ML20215G100

From kanterella
Jump to navigation Jump to search

Forwards Second Formal Submittal Re Turbine Bldg Temp Profiles Resulting from Steam Line Breaks,Per 861120 Request.Composite Temp Profile Curves Originally Submitted as Basis for Environ Qualification Program Appropriate
ML20215G100
Person / Time
Site: Fort Saint Vrain Xcel Energy icon.png
Issue date: 12/19/1986
From: Warembourg D
PUBLIC SERVICE CO. OF COLORADO
To: Berkow H
Office of Nuclear Reactor Regulation
References
P-86673, TAC-42527, NUDOCS 8612240285
Download: ML20215G100 (20)


Text

-

OPublic Service ~

2420 W. 26th Avenue, Suite 100D, Denver, Colorado 80211 Company of Colorado December 19, 1986 Fort St. Vrain Unit No. 1 P-86673 Director of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Washington, D.C. 20555 Attention: Mr. H. N. Berkow, Director Standardization and Special Projects Directorate Docket No. 50-267

SUBJECT:

Turbine Building Temperature Profiles

REFERENCE:

1) PSC letter, Warembourg to Berkow, dated February 28, 1986 (P-86120)
2) PSC letter, Warembourg to Berkow, dated December 12, 1986 (P-86664)

Dear Mr. Berkow:

Reference 1 submitted temperature and humidity profiles for three steam line break scenarios (HRH-1, HRH-2, and CRH-19) associated with the Fort St. Vrain Environmental Qualification Program. After review by Battelle/PNL and discussion in our meeting with the NRC on November 20, we were requested to analyze three scenarios for the Reactor Building and three scenarios for the Turbine Building using a convective heat transfer coefficient of 1.0. The value of 1.0 is consistent with PNL's approach. We were advised to add additional volumes we could defend and remove any other justifiable items from the conservatisms. The Reactor Building profiles were submitted by Reference 2.

4 0

8612240285 861219 7 PDR ADOOK 0500 P

P-86673 Pag: 2 Decemb2r 19, 1986 Enclosed for .your review is our second formal submittal in response

-to the above request. Information on the following Turbine Building steam line break scenarios is enclosed:

HRH-1, Hot Reheat Steam Leak In Turbine Building (Offset Rupture)

CRH-15, Cold Reheat Steam Leak In Turbine Building (25% Leak Area)

CRH-13E, Cold Reheat Steam Leak In Turbine Building (0.18% Leak Area)

Attachment 1 provides temperature profiles, tables, and figures in the same format as submitted by the Reference 1 letter. Humidity profiles are not included since they were not a subject of discussion and they are less severe than in the earlier submittal. This data uses a convective heat transfer coefficient of 1.0 as requested and an increased building volume as defined in the enclosure. The increased building volume includes the area above the operating floor and the area around the condensate storage tanks. These areas have adequate communication with the Turbine Building and are justifiable to use without plant modification. The temperature profiles have been plotted with the following three curves for comparison:

1) Sargent & Lundy (S&L) composite profile used for equipment qualification, 2) Reference Case with variable heat transfer coefficients and old volumes, and 3) New curves with h = 1.0 and enlarged new volumes.

Additional conservatisms that were evaluated include:

- Orifice coefficient for steam pipe during blowdown

- Revaporization of condensate

- Radiation heat transfer The effect of the orifice coefficient and revaporization of the condensate has previously been analyzed for the Reactor Building breaks in Reference 2. The Turbine Building breaks are equivalent and due to the magnitude of the benefit to the temperature profiles, we have elected to leave these as conservatisms in our analysis.

The effect of radiant heat transfer was not considered during preparation of the reference case information. At the November 20 meeting, ORNL and Battelle/PNL suggested this factor could result in a radiation heat transfer coefficient on the order of 1.0 Btu /h-ft2-degrees Fahrenheit. We have independently evaluated this and concur with their conclusion. The effect on the temperature profiles utilizing a radiant heat transfer component in our analysis is shown in Attachment 2 for all three Turbine Building scenarios.

