 0 0 20 I JUL 77 49 62 55.3 6.5 29 92 9 49 10 0 50 50 100 Glueiish, Powatomus saltatrim DELAMARE LABORATORIES 24 JUL 74 84 114 90.9 6 27 s0 17.5 63 8 0 0 0 1JUN 77 51 57 54 5.5 21 69 12 53 6 0 17 so 83 8 JUN 77 39 90. 64.4 5.5 20.5 69 11 51 9 0 44 67 78 8 JUN 77 53 86 66.2 5.5 20.5 69 9 48 9 11 100 100 100 14 JUN 77 54 92 68.4 6 21 69. 51 10 0 40 40 40 14 JUN 77 57 92 75.7 6 21 69 48 10 60 100 100 100 is 15 JUN 77 51 84 72.8 6 21 69 51 10 0 40 70 20 2 AUG 77 125 155 143 6 26.5 79 64 4 0 0 0 11 20 16 AUG 77 120 141 130.4 7 27 8o 59 5 0 0 0

APPWIIX WILE A. (CON'.)

TOTAL LENGTH (MM) SALINITY ACCLIM. TEMP. EXPER. TEMP. NO. OF 4 HOUR 24 HOUR 48 HOUR 96 HOUR DATE MIN. MAX. MEAN (PPT) (C) (F) (C) (F) EXP. ORO. Z MORT. 2 MORT. Z MORT. I MORT hleakfish, Cwmotcion retail% DELAWARE LABORATORIES 8 AUG 74 53 94 92.5 9 25 77 15 59 0 0 so 5

15 AUG.74 53 76 33 S 24 18 75 64 0 40 40 60 10 JUL 75 44 73 6L.5 S 19 22 71 64 .10 0 0 0 0 21 JUL 75 As 85 76 5 24 75 16.5 61 5 0 .0 0 0 S

19 AUG 73 102 123 112 5.5 30 86 15 59 0 60 100 100 29 JUL 76 50 90 67.5 6. 27 61 0 10 10 30 17 AUG 76 67 99 86 6 25 77 16.5 61 10 0 20 20 40 24 AUG 76 42 102 77 5 14 27 190 57 10 10 20 50 22 JUN 77 20 37 26.4 7.5 25 77 12 53 20 0 1o 65 95 22 JUN 77 21 45 27.3 5.5 25 77 10 50 20 60 100 100 100 22 JUN 77 17 43 26.6 5.5 25 77 0 46 20 100 100 100 100 22 JUN 77 19 34 24 .5 25 77 6 42 20 100* 100 100 100 28 JUN 77 37 58 47.4 7 29 84 12 53 20 90 100 100 So0 20 JUN 77 36 56 42.4 7 29 84 10 50 20 100 0oo 100 100 28 JUN 77 35 59 46.3 6.5 29 84 9 46 20 100 1oo 100 100 1 JUL 77 36 65 49.2 6.5 27.5 91 15 59 10 10 40 40 no 1 JUL 77 41 50 44.6 7 27.5 10 91 13 55 60 100 100 100 1 JUL 77 38 48 43.0 7 27.5 01 It. 51 10 100 100 100 100 13 JUL 77 68 94 0.1 7 29 84 7 1i 64 0 0 0 900 39 JUL 77 62 72 .67.3 29.5 95 20 69 7 0 0 0 57

ArflKZ ThuA 4. (cwt.)

TOTAL. LENGTH (MM) SALINITY ACCLIM. TEMP. EXPER. TEMP. NO. OF 4 HOUR 24 HOUR 49 HOUR 96 HWUR DATE HIN. 1MAX. MEAN (PPT) (C) (F) (C) (F) EXP. ORG. z MORT. Z AMOT. Z MORT. Z MORT Weakfish, Cwnnoocion reaelis DELANARE LADDIRATORIES 27 JUL 77 69 89 80.7 7 26 79 20 68 9 0 11 56 67 9 AUG 77 73 110 94.4 6 29 92 24 75 9 0 11.1 129 99.7 s 28 92 22 71 9. 0 0 9 AUG 77 67 8 AUG 77 69 122 10 1.3 6 29 92 20 68 9 0 111 " -

£01.*

8 AUG 77 66 129 28 82 17.5 63 10 0 0 - -

-a

Table 5 . Additional temperature related data for the Atlantic menhaden. B&evoortia tyrannus, Thermal Effects Acclimation Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit co Range Reference Upper Temperature Larvae 10.0 Maximum 28.9 Hos et al., 1974 Tolerences (Heat Shock) 18.0 Maximum 29.7 Larvae 15.0 Maximum 29.4 Hoss et al., 1971 Juvenile 29.0 50%l survival after 32 h at 34. 3 Lewis and Hertler, 1968 29.0 50P16 survival after 36 h at 34. 8 29.0 500]0 survival after 3 h at 35.0 29.0 5016 survival after 2 h at 36.5 LT 50 Reached at the Following hi!/ T Lower Temperature Larvae 7.0 8.5/7.0 137.5/2.0 Reintjes, 1975 Tolerence (Cold Shock) 10.0 4.4/11.0 144.0/4.0 LT50 reached at the 12.5 4.2/12.5 216.0/9.0 following hr/ AT 15.0 3.4/15.0 169.0/7.0 oo 20.0 3.2/18.0 11.2/16.0 Salinity (ppt) 0 30 Lower Temperature Larvae 10.0 4.2/2.0 15.2/2.0 Lewis, 1966 Tolerence with Relation 10.0 4.2/3.0 26.5/3.0 to Salinity. Lts 0 10.0 7.0/4.0 35.0/4.0 reached at the following 10.0 7.8/5.0 796.0/5.0 hr/AT 10.0 13.0/6.0 796.0/6.0 15.0 4.5/2.0 10.2/2.0 15.0 6.0/3.0 10.5/3.0 15.0 4.5/4.0 14. 0/4,0 15.0 7.2/5.0 48. 0/5. 0 15.0 8. 8/6.0 796.0/6.0 Temperature Preference 64.- 68 17.0 26.0 Meldrim et al. (unpublished, (Horizontal) undated) 103 - 117 19.0 No Preference 33 - 54 19.0 20. 0-21.0 41 = 55 21.0 20.0 74 - 97 22.0 and 23.0 18.0 and 24.0 59- 70 23.0 25.0 72 - 88 26.0 30.5 56 - 90 26.0 - 27.0 23.0 and 27.0 70 - 79 26.1 21.1 Meldrim and Gift, 1971

0 0 0 Appendix Table 5 . (coat.)

Thermal Effects Acclimation Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit cc Range Reference Temperature Avoidance 86 - 115 16.0 - 18.0 24.0 - 25.0 Meildrirn et aL (unpublUed, undated) 60 - 73 17.0 24.0 and 27.0 31 - 53 18.0 26.0 - 29.0 128 - 141 19.0 26.0 75 - 93 20.0 27.0 Mekirim et al. (unpublished, undated) 38 - 51 21.0 28.0 52 - 72 20.5 and 21.1 25.5 and 30.0 Meldilm and Gift, 1971 79 - 91 22.0 30.0 Meldrim et al. (unpublid.d, undated) 78 22.2 28.3 Mieldrim and Gift, 1971 51 - 89 23.0 - 24.0 27.0 - 28.0 Meldrim et al. (unpublished, undated) 59 - 72 25.0 29.4 Meldrim and Gift, 1971 55 -65 26.0 28.0 Meldrim et aL (unpublished, undated) 61 - 70 27.2 32.2 Meldrim and Gift, 1971 52 - 58 21.0 26.0 Meidrim et aL (unpablisbed, undated) 66 -?72 21.0 30.0 78 - 98 22.0 28.0 59 -72 25.0 29.0 61 - 70 27.0 32.0

Appendix Table 6 . Additional temperature related data for the bay anchovy, Anchoa mitchilli.

Thermal Effects Acclimation Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit or Range Reference Temperature. Preference 64 - 65 .12.0 .14.0 Meidrim et al. (unpublished, (Horizontal) undated) 33 - 45 12.0 19.2 66 -80 12.0 12.5 49 - .52 15.0 14.0 63 - 74 15.0 15.5 Meldrim and Gift, 1971 55 - 86 16.1 18.2 - 19.8 47 - 53 19.0 16.5 Meldrim et al. (unpublished.

undated) 53 68 19.0. 20.0 49 65 19.0 - 21.0 19.0 - 23.5 71 77 22.0 29.7 Meldrim and Gift. 1971 56 67 23.0 24. 0 Meldrim et al. (unpublished, undated) 43 - 47 23.0 27.0 0 26 - 38 25.0 - 26.0 22.5, 28.0 60 - 61 26.0 28.0 21.- 65 27.0 23.0 - 32.0 39 - 42 27.0 23.0. 30.0 Temperature Avoidance 53 - 88 12.0 21.0 - 22.0 Meldrim et al.. (unpublished, undated) 42 - 47 15.0 20.0 and 27.0 48 - 68 16.0 23.7 Meldrim and Gift, 1971 63 - 74 17.6 26.4 44 - 61 19.0 28.0 Meldrim et aL (unpublished.

undated) 43 - 74 19.0 28.0 - 29.0 48 - 75 20.0 24.0 28.0 - 29.0 51 -64 21.0 45 -64 24.0 27.0 - 32.0 23 - 51 22.0 - 25.0 28.0 - 31.0 40 - 46 27.0 29.0 - 30.5 23 -64 26.0 - 28.0 28.0 - 33.0

Append ix Table 6 . (cot nt. )

Thermal Effects AccUmation Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit or Range Reference Final Preferendum AUl 24. 5 - 32.5 Gallaway and Strawn, 1974 Effects of Temperature Embryo Hatching time I day at 27.2 - 27. 8 Altman and Dittmer, 1966 on Hatching PO

'.3

Table 7 . Additional temperature related data for the threespine stickleback, Gasterosteus aculeaus.

Thermal Effects Acclimation Parametir Life Stage or Size (mm) Temperature (C) Temperature (C) Limit or Range Reference Upper Temperature Not given 15.0 201o mortality at 25.0 Snyder et al., 1970 Tolerences (Heat Shock) .. 1 15.0 50/a mortality at 28.0

. .15.0 1000/a mortality at 28.0 18.0 2010 mortality at 20.0 18.0 500/ mortality at 25.0 18.0 1001/ mortality at 29.0 Adult Not given 31.7- 33.0 Altman and Dittmer, 1966 Larvae Not given 31.7 Temperature Preference 58 - 63 5.0 9.0 Meldrim et aL (unpublished, (Horizontal) undated) 60 - 65 6.0 13.0 Effect of Temperature Embryo Eggs hatched in 4.3 days at 27.0 Altman and Dlrtmer, 1966 on Hatching Ln

Appendix Table 8 . Additional temperature related data for the striped bass, Morone saxatils.

Thermal Effects Acclimation Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit or Range Reference Upper Temperature Juvenile 18.9 Some mortality at +26.9 Meldrim and Gift, 1971 Tolerences (Heat Shock) Adult > 21.0 31.6 Gift and Westman. 1971

> 21.0 33.6 Juvenile >21.0 37.3 Larvae 22.0 Could tolerate approx. 30 min exposure Coutant and Kedl, 1975a to 29.0 22.0 500 mortality within 5-6 min at 31.0 and 33. 0 Juvenile 26.1 Survived for 15 miin when exposed to 34.4 Meldrim and Gift, 1971 Embryo 16.6 - 19.6 A T 15.0 did not significantly reduce Schubel et al., 1976 hatching success Larvae 19.3 . 21.1 A T 10.0 did not significantly increase mortality Adult Not given 32.0 Kerr, 1953 ha Adult 18.3 WLE in 2 mrin at 33.3 Dorfman and Westman, 1970 Ln 27.2 LOE in 2 mrin at 35.6 31.7 LOE in 2 mnn at 37. 8 Young of year Upper lethal temperature 34.6 Talbot, 1966 Temperature Preference 18 " 146 3.0 15.5 and 12.0 (43 and 430 lIux) Meldrim et aL (unpublished, (Horizontal) undated) 142 = 150 7.5 No preference (430 lux) 129 - 155 9.0 19.0 86 - 146 11.0 16.0 123 - 151 12.0 18.0 (43 lux) 47 - 54 25.0 31.0 (43 lux) 45 - 52 26.0 31.5 - 33.0 (43 and 430 lux)

Temperature Avoidance 116 - 145 3.0 16.0 Meldrim et aL (unpublished, undated) 102 - 129 5.0 12.8 Meldrim and Gift, 1971 110 - 147 7.0 11.0 Meldrim et al. (unpublished, 116 - 132 10.0 14.0 undated)

Table 8 . (cont.)

Thermal Effects Acclimation Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit or Range Reference Temperature Avoidance Adult > 21.0 26.7 Gift and Weatman, 1971 (cont.) >21. 0 28.9 Juveniles >21.0 29.4 90 - 105 24.0 29.0 Mekirim et aL.(unpublished, undated) 38 - 56 26.0 29.0 Meldrim et aL (unpublished, undated) 26,0 32.0 70 - 100 27,2 Meidrim and Gift, 1971 Effect of Temperature Juvenile Growth maximum at 24.0, above 26.0 Cox and Cotitant, 19 7 5 a on Growth growth rate declined rapidly. 501o mortality at 34.5, those that did survive Ili Ln lost weight.

Juvenile Optimum temperature and salinities, 18.0 OtweUl1 197,I to 24.0 and. 4 to 13 ppt Juvenile Good growth at 24.0, depressed above 30.0 Allen, 1974 Effect of Temperature Adult Spawned between 16.1 and 20.6 Farley, 1966 on Reproduction Effect of Temperature on Embryo 2 days at 17.9 Altman and Dittmer. 1966 Hatching and Development Embryo Eggs survived at all salinities in nature Albrecht, 1964 but low salinitles enhance survival.

Effect of Size. on Adult 21.0 No significant difference of size on thermal Gift and Westman, 1971 Thermal Response response In adults Effect of Temperature Fry and Fingerling 64.0 and 70.0 1) acclimated faster to high temperatures Davies, 1973 on Acclimation Temperature than to low temperatures.

2) temperature acclimation of bass especially to lower temperatures. Faster than most fish species.

Effect of Temperature Not given 96 h TLM less at 23.0 than at 15.0 Hazel et al., 1971 on Ammonia Tolerence a Experiments with striped bass conducted In freshwater.

0 k.ppendix rable 9 Additional temperature related data for the bluefish, Pomatomus saltatrlx.

e.ermal Effects Acclimation Parameter WLfe Stage ot Size (mm) Temperature (C) Temperature (C) Limit or Range Reference remperature Preference 78 - 95 .18.3 22.2 Meldrim and Gift, 1971

Horizontal) 66 - 86 20.0 22.5 Meldrim et aL (unpublished, undated) 81-89 21.1 21.1 Meirirm and Gift. 19'71 106 - 125 23.9 28.3 80 - 135 23.0 - 25.0 27.0 (one test showed no preference Meidrim et al. (unpablbhed, undated) 71 - 102 26.0 - 27.0 22.0 and 25.5 121 - 154 27.0 27.0 remperature Avoidance 46 - 60 20.0 27.0 and 30.0 Meldrim et al. (unpublished, undated) 66 - 89 >21.0 30.3 Gift and Westman. 1971 115 - 166 >21.0 31.1 N, 53 - 62 22.2 31.7 Meldrim and Gift, 1971 94 - 115 23.0 28.0 Meldrim et al. (unpublishe, undated) 68 - 141 25.0 28.0 64 - 78 26.0 27.0 and 29.0 71 - 120 28.0 33.0 teproduction Adult A tSpawned at 22.0 cc higher - 33 ppt Nacrom et aL, 1974 salinity

Appendix Table 10 . Additional temperature related data for the weakfish, Cynoscion regali.

Thermal Effects Acclimation Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit or Range Reference Temperature Preference 63 - 95 20.0 24.0 Meldrim et aL (unpublished, (Horizontal) undated) 49 - 61 22.2 24.4 Meldrim and Gift, 1971 74 - 182 25.0 21.1 21 -- 51 24.0 - 28i0 22.0 - 28 0 Meldrim ar, al. (unpublished.

65 - 93 26.0 - 27.0 26.0.- 29.0 undated)

Temperature Avoidance 32 - 146 17.0 27.0 Meldrim et al. (unpublished, undated) 41 - 139 21.1 26.1 -27.2 Meldrfm and Gift, 1971 64 - 114 22.0 .29.0 Meldrim et al. (unpublished, undated) 80 - 136 23.0 21.0 - 28.0 51 - 92 26.0 - 27.0 29.5 -31.5 36 - 96 26.0 - 28.0 28.0 - 31.0 Effect of Temperature Embryo .20.0 - 21.1 in 1. 5 to 1.'7 days Alteifi. and Dittmer 1966 on Hatching 0 0 0.-

Appendix Table 11

  • Additional temperature related data for the narthern kingfish, Menticirrhus saxatilis.

Thermal Effects Acclimation Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit or Range Reference Upper Avoid. Lethal and Heat Shock Temperahre Avoidance 47 - 136 > 21.0 30.5 36.2 Gift and Westmran, 1971 Not given > 21.0 30.8 36.3 106 - 133 > 21.0 30.8 36.5 43 - 101 >21.0 30.5 36.6 Appendix

-J Table 12 Additional temperature related data for the summer flounder, Parallchthys dent~tus.

Thermal Effects Acclimation Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit or Range Reference Upper Temperature Larvae 5.0 29.0 Hoss et al., 1973 Tolerence (Heat Shock) 10.0 30.5 15.0 32.0 15.0 70716 mortality at a A T of 18.0 Effect of Temperature Juvenija N/A Growth fastest at higher temperatures, Peters and Angelovic, 1973 on Growth but < 30.0 Effect of Temperature Adult N/A Spawned between 12.0 and 19.0 Smith, 1973 on Reproduction Adult N/A Spawned in October and November Festa, 1974 offshore of New Jersey

Appendix Table 13 Additional temperature related data for the winte flounder, Pseudopletironectes amnricanus.

Thermal Effects Acclimation Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit or Range Reference Upper Temperature Adult 11.0 - 15.0 501o mortality at 28.3 Britton, 1923 Tolerence (Heat Shock) 7Wo mortality at 30.4 501o mortality at 31.4 Not given 15.0 25.0 Pearce, 1969 36 - 171 >21.0 31.8 Gift and Westman, 1971 37 - 74 >21.0 32.0 120 - 206 >21.0 31.6 42 - 67 >21.0 31.9 48 - 87 >21.0 32.1 10.3 - 1 4 .9 a 7.0 22.0 Hoff and Westman, 1966 14.0 23.7 21.0 27.0 28.0 29.1 U,d KX) c~n Lower Temperature Adult 11.0 - 15.0 100lo survival for 50 min at 1. 9. 016 Britton, 1923 Tolerence (Cold Shock) survival for 1 h 15 min at 1.9 Temperature Preference 104 - 122 7.0 10.0 Meldrim et al. (unpublished, undated) 93 - 103 13.9 19.4 Meldrim and Gift, .1971 Temperature Avoidance 80 - 92 13.9 24.4 Meldrim and Gift, 1971 48 - 87 >21.0 26.6 Gift and Westman, 1971 36 - 171 >21.0 26.6 120 - 206 > 21.0 24.2 37 - 74 > 21.0 26.6 42 - 67 >21.0 26.6 Effect of Temperature on Larvae A correlation between *mpexature and McCraekan, 1963 Migration, Larval Develop- riverward migration and pathways was ment shown. Daily growth rates at 2.0, 5.0, and 8.0 were 2.6, 5.8, and 10.1 Jo/day.

Appendix Table 13 . (cont.)

Thermal Effects Acclination Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit cc Range Reference Effect of Temperature Embryo Hatching time 15 days at 20.6 Altman and Dittmer. 196E

.on Hatching Embryo Incubation optimum at 3.0 and 15 to Rogers, 1976 35 g/l salinity.

Embryo Viable embryo-genisis from -1. 8 to Williams, 1975 15.0 Growth Juvenile Growth similar at 10.0 and 20.0, but Chesney and Eslevez, 19'76 growth efficiency different between age classes.

Size units in grams.

Appendix Table 14 . Additional temperature related data for the northern puffer, Sphoeroides maculats.

Thermal Effects Acclmation Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit or Range Reference Avoidance Lethal Heat Shock and Not given 10.0 27.5 Hoff and Westman, 1966 Avoidance 14.0 30.2 21.0 31.2 28.0 - 32.5 138 - 269 > 21.0 31.1 35.5 Gift and Westman, 1971 170 - 259 >21.0 30.0 35.1 K)

ON aD Appendix Table 15 . Additional temperature related data for the oppossum shrimp. Neoymsis americana.

Thermal Effects Acclimation Parameter Life Stage or Size (mm) Temperature CC) Temperature (C) .Limit or Range Reference Upper Temperature Adult 15.0 50% survival after 24 h at 24. Mihursky and Kennedy, 1967 Tolerences (Heat Shock) 15.0 100CTo survival after 24 h at 27.0 25.0 50C7o survival after 24 h at 28.5 25.0 100a1o survival after 24 h at 32.0 30.0 501o survival after 24 h at 32.0 30.0 10056 survival after 24 h at 33.5

Appendix Table 16 . Additional temperature related data for the sand shrimp, Grangon septemspinosa.

Thermal Effects Acclimation Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit or Range Reference Upper Temperature Adult 15.0 A/ survival at 24 h at 30.0 Mihursky and Kennedy, 1967 Tolerences (Heat Shock) 15.0 501o survival at 24 h at 27.8 Adult 20.0 30.0 - 32.5 Huntsman and Sparks. 1924 Larvae Not given 37h survival after 24 h at 30.0 Regnault and Costlow, 1970 1.

6001o survival after 24 h at 20.0 31 survival after 24 h at 25. 0 n ff 491o survival after 24 h at 15. 0-20.0 2616 survival after 24 h at 20.0-25.0 0qo survival after 24 h at 25.0-30.0 Temperature Avoidance 36 - 47 12.0 30.0 Meldrim et aL (unpublished, undated) 28 - 42 25.0 26.0 Effect of Temperature 20 - 30 0.4 mm/week at 5.0 Wilcox and Jefferies, 1973 on Growth 40 - 50 1.1 mm/week at 20.0 Distr ibution 22 - 78 0.5 to 24.1 Haefner, 1976 Maximum concentrations in winter at 5.0 to 11.0, reduced concentrations in spring at > 15.0, Chesapeake Bay-York River Estuary

Appendix T able 17 . Additional temperature related data for the blue crab, Callinectq sapius Thermal Effects Acc1imation Parameter Life Stage or Size (mm) Temperature CC) Temperature (C) Limit or Range Reference Upper Temperature Adult 6.0 33.1 Tolerences (Heat Shock) Juvenile 6.0 33.0 Adult 14.0 34.7 Juvenile 14.0 35.3 Juvenile 15.0 33.0 lethal after 45 day exposure Holland et al., 1971 Adult >21.0 40.5 Gift and Westman. 1971 Juvenile > 21.0 40.8 40 - 60 22.0 37. 0 at 20P/o sea water Tagatz, 1969 40 - 60 22.0 39. 0 Adult 22.0 36.9 Adult 30.0 38.7 Juvenile 30.0 39.0 40 - 60 30.0 37.2 at 20% sea water 0'J Temperature Preference 33 - 55 >21.0 24. 8 Meldrim and Gift, 1971 30 - 64 18.0 No preference Meldrim et al. (unpublished, undated) 43 - 52 23.0 Temperature Avoidance Adult >21.0 34.3 26 - 76 18.0 31.0 - 34.0 Meldrim et al. (unpublished, undated)

Juvenile > 21.0 37.5 Gift and Westman. 1971 67 - 92 26.0 34.4 Meldrim and Gift, 1971 Effect of Temperature Juvenile Maximum growth at 29.0-30.0 Holland et al., 1971 on Growth Growth decreases as temperature increased from 31.0-35.0, and as temperature decreased from 30.0-20.0.

0

0 Appendix Table 17 . (cont.)

Thermal Effects AccUlmatlon Parameter Life Stage or Size (mm) Temperature (C) Temperature (C) Limit or Range Reference Effect of Temperature on Juvenile Molting more frequent at optimum Holland et aL, 1971 Molting and Metamorphosis temperatures (29. 0-30.0)

Megalops Metamorphosis delayed at 15.0 Costlow, 1967 as salinity increased from 20-40 ppt, megalops stage further extended.

Megalopa Survival never> 501o at 15.0, 20.0, 25.0, and 30.0 Effect of Temperature Juvenile High mortality at 15.0 at salinities Holland et al.. 1971 and Salinity on Survival of 1-6 ppt Megalops 10016 mortality at 20.0, when salinity Costlow, 1967 5 ppt Adults 100% mortality at 36.0 at salinities Mahood et aL, 1970

<30.1 5o NJ t'3 Effect of Increasing Juvenile Survival decreased as temperature Holland et al., 1971 Temperature on Survival iJreased from 20.0-30.0, mortality attributed to cannaballsm Effect of Temperatures on Larvae Spawning induced at constant temper- Sulkin, et al., 1976 Reproduction ature of 19.0; no eggs produced at 15.0 Dstribution Not given Highest average catches at 20.0-25.0 Perry, 1975 when salinity was 5 and 15 ppt in Mississippi Sound Effect of Temperature and Adult Increased Cd uptake at low salinities and Hutcheson, 1974 Salinity on Cd Uptake high temperatures Parasites *Not given Presence of leech (Myzoldella lugublis Daniels and Sawyer. 1975 inversely correlated with water temper-ature from 4.0 (Jan.) to 29.0 (July)

APPENDIX TASLE S1. RESULTS O TE"PERATUIE PREFERNCE STUDIES WITH KIGR SALINITY ESTUAIRIWANDMARINE OWANlSKS (HOKIZONTAL APPARATUS).

