ML20154K144

From kanterella
Jump to navigation Jump to search

Forwards Addl Info Re Environ Qualification,Per 851105 Request.Encl Info for Three Line Break Scenarios in Reactor Bldg Will Allow Independent Verification of Temp Profiles Obtained from Ga Technologies Using Computer Programs
ML20154K144
Person / Time
Site: Fort Saint Vrain Xcel Energy icon.png
Issue date: 02/28/1986
From: Warembourg D
PUBLIC SERVICE CO. OF COLORADO
To: Berkow H
Office of Nuclear Reactor Regulation
References
P-86120, TAC-42527, NUDOCS 8603110198
Download: ML20154K144 (21)


Text

Oeubiic service ~  := <=- -

2420 W. 26th Avenue, Suite 1000, Denver, Colorado 80211 February 28, 1986 Fort St. Vrain Unit No. 1 P-86120 Director of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555 Attn: Mr. H.N. Berkow, Project Director Standardization and Special Projects Directorate Docket No. 50-267

SUBJECT:

Fort St. Vrain Environmental Qualification Program

REFERENCES:

1) NRC Letter Dated 11/05/85, Butcher to Lee, (G-85452)
2) PSC Letter Dated 12/27/85, Walker to Berkow, (P-85499)

Dear Mr. Berkow:

Reference I submitted requests for additional information needed by the NRC Staff in their review of the Fort St. Vrain (FSV)

Environmental Qualification (EQ) Program. The PSC responses were submitted by reference 2 except for the information requested to permit the staff to perform independent calculations of the temperature profiles. This additional information is provided in the enclosure of this letter.

In reference 2, PSC stated that the staff would receive information for two line break scenarios in the Reactor Building, the one yielding the highest peak temperature and the one yielding the highest temperature at one hour. Subsequent conversations with the staff have expanded the request to include information for one line break scenario in the Turbine Building. Enclosed with this letter is the requested information for the following scenarios: 1) HRH-1, the offset rupture in the Turbine Building which yields the highest peak temperature, 2) HRH-2, the offset rupture in the Reactor Building which yields the highest peak temperature, and 3) CRH-19, a typical

' "B603110198 860229 ~ ' ~ * ".

PDR ADOCK 05000267 i g )

P PDR i

small break in the Reactor Building (resulting in a blowdown rate which is 10% of the offset rupture blowdown rate). CRH-19 is not the scenario yielding the highest temperature at one hour in the Reactor Building. It appears that breaks smaller than 10% will result in higher temperatures at one hour. However, at this time, the 10%

break size temperature profile is the smallest break which has been finalized and independently reviewed. Smaller break temperature profiles are being recalculated at this time based upon recent changes in the Steam Line Rupture Detection / Isolation System setpoints.

The information enclosed for the three scenarios will allow an independent verification of the temperature profiles obtained from GA Technologies using their FLASH /GA and CONTEMPT-G computer programs.

If ou have any questions, please contact Mr. M.H. Holmes at (303 480-6960.

Very truly yours, A0.YY Wouu n D.W. Warembourg, Nuclear Engineering Division DWW/FWT:pa Enclosure

TABLE 1 PRESSURE AND TEMPERATURE PROFILES FOR PIPE BREAK OUTSIDE CONTAINMENT The following information is required for each pipe break analysis performed by the applicants.

1. With respect to the pipe to be broken, we need to know the r
a. Type of fluid (water or steam)
b. Temperature
c. Pressure
d. Source of the fluid
e. Flow rate (or assumed flow rate) versus time; and
f. Enthalpy versus time
2. With respect to the compartments being analyzed:
a. Number of compartment analyzed
b. For each compartment:
1. Initial temperature
11. Initial ;ressure 111. Initial humidity IV. Floor area including floor space taken by equipment (square feet)
v. Number of vents and vent areas (square feet) for each vent; and vi. Compartment wall height (feet) and
c. Simple compartment and interconnection diagram.