^

. P-86673 Page 3 D:cemb::r 19, 1986 It is noted that the new HRH-1 curve has a significantly lower peak temperature, but has shifted slightly to the right as one would expect given consideration to a larger volume. We have evaluated this curve shift with the determination that the new curve does not represent a more severe equipment qualification profile, especially when additional conservatisms are considered. Therefore, we conclude that the original profiles generated for our EQ Program can be considered conservative even when an ultra-conservative value of one is assumed for the convective heat transfer coefficient. When the more realistic but still conservative values proposed by PSC are used, in addition to the larger volumes and heat sinks, the original profiles represent even more margin of conservatism.

Overall, based on the Reactor and Turbine Building reanalysis, we believe the composite temperature profile curves originally submitted and utilized as the basis of our EQ Program are conservative and remain appropriate without further changes.

As you are aware, the profiles are a very critical part of our existing program. Please keep us abreast of your review activities.

If you have any questions, please contact Mr. M. H. Holmes at (303) 480-6960.

Very truly yours,

/0 V /Y&

D. W. Warembourg, MManager Nuclear Engineering Division DWW/KD:pa Attacnments

e ATTACHMENT 1 FORT ST. VRAIN ENVIRONMENTAL QUALIFICATION PROGRAM TURBINE BUILDING TE W ERATURE PROFILES RESULTING FROM STEAM LINE BREAKS EVALUATION OF LARGER VOLUMES WITH 1.0 CONVECTIVE HEAT TRANSFER COEFFICIENT l

l 1

I

TABLE 1 DATA FOR PIPE BREAKS IN THE TURBINE BUILDING Data / Case HRil-1 CRil-13E CRil-15

1. Broken pipe data
a. Type of fluid Steam Steam Steam
b. Temperature ( F) 1000. 740.
c. Pressure (psia) 740.

566.4 895. 895.

d. Source of the fluid S.G. & pipes S.G. , pipes & S.G., pipes &

auxiliary steam auxiliary steam

e. Flow rate versus time Table 2 Table 3 Table 4
f. Enthalpy rate versus time Table 2 Table 3 Table 4
2. Compartment data
a. Number of compartments 1 1 1 b1 Initial temp. 90 F b,ii 90 F 90 F Initial pressure 12.3 psi 12.3 psi 12.3 psi b 111 Initial humidity 70) b,1v 70$ 70$ .

Floor area Table 5 Table 5 b.v Table 5 Number of vents & vent areas (a) (a) (a) b,vi Wall height Table 5 Table 5 Table 5

c. Simple compartment diagram Figs. 1, 2, 3 Figs. 1,2,3 Figs. 1,2,3
3. Assumptions used:
a. Orifice coefficient 1 1 1
b. Fluid expansion factor = = =
c. Heat transfer coefficient Table 5 Table 5 Table 5 for walls 4 Utility analysis results
a. Temperature versus time Fig. 4 Fig. 5 ' Fig. 6
b. Pressure versus time (a) (a) (a)

An "open building" calculation was performed, meaning that the building pressure was held constant (12 3 psia) and, at each time step, an appropriate mass of mixed air and steam exchange wi th the environment was calculated to maintain that pressure.

i l

l TABLE 2  ;

HRH-1 FLOW AND ENERGY RELEASE VERSUS TIME  !

Description:

Hot Reheat Steam Leak in Turbine Building Reference-Input: Run ST9629, 9/4/85 at 13:57:34 (Flash /0A run)

Flow Rate Enthalpy Rate (sec) (hr) (1b/hr) (Btu /hr) 0 0 0 0

'0.1 2.7778 x 105 18.845 x 106 27.514 x 109 0.210 5.5833 x 10-5 10.928 x 106 15.443 x 109 0.381 1.0583 x 10-4 6.599 x 106 9.471 x 109 0.560999 1.5583 x 10-4 5.676 x 106 8.345 x 109 0.920997 2.5583 x 10-4 4.729 x 106 7.087 x 109 1.46099 4.0583 x 10-4 4.040 x 106 6.115 x 109 2.40229 6.6730 x 10-4 3.488 x 106 5.307 x 109 4.00038 1.1112 x 10-3 2.901 x 106 4.446 x 109 8.00057 2.2224 x 10-3 2.427 x 106 3.723 x 109 10.0012 2.7781 x 10-3 2.323 x 106 3.565 x 109 11.0012 3.0559 x 10-3 1.909 x 106 2.940 x 109 12.0008 3.3335 x 10-3 843.0 x 103 1.294 x 109 13.0 3.6111 x 10-3 391.1 x 103 606.4 x 106 14.0017 3.8894 x 10-3 188.3 x 103 289.8 x 106 15.0012 4.1670 x 10-3 142.8 x 103 218.0 x 106 16.0187 4.4496 x 10-3 0 0

