ML20076E758

From kanterella
Jump to navigation Jump to search
Forwards Draft Changes to Fsar,Design Assessment Rept & to Previously Provided Responses in Answer to Issues 5b,5c,5d, 5e & 20 Discussed at 830407 Meeting.Rept on Functionality of Purge & Vent Valves Will Be Submitted in June 1983
ML20076E758
Person / Time
Site: Limerick  Constellation icon.png
Issue date: 05/26/1983
From: Bradley E
PECO ENERGY CO., (FORMERLY PHILADELPHIA ELECTRIC
To: Schwencer A
Office of Nuclear Reactor Regulation
References
NUDOCS 8306010292
Download: ML20076E758 (75)


Text

-,

9 PHILADELPHIA ELECTRIC COMPANY 2301 M ARKET STREET P.O. BOX 8699 -

[& ~ .b D .2 PHILADELPHIA. PA.19101

  • , ^ " ",,[;[,^"

121si e41-4ooo aseo esNEmab COUNsEb EUGENE J. BR ADLEY assoceaTs assommak causessh DON ALD SLANKEN RUDOLPH A. CHILLl'MI E. C. KI R K H ALL T. H. M AHER CORN ELL PAUL AUEREACH assistant esNanak cmvNeuk EDW A RD J. CU LLEN, J R.

THOM AS H, MILLERe J R. May 26, 1983 BREN E A. Mc KENN A assistant CoWNsEL Mr. A. Schwencer, Chier Licensing Branch No. 2 Division of Licensing U. S. Nuclear Regulatory Commission Washington, D.C. 20555 S u bj ec t : Limerick Generating Station, Units 1&2

References:

1. Meeting between Containment Systems Branch (CSB) Reviewer, Mr. F. Eltawila, and Philadelphia Electric Company on April 7, 1983
2. Letter from E. J. Bradley to A. Schwencer dated May 10, 1983 File: GOVT 1-1 (FSAR)

Dear Mr. Schwencer:

The referenced meeting was held to discuss twenty issues of concern to the CSB. As a result of the discussions, we will make changes to the FSAR, the Design Assessment Report and to the responses previously provided to Questions raised by the CSB. Attached are drafts of the changes prepared in response to issues 5b, Sc, 5d, Se and 20. Draft changes to the FSAR, which were prepared in response to a verbal request from the referenced meeting for the addition of a containment purge valve high radiation isolation signal, are also provided.

These draft changes will be formally incorporated into the FSAR revision scheduled for June 1983.

8306010292 830526 PDR ADOCK 05000352 I!

A PDR

A brief discussion of issue 17, which was previously trans-mitted in Reference 2, indicated that a report on the functionality of the Limerick Purge & Vent Valves would be submitted to the NRC staff for review later. This report will be submitted to the NRC staff in June 1983.

l Very truly s, Eu .ne J.

19adley B

[

RC/fra/15 Attachments Copy to: See Attached Service List l

l l

l l

l

3

, e cc: Judge Lawrence Brenner (w/o enclosure)

Judge Richard F. Cole (w/o enclosure)

Judge Peter A. Morris (w/o enclosure)

Troy B. Conner, Jr., Esq. (w/o enclosure)

Ann P. Hodgdon (w/o enclosure)

Mr. Frank R. Romano (w/o enclosure)

Mr. Robert L. Anthony (w/o enclosure)

Mr. Marvin I. Lewis (w/o enclosure)

Judith A. Dorsey, Esq. (w/o enclosure)

Charles W. Elliott, Esq. (w/o enclosure)

Mr. Alan J. Nogee (w/o enclosure)

Thomas Y. Au, Esq. (w/o enclosure)

Mr. Thomas Gerusky .

(w/o enclosure)

Director, Pennsylvania Emergency Management Agency (w/o enclosure)

Mr. Steven P. Hershey (w/o enclosure)

James M. Neill, Esq. (w/o enclosure)

Donald S. Bronstein, Esq. (w/o enclosure)

Mr. Joseph H. White, III (w/o enclosure)

Walter W. Cohen, Esq. (w/o enclosure)

Robert J. Sugarman, Esq. (w/o enclosure)

Rodney D. Johnson (w/o enclosure)

Atomic Safety and Licensing Appeal Board (w/o enclosure)

Atomic Safety and Licensing Board Panel (w/o enclosure)

Docket and Service Section (w/o enclosure)

N 4

u DRAFT

5. b. ihe applicant has not provided the pool temperature analysis for the tran5:ent involving the actuation of one or more safety / relief valves.

Reference NRC Question 450,69.

s.

m bxa x pac u:w 4eo. 7 act C 8 ' S l b [ 2 4 , W & g e b h 12 dlK

-n .

m d-- s \ ,

\

\

s

+

6 s

a s N, ,

[

x

= ,

x y s

_. . s, m,

y

, -s , -% .

s .,

i. , _.

es "%

, g' 6. '

f g

  • \

. 3 i i.._ ; .

~

LGS DAR DRAPT QUESTION 480.69 l

Provide the pool temperature analysis for the transient involving the, actuation of one or more SRV's. For additional guidance, your attention is directed to NUREG-0873, " Pool Temperature Transients for BWR."

RESPONSE

IS The requested informationmM$>4pe provided '; t; ' ^ ^ 1. l lN 'DM K 1.b. E b ADArM C5_ TR.t:Nype p i a N op-s 4 - o Z s 3 PrAs Esea Neuwep In o c a_

ANAty 5is oF Poou %s eggrOrugt {LE SPo@ G_

To l 3%Q 9L5 C 6&AME t

1 s

m b

4 v6/8s

. v b . 480.69-1 Rev.[,,DafBI

9 i '

me -

DRAFT 8 l

1.2 SUPPRESSION POOL TEMPERATURE RESPONSE TO SRV DISCHARGE 11 i

4 1.

2.1 INTRODUCTION

14 i

$ late 1974, the NRC alerted the 3WR Owners to'the potential for 16' syvere vibratory loads on the containment structure due to 17 i safety / relief valve 1SRV) discharge at elevated suppression pool 18  ;

temperature 1Ref. I.2-1). Ihis phenomenon, or condensation 20 instability, was associated with gertain SRV discharge device 21 i contigurations and occurred above given threshold values of pool 22 temperature and steam mass flux. While the condensation ~23 instability phenomenon described a5ove has never been exhibited 24 for quencher devices, even in large geaTe tests where local 25 i temperatures approached saturation, the NRC 1Ref. I.2-2) has . 26 i taken the position that a local pool temperature limit of 2000F 27 l "will provide gdditional conservatism and will ensure that 28, unstable steam condensation will not occur with a quencher 29  :

, device" and that " applicants will have to provide plant unique 31 analyses for pool temperature responses to transients involving 32 '