ACCL OORC SIZE RANGE MEAN MEAN MEAN LIGHT TEMP PREFERRED TEMPERATURE (C) I PER (TL mm) wT SAL DO MEAN LEVEL DATE (C) MEAN MODE(S) SD KNi MAX LTR TEST HN MAX IRAN (g) (ppt) (ppm). PH (lux)

Atlantic menhaden, Brevoortia tyrannus high light intensity 25 MAR 77 10.0 18.2 18.0 - 3.2 11.0 23.0 4 130.0 139.8 146.0 - 26.0 10.4 - 323.0 28 MAR 77 10.0 18.7 16.0 21.0 2.8 12.0 24.0 4 132.0 145.0 138.8 - 26.0 10.9 -. 323.0 29 MAR 77 10.0 17.4 16.0 - 2.9 10.0 25.0 4 127.0 135.0 132.0 - 26.0 .10.0 - 323.0 29 MAR 77 10.0 18.8 18.0 2.8 15.0 25.0 4 121.0 130.0 125.5 26.10

- 10.2 - 323.0 6 MAY 77 15.0 20..3 - 3.2 13.0 27.0 4 132.0 153.0. 142.3 25.8 27.5 9.3 - 323.0 9 MAY 77 15.0 20.2 3.5 15.0 27.0 4 136.0 143.0 140.5 27.1 27.0 8.3 - 323.0 10 NAY 77 15.0 22.5 25.0 -. 3.9 10.0 28.0 4 132.0 146.0 136.8 27.0 27.5 8.3 - 323.0 10 MAY 77 15.0 21.0 26.0 5.4 8.0 27.0 4 135.0 147.0 141.8 28.1 27.5 8.1 323.0 tj ONJ 14 JUN 77 18.0 22.2 22.0 2.0 20.0 29.0 4 48.0 52.0 50.8 1.2 29.0 7.6 - 323.0 41 15 JUN 77 18.0 23.5 - 2.2 20.0 27.0 4 47.0 51.0 48.8 0.9 29.0 7.9 - 323.0 17 JUN 77 18.0 21.1 18.10 22.0 4.2 15.0 29.0 4 65.0 74.0 68.8 3.5 29.0 7.1 - 323.0 17 JUN 76 20.0 20.4 19.0 - 3.1 14.0 29.0 4 73.0 93.0 83.5 - 29.5 7.3 7.9 323.0 18 JUN 76 20.0 20.7 20.0 - 2.7 14.0 29.0 4 77.0 92.0 84.8 - 29.5 7.3. 7.9 323.0 15 JUL 76 20.0 23.7 25.0 - 2.6 16.0 32.0 4 77.0 91.0 84.5 - 30.0 6.1 7.6 323.0 15 JUL 76 20.0 22.2 26.0 - 4.3 13.0 30.0 4 83.0 89.0 86.5 - 30.0 6.1 7.6 323.0 16 JUL 76 20.0 25.1 28.0 - 3.5 15.0 31.0 4 72.0 82.0 75.0 - 30.0 6.S 7.6 323.0 16 JUL 76 20.0 24.9 27.0 - 3.8 16.0 30.0 4 71..0 80.0 75.3 - 30.0 6.5 7.6 323.0 5 JUL 77 21.0 24.4 24.0 - 1.9 21.0 28.0 4 66.0 73.0 70.3 3.6 30.0 6.8 - 323.0 8 JUL 77 21.0 23.0 22.0 - 2.6 19.0 30.0 4 76.0 86.0 80.5 4.2 30.0. 6.8 - 323.0

AFWZXDTX AL3 18. (CeirI.)

AMCL #ORG SIZE RANGE MEAN HEAP MEAN LIGHT TEMP PREFERRED TEMPERATURE (C) B PER (TM no) Wt SAL 0O WEAS LIVErL DATE 4C) WAN MODS(S) SD RIM MAX LTR TEST HIs MAX REAN (9) (pP Wpp) PH (lax)

I JoU. 75 22.0 25.5 - - 20.0 29.0 0 75.0 02.0 78.0 - 29.0 9.0 7.6 323.0 21 JUN 76 23.0 22.9 21.0 23.0 3.3 15.0 31.0 0 81.0 97.0 66.5 - 30.0 6.7 7.8 323.0 23 JUN 76 23.0 23.9 22.0 - 2.3 19.0 32.0 0 66.0 85.0 78.3 - 30.0 6.4. 7.7 323.0 22 JUL 76 23.0 23.1 23.0 - 3.3 14.0 29.0 0 75.0 80.0 77.3 - 30.0 6.3 7.6 323.0 22 JUL 76 23.0 25.7 29.0 - 3.8 17.0 31.0 0 77.0 78.0 77.5 - 30.0 6.3 7.6 323.0 23 JUL 76 23.0 25.2 24.0 29.0 3.2 16.0 30.0 0 75.0 79.0 76.8 - 30.0. 6.1. 7.5 323.0 15 JUL. 77 23.0 26.1 25.0 - 1.6 22.0 29.0 0 75.0 80.0 77.5 4.9 30.0 7.7 - 323.0 21 JUL 77 23.0 24.7 24.0 27.0 2.9 20.0 30.0 1 70.0 100.0 86.8 6.9 29.5 7.9 7.2 323.0 26 JUL 77 25.0 23.4 25.0 - 3.1 14.0 29.0 0 80.0 95.0 88.8 7.1 30.0 5.9 7.2 323.0 29 JUL 75 24.0 24.0 - - - 21.0 27.0 0 83.0 96.0 89.0 - 29.0 7.6 7.5 323.0 12 AUG 75 24.0 27.0 - - - 24.0 32.0 0 116.0 122.0 119.0 - 28.0 8.5 7.6 323.0 13 AUG 75 24.0 27.5 - - - 22.0 31.0 0 107.0 115.0 111.0 - 28.0 7.9 7.6 323.0 18 JUL 75 25.0 25.0 - - - 23.0 27.0 0 87.0 93.0 90.0 - 28.0 7.6 7.9 323.0 i,,

18 AUG 75 25.0 26.5 . - 21.0 30.0 0 111.0 112.0 111.0 - 28.0 7.2 7.3 323.0 4 AUG 76 25.0 24.4 26.0 - 3.1 17.0 32.0 0 72.0 87.0 78.3 - 30.0 5.7 7.4 323.0 4 AUG 76 25.0 23.8 24.0 - 3.6 16.0 30.0 0 78.0 83.0 81.3 - 30.0* 5.7 7.4 323.0 6 AUG 76 25.0 25.0 27.0 - 3.6 18.0' 30.0 0 77.0 91.0 81.0 30.0 5.8 7.5 323.0 25 AUG 76 25.0 23.4 23.0 - 3.6 15.0 31.0 0 73.0 80.0 76.5 - 28.5 6.9 7.4 323.0 28 JUL 77 25.0 25.1 27.0 21.0 2.8 20.0 29.0 0 82.0 87.0 84.5 5.7 30.0 6.5 7.5 323.0 29 JUL 77 25.0 23.9 24.0 - 2.9 19.0 30.0 0 80.0 95.0 86.0 5.8 30.0 6.9 7.5 323.0 1 AUG 77 25.0 25.6 26.0 30.0 3.7 17.0 31.0 0 80.0 87.0 83.8 4.2 30.0 6.5 7.4 323.0 9 OCT 75 20.0 24.0 - - 13.0 27.0 0 134.0 160.0 146.0 - 27.5 7.3

  • 7.8 323.0 9 OCT 75 20.0 23.0 - - 17.0 27.0 0 146.0 173.0 161.0 - 27.5 7.3 7.8 323.0 6 NOV 75 15.0 - - - - - 0 166.0 186.0 172.0 - 26.0 7.7 .7.7 323.0 14 NOV 75 15.0 - - - - - 0 165.0 195.0 183.0 - 25.5 6.8 7.8 323.0 19 NOV 75 15.0 - - - - - 0 162.0 186.0 172.0 - 26.0 7.9 8.0 323.0 20 NOV 75 15.0 - - -- - - 0 155.0 188.0 176.0 - 26.0 8.0 7.8 323.0

TABLKIA1. (CONT.)

ACCL O0RG sila RANGE NEAU MEAN MEA LIGHT TEMP PREFERRED TEMPERATURE (C) # PER (TL s) WT SAL DO MEAN LEVEL DATE (C) meA MODE(S) SD KIM MAX LTR TEST. Kim MAX MEAN (9) (ppt) (ppm) pe (lux) 3 DEC 75 15.0 . . .. . 0 4 165.0 191.0 173.0 - 25.0 9.7 7.9 323.0 12 OCT 76 15.0 22.2 24.0 - 3.5 11.0 28.0 0 4 132.0 143.0 138.5 - 26.5 6.8 7.5 323.0 13 OCT 76 15.0 22.2 26.0 - 4.0 12.0 29.0 0 4 145.0 150.0 146.8 - 27.0 6.4 7.5 323.0 15 OCT 76 15.0 22.1 22.0 - 3.9 11.0 29.0 1 4 128.0 143.0 134.3 - 27.0 6.5 7.5 323.0 20 OCT 76 15.0 . . .. 0 4. 132.0 140.0 134.5 - 27.0 7.0 7.5 323.0 17 NOV 76 15.0 21.3 25.0 - 3.4 14.0 27.0 0 4 142.0 146.0 143.8 - 27.5 8.5 7.5 323.0 19 DEC 75 10.0 . . .. . 0 4 160.0 180.0 166.0 26.0 12.0 7.8 323.0 24 DEC 75 10.0 . . .. a.0 4 160.0 175.0 165.0 26.0 10.5 7.8 323.0 low light intensity 31 MAR 77 10.0 16.2 14.0 17.0 3.0 12.0 23.0 4 133.0 140.0 135.8 - 25.5 9.9 - 21.5 31 MAR 77 10.0 4 128.0 135.0 131.8 - 25.0 9.6 - 21.5 1 APR 77 10.0 18.3 19.0 - 2.9 11.0 24.0 4 130.0 135.0 131.5 - 26.0 9.1 - 21.5 4 APR 77 10.0 16.2 18.0 - 3.0 11.0 22.0 4 122.0 133.0 128.3 - 26.0 9.2 - 21.5 5 APR 77 10.0 17.8 16.0 18.0 2.0 14.0 22.0 4 125.0 138.0 131.5 - 26.5 9.4 - 21.5 30 JUN 75 22.0 25.5 19.0 28.0 4 71.0 81.0 76,0 - 30.0 7.2 8.0 21.5 24 JUN 76 23.0 23.9 25.0 - 3.4 18.0 32.0 4 83.0 97.0 92.0 - 30.0 6.0 7.7 21.5 24 JUN 76 23.0 23.8 21.0 - 3.1 17.0 34.0 4 72.0 78.0 76.0 - 30.0 6.0 7.7 21.5 23 JUL 76 23.0 21.9 21.0 - 2.8 16.0 27.0 4 77.0 84.0 79.5 - 30.0 6.1 7.5 21.5 16 JUL 77 23.0 23.7 22.0 - 3.4 14.0 32.0 4 72.0 86.0 77.3 4.7 30.0 7.0 - 21.5 19 JUL 77 23.0 26.1 26.0 - 2.1 22.0 30.0 4 80.0 83.0 81.8 4.8 30.0 6.5 - 21.5 21 JUL 77 23.0 25.3 27.0 24.0 2.5 21.0 30.0 4 81.0 87.0 84.5 4*'6 30.0 6.2 - 21.5 30 JUL 75 24.0 23.5 20.0 27.0 4 80.0 106.0 96.0 - 29.0 7.5 7.5 21.5 2 AUG 76 24.0 23.6 25.0 - 3.2 17.0 32.0 4 77.0 82.0 79.3 - 30.0 5.7 7.5 21.5 21 JUL 75 25.0 22.5 17.0 28.0 4 93.0 101.0 96.0 - 28.0 7.8 7.8 21.5 24 JUL 77 25.0 23.8 26.0 20.0 2.7 20.0 29.0 4 82.0 95.0 86.3 5.2 30.5 7.6 7.2 21.5 25 JUL 77 25.0 - 5. 75.0 85.0 80.0 3.3 29.5 6.2 7.3 21.5 9 AUG 77 25.0 25.4 26.0 25.0 3.1 15.0 32.0 5 109.0 115.0 111.2 15.1 30.0 5.9 7.2 21.5

S AFnDXX tAIL! 18is (Cm.)

ACC1. IORG .8128 IsuG MEAN MEAL MAN SPIGT TE.P PREFERRED TEMPERATURE (C)

  • PER (TL mm) WT SAL 00 MRau LEVEL DATZ (C) MAN MDR (5) SD WIn HAI LTD TRST mIn NAx MEAN (9) (pptl (ppla) go (lz) 23 OCT 75 20.0 -. . . . . ." 0 4 151.0 172.0 163.0 - 27.0 7.6 7.6 21.S 23 OCT 75 20.0 - - - - - - 0 3 170.0 176.0 173.0 - 27.0 7.6 7.6 21.5 24 OCT 75 20.0 22.0 - - - 12.0 28.0 0 4 140.0 168.0 154.0 - 27.3 6.8 7.6 21.5 28 OCT.75 20.0 - - - 0 4 150.0.180.0 162.0 - 26.8 6.4 7.6 21.5 3 DEC 75 15.0 . . . . . 0 4 142.0 170.0 159.0 - 25.5 8.8 7.8 s5 4 DEC 75 15.0 - -a - -- 0 4 170.0 190.0 176.0 - 25.2 9.5 7.0. 21.3 5 DEC 75 15.0 . . . . . . 0 4 175.0 186.0 180.0 - 25.5 9.7 7.2 21.5 Say anchovy, Anchoa mitchilli high light lnteensity 6 mIAY 76 15.0 22.2 25.0 27.0 4.4 9.0 27.0 0 4 74.0 86.0 79.5 - 28.5 8.5 8.1 323.0 7 MAY 76 15.0 19.3 15.0 22.0 4.1 11.0 27.0 0 4 63.0 77.0 70.5 - 28.5 8.2 8.1 323.0 4 MAY 77 15.0 22.0 23.0 - 2.4 16.0 27.0 2 4 62.0 68.0 65.5 1.3 27.5 9.3 - 323.0 4 KAY 77 15.0 - - - - - - 4 4 62.0 68.0 64.3 1.1 27.5 9.4 - 323.0 S MAY 77 15.0 22.4 24.0 - 2.4 16.0 28.0 1 4 60.0 68.0 64.5 1. 1 27.5 9.5 - 323.0 26 MAY 77 18.0 25.7 27.0 - 2.0 20.0 29.0 2 4 56.0 68.0 62.0 1.3 28.5 7.3 - 323.0 26 MAY 77 18.0 22.3 20.0 - 2.5 17.0 27.0 1 4 76.0 87.0 81.5 2.9 28.S 7.7 - 323.0 27 NAY 77 18.0 21.9 21.0 22.0 3.5 16.0 28.0 0 4 67.0 73.0 70.3 1.5 28.5 7.3 - 323.0 31 MAY 77 18.0 23.7 27.0 - 3.4 17.0 30.0 0 4 66.0 88.0 67.0 1.5 29.0 7.6 - 323.0 8 SEP 76 21.0 23.9 23.0 - 3.4 15.0 31.0 0 3 72.0 81.0 76.7 - 29.0 7.0 7.5 323.0 8 SEP 76 21.0 22.5 24.0 - 2.9 15.0 33.0 0 4 71.0 78.0 72.5 - 29.0 7.0 7.5 323.0 23 JUN 77 21.0 25.0 26.0 28.0 3.0 18.0 30.0 1 4 61.0 75.0 66.S 1.7 29.5 7.3 - 323.0 23 JON 77 21.0 24.5 24.0 - 2.7 17.0 30.0 0 4 63.0 75.0 69.5 2.2 29.5 7.6 - 323.0 29 SEP 75 20.0 24.5 - - - 21.0 29.0 0 4 40.0 60.0 52.0 - 21.5 6.4 7.5 323.0 1 OCT 75 20.0 22.0 - - - 22.0 28.0 1 4 36.0 53.0 44.0 - 27.5 7.1 7.5 323.0 2 OCT 75 20.0 27.5 - - 24.0 31.0 0 4 50.0 75.0 57.0 - 27.5 7.0 7.6 323.0 3 OCT 75 20.0 25.0 - - - 22.0 26.0 0 4 38.0 56.0 47.0 - 27.3 7.1 7.6 323.0

WABI Ilk (CO0W.)

ACCL ORG 81ZE RANG& MENa MIAN am LZIGT TiMt PREFERRED ?EMP3RATURB (C) 0 PER (Th un) WT SAL DO MEAR LEVEL DATR (C) amJU NO0s(S) SD Nl MAX 4 LTR TEST mIx MAX NEAN (9) (ppt) (ppe) pH fluxI 7 OCT 75 20.0 21.0 - - 21.0 31.0 0 4 39.0 60.0 48.0 - 27.2 7.1 7.7 323.0 4 OCT 76 18.0 22.3 22.0 - 2.3 15.0 27.0 0 4 71.0 82.0 76.3 27.0 .6.7 7.5 323.0 5 OCT 76 18.0 23.0 21.0 - 3.3 16.0 30.0 0 4 62.0 27.5 7.5 323.0 80.0 71.5 - 6.8 11 NoV 75 35.0 27.0 - - 17.0 28.0 1 4. 73.0 o0.0 76.0 - 27.0 6.9 7.7 323.0 12 NOV 75 15.0 22.0 - - 16.0 28.0 1 4 60.0 93.0 81.0 26.5 6.4 7.9 323.0 13 NOV 75 15.0 23.0 - - 18.0 28.0 0 4 63.0 95.0 74.0 - .26.0 7.0 7.6 323.0 21 NOV 75 L5.0 27.0 - - 23.0 30.0 0 4 65.0 86.0 78.0 - 26.5 8.5 7.8 323.0 9 DEC 75 10.0 22.0 - - 17.0 25.0 0 4 65.0 82.0 77.0 - 25.0 9.8 7.7 323.0 9 DEC 75 10.0 24.5 - - 18.0 28.0 0 4 64.0 82.0 76.0 - 25.0 9.8 7.7 323.0 10 DEC 75 10.0 21.5 -

S 16.0 28.0 0 4 65.0 75.0 70.0 - 25.5 .9.1 7.8 323.0 11 DEC 75 10.0 23.5 - - 18.0 27.0 0 4 65.0 84.0 74.0 - 25.3 9.9 7.9 323.0 20 JAN 76 10.0 14.0 20.0 - - - 1 4 68.0 90.0 82.3 - 25.5 12.2 7.8 323.0 low light intensity 8 APR 76 10.0 17.0 19.0 3.4 7.0 19.0 0 4 61.0. 80.0 72.3 - 27.0 9.9 8.1 21.5 60.0 71.3 - 29.0 7.5. 21.5 10 SEP 76 22.0 24.7 25.0 3.4 15.0 30.0 1 4 75.0 15 58P 76 21.0 22:7 20.0 3.8 15.0 33.0 0 4 73.0 76.0 74.8 - 29.0 4.2 7.6 21.5 23 SEP 76 21.0 24.0 21.0 25.0 2.9 19.0 30.0 2 4 70.0 72.0 71.0 - 29.2 21.5 24 NOV 75 15.0 23.5 19.0 29.0 0 4 55.0. 83.0 64.0 - 25.5 7.5 7.7 21.5 25 NOV 75 15.0 23.5 - - 1.8.0 28.0 0 4 80.0 95.0 82.0 - 25.5 7.0 .7.8 21.5 28 NOV 75 15.0 21.0

- - 16.80 27.0 0 4 63.0 85.0 75.0 - 25.5 6.1 7.0 21.5

- - 20.0 29.0 2 4 65.0 95.0 74.0 - 25.5 8.9 7.8 21.5 3 DEC 75 15.0 23.5

- - 18.0 27.0 0 4 74.0 85.0 73.0 - 25.5 .9.3 7.8 21.5 12 DZC 75 10.0 22.0

- - 18.0 28.0 0 4 70.0 86.0 81.0 - 25.0 10.5 7.9 21.5 15 DEC 75 10.0 22.6 0

0 toL SOAG siZE uRAI KEAN MEA MAN LIGBT 19NP PREFERRED TEMPERATURS (C) 0 PER (TL "u) WT SAL 00 Iml LXEVE-DATE (CI MAN IS W-0E(S) SD MAR Wi TIEST min MAX REAM (9) (ppt) (ppm) go (lux)

Threenpime Stickleback, Gastarostauu aculAatus bigh ILgbt Intonalty 11 MAY 77 .LS.0 13.2 12.0 4.1 7.0 20.0 0 4 62.0 6.0 64.5 2.9 27.5 9.3 - 323.0 11 MAY 77 15.0 10.7 12.0 2.8 4.0 15.0 -0 4 61.0 63.0 61.8 3.2 27.5 9.2 - 323.0 12 MAY 77 15.0 19.0 19.0 2.2 1S.0 23.0 0 4 62.0 68.0 65.5 2.9 27.5 - 323.0 L6 MAY 77 15.0 17.0 16.0 2.6 14.0 25.0 0 4 63.0 66.0 ,4.8 2.2 27.5 8.6 8.s - 323. 0 25 MAY 77 18.0 14.3 15.0 3.1 9.0 22.0 0 4 65.0 69.0 67.0 2.1 28.5 8.5 - 323.0 22 JuN 77 21.0 13.0 13.0 2.6 10.0 20.0 0 4 62.0 67.0 65.5 2.6 29.0 6.3 - 323.0 28 JON 77 11.0 1s. 3 15.0 14.*0 2.6 10.0 22.0 0 5 50.0 68.0 58.6 3.7 2.5 7.0 - 323.0 Striped baas, Morone eazatilis K'

high light intensity (ON 16 MAR 77 10.0 - - - 0 4 .123.0 137.0 131.0 - 27.5 9.7 - 323.0 16 MAR 77 10.0 15.4 15.0 - 4.4 7.0 24.0 0 4 127.0 144.0 135.3 - 27.5 9.8 - 323.0 17 MAR 77 10.0 13.4 18.0 19.0 3.1 12.0 23.0 0 4 128.0 134.0 131.8 - 27.5 9.6 - 323.0 17 MAR 77 10.0 - - - - 0 4 120.0 133.0 126.8 - 27.5 9.5 - 323.0 21 MR 77 10.0 - - - 0 4 132.0 148.0 137.5 - 26.5 9.7 - 323*0.

5 APR 77 10.0 15.8 13.0 - 2.8 12.0 22.0 0 4 136.0 144.0 141.3 - 26.5 9.9 323.0 6 APR 77 10.0 - - - 4 4 120.0 131.0 124.5 - 26.5 10.0 - 323.0 7 APR 77 10.0 - - - 4 4 145.0 154.0 148.8 - 26.5 10.0 - 323.0 27 APR 77 13.0 18.9 21.0 - 3.5 13.0 25.0 0 4 138.0 145.0 141.8 - 27.5 9.2 - 313.0 28 APR 77 13.0 18.2 18.0 - 1.9 15.0 22.0 0 4 135.0 148.0 142.0 - 27.5 9.7 - 323.0 28 APR 77 .13.0 20.7 21.0 - 2.3 16.0 25.0 0 4 126.0 140.0 131.0 - 27.5 10.3 - 323.0 29 APR 77 13.0 - - - 4 4 123.0 137.0 130.3 - 27.5 10.3 - 323.0 29 APR 77 13.0 . - - 4 4 140.0 153.0 148.3 - 27.5 10.3 - 323.0 12 MAY 77 15.0 26.5 20.0 33.0 - 15.0 33.0 0 4 123.0 142.0 133.3 18.3 27.5 8.7 - 323.0 13 NAW 77 15.0 24.5 20.0 29.0 - 132. 29.0 0 4 120.0 140.0 130.0 20.5 27.5 8.4 - 323.0 13 MAY 77 15.0 25.0 25.0 29.0 - 21.0 29.0 0 4 130.0 145.0 136.3 24.6 27.0 7.9 - 323.0 14 RAT 71 15.0 2S.0 19.0 31.0 - 15.0 32.0 0 4 132.0 143.0 136.3 22.4 27.5 6.0 - 323.0

TAlLE 18. CONT.)

ACCT., ORG Bill RANGE MEAN MEAN MEAN LZGHT TEMP PREFERRED TEMPERATURE (C) # PER (TL am) WT SAL DO MEANLEVEL DATX (C) MAR MODES(S) SD .KIM MAX I.TR TRST Him PAZ MRAU (q 1 (7pt) (pWuE) PH luxi 23 NAT 77 18.0 23.0 20.6 26.0 17.0 28.0 4 114.0 150.0 128.8 20.8 28.5 7.3 - 323.0 27 MAr 77 18.0 23.0 21.0 27.0 1.7 21.0 27.0 4 132.0 153.0 140.8 22.9 28.0 7.3 - 323.0 1 JUL 77 21.0 26.8 25.0 1.8 23.0 30.0 4 142.0 163.0 154.8 33.2 29.5 6.2 - 323.0 L JUL 77 21.0 26.6 24.0 2.5 20.0 30.0 4 129.0 148.0 140.3 22.7 29.5. 7.1 - 323.0 3 JUL 77 21.0 28.0 29.0 1.8 24.0 31.0 4 131.0 150.0 140.8 23.7 30.0 7.3 - 323.0 30 JUN 77 21.5 26.8 26.0 29.0 2.3 22.0 31.0 4 1S2.0 165.0 158.5 36.0 30.0 6.0 - 323.0 30 JUN 77 21.5 26.1 28.0 26.0 2.0 20.0 30.0 4 138.0 146.0 142.3 23.7 30.0 6.0 - 323.0 14 JUL 77 23.0 27.1 28.0 2.6 18.0 32.0 4 140.0 164.0 147.3 31.3 30.0 7.3 - 323.0 11 AUG 77 25.0 24.5 5.1 16.0 32.0 3 123.0 132.0 127.3 18.7 29.5 5.8 7.4 323.0 24 AUG 77 25.0 28.3 30.0 1.6 24.0 30.0 4 147.0 158.0 151;. 32.1 29.5 7.5 7.5 323.0 22 DEC 76 10.0 13.5 12.0 3.2 8.0 23.0 4 130.0 140.0 135.3 - 26.5 10.0 8.0 323.0 23 DEC 76 10.0 23.4 25.0 2.6 14.0 26.0 4 134.0 150.0 139.0 - 26.5 10.0 80.0 323.0 C 29 DEC 76 10.0 23.1 24.0 3.5 13.0 28.0 4 119.0 133.0 127.8 - 26.5 10.0 8.1 323.0 29 DEC 76 10.0 25.2 26.0 3.0 14.0 29.0 4 127.0 149.0 133.8 - 26.5 10.0 8.1 323.0 lor light intensity 14 APR 77 13.0 - -- - 4 4 134.0 138.0 135.3 - 26.0 9.5 - 21.5 14 APR 77 13.0 - -- - 4 4 125.0 133.0 130.5 - 27.0 9.3 - 21.5 31 MAY 77 18.0 23.5 23.0 - 2.6 18.0 28.0 0 4 143.0 IS3.0 148.3 27.3 29.0 7.6 - 21.5 2 J.N 77 18.0 23.8 23.0 - 1.0 22.0 25.0 0 4 135.0 143.0 139.0 26.6 29.5 7.4 21.5 3 JUN 77 18.0 24.2 25.0 - 0.8 23.0 25.0 0 4 135.0 163.0 149.8 28.5 29.0 7.2 - 21.5 3 JUN 77 18.0 - - - 15.0 29.0 0 4 137.0 157.0 144.5 23.9 27.0 7.4 - 21.5 15 AUG 77 25.0 27.8 31.0 28.0 2.7 .22.0 31.0 0 4 153.0 165.0 158.8 36.9 28.5 6.5 7.5 21.5 16 AUG 77 25.0 27.3 29.0 - 2.7 17.0 j3.0 0 4 163.0 172.0 167.5 45.9 29.5 6.4 7.5 21.5 0

APPEDIX IAN&.. IS. (cWT.)