= = 0 0

TABLE 3 CRH 13E FLOW AND ENERGY RELEASE VERSUS TIME

Description:

Cold reheat leak in Turbine Building through 0.18% leak area Reference Input: Hand Calculation, GA Doc. 908838 l

Time Flow Rate Enthalpy Rate (sec) (1b/hr) (Stu/hr) 0.00 0.00 0.00 0.01 1.00 + 05 1 375 + 08 4500 1.00 + 05 1.375 + 06 5364 0.00 0.00

= 0.00 0.00

TABLE 4

'CRH 15 FLOW AND EliERGY RELEASE VERSUS TIME

Description:

Cold reheat leak in Turbine Building through 25% leak area Reference Input: Run ST 2216, (Flash /0A)

Time Flow Rate Enthalpy Rate (sec) (1b/hr) (Btu /hr) 0.00 0.00 0.00 4.49 -02 4.56 + 06 6.19 + 09 0.13 1.19 + 07 1.60 + 10 0.20 1.21 + 07 1.6 4 + 10 1.00 9.75 + 06 1 30 + 10 2.14 7.50 + 06 9.71 + 09 3.31 5.88 + 06 7 37 + 09 4.46 4.77 + 06 5.79 + 09 5.62 3.98 + 06 4.81 + 09 6.51 3.13 + 06 4.21 + 09 7.31 2.51 + 06 3 19 + 09 8.11 1.94 + 06 2.48 + 09 3.91 1.52 + 06 1.98 + 09 9.71 1.23 + 06 1.64 + 09 11.41 9.00 + 05 1.24 + 09 13.41 7.00 + 05 9.84 + 08 15.41 5.80 + 05 8.31 + 08 17.41 5.05 + 05 7.28 + 08 19.42 4.40 + 05 6.42 + 08 22.91 3.65 + 05 5 37 + 08 26.91 3 03 + 05 4.48 + 08 30.91 2.59 + 05 3.86 + 08

. j i

TABLE 4 (Continued)

Time Flow Rate Enthalpy Rate (sec) (1b/hr) (Btu /hr) 34.92 2.21 + 05 3.29 + 08 38.91 1.84 + 05 2.71~+ 08 42.91 1.58 + 05 2.35 + 08 46.91 1.41 + 05 2.11 + 08 50.91 1.30 + 05 1.95 + 08 54.91 1.16 + 05 1.76 + 08 58.91 1.06 + 05 1.59 + 08 62.91 9.75 + 04 1.46 + 08 66.91 9.00 + 04 1 34 + 08 70.91 8.22 + 04 1.23 + 08 74.91 7.73 + 04 1.16 + 08 78.91 7.09 + 04 1.07 + 08 82.91 6.54 + 04 9.89 + 07 86.91 5.98 + 04 9.12 + 07 90.91 5.87 + 04 8.97 + 07 94.92 6 37 + 04 9.70 + 07 98.92 ,

6:64 + 04 1.00 + 08 390.90 6.64 + 04 1.00 + 08 791.00 0.00 0.00

, 0.00 0.00

TABLE 5 TUP.BINE-BUILDING Volume - 1,670,000 ft 8 Film Heat Transfer Coefficient Heat Sink- Wall Area Outsice(a)

Surface Thick (in.) (Sq Ft) (Btu /n-ft 2 *F)

1. Concrete Floor Etc. 36 30,400 0
2. Concrete Structures 21 5,810 0 3 Concrete Partition 12 44,600 2 Walls and Floors
4. Piping 0.375 80,540 0
5. Composite Steel Wall 5.25 7,930 6
6. Steel Decking 0.0936 13,220 0
7. Structural Steel 0.375 67,410 0 and Equipment
8. Electrical Conduits 0.0312 57,970 0 f

and Cable Trays

9. Concrete operating 9.5 10,500 0 Floor

+

10. Composite Roor 2.57 16,830 6
11. Concrete Partition Walls 7.625 4,430 2
12. Composite External Walls 2 32 20,850 6
13. Composite Access Bay 9 32 5,280 2 Wall
14. Steel I Beam 0.31 17,700 0
15. Steel Crane Assembly 0.75 8,100 0
16. Steel T-G Casing 0.25 11,000 0
17. Steel Operating Floor 0.25 1,650 0
18. Steel Condensate Tank 0 375 4,400 0 with 6 ft Water

" Locations that signify the inside and outside heat transfer coefficients are illustrated in Fig.1.