SRV porations;to demonstrate that the plants will operate within .34 the Timit of 2000r." 34 The Mark II Owners Group subsequently prepared a generic report, 36 the " White Paper" (Ref. I.2-3), which was used by the utilities, 37 Including Philadelphia Electric Co., as a guideline for plant- 39 unique analyses. In conjunction with the development of thi; 40 report, the Mark IT Owners Group proposed alternative suppression- 41 pool temperature limTts. These alternative acceptance criteria 42 were gubsequently accepted by the NRC for plants ysing the 44 generic Mark II T-Quencher design. The alternative pool 45 temperature limits are defined in NUNEG-0783 (Ref. I.2-4) as 46' e follows: 16" i l

a. For all plant transients involving SRV operations during 48 which.the steam flux through the quencher perforations 49 exceeds 94 lbm/fts-sec, the suppression pool local 50 temperature shall not exceed 2000F. 51
b. For all plant transients involving SRV operations during 53 which steam flux through the quencher perforations is 54 less than 42 lbm/fta-sec, the suppression pool local 55 temperature shall be at least 200F subcooled. This is 57 equivalent to a local temperature of 2100F with guencher 58 submergence of 14 feet. 58 1.2-1 Rev. 4, 06/83 l3
mS .AR DRAFT 8 S. For plant transients involving SRV operations during 60 which the steam flux through the quencher perforations 61 3xceeds 42 lbm/fta-see but is less than 94 lbm/fta-sec, 62 1he suppression pool local temperature can be 63 established by linearly interpolating the local 64 temperatures established under items a and b above. 65

(

Ihe following presentation of the suppression pool temperature 67

! gnalysis for Limerick conforms with NUREG-0783 in terms of the 68 p ol temperature limit acceptance criteria, gssumptions, and pool 70 i

_heatup events required for analysis. 71 1 2.2 EVENTS FOR THE ANALYSIS OF POOL TEMPERATURE TRANSIENTS 73  :

The following events have been analyzed on the basis of mass and 76 energy balance on the suppression pool during SRV blowdown. The 77 l results of the pool temperature transients demonstrate the 77 history of the pool bulk temperature for all the events analyzed. 78  !

Issumptions for the events are discussed in Section I.2.3. The 80 associated peak emummtugue pool temperaturesgare summarized In 80 Table I.2-2. 80 CALCULATED Pcs. E.AcA4 E. VENT  :

1 2.2.1 Event 1: Stuck-Open SRV (SORV) at Power Operation 82  ;

RORV at power cases are analyzed to demonstrate that the spurious 84 opening of an SRV during normal power operation will not result 85 in high pool temperatures. 85 l

Two cases of SORV at power are considered separately: 87 Case 1.a: Single failure of one RHR heat exchanger 89 Case 1.b:

Initiation of the main steam isolation valve (MSIV) 92 closure signal at the time of scram and subsequent 93 unavailability of main condenser. 93 1 2.2.2 Event 2: SRV Discharoe Followino Isolation / Scram 95 l

1 solation / scram cases are analyzed to demonstrate that the loss 97 i of the main condenser by the sudden closure of the MSIVs and 98 subsequent scram, SRV openings at set pressure, and manual 99 depressurization will not result in high pool temperature. 99 Rev. 4, 06/83 I.2-2 l6

~

, mS .AR DRAFT 8 q l Two single failures are considered separately: 101 l

pase 2.a: Single failure of one RHR heat exchanger 103

[fse2.b: Failure of an SRV to reclose (SORV) 105

~

1 Note: Case 2.b is not required by N_UREG-0783 but 108 .

is presented to maintain consistency with the 109

" White Paper" cases.) 109 i 1 2.2.3 Event 3: SRV Discharce Followinc a Small Break Accident 111 l

EBA cases are analyzed to demonstrate that SRV discharge required 113 to depressurize the reactor coolant system following a small 114 break will not result in high pool temperatures. As a result of 116 continued flow through the break, peak pool temperature is not 117 l

. reached until after ERV discharge has terminated. 118 '

, Two cases of SBA are considered separately: 120 l

gase 3.a: Single failure of one RHR heat exchanger 122 l

gase 3.b: Loss of shutdown cooling 124 1 Note: Case 3.b is not required by NUREG-0783 but 127 is presented to maintain. consistency with the 128

" White Paper" cases.) 128 1 2.3 ASSUMPTIONS USED IN THE ANALYSIS 130 I.2.3.1 General Assumptions 132 The following general essumptions and initial conditions lave l 135 been used for all transients. Table I.2-1 summarizes the values 136 for important system characteriitics and input parameters listed 137 below. 137

a. Power level, decay heat standard, RHR heat exchanger 140 capability (considering design fouling factors), and 141 suppression pool initial temperature imaximum technical 142 specification temperature for continuous power operation 143 without pool cooling) are consistent with those used for 144 the a_nalysis of containment pressure and temperature 145 I.2-3 Rev. 4, 06/83 l3

~ ^

DRAFT LGS DAR 8 response to a loss-of-coolant accident specified in the 147 FSAR.

147

b. The service water temperature is characterized as a 150 transient starting at 880F 1 technical specification 151

{ limit for average spray pond temperature). 151 t

c. The initial water level.of the suppression pool is at 154 the minimum level in the technical specification. 154
d. MSIV closure is complete 3.5 seconds after the isolation 157 signal (t=0) for transients where isolation occurs. 158
e. The water volume within the reactor vessel pedestal is 161 not included in the calculation of pool temperature 162 response. 162
f. To maximize heat addition to the pool, feedwater at the 164 temperature in excess of instantaneous pool temperature 165 is assumed to maintain RPV level rather than condensate 167 storage tank inventory via RCIC and HPCI. Feedwater 169 injection is terminated when additional feedwater will 169 ultimately result in cooling the pool. 1 Note: This 171 requirement is more conservative than the NUREG-0783 171 assumption that "feedwater pumps supply feedwater to the 172 reactor until the feedpumps trip on an automatic 173 signal.") HPCI (from the suppression pool) and CRD (from 174 the condensate storage tank) systems provide vessel 175 makeup after all the hot feedwater is expended. CRD 176 flow was used for all cases except small break accidents 176 with one RHR. 176
g. Offsite power is not available for isolation / scram and 179 SBA events or where MSIV closure is assumed, except SBA 179 Case 3.b. Offsite power is available for Case 3.b; 181 however, Case 3.b is conservative ' --- -

182 due to the conservatism associated with feedwater 183 addition (see assumption "If" above) and the 184 unavailability of the main condenser. Also Case 3.b is 185 not the controlling event for calculation o,f peak pool 186 temperature (Table I.2-2). 186

h. High pressure coolant injection tHPCI) system is terminated atga pool temperature of 1700F. l 189 189 oR. 86 FORE _

Rev. 4, 06/83 I.2-4 l6

- DRAFT 8

1. A single electrical division, failure may result in the l 192

'; unavailability of RHR ghutdown cooling and one loop of 193 RHR pool cooling. The assessment of this single failure 194 assumption on suppression pool temperature response to 195 SRV discharge is provided in Section I.2.3.2.3.1. 196 1

( f.