3 All assumptions used, including but not limited to the:

a. Orifice coefficient
b. Fluid expansion factor; and
c. Heat transfer coefficient for heat through the walls
4. Utilities analysis results:
a. Temperature versus time curve (peak temperature specified)
b. Pressure versus time curve (peak pressure specified; and
c. Humidity versus time curve (peak humidity specified) e * ~

TABLE 2 HRH-1 H RH-2 CRH-19 Data / Case

1. Broken pipe data
a. Type of fluid Steam Steam Steam
b. Temperature (*F) 1000. 1000. 740.
c. Pressure (Psia) 566.4 584.6 895
d. Source of the fluid S.G. & pipes S.G. & pipes S.G. pipes &

auxiliary stean

e. Flow rate versus time Table 3 Table 4 Table 5
f. Enthalpy rate versus time Table 3 Table 4 Table 5
2. Compartment data
a. Number of compartments 1 1 1 b,1 Initial temp 90 F 90 F 90 F b,li Initial pressure 12.3 psi 12.3 psi 12.3 psi b.111 Initial humidity 70% 70% 70%

b.1v Ficor area Table 6 Table 7 Table 7 b,v Number of vents & vent areas * *

  • b vi Wall height Table 6 Table 7 Table 7
c. Simple compartment diagram Figs. 1, 2, 3 Figs . 1, 4, 5 Figs. 1, 4, 5
3. Assumptions used:
a. Orifice coefficient 1 1 1
b. Fluid expansion factor = = =
c. Heat transfer coefficent for walls Table 6 Table 7 Table 7
4. Utility analysis results
a. Temperature versus time Figure 6 Figure 7 Figure 8
b. Pressure versus time * * *
c. Humidity versus time Figure 9 Figure 10 Figure 11
  1. An "open building" calculation was performed, meaning that the building pressure was held constant (12.3 paia) and, at each time step, an appropriate mass of mixed air and steam CXchange with the environment was calculated to maintain that pressure.

TABLE 3' HRH-1 FLOW AND ENERGY RELEASE VERSUS TIME

Description:

Hot Reheat Steam Leak in T.3 Reference Input: Run ST9629, 9/4/85 at 13:57:34 (Flash /GA)

Time Flow Rate Enthaloy Rate (S) (Hr) ( Lb/He) (Btu /Hr) 0 0 0 0 0.1 2.7778 x 105 18.845 x 10* 27.514 x 10' O.21 0 5.5833 x 10 10.928 x 10* 15.443 x 10' O.381 1.0583 x 10 ' 6.599 x 10' 9.471 x 10' O.560999 1.5583 x 10 ' 5.676 x IO* 8.345 x to' O.920997 2.5583 x 10~' 4.729 x 10* 7.087 x 10' 1.46099 4.0583 x 10~' 4.040 x to' 6.115 x 10' 2.40229 6.6730 x 10~' 3.488 x 10' 5 307 x 10' 4.00038 1.1112 x 10 8 2.901 x 108 4.446 x 10' 8.00057 2.2224 x 10~8 2.427 x 10* 3 723 x 10' 10.0012 2.7781 x 10 8 2 323 x 10' 3.565 x 10' 11.0012 3.0559 x 10 1.909 x 10* 2.940 x 10' 12.0008 3.3335 x 10 8 843 0 x 108 1.294 x 10' 13.0 3.6111 x 10 ' 391.1 x 10' 606. 4 x 10*

14.0017 3.8894 x 10'8 188.3 x 108 289.8 x 10*

15.0012 4.1670 x 10 8 142.8 x 10 8 218.0 x 10*

16.0187 4.4496 x 10 O O

= 0 0

~

TABLE 4 HRH-2 FLOW AND ENERGY RELEASE VERSUS TIME

Description:

Hot Reheat Steam Leak in R 8 Reference Input: Run ST8680, 9/4/85 at 19:24:57 (Flash /0A run )

Time Flow Rate Enthaloy Rate (S) (Hr) ( Lb/Hr) (Btu /Hr) 0 0 0 0 0.1 2.7778 x 105 10.020 x 10* 14.853 x 10' O.12 3 3333 x 10 5 10.244 x 10* 15.087 x 10' O.201 5.5833 x 10 5 9.081 x 10* 13.332 x to' O . 3 81 1.0583 x 10 ' 6.739 x to' 9.817 x 10' 0.560999 1.5583 x f0 ' 5.487 x 10' 8.062 x 10' O.920997 2.5583 x 10 ' 4 320 x 10' 6.432 x 10' 1.46099 4.0583 x 10 ' 3.548 x 10' 5.317 x 10' 2.40184 6.6718 x 10 ' 3 093 x to' 4.660 x 10' 4.00008 1.1111 x 10 ' 2.906 x 108 4.403 x 10' 8.00052 2.2224 x 10 ' 2.433 x 10' 3 715 x 10' 10.0016 2.7782 x 10 8 1.144 x to* 1.762 x to' 11.0008 3 0558 x 10 ' 348.8 x 108 547.8 x 10*