ACiL tORG SIZE sAmog REAM REM MA LIGST TEJ4P PREFERRED TEIRPERATURE (C) 8 PER (TI. min) WT SAL no "EAS LaVIL, DATE (C) Me MODE(S) SD- RI KAI LTI TEST RIM MAX Naha ) (ppt) (ppI) on (lux) sleafiab, Pinatcoius altatrix high 1i+/-ht intensity 6 JON 77 18.0 21.8 23.0 2 0.0 2.0 15.0 27.0 4 46.0 53.0 50.3 1.0 29.0 7.S - 323.0 23.2 24.0 - 1.4 19.0 26.0 4 45P.0 51.0 49.0 0.9 29.0 6.9 - 323.0 7 JUN 77 18.0 24.0 25.0 - 1.5 20.0 27.0 4 45.0 52.0 48.0 0.9 29.0 7-1 - 323.0 7 JON 77 18.0 24.0 25.0 - 1.6 20.0 27.0 4 50.0 56.0 53.0 1.1 29.0 7.7 - 323.0 8 JUN 77 18.0 24.6 25.0 - 1.2 22.0 29.0 .4 80.0 92.0 86.8 5.1 29.5 .7.4 - 323.0 20 JUN 77 21.0 23.4 23.0 - 1.8 19.0 26.0 4 79.0 91.0 85.0 4.3 29.5 7.6 - 323M0 20 JoU 77 21.0 24.9 24.0 - 2.1 21.0 30.0 4 77.0 85.0 80.5 3.7 29.5 7.8 - 323.0 21 JUN 77 21.0

- - 20.0 30.0 4 80.0 87.0 84.5 4.8 29.5 7.6 -- 121.0 21 JUN 77 21.0 25.0

. - .20.0 28.0 .4 89.0 95.0 94.0 - 29.0 7.3 7.6 322.0 27 JUN 75 22.0 26.5

- - 20.0 30.0 4 78.0 90.0 83.0 - 29.0 7.4 8.1 313.0 25 JUN 75 23.0 26.5 I-j 25.0 2.8 20.0 33.0 4 82.0 102.0 93.0 - 30.0 5.6 7.7 323.0 25 JUN 76 23.0 24.6 -

26.0 - 1.7 22.0 29.0 4 105.0 127.0 115.5 - 30.5 6.4 7.5 323.0 6 JUL 76 23.0 25.5 22.0 29.0 4 115.0 130.0 122.8 - 30.0 6.0 7.5 321.0 19 JUL 76 23.0 23.5 225.0 2.8 18.0

- - 23.0 31.0 4 102.0 113.0 107.8 6.4 30.0 6.6 - 323.0 13 JUL 77 23.0

- - 21.0 32.0 4 125.0 155.0 141.0 - 28.0 6.8 7,7 323.0 26 AUG 75 25.0 26.5 3.2 15.0 31.0 S 105.0 132.0 118.0 17.5 30.0 7.0 - 321.0 23 JUL 77 25.0 23.8 2.5.0 -

4 124.0 130.0 127.0 15.6 30.0 7.3 7.2 323.0 26 JUL 77 25.0 28.0 4 116.0 123.0 119.3 12.4 30.0 7.2 7.2 323.0 26 JUL 77 25.0 24.5 25.0 - 1.7 22.0 2.7 18.0 30.0 4 117.0 130.0 124.8 15.6 310.0 6.7 7.3 323.0 27 JUL 77 25.0 25.2 25.0 -

30.0 4 134.3 170.0 148.7 26.8 30.0 6.8 7.2 323.0 14 AUG 7"7 25.0 25.7 28.0 22.0 3.0 21.0

- - 16.0 31.0 4 '173.0 193.0 183.0 - 27.5 6.8 7.7 323.0 6 OCT 75 20.0 24.5

- - 16.0 27.0 4 100.0 195.0 152.0 - 27.5 7.4 7.8 323.0 a OCT 75 20.0 22.0

- - 20.0 24.0 4 173ý. 0 205.0 193.0 - 26.0 1.5 7.7 323.0 5 VOV 75 20.0 23.0

- - 18.0 25.0 4 188.0 220.0 202.0 - 27.5 7.4 7.5 323.0 15 OCT 75 18.0 24.0

- 2.3 16.0 29.0 4 138.0 176.0 165.0 - 26.5 6.8 7.3.323.0 12 OCT 76 15.0 21.0 22.0 23.0 - 2.0 19.0 28.0 4 155.0 168.0 164.0 - 27.0 .8.0 7.7 323.0 3 NOV 76 15.0 23.2 28.0 4 181.0 183.0 182.0 - 27.0 8.5 7.0 323.0 4 NOV 76 15.0- 23.0 23.0 - 1.7 15.0 18.0 - 27.5 10.2 8.0 323.0 22 NOV 76 15.0 21.6 21.0 23.0 18 26.0 0 4 151.0 170.0 158.3

&PPRIMIX T~AEL 1. (Cmr.)

ACCL *ORG 1Z1Z RANGE MEAN MEAN EAN LZIGT TEMP PREFERRED TEMPERATURE (C) # PER (TL nro) WT SAL DO MEAN LEVE9L DATS (C) MKAM MODE0(S) SD - KIMU MAX LTR TEST RI1 MAX MEAN (9) (ppt) (ppm) pH (lus) 7 DEC 76 10.0 18.3 18.7 3.2 13.0 28.0 0 4 181.0 212.0 196.3 - 26.5 10.0 8.1 323.0 8 DEC 76 10.0 20.0 20.5 3.3 17.0 23.0 0 4 161.0 217.0 189.8 - 26.0 10.0 8.0 323.0 low light intensity 23 JUN 75 22.0 22.5 20.0 24.0 0 4 97.0 108.0 102.0 - 8.1 29.0 7.5 21.5 25 JUN 75 23.0 25.5 21.0 28.0 0 4 97.0 125.0 110.0 - 29.0 7.4 8.1 21.5 2 JUL 76 23.0 23.1 23.0 - 1.4 21.0 27.0 0 4 108.0 112.0 111.0. - 30.5 7.7 21.5 12 JUL 76 23.0 24.6 26.0 - 1.9 21.0 28.0 0 4 132.0 141.0 136.0 - 30.5 6.1 7.8 21.5 14 JUL 76 23.0 25.2 24.0 - 1.7 20.0 29.0 0 4 106.0 120.0 111.0 - 30.0 6.1 7.6 21.5 3

AUG 76 24.0 24.3 25.0 - 2.2 18.0 30.0 0 4 112.0 131.0 123.5 - 30.0 6.7 7.5 21.5 23 JUL 77. 25.0 24.5 26.0 - 2.7 18.0 31.0 0 5 98.0 118.0 108.0 8.0 30.0 7.3 21.5 Weakfish, Cynoscion regalis high light intensity 26 AUG 76 24.0 27.5 28.0 1.5 22.0 30.0 0 4 82.0 113.0 93.8 - 28.5 6.9 7.4 323.0 4 AUG 77 25.0 25.3 26.0 1.7 21.0 28.0 0 2 96.0 107.0 101.5 7.9 29.5 7.3 7.2 323.0 18 AUG 77 25.0 23.4 26.0 3.3 15.0 29.0 0 4 42.0 50.0 47.3 0.9 29.5 6.3 7.6 323.0 26 AUG 77 25.0 26.3 25.0 1.6 24.0 30.0 0 4 83.0 105.0 93.3 7.1 29.0 6.6 7.5 323.0 29 AUG 77 25.0 0 4 163.0 185.0 171.5 52.7 29.5 6.3 7.7 323.0 30 AUG 77 25.0 27.3 26.0 2.0 25.0 32.0 0 3 165.0 181.0 174.3 49.9 .29.5 6.1 7.6 323.0 13 SEP 76 22.0 25.0 25.0 1.9 21.0 28.0 0 4 140.0 166.0 152.5 - 29.2 5.6 7.5 323.0 14 SEP 76 21.0 25.8 25.0 1.7 20.0 28.0 0 4 107.0 158.0 133.8 - 29.0 5.7 7.6 323.0 21 SEP 76 21.0 26.5 27.0 1.8 21.0 32.0 0 4 145.0 160.0 152.0 - 29.0 5.5 7.6 323.0 6 OCT 76 18.0 23.3 22.0 2.3 17.0 29.0 0 4 116.0 135.0 127.5 - 27.0 6.4 7.5 323.0 13 OCT 76 15.0 19.2 20.0 1.3 17.0 23.0 0 4 147.'0 157.0 153.0 - 27,*0 6.4 7.5 323.0 15.0 25.3 25.0 2.4 18.0 30.0 0 4 152.0 180.0 169.8 - 27.0 6.5 7.5 323.0 15 OCT 76 15.0 21.2 24.0 3.0 16.0 27.0 0 4 133.0 155.0 143.5 27.0 7.8 7.5 323.0 18 OCT 76

S S APPENDIX IORG

  • CC SIZE RANGE MEAN EAN MAN LIGHT T*MP PREFERRED TEMPERATURE (C)
  • PER (TL mm) WT SAL DO KEAN LEVEL DATE (C) MEAN MODE(S) SD IMN MAX LTR TEST HiM MAX MEAN (9) (ppt) (ppm) pli (lull 20 OCT 76 15.0 21.2 22.0 25.0 2.9 15.0 26.0 0 4 157.0 173.0 162.8 - 27.0 7.0 7.5 323.0 1 DEC 16 10. 0 21.4 18.5 25.0 4.4 13.0 28.0 0 4 156.0 170.0 165.0 - 26.0 9.2 8.1 323.0 2 DEC 76 10.0 18.9 19.9 3.0 11.0 27.0 0 4 175.0 179.0 176.8 - 26.0 8.3 8.1 323.0 6 DEC 7i 10.0 16.8 15.3 3.0 12.0 24.0 0 4 163.0 193.0 i74.o - 26.5 10.0 8.1 323.0 6 DEC 7i 10.0 16.0 15.3 2.7 11.0 24.0 0 4 162.0 186.0 169.5 - 26.5 10.0 8.1 323.0 low light intensity 5 NOV 76 15.0 21.2 22.0 2.8 15.0 27.0 0 4 151.0 160.0 156.5 - 27.0 8.5 7.8 21.5 5 NOV 76 15.0 22.5 21.0 2.6 17.0 29.0 0 4 158.0 166.0 162.3 7.8 27.0 8.5 7.8 21.5 Summer flounder, Paralichthys dentatus high light intensity

- 323;0. .,,

6 JUL 77 21.0 -- - - 0 4 110.0 1225.0 118.5 15.0 30.0 6.6 7 JUL 77 21.0 . .. . 3 4 110.0 125.0 118.5 15.1 30.0 6.6 - 323.0 8 JUL 75 24.0 . .. .. 0 4 105.0 137.0 124.0 - 2B.0 7.6 7.7 323.0 low light intensity 9 JUL 75 25.0 -- 0 4 111.0 147.0 126.0 - 28.0 7.9 7.7 21.5 Winter flounder, Psoudopleuronectes americanus high light intensity 5 MAR 73 4.0 . . .. . 0 4 168.0 195.0 185.0 - 25.0 10.6 8.1 323.0 20 MAR 73 6.0 . . .. - 2 4 172.0 181.0 177.0 - 26.5 9.8 8.2 323.0 20 APR 77 13.0 . . .. . 0 4 16 7 . 0 1 90 . 0 181.3 - 27.5 9.2 - 323.0 2 MAY 7, 13.0 . . .. . 0 4 175.0 187.0 180.5 72.3 27.0 9.7 - 323.0 17 MAY 77 15.0 . . .. . 0 4 35.0 44 . 0 39.3 0.7 27.5 9.1 - 323.0 17 MAY 77 15.0 . . .. 0 4 37.0 42.0 39.3 0.6 27.5 9. 2 - 323.0 1i MAY 7'. 15.0 - - - - - 0 4 42.0 48.0 44.8 0.6 28.0 8.3 - 323.0

?AUz 3.8. (cour.)_____________________________________

ACCL #ORG SrzE RANGE MEAN MEAN TEMP MEAN LPGHT PREFERRED T8MPERATURE (C) I PER (TL am) Ni SAE, DO MEAN LEVEL DATE (C) MODE(S)

MAR SD mIn MAX LTR TEST NIx MAX MEAN (g) (*pt) (ppa) pa (ins)

.18 MAY 77 15.0 . . . .. . 0 4 32.0 37.0 34.3 0.3 28.0 8.5 - 323.0 23 M4AY77 18.0 37.0 43.0 40.5 0.8 28.5 8.5 - 323.0

. . .. . 0 6 24 MAY 77 18.0 44.0 45.0 46.0 1.2 27.0 7.1 - 323.0

-: - 0 4 2 JUN 77 18.0 150.0 172.0 160.0 48.1 29.5 8.0 - 323.0

.29 JUN.77 21.0 . . .. . 0 4 50.0

  • 75.0 60.5 2.3 29.5 6.5 - 323.0 5 JUL 77 21.0 78.0 86.0 82.3 5.6 30.0 7.1 - 323.0 7 JUL 77 21.0 . . .. . 0 4 67.0 73.0 69.3 3.6 30.0 6.8 - 323.0 7 JUL 77 21.0 0 4 60.0 69.0 "7.1

- " - - -- - 0 4 64.0 2.6 30.0 - .323.0 17 JUL 77 23.0 - - - - 0 5 68.0 78.0 73.8 3.7 29.5 6.7 - 323.0 26 JUL 75 25.0 . .. . 0 4 60.0 70.0 67.0 - 28.0 7.6 8.1 323.0 28 JUL 77 25.0 . . .. . 0 4 70.0 79.0 75.5 4.0 30.0 7.1 7.5 323.0 9 AUG 77 25.0 . . .. . 1 4 83.0 93.0 8.1 88.5 30.0 6.8 7.3 323.0

'S 28 DEC 76 10.0 . . .. . 4 4 103.0 117.0 111.3 - 26.5 10.2 8.0 323.0 16 JAN 75 4.4 - . .. . 3 4 115.0 153.0 134.0 - 24.0 11.2 8.0 323.0 7 FEB 75 4.0 ... . 2 4 134.0 179.0 161.0 - 24.0 10.5 8.0 323.0 low light intensity 19 MAR 75 ... - . 2 4 6.0 162.0 182.0 170.0 - 25.5 9.5 8.1 21.5 15 JUL 75 25.0 ... . 0 4 62.0 71.0 67.0 - 28.0 6.3 7.3 21.5 26 FEB 75 6.5 ... . 2 4 123.0 163-0 147.0 - 25.0 8.7 8.1 21.5

. . .. .- 1 4 20 JAN 75 4.4 153.0 176.0 162.0 - 24.0 11.4 8.0 21.5 7 FEB 75 4.0 . . .. . 0 4 149.0 202.0 165.0 - 24.0 10.5 8.0 21.5 21 JAN 75 3.3 . . .. . 2 4 151.0 161.0 156.0 - 23.5 11.7 8.0 21.5 13 FEB 75 3.0

- -- - - 1 5 .155.0 180.0 168.0 - 24.0 10.4 8.0 21.5 NoCthern puffer, Sphoeroides maculatus high light. intensity 25 AUG 77 25.0 - - - - 2. 4 73.0 82.0 76.6 9.8 29.0 6.6 7.5 323.0 30 AUG 77 25.0 26. 0 3.0 20.0 3 73.0 90.0 81.7 10.0 29.5 4.4 7.4 321.0 26.7 31.0 0 16 SEP 76 22.0 28.4 28. 0 1.9 23.0 32.0 0 4 82.0 102.0 93.5 - 29.2 3.7 7.6 323.0 26 3.6 13.0 0 4 80.0 86.0 82.0 - 27.0 6.6 .7.6 323.0 OCT 76 15.0 17.5 15.0 27.0 27 15.0 15.0 3.4 10.0 26.0 0 4 83.0 87.0 85.8 - 27.0 6.6 7.6 323.0 OCT 76 15.4

TABLE 19. RESULTS Or TIWERATUU. PREFERCE STUDIES Wvi KICK SALlurrTY ESThARh AND KMIUM OCAM.S4S CVUTLCAL AIPARATUS).

ACCL IORG SIZE RANGE MEAN MEAN MEAN LIGHT TEMP PREFERRED TZCPCRATURE (C) PER (TL ma ) WT SAL DO (ppm) KEAN LEVEL DATE (C) MEAN MDDE His MAX LTA TEST Him MAX KEAN (g) (ppt) SUR BOT pH (lux)

Atlantic menhaden, Brevoortia tyrannus 24 MAR 77 10.0 5 131.0 150.0 139.6 31.9 .2 .0 8.2 8.0 - 215.0 2A HR 10.0 10.0 10.0 10.0 7 DAY 23.0 21.0 25.0 3 MAY 76 15.0 .5 190.0 - 28.0 4.8 205.0 197.4 3.8 8.1 215.0 24 ER 18.2 20.0 14.0 21.0 7 DAY 22.3 20.0 25.0 17 MAY 76 15.0 6 190.0 235.0 199.4 - 28.5 5.1 5.0 8.1 2S..0 24 UR 18

  • 2 16.0 21.0 7 DAY 24.8 21.0 29.0 19.0 6 185.0 209.0 195.7 - 29.0 5.3 14 JUN 76 5.1 8.0 215.0 24 ER .20.7 18.0 23.0 7 DAY 24.8 25.0 22.0 27.0 ...

5 65.0 78.0 72.2 3.3 30.0 7.2 7.1 - 215.0 8 JUL .77 22.0 24 uR 20.6 20.0 18.0 25.0 7 DAY 23.4 24.0 19.0 27.0 22 JUN 76 23.0 6 191.0 250.0 211.5 - 30.0 8.1 215.0 24 RR 7 DAY 24.0 24.0 22.0 26.0

- 28.0 7 JUL 75 25.0 6 234.0 268.0 249.5 6.3 7.3 215.0 24 HR 20.6 19.5 16.0 24.0 7 DAY 24.2 25.0 22.0 26.0 5 74.0 78.0 75.8 - 30.5 5.4 5.3 1.5 215.0 3 AUG 76 25.0 24 8R 20.8 21.0 18.0 24.0 7 DAY 25.0 22.0 28.0 6 AUG 75 26.0 - - 110.0 - 29.0 7.6 7.5 215.0 24 BR 26.8. 26 . 0 26.0 29.0 7 DAY 26.2 25.0 23.0 30.0 20 OCT 75 20.0 - - 0 5 148.0 161.0 153.2 - 27.0 5.9 5.6 7.7 215.0 24 uR - 24.2 25.0 19.0 29.0 7 DoY - 24.5 - 23.0 26.0

APPENDIX TADLE 13. (corl.)

ACCL. IORG size RANGE WA HEAR KRAN LIGHT TEMP PR8FERRED TE/PERATURS (C) I PEl. (TM =I WT SAL DO(p0m) MEAM LEVEL DATE (C) meA" loDo K~lI MAX LTI TEST Him MAX MEA (g) (ppt) SUR BOT 9H (Luz) 4 NOV 75 20.0 - - - 0 5 1S0.0 176.0 163.4 - 26.5 5.4 5.1 7.8 215.0 24 HR - 24.7 - 23.0 28.0 7 DAY - 24.6 - 21.0 28.0 Bay anchovy, Anchoa mltchilli 4 JUN"16 15.0 - - 0 2 70.0 71.0 .70.5 - 29.0 7.3 . 7.4 8.0 215.0 24 HR 7 DAY 20.0 20.0 20.0 20.0 18 MAY 77 15.0 - - - 0 6 67.0 76.0 71.7 2.6 28.5 8.2 8.1 215.0 24 HR 7 DAY Threespine stickleback, Gasteeosteus aculeatus 2 MAY 77 14.0 - - - 0 5 61.0 64.0 63.0 36.2 27.0 8.9 8.9 - 215.0 24 HR - 6.0 6.0 6.0 6.0 7 DAY - 6.6 5.0 5.0 13.0 rNJ Striped bass, Morone saxatilis 17 MAR 77 10.0 - 6 115.0 141.0 128.0 26.0 8.4 8.1 8.0 215.0 24 HR 13.3 7.0 7.0 21.0 7 DAY 20.6 16.0 25.0 12 APR 77 10.0 - 0 5 125.0 142.0 133.4 19.8 26.0 9.8 9.2 - 215.0 24 HR 16.2 14.0 19.0 7 DAY 23.8 24.0 22.0 25.0 11 MAY 77 15. 0 - 0 5 126.0 154.0 136.0 20.1 27.5 8.0 7.9 - 215.0 24 HR 16.9 18.0 15.0 19.0 7 DAY 26.1 25.0 25.0 28.0 22 JUN 77 21.0 - 5 132.0 151.0 141.2 22.3 29.5 6.5 6.4 - 215.0 24 BR 25.8 26. 0 24.0 28.0 7 DAY 25.8 26.0 24.0 28.0 Bluefish, Ponatomus saltatrim 30 JUN 77 21.5 - -- 0 5 86.0 113.0 94.8 . 5.1 29.0 5.7 5.8 - 215.0 24 HR - 25.5 - 21.0 28.0 7 DAY - 28.3 28.0 26.0 30.0 "J.i .Irtl 7L 2J f --

- - - 0 94.0 131.0 115.2 - 30.0 4.8 4.5 7.5 215.0 24 HR - 28.4 28.0 27.0 30.0

AFIMZu TA313 19. (corT.)

ACCL 0 ORG 5I1Z RANGE MEAN MEAN LIGHT TEMP PREFERRED TEMPERATURE (C) 4 PER (T m), W9T 4. (Fps)O KmEA LEVEL DATE (C) MAN NODS KIM MAX LTR TEST KIN MAX (ppt) SUR pa (lux) 12 JUL 76 24.0 - - - - 0 6 110.0 129.0 1 1g.7 30.5 4.2 4.4 7.1 215.0 24 OR - 27.8 27.5 25.0 32.0 7 DAY - 28.7 29.0 26.0 31.0 Weakt*ih, Cynosc8on regalis 19 JUL 76 24.0 -. . . 0 1 13 - 00.0 - 30.5 5.2 5.1 7.6 215.0 24 OR - 19.0 - -

7 DAY - 18.5 - 18.0 19.0 25 AUG 75 25.0 - - - 0 5 111.0 125.0 1 17.6 - 28.0 6.8 7.7 215.0 24 HR - 25.8 26.0 24.0 27.0 7 DAY - 26.7 27.0 25.0 27.0 21 SEP 76 23.0 - - - - 0 3 335.0 365.0 3 46.0 - 29.0 5.0 4.7 7.5 215.0 24 aaR - 22.8 - 21.0 24.5 7 DAY - 22.1 - 20.0 24.5 4 OCT 76 20.0 - - - - 0 5 138.0 168.0 1*52.2 - 27.0 S.9 5.8 7.5 215.0 24 HR - 23.6 24.0 21.5 25.5 7 DAY - 23.0 23.0 21.0 25.0 Nor thern puffer, Sphoecoides maculatus 26 OCT 76 15.0 - - - - 2 5 92.0 109.0 99.8 - :27.0 7.2 7.6 7.6 215.0 24 HR - 17.6 17.0 17.0 19.0 7 DAY 24.0 24.0 24.0 24.0

APPENDIX TABLE 20. RESULTS OF TD(FATDEI AVOIDANCE STUDIES WITS*10R1 SALINITY ESTUARINE ANDMARINEORGANIMS.

ACCL ORG SIZE RANGE MEAN MEAN MEAN LIGHT TEMP AVOIDANCE TEMPERATURE (C) .# PER (TL mu) WT SAL DO MEAN LEVEL DATE (C) MEAN SD MHN MAX LTR TEST KIN MAX MEAN (g) (ppt) (ppm) PH (lux)

Atlantic menhaden, Orevoortia tyrannus high light intensity 20 APR 76

  • 10.0 6 118.0 241.0. 152.0 *- 26.5 10.4 8.0 215.0 22 MAR 77 10.0 31.4 0.5 30.8 31.9 6 135.0 161.0 143.2 - 25.5 8.3 - 215.0 22 MAR 77 10.0 30.8 0.6 30.3 31.7 6 135.0 158.0 146.8 - 25.5 6.0 - 215.0 23 MAR 77 10.0 30.9 0.6 30.0 31.4 6 132.0 166.0 144.2 - 25.3 7.9 - 215.0 23 MAR 77 10.0 30.6 0.6 29.4 30.6 6 133.0 185.0 147.5 - 25.3 8.0 - 215.0 21 APR 76 11.0 6 170.0 218.0 200.0 -- 27.5 9.4 8.1 215.0 6 KAY 77 15.0 29.8 0.3 29.4 30.0 6 140.0 188.0 155.0 37.1 27.5 8.5 - 215.0 co 6 MAY 77 15.0 29.8 0.3 29.4 30.0 5 142.0 212.0 165.6 51.9 27.5 8.4 - 215.0 9 MAY 77 15.0 29.6 0.6 28.9 30.0 6 141.0 153.0 146.2 29.3 27.0 7.4 - 215.0 9 MAY 77 15.0 29.2 0.4 28.9 29.4 6 138.0 171.0 150.0 34.3 21.0 7.3 - 215.0 23 MAY 77 18.0 30.8 0.3 30.3 31.1 6 149.0 177.0 168.8 39.0 28.5 7.2 - 215.0 23 MAY 77 18.0 31.2 0.4 30.8 31.7 6 127.0 165.0 150.8 33.8 20.5 7.3 -. 215.0 23 MAY 77 18.0 30.2 0.4. 29.7 30.6 6 145.0 185.0 157.0 37.5 28.2 7.4 - 215.0 23 MAY 77 18.0 30.7 0.7 29.7 31.4 6 145.0 175.0 156.5 34.4 28.2 7.4 215.0 8 JUN 77 18.0 30.4 0.3 30.0 30.6 6 138.0 173.0 156.2 30.9 27.5 7.1 - 215.0 6 162.5 .43.4 7.1 -

8 JUN 77 18.0 29.9 0.4 29.4 30.3 125.0 216.0 27.5 .215.0 14 JUN 77 18.0 31.3 0.4 30.8 31.7 10 47.0 54.0 50.2 1.2 28.5 7.5 215.0 14 JUN 77 18.0 31.0 0.7 30.3 31.9 10 40.0 53.0 49.3 1.3 28.5 7.9 - 215.0 17 JUN 77 18.5 32.1 0.7 31.4 32.8 10 64.0 87.0 71.5 3.8 28.5 7.1 - 215.0

ACCL *ORG SIZE RANGE KEAN KEAN MEA LIGNT TW AVOIDANCE TRNP*MATURI (C) I PER (Mh ,1, VT Sa" DO ME" ,VI.L DATE IC) KHAN 8 MIN NAX LTT TST KiIm AX MEAN (9) (ppt) (p'm) ps (las) 17 JUN 77 18.5 - - - - 0 10 49.0 78.0 68.7 3.1 28.5 7.1 - 215.0 15 JUL 76 20.0 32.3 0.1 31.7 32.5 0 13 79.0 97.0 85.0 - 30.0 6.1 7.6 21S.0 15 JUL 76 20.0 32.0 0.1 31.7 32.2 0 10 32.0 95.0 88.0 - 30.0 6.1 7.6 215.0 15 JUL 76 20.0 31.9 0.0 31.9 31.9 0 10 79.0 105.0 90,0 - 30.0 6.1 7.6 215.0 15 JUL 76 20.0 32.9 0.0 32.9 32.9 0 10 76.0 105.0 92.0 - 30.0 6.1 7.6 215.0 16 JUL 76 20.0 32.7 0.3 31.9 33.1 0 10 80.0 100.0 89.0 - 30.5 6.1 7.5 215.0 L6 JUL 76 20.0 32.9 0.7 31.8 33.1 0 10 80.0 99.0 88.0 - 30.5 6.1 7.5 215.0 20 JUN 77 21.0 31.8 0.3 31.7 32.2 0 a 67.0 75.0 70.9 3.4 29.0 7.0 - 215.0 20 JUN 77 21.0 30.7 0.6 30.2 30.6 0 8 59.0 82.0 71.4 4.2. 29.0 7.1 - 215.0 23 JUN 77 21.0 30.2 0.6 29.7 30.6 0 6 139.0 178.0 152.3 33.2 27.5 6.8 - 215.0 23 JUN 77 21.0 29.7 0.4 29.4 30.0 0 6 137.0 176.0 157.8 36.5 27.5 6.8 - 215.0 6 JUL 77 21.0 32.8 0.6 32.2 33.3 0 10 68.0 139.0 82.3 5.8 28.0 6.1 - 215.0 *0 6 JUL 77 21.0 32.8 0.6 32.2 33.3 0 10 77.0 145.0 86.9 7.7 28.0 6.1. - 215.0 11 JUL 77 21.0 32.9 0.3 32.2 33.3 0 6 138.0 173.0 157.8 32.1 30.0 6.2 - 215.0 11 JUL 77 21.0 32.6 0.3 32.2 32.8 0 7 72.0 82.0 76.1 4.0 30.0 6.3 - 215.0 19 JUL 76 23.0 31.0 0.2 30.3 31.4 0 6 195.0 245.0 210.0 - 30.0 6.0 7.5 215.0 19 JUL 76 23.0 32.4 0.6 31.1 32.8 . 6 195.0 250.0 217.0 - 30.0 6.0 7.5 213.0 22 JUL 76 23.0 30.7 0.1 30.3 31.1 0 6 196.0 250.0 212.0 - 30.0 6.3 7.5 215.0 22 JUL 76 23.0 32.4 0.3 31.4 32.5 0 5 185.0 220.0 206.0 - 30.0 6.3 7.5 215.0 22 JUL 76 23.0 32.9 0.5 31.9 33.6 0 6 194.0 253.0 216.0 - 30.0 6.3 7.5 215.0 22 JUL 76 23.0 32.8 0.4 32.2 33.1 0 6 200.0 235.0 209.0 - 30.0 6.3 7.5 215.0.