The calculation of mass and energy release to the guppression pool due to SRV discharge follows the 198 199 methodology described in Reference I.2-5. 200

k. There are no heat los'ses to the containment atmosphere 203 and structures. 203
1. The RHR operates in the suppression pool coolin 206 minutes after the high pool temperature aTarm (g 950F).

mode 10 206

m. All transients involving one RHR heat exchanger 208 operation assume a minimum controlled depressurization 209 rate and employ a rapid transfer (16 minutes, without 209 flush) from gool cooling to shutdown cooling using the 210 available RHR heat exchanger when the reactor pressure 211 reaches the permissive value (89.7 psia). 212 cooling is not used in the analyses for thoseEhutdown transients 213 having both RHR trains available. 213
n. In accordance with the Limerick technical 215 specifications, manual depressurization at a rate of 216 1000F/ hour begins at a pool temperature of 1200F unless 217 the depressurization rate for the event itself (e.g., 218 SORV, SBA) exceeds the required rate at that time. 218 Manual depressurization is terminated upon initiation of 219 shutdown cooling. 219
o. SRV flow rate = 122.5 percent of ASME rated. 221 1.2.3.2 Assumptions for Specific Events 223 This section describes the specific assumptions used for the 225 events described in gection I.2.2. Qperator actions are also 227 described for justification of the assumptions. 227 I.2-5 Rev. 4, 06/83 l3

LGS DAR 3 8 t

I 1 2.3.2.1 Event 1: SORV at Power 229 This initating event postulates that an SRV is inadvertently 231 l actuated while the plant is operating at power. Zo11owing 233 actuation, the 3RV fails to resent and remains open throughout 233 i $ e transient. As a result of this malfunction, steam from the 235 e primary system is discharged through the SRV and released to the 236 suppression pool. 236 Iwo independent systems will generate alarms and displays in the 238 control room so as to give the operator immediate and unambiguous 239 indications of an SORV. first, the safety relief valve position 241 indication (ERVPI) system 1FSAR Section 7.6.1.5.1) provides 242 positive indication and alarm of SRV position through the use of 243 l acoustic sensors (two per valve) which detect noise Senerated by 244

! steam flow through an open SRV. Secondly, the safety grade 245 l suppression pool temperature monitoring system (SPTMS) will 246 indicate a rise in the suppression pool temperature and alert the 246 operator to initiate corrective action. A control room alarm is 248 generated when the average pool temperature increases to 95, 105, 249 110, and 1200F. Zurther details of the SPTMS are provided in 250 Appendix I.1. 250 in accordance with the Emergency Procedure Guidelines (EPGs), the 252 operator will manually scram the reactor by turning the mode 253 switch to " shutdown" if the SRV cannot be reclosed immediately. 254 The EPGs will specify the number of attempts that the operator 255 will be allowed to reclose a stuck open SRV. 256 for analysis purposes, it is conservatively assumed that manual 258 scram does not occur until the technical specification limit on 259 I

pool temperature for power operation is reached (1100F). 260 1

l Case 1.a: Single Failure - One RHR Heat Exchanger gnavailable 263 l

)

  • Manual scram at pool temperature = 1100F. 265 i Offsite power is available. 267
  • One RHR system is placed in pool cooling mode 10 minutes 269 after the SORV. 270 Rev. 4, 06/83 I.2-6 l6

LGS DAR A rev S-'a2 g 8

~ The MSIVs remain open because the mode switch has been 272 taken gut of the "run" position. 273 1 Following scram, the reactor steam generation will 275 decrease so that the turbine control valves will 276

{, mechanistically close as the RPV pressure drops, thus 277 isolating the turbine from the reactor. The turbine 278 bypass valves are also mechanistically closed. The 279 ,

steam jet air ejectors will continue to maintain vacuum 279 in the main condenser. 280 1 The operator manually depressurizes the reactor by 282 reestablishing the main condenser as a heat sink through 284 the main turbine bypass system. It is assumed that the 285 operator will manually open the turbine bypass valve 285 20 minutes after scram. 285 1 The main condenser is available using full bypass 287 capacity until the reactor vessel pressure permissive 288 for RHR shutdown cooling is reached 189.7 psia). 289 i RHR out of pool cooling when pressure permissive for RHR 292 shutdown cooling is reached; 16 minute delay for RHR 293 transfer to shutdown cooling. 293 Case 1.b: Single Failure - Spurious Main Steam Line Isolation 295 at Scram 296 i Manual scram at pool temperature = 1100F 298

~ Non-mechanistic main steam line isolation occurs at

- 301 scram (t = 0) 301 1 Loss of offsite power. 303

  • Two RHR systems are placed in the pool cooling mode 305 10 minutes after the SORV. 306 1 When the pool temp ~erature = 1200F, the operator begins 309 manual depressurization to maintain 1000F/ hour cooldown 310 rate by opening additional SRVs as needed. 310 1.2-7 Rev. 4, 06/83 l3

. = - . . __ _.

LGS DAR

/ 8

, g RHR shutdown cooling is not initiated. 312 I.2.3.2.2 Event 2: SRV Discharge Following Isolation / Scram 314 ppse2.at Single Failure - One RHR Heat Exchanger gnavailable 317 t

3 Non-mechanistic main steam line isolation and automatic 320 scram at t=0 320

  • Loss of offsite power. 322

~.

1 One RHR system placed in pool cooling mode 10 minutes 324 after the event. 325 When the pool temperature = 1200F,,the operator begins 327 manual depressurization at a rate of 1000F/ hour by 328 opening SRVs as needed. 328 RHR out of pool cooling when pressure permissive for RHR 330 '

shutdown cooling is reached; 16 minute delay for RHR l 332 transfer to shutdown cooling. 332 Case 2.b: Single Failure - SORV 334 Non-mechanistic main steam line isolation and automatic geram at t=0.

336 337

  • SORV occurs at t=0 339  ;

1

\

l 1 Loss of offsite power. 341 l 1

1 Two RHR systems are ple:ed in the pool cooling mode 343 10 minutes after the event. 344 j g When the pool temperature = 1200F, the operator begins 347 manual depressurization to maintain 1000F/ hour cooldown 347 rate by opening additional SRVs as needed. 348 Rev. 4, 06/83 I.2-8 l6

m , ,,, DRAFT ,

i  ! RHR shutdown cooling is not initiated. 350 1 2.3.2.3 Event 3: SRV Discharge Following SBA 352 i

Cpse3.a: Single Failure - One RHR Heat Exchanger gnavailable 355 t

i Automatic scram on high drywell pressure at t=0. 358 3 Non-mechanistic main steam line isolation at t=0 361 i Loss of offsite power. 363

).

1 One RHR system is placed in the pool cooling mode 365 10 minutes after event. 366 e

- When the pool temperature = 1200F, the operator begins 368 manual depressurization at a rate of 1000F/ hour by 369 opening SRVs as needed.

{ 369 t

f 1 Automatic RHR switchover to the low pressure coolant 371 injection iLPCI) system mode on LPCI initiation signal. 372 (LPCI signal occurs at (a) low reactor level or (b) high 373 3rywell pressure combined with low reactor pressure.) 374 Ihe operator manually converts back to the pool cooling 375 rode in 10 minutes. 375 l

1 RHR out of pool cooling when pressure permissive for RHR 377 shutdown cooling is reached; 16 minute delay for RHR 379 transfer to shutdown cooling. 379 l

Case 3.b: Single Failure - Shutdown Cooling snavailable 382 e

Automatic scram on high drywe11' pressure at t=0. 384 i Non-mechanistic main steam line isolation at t=0. 386 1 Offsite power is available. 388 4

I.2-9 Rev. 4, 06/83 l3

~- _- - ~ - + . . _ . _ __ . ,- . + . . - - - . - - - _ -.

n.