12.0016 3 3338 x 10 ' 131 3 x 10' 202.6 x 10*

13.0049 3 6125 x 10 8 22.47 x 10' 34.05 x 10*

13.2170 3.6714 x 10 8 0 0

- 0 0

TABLE 5 CRH-19 FLOW AND ENERGY RELEASE VERSUS TIME

Description:

Cold Reheat Steam Leak in Reactor Building througn 10% Leak Area Reference Input: Run ST6G65, (Flash /GA)

Time Flow Rate Enthaley Rate (Sec) ( Lb/ Hr ) (Stu/Hr) 0.00000 0.00000 0.00000 4.31952-02 6.7672 4 +05 9.19545+08 8.80165-02 1.61093 +06 2.19180 +09

.13349 1.99831 +06 2.70948+09

.17932 2.00681 +06 2.72152+09 38290 2.00069+06 2.71502+09

.96548 1.96029 +06 2.65647+09 1.5455 1.92229+06 2.60334+09 2.1238 1.88949+06 2.55776+09 2.7011 1.85 917+06 2.51666 +09 3.3001 1.83479+06 2.48449+09 3.8767 1.81768 +06 2.46315+09 4.4532 1.80464+06 2. 44811 +09 -

5.0300 1.79510 +06 2.43856+09 5.6257 1.78525+06 2. 42817 +09 6.0904 1.77845+06 2. 41940 +09 6.4904 1.76862 +0 6 2.40478+09 6.8904 1.74870 +06 2.37501+09 7.2904 1.71957+06 2. 33178 +09 7.6904 1.68288 +06 2.27819 +09 8.0904 1.64815 +0 6 2.22895+09 8.4904 1.61247 +0 6 2.17977+09 8.8904 1.57663 +06 2.13143 +09 9.2904 1.543 41 +06 2.08798+09 9.6904 1.50897+06 2.04338+09

TABLE 5 (Contd.)

Time Flow Rate Enthalpy Rate (Sec) ( LD/Kr) (BLu/Kr) 10.390 1.44849+06 1.96533 49 11.390 1 37015 4 6 1.86566+09 12.390 1.30115 4 6 1.77778+09 13 390 1.2472046 1.7116849 14.390 1.19969+06 1.65181 4 9 15 390 1.16019+06 1.5965849 16.390 1.1233446 1.53799+09 17 390 1.08396+06 1.47114 4 9 18.390 1.04987+06 1.40969+09 L 19.390 1.02313+06 1.35618 +09 20.890 9.91221 +05 ~1.28767+09 22.890 9. 49254 +05 1.20903 4 9 24.890 9.03217+05 1.13975+09 26.890 8.53657 05 1.07511+09 27.060 8. 49296 +05 1.06967+09 38.7 5.814 +05 7.3227+08 67.0 0 0 -

= 0 0

TABLE 6 TURBINE BUILDING Total Floor Area - 15,830 f t*

Volume -

- 750,000 ft*

Film Heat Transfer Coefficient Heat Sink Wall Area OutsidW' Surface hick (in.'i (So Ft) (Stu /h-f t a _. 7)

1. Concrete Floor Etc. 36 30,400 0
2. Concrete Structures 21 5,81 0 0 3 Concrete Partition 12 44.600 2 Walls & Floors .

4 Piping 0 375 80,540 0

5. Composite Steel Wall 5.25 7,930 6
6. Steel Decking 0.0936 12,300 0
7. Structural Steel 0.375 62,710 0 and EgJi nment
8. Electrical Conduits 0.0312 52,700 0 and Cable Trays Film Inside Heat Time Transfer Coefficient *

(Min) (Btu /h-f t*

  • F)

HRH-1 0 5 0.267 6.6 0.2682 5 120 5 Linear interpolation Concrete thermal conductivity: 1 Stu/ h-f t

  • F Steel thermal conductivity  : 27 Btu /h-f t *F Heat sinks are as modeled in GA-A12045 (1972)

Locations that signify the inside and outside heat transfer coefficients are illustraced in Fig. 1.