I

_ . . . - . - - . . . . - . - _ . . - . . __ .~ .-...- -. - - --. -- -.

}

"Outside" 2 B/h-f t l *F film heat transfer coefficient of for inside compartment cooling Not Not analyzed analyzed

/ '

' r s

/. Steam --'

/ 71 Bloud

" Building

  1. A g wn 7 f average" volume 0 M v ', ' E '# 7 <

of analysis

$ f.

"Outside"filmheattragsfer Internal wall surfaces to coefficient of 6 B/h-ft *F for outside air which the "inside" film heat transfer coefficient applies 2

Figure 1.

CONTEMPT-G Building Models for Reactor and Turbine Buildings

O e

e 3

ld . "

a ,,

i N 2 I o_ h 1

)

6: '

i u

4 l,

l ,

.D i i  :'

l 7

l I

5 I h I i  !

  • L <

\\ \

.o l, i ,

w a,

1x N Ns N, ,

=

  • bi .

Ni1 $

, \=1 1:

-- 2

. $ \

I i sV i

- li a  ;- @

[ -'

s

!)

ji "

3 l' ' a

.5 8

1 i

i h-e,

= 'y i

et et

1 t _

.12 .**, -

m c

m I m

i o

m n l.-+ ,

m, il I

77} as '

q ,

j '  ; t I i

. - p_.

I O - . . --

,- f _ .

44 '

p

{

4 a'

g .~ ,

l .,

t

, s 4

,, o t

I -i = ,

j I

I #* Tiet! Att :M t1 ::.**23 '

I a W 3E"*4 Df IL. +'7?f M. I ei e l

' s m e 44!! M. 2 4 *PtM I

,a St""4Et IL. L4ll 7"". t t

l _), m a a4:1r. d

  • I  ; 51 .,,

l

-  ; il i il i N :l Il q n

lim 1

,u w _ _ d L- (

U 8

  • 1 61 a

I 81 U 4

  1. 1 s( ll .. l .

._~

a 1 it **!

l-. 1

.s r .; , .

l l 1 " s. **.

. o

Fig. 3.

Turbine building plan view at elevation '4791 ft showing i region of analysis y e

i i

e

'm- - ---,,-,-e, -,- --- - , --,- ,-s-,-,,._w,, . . . , -,--n--_,,,--,m,--,,.,,_.---,,,,--,g--nm_,,,-r,rm,-- , - -

Fig. 4 .

TURBINE BUILDING, STEAM RELEASE SCENARIO 1

HRH-1 (DOUBLE OFFSET) 400

. . . . ;. + + ,4. : . d : . 41. isiii... :;

S & L COMPOSITE DBE

~'

. f.\ , . . .: 4:. . , .. .

6 f3t, 3

i\. ;.., bconv = 111.67*10

. - /:: :I

. . . . \ REFERENCE CASE 300- = - - ;+ i+ it - '

La_ --: i .ibili+' - +;-

+--+ i!!'?- - - - - ' ' - -

i-bii . -

t.d . . . . .

m - -

19 .'/!: - .)

ig-- .

D g . .
. . .; . ; ;....

. :. 3 . . . . . .  : ..i. ,.i .p. i: /..i.

. . ...S. . s;;;0

. . i.. i e . .' . ;.;.!iz..;; $. ;.

4 /I'! . \i oc ...

j ' :.:. .

La.J g lii

/:

\.: -  :
\ .: -

y 200- i -*-i-c +i+iii i H -

i- ./tiittfj i /i i- j@ - -i- -si  !!iH i i +-i i;ii + 6i

, tu ine!>+-

I--

y. ii / i .:

p /i -

. /. :  :\i .

II?! ig! . /i  :\ : '

z . . . . . .:. :. s. , , ., . s. . . 4. . . . . . . . ; . .. . .n.s.; . .