LGS DAR l ff 8 e Two RHR systems are placed in the pool cooling mode 10 390 minutes after event. 391

  • When the pool temperature = 1200F, the operator begins 393 manual depressurization at a rate of 1000F/ hour by 394

[ opening SRVs as needed. 394 t

~

  • Automatic RHR switchover to the low pressure coolant 396 injection iLPCI) system mode on LPCI initiation signal. 397 Ihe operator manually converts back to the pool cooling 398 mode in 10 minutes. 398 ;

1 RHR shutdown cooling is not initiated. Ihe operator 401 will ultimately reach cold shutdown by establishing the 401 alternate shutdown cooling path as outlined in FSAR 402 section 15.2.9. 402 1 2.3.2.3.1 SRV Discharge Following,SBA: Single Electrical 404 Division Failure 406 in response to NUREG-0783, sections 5.7.1(8) and 5.7.2.3(2), 408 Limerick has evaluated the effect of a most limiting single 409 failure on the suppression pool peak temperature. It was 411 concluded that a worst case singTe failure of an electrical 411 division power gource may result in the unavailability of RHR 412 shutdown cooling and one loop of RHR pool cooling. However, the 414 peak pool temperature resulting from this single faiTure will be 415 bounded by the peak temperature calculated from limiting 5BA 416 Case 3.a when taking credit for manual operator action to regain 416 417 the lost loop of pool cooling.

Approximately 2-1/2 hours are available to the operator for 419 manual realignment of affected valves to obtain additional pool 420 cooling capability Trom the second RHR heat exchanger. This 422 available time is conservatively derived from the pressure- 422 temperature-time history for comparable Case 3.a (Figure I.2-5). 423 Limiting pse 3.a is simitar to the single electrical division 424 Tailure case because only one loop of RHR pool cooling is 425 available during the depressurization phase of the event. 426 Ihe time is based on the conservative assumption that loss of 428 offsite power land subsequent operator awareness of loss of both 429 RHR shutdown cooling and one loop of pool cooling) occurs at a 430 pool temperature of 1200F (technical gpecification limit for 431 manual depressurization). From Figure I.2-5 (Case 3.a), the pool l 432 l

Rev. 4, 06/83 I.2-10 l6 l

I . . ~ . . . . . _ . . . _ _ _ . . . _ _ . .

LGS DAR 8 i

1 l

temperature reaches 1200F at approximately 1000 seconds. The 433 time available for manual operator action after t=1000 seconds 433 i without the pool exceeding the peak calculated temperature is 434 limited to the same point in time in Case 3.a where shutdown 435 cooling was initiated (89.7 psia), i.e., approximately 10,000 436

( sqponds. Therefore, the total time available based on limiting 437 l p se 3.a is approximately 9_,000 seconds or 2-1/2 hours. 438 t

A study of required manual operator actions has concluded that a 440 second RHR heat exchanger could be avail ble in the pool cooling 441 mode in less than 2-1/2 hours /M he time Case 3.a peak pool temperature is reache when the The pool temperature 442 444 will decrease following the initiation o the second RHR loop in 445 the pool cooling mode because the heat removal rate of both RHR 445 exchangers will exceed the heat addition rate to the pool at this 446 time in the event. 446 Because the RHR shutdown cooling mode is not initiated, the 448 operator will ultimately reach cold shutdown by establishing the 449 l alternate shut 3own cooling path as outlined in FSAR Section 450 l 15.2.9. The heat addition rate to e pool resulting from this 451 i alternate path of shutdown cooling abe controlled to preclude 452 l the possibility of additional pool heatup. 452 is ACE It ese noted that/if manual operator actions sheeteengrequired 454

! in case of a worst case single electrical division failure, the 455 plant operator could actually reduce the blowdown rate to extend 456 the time before the peak pool temperature is reached. This 458 scenario allows additional time for operator actions an3 would 458 result in a peak pool temperature which is lower than Case 3 '. 459 l I.2.4 ANALYSIS RESULTS AND CONCLUSIONS 461 Table I.2-2 lists the peak bulk suppression pool temperatures 463 that were calculated using the General Electric computer code HEX 464 for the scenarios described in Sections I.2.2 and I.2.3. 465 l Figures 1.2-1 through I.2-6' provide plots of the suppression pool 466 l temperature and the respective reactor pressure versus time. 467 Ihese time histories demonstrate that, at peak pool temperatures, 468 l

the reactor pressure (and corresponding steam. flux through the 469 quencher perforations) is sufficiently low so as to apply 470 NUREG-0783 alternative pool temperature limit criterion b as 471 defined in Section I.2.1. Accordingly, taking credit for 200F 472 local subcooling at a quencher submergence of 18.5 feet at low 473 water level, the Limerick local pool temperature limit equals 474 2150F. 474 1.2-11 Rev. 4, 06/83 l3

9 mS - DRAFT 8 As stated earlier, the pool temperatures summarized in 476 Yable I.2-2 represent " bulk" temperatures, i.e., they were 477 calculated assuming a Eomogeneously mixed suppression pool. In 479 reality, pool mixing will not be perTect and differences will 479 exist between the " local" temperature of the water in the 480 immediate vicinity of the quencher and the calculated " bulk" 481 tdbperature. However, because of the special design features of 482 qgenchers and their predominantly radial orientation in the 483 su'ppression pool to optimize pool thermal mixing (Figure 1.4-3), 484 the local-to-bulk AT is expected to be small and not exceed the 485 value that was previously derived for ramshead discharge devices 486 in Mark I plants (100F, Ref. I.2-2). This number will be 487 verified.using in-plant tests and analysis (Appendix 1.1). 488 Applying a local-to-bulk AT of 100F, the Limerick bulk 490 temperature limit equals 2050F. This limit bounds the peak p 492 calculated bulk temperature for Limerick provided in Table I./-2. 493 1

2.5 REFERENCES

495 1 2-1 RO Bulletin 74-14, "BWR Relief Valve Discharge to 497 Suppression Pool," November 15, 1974. 498 1 2-2 NUREG-0487, " Mark II Containment Lead Plant Program - 500 Load Evaluation and Acceptance Criteria," October 1978. 501 1 2-3 Mark II Owners Group, " Assumptions for Use in Analyzing 503 Mark II BWR Suppression Pool Temperature Response to 504 Plant Transients involving Safety / Relief Valve 505 Discharge," March 24, 1980. 505 1 2-4 NUREG-0783, " Suppression Pool Temperature Limits for BWR 507 Containments," November 1981. 508 Letter report, R. H. Bucholz to Karl Kniel dated 510 1 2-5 March 12, 1981, " Mark II Containment Program Method for 511 Calculating Mass and Energy Release for Suppression Pool Temperature Response to Safety Reliel Valve Discharges." ll512 512 Rev. 4, 06/83 1.2-12 l6

LGS DAR u 10 TABLE I.2-1 (Page 1 of 2) 12 15 SYSTEM CHARACTERISTICS AND INPUT PARAMETERS 18 20 REACTOR 3.26 x 10* Btu /sec 22 l Initial core power (105% Rated) 23 Initial RPV liquid mass 608,142 lbm 24,669 lbm 24 Initial RPV steam mass 2.772 x 10* lbm 25 RPV and internals mas's 1025 psia 26 Initial vessel pressure 27 Initial steam flow (105% Rated) 4129 lbm/sec 29 REACTOR MAKEUP 8.89 lbm/sec 31 Initial CRD flow = 0 psig) 23.6 lbm/sec 32 CRD flow after scram (P 33 RPV 108 Btu /lbm 34 CRD enthalpy (from condensate storage 35 tank)