27 JUL 76 23.0 31.8 0.3 31.1 32.8 0 3 200.0 245.0 218.0 - 30.5 7.0 7.5 215.0 27 JUL 76 23.0 32.6 0.1 32.3 33.1 0 4 195.0 255.0 219.0 - 30.5 7.0 7.5 215.0 12 AUG 75 24.0 32.3 0.7 31.7. 33.6 0 6 110.0 121.0 .15.0 - 26.5 6.5 7.6 215.0 26 JUL 76 24.0 33.1 0.1 32.8 33.2 0 6 190.0 255.0 210.0 - 30.5 7.2 7.5 215.0 26 JUL'76 24.0 32.8 0.1 32.2 33.1 0 6 200.0 248.0 214.0 - 30.5 7.2 7.5 215.0 27 JUL 77 25.0 33.5 0.3 33.3 33.9 1 6 80.0, 104.0 91.2 6.0 30.0 6.4 7.5 215.0

AtFlTXl-

,.,L, 20. (cr.)

ACCL O11 sign RANGE TIN?

MEAN MEAN WEAN Gk AVOIDA4ZnI TENMBRATUR, IC) " PER (MI -mm) WI SAL DO NEZl LEVML PA'Ir (C) EA 8, E ImMAX LTR TEST mlx MAX MUAN (9) (ppt) (ppe) pH (lux) 27 JUL 77 25.0 34.4 0.6 33.6 35.0 1 6 79.0 97.0 86.5 5.8 30.0 6.4 7.5 215.0 28 JUL 77 25.0 33.6 0.7 32.8 34.2 10 82.0 100.0 86.5 6.3 30.0 6.5 7.5 215.0 28 JUL 77 25.0 32.6 0.6 32.2 33.3 0 10 80.0 112.0 91.3 9.2 30.0 6.3 7.S 215.0 29 JUL 77 25.0 34.5 0.6 33.9 35.3 0 8 75.0 87.0 83.9 5.2 30.0 6.2 7.5 215.0.

29 JUL 77 25.0 34.2 0.3 33.9 34.4 0 8 79.0 92.0 84.4 5.3 30.0 6.2 7.5 215.0 7 AUG 77 25.0 34.6 0.2 34.4 34.7 0 5 102.0 178.0 130.0 21.8 30.0 6.0 7.3 215.0 7 AUG 77 25.0 32.2 0.6 31.7 32.8 0 5 133.0 173.0 151.4 32.2 30.0 6.0 7.3 215.0 3 NOV 76 25.0 34.9 0.5 34.2 35.3 0 6 130.0 155.0 145.8 - 25.5 6.9 7.8 215.0 3 NOV 76 25.0 33.7 0.5 32.8 33.9 0 6 125.0 160.0 143.3 - 25.5 6.9 7.8 215.0 4 NOV 76 25.0 34.6 1.2 33.3 36.1 0 6 135.0 150.0 147.5 - 26.0 6.8 7.6 215.0 4 NOV 76 25.0 34.0 0.8 33.1 35.0 0 6 140.0 165.0 155.8 - 26.0 6.8 7.6 215.0 r0 10 SEP 75 21.1 31.2 0.0 31.0 31.2 0 6 142.0 168.0 153.0 32.5 - 7.7 215.0 OO 0 0 10 SEP 75 21.1 31.5 0.1 31.1 31.7 6 124.0 162.0

- 32.5 0 143.0 - 7.7 215.0 9 OCT 75 20.0 31.3 0.8 30.6 32.1 0 "6 149.0 164.0 159.0 - 27.5 7.4 7.8 215.0 10 OCT 75 20.0 30.8 0.2 30.6 31.1 0 6 153.0 180.0 156.0 - 27.5 7.3 7.8 215.0 6 NOV 75 15.0 31.0 0.9 30.0 31.9 00 6 153.0.190.0 173.0 - 26.0 7.7 7.7 215.0 19 NOV 75 15.0 30.3 1.0 29.0 31.8 0 6 169.0 195.0 180.0 - 26.0 7.8 8.0 215.0 20 NOV 75 15.0 31.6 1.0 30.8 32.8 0 6 165.0 182.0 176.0 - . 26.0 8.0 7.8 215.0

20. NOV 75 15.0 30.4 0.3 29.4 30.8 0 6 165.0 187.0 172.0 - 26.0 8.0 7.8 215.0 8 DEC 75 10.0 29.7 0.6 28.6 30.7 0 6 160.0 190.0 172.0 25.0 9.8 7.9 215.0 11 DEC 75 10.0 28.5 0.4 28.0 28.9 0 6 150.0 180.0 166.0 - 25.3 9.9 7.9 215.0 11 DEC 75 10.0 29.6 1.3 27.8 30.6 0 6 161.0 175.0 168.0 25.3 9.9 7.9 215.0

- 25.3 12 DEC 75 10.0 28.4 0.3 28.0 28.9 0 6 133.0 160.0 148.0 9.3 7.8 215.0 30 NOV 76 10.0 28.8 0.4 28.3 29.2 6 133.0 151.0 141.0 26.0 6.8 7.6 215.0 low light intensity 1 APR 77 10.0 28.2 0.8 27.2 28.9 2 6 133.0 177.0 154.3 - 26.0 8.1 - 21.5 1 APR 77 10.0 27.6 1.3 26.1 28.6 0 6 136.0 155.0 146.0 - 26.0 8.0 - 21.5 0

yUatt 20. (MoRr.)

Acct. #osG sizz MANG REAN RAR NrAM WIGT TIXN AVOIDAOCE TEMIPURTURE (C) 4 PeR (TL mha) rT SAL 00 MtAR LEMEL OATS (Ci) Re SD Kim RAZ LT- TEST Kim HAS 'EAM (gI (pgt) (pwI Is 110) 4 APR 77 10.0 28.5 0.2 27.8 28.6 0 6 140.0 172.0 150.3 - 26.0 8.1 - 21.1 7 APR 77 10.0 29.5 0.6 28.0 29.1 2 6 -141.0 157.0 147.0 - 26.5 8.7 - 21.5 7 AUR 77 10.0 28.0 1.2 26.7 28.9 2 6 141.0 155.0 148.2 - 24.0 8.6 - 21.5 7 JUL I7 21.5 32.2 0.6 31.7 32.8 0 10 73.0 156.0 - 106.3 .13.1 28.0 6.7 - 21.5 7 JUL 77 21.5 31.5 0.3 31.1 31.7 0 10 69.0 162.0 112.0 18.2 28.0 6.5 - 21.5 25 JUL 77 25.0 33.6 0.5 33.3 34.2 0 6 .77.0 150.0 93.8 8.5 28.0 6.4 - 21.5 25 JUL 77 25.0 33.3 0.0 33.3 33.3 0 6 80.0 155.0 101.7 12.2 20.0 6.4 - 21.5 26 JUL 77 25.0 34.3 0.9 33.1 35.0 0 6 80.0 95.0 86.5 5.2 30.0 6.6 7.4 21.5 26 JUL 77 25.0 33.9 0.9 32.8 35.0 0 6 79.0 92.0 04.8 4.s 30.0 7.0 7.4 21.5 8 AUG 77 25.0 35.2 0.3 35.0 35.6 0 5 100.0 148.0 127.8 18.0 30.0 6.4 7.4 21.S a AUG 77 25.0 33.3 0.0 33.3 33.3 0 5 100.0 146.0 116.8 16.0 30.0 6.3 7.4 21.5 Co Bay anchovy, Anchoa mItchilli high light intensity 6 MAY 76 15.0 - - 12 12 50.0 80.0 69.0 - 28.5 8.5 8.1 215.0 7 KAY 76 15.0 - - 12 12 52.0 74.0 65.0 - 28.5 8.2 8.1 215.0 19 MAY 76 15.0 - - 12 12 60.0 69.0 66.0 - 29.0 8.4 8.1 215.0 26.8 0.2 26.6 27.2 60.0 - 29.0 19 KAY 76 15.0 0 18 88.0 74.0 6.4 6.1 215.0 19 MAY 76 15.0 27.4 1.2 26.9 28.1 0 20 62.0 83.0 73.0 - 29.0 9.4 8.1 215.0 3 KAY 77 15.0 29.3 0.8 28.3 30.0 0 10 58.0 75.0 65.8 1.1 .27.5 8.3 - 215.0 3 MAY 77 15.0 28.7 0.4 28.6 29.2 0 10 63.0 06.0 70.3 1.5 27.5 8.8 - 215.0 4 MAY 77 15.0 25.2 1.1 27.2 29.4 1 6 56.0 75.0 65.7 1.4 27.5 8.2 - 215.0 4 MAY 77 15.0 29.3 0.4 28.8 29.7 2 6 61.0 -71.0 65.7 1.3 27.5 8.3 - 215.0 27 KAY 77 18.0 31.0 1.1 29.4 31.9 3 10 60.0 72.0 66.3 1.6 26.5 6.7 - 215.0 27 NAY 77 16.0 31.2 0.5 30.6 31.8 3 10 54.0 78.0 66.3 1.6 28.5 6.8 - 215.0 31 RAY 77 18.0 30.2 0.6 29.4 30.6 2 10 60.0 96.0 77.9 2.4 29.0 7.1 - 215,0 31 *AY 77 18.0 22.6 0.3 29.4 30.0 0 10 62.0 93.0 74.6 2.2 29.0 7.1 - 215.0

.AVfl~Drl

  • AL 20. (CorT.)

ACCL *ORG SIZE RANGE MEAN MNAN MEAN LIGHT TOMIP AVOIDANCE TZPEPERATURZ (C) # PER (TL mE) WT SAL DO "FAN LEVEL DATE (C) MEAN SD KIN MAX LTR TEST KMi MAX MAN (g) (ppt) (ppm) PH (lum) 16 SEP 76 22.0 32.1 0.5 31.1 32.5 6 9 58.0 65.0 75.2 - 29.3 3.7 7.5 215.0 9 SEP 76 21.0 29.7 2.3 27.9 31.7 0 9 60.0 80.0 74.0 - 30.0 7.S 7.6 215.0 13 SEP 76 21.0 30.7 0.7 30.0 31.7 0 9 50.0 80.0 74.0 - 30.0. 7.5 7.6 215.0 14 SEP.76 21.0 32.1 1.1 30.0 33.1 3 9 55.0 90.0. 70.7 - 29.0 5.5 7.6 215.0 14 SEP 76 21.0 32.1 0.7 31.1 32.5 2 9 70.0 80.0 71.2 - 28.0 5.5 7.6 215.0 15 SEP 76 21.0 31.7 0.7 30.6 32.5 0 9 56.0 85.0 71.3 - 29.2 4.2 7.6 215.0 29 SEP 75 20.0 27.6 0.4 26.9 28.2 0 6 38.0 65.0 50.0 - 27.5 6.4 7.5 215.0 I OCT 75 20.0 30.8 1.0 29.4 32.2 0 6 48.0 85.0 59.0 - 27.5 7.1 7.5 215.0 2 OCT 75 20.0 30.8 0.8 30.0 31.9 0 6 43.0 55.0 41.0 - 27.5 7.0 7.6 215.0 2 OCT 75 20.0 29.7 0.7 29.0 30.6 0 6 30.0 80.0 56.0 - 27.5 7.0 7.6 215.0 3 OCT 75 20.0 30.4 1.1 29.1 31.8 0 6 48.0 72.0 57.0 - 27.3 7.1 7.6 215.0 11 NOV 75 15.0 28.4 0.8 27.6 29.3 0 6 72.0 88.0 77.0 - 27.0 6.8 7.7 215.0 12 NOV 75 15.0 29.1 1.0 27.8 30.2 0 6 56.0 90.0 74.0 - 26.5 6.4 7.9 215.0 12 NOV 75 15.0 - - - - 6 6 45.0 86.0 72.0 - 26.5 6.4 7.9 215.0 13 NOV 75 15.0 28.6 1.3 28.3 30.5 0 6 65.0 77.0 73.0 - 26.0 7.0 7.6 215.0 13 NOV 75 15.0 29.2 1.0 27.4 29.9 0 6 70.0 75.0 72.0 - 26.0 7.0. 7.6 215.0 10 DEC 75 10.0 - - - - 6 6 60.0 85.0 74.0 - 25.5 9.1 7.8 215.0 10 DEC 75 10.0 - - . - 6 6 55.0 85.0 76.0 - 25.5 9.1 7.8 215.0 15 DEC 75 10.D - - - - 6 6 70.0 80.0 75.0 - 25,0. 10.5 7.9 215.0 16 DEC 75 10.0 - - - 6 6 77.0 87.0 84.0 - 25.0 9.0 7.9 215.0 Threespine stickleback, Gasteroateus aculeatus high light intensity 11 MAY 77 15.0 26.5 0.2 26.4 26.7 0 5 68.0 69.0 68.4 1.1 27.5 8.0 - 215.0 11 MAY 77 15.0 27.1 0.7 26.4 27.8 0 5 68.0 70.0 68.4 1.1 27.5 7.9 - 215.0 11 NAY 77 15.0 26.6 0.9 25.6 27.5 0 5 68.0 70.0 68.6 1.2 27.5 7.8 - 215.0 11 PAY 77 15.0 26.2 0.7 25.8 27.2 0 5 68.0 70.0 68.8 1.2 27.5 8.0 - 215.0 0

APPENDIX TABLI 20. (CONT.)

ACCL ORG SIZE KEAN TMUP ANMG8 MKEAN HeA LIGOT AVOIDANCE TEMPERATURE (C) I PER (TR, - WT DATE K) SAL DO oEA" LEVEL.

(C) MEAN so NIm MAX LTR TEST HMl MA MEAN (g (P~t) (ppm) PHt 0-l~)

24 MAY 77 10.0 28.9 0.6 28.3 29.4 0 6 58.0 67.0 62.8 3.2 28 .S 7.3 215.0 24 MAY 77 18.0 29.3 28.5 0.9 28.3 30.0 0 6 62.0 67.0 64.0 3.0 20.3 7.2 - 215,0 25 MAY 77 18.0 28.3 0.0 28.3 28.3 0 6 60.0 68.0 64.5 2.0 28.5 7.3 - 215.0 25 MAY 77 18.0 27.6 0.3 27.2 27.8 0 6 58.0 60:0 65.0 2.1 28.5 7.3 - 215.0 Striped bass, Morons saxatill8 high light intensity 24 MhR 77 10.0 30.3 0.4 30.0 30.6 6 120.0 146.0 132.7 - 25.7 8.3 215.0 24 MAR 77 10.0 30.2 0.0 30.0 30.6 6 106.0 157.0 132.3 - 25.7 8.2 - 215.0 5 APR 77 10.0 30.9 0.4 30.6 31.1 6 121.0 147.0 137.3 - 26.5 8.4 - 215.0 vA 5 APR 77 10.0 30.6 0.5 30.0 31.1 6 130.0 147.0 137.3 - 26.5 7.8 - 215.0 26 APR 77 13.0 32.1 0.6 31.7 33.1 6 120.0 150.0 136.7 - 27.5 7.7 - 215.0 26 APR 77 13.o0 31.6 0.4 31.4 32.2 6 130.0 143.0 137.3 - 27.5 7.9 - 215.0 12 MAY 77 15.0 31.7 0.4 31.4 32.2 5 115.0 150.0 129.2 17.4 27.5 7.5 215.0 12 MAY 77 15.0 31.9 0.5 31.1 32.3 5 120.0 145.0 134.4 20.6 27.5 7.7 215.0 13 MAY 77 15.0 31.2 0.7 30.4 31.8 5 122.0 155.0 139.8 25.7 27.5 7.6 - 215.0 13 MAY 77 15.0 31.3 0.2 31.1 31.4 5 123.0 150.0 136.8 22.7 27.5 7.4 - 215.0 25 MAY 77 18.0 31.8 0.7 31.1 32.5 5 126.0 160.0 142.8 23.0 28.5 7.2 - 215.0 25 MAY 77 18.0 31.3 1.2 30.0 32.8 5 126.0 151.0 139.4 20.3 28 5 7.2- 215.0 26 MAY 77 18.0 31.8 0.3 31.7 32.2 5 130.0 153.0 .144.2 23.8 28.5 6.6 - 215.0 26 MAY 77 18.0 31.8 0.9 30.6 32.5 5 125.0 165.0 140.4 23.5 28.5 6.6 215A0

.23 JUN 77 21.0 31.9 0.4 31.7 32.2 5 135.0 168.0 150.8 29.6 27.5 6.8 - 215.0 23 JUN 77 21.0 31.7 1.3 30.3 33.3 5 120.0 158.0 140.2 24.2 27.5 6.6 - 215.0 24 JUN 77 21.0 31.9 1.5 30.0 33.3 5 123.0 160.0 142.8 26.8 29.0 7.0 - 215.0 24 JuN 77 21.0 31.1 1.4 29.4 32.2 5 142.0 176.0 157.8 36.0 29.0 6.8 - 215.0 17 JUL 77 23.0 33.9 0.9 33.1 34.8 4 130.0 170.0 156.0 35.6 29.5 6.4 - 215.0 17 JUL 77 23.0 33.1 0.3 32.8 4 33.3 125.0 194.0 155.3 36.7 29.5 6.7 - 215.0

UUL& 20. (cmr.)

ACCL OERG SIZE IGS MR KEAN MEAN LIGHT TEMP AVOIDANCE TEMPERATURE (C) # PER MT an) MT SAL DO "EAN LEVEL DATE 10.M IC) s BD IMN MA LYR TEST Kim NAX KEAN (g) (opt) (pp) PH (Luz) 29 JUL 77 25.0 32.7 0.5 32.2 33.3 0 5 123.0 196.0 163.0 53.6 30.0 6.4 7.5 215.0 29 JUL 77 25.0 33.6 0.3 33.3 33.9 0 .5 122.0 174.0 152.8 51.0 30.0 6.4 7.5 215.0 1 AUG 77 25.0 31.9 0.8 30.8 32.8 0 4 145.0 174.0 155.8 36.2 30.0 5.5 7.4 215.0 1 AUG 77 25.0 33.5 0.3 33.3 33.9 0 4 130.0 151.0 144.3 28.7 30.0 5.6 7.4 215.0 9 AUG 77 25.0 33.7 0.3 33.3 33.9 0 4 152.0 200.0 171.3 55.2 30.0 6.7 7.3 215.0 9 AUG 77 25.0 33.1 0.5 32.8 33.6 0 4 155.0 203.0 173.5 57.8 30.0 6.7 7.3 215.0 21 DEC 76 10.0 30.0 0.2 29.4 30.5 0 6 127.0 150.0 138.8 - 26.5 9.6 8.0 215.0 22 DEC 76 10.0 29.3 0.5 28.3 30.0 0 6 123.0 153.0 135.5 26.5 9.4 8.0 215.0 27 DEC 76 10.0 29.0 0.2 28.6 29.4 0 6 117.0 164.0 143.0 - 26.5 10.0 8.0 215.0 27 DEC 76 10.0 28.8 0.0 28.6 28.9 0 *6 122.0 151.0 139.0 - 26.5 10.0 8.0 215.0 fis low 1ight: intensity .9o 6 APR 77 10.0 29.1 0.7 28.3 29.8 0 .6 132.0 155.0 147.0 - 26.5 8.8 -

6 APR 77 10.0 30.3 0.4 30.0 30.6 2 6 108.0 152.0 26.5 8.5 - 21.5 132.3 -

21 JUL 77 23.0 33.2 0.7 32.2 33.9 0 4 126.0 166.0 7.0. 21.5 125.0 20.6 29.5 -

23.0 1.1 30.0 32.8 21.5 21 JUL 77 31.8 0 4 134.0 164.0 146.0 30.0 29.5 8.1 -

20 JUL 77 23.5 33.5 0.9 32.2 34.4 5 6.5 21.5 0 148.0 196.0 168.8 55.8 30.0 -

20 JUL 77 23.5 33.3 0.9 32.2 34.4 5 21.5 0 147.0 190.0 160.4 46.5 30.0 6. 1 25.0 33.5 0.3 33.3 33.9 6.6 7.4 21.5 2 AUG 77 0 4 135.0 162.0 151.5 31.4 30.0 21.5 2 AUG 77 25.0 33.5 0.6 32.8 33.9 0 4 173.0 205.0 186.0 67.3 30.0 6.9 7.4 21.5 Bluefish, Pomatomus saltatrix high light intensity 15 JUN 77 18.0 30.9 0.5 30.3 31.0 0 10 43.0 64.0 48.1 0.6 27.0 7.0 215.0 15 JUN 77 18.0 31.6 0.9 30.6 32.6 0 10 46.0 75.0 50.2 0.9 27.0 6.9 215.0 16 JUN 77 18.0 29.6 0.8 28.6 30.6 0. 8 47.0 53.:0 50.5 2.0 27.3 6.7 - 215.0 16 JUN 77 18.0 29.0 1.3 27.2 30.0 0 8 48.0 55.0 51.4 1.9 27.3 6.7 215.0 0

APPENIX .

ACCL 00 Ila: MUN( MEAN MEA MRAl W LIMme TWO AVOIDACl TENPERATURE (C) I PER (IJ ) WN SAL DO AR LEIEL DATE (C) MEAN SD MIN MAX LTR TEST MIN MAX MR" (g) (iwt) Cpps) pB (202) 14 JUN 77 18.0 27.9 0.7 27.5 .28.9 0 10 36.0 S5.50 48.9 0.7 29.0 4.9 - 215.0 16 JUN 77 18.0 27.9 1.0 26.7 28.9 0 10 37.0 78.0 .51.4 1.2 29.0 7.1 - 215.0 17 JUN .77 18.0 28.3 1.7 26.7 30.0 0 8 68.0 83.0 81.0 4. 2h.5 7.1 - 215.0 17 JUN.77 18.0 28.6 0.7 28.1 29.4 0 8 84.0 92.0. 86.5 5.7 28.5 7.2 - 215.0 21 JUN 77 21.0 31.1 0.6 30.6 31.7 0 8 60.0 89.0 76.0 3.7 29.0 7.1 - 215.0 21 JUN 77 21.0 32.0 1.3 30.5 32.8 0 8 65.0 88.0 80.8 4.7 29.0 7.0 - 215.0

.24 JUN 77 21.0 31.3 0.3 31.1 31.7 0 5 85.0 91.0 87.2 4.9 27.5- 7.2 - 215.0 24 JUN 77 21.0 33.1 0.5 32.7 33.6 0 5 85.0 92.0 87.8 4.9 27.5 7.2 - 215.0 27 JUN 77 21.0 32.6 0.3 32.2 32.8 0 7 84.0 91.0 87.3 4.5 27.0 6.8 -- 215.0 27 JUN 77 21.0 32.6 1.1 31.1 33.9 1 7 81.0 95.0 86.7 5.0 27.0 6.7 - 215.0 29 JUN 77 21.0 31.8 0.5 31.1 32.2 0 10 81.0 111.0 91.1 6.5 28.0 6.0 - 215.0 IK) 00o 29 JUN 77 21.0 31.4 0.6 30.6 31.7 0 10 83.0 .99.0 88.9 5.5 26.0 6.1 - 215.0 10 JUL 77 21.0 32.9 0.9 32.2 33.9 0 8 90.0 103.0 95.6 5.9 28.0 7.0 - 215.0 10 JUL 77 21.0 32.4 0.3 32.2 32.8 0 8 87.0 110.0 98.1 8.0 28.0 7.0 - 215.0 11 JUL 77 21.0 32.1 0.3 11.7 32.2 0 6 86.0 121.0 94.0 5.8 30.0 6.2 - 215.0 11 JUL 77 21.0 33.2 0.4 .32.8 33.6 0 6 90.0 112.0 98.7 7.1 30.0 6.2 - 215.0 27 JUL 76 23.0 33.1 0.1 33.1 33.3 0 9 100.0 129.0 113.0 - 30.5 7.0 7.5 215.0 27 JUL 76 23.0 32.6 1.0 31.9 33.3 0 9 100.0 125.0 108.0 30.5 7.0 7.5 215.0 28 JUL 76 23.0 33.5 0.3 33.1 34.2 0 10 96.0 130.0 113.0 30.0 5.0 7.4 215.0 28 JUL 76 23.0 33.8 0.0 33.3 34.2 0 10 95.0 130.0 113.0 30.0 S.0 7.4 215.0 30 JUL 76 23.0 33.6 0.3 33.1 34.3 0 10 108.0 130.0 114.0 6.0 7.5 215.0

- -10.0 30 JUL 76 23.0 33.7 0.2 33.1 34.2 0 8 100.0 135.0 118.0 6.0 7.5 219.0 30.0 30 JUL 76 23.0 34.1 0.1 33.6 34.2 0 10 109.0 135.0 .1.4 - 30.0 6.0 7.5 215.0 13 JUL 77 23.0 34.1 0.4 33.6 34.4 1 5 95.0 125.0 107.0 8.4 29.5 7.4 - 215.0 13 JUL 77 23.0 32.8 0.6 32.2 33.2 0 7 92.0 120.0 103.2 7.8 29.5 7.5 - 215.0 15 JUL 77 23.0 34.1 0.5 33.3 34.4 0 7 86.0 128.0 99.9 8.0 29.0 6.9 - 215.0 15 JUL 77 23.0 32.9 0.6 32.2 33.3 0 7 91.0 124.0 105.1 10. 2 29.0 6.9 - 215.0

TALE 20. (CONT._

ACC'L lOCG SIaZ NGS EAN mAN A.