W co

...p -

N m o; . . . .. ., . ;. ; ; . ; 4

.. i

. . . in : -

s 2 . i ni: -

5: *. . :

l 1

4 10 0 -

X ;:#

4-~ - ' - - - - -

S+-- - - 'bs

-:-- :--:i' -

2- >i

't e <. g. . . . . .<......s .....s . . . . p .i . . . . . . .

1 .

0 , , , ,,,i, , , , ,,i., , , , ,,,,, ,

-3 -2 -1 0

10 10 10 10 1 2 3 10 10 10 TIME, MINUTES 12/09/86 i,

Fig. 5 TURBINE BUILDING, STEAM RELEASE SCENARIO CRH-13E 400-l 4

i

. . .a . . ...u;... S & L COMPOSITE DBE

. : +:. . ,

h - 1. 1.67*106 g3 1.

REFERENCE CASE l g 300- -=i -iil- - -

i >i-iii - - - - -

- - - - - - 4 - -- -

I' -

W .

LE .

i p< . - - - ... . - , . . g.i: . i .: i .. ,.

. . . . . . . . . .. . . . ;.i i; ..

o_ .

y 200- +- - > 6 ' -- - - --i -

ii+
. i--- - ,

w - - - --

1 l-- .

H /

Z , m

. 7:

w i.

- . . . ; . 2. , .; .

. ..i. . , , . . . . . . . . ,

. u. .

b y v

.W I s.

( 100- . . . . . -  : <- I Wi

. _ . = eMW

.i

_ '.=~-

=4~- - -

l l . . . . , ,,

1 0- , i . . . . . . . , , ,.... , , , i.... , , . . . . . .

-3 -2 -1 , , , , , , , , , , , , , , , ,

10 10 10 1 2 3 4

1 10 10 10 j TIME, MINUTES 12 /11/ 8 6 l

l

Fig. 6

. TURBINE BUILDING STEAM RELEASE SCENARIO CRH-15 1

400 -

. .. ..:.... ..p . . . ,61i;;; .. . ~ . , . .

S & L COMPO511E DBE

. h cony = 11.1.67*106gg 3, I '. ..

REFERENCE CASE g 300- -

~ +i&;;i=;

4

. i I. d.i.k+

- - - - - - < - - - - - -i~+-

, w -

i ce j p . .+,.....p . . .i.:,+;; g +. . . ,

..p. .. . . , . . . . , ....m

<t ...

. :. +. . .

i N

W .

!\-

CL y 200- -;-

- iiia' -- i - :c+'  %.:- i- vi i~'-- - -

W /;

N . : li ~ -

j H l H . !!

..i ' . . !k%;-

Mi '

iQi: /

. % '.. g*

I Z ...pn. 4. . . .

w i<

. ...,;.!q.4; w.i  ;. . , , .. .. .

g . ! <. ~:

a._

2 /. - .,- .

s s: ~.. ..

<t 17 .~:~.

10 0 - - - ~ -- - -

-+

=:

+.

4 1

i 0- . . . . . . . . . . . ..... , , . .....

-3 . . . . . . ....

-2 -1 0 10 10 10 1 2 3
10 10 10 10

) TIME, MINUTES

,1 i

12/11/ 8 6 l

i

ATTACHi!Ef1T 2 FORT ST. VRAIN ENVIRONMENTAL QUALIFICATION PROGRAM TURBINE BUILDING TEMPERATURE PROFILES RESULTING FROM STEAM LINE BREAKS 1

EVALUATION OF LARGER VOLUMES WITH 1.0 CONVECTIVE HEAT TRANSFER COEFFICIENT AND RADIANT HEAT TRANSFER

- . _ _ - _ _ _ -- ~ - .

Fig. 4A i,

i TURBINE BUILDING, STEAM RELEASE SCENARIO i

HRH-1 (DOUBLE OFFSET) WITH RADIANT HEAT TRANSFER i

i 400

\

1 i

. . . .i. .. ., ; i ii; . . - S & L COMPOSITE DBE

- :- f.\ , . :+n , .. . - -

,i: .'\ -

h cony = 11 67*10 ft, 1

6 3

.- \ REFERENCE CASE

300- =

'+i4 ii a jiiiiii - ;g-

' .g .

i . . . . . . .