Feedwater flow rate as required to maintain 37 RPV level 38 l

41 Feedwater mass /enthalpy Enthalpy (Btu /lbm) 43 Mass (Ibm) 402 45 165,385 46 256,919 342 235 47 370,885 48 359,442 156 126 49 235,746 12,675 ft3 52 HPCI "on" volume (RPV level 2) 15,281 ft3 54 HPCI "off" volume (RPV level 8) 56 VALVES 3.5 sec 58 Main steam line isolation valve 59 (MSIV) closure time 390 lbm/sec at 1500 psia 60 SRV flow rate (122.5% ASME) See DAR Table 1.4-1 61 SRV setpoints Rev. 4, 06/83 l3 L

LGS DAR f 5 7

TABLE I.2-1 (Cont'd) (Page 2 of 2) 63 RHR SYSTEM RHR heat exchanger effectiveness, K 288.9 Btu /sec 0F 65 (shutdown cooling) 66 RHR heat exchanger effectiveness, K 288.9 Btu /sec 0F 67 68 (pool cooling)

RHR flow rate in pool cooling 1390 lbm/sec 69 RHR flow rate in shutdown cooling 1390 lbm/sec 70 1250 hp/ pump 71 RHR pump horsepower 72 RHR service water temperature 880F at time = 0 sec 91.20F at time = 18,000 sec 73 92.50F at time = 36,000 sec 74 9000 gpm 75 RHR service water flow rate 76 Maximum reactor pressure for switch- 77 over from RHR pool cooling to .

shutdown cooling 89.7 psia 78 80 WETWELL/ SUPPRESSION POOL 15.45 psia 82 Wetwell airspace pressure 83 Initial suppression pool water mass 7.194 x 10* lbm (at low water level, without 84 water mass inside pedestal) 85 86 Initial suppression pool temperature 950F 87 Suppression pool temperature technical 88 specification limits for:

Continuous operation without 950F 90 a) 91 suppression pool cooling 92 b) Continuous testing at power 1050F 93 c) Power operation (Scram tech. 94 spec. temperature) 1100F Hot standby (Depressuri- 1200F 95 d) 96 zation tech. spec. tem-97 perature) 99 Quencher submergence (at low water 18.5 feet 100 level) 101 Rev. 4, 06/83 l3

== -

DFRAFT' TABLE I.2-2 8 PEAK SUPPRESSION POOL TEMPERATURES 10 12 EVENT TEMPERATURE 15 SORV at Power 17 1.

Case 1.a 1690F 18 Case 1.b 1870F 19 Isolation / Scram 21 2.

Case 2.a 201oF 22 Case 2.b 1830F 23 25

3. SBA 26 Case 3.a 2020F Case 3.b 1820F 27 29 Rev. 4, 06/83 l3 j l

I

0 e

k

.,,d.

8

, _ d ,,s 8

DRAFT k  ! m ~

8 m ,8 8 n

8 n

8 g ~

I '

l '

I i l I I l l I i l I l ,

I l k" I i i l' -i l l l l l l l l 1 -

O r . 1 ,z .

, i .

.s , , . , , i I \ ,

i , s e / iM i i e I i Ti i i !b i/ I-l ll l 1 hl I l- l l

!/ l4 Al 1 "e A i /i e 1 I W2C -r .

m, s

g e

e I i

  • /,

/ ,

'sN ,

s s

W l I I I[ -1 I 1\ l C l I l  !! l [ ll l l l_ hI k

! I/I \ g $

i l l / I i h\ a 5

i i I /i I I I \l . 5 v ,

-w

. l  :  ; \;

i I , , ,

. . 1 5

I \l i 8 i o l TI i , l l 11 t

I O I \' I I I i  ! '

\ o 4 , , , , ,

1 s . . ,

/ 1 I l I i l l c

. n R E o 8 8 R 8 8  ? 8 R E 8 8 n n R - - - - - - - - - -

do - del 317OOd LIMERICK GENER ATING STATION UNITS 1 AND 2 DESIGN ASSESSMENT REPORT SUPPRESSION POOL TEMPERATURE TRANSIENT CASE 1.a FIGURE I.21

g

., ' m.

SkE@mWEd$$ d ,

03 w. ,

0 0 0 g 0 0 0 0 0 0 0 0 g 0 0 0 0 0 0 0 0 3 2 1 g 9 8 0 0 0 0 0 1 1 1 3 7 6 5 4 3 2 1 g 4

0

- 1 x

- 5 4

0

- 1

\ -

. x 2

/

~ N 4 0

q~

- - \ 1

/ - - - \

- . - ' - ~ - -

- \

- _ - j- - - -

~

s

- _ - - 3

- o

_ i

_ - - x 4

//

N 3 0

jl \- -

1 2

x S

D 3 N

- \' '

0 O

_ ~ s /

~

- - ~ < - -

1 C T - - /,

E S

~ N- -

~ - / M

~

0 0 A

~

=-

- 4 R C

~ S

- / 0 R

E g- e #

0 2 T F

A y

N 0 E

- ' 0 M 1

' IT

/ - 0 4

\ ,

0

, 2

' 0 1

/, - -

s= 4 f 2 0 0 0 o g

0 0 0 0 0 0 0 0 0 0 2 1 0 8 7 6 5 4 3 2 1 0 9 2 2 2 I 1 1 1 1 1 1 1 1 1

& 5wH JO*-

gE*2n3 M,m$dZ u $O2 4o [zU n -

om9oz Mmmhm6 3mm0H 0

)

u)cmm k mC r oOr y3vmmyHC2 -

g x g y,g $

3 Op&) r c

m5 E* M9u

VISd 380SS3Hd 73SS3A 8 8 8 8 8 8 8 8 8 8 8 e a, t "

O D ~

S C) m 5 m o e n n m o ll l l l

'o l l l I*

< l .

I ls L ;I l lg i / 3 l

\~

~

l i l I

/ o e i x

.N 7 , ,

8 f *

  • A t e t

. ] r, ,

! I I I I \ l i U 'l l M

l l l l l Xl l- l l

\

l

/ Ni g s-I b l \\ n C

m l

. i  :  ;  ; . i  ;  ;;; g

, i . . i i + . xi w j

I I i i l i 1 I i l l l l 1 YI .\ $

I \ 8 5

l I \ n e is l~ \ o C

4 i' . l l > ,

' O W

. x i i i , i g

/ I >

\ l l 1  ?

l\

l/ I I I i R

(

l \

'a s . . , e i\ e . . .

\ e e . .