MEAqN LIGHT TEMP AVOIDOMCS TEMPERATURE (C) # PERC - r)=A SAt- DO LEVEL DATE (C) HEA 80 Kim MAX LTR TR38 KiN MAX MEMN (q) (ppt) (ppu) vii IPHz) 21 JUL 77 23.5 33.9 1.0 32.8 35.0 0 68.0 116.0 105.5 6.0 30.0 6.4 215.0 21 JUL 77 23.5 33.5 0.3 33.3 33.9 0 90.0 140.0 110.1 10.8 30.0 6.3 215.0 26 JUL 77 25.0 34.9 0.5 34.4 . 35.6 0 116.0 155.0 136.5 20.3 30;0 6.7 7.0 215.0 26 JUL 77 25.0 33.9 0.0 33.9 33.9 0 112.0 140.0 125.0 15.5 7.0 7.0 215.0 30.0 26 JUL 77 25.0 33.1 0.6 32.2 33.6 0 104.0 153.0 131.5 19.8 30.0 6.4 7.0 215.0 26 JUL 77 25.0 34.1 0.9 33.3 35.0 0 124.0 150.0 132.8 18.9 30.0 6.6 7.0 215.0 8 AUG 77 25.0 34.4 0.6 33.9 35.0 0 126.0 160.0 145.2 25.8 30.0 6.3 7.4 215.0 8 AUG 77 25.0 33.3 0.6 32.8 33.9 0 133.0 163.0 144.8 30.2 6.2 7.4 215.0 30.0 12 NOV 76 25.0 35.3 0.5 34.7 35.8 0 165.0 180.0 172.5 - 27.5 6.2 8.0 215.0 12 NOV 76 25.0 34.4 0.1 34.2 34.4 0 165.0 210.0 187.5 - 27.5 6.2 8.0 215.0 15 NOV 76 25.0 34.9 0.3 34.4 35.0 0 170.0 215.0 195.0 - 27.5 6.4 7.9 215.0 15 NOV 76 25.0 34.5 0.7 33.9 35.6 0 160.0 220.0 184.0 - 27.5 6.4 7.9 215.0 07 ON 00 18 SEP 75 20.0 - - 6 145.0 186.0 166.0 - 29.2 6.0 7.6 215.0 19 SEP 75 20.0 32.0 0.9 30.8 33.0 0 154.0 201.0 168.0 29.0 6.6 7.6 215.0 8 OCT 75 20.0 31.8 0.9 30.5 32.9 0 168.0 205.0 180.0 27.5 7.4 7.8 215.0 9 OCT 75 20.0 - - 6 173.0 197.0 186.0 27.5 7.3 7.8 215.0 20.0 29.5 31.8 7.4 15 OCT 75 30.7 0.9 0 191.0 237.0 204.0 - 27.5 7.5 215.0 27 SEP 76 20.0 33.5 0.6 32.8 34.4 0 150.0 190.0 177.0 - . 29.1 7.3 7.5 215.0 27 SEP 76 20.0 32.7 0.4 32.2 33.3 0 150.0 190.0 161.7 - 29.1 7.3 7.5 215. 0' 6 OCT 76 17.0 32.3 0.9 31.8 33.3 0 165.0. 200.0 178.0 - 26.5 7.8 7.6 215. 0 6 OCT 76 17.0 31.7 0.4 31.1 32.2 5 150.0 235.0 175.5 - 26.5 7.8 .7.6 215.0 7.8 7 OCT 76 17.0 32.9 0.2 32.8 33.1 0 150.0 190.0 166.7 - 26.5 7.6 215.0 7.8 7.6 215.0 7 OCT 76 17.0 32.1 0.3 31.7 32.2 0 150.0 190.0 177.8 - 26.5 24 NOV 75 15.0 - -- 6 1§98.0 234.0 213.0 - 25.5 7.5 7.7 215.0 25 NOV 75 15.0 -

S 6 182.0 237.0 208.0 - 25.5 7.0 7.8 215.0 30.4 29.2 31.1 0 27.0 .6.8 7.5 215.0 12 OCT"76 15.0 0.7 150.0 195.0. 176.8 12 OCT 76 15.0 32.2 0.6 31.4 33.1 0 150.0 195.0 165.8 - 27.0 6.8 7.5 215.0

APPMODM3 lABLI 20. (wo.)

ACCL ,G SIZE RANGE MEAN MEAAN muA LIGHT

  • TEMP AVOIDANCE TEMPERATURS (C) I PER (TL m) WI SAL DO MEA LEVEL DATS (CI MEA so Mil MAI LTR TEST mIN K" MAN (g) (ppt) (ppm) pa (lu?)

13 OCT 76 15.0 32.9 0.7 31.9 33.6 0 6 150.0 194.0 174.3 - 26.5 7.1 7.6 215.0 13 OCT 76 15.0 33.8 0.9 32.5 34.4 0 6 170.0 205.0 185.8 26.5 7.1 7.6 215.0 15 OCT 76 15.0 32.6 0.9 31.1 33.6 0 6 150.0 205.0 185.8 - 27.0 6.5 7.5 215.0 low light intensity 6 JUL 77 21.0 32.5 0.7 31.7 33.3 0 10 84.0 105.0 94.4 6.0 28.0 6.4 - 21.5 6 JUL 77 21.0 32.4 0.3 32.2 32.8 0 10 86.0 102.0 93.6 5.6 28.0 6.4 - 21.5 27 JUL 77 25.0 33.9 0.6 33.3 34.4 0 6 111.0 142.0 122.3 14.8 30.0 6.4 7.5 21.5 27 JUL 77 25.0 33.2 0.3 32.8 33.3 0 6 110.0 151.0 129.7 18.8 30.0 6.4 7.5 21.5 1 AUG 77 12.9 7.4 00 25.0 34.0 0.6 33.0 34.7 0 5 117.0 128.0 121.8 30.0 6.3 21.5 %J AUG 77 25.0 33.0 0.5 32.5 33.6 0 5 114.0 134.0 126.0 14.9 30.0 6.3 7.4 21.5 Weaktfsh, Cynoscion regalis high light intensity 19 OCT 76 15.0 26.3 1.5 24.2 28.1 0 5 16 0.0 195.0 172.0 - 27.0 7.7 7.5 215.0 21 OCT 76 15.0 29.5 0.4 28.9 30.6 0 5 16 0.0 195.0 176.0 - 26.5 7.4 7.6 215.0 28.8 0.6 28.1 29.4 0 5 15 5.0 180.0 168.6 - 27.0 5.6 7.6 215.0 26 OCT 76 15.0 0.6 28.1 29.4 0 5 16 0.0 190.0 180.0 - 27.0 5.6 7.6 215.0 26 OCT 76 15.0 28.8 0.5 27.2 28.6 0 5 17 0.0 185.0 178.0 - 26.5 5.6 7.6 215.0 27 OCT 76 15.0 28.1 27 OCT 76 15.0 28.3 0.7 27.8 29.2 0 5 155.0 185.0 170.6 - 26.5 6.9 7.4 215.0 I DEC 76 10.0 27.0 0.1 26.7 27.2 0 6 155.0 185.0 169.3 - 26.5 9.5 8.1 215.0 0.1 25.0 25.6 0 6 155.0 190.0 170.8 - 26.5 9.6 6.1 215.0 2 DEC 76 10.0 25.3

APPENDI ,

TAMA2 20, (OM-r)

ACCL IORG SIZE RANGE ME"N MKEAN MAN LI=T TrmP AVOIDANCE TEMPEPATURE (C) # PER (yrn) lT SAL DO (luANx)VEl DATE (C) I4SAN SD MIN MAX LTR TEST HMN MAX MEAN (g) (ppt) (ppm) pM - (tui1

& SEPT 77 31.5 1.2 30.3 33.0 0 6 44.0 29.5 4.3 7.7 215.0 23.0 76.0 56.2 2.7 8 SEPT 77 23.0 30.5 1.0 30.1 31.8 0 6 49.0 79.0 61.2 3.9 29.5 4.3 7.7 213.0 3 OCT 77 20.0 28.3 0.6 8314 28.0 6.6 7.8 215.0 27.8 28.9 0 4 153.0 215.0 197.8 19 OCT 77 20.0 29.4 0.7 109.6 28.5 7.2 7.6 215.0 28.9 30.0 0 5 208.0 236:0 224.4 19 OCT 77 20.0 28.9 82.6 28.5 7.0 7.8 215.0 0.7 28.3 29.4 0 5 173.0 222.0 20738 24 OCT 77 20.0 28.5 0.3 111.6 28.3 7.2 7.8 215.0 28.3 28.9 0 3 219.0 234.0 223.2 24 OCT 77 20.0 '28.2 0.3 27.8 115.6 28.5 7.2 7.8 215.0 28.3 0 5 195.0 268.0 228.0 18.0 11L.2 28.0 7.7 7.8 215.0 26 OCT 77 24.1 0.3 23.9 24.4 0 5 215.0 230.0 223.0 18.0 115.8 28.0 7.7 7.8 215.0 26 OCT 77 23.2 0.8 22.2 13.9 0 S 195.0 286.0 229.0 er flounder. Paraliehtbyo dentatua O, 00 high light intensity 28 APR 77 13.0 28.6 1.1 27.6 30.0 0 4 235.0 293.0 279.5 - 27.5 8.5 - 213.0 4 195.0 290.0 261.3 - 27.5 8.6 - 215.0 28 APR 77 13.0 29.1 1.1 28.3 30.3 0

- 27.3 10.0 - 215.0 18 API 77 13.0 29.8 1.9 27.8 31.7 0 3 277.0 282.0 279.0 0

S TABLE 20. (con .)

ACCL @ORG 528 RANGE MEAN MEAN muAm LIGOT

?EMP AVOIDANCE TEMPERATURE (C) I PER (TL m) MY SALK DO MEAN LEVEL DATE (C) MAN SO MEN MAX LTR TEST KIN MAX .MEAN (I) (Opt) Opa.l Im flux) 29 APR 77 13.0 29.4 2.0 27.8 31.7 0 328.0 392.0 360.0 - 27.5 10.0 - 215.0 1.3 MAY 77 15.0 .31.4 1.0 30.3 32.2 0 356.0 462.0 395.0 609.6 27.5 7.4 - 215q0 13 MAY 77 15.0 28.9 0.6 28. 3 29.4 0 195.0 290.0 263.0. 178.1 27.5 7.4 - 215.0 1 JUN 77 18.0 29.1 1.1 26.3 30.6 0 286.0 425.0 350.8 322.4 27.0 7.2 - 215.0 1 JON 77

  • 18.0 28.3 1.0 27.8 29.4 0 275.0 430.0 351.4 7.3 - 215.0 423.1 27.0 30 JUN 77 21.0 30.7 0.3 30.6 31.1 0 268.0 335.0 6.7 - 21S.0 295.6 242.5 29.0 30 JUN 77 21.0 30.6. 0.6 30.0 31.1 0 6.4 - 215.0 194.0 286.0 259.0 171.3. .29.0 12 JUL 77 23.0 30.9 0.1 30.3 31.8 0 280.0 320.0 7.7 - - 215.0 298.3 254.8 29.5 12 JUL 77 23.0 0 263.0 350.0 294.3 7.1 21S.0 261.0 29.5 -

2 AUG 77 25.0 30.3 1.4 28.3 31.7 0 278.0 310.0 291.2 217.0 6.7 7.5 213.0 30.0 2 AUG 77 2S.0 30.3 1.4 29.4 31.9 263.0 298.0 277.6 6.7 7.5 215.0 205.7 30.0 19 SEP 75 20.0 29.5 0.2 28.9 30.0 0 186.0 274.0 214.0 - 29.0 6.6 7.6 215.0 22 SEP 76 20.0 30.3 0.3 29.6 30.9 0 158.0 263.0 22.0 - 29.2 6.5 7.5 215.0 27 JAN 76 8.1 215.0 10.0 31.8 0.5 31.1 32.5 0 250.0 305.0 286.0 - 27.0 10.0 OD low light intensity 19 JUL 77 23.0 30.7 0.6 30.0 31.1 0 6 340.0 390.0 357.5 632.5 30.0 6.6 - 21.5 Winter flounder, Pseudopleuronectes americanus high light intensity 29 MAR 77 10.0 23.8 0.3 23.6 24.2 0 '5 97.0 120.0 108.6 26.3 8.4 215.0 29 MAR 77 10.0 - - 0 5 103.0 140.0 115.8 - 26.3 8.3 215.0 31 mAR 77 10.0 223.7 0.6 23.0 24.2 0 .4 123.0 189.0 141.3 - 25.3 8.3 215.0 31 M&AR.77 10.0 23.6 1.4 21.7 25.0 0 4 116.0 184.0 137.0 - 25.3 7.0 215.0 16 MAY 77 15.0 - - - - 0. 4 162.0 195.0 175.8 65.6 28.0 7.6 215.0 16 KAY 77 15.0 - - - 0 4 175.0 215.0 194.5 91.5 28.0 7.6 215.0 17 MAY 77 15.0 -- 38.3 0.5 27.5 7.5 215.0

- - - 3 6 26.0 47.0

"APPENDflI TABLE 2.(CONl?.)

MEAN MEAN KEAN LIGHT

  • ORG SI2 RANGE LEVEL ACC.L WT SAL DO MEAN P

(C) i PER (TL ama) pi Itlux)

ETICP AVOIDANCE TEMPERATURE KIN MAX MEAN (9) (Ppt) (ppm)

(C) MEAN So KIN MAX LTR TEST DATE 17KIAY 7 t* A - -. - -

36.3 0.5 27.5 7.7

.2 29. 0 47.0 - 215.0 45.0 38.8 0.7 28.0 1.2

- 0 12 33.0 - 215.0 16 MAY 77 15.0 S 39.9 0.9 28.0 7.3 18 KAY 77 15.0 - - 0 12 35.0 50.0 - 215.0 217.0 338.0 298; 0 301.5 27.0 6.4 3 JUN 77. 18.0 - - 4 215.0 3 JUN 77 4 27.0 6.6 26.1i 0.8 27.2 0 165. 0 328.0 236.5 172.9 215.0 18.0 25.6 -

4 27 JUN 77 131. 0 224.0 150.0 66.3 27.0 7.0 21.0 - 215.0

.5 27 JUN 77 25.0 0.5 145.0 '206.0 173.8 54.5 27.0 6.9 21.0 24.4 25.6 0. -- 215.0 5 JUL 77 10 28.0 5.8 28.9 30.6 0 60.0 75.0 67.4 3.5 - 215.0 21.0 29.6 0.9 S JUL 77 10 28.0 5.9 27.2 29.2 0 60..0 66.0 61.5 3. 3 - 215.0 21.0 28.2 1.0 3 JUL 77 6 7.4 32.8 .3 72.0 65.0 3.0 30.0 - 215.0 21.5 31.8 0.8 31.1 3 JUL 77 6 7.0

- - 1 51.0 62.0 57.2 2.7 30.0 - 215.0 21.5 31 JUL 77 5 6.3 0 70.0 89..0 76.8 6.1 30. 0 215.0 25.5 27.3 1.1 25.5 28.3 -.

31 JUL 77 5 6.4 ',0 0

0 71.0 83.0 77.6 5.3 30.0 215.0 25.5 28.2 0.5 27.8 28.9 -

3 JUG 77 77.0 89.0 82.6 5.4 29.5 6.8 25.0 28.2 1.2 26.7 29.4 0 5 7.3 215.0 5 AUG 77 6.9 29.2 0 5 75.0 105.0 87.6 7.0 29.5 7.3 215.0 25.0 28.3 1.1 26.1 7 AUG 77 6.2 7.3 215.0 29.4 31.1 0 7 75.0 84.0 80.0 4.7 30.0 25.0 ,0.0 0.8 7 AUG 77 6.3 7.3 215.0 29.4 31.1 0 7 73.0 .87.0 80.4 4.8 30.0 25.0 30.0 0.8 low light intensity 65.3 2.9 28.0 7.0 - 21.5 21.0 28.8 1.1 27.2 29.4 0 8 62.0 69.0 10 JUL 77 8 63.4 3.0 26.0 6.8 21.5 21.0 " 0 58.0 70.0 10 JUL 77 85.8 8.1 30.0 6.6 7.3 21.5 77 30.6 0.8 30.0 31.1 0 6 78.0 98.0 9 AUG 25.0 88.5 8. 3 30.0 6.5 7.3 21.5 30.3 0.7 29.4 30.8 1 6 76.0 110.0 9 AUG 77 25.0 30.0 6.9 - 21.5

- 0 6 73.0 66.0 79.0 5.0 10 AUG 77 25.0 - "

85.8 6.8 30.0 6.8 - 21.5 25.0 - - 6 71.0 96.0 10 AUG 77 0

0 0 TABUE 20. t=%T) aCci I0RG SIZC MEAN KEAN MEAM LI GNT RUAGE Temp &VOXDPACC TIWIIMTUaX (C) I PER OATS ITL am) WT SAL 110 PLAN LCWEL (C) . KAW SO HIM MAX LTR TEST AIN MqX AEAN (9) Opt) pPPS I P (lva)

Northern pufifer. Spboaccides maculatus high light intensity IQ JUN 77 18.0 28.7 0.6 28.3 29.4 0 29.0 7.0 - 3,1.0.

3 113.0 225.0 175.0 154.0 30 30H 77 21.0 29.6 0.6 28.9 30.0 0 3 113.0 225.0 175.0 156.0 29.0 6.5 - 21S.0 7 JUL 77 21.0 30.1" 0.2 29.9 30.4 0 3 110.0 240.0 181.7 149.9 30.0 5.5 215.0 25 J.UL 77 25.0 29.7 0.6 28.9 30.3 0 3 113.0 232.0 163.3 144.4 28.0 6.4 7.3 215.0 4 AUG 77 25.0 33.1 0.3 32.8 33.3 0 3 115.0 230.0 181.7 139.0 30.0 7.0 7.2 211.0

%0

APPUEDtl TAZL. 21. RSULTS 0? RA SRDCK STUDIES OCrl N A D 4AD.XNR HIGH SALINITY ESigUARI vWITH OGAflI3S,.

RANGE ACCL COT rxp CONT TIME (hr8) EXPERIMENTAL LAB (TM ma) SALINITY T TTEM TEMMP 0 ORG FRJI START I I # rITU PERCENT DATE CODE NIB MAX (,'pt) (a) (C) (C) TESTED Of TEST ALIVE DEAD L.O.E. 5103?

Sand sbrimp Crangon septemspinosa 29 MAR 77 3 20.2 38.2 29 5 5.6 16.6 11 0 24 2 9.1 32 2 18.2 48 18.2 29 MAR 77 3 23.6 33.7 29 5 5.6 19.1 11 0 2 24 I 32 2

  • 20 48 30 3

29 MAR 77 3 23.9 44.9 29 5 5.6 22 11 0 48 11 APR 77 3 40.1 37.6 29 10 . 10.2 18.1 10 24 0 1 10 48 2 20 10 11 APR 77 3 45.4 60.2 29 10 10.2 21.6 10 0 I..)

48 0 11 APR 77 3 41 58.6 29 ].0 10.2 24.6 10 0 6 1 10 48 10 10 27 APR 77 3 33.1 42.1 29.4 1.5 14.9 26 10 0 48 3 34.6 46 29.4 ]15 14.9 29.2 10 0 27 APR 77 2 18.2 3

4 5 45.5 6 6 54.5 24 10 90.9 48 11 100 27 APR 77 3 33.5 42.2 28.5 1.5 14.9 32 10 0 0.0 0 0

7. 70 0.1 0.3 8 8o 0.4 9 90 0.5 10. 100

0 S uDLZ 21. (WIm.)

RAE (nACCL coin UeP CONl? TINS (bra) .zienrumak.

LAD (T'L ,-) OA.L ITr TEMP TEIM TEMP # ORC Fra START I#0 MITS Icm

  • DATE COOD KIN IA] (ppt) (C) (C) (C) TESTED Or TEST ALIVE DEAD L.O.S. I3RT
  • Atlantic menhaden B*revoortla trtonmus.

9 RAM 77 3 102.4 181.6 25.8 10 10 20.9 10 0 9 10.2 -9 0 0 3 8 1 11.1 6 7 2 2 22.2 24 4 S 0 46 4 S 5s.;'

5Ss.

9 MAR 77 3 105.4 128.8 25.0 10 10 23.8 10 0 10 0.1 10 0 0 2 9 1 10 3

  • 2 0 20 24 6 4 0 40 48 5 0 so 9 MAR 77 3 114.4 141.2 25.8 10 10 26.9 10 0 l1 I 0.1 10 0 1 3 7 0 70 3 2 8 1 t~J 90 4 1 9 0 '0 IO0 24 0 10 0 2 MAR 77 3 116.6 137.5 25.8 12 12 19.9 10 0 9 0.1 9 0 0 48 9 2 MAR 77 3 118.2 134.9 25.8 12 12 22.9 10 0 10 0.1 10 0 1 0 24 10 00 0 48 10 2 Mit 77 3 99 139 26 12 12 25.8 10 0 10 0.0 10 0 30 1 2 30 0.7 9 2 7 3 0 0

43 7 3 18 APR 77 3 126.6 141.46 27.2 14 14.2 .25.9 10 0 9 48 9 0 0 0 10 APR 77 119.6 142.1 27.2 14 14.2 29 10 0 10 0.1 10 0 o 1.5 9 1 0 10 8 8 2 20 2 0 48 8 20 18 APR 77 3 121.5 154.5 26.5 14 14.2 31 10 0 10 0.1 10 0 10 0 0.3 4 6 4 40 0.5 0 10 0 100 11 JUL 77 3 59.4 74.2 30.1 20 20 26.2 19 0 20 - -

48 20 0 0

TABlE I2. (paw.)

RANGE - ACCL CONT EXP CONT TINE(hrc) EXPERIMENITAL LAB (TL ma) SALINITY TEMP TENP TEMP 4 ORG fRN START # I 6 WITH PERCENT DATE CODE un . (ppO) (C) (C) (C) TESTED Or TEST ALIVE DEAD L.O.E. MORT 11 JUL 77 3 59.6 70.2 .30.1 20 20 29 is 0 1i - -

0.8 17 1 3 16 2 11.1 6 15 3 16.7 24 12 6 33.3 48 12 6 33.3 11 JUL 77 3 57.4 75.6 29.8 20 20 31.5 19 0 20 1 0.4 19 5 2 14 6 30 3 10 10 50 4 5 15 75.

24 0 20 100 13 JUL 77 3 118.5 130.8 30.7 20 20 29 13 0 13 40 13 0 0 172 27.5 21 .21 28 5 0 5 21 JUN 77 2 138 0.3 2 3 60 2.3 1 4 22.3 0 80 21 JUN 77 2 135 166 27.5 21 21 30 5 0 5 100 0.8 2 3 60 4

1 1 s0 22.3 0 5 100 21 JUN 77 2 126 175 27.5 21 21 32 5 0 5 0.2 3 2 40 0.3 5 100 0

29 JUN 77 3 105.2 126.3 28.8 22 20 31.9 21 0 20 1 1 19 15 4 17 3 6 12 8 40 24 5 15 75 48 4 16 8o 28 JUN 76 2 72 90 30.5 23 22.5 25.5 5 0 48 0 S

28 JUN 76 2 75 83 30.5 23 22.5 28.5 5 0 4 17 20 28 JUN 76 2 69 95 23 22.5 32.5 5 0 5 0.4 4 5 20 1 0 100 6 JUL 76 2 76 88 30.5 24 24 27.5 S 0 48 5 0 0 2 AUG 77 3 69.1 93,S 31. 24 25 29 a 0 9 48 0 0

0 APPEDIXZ TABNS 2L. (o.)

LSRGu L 7 Cal COnT aXP CONT TINE (hbr) EPRIEUTAL LIB .(IL ra) NJY.! T- . TEM5 TfI 0 ORG .13t START 0 # # WITS IPERCEst DATE CODE .M mNa (ppt) (C) (CM (C) TESTED OF TEST ALrVR DEAD L.O.°. MDRT 6 JUL 76 2 76 96 30.5 24 24 29.5 5 0 S -

43 4 2 AUG 77 3 66.8 83.4 31 24 25 31.1 8 0 10 6 9 10 8 8 20 48 20 6 JUL 76 2 84 91 30.5 24 24 32.5 5 0 5 1 3 40 5 1 so 2 AUG 77 3 71.4 89 31 24 25 33 a 0 10 3 6 40 4 4 60 6 2 to 48 2 so 3 AUG 76 2 75 85 30 25 25 29 5 0 5 23 4 20 30.5 3 40 "3

~0 3 AUG 76 2 66 81 30 25 25 31.5 5 0 5 I.n 23 20 48 3. 40 S

3AUG 76 2 71 79 30 25 25 32.5 5 21 40 46 60 3 AUG 76 2 74 82 30 2S 25 35 5 0 I00 18 5 0 45 12 OCT 76 2 129 150 27 is 15 5 48 S

12 OCT 76 2 133 150 27 15 15 22 5 0 19 4 20 S

26 OCT 76 2 132 155 27 15 15 26 S 0 S 48 0 5

26 OCT 76 2 137 163 27 i5 15 27 5 0 4 0.6 20 0.8 3 40 26 OCT 76 2 131 149 27 15 is 28 5 0 5 0.4 4 20 0.5 3 40 0.8 2 60 1.3 1 so 1.6 0 100 25 OCT "76 2 122 152 27 15 15 29 5 0 5 - - -

APPVMIX TASLZ It (cmr.

RANGE ACCL CONT SXP CONT TIME (hrs) EXPEMl SENTAL LAD . (T.;m) JSAINITY TEMP TEMP TEMP 0 ORG FAN START 0 # # ITH PERCENT DATE CODE MIN NiX (ppt) (C) (C) (C) TESTED OF TEST ALIVE DOAD L.O.E. MORT 0.5 3 2 40 0.8 2 3 60 1.1 1 4 80 23 0 S 100.