Ld i m

l

. : i ./i '.-

! "3 ,.z......, , . . ; :.:

1 ). . , . . ' -

..:.. 5. .5.:,t. .:..

ii':/:.ii -

. + . .; . . . ; i , . . - . - . .i 1

H( .

? 4 - - +: 4 iJ:-ii4 --

E .

. :[i i ~ I: .

Ii:

bJ )

i  :  :

e ...i::[:: -: f.: :k:: :5 y 200- '-

'li ' N

- i - (iiiffMi /i- ... H

+ "'- - " -+~+;-' ..

!\j'- - --'

..: ' !- !k!

- p /! li?! '

i /

Z . . _pg , . #. . i . . . . .:.. l .

C,(-i . ..i.-

/i l Ld .. .,

...i>  :\:

u 9 . - + . - - -

5 -

~

{ . . Fi . -

. s . s;
10 0 -

- - i"-i " ' - -  ;*: --

1 ~ - - ' -

i

. . .J.., ,. ... . . , . . .

+ . . .

1 -

l 1

l t

t 0- . i iiio . . i i i iii

-3 -2 -1 i

isiin i i iiiin i i s inin 10 10 0 1 i

i s isin 10 10 10 2 3 10 10 t TIME, MINUTES 12 /11/ 8 6

Fig. 5A r

TURBINE BUILDING, STEAM RELEASE SCENARIO CRH-13E WITH RADIANT HEAT TRANSFER

! 400 .

. .. .i .. , j i- '

S & L COMPO51fE DBE hcony = 11 167*10 6 g,3 _ .

REFERENCE CASE

' - - + i Ri ; ;;

~

w 300- - : ' N+iU&i-i; - - -- - - ; - - -- i -- -

- ~+-- -

i .- -

j w

g l D .i.;;.i  :.i:

s , . . . . , , , . . . .

- . - . ..c... . . .

. . :. i .: .

4 e

w -

i CL -

200-

- :-n y '-

  • +c -+-  : - -i+ ~ ~ +

'e +

mi - -

w 1 1--

/

Z . ; .:. 3 , ....;..... .,

/!

w ,,....;

... . .i.. , . . , . . . . ,

ED -

, ~ . - "-

2g I

2 g / '-

A.- .  :,.

100-

~r- - -

+ r -~ a. -

_ . - ;. L- -W. . - - '- -- - -

is i, -

e ,.

4 1

4 0- , , , , , , , , , , , ,,i.,

, , , , , , , , , i,,,,,, , , ,i...

-3 -2 -1 0

) 10 10 10 1 2 3 10 10 10 10 1

TIME, MINUTES i 12 /11/ 8 6

7.--

, Fig. 6A i TURBINE BUILDING, STEAM RELEASE SCENARIO CRH-15 WITH RADIANT HEAT TRANSFER 400-

) -. .

'~

. , . ,: i;: . . . , . . . . .

S & L COMPOSITE DBE

~ . , . . . .

4 0 3 hconv = 1i l.67*10 ff _ ,

REFERENCE CASE 300- = - = +i+ li ;l; i ~ Li+iiil -;-  :- - - i *-;<----

3 t ._ - -

. W .

.-c.

g ,

'3 . .
. .  ; .y . :; . - -
;;.i: :.;:

H ,., . . :. .

. . . :. :m , , . , . . . . . : i .-

......ia..

4 . ,/. ' i. . 5:

g .

w .

i\_ . -

w h 200- -i - + + +:+iii-i :n - i- _ 5 + -

~

- $ r:; 4 -

N:

i" -

>~ ~ i - - ; = ~ *- 1 -

1 = --

H /.-

1 p

/::

. . in% '. 5 :. :

1 W

7 -

.i. _.n

, . ./. . . . ,: . . . .n ..

y%.

D.. , .i . . . .i.

.s.. s:

i ., 4 . . . , . . ,. ..n ..

1 m 4:'  : ,.'

-:- + - s.

y q -: '

30 0 . . . . . . . . . . . . . . . , . . . . . , . . . . .. . . . ... . .. .

\ .

j .

4 0- . i...... . . . ..i.,

-3 -2

. . . ..... . i...... . . . . . . . . . . . . . . . .

! 10

-1 0 1 2 3 10 10 10 10 10 4

10

!, TIME, MINUTES 12 /11/ 8 6 1

I

_ __ _