\ l I 't l 1 '

  • l ll l l l

n R

n 9

n 8

n 8 8 R 8 8  ? 8 2 e 8 8 do- dW31700d LIMERICK GENERATING STATION UNITS 1 AND 2 DESIGN ASSESSMENT REPORT SUPPRESSION POOL TEMPERATURE TRANSIENT CASE 2.a FIGURE I.2-3

. " ]

< w$m *E d$>

0 0 0 0 0 0

0 0

0 0

0 0

0 0 0 0 0 0

0 0

0 0

0 0

]w 3 2 1 1

0 1

9 8 7 6 5 4 3 0

2 a

't 0 1 1 4

0 1

~ x

~ 5 4

0 1

x

\ 2

- /

N 4 0

/

/

\ 1

- ~

\

. - -  ; - - ~

,l k ~

- _ - /- - ~ 3

- - /- 0

' ~ 1 x

7f 4

8

/

g 3 0

1 x

/ 2

/

k / 3 0

S D

N

/.r 1

\s

- ~

- - ~ ~

O C

~

/ ~ ~

E

_ - - N ~

7 ~ S

-/

- - - ~ 0 0 M

- h -

4 A R

C

/ 0 0

S 2 R

- \- / E

- T

- F N # 0 0

A

- 1 E

. - M I

- - T y ~

0 4

7, 0

2 c, 0 1

/ - -

- - ~

d - ~

4 2

0 0 0 0 0 0 0 0 0 0 G 0 0 0 2 1 0 9 8 7 6 5 4 3 2 1 0 9 2 2 2 1 1 1 1 1 1 1 1 1 1 g- A3w Oo~

ck=5* = fO h$g*

g;a $O" oE5z >["ms@4" @H mc73EeOZ 30F Akm2D Ca mD2 * - 1 0H mb -

,0 = H9"

visa aanssava,assan Dt,a#ae=p. ,

4 Ag g 8 8 8 8 g 8 8 sm a s sn 8 2 ~ -

e - .s , m - c "e

i I I 1 I I I i  ;

I i

  • l 'l { {

I I I 15 i 11 l' I I l l 11 n ! l /t 2 I i

x l l l l l l

/ ,

e s x ,

. . x . , - , ,

e *

  • N I .

f e e s 1 I ' i N. 3 I / i i f 3 o i l I l M l- 1 I I3 M h e 8 i

/' ! X l 2  !

X i X s-a

. , . s

s u

i e e +

1 9 4 i e lI e e Te p y I  ! i l 4 1 I i V i l e

I l '

\ i  ? E I I I I \ g 5

! I I I I

l 1 I I \, Ia 5

! l '

I

[ g E

. n , ,

e e

s . , ,

\ , . .

/ l 1 1 I i o

\ I l l l I\

\ l I C I 1/ I I I '

I I l li

l. l I \ e

\ \

6 e

e e

l .

\ l 1 1 I l l l l R 9 8 n 8 8 R 8 8  ? R R 9 8 8 n n - - - - - - - - - -

do dW31700d .

LIMERICK GENER ATihG STATION UNITS 1 AND 2 DESIGN ASSESSMENT REPORT SUPPRESSION POOL TEMPERATURE TRANSIENT CASE 3.a FIGURE I.2 5

s n

4k . WK3EmE 2mu$> -

0 0 0 0 0 0 0 0 0 0 0 0 0 0 O C

0 0

0 0

0 0 0 3 2 1 0 9 8 7 6 0 0 0 1 1 1 1 5 4 3 2 1 0 4

- 0

- - 1 ,

x g

- - - 5

- - - - - 4 -

0 -

1 x

2 -

4

/

f

\

s 0

1

. '\

- - j - -

- - )/ } - -

- - - - - - 3 i

- - _ 0

- 1

- - - - x 4

- -3 3

0 1

x 2

- - - y f 3 S I

~

0 D

~

/ -

. 1 N .

- - - - - - / - -

O -

_ C -

- - E .

- - - M 0 0

S

- - - - ' / - 4 M A

- / 0 0

R C

S R

s 2

E T

F 0 A

' 0 1 E M

- I

- ' - - - - - T 0

f - -- - 4

/ - - - 0 h-

_ 2

/ 0 f

1 i

4 y - -

l

- 4 2

0 0 0 0 0 0 0 0 0 0 0 2 1 0 9 8 7 6 5 4 3 2 0 0 0 2 2 2 1 1 1 1 1 1 1 1 1

1 0 9 1

uo, a $F s.Oa. -

-e km oA 0zm3$ zo $gaz c2 e**"" z0w 0* az >0mgE@4 m" @-

mco $mmm Oz'0 4mEMmm>HC3m

- yD2EQ4 -

O)mm y 30 mm MnA l

DRAFT b , c. The applicant has not demonstrated that the !.imerick suppression poo!

temperature monitoring instrumentation meets the requirements set iorth in NUREG-Of.78.

DAa2- h g & % .l.I k tr u~ M e

% & y M RMS hwKGGn  % pM& f  % .

A F3WrG<,9-c% C 67 Q 4 012. s 6 - o ' 7 6 ,

t FSM2. SAk 1.[, ( . 4,3_, f .7 yM t aAA ( /u- 4 TA72.

@g% 1. ( .

LGS DAR 11 1 1.1 SUPPRESSION POOL TEMPERATURE MONITORING SYSTEM DESIGN 14 CRITERIA 16 The euppression pool temperature monitoring system (SPTHS) 18 moni.'cors the suppression pool temperature during normal plant 19 opt rations and af ter transients em>weer!mrkgesteneg'ecidentS. 20 Operator monitoring of pool temperature is required to ensure 21 that the suppression pool is operated within the allowable 22 temperature limits set forth in the Limerick technical 23 specifications. J O eration of the pool within these technical 24 specifications will provide assurance that the suppression pool 25 temperature will be maintained within the limits specified in 26 NUREG-0783.Section I.1.1.4 describes the Limerick technical 27 specification temperature alarm setpoints for pool operation. 28 The SPTMS is designed in conformanc with the acceptance criteria 30 specified in NUREG-0487 (Ref. I.2-2 and NUREG-0783 31 (Ref. I.2-4). -

31 1.1.1.1 SENSOR LOCATIONS D 33 REDJt4DA+1TL7 T>rasio4Au-ygO The suppression pool temperature isg monitored by two oedendamer 35 systems. EightkRTDs __ _ 2 2 2 system gre evenly distributed 36 around the pool to provide a reasonable /fasure of the bulk WATER. 3 37 temperature. The eight monitoring locations and individual RTD 38 identifications are shown in Figure I.1-1. 39 l I The sensor are located at a depth' of two feet below the minimum . 41 pool water level. This depth ensures a conservative measurement f2 of bulk temperature because the hottest water will rise to the 43 pool surface. This depth also provides adequate sensor 44N submergence to preclude the possibility.of sensor uncovery during 45 \

an accident or transient. 45 \

1 1.1.2 SAFETY EVALUATION 47 Ihe indication of suppression pool temperature in the control 49 room is required to ensure that the plant is always operating 50 within the technical specification limits. Manual operator 52 action is required to maintain the plant within the 52 specifications. Suppression pool temperature is also required 53 for post accident monitoring N . N these 55 functions are safety related. T 55 Rev. 3/ 05/83 9 s

..e..............L." .;... .E---- --

  • T. DRAFT LGS DAR 11 (CGDQtbD&Ch Ihe system design nforms to all applicable criteria for . 57 physical separatio and divisionalization. Physical and 59 electricaT separat n is provided for the saTety related 59 instrumentation. Nonsafety circuits are isolated by electronic 61 converters with full input-output isolation. Ihe safety related 63 instrumentation is powered from divisionalized power sources. 63