26 OCT 76 2 140 154 27 15 15 30 5 0 5 -

0.3 2 3 60 0.3 1 4 80 0.4 0 5 100 26 OCT 76 2 135 150 27 15 15 31.5 5 00.1 05 -5 100 7 DEC 76 2 125 140 26.5 10 10 22 0 4 46 4 0 0 7 DEC 76 2 136 160 26.5 10 10 25 4 0 4 1.1 2 2 - 5 2.6 1 3 - 75 2 DEC 76. 2 135 150 26 10 10 27 4 0 4 ro 0.3 2 2 so 1.8 1 3 75 4.8 0 4. 100 2 DEC 76 2 145 158 26 10 10 28 4 0 4 0.2 2 0 2 0.3 4 - 100 2 DEC 76 2 140 151 26 10 10 31 4 0 4 0.2 1 3 - . 75 1 0 4 - 100 Bay anchovy, Anchoa mitchilli 2 MAY 77 3 44.6 73.8 28.9 10 10.6 18 19 0 17 6 17 00 1 0 8 17 0 0 24 14 3 0 17.6 48 14 3 17.6 2 MAY 77 3 45.1 56.6 28.4 10 10.6 21 19 0 21 1 21 01 0 2 20 10 4.8 1

3 19 2 0 9.5 48 19 2 9.5 2 MAY 77 44.8 58.1 28.2 10 10.6 23.9 19 0 14 1 14 0 5 0 2 13 1 1 7.1 3 12 2 1 14.3 6 9 5 2 35.7 7 7 1 so 24

0 1t1- I1. (my.)

RAGE ACCL - COx? 9ZI CONT TIUM(hiu) CRURINATAL LAS(ML m) SALINITY TEZM TEMP TYK # ORG 3R5M STAR? 1 0 0 WITl PIAIcs rATl (OE COOK" . -- (ppt) (C) (C) (C) TESTED Of TEST ALl.VIV- DEAD L.O.B. B1 17 MAY 76 2 68 so 29 15 15 18 7 0 7 24 6 1;. 3 17PAY76 2 62 90 29 is 1i 22 7 0 7 -

48 7 0 17 xAr 76 2 68 8i 29 15 15 25 7 0 7---

24 6 1 4.3 19 MAY 76 2 61 s0 29 15 15 29 7 0 7 0.5 2 5  ;- "100 1.3 0 7 - IG 19 MAY 76 2 65 e1 29 15 15 32 7 0 7 0.0 7 0.2 0 7 - 100 24 MAT 77 3 44 78.9 28.9 16 15.2 26 24 0 19 6 1i I 0 o.3 24 1i 3 1 15.8 28 14 $ 0 26.3 48 14 s 0 26.3 %0

%J 24 MAy 77 3 43.3 64.7 28.9 16 15.2 28.9 24 0 21 0.1 21 0 0 2

1 16 5 1 23. B 2 10 11 52.4 3 7 14 0 66.7 4.8 2 19 0 9O.S 24 MAY 77 3 42.7 74.5 28.9 15.2 32 24 0 23 -

0.1 23 0 23 0 00.3 0 23 - 100 11 AUG 77 3 19.5 29.9 32 25 24.9 29 28 0 15 0.8 14 0 6.7 24 13 2 0 13.3 48 12 3 0 20 11 AUG 77 3 18.7 26.8 32 25 24.9 31.1 28 a 24 0.3 23 0 4.2 0.4 22 2 8.3 3 0 12.5 4 21 28 20 4 0 16.7 48 18 6 0 25 11 AUG 77 3 19.5 28.1 32 25 24.9 33.9 28 0 20 0.1 19 13 0.8 45 11 9 0 1 10 10 0 3 5 15 0 75 24 0 20 0 1oo.

TABLE 21. (oWoI.)

RANGE ACC16 CONT SEP CONT TIME (hra) EBkPBRIcmfTA[,

LAB (L .) SALINITY TEMP TEIP TiPll I ORG rFJ START I t 0 WITS PERCENT DATE CODE KIN MAE (ppt) (C) (C) (C) TESTED Or TEST ALIVK DEUAD L.O.B. MORT 13 SEP 76 2 58 75 29 21. 21 24.5 5 0 .7 -

23.5 6 1 14.3 47 5 2 - 28.6 13 SE 76 2 55 75 29 21 21 28 5 0 5 -

47 4 1 20 13 SEP 76 2 63 76 29 21 21 29 5 0 .5 - -

3 2 3 - 60 29.5 1 4 8 o-13 SEP 76 2 71 75 29 21 21 32 S *0 S - -

0.0 5 -0 - 0 0.0 0 5 - 100 4 OCT 76 2 48 77 27 17 17 21.5 5 0 5 - - -

18 4 1 - 20 25 3 2 - 40 4 OCT 76 2 54 75 27 17 17 25 5 0 5 --

0.0 5 0 - 0 25 2 3 - 60 4 OCT 76 2 65 75 27 17 17 28.5 5 0 5 -

0.5 4 1 - 20 18 1 4 - 80 42 0 5 - 100 Bluefish, Ponsteaus seltatrix 30 JUL 77 3 91.3 133.6 30 20 19.9 27.9 10 0 9 -

48 .9 . 0 0 0 30JUL77 3 97.5 138.3 30 20 19.9 30 10 0 9 - -

48 9 0 0 0 27 JUN 77 2 80 85 27.5 21 21 27 5 0 50 -

48 5 0 - 0 27 JUN 77 2 75 93 27.5 21 21 29 5 0 5 - -

48 5 0 29 JUN 77 2 86 102 27.5 21 21 30 5 0 5 -

27 JUN7 .2 76 90 27.5 21 21 31 5 0 -

48 5 0 - 0 30 JUN7 7 2 67 94 27.5 21 21 33 .5 0 . 4 - 2-3.1 32 12 - 25 8.1 - 50 20.6 0 4 - 1oo 1 0 0

ArnND;I RUGS ACCL CONT EXP COOT TIXME(hc) EXPERIMENTAL Lim (?L m) SALINITY Tamp TEPUP TEMP I ORG FRK START 1 0 8 WITE PERCENT DATE CODE k.. MAX (ppt) (C) 4C) (C) TESTED OF TEST ALIVE DEAD L.O.E. MORT 29J UN 77 2 so 121 27.5 21 21 35 5 0 5 -

0.1 3 2 40 0.2 1 4 80 0.4 0 5 100 21 JUL 77 3 79.7 100.6 30.8 21 19.9 26.4 5 0 5 -

48 5 0 21 JUL 77 3 79.8 110.5 30.8 21 19.9 32 5 0 0.4 4 1 20 0.6 3 2 40 2 2 3 60 3 1 -4 so 48 0 5 100 19 JUL 76 2 115 140 30.5 24 24 25 5 0 48 5 0 0 27 JUL 76 2 90 116 30 24 24 28 5 0 S -

48 5 0 0 19 JUL 76 2 95 116 30.5 24 24 31 5 0 5 -

0.5 %0 5 0 0 7 4 1 20 27 JUL 76 2 99 128 30 24 .24 32 5 0 5 24 4 1 20 27 JUL 76 2 90 121 30 24 24 33 5 0 5. -

22 4 1 20 19 JUL 76 2 104 142 30.5 24 24 34 5 0 5 0.5 4 1 20 7 0 5 1o0 27 JUL 76 2 100 130 30 24 24 35 S 0 5 -

0.1 0 5 100 25 AUG 77 3 116 166 30.4 25 24.8 31 10 0 1 10 0 0 1.5 9 1 10 6 a 2 20 8 7 3 30 24 6. 4 .40 18 AUG 77 .3 106.2 148.3 32.5 25 24.6 32.7 10 0 10 -

1.3 9 1 10 4 7 .3 30 6 so 8 2 8 s0 24 0 10 100 22 NOV 76 2 185 220 27.5 15 15 27 4 0 4 --

3.7 3 1- 2

Al'fZ]ml:X TABLE 21.. (CONIT.)

RAW GE ACCL CONT EXP CONT TIME(hra) EXPERIMENTAL LAS TI. ml SALIMITY TEMP TZMP TEMP 0 ORG FRM START I # 0 WITH. lERCUaT DATE CODE* Nrl rxi (ppt) (C) (C) (C) TESTED OF TEST ALIVE DEAD L.O.E. MORT Zl.(co)ft.)

TJUSL.Z 22 NOV 76 2 185 221 27.5 15 15 30 4 0 4 0.6 3 1 - 25 22 NOV 76 2 180 195 27.5 15 15 32 4 0 4 0.0 4 0 - 0 0.1 3 1 -. 25 0.2 2 2 - 50 0.7 1 3 - 75 1.2 0 4 - 100 Winter flOundec. Poeudopleuronectes americ 24 MAR.77 3 91.2 145.7 5.1 21.4 10 0 10 24 8 20 48 8 20 24 MAR 77 3 78.2 158.5 5 5.1 24.9 10 0 10 0.2 9 10 2 5 so 3 4 60 4 0 w loo 48 19 -90 0 24 MAR 77 3 73.7 146 27.5 5 5.1 27.9 10 0 10 0.1 10 0 0.2 0 100 21 MAR 77 3 83.8 149 27.5 6 5.3 16 10 0 11 1 11 0 48 11 0 21 MAR 77 3 84.6 127.7 27.5 6 5.3 19 10 0 10 1 10 0 48 10 0 0

21 MAR 77 3 93.5 155.8 27.5 6 5.3 22 10 0 10 1 10 24 7 30 48 7 30 25 APR 77 3 .103.7 181 28.9 15 15 25.9 10 0 10 48 10 0 25 APR 77 3 110.4 143.4 29 15 20 28.9 10 0 10 1 6 40 2 1 90 3 0 loo 15 10 0 10 100 25 APh 77 3 112.2 163 29 15 32.1 0.1 0 12 JUN 77 3 31.8 55.3 32.3 20 20 26 10 0 10

APFN-u TAZLZ 21. (CWT.)

smog ACM. COT 311 CONT TINM(brol 31133lt EIMtYAL DATE LAC3 (, SALINJ, I TROW TIJ TRWP I ONG iRE BTART 0 0 O VTOZ' vzncrCg

  • CODE WIrN

-'- (ppt) (C) IC) (C) T1SM Or TWT AL, Duo L.O.3. NDRT 4 8 1 0 10 24 6 4 0 40 32 5 5 0 so 48 5 5 0 so 16 JUN 77 3 .38 50.7 32.6 20 20 26 .1S 0 18 24 17 1 0 5.6 48 16 2 0 11.1 16 JUN 77 3 33.3 14.1 32-5 20 20 28.2 15 0 20 6 19 1 0 S 24 0 20 0 100 12 JUN 77 3 36.2 53.4 32.3 20 20 29.1 10 0 10 2 10 0 1 0 4 7 3 1 30 6 0. 10 0 100 16 JUN 77 3 29.6 50.3 32.5 20 20 31.7 15 0 20 0.1 20 0 4 0 0.2 29 1 10 5 La, 0.3 3 17 4 a5 0.4 1 19 1 95 0.5 0 20 0 100 12 JUN 77 3 32 48.4 32.3 20 20 32 10 0 10 0.1 10 0 2 0 0;3 6 4 4 40 0.3 3 7 3 70 0.4 0 10 0 100

TABLE 22. ffUAIT Of BEAT SHOCK STUDIES COIDUCTED WITH VICE SALINITY ETUARINE AND MARINE ORCANISKS.

TOTAL LENGTH (mt) SALINITY ACCLIIM. TEMP. EXPER. TZMP. NO. or 4 HOUR .24 HOUR 48 DOUR DATE NIH. MAX. KumA (ppt) (a) (p) (C1 (IF) ZXP. ORG. I MORT. 1 MORT. I MORT-Sand .help. Crangon septemaspinoa 29 MAR 77 20.2 38.2 24 29 5 41 16.6 61 11 0 9.09 18.18 29 MAR 77 23.6 33.7 28.6 29 41 19.1 66 10 0 10 30 29 MAR 77 23.9 44.9 34 29 41 22 71 10 0 0 10 11 APR 77 40.1 57.6 48.9 29 10 50 18.1 64 .10 0 10 .20 11 APR 77 45.4 60.2 52.8 29 10 50 21.6 70 10 0 0 .0 11 APR 77 41 58.6 50.8 29 10 so 24.6 76 10 0 10 10 15 59 26 78 10 0 0 0 27 APR 77 33.1 42.1 37.2 29.4 21 APR 77 34.6 46 38.9 29.4 15 59 29.2 84 11 45.45 90.91 100 27 APR'77 33.5 42.2 37.1 28.5 15 59 32 '9 10 100 100 100 0

Atlantic menhaden. stevooctia tycennus 9 MAR 77 102.4 181.6 130.9 25.8 10 50 20.9 69 9 11.11 55.56 55.56 105.4 128.8 117.8 25.8 10 50 23.8 74 10 20 40 50 9 MAR 77 9 MAR 77 114.4 141.2 125.7 25.8 10 50 26.9 80 10 90 100 100 2 MAR 77 116.8 137.5 .125.2 25.8 12 53 19.9 67 9 0 0 0 2 MAR 77 118.2 134.9 127.5 25.8 12 53 22.9 73 10 0 0 a 2 MAR 77 99 139 121.6 26 12 53 25.8 78 10 30 .30 30 18 APR 77 126.6 141.6 132.7. 27.2 14 57 25.9 78 9 0 0 0 14 57 29 84 10 10 20 20 16 APR 17 119.6 142.1 132.6 27.2 121.5 154.5 138.4 26.5 14 . 57 31 87 10 100 100 100 18 APR 77

  • TL 22. (CTr.)

3? 4~* 24 WOE 466001 IDTrL LIMCTM IM! flALINhfT &CC.LI. TEM. REUS. TXMW. NO.. oV 4 Bown 24 WuOO am Kim. MAX. Ogg" (ppt) (C) li) IC) If) ZaP. ORO. I son?.

11 JUL 77 59.4

  • 74.2 65.6 30.1 20 so 26.2 79 to 0 0 0

.2 11 JUL 77 59.6 70.2 65.6 30.1 66 16 41..1.1 20 29 84 33.33 33.33 11 JUL 77 57.4 75.6 66.9 29.8 20 68 31.5 20 75 IGO 100 no 23 JUL 77 116.5 20 13 130.8 123 30.7 68 29 94 0 0 21 JUN 77 138 172 156.8 27.5 23 69 28 82 5 s0 100 100 21 JUN 77 135 166 152.2 27.5 21 69 30 86 5 80 100 100 21 JUN 77 126 175 154.6 27.5 21 69 32 69 5 100 1O00 1oo 30 60" 29 JUN 77 105.2 126.3 119.2 26.8 22 71 31.9 89 15 75 28 JON 76 72 90 80.4 30.5 23 73 25.5 77 5 0 0 0 26 JON 76 75 83 79.2 30.5 23 73 29.5 63 S 0 .20 too "200 100 39 JUN 76 69 95 82 23 73 32.5 90 5 100 6 JUL 76 0 76 Be 82.6 30.5 24 75 27.5 81 5 0 0 2 AUG 77 69.1 93.5 86.2 31 24 75 29 84 9 0 0 0 6 JUL 76 76 96 86.8 30.5 24 75 29.5 85 5. 0 0 21r 2 AUG 77 66.8 83.4 77.7 31 24 75 31.1 67 10 0 20 20

  • ,JUL 76 .84 91 86.6 30.5 24 75 32.5 90 5 40 40 so 2 AUG 77 71.4" 69 78.7 31 24 75 33 91 10 60 :10 *so 3 AUG 76 75 6s 77.4 30 25 77 29 84 5 0 20 40 5 O
3. AVG 76 6G 81 75.2 30 25 77 31.5 99 20 40 3 AUG 76 71 79 74.2 30 25 77 32.5 90 5 0 40 so 3 AUG 76 74 82 76.2 30 25 77 35 95 5 100 1o0 100 27 15 59 16 -64 5 0 ;100 0 0 12 OCT 76 129 150 136.6 12 OCT 76 133 150 140.8 27 15 59 22 71 5 0 10 20 26 OCT 76 132 155 143 27 15 59 26 79 5 0 80 a 26 OCT 76 137 163 149.4. 27 15 59 27 80 5 .40 8o 11 OCT 76 131 149 139.6 27 15 59 28 82 5 100 10 26 OCT 76 122 152 139.6. 27 15 59 29 64 5 g0 100 100

A?? VmD1X TANAE 2r. (CWT.)

207Mz LENGTH (mii BALINITT ACCLIM. Tame. RIPER. Tame. NO' of 4 RO0 24 HOUR 40 burM DATE NHi. MAX. Nunm (ppt) 1C) (F) (C) (r) REV. Og. I NOS. I MORT. I MORT.

26 OCT 76 140 154 146.6 27 15 59 30 66 5 100 100 100 26 OCT 76 135 156 147.5 27 15 59 31.5 U8 5 100 100 100 7 DEC 76 125 140 132.5 26.5 10 50 22 71 4 0 0 0 7 DEC, 76 136 160 150.3 26.5 10 50 25 77 25 4 25 25 2 DEC 76 135 150 145 26 10 50 27 80 4 75 100 100 2 DEC 76 145 156 151 26 10 50 28 82 4 100 100 100 151 50 2 DEC 76 140 145.3 26 10 .31 67 4 100 100 100 Say anchovy, Anchoa nitchilli 2 MAY 77 44;6 73.8 54 28.9 10 50 18 64 17 0 17.65 17.65 0

.p.

2 NAY 77 45.1 56.6 51.4 28.4 10 so 21 69 21 9.52 9.52 9.52 2 RAT 77 44.8 58.1 53 28.2 10 so 23.9 75 14 14.29 50 50 17 KAY 76 68 80 73.9' 29 15. 59 18 .64 14.3 14.3 17 MAY 76 62 s0 71.4 29 15 59 22 71 7 0 0 17 MAY 76 68 81 72 29 15 59 25 77 7 0 14.3 14.3 19 MAT 76 61 80 69.1 29 15 59 28 82 7 100 100 100 12 MAY 76 65 81 75.9 29 15 59 32 89 7 100 100 10.0 24 MAY 77 44 78.9 57.6 28.9 16 s0 26 78 .9 0 15.79 26.32 2

24 MAY 77 43.3 64.7 53.4 28.9 16 60 28.9 84 1 66.67 66.67 90.48 2

24 MAT 77 42.7 74.5 56.2 28.9 16 60 32 89 3 100 100 100 1

11 AVG 77 19.5 29.9 22.6 32 25 77 29 84 .5 6.67 13.33 20 2

11 AUG 77 18.7 26.8 23 32 25 77 31.1 87 4 12.5 12.5 25 2

11 AUG 77 19.5 28.1 22.5 32 25 77 33.9 93 2a 75 100 100 13 SEP 76 58 75 68.4 29 21 69 24.5 76 7 0 14.3 28.6 13 SEP 76 55 75 63 29 21 69 28 52 5 0 0 20 0

TBU.h m2. (mt.)

  • TL.L LENCGT Imn) SALINiTI ACCLI.. Tx. EXPER. rnp. 30. 0l 4 B100 24 H30R 4S DOUR DATE mix. MIi. REAM (ept) (C) IF) (CI (F) LIP. O0G. I MORT. % NORT. I NORT.

13 SEP 76 63 76 71.4 29 21 69 29 84 5 60 60 8o 13 SEP 76 71 75 73 29 21 69 32 89 5 100 100 100 4 OCT 76 48 77 68.8 27 17 62 21.5 70 5 0 20 40 4 OCT 76 54 75 67.2 27 17 62 25 77 5 0 60 60 4 OCT 76 65 75 69.6 27 17 62 28.5 83 5 20 80 100 Bluefisb. P~aata.um saltat Iz 30 JUL 77 91.3 133.6 121.4 30 20 g8 27.9 82 9 0 0 30 JUL 77 97.5 138.3 123.6 30 20 68 30 86 9 0 0 0,

VI 27 JUN 77 8o 85 82.6 27.5 21 69 27 80 5 0 0 0 27 JUN 77 75 93 85.6 27.5 21 69 29 84 5 0 0 -0 29 JUN 77 86 102 94.2 27.5 21 69 30 86 5 0 0 0

27 JUN 77 76 90 84.2 27.5 21 69 31 87. 5 0 0 100 30 JUN 77 87 94 90.3 27.5 21 69 33 91 4 25 100 100 29 JUN 77 86 "121 96.4 27.5 21 69 35 95 5 100 100 100

.21 JUL 77 79.7 100.6 90.8 30.8 21 69 26.4 79 5 0 0 0 21 JUL 77 79.8 110.5 88.1 30.8 21 69 32 89 5 80 80 100 19 JUL 76 115 140 125.2 30.5 24 75 25 77 5 0 0 0 27 JUL 76 90 116 102.8 30 24 75 28 82 5 0 0 0 19 JUL 76 95 116 109 30.5 24 75 31 87 5 0. 20 24 75 20 27 JUL 76 -99 128 117 30 32 89 5 0 2o0 27 JUL 76 90 121 102.4 30 24 75 33 91 5 0 20 20 19 .,JUL 76 104 142 118.6 30.5 24 is 34 93 5 20 100 10 27 JUL 76 100 130 113.6 30 24 75 35 95 5 100 100

]O0 25 AUG 77 116 166 ,44.6 A0.4 25 77 31 87 10 10 40

TAJLE Z (oCm.)

To?" LENGTH (mn) SALINITY ACCLIN. Tape. aXPEl. YSKIP. no. or 4 HORJ 24 BOOR 48 HOUR I N*On.

OATE Nrm. lAx. RaM (ppt) (C) lip) (C) (F) Map. ONG. I NORT. 2 No f.

  • lafl)U[
  • , (Cm*.)

18 AOG 77 77 90 10 30 100 100 106.2 148.3 127.3 32.5 2S 32.7 22 MOV76 .185 220 197.5 27.5 15 59 27 Bo 4 25 25 25 32 NOV 76 185 221 197.6 27.5 15 59 30 86 4 25- 25 23 22 OVo.76 10 195 187.5 27.5 59 32 89 4 100 100 100 15 winter flounder. Paeudopteuronecies americanus 24 MAR 77 91.2 145.7 113.6 28 5 41 21.4 70 10 0 20 2,0 24 MAR 77 78.2 158.5 122.7 27.5 5 41 24.9 76 10 10 100 00 100

.0 100 112.2 27.5 S 41 27.9 82 10 10 100 24 MAR 77 73.7 146 ao o to 0 0%

21 MAR 77 83.8 149 115.1 27.5 6 42 16 60 11 0 0 0 21 M4AR77 84.6 127.7 104.5 27.5 6 42 19 66 10 0 0 0

93.5 155.8 115 27.5 6 42 22 71 10 0 30 21 MAR 77 30 134.5 28.9 15 59 25.9 78 10 0 0 0*

25 APR 77 103.7 161 129.2 29 15 59 28.9 84 10 10 100 25 APR 77 110.4 143.4 10 100 163 130.7 29 15 59 32.1 89 10 00 100 100 25 APR 77 112.2 41.1 32.3 20 68 26 78 10 10 40 50

.12 JUN 77 31.8 55.3 20 68 26 78 1i 0 5.56 11.11 16 JUN 77 38 50.7 42.6 32.6 1(]

20 68 28.2 82 20 0 100 100 16 JUN 77 33.3 54.1 41.5 32.5 20 68 29.1 84 10 30 100 100 12 JUN 77 36.2 53.4 41.6 32.3 20 68 31.7 89 20, 00 100 100 16 JUN 77 29.6 50.3 40.6 32.5 12 J1UN 77 32 48.4 40.1 32.3 20 68 *32 89 10 100 100 100 0

APPENDIX TANAE 21... IULSMSo 0?LD amSTUDIES CONDUCTED VITR RICH SALINITY ESTUARINE ANDMARIN ORGlANISMS.

RANGE ACCL ()NT EXP CONT TIME (hr.) EXPERIMENTAL LAB (TL mm) SALINITY TEMP TEMP TEMP I O; FlU4 START # # WITH PERCEUT DATE CODE KIN MAX (,ppt . (C) (C) (C) TESTED OF TEST ALIVE DEAD L.O.E. NORT Sand shrimp, Cranron septenspinosa 28 MAR 77 3 18.8 42 24.2 5 5.5 1.5 11 0 11 11 0

48 11 00 0 0 11 APR 77 3 41.1 65.6 25.1 10 10.1 2.3 10 0 1D 1 10 2 0 0 10 0 0 96 10 0 Atlantic menhaden, Brevoortia tyrannus 21 AUG 75 2 103 118 28 25 25 20 10 0 96 0 21 AUG 75 2 115 121 28 25 2S is 10 0 96 0 0 21 AUG 75 2 105 130 28 25 25 lo 10 0

0 20 101 1 13 3 60 22 4 80 27 100 5

23 SEP 75 2 126 170 29 20 20 is 10 0 47 20 96 40 2

23 SEP 75 2 146 165 29 20 20 10 10 0 0.0 0 40 15 26 .2 3 60 27 45 80 47 100 23 SEP 75 2 133 162 29 20 20 10 0 0.0 0 0 0.7 2 40 1 3 60 4 5 100

APFENDIX TAB3LE 23. (Carl.)

RANGE ACCL CONT EXP CONT TIME (hc ) EXPERIMENTAL LAB (TI' SALINITY TEMP TBIM TEMP I ORG FRN START U. 0 t WITH PERCENT DATE CODE. KM .HAX (ppt) (C) fC) (C) TESTED OF TEST ALIVE DEAD L.O.E. NORT.

24 NOV 75 2 157 220 25.5 15 15 10 5 0 5 21.5 4 1 20 45.5 4 1 20 71.5 4 20 96 2 3 60 24 NOV 75 2 153 184 25.5 15 15 5 0 5 0.0 5 0 0 21.5 4 1 20 24 3 2 40 26.5 2 3 60 45.5 0 5 100 24 NOV 75 2 168 ISO 25.5 15 15 5 5 0 5 0.0 5 0 0 0.5 4 1 20 3 3 2 40 21.5 0 5 100 9 MAR 77 115.5 143.5 . 24 10 10 3.9 10 0 10 - -

0.1 10 0 7 0 3 9 1 6 10 00 24 1 9 1 90 32 0 10 0 100 18 APR 77 3 125.5 141.2 . 23.6 14 14.2 9.2 . 10 0 10 72 10 0 0

.76 9 0 *10 96 9 1 10 18 APR 77 3 118.6 140.7 24 14 14.2 5.3 10 0 10 0.1 10 0 8 0 2 10 6 0 4 10 0 4 0 24 1 9 1 90 28 0 10 100 S JUL 77 3 57 76.4 22.7 20 20 13 20 0 20- - -

96 20 . 0 0 0 5 JUL 77 3 55.5 . 77 22.8 20 20 9.2 20 0 a

20 20

.0 24 14 6 6 30 28 10 10 4 50 32 8 12 7 60 48 0 20 0 100 0

TLLZ 23. (COWU.)