TABLE 7 REACTOR BUILDING Total Floor Area - 4900 f t*

volume - 534,730 f t' BTU h,ft 3

  • F Heat Transfer Heat Sink Wall Area Coefficient Surface Thick (in.) (So Ft) Outside *
1. Concrete Walls and 36 42,230 0 Floor. PCRV i
2. PCRV Support Ring 21 9,870 0 3 Concrete Partition 12 9,71 0 0 Walls and Floors 4 Thin Steel Wall 0.06 16,090 2
5. Composite Steel Wall 5.25 19,810 6
6. Steel Decking 0.0936 43,140 0
7. Structural Steel 0 375 28,800 0
8. Ducting, Electrical Conduits 0.0312 63,700 0 Cable Trays
9. Piping 0.375 49,200 0 Inside Heat Time Transfer Coef ficient *

(Min) BTU /f 2t -h

  • F CRH-19 0 5 0.8334 32 1.1166 32 1.14 5 120 5 HRH-2 0 '

5 O.22026 7.64 ,

0.22146 5 120 5 Heat sinks are as modeled in GA-A12045 (1972)

Locations that signify tho inside and outside heat transfer coefficients are illustraterf in Fla. 1.

du/d Rim L'O O fl' l*'} Utu?

861 SA/(/ k *F (et deus-

, &mo.t cool.% 4 manculm4 Moi Awa.lged 4*

%2d DN E

Fu% ke,4

/ p .

s ,E 5 _ u s t o* K- ksta6e

+ramc % . 1 vot.us4e op Ms.q:ts 4 fr ** % *>i k N y)  :

l ll g

/

/

p {

7' ,

=. s ':~ $72Ag . 's s f

N EN 8N D8'888

,,, . . . .~. , , , , , i , i i , , , n i s si l;

f lii'Otenas $ttrpOt.s. th's ele,L an aufsb 14TsRNM. v4LL $UKF4CES 70 WHIC// THE

'TMiDE"Fius i1 FAT TdhrSfER coEFld&gyME$

Fic: rop.e I. ru.us.r<2a 7: e u of C=>rr.wi'P/, By c.aiae <<<ooses kffLic4BLE TO BOTil REAC7vK pHD 70RBING 80//M95

110 FT.

n n n , ,_r1 n a

si p.,-

i O

-- 't l

8 i

f1I lj' 53 FT.

I I

I

,,g T

" i THIS REDION 85 CLOSED q I

I"3 "* UP BETVEEN EL. =791 FT. e MD 4811 FT. AND OPEN I BETVEEN EL. 48ll FT.

MD 6829 FT. '

6 3 F'" .

I

{ t% l l

t

~ '

I

  • l l l g 27 P I

p __ __

l l l 16 FT.-6 IN. ,

20 FT. ,

_! l) 9.-6 IN.

Fig. 2. Turbine building plan view at elevation 4791 f: showing region of I

of analysis l

i I

t $

2 3

2 -

O b

Q -s e

= a N

h e-4 W

C 4

Ob e

3 u

W f

.C u

O

~

.sh:N! N }

N Mi'N N3 =

.C

=

e g 1 dN 8=- 1

  • 0 u

- =i =

  • 4 j' >

. E c y .

$ ~~ *

~ z ,.2i

! e \

s M

C a awe Ng' .Q U

e C

w eO 4

u 8

2 l

b y

s <

es

~ <

6 9 7

% 2:

5 5

M A OPERATI!!G FLOOR

/

- c,,,, a z gxjx,pl

/

7 p

./

j/

./ - /.

y

/ '

/

'vf,',,/

'- l/ 7l

/ k// 8

/ / - . -  % /

,I // l / /A h/,///.//

- / /

,,/ -

l ,/)'/,/ ,l, / /

/ /

/,

I ;'/, /

// /

. ' / .

I ,

i, /

et. mo . . ..

,_Y bL bb_ '

/ ,

t e

/ ,/

s

/

//

i Y

l/

--/,'/1 (1 - - -

3 Fig. 4. Reac:ce building elevation showing region chac was analy:cd l

l l

e s

i s

y l

a c c r n a

4 l

f . 0 O O

, i E O O f M i o n

o

, h i i

g O O n e r

g L n i

S S

E

\ w CA J h OE - s RR PA .

1 I n

l iI i

= I

' l i

_ 6

_ _ t f

_ 6 _

0 u r r

n 4 7

4 3

n

- o e

i t

_ _ a v

_ H e I l 2

e

. /

T I t F

l a

0 w 7 .