___ :: _ f.;; ^ . , y' i n "...,^;.  ::' ;: :::: i::;h, "' '-- "

I;. :::: : C n :: L:

^' 64 ag g , 65 Ihe hardcopy timeplot of suppression pool temperature is3FOR', 67 operating

__2-. a_-. history only and is not safety related. towemes>,

. ;, , * - _ _ -- 69

lid .10 -m at......;..J. 69
' v. ... J ., . ....... : - '-^1=+-d -i;--I t L_ t a 2__, .. .. _-_

, ,,,,.m th: :---'^ 71

' _ _ --.-*4* 72

[ 1:._  :--'r:I :: 1- ...l;......, .". ,... f f t """ 1 2 -

'i-i":::x'L ___.d.. The suppression pool temperature  : t r 21 : _ :- 74 75 f sensors

' -'--  : .' i:

perekr+-dedi<etore. are t,ualified to :;:::t: -

76 Or:  :: ::d=f- ' seismic Category If Agp 77 Class 1E/-and are n!! ::..:

pplied .f_ rom onsite emergency powerj.50ppWE.S. .

78 y N IA EWs.gAiasp I.1.1.3 EQUIPMENT DESIGN 80 u Bt M T h The signals /from the redundant sensors are processed by two 82 independent, ivisionalized microprocessors located on, a main 83 control roo .: d pe r.c l . The microprocessorsconvertfthe RTD 84 signals int degrees Fahrenheit and compute)Pt_he average of the 85

.I e -

86 gk ,'ight temperatures.m.... ......m _ ;_ { e; ; _ u.- 'y"-: - :4.m..~.._ , I . p ,_..... . . ....

. . ..... . .... -__.:_.... 87

.._,_ _, , __ _....m The average value is 88 2h micro displayed by dioital indicators ':- 7 ' '^* Mon tne TFF.oVo e 3 88 oe 2.l.vu m : ^t 89, g T--. processor 2 __um 5Athemaincontrolboar[d e e. " .  ; '::,, L ::. lgallow the operator to display 90 3

any individual temperature input % ggmyegQE HlC "P Atdo oc r+c resats. #Noecgros_CCEW lQ q./ _L._'i;5 i:r;:- tur:

.___...._.-__..__3 212:- i: ;:--- t:f t :: ;- ' n; "-

,_.___-33. _,., _2 __i__: .-

e. u -

-3,3

_ 92 94 a,a p ---n:,z.- --ne-,=.> u. n_&..-

, ta- ,-- > u-t a-A ( . . m; --mi.;- ;i a i_~di R J.,,. T. _ _ I _ B ul-_2~ Electrically 94 i 96 isola'ted outputs interface withsn sm=:!:ter located An the 97 main co".Mol 4: rd. Econ.. 97 ThE. EPTM S Te o%6. WM N5 JECT h A digital printer located on the microprocessor periodically 99 prints the

-vl. the current date and time.

average temperature, @ the individual temperature A p 100 Trending information may also be 101 Rev. 3, 05/83 9 L ____ _ __ ______ _--_-_-__________ _ _ - - - . --- - - - - - - - - - - - - - - .- - - - - - - -- - - - - - - - - --

l 3 .^

i T'~

S oseer A me DRAFT

. [Lockreo ia ta n a c~a w h

_ _ . . . . _ _ _ . .b d ....C ..

]fdk cda&atrA g Q _ ...

e.%.

-.w yw.kg.m g

p-

~ m ._a w w;. . . m

..k_fy y bkgn uwccatn=p -.-__

& wn 2 , as -_..

m A A 4 A .J A .I l.1.4 4 __

_--.. M ..w % Q W W h , . ..

..ew. .-. .

, .. -.e .. _.a. -- .  %

.]$h W b mm_

= = .

.= . .

ed '

p n:y=Ms. L LA.

w n. ..

. . _o h4t p1_ .%a

%Tp . _ -

.h..cah.JLctq _

~

g... _

..._...Sd h..% e-eAg tR_%N>d-ih~ . k_

,_ow M +

r-a ~ ,

_ . . . $4 .N . ,i h. b" 4-%p . _. .

.fM_ MA

% l trv_+ - M- __.

~ -

t

O

  • DRAFT E .

LGS DAR 11 Alarm conditions are printed 102 printed at the operator's request. 102 along with the temperature.

  • hgspegcj E6SPcM6. Fact LITf _ T)ATA SYSfGM Eg Electrically isolated digital and analog sign sincluding are provid 3 To - 104 105 Interface with other plant information syste ehera.

signal to the h dieeta e IA -Led gi iiie-ftSP: Ihe microprocessor 107 108 has a self checking diagnostic system that provides an error 108 alarm if a failure is detected in any part of the system.

ijo 1 1.1.4 ALARM SETPOINTS 113 The SPTMS provides alarm at four pool temperature setpoints 195, 113 105, 110, and 1200F) to provide assurance that the suppression 114 pool will be maintained withinAppendix the s p esivi. m i temperature 1.2 describes these pool 116 limits defined in NUREG-0783. 117 temperature limits and provides Limerick's analysis for suppression pool temperature response to SRV discharge. Ihis 118 118 analysis demonstrates the adequacy of these alarm setpoints with 119 regard to alerting the operator to maintain the pool temperature 121 below the NUREG-0783 limits, Ihe alarm setpointsgare defined as 121 follows:

(Ace MAiso ed REF.T.l-l Ado) 950F: maximim allowable pool temperature for continuous 123

a. 124 power gperation without suppression pool cooling

' 1050F: maximim allowable pool temperature during testing 126

b. 127 at power which adds heat to the pool.

1100F: manual reactor scram setpoint 129 c.

131

d. 1200F: manual reactor depressurization setpoint.
r. l.a. (LAwe)

'I. . ( , 3  %

E.\ -- \ 6M 6.W M &

N (_.51L Alc>,106, Och 26,1974, Rev. 3, 05/83 9

. - - ==a---. ----

. . . - - - - 9 q \(

' $. t ~ e, g , '<

i '

-

  • Ng)l s

m i ' M.p g lT i lX [~.

3

., 1 o ri pE. 1 - .

l.{ .s!g l:

s;uB 7 .t. -

Lll ag .

t

. l ng l 3 :. -

, , - e**---*-

  • g ,

m 1

1g g......i .

~

+ . "

3

,N F. ,

ha d s, '

-y g -

j f

. \ v  ;.

\ .

~,

4, g; 3 ,s r .n x /

h- -

9

. ,. N '

2

~

~

z . YN

. c j n ..

W@% yh- % K .'.'-

,~

/

e,. Q k'.

  • h ;

'ye.s ,.,e gf " N .p6_ %-ps e

1 -

o k,

. . . '%a,'f

i .

hh, .' O I

.y - ~

>f'Q hd\ _ay c...

c v p

  1. cm,.i .

i.

l h

-k 'N ,Q

' s. *

^'

^

+ ,, ,

p

$nb.(, . Y y

,c

}7 7j {, @$Ef j e_q.e; j .

Q).. -: .