RANGS ACCL. CONT BXP CONT TIM[(hbr) EX]PBRrNENTAL LAB (T" .m) .. SALIIITY TEMP. TEMP TEWP f ORG VIMU START. 9 0 0 VLTV PECIMT DATE COOS i,.. - ma (flt) 1C) (C) (C) TESTED Or TEST ALIva DEAD L.O.o. MORT Bay anchovy, Ancboa witchilli 10 10&3 7.2 19 0a 17 2 *AY 77 3 46m.9 58.6 23.6 17 0 O 3 28 17 0 3 0 32 17 48 "12 3 29.4 96 12 0 29.4 10 10.3 4.6 19 0 14 2 PAY 77 3 48.5 67 23.5 14 1 .7 0 3 14 7 0 13 9 7.1 9 5 9 35.7 6 0 140 0 100 24 0

6 JUN 77 3 45.2 62.3 23.2 14 14.9 13.1 23 0 14 3 14 0 24 13 1 7.1 13 1 1 7.1 96 0 1

10 23 0 19 6 JUN 77 3 44 72 23.2 14 14.9 0 0wA 2 19 8 18 1 3 5.3 %D 24 16 3 00 15.8 76 14 5 C 26.3 96 14 1 26.3 20 1 31 MAY 77 3 46.8 73.1 23 15 15.1 12.4 21 0 20 0 6 0 28 19 1 0 1 0 5 72 19 5 22 31 MAY 77 3 45.2 71.9 23 15 15.1 10.5 21 0 22 0.

0.2 0 8 22 0 2 28 20 2 0 9.1 20 2 0 9.1 72 19 24 KAY 77 3 44 72 23.9 16 15.1 9.3 24 0 19 2 0 1 0 16 3 2 15.8

6. 8 3 42.1 24 11 8 11 0 57.9 32 14 73.7 0

96 38 24 MAY 77 3 43.8 67.8 24.5 16 15.1 6.4 24 0 18 0 1 0 0.2 6 5.6 4 17 1 13 5 4 27.8 68 13 5 9 27.8 0 18 - 100 24 2 68 88 30 22 22 18 5 0 0 22 JUN 76 48 0 -

5 22 JUN 76 2 68 so 30 22 22 is 5 0 5 0 48 82 30 22 22 10 5 0 5 22 JUN 76 2 70

RANGE ACCII CON? "XP COMT TINS (hr .) 6RPIRI ENTAXL

  • LASB Man)

TL SBALINIT TEKF TEMP TEMP I ORG PRI START 0 # I WITH flERCENT OATS coos 1M.. )A?. (ppt) (C) (C) (C) TESTED OF TEST ALIVE OR"D L.O.B. , NOR?

0.0 5 0 - 0 4 4 1 - 20 23 2 3 S- 60 29 0 S - 100 6 OCT 75 2 44 70 27.5 20 20 15 5 0 5 -

96 5 0 0 6 OCT 75 2 43 63 27.5 20 20 10 "5 0 5 24 4 2 - 20 32 3 2 - 40 48 3 3 -. 40 52 2 - 60 3

96 2 - . 60 6 OCT 75 2 42 51 27.5 20 20 5 0 5 0.0 5 0 - 0 1 0 S - 100 13 NOV 75 2 50 87 26 15 15 10 5 0 5 30.5 4 - 20 96 4 1 13 NOV 75 2 60 90 26 15 .15 7 0 5 - 40 46 3 2 I-

- 40 96 3 2 13 NOV 75 2 76 93 26 15 15 5 5 0 5 0.5 5 0 - 40 I - 20

.5 4 46 0 5 - 0na Blueflsh, Pomatomus saltatriz 20 OCT 75 2 165 240 27 20 20 15 5 0 5 -

96 5 0 -0 29 OCT 75 2 194 215 25 20 20 1s 0 5 96 5 0 0 20 OCT 75 2 186 235 27 20 20 10 5 0 5 - I 0.0 5 0 22 3 2 io 46.5 1 s0 4 40 82.5 0 5 29 OCT 75 2 196 220 25.5 20 20 10 5 0 5 -

0.1 0 8o 1 1 4 100 14.3 0 5 20 OCT 75 2 15 260 27 20 20 6 5 0 5- -

0.0 5 0 -

20 0.5 4 1 -

1.3 3 2 - 40 3 1 4 - 80 4 0 5 - 100 29 OCT 75 187 225 25.5 20 20 5 5 0 5 0.0 5 1 20 0.3 4 0.6 3 2 40 0.6 2 3 60 0.7 0 5 100

AFlUFDI USIA - . (cuar.)

RANGE ACCL CONT C" CONT TIME(bhr) EXPERINTAAL LAB L7L m)I SALINITY TEMP TEMP TEMP ORG rVM START S VITU Pflclor DATE CODE m'N1 -M1r. (pt)Q (c) (c) (c) TESTED OF TEST ALIS . DEAD L.O.E. NOR?

Winter floundet 1Poeudopleuronecte8americanu, 21MAR77 3 96.6 156.2 23.6 6 5.2 1 10 0 10 - - -

1 10 0 0 0 96 10 0 0 0 25 APR 77 3 96.5 160.2 23.3 15 14.9 1 10 0 10 - -

1 10 0 10 0

.3 .10 0 8 0.

8 10 0 7 0 24 10 0 1 0 96 10 0 0 0 25 JON 77 3 34 47.2 23 20 20 11.2 20 0 16 - -

96 16 a a 0 21 mAy 75 2 140 192 27.5 20 20 10 10 0 5 - -

96 5 0 00 21 MAY 75 2 152 190 27.5 20 20 7 10 96 5 0 25 JUN 77 3 34 42.8 23 20 20 5.7 20 0 is - -

I 18 0 3 0 2 18 0 2 0 3 18 0 1 0 96 18 0 0 0 21 KAY 75 2 146 185 27.5 20 20 5 10 0 96 5 0 0

APPEND)X TABLE 24 .. SutIARY or COLD SOCK STUDEs CONDD=CT wrre HI SALINITY ESTOARINE AND MARDIE OIWANIUIS.

TOTAL LENGTR (m) SALXNIT! ACCLIM. TEMP. EXPER. TEMP. NO. or 4 BOOR 24 SOUR 48 SOUR 96 1OUR OATh MIN. MAX. MEAN (ppt) (a) (IF) (C) (F) EXP. ORG. I MORT.- I MORT. I MORT. I MORT Sand shrimp, Ctangon septemspinons 28 MAR 77 18.8 42 34.6 24.2 5 41 1.5 34 11 0 0 0 11 APR 77 41.1 65.6 54.2 25.1 10 so 2.3 36 10 0 a 0 Atlantic menhaden, Brevoortia tyranlmU 21 AUG 75 103 118 110 2i 25 77 20 68 5 0 0 0 28 25 77 15 59 S 0 0 0 0 21 AUG 75 115 121 115.6 21 AUG 75 105 130 116.4 28 25 77 10 50 5 0. 80 100 100 29 20 68 15 59 5 0 0 20 40 23 SEP 75 126 170 140.6 29 20 68 10 50 S 0 40 100 100 23 SEP 75 146 165 153.8 23 SEP 75 133 162 150.4 29 20 68 5 41 5 100 100 100 100 25.5 15 59 10 50 5 0 20 20 60 24 NOV 75 157 220 179.8 25.5 is 59 7 44 5 40 100 100 24 NOV 75 153 184 166.6 0 25.5 15 59 5 41 0 40 100 100 100 24 NOV 75 168 160 175.2 24 10 50 3.9 39 10 10 90 100 100 9 MAR 77 115.5 143.5 127.5 23.6 14 57 9.2 48 10 0 0 10 18 APR 77 125.5 141.2 132.2 0 24 14 57 5.3 41 10 90 100 100 18 APR 77 118.6 140.7 130.2 0 68 13 55 20 0 0 0 .0 5 JUL 77 57 76.4 64.3 22.7 20 5 JUL 77 55.5 -77 62.8 22.8 20 68 9.2 48 20 0 30 100 100

  • FlwDzI

,r~u z4.(am.)

TOTAL LENGTH (m) BALrNXTT ACCLrN. TEMP. EXPER. T?,P." NO. Of 4 HOUR 24 HOUR 48 HOUR '96 HOUR DATE KIK. ,AX. MEAN 11pwt) 1C) (F) (C) (F) EXP. ORG. I MORT. I MORT. I MORT. I MORT Bay anchovy, Anchoa mitchilli 2 KAY 77 46.9 58.6 53.8 23.6 10 50 7.2 44 17 0 0 29.41 29.41 2 RAT 77 48.5 67 54.5 23.5 10 50 4.6 40 14 7.14 100 100 100 6 JUN 77 45.2 62.3 53.6 23.2 14 57 13.1 55 14 0 7.14 7.14 7.14 6 JUN77 44 72 56.2 23.2 14 57 10 50 19 0 15.79 15.79 26.32 31 MAY 77 46.8 73.1 54.8 23 15 59 12.4 54 20 a 0 5 -

31 MAY 77 45.2 71.9 56.6 23. 15 59 10.5 50 22 0 0 9.09 -

24 MAY 77 44 72 55 23.9 16 60 9.3 48 19 0 42.11 57.89 73.68 24 MAY 77 43.8 67.8 .56.2 24.5 16 60 6.4 43 18 5.56 100 100 100 22 J0N 76 68 B8 74.6 30 22 71 18 64 5 0 0 a -

22 JUN 76 68 80 74.6 30 22 71 15 59 5 0 0 0 -o 22 JON 76 70 82 72.8 30 22 71 10 50 5 20 60 100 100 6 OCT 75 44 70 52.8 27.5 20 68 15 59 5 0 0 0 0 6 OCT 75 43 63 52.6. 27.5 20 68 10 50 5 0 20 40 60 6 OCT 75 42 51 47.8 27.5 20 6$ 5 41 5 100 100 100 100 13 NOV 75 so 87 71.6 26 1s 59 10 50 5 0 0 20 20 13 NOV 75 60 90 79.2 26 15 59 7 44 5 0 0 40 40 13 NOV 75 76 93 81.8 26 15 59 5 41 5 0 20 100 100 Bluefiah, Paat,,-us maltatfiz 20 OCT 75 165 240 197.8 27 20 68 15 59 5 0 0 0 0 29 OCT 75 .194 215 208.6 25 20 68 15 59 5 0 0 0 0 20 OCT 76 166 235 204 27 20 68 10 50 5 0 40 s0 100

USIA -2. (COT.)

7073%L LtNdR IM) sJhLrutFY Accreim. TcMP. 00. or 4 SOUR 24 DOUR 40 DlOUR DATE Kim. PAZ . KEAN I pp 0' (C) (P') (C) (FI BIP. ORG. % NOR?. M NORT. I NORT. s MORT' 29 OCT 75 196 220 204.8 25.5 20 68 10 S to 100 .100 100 20 OCT 75 195 260 225.4 27 20 6o 42 100 100 100 100 5

2 9 OCT "5 187 225 201.4 25.5 20 6G 41 100 100 100 100 Kintet flounder, fseudopleuronectma americanum 21 MAR 77 98.6 156.2 123.2 23.6 6 42 1 33 10 0 0 0 0 15 59 1 33 10 0 0 0 0 25 APR 77 96.5 160.2 131.4 23.3 25 JUN 77 34 47.2 40.6 23 20 6G 11.2 52 16 0 0 0 0 H 21 MAY 75 140 192 165.8 27.5 20 68 10 50 5 0 0 0 0 21 MAY 75 152 190 173.6 27.5 68 7 44 S. 0 0 0 0 25 JUN 77 34 42.8 37.5 23 68 5.7 42 0 0 2q 5 0 21 MAY 75 146 165 165.8 27.5 60 5 41 0 0 0

Appendix Table 25 - Cronological summary of simulated secondary entrainment experiments on opossum shrimp, .NeonvSis americana.

ALl tests conducted at saturated dissolved oxygen levels.

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL CTL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO. NO, PERCENT PATE MIN. MAX, (PPT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA 3 OCT 76 7 10 6 19.5 22.5 4 0 47 49 4 47 0 0 47 2 4 48 44 3 6 .39 10 20 5 OCT 76 7 10 6 19.5 23 4 0 47 47 4 47 0 0 44 '3 6 48 44 3 6 37 10 21 5 OCT 7 7 10 6 19.5 24 4 0 47 4S I-J 4 47 0 0 4"3 0 0 48 44 3 6 40 8 17 5 OCT 76 7 10 6 19.5 25.5 4 0 47 46 4 47 0 0 43 3 7.

40 - 44 3 6 41 -5 10 19.5 24.5 0.5 0 50 49 7 OCT 76 7 6 0.5 50 0 0 49 0 0 48 43.5 6.5 13 42 7 14 7 OCT 76 7 .10 6 19.5 24.5 I 0 5o 50 1 50 0 0 50 0 0 13 43 7 14 43 43.5 6.5

kppendix rable 25. (Cont.)

.SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (rL IN MM) TO HIGHER FROM START NO. NO. PERCENr (NO. NO. PERCEN7 DATE MIN. MAX. (PPT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY JFOM'SIS AMERICANA 7 OCr 76 7 10 6 19.5 24.5 4 0 I0 50 4 50 0 0 48 2 4 48 43.5 6.5 13 41 9 18 7 OCT 76 7 10 6 19.5 25.5 0.5 0 50 50 0.5 50 0 0 50 0 48 43.5 6.5 13 40 10 20 7 UCT 76 7 10 19.5 25.5 I 0 50 50 4 50 0 0 50 0 0 H*

48 43.5 6.5 13 44 6 12 0" 7 OCT 76 7 10 6 19.5 25.5 4.3 0 50 50 4.3 50 0 0 50 0 0 48 43.5 6.5 13 44 6 12 7 OCT 76 7 10 6 19.5 27.5 0.5 0 50 50 0.5 50 0 0 50 0 0 48 43..5 6.5 13 42 8 16 0 50 49 7 OCT 76 7 10 6 19.5 27.5 1 1 50 0 0 49 0 0 6.5 13 39 10 20 48 43.5

Appendix T able . 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FRUM START NO. NO, PERCENT NO. NO. PERCENT DATE MIHN MAX* (PPT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA 7 OCT 76. 7 10 6 19.5 27.5 4 0 50 49 4 50 0 0 48 2 48 43.5 6.5 13 38 22 22 OCr 76 7 10 4 13. 15 0.5 0 47.5 49 0.5 47.5 '49 0 48 45.5 45 22 OCT 76 1 10 4 13. 15 0 47.5 49 2 1 47.5 48 48 45,5 46 6 w

22 OCT 76 7 10 4 13 15.5 4.5 0 47.5 50 -J 4.5 47.5 49 2 48 46 B 45,5 10 4 13 16.5 0 47,5 50 22 OCT 76 7 0.5 47.5 50 0 48 45,5 43 14 22 OCT 76 7 10 4 13 17 1 0 47.5 50 1 47.5 49 2 48 45.5 45 10

.22 OCT 76 7 10 4 13 17.5 4.5 0 47.5 50

  • 4.5 47.5 47 6 48 45.5 45 10

.22 OCT 76 7 10 4 13 185. 0.5 0 47,5 49 0.5 47.5 49 0 48 45.5 43 12 22 OCT 76 7 10 4 13 18.5 0 47.5 50 49 2 1 47.5 46 a 48 45.5

Appendix Table 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL.

(TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT

[TATE MIN. MAX. (PPT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEMhYSIS AMERICANA 22 OCT 76 7 10 4 13 18.5 4.5 0 47.5 49 4.5 47.5 0 0 45 4 8 48 .45.5 2 4 42 7 14 22 OCT 76 10 4 13 20 0.5 0 47.5 50 0.5 47.5 0 0 50 0 0 48 45.5 4 47 3 6 22 OCT 76 7 10 4 13 20 1 0 47.5 50 1 47.5 0 0 50 0 0 48 45.5 2 4 49 1 2 C,)

W 22 OCT 76 7 10 A 13 20 4.5 0 47.5 50 4.5 47.5 0 0 49 1 2 48 45.5 2 4 45 5 10 26 OCT 76 3 7 4 12.5 13.5 0.5 0 49 50 0.5 49 0 0 50 0 0 48 34.5 14,5 30 31 19 30 26 OCT 76 3 7 4 12.5 13.5 1 0 49 41 1 49 0 0 40 1 2 48 34.5 14.5 30 28 13 32 26 OCT 76 3 7 4 12.5 13.5 4 0 49 49 4 49 0 0 48 1 2 48 34.5 14.5 30 38 11 22 26 OCT 76 3 7 4 12.5 15 I 0 49 49 1 49 0 0 49 0 0 48 34.5 14.3 30 14 35 71

2 Appendix Table 25. (coat.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT DAmE MIN. MAX. (PPT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEADr MORTALITY ALIVE DEAD MORTALITY C-NEOMYSIS AMERICANA 26 OCI 76 3 7 4 12.5 15.5 4 0 49 49 4 49 0 0 49 0 0 48 34.5 14.5 30 34 15 31 26 OCT 76 3 7 4 o2.5 17 0.5 0 49 40 0.5 49 0 0 -48 0 0 48 34.5 14.5 30 38 10 21 2s nCT 76 3 7 4 12.5 17.5 1 0 49 45 1 49 0 0 44 1 2 48 34.5 14.5 30 25 20 44 26 OCT 76 3 7 4 12.5 17o5 4.5 0 49 49 w b0 4.5 49 0 0 48 2 48 34,5 14.5 30 24 25 51 26 OCT 76 3 7 4 12.5 19.5 0.5 0 49 4B 0.5 49 0 0 40 0 0 48 34.5 14.5 30 35 13 27 26 OCT 76 3 7 4 12.5 19.5 4 0 49 47 4 49 0 0 44 3 6 48 34.5 14.5 30 35 12 26 26 OCT 76 3 7 4 12.5 20 1 0 49 48 1 49 0 0 47 1 48 34.5 14.5 30 29 19 40 5 NOV 76 3 7 5 11.5 13.5 0.5 0 49.5 49 0.5 49.5 0 0 49 0 0 48 37 12.5 25 41 9 16 5 NOV 76 3 7 5 11.5 13.5 I 0 49.5 50 1 49.5 0 0 49 2 48 37 12.5 25 41 9 is

Appendix T able 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO, NO. PERCENT DATE MIN. MAX. (PPT) CONT. EXP. TEMF'(HRS,) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA S. NOV 76 3 7 5 11.5 13.5 4 0 49.5 50 4 49.5 0 0 50 0 0 48 37 12.5 25 33 17 34 5 NOV 76 3 7 5 11.5 14o3 0 47.5 5O 0.5 49.5 0 0 50 0 0

.48 37 12.5 25 35 I5 30 5 NOV 76 3 7 5 11.5 15 0 49.5 47 1 49.5 0 0 49 0 0 48 37 12.5 25 30 19 39 5 NOV 76 3 7 5 11.5 15 4 0 49.5 50 0J 4 49.5 0 0 49 1 N

  • 48 37 12.5 25 38 12 2 5 NOV 76 3 7 5 11.5 17 0 49 49 0.5 49.5 0 0 49 0 0 37 48 12.5 26 35 14 29 5 NOV 76 3 7 5 1165 17 1 0 49 49 1 49,5 0 0 49 0 0 48 37 12.5 26 32 17 35 5 NOV /6 3 7 5 11.5 17 4 0 49 50 4 49.5 0 0 50 0 0 48 37 12.5 26 38 12 24 5 NOV 76 3 7 5 11.5 18.5 0.5 0 49 50 0.5 49.5 0 0 50 .0 0 48 37 12.5 26 34 16 32 5 NOV 76 3 7 5 11.5 18.5 1 0 49 50 1 49.5 0 0 50 0 0 48 37 12.5 26 38 12 24 0

AppendLx Table 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO.

DATE NO. PERCENT NIN. MAX. (PPT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA 5 NOV 76 3 7 5 11.5 18.5 4 0 49 50 4 49.5 0 0 50 0 0 48 37 12.5 26 42 8 16 19 NOV 76 a 11 6 10 0.5 0 29.5 29 0.5 29.5 0 0 -29 0 0 48 23 6.5 22 21 a 28 19 NOV 76 3 7 6 8 10 0.5 0 29.5 26 0.5 29.5 0 0 26 0 *0 48 21 8.5 29 14 12 46 19 NOV 76 a 11 6 8 10 1 0 29.5 30 1 29.5 0 0 30 0 0.

48 23 6.5 22 18 12 40 19 NOV 76 3 7 6 8 10 0 29.5 27 1 29.5 0 0 27 0 48 21 8.5 29 14 48 19 NOV 76 a 11 6 8 10 4 0 29.5 28 0 4 29.5 0 0 28 0 48 23 6.5 22 17 11 39 19 NOV 76 3 7 6 a 10 4 0 29.5 28 4 29.5 0 0 28 0 0 48 21 8.5 29 17 11 35 19 NOV 76 8 11 6 8 12 0.5 0 29.5 30 0.5 29.5 0 0 30 0 0 48 23 6.5 22 20 10 33 19 NOV 76 3 7 6 8 12 0 29.5 30 0.5 29.5 0 0 30 0 0 48 21 8.5 29 19 11 37

Append ix Table 25. (cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (rL IN MM) TO HIGHER FROM START NO.. NO. PERCENT NO. NO. PERCENT DATE MIN.. MAX. (PPT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA 19 NOV 76 8 11 6 8 12 I 0 29.5 29 1 29.5 0 0 29 0 0 48 23 6.5 22 18 11 38 19 NOV 76 3 7 6 S 12 1 0 29.5 26 1 29.5 0 0 26 0 0 48 21 8.5 29 13 13 50 19 NOV 76 8 11 6 B *12 4 0 29.5 29 4 29.5 0 0 28 1 3 48 23 6.5 22 19 10 34 19 NOV 76 3 7 6 8 12 4 0 29.5 29 Nx) 4 29.5 0 0 28 1 3 h) 48 21 8.5 29 16 13 45 19 H.!OV 76 8a 1 6 8 13.5 0 29.5 30 0.5 29.5 0 0 30 0 0 48 23 6.5 22 21 9 30 19 NOV 76 3 7 6 8 13.5 0.5 0 29.5 29 0.5 29.5 0 0 28 1 3 48 21 8.5 29 17 12 41 19 NOV 76 8 11 6 a 13.5 I 0 29.5 29 1 29.5 0 0 29 0 0 48 23 6.5 22 23 6 21 19 NOV 76 3 7 6 8 13.5 1 0 29.5 29 1 29.5 0 0 29 4 0 48 21 8.5 29 15 14 48 19 NOV 76 8 11 6 8 14 4 0 29.5 30 4 29.5 0 0 30 0 0 48 23 6.5 22 21 9 30 0 0

S S Appendix Table 25. (Cont.)

SIZE RANGE SALINITY . TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN KlA TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT DATE MIN. MAX. (PPT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY. ALIVE DEAD

. MORTALITY NEOMYSIS AMERICANA 19 NOV 76 3 7 6 8 14 4 0 29.5 30 4 29.5 0 0 30 0 0 48 21 8.5 29 21 9 30 19 NOV 76 8 .11 6 8 14.5 0.5 0 29.5 29 0.5 29.5 0. 0 27 2 7 48 23 6.5 22 17 12 41 19 NOV 76 3 7 6 14.5 0.5 0 29.5 27 0.5 29.5 o0 0 26 1 4 48 21 8.5 29 10 17 63 19 NGV 76 8 11 6 8 15 1 0 29.5 28 1 N*

29.5 0 0 28 0 0 48 23 6.5 22 15 13 46 19 NnV 76 3 7 6 8 15 1 0 29.5 30 1 29.5 0 0 30 0 0 48 21 8.5 29 .11 19 63 19 NOV 76 a 11 6 8 15 4 0 29.5 30 4 29.5 0 0 29 1 3 48 23 6.5 22 21 9 30 19 NOV 76 3 7 6 8 15 4 0 29.5 30 4 29.5 0 0 30 0 0 48 21 8.5 29 16 14 47 8 DEC 76 a 12 3.5 5 8.5 0.5 0 30 30 0.5 30 0 0 30 0 0 48 29 1 3 30 0 0 8DEC 76 3 7 3.5 5 8.5 0.5 0 30 30 0.5 30 0 0 30 0 0 48 30 0 0 30 0 0

Appendix Table. 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO- PERCENT NO. NO. PERCENT VATE MIN. MAX. (F'PT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA 8 DEC 76 8 12 3.5 5 805 1 0 30 - - 30 - -

1 30 0 0 30 0 0 48 29 1 3 30 0 0 8 DEC 76 3 7 3.5 1 0 30 30 1 30 0 0 30 0 0 48 30 0 0 30 0 0 8 DiEC 76 8 12 3.5 5 8.5 4 0 30 30 4 30 .0 0 30 0 0 48 29 0 3 29 1 3 8 DEC 76 3 7 3.5 -I 8.5 4 0 30 30 4 30 0 0 30 0 0 41-48 30 0 0 29 1 3 8 DEC 76 a 12 3.5 5 13.5 0.5 0 30 30 0.5 30 0 30 0 0 48 29 3 27 3 10 8 DEC 76 3 7 3.5 5 13.5 0.5 0 30 28 0.5 30 0 28 0 0 48 30 0 28 0 0 8 DEC 76 8 12 3.5 5 13.5 0 30 30 1 30 0 30 0 0 48 29 3 30 0 0 8 DEC 76 3 7 3.5 5 13.5 0 30 30 1 30 0 30 0 0 48 30 0 30 0 0 6 DEC 76 8 12 3.5 5 13.5 4 0 30 30 4 30 0 30 0 0 48 29 3 30 0 0 0

Appendix Table 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT DATE MIN. MAX. (PPT) CONT.. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA B DEC 76 3 7 3.5 5 13,5 4 0 30 30 4 30 0 0 30 0 0 48 30 0 0 29 1 3 10 DEC 76 8 11 3.5 6.5 11 0.5 0 30 29 0.5 30 0 0 29 0 0 48 30 0 0 27 2 7 10 DEC 76 3 7 3.5 6.5 11 0.5 0 27 28 0.5 27 0 0 28 0 0 48 23 4 15 27 1 4 10 DEC 76 8 11 3.5 6.5 11 0 30 28.