T e F i v

a  %

4 n n a

l p

, g n

i d

l i

u b

_ r o

t e

lji c

. I I i i a

e l '

e

- R T

F .

6 5 7

g i

F

r vscunun s TllRBIllE BilII.DTilo RESPONSE TO 110T. REllEAT OFFSET RilPTilRE, llRil-1 T 400- * '

E -

H _

P -

0 300 - '

F -

A -

T . -

4 H ~

i ' 0  :

S 200 -

! P -

11 _

L 1 p -

l E

_ 100 -

( _

~-

i D -

E -

O -

i F 0- i i i siin i i iiiin r i i mii i iTnm - i s i ssisi i sinini 10 -3 10 -2 g gg -1 1 10 10 0

10 3

TINE - NIllllTES I

514HE3 ia/Bi/BG l

1

s ~

FICilitE 7 REACTOR DilII.DIllG TEPIPERATilRE RESP 0llSE TO 110T REllEAT OFFSET RilPTilRE, ilRll-2 T 400-E -

H .'

P A

, f' '

0 300 A -

i T -

H _

o .

S 200 - .

P -

11 .

E I R -

E -

_ 100 - -

N D -

E -

0 .

F 0-

-3 i i iiiin - i iniini 1 i i n iii iiinm i i i nisi i rium -

10 10-2 10 2 3 1 10 10 10 TlHE - HIllllTES

$15115 12/21r85.

j FIGURE 8 REACTOR BUILDING TEMPERATURE RESPONSE TO COLD REHEAT STEAN PIPE-RUPTURE, CRH-19 I T 200 -

, E 1 M t P i

! 175 3 o _ f

F -

! A -

I T 150 M -

o _

s _

P _

i' l125 -

R s

E _ ,

_ s

' 100 .

D E -

G -

F 75 i ii,ini , , , ,,,,, , , , ,,,,, i s i i ,,,, , , , ,,,,, , , , ,,,,,

-3 i

10 10

-2 10-1 2 3 1

1 10 10 10 TIME - MINUTES

.t STM96 02/28/96

! s i ,

5 1

i l

4

s .

m o

=-

o ,

eu

& o w =

_m i -

~_

ce -

,c. - -

w - o

. mw f =~

>. e ~

- =

m

> e- --

- w e .c. - i

-m

- = .

s

. =s A t: ;E

= .A 5 -

I

~

t.e c c

- E =

m

.: e. s -

I-

g W i ..

g =c Wm 3~

s -

ac -

I I

m = -

h cu I

=o

=-

/ -

m I

g *

[

. g i g . g o O O O O @

e sua u3 v cu w

mWMCbMDW ZOCWmWW> l M m

- - - - - , - , - - . - - - , - - - - - - - - - - - - - - - - - - . _ . . . - . . - - - , - , - - , . - - - ~ - . -

- - - - . . - . . _ - - - , - - .,,..-,--.-,---.------.c .

9 6 " O e

- C G -

- e W n1 C-

"J 3 an -

n. = -

f.n L&J =

% 121 f C 2 t =

~

b= l E- I- '

WC - ta !

e 8 = * - H O

e

. E*" 2 3

= s

= b- >

N' 2l:

mM E l E

=

.:= =w l - i

%O

==

  • td
C d I- -

p.mo

- c .

H

=W .-.

t i= = .

=C t.:.1

= '::: "

C=

I- I-C q-O -

w~

m tu I

/ =C

=

/ -

n e

i l

e l

e l

a l

e l

c O O w O O O O O C3 fJ2 T m G2

= d d C b >"* D W E=ENOMbb l M O

e

FIGURE 11 REACTOR BUILDING HUMIDITY RESPONSE TO

]

l COLD REHEAT STEAM PIPE RUPTURE, CRH-19

100 7

] r R - -

! E 1

L j A 80 T

I U -

E 3

! H

! u se n

I D -

I

. T i

! Y 40 3

~

1

~

j  %

i I

i 20 i i i iiiii i s i iiiii i i iiiii, i i i iisi, i i i iiii, i i i iiii, l 10

-3 10

-2 10

-1 2 3 1 10 10 10 l

i TIME - MINUTES

$TMM 92/NeM i

-- . . . . - - _ _ _ _ _ _