. jo  ; ,,

'g'

'f..

y %)th k

[a g.. y- fj ,

. l - -

b

-Qhw

&' , y s,<> . str.. f 'h b.. . ,.,. -

' e-h

/ - .w p

~

1 '"
  • 0, h.

F /

s: s

~

. ),

v 4 ,l h gn

~'

J..

~

w

. .a ts / so s

e .

i\

h, , 3 eu 9

yg .,. + ;,y y -

D..

~

3 . . y{ tj -es, q

,g g %. g u-

~}

j '

ji G P ,

6p$4 j.;..f)'n,

+ +.

hi 3 4 -

. ~

m  :

- --M '3.'t'12.,3@.y0,, a7

%, p.g - '

i~~'

2 ,

1

s. *- (

_a -

Luf - i 4

.g t

s

. l . l . ' ; *

, -I ,. I e

~

, (  %

s s

' c .,

l

_ _ _ _ _ 2- _-~_------c--~~~~ ^ c ,

y& -~ -

s 's ' 1 LGS FSAR rads per hour power sources

  • Power is supplied from two independent Cl ass 1E
  1. 7.5.1.4.1.1.6 0 Suppression Chamber Pressure

\. >

gi One suppression chamber pressure signal i ..

- pressure signal transmitter is recorded cri penand 2 is recorded in ths transmitted from a 3 e control room. This

.( -

l's from 10 psia to 165 psig. located in the control The range of recorded pressure is room.of a N

.- u, t s s '* Power is supplied from a Class 1E

', s

, , ', B .

' power source.

' ' ' 7. 5.1. 4 . 2.1. 7

~

Suppression Pool Temperature

(

s Two independent divisionalized microp

'j _ , '

m

,' control roomsensors temperature to monitor locatedtemperatures in the su from 16 irocessors are loc ndependent i y

\ temperature r.ensors are dedicatedppression to pool Eight

\ each microproce.

si s. m. , is supplied microprocessor from has a two independent digital displa Class 1EPower r*0r.

urces power so s' s' select the sensor to be displayed. f with which the oper. Each s

o inputs indicates the average temperature of ththe displayator can Normally i . tempera.

ture increases to 95,A 105 control room alarm is generated wh 110, and 1200F.n the average 9 Ih4 %r<.5Sitna- an alarm will oop beInmalfunctions.

addition, provided when

. i is desenWdL in dcMl m tea, Q f-rod-0 N._ s M gw.5 M rig

-[ 7.5.1.4.2.1.8 p Asse.s2 (,59Tff5 Suppression Pool Water Level  %

gqy ortCDAr2) y '

Two. suppression indepenle pool water level si gg N ',,

z indicator,nt level i.ransmitters. Each s

\

~

located in the control room.ignal is, transmitted to a i

( '

.,7.5-3).

Power 10 supplied from two independent Class 1E sources (Table l

. J i

.,t 1.5-5 g, -

Rev. AG, G^/G2 - \

r

DRAFT 5 .. . m .ggiic mi mu1 state i. ,ositio, ,. a, aim. suasc.o763

' Guidelines for Confirmatory IrwPlant Tests of Safety-Relief Valve Discharges for BWR Plants."

R bk k , 61A thN WWutN /0EO GMb 6to .M CgA h d Q Us' % co Ns Tx_P N6M ,

7 C. O /T FE'34j k (7[B 3 ,

L aiLk&#A) i l

n . _ .

~

LGS FSAR DRAFT 152834 l OUESTION 640.29 (Section 14.2.12)

Provide a test description for any Confirmatory Inplant Tests of Safety-Relief Valve Discharges to be performed in compliance with l

NUREG-0763.

RESPONSE

l No co inplant testing of safety-relief v ye 4rschWV9h is planned for . The results of ,

'LaSalle County Station (LSCS) -

e for compliance with NUREG-0763. Sufficient

  • ts between the two plants to negate the ne any new testing. ick and LSCS design I compariso MTuation of LSCS testing are t neluded in the 1pTlssessment Report, scheduled for issue in ~

% s  % Qas s L40.WJ &

l i%$ Owae -4 %,

e go e

640.29-1 Rev. g W

LGS #dNtRDQ fd J OUESTION 640.29 f- M ':- '"I- -

Provide a test description for any Confirmatory Inplant Tests of s Safety-Relief Valve Discharges to be performed in compliance with NUREG-0763.

REFPONSE

( y p '" % M y .

,1

7 Mum crp3 .pg.eJios.S NioEuME 5 "T~o DETr.c.n ME. (G 'IN W Ts3TS A$E_12 E .Chos ra4o e4 Tes.'ibe%s of: wT OMi&i:n=_. 902Ne c Q o c ose-. ~T'o C.=hFa M 66MRic.Au y E 5TAe3tism SPe4Fickr,pe35 Fo(L 5*R / Leap.5 @ M 4MiM.dtt Surp.te ss.,e*3 % t % p m ag.c Liksc tce_ Sescis urr,o,3 r- a_ SW Loep3 gb((

m g sy

[=

sc T, +g Stul k Lx i <

nd Q.b Q' m %

WJT g n (nu )p 1 .sses)

MM 4~ e A Wes5scso~% A> .ATb k a Q Sas& 4 , L\. d.'6

% / k G k -B f

L p m < & f a a ,as mp u g4 a.a -

?nnum,,uw6 .

. Tik CW Lzok Mbek 6

~

w y~ && M.f LG i

._ . - W f d ,t.J A %h&'  % Wi

'swa

~ N;m E.

fm m Q W % W A*A L a dti x JL"t2~"m, +~

pAh re __ _ _ ___ .__

DRAFT 4

~

e o e h 2SifD M A

~

Nu-N.-a-t>ht kat 'm ...4. t . \ M asx M % w italk V S

-T a ~ ~>x % + e q

'M+Y"

,L W & acK q y web M e @

  • i"1A*^# W r e

su ww.f @wQ we M M / h S o & % C Ti v. s v v .

% l s s (Wb . . . . _

-y ,

@ w Tet.3+,Pumxa y y ;u wm*H ch h Am pum e2 es SRd MyM 4 a~

M h (

obok S R v' M

@* r A

= .. -_. . . -. . _. - - . . : . _

.,  ; l .

i  !

i. I l . 3 l l ISS DAR  ! .

,' ,I 'l l ll TABLE 1.3-2 (Continuedi (Page 6 of 105 l 1 l l: .  !

l

lll .Il: i *

.ERC_.4cceptggce-C iter,la-I criteria IAS

,, , l&qgdsePhenomengg- , ,

- Eo erce -- Jositton-t .: i ,i -

I ' interpolation between'

'- i

.' the temperatures -

j', l ,

defined in items 1 i'

. [i- L i (fyAj.,,uAhiop op ,j ,

and 2 above.  : .

! l l S. 4LrClearingLoad[ . The T-quencher load REG-0802 Acceptable i

',  ! specification described .

.I l'

l s

MMIT8M '

in Section 4.1 of the ' j SSES DAR may be applied '

' i . . UN for evaluation of SRV ' ,

ll  !

i Icontainment boundary l '

l; ipressure loads with the

. i !

gl-.l ! { g .

' .' j following restrictions: a  ;

ji . ,

, l

  • i
. 1. All valves load case NUREG-0