1 30 0 26 0 0 48 30 0 0 27 3 4 hin 10 DEC 76 3 7 3.5 6.5 11 0 27 29 1 27 0 0 29 0 0 48 23 4 26 3 10 10 DEC 76 a 11 3.5 6.5 .11 4 0 30 29 4 30 0 0 29 0 0 48 30 0 0 28 1 3 10 DEC 76 3 7 3.5 6.5 11 4 0 27 27 4 27 0 0 27 0 0 48 23 4 15 26 1 4 15 FES 77 a 15 30 2 4 0.5 0 20 20 0.5 20 0 0 20 0 0 24 19 1 18 2 10 15 FEB 77 8 15 30 2 4 I 0 20 20 1 20 0 0 19 1 5 24 19 5 19 2 10 1

Appendix Table 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT DATE MIN. MAX. (PPT) CONT. EXP. TEMP(HRS.).OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA 15 FED 77 8 15 30 2 4 4 0 20 20 4 20 20 0 24 19 18 10 15 FEB 77 8 13 30 2 46 0.5 0 20 20 0.5 20 20 0 24 19 -17 15 15 FEB 77 8 15 30 6 0 20 20 1 20 2o 0 24 19 20 0 15 FEB 77 6 15 30 2 4 0 20 20 4 20 20 0 24 19 20 0 1.5 FED 77 8 15 30 2 7,5 0.5 0 20 20 0.5 20 20 0 24 19 19 5 15 FEB 77 8 15 30 2 7.5 1.5 0 20 20 1.5 20 20 0 24 19 17 15 15 FEB 77 8 15 30 2 7.5 4 0 20 20 4 20 20 0 24 19 20 0 15 FEB 77 8 15 30 2 9 0.5 0 20 20 0.5 20 20 0 24 19 17 15 30 2 9 1 0 20 20 15 FEB 77 8 1 20 19 5 24 19 18 10 0 S

Appendix Table 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO, NO. PERCENT DATE MIN. MAX. (PPT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA 15 FEB 77 8 15 30 2I 9 4 0 20 .20 4 20 0 0 20 0 0 24 19 1 5 20 0 0 9 MAR 77 8 15 28 7.5 11.5 0.5 0 30 30 0,5 30 0 30 0 0 48 28.5 1.5 29 1 3 0

9 MAR 77 a 15 28 7.5 11.5 1 o 30 30 1 30 0 30 0 0 48 28.5 1.5 30 0 0 0

9 MAN 77 a 15 28 7.5 11.5 4 0 30 30 4 30 0 30 0 0 -J 48 28.5 1.5 5 27 3 10 9 MAR 77 9 15 28 7,5 13.5 1 0 30 30 1 30 0 0 30 0 0 48 28s5 1.5 5 30 0 0 9 MAR 77 8 15 28 7.5 13.5 4 0 30 29 4 30 0 0 29 0 0 48 28.5 1.5 0 29 0 0 9MAR 77 8 15 28 795 15.5 0#5 0 30 30 0.5 30 0 0 30 0 0 48 28.5 1.5 5 26 4 13 9 MAR 77 8 15 28 7.5 15.5 1 0 30 30 1 30 0 0 30 0 0 48 28.5 1.5 5 29 1 3 9 MAR 77 8 15 28 7.5 15.5 4 0 30 30 4 30 0 0 30 0 0 1.5 30 0 0 48 28.5

Appendix Table 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT DATE MIN. MAX. (PFT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA 17 MAR 77 8 15 28 10 . 12 0.5 0 25 28 0.5 25 0 28 0 48 20 20 24 14 17 MAR 77 1 " .0 213 8 15 28 10 12 25 1 25 0 28 0 48 20 20 28 0 17 MAR 77 a 15 28 10 12 4. 0 25 25 4 25 0 25 0 48 20 20 24 4 17 MAR 77 8 15 28 10 13.5 0 25 24 WJ 0.5 25 0 24 0 48 20 20 20 17 17 MAR 77 8 15 28 10 13.5 1.5 0 25 28 1,5 25 0 28 0 48 20 20 26 7 17 MAR 77 8 15 28 10 13.5 4 0 25 28 4 2,5 0 213 0 48 20 20 25 11 17 MAR 77 8 15 28 10 15 0.5 0 25 28 0.5 0 28 0 48 20 20 26 7 17 MAR 77 .8 15 28 10 15 0 2,5 29 1 25 0 29 0 48 20 20 24 17 17 MAR 77 4 0 25 29 8 15 28 10 15 4 2,.5 0 27 7 48 20 20 25 14 0

0 Appendix Table *25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT DATE MIN. MAX. (PPT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA 17 MAR 77 8 15 28 10 18 0.5 0 25 27 I 0.5 25 0 0 26 4 48 20 0 20 23 4 15 17 MAR 77 a 15 28 10 18 1 0. 25 27 1 25 0 0 26 1 4 48 20 5 20 -25 2 7

17. MAR 77 8 15 28 10 18 4 0 25 27 25 0 4 0 27 0 0 48 20 20 26 1 4 24 MAR 77 8 15 20 9 . 11 0.5 0 30 29 0.5 30 0 0 29 0 0 48 28.5 1.5 28 1 3 ~0 5

24 MAR 77 15 20 9 11 1 0 30 30 1 30 0 0 30 0 48 28.5 1.5 30 0 0 0

24 MAR 77 a 15 20 5'11 4 0 30 30 4 30 0 0 30 0 0 48 28.5 1.5 5 28 2 7 5' 13.5 0.5 0 30 26 24 MAR 77 8 15 20 0.5 30 0 0 26 0 0 48 28.5 1.5 5 26. 0 0 24 MAR 77 9. 13.5 1 0 30 30 8 15 20 1 30 0 0 30 0 0 48 28.5 1.5 30 0 0 5

9 13.5 4 0 30 30 24 MAR 77 8 15 20 0 0 4 30 0 30 0 1.5 26 4 13 48 28.5

Appendix Table 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT DATE MIN. MAX. (PPT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA 24 MAR 77 8 15 20 9 14.5 4 0 30 29 4 30 0 29 0 48 28.5 1.5 27 7 0

24 MAR 77 3 15 20 9 15 0.5 0 30 30 0.5 30 0 30 0 48 28.5 1.5 " 26 13 24 MAR 77 a 15 20 9 15 1 0 30 30 1 30 0 30 0 48 28.5 1.5 27 10 24 MAR 77 8 15 20 9 16.5 0 30 30 0.5 30 0 30 0 0 48 28.5 1.5 29 3 24 MAR 77 8 15 20 9 16.5 1 0 30 30 1 30 0 30 0 4B 28.5 1.5 28 7 24 MAR 77 8 15 20 9 16.5 4 0 30 30 4 30 0 30 0 48 28.5 1.5 30 0 6 APR 77 a 14 20 11.5 14 0.5 0 19.5 19 0,5 19.5 0 19 0 48 16 3.5 15 21 6 APR 77 8 14 20 11.5 14 1 0 19.5 20 1 19.5 0 0 20 0 0 16 3.5 18 17 3 15 48 20 11.5 14 4 0 19.5 20 6 APR 77 8 14 4 19.5 0 0 20 0 0 48 16 3.5 18 17 3 15 0

Appendix Table 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT DATE MIN* MAX. (PPT) CONT. EXP. TEMPF(HRS,) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA 6 APR 77 8 14 20 11.5 15.5 0 19.5 18 0.5 19.5 0 0 0 0 48 16 3.5 16 16 2 11 6 APR 77 B 14 20 11.5 15.5 1 4. 19.5 20 19.5 0 0 20 0 0 48 16 3.5 18 .15 5 25 6 APR 77 a 14 20 11.5 15.5 4 0 19.5 20 4 19.5 0 0 20 0 0 48 16 3.5 1i 13 7 35 6.APR 77 8 14 20 11.5 16.5 4 0 19.5 20 wO 4 . 19.5 0 0 20 0 0 48 16 3.5 1B 15 5 25 6 APR 77 . 8 14 20 11.5 17 0.5 0 19.5 19 0.5 19.5 0 0 19 0. 0 48 16 3.5 18 17 2 11 6 APR 77 8 . 14. 20 11.5 17 1 0 19.5 20 1 19.5 0 0 20 0 0 48 16 3.5 1i 18 2 10 6 APR 77 a 14 20 11.5 18.5 0 19.5 16 0.5 19.5 0 0 18 0 0 48 16 3.5 18 11 7 39 6 APR 77 6 14 ..20 11.5 18.5 1 0 19.5 20 1 19.5 0 .0 20 0 0 48 16 3.5 18 16 2 10 0 20 6 APR 77 6 14 20 11.5 18.5 4 19.5 4 19.5 0 0 20 0 0 48 16 3.5 16 9 11 55

Appendix.

Table 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT . NO. NO. PFERENT DATE MINI. MAX. (PPT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICAiNA 8 SEP 77 5 10 7.5 25 27.5 0.5 0 17.5 11 0.5 17.5 0 0 0 0 24 15 2.5 14 10 1 9 8 SEP 77 5 10 7.5 25 27.5 +/- 0 17.5 " 11 1 17.5 0 0 Ii 0 0 24 15 2.5 14 9 2 18 8 SEP 77 5 10 7.5 25 27.5 4 0 17.5 4 0 17.5 0 0 0 24 15 2.5 14 12 3 20 20 Ij wa 0 SEP 77 5 10 7.5 25 29 0.5 .0 17.5 20 0.5 17.5 0 0 20 0 0 15 2.5 14 16 4 20 24 6 SEP 77 5 10 7.5 25 29 1 0 17,5 20 1 17.5 0 0 20 0 0 2,5 14 15 5 24 15 8 SEP 77 5 10 7.5 25 29 4 0 17.5 1i 0 170 4 17.5 0 0 13 24 15 2.5 14 15 3 17 8 SEP 77 5 10 7.5 25 31 0 .17.5 14 0.5 17.5 0 0 14 0 0 0

24 15 25. 14 14 0 8 SEP 77 5 10 7.5 25 31 1 0 17.5 10 1 17.5 0 0 10 0 0 0

24 is 2.5 14 10

Apperdix Table . 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.). CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT DATE MIN. MAX. CPPT) CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE PEAD MORTALITY NEOMYSIS AMERICANA 8 SEP 77. 5 10 7.5 25 31 4 0 17.5 20 4 17.5 0 0 19 1 5 24 15 2.5 14 13 7. 35 8 SEP 77 5 10 7.5 25 32.5 0.5 0 17.5 16 0.5 17.5 0 0 16 0 0 24 15 2.5 14 12 4 25 8 SEF" 77 5 10 7,5 25 32.5 1 0 17.5 19 1 17.5 0 0 19l 0 0 24 15 2.5 *14 13 6 32 Lat La 0 SEP 77 5 10 7.5 25 32.5 4 0 17.5 - 20 4 17.5 0 0 0 20 100 14 SEP 77 4 9 6 24 26.5 0.5 0 14.5 13 0 0 13 0 0 0.5 14.5 48 11 3.5 24 9 4 31 14 SEP 77 4 9 6 24 26.5 1 0 14.5 10 1 14.5 0 0 18 0 0 48 11 3.5 -24 .14 4 22 14 SEP 77 4 9 6 24 26.5 4 0 14.5 15 4 14.5 0 0 15 0 0 3.5 24 7 8 53 48 11 28.5 0.5 0 14.5 12 14 SEF 77 4 9 6 24 12 0.5 14..5 0 0 0 0 3,5 24 7 5 42 48 11 24 28.5 1 0 14.5 19 14 SEP 77 4 9 6 1 14.5 0 0 19 0 0 48 11 3.5 24 12 7 37

Appendix Table 25. (Cont.)

SIZE RANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTROL EXPERIMENTAL cTL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT DATE MIN. MAX. (PPT) . CONT. EXP. TEMP(HRS.) OF TEST ALIVE DEAD MORTALITY ALIVE DEAD MORTALITY NEOMYSIS AMERICANA 14 SEP 77 4 9 6 24 28.5 4 0 14.5 20 4 14.5 0 0 20 0 0 48 11 3.5 24 7 13 65 14 SEP 77 4 9 6 24 30 0.5 0 14.5 13 7 0.5 14.5 0 0 13 0 0 48 11 3.5 24  ? 4 31 14 SEP 77 4 9 6 24 30 0 14.5 17 1 14.5 0 0 17 0 0 48 11 3.5 24 10 7 41 14 SEP 77 4 9 6 24 30 A 0 14.5 15 4 14.5 0 0 15 0 0 48 11 3.5 24 10 5 33 14 SEP 77 .4 9 6 24 31.5 0 14.5 17 0.5 14.5 0 0 17 0 0 48 11 3.5 24 13 4 24 14 SEP 77 4 9 6 24 31.5 1 0 14.5 19 0 0 19 0 0 1 14.5 24 10 9 47.

48 11 3.5 4 0 14.5 -1 9 14 SEP 77 4 9 6 *24 31.3 4 14.5 0 0 19 0 0 9 10 53 48 11 3.5 24

Appendix Tdbie 26 t-,lrenolrogical sun~mary of simulated secondary entraij.vment expneriments on bay anchovy, nqhoa rmitch1i l-j eggs.

All tests condlicted at saturated dissolved oxygen levelo.

SIZE FRANGE SALINITY TEMPERATURE EXPOSURE TIME(HRS,) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT DATE MIN. MAX. (PPT) CONT. EXP. TEMP(HRS.) OF "TEST UNHAT. HAT. HAT. UNHAT. HAT. HAT.

.eNflOA hIrCHiLLI 3 AUG 77 - - 12 27 28.5 0 25 20 0., 23 0 0 20 0 0 18 2 23 92 0 20 100 3ft,* 7 - -A 12 27 28.5 1 0 25 2,5 0 0 25 0 18 2 23 92 1 24 3 ALIG 77 - - 12 27 26.5 4 0 25 21 4 25 0 0 21 18 2 23 92 0 21 0

3 AUG 77 - 12 27 31.5 100 0,5 0 25 21 LI 0.5 2.5 0 0 21 0 17.5 2 23 92 0 2!

5 ALG 77 - - 12 27 31.5 1 0 25 1 25 0 0 0 17.3 2 23 92 21 3 ALC 77 - - 12 27 31.5 4 0 25 23-0 0 23 0 0 4 225 18 2 23 92 0 23 100 Z AUG 77 - 12 27 33.5 0.5 0 25 19 0.5 .25 0 0 19 0 20 23 92 3 16 8'4 17.5 2 3 AUG 7? . - - 12 27 33.5 1 0 25 15 1 25 0 0 15 0 17.5 2 23 92 87

Appendix

'Table 26. (Cont.)

SIZE RANCE SALINITY TEMPERATURE EXPOSURE T:1ME(HRS.) CONTROL EXPERIMENTAL (TL IN MM) TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT DATE MIN. MAX. (PPT) CONT.' . EXP. TEMP(HRS.) OF TEST UNHAT. HAT. HAT. UNHAT. HAT. HAT.

ANCHOA MITCHILLI 3 AUG 77 - 12 27 33.5 4 0 25 18 4 25- 0 0 18 0 0 17.5 2 23 92 4 14 79 4 AUG 77 - - 12 27 28.5 0 26 20 0.5 26 0 0 20 0 0 19 2.5 23.5 90 1 19 95 4 AUG 77 12 27 28.5 1 0 26 19 1 26 0 0 19 0 0 19.5 2.5 23.5 90 2 17 89 Ija 4 AUG 77 - 12 27 29 4 0 26 18 0'.

4 26 0 0 18 0 0 19 2.5 23.5 90 0 18 100 4 AUG 77 - 12 27 31.5 0.5 0 26 22 0.5 26 0 0 22 0 0 19.5 2.5 23.5 90 2 20 91 4 AUG 77 12 27 31.5 I 0 26 17 1 26 0 0 17 0 0 90 2 15 68 19.5 2.5 23.5 4 AUG 77 .- 12 27. 32.5 0.5 0 26 33 0.5 26 0 0 33 0 0 18.5 2.5 23.5 90 7 26 79

- - 12 27 32.5 1 0 26 is 4 AUG 77 1 26 0 0 18 0 0 19 2.5 23.5 90 0 1i 100 4 AUG 77 - - 12 27 32.5 4 0 26 17 4 26 0 0 17 0 0 19 2.5 23.5 9o 1 16 V4

Appendix Table 26.. -Cont.)

SIZE RA*7F SALINITY TEMPERATURE EXPOSURE TIME(HRS.) CONTRGL EXPERIMENTAL (TL IN MM, TO HIGHER FROM START NO. NO. PERCENT NO. NO. PERCENT DATE MIN. MAX. (PPT) CONT. EXP, .TEMP(HRS.) OF TEST UNHAT. HAT. HAT. UNHAT. HAT. HAT.

A- - - - - - -- ------------------------------------------------------------

ANCHO.A MITCHILLI 4 AUG 77 - - 12 27 33.3 0.3 0 26 21 0.5 26 0 0 21 0 0 19 2.5 23.5 90 2 19 90 4 AUG 77 - 12 27 33.5 0 26 63 1 26 0 0 335 0 0 19,3 2.5 23.5 90 6 29 83 4 AUG 77 12 27 34 4 0 26 - - 17 4 26 0 0 17 0 0 13 76

-I 19 2.5 213.5 9o 4

Literature Cited Albrecht, A. B. 1964. Some observations on factors associated with survival of striped bass eggs and larvae. Calif. Fish. Game.

50(2): 101-113. (not seen, cited in de Sylva 1969).

Allen, K. 0. 1974. Notes on the culture of striped bass in tanks and small raceways. Prog. Fish-Cult. 36(1): 60-61.

Altman, P. L., and D. S. Dittmer, (eds.). 1966. Environmental biology Fed. Amer. Soc. Exper. Biol., Bethesda, MD. 694 pp. (not seen, cited in de Sylva 1969).

Britton, S. W. 1924. The effects of extreme temperature on fishes.

Amer. J.. Physiol. 67:. 411-421.

Chesney, E. J., Jr., and J. I. Estevez. 1976. Energetics of winter flounder (Pseudopleuronectes americanus) fed the polychaete, Nereis virens, under experimental conditions. Trans. Amer. Fish.

Soc. 105(5): 592-595.

Costlow, J. D., Jr. 1967. The effect of salinity and temperature on survival of the metamorphosis of megalops of the blue crab Callinectes sapidus. Helgolander. Wiss. Meeresunters. 15:

84-97.

Coutant, C. C. 1977. Compilation of temperature preference data.

J. Fish. Res. Bd. Canada. 34(5): 739-746.

Coutant, C. C., and C. P. Goodyear. 1972. Thermal effects. J. Water Poll. Control Fed. 44(6): 1250-1294.

Coutant, C. C., and R. J. Kedl. 1975. Survival of larval striped bass exposed to fluid induced thermal stresses in a simulated condenser tube. ERDA Report ORNL-TM-4695. Oak Ridge Nat. Lab., Oak Ridge, TN. 37 pp.

Coutant, C. C., H. A. Pfuderer, and B. N. Collier. 1974. Thermal effects on aquatic organisms - annotated bibliography of the 1973 literature.

USAEC Rep. ORNL-EIS-74-28. Oak Ridge Nat. Lab., Oak Ridge, TN.

241 pp.

Coutant, C. C., and S. S. Talmage. 1976. Thermal effects. J. Water Poll. Control Fed. 48(6): 1486-1544.

Cox, D. K., and C. C. Coutant. 1975. Growth-temperature responses of striped bass, Morone saxatilis. Presented at the Second Thermal Ecology Symp., Augusta, GA. 2-5 April 1975.

Daniels, B. A., and R. T. Sawyer. 1975. The biology of the, leech Myzobdella lugubris infecting blue crab and catfish. Biol. Bull.

.148: 193. (not seen, cited in Coutant and Talmage 1976).

Davies, W. D. 1973. Rates of temperature acclimation for hatchery reared striped bass fry and fingerlings. Prog. Fish-Cult. 35(4):

214-217.

deSylva, D. P. 1969. Theoretical considerations of the effects of heated effluents on marine fishes. Proc. of the First Nat. Symp.

on Thermal Pollution. Vanderbilt Univ. Press, Nashville, TN 56 pp.

Dorfman, D. and J. R. Westman. 1970. Responses of some anadromous fishes to varied oxygen concentrations and increased temperature. N. J.

Water Res. Research Inst. Rutgers Univ. OWRR Project No. B-012-N.J.

76 pp.

Farley, T. C. 1966. Striped bass, Roccus saxatilis, spawning in-the Sacramento-San Joaquin River system during 1963 and 1964. Pages 28-43 in J. L. Turner and D. W. Kelley, eds.. Ecological studies of the Sacramento-San Joaquin delta. Part II. Fishes of the Delta.

Calif. Dep. Fish Game Fish. Bull. 136 (not seen, *cited in de Sylva 1969).

Festa, P. J. 1974. A study of the distribution of young and larval summer flounder in New Jersey estuarine waters. Project F-15-R.

Misc. Rept. No. llm (mimeo). N. J. Dept. Envir. Prot. Div. of Fish, Game, and Shellfish. Bur. Fish., Nacote Creek Res. Sta. . 30 pp.

Galloway, J. P., and K. Strawn. 1974. Seasonal abundance and distribution of marine fishes at a hot-water discharge in Galveston Bay, Texas.

Contrib. Mar. Sci. 18: 71-137. (not seen, cited in Coutant 1977).

Gift, J. J., and J. R. Westman. 1971. Responses of some estuarine fishes to increasing thermal gradients. Privately published monograph,

.June 1971. 154 pp.

Haefner, P.A., Jr. 1976. Seasonal distribution and abundance of sand shrimp Crangon septemspinosa in the York River - Chesapeake Bay Estuary. Chesapeake Sci. 17(2): 131-134.

Hazel, C. R., et al. 1971. Sensitivity of striped bass and sticklebacks to ammonia in relation to temperature and salinity. Calif. Fish Game.

57: 138. (not seen, cited in Coutant and Goodyear 1972).

Hoff, J. H., and J. R. Westman. 1966. The temperature tolerances of three

.species of marine fishes. J. Mar. Res. 24(2): 141-410.

Holland, J. S., D. V. Aldrich, and K. Strawn. 1971. Effects of temperature and salinity on growth, food conversion, survival and temperature resistance of juvenile blue crabs, Callinectes sapidus, Rathbun.

Texas A & M Univ., TANU-SG-71-222. 165 pp.

Hoss, D. E., L. C. Coston, and W. F. Hettler, Jr. 1971. Effects of W increased temperature on postlarval and juvenile estuarine fish.

Proc. SE Assoc. Game Fish Commnrs. 25: 635-642.

, W. F. Hettler, Jr., and L. C. Coston. 1974. Effects of thermal shock on larval estuarine fish - ecological implications with respect to entrainment in power plant cooling systems. Pages 357-371 in J. H. S. Blaxter, ed. The early life history of fish. Springer-Verlag, New York, NY.

Huntsman, A. G. , and N. [. Sparks. 1924. Limiting factors for marine animals. 3. Relative resistance to high temperatures. Contrib.

Can. Biol. 2: 95-114.

Hutcheson, N. S. 1974. The effect of the temperature and salinity on cadmium uptake by the blue crab, Callinectes sapidus. Chesapeake Sci. 15(4): 237-241.

Kerr, J. E. 1953. Studies on fish preservation at the Contra Costa Steam Plant of the Pacific Gas and Electric Company. Fish. Bull.

Calif. (92): 1-66. . (not seen, cited in de Sylva 1969).

Lewis, R. I. 1966. Effects of salinity and temperature on survival, and development of larval Atlantic menhaden, Brevocrtia tvrannus. Trans.

Amer. Fish. Soc. 95(4): 423-426.

, and W. F. Hettler, Jr. 1968. Effect of temperature and salinity on the survival of young Atlantic menhaden, Brevoortia tvrannus. Trans. Amer. Fish. Soc. 97(4): 344-349.

Mahood, R., N. McKenzie, D. Middough, S. Bollar, J. Davis, and D. Spitsbergen.

1970. A report on the cooperative blue crab study - South Atlantic states. Georgia Game and Fish Co-mn., Coastal Fish. Div. Contrib.

Series !o. 19: 1-32. (not seen, cited in Holland et al. 1971).

McCracken, F. D. 1963. Seasonal movements of the winter flounder, Pseudopleuronectes americanus (Walbaum), on the Atlantic coast.

J. Fish. Res. Bd. Canada. 20(2): 551-585.

Neldrim, J. W., and J. J. Gift. 1971. Temperature preference, avoidance, and shock studies with estuarine fishes. ichthyological Assoc., Inc.

Bull. No. 7. ichthyological Assoc., Inc., Ithaca. NY. 75 pp.

Nihursky, J. A., and V. S. Kennedy. 1967. V-ater temperature criteria to protect aquatic life. Spec. Pub!. Amer. Fish. Soc. 4: 20-32.

Norcross, J. J., S. L. Richardson, W. H. Massman, and E. B. Joseph.. 1974.

Development of young bluefish (Pomatomus saltatrix) and distribution of eggs and young in Virginian Coastal Uaters. Trans. Amer. Fish.

Soc. 103(3): 477-497.

Orwell, W. S. 1973. The cptimum age, temperature and salinity for stocking juvenile striped bass, Morone saxatilis. VA. J. Sci. 34: 125. (not seen, cited in Coutant and Taimage 1976'.

Pearce, J. B. 1969. Thermal addition and the benthos, Cape Cod Canal.

Chesapeake Sci. 10(3-4): 227-233.

Perry, H. M. 1975. The blue crab fishery in Mississippi. Gulf Coast Res. Lab., Ocean Springs, MS., Gulf Res. Rept. 5: 39. (not seen, cited in Coutant and Talmadge 1977).

Peters, D. S., and J. W. Angelovic. 1973. Effect of temperature, salinity, and food availability on growth and energy utilization of-juvenile summer flounder, Paralichthys dentatus. Proc. Third Nat. Symp. on Radioecology, Oak Ridge, TN. May 10. (not seen, abstract in Coutant et al. 1974).

Regnault, M., and J. D. Costlow. 1970. Influence de la temperature et de la salinite sur le development larvaive de Crangon septemspinosa sayi (Decapoda, Caridea). Vie et milieu, Ser. A. 21(2-A): 453-466.

Reintjes, J. W. 1969. Synopsis of biological data on the Atlantic menhaden, Brevoortia tyrannus. U. S. Fish and Wildl. Serv., Circ. 320. 30 pp.

Reintjes, J. W. 1975. Compilation and correlation analysis of published and unpublished environmental data with distribution, abundance, and movements of young menhaden in mid-Atlantic estuaries. Nat.

Mar. Fish. Serv. 40 pp.

Rogers, C. A. 1976. Effects of temperature and salinity on the survival of winter flounder embryos. Fish. Bull. 74(1): 52-58.

Schubel, J. R., T. S. Y. Koo, and C. F. Smith. 1976. Thermal effects of power plant entrainment on survival of fish eggs and larvae: A laboratory assessment. Spec. Rept. 52, Ref. 76-4 Chesapeake Bay Inst., The Johns Hopkins Univ., Baltimore, MD. 37 pp.

Smith, W. G. 1973. The distribution of summer flounder, Paralichthys dentatus, eggs and larvae on the continental shelf between Cape Cod and Cape Lookout, 1965-1966. Fish . Bull. 71(2): 527-548.

Snyder, G. R., D. P. Craddock, and T. H. Blahm. 1970. Thermal effects studies on the Lower Columbia River, 1968-70. Proc. West. Assoc.

Game Fish Commnrs. 15: 65-89.

Sulkin, S. D., et al. 1976. Induced winter spawning and culture of larvae of the blue crab, Callinectes sapidus, Rathbun. Aquaculture 8:

103. (not seen, cited in Coutant and Talmage 1977).

Tagatz, M. F. 1969. Some relations of temperature acclimation and salinity to the thermal tolerance of the blue crab, Callinectes sapidus.

Trans. Amer. Fish. Soc. 98(4): 713-716.

Talbot, G. B. 1966. Estuarine environmental requirements and limiting factors for striped bass. Amer. Fish. Soc., Spec. Publ. No. 3:

37-49. (not seen, cited in Gift and Westman 1971).

Wilcox, J. R. and H. P. Jeffries. 1973. Growth of the sand shrimp, Crangon septemspinosa, in Rhode Island. Chesapeake Sci. 14(3):

201-205.

Williams, G. C. 1975. Viable embryogenesis of the winter flounder Pseudopleuronectes americanus from -1.8 to 15 C. Mar. Biol.

(W. Ger.). 33: 71. (not seen, cited in Coutant and Talmage 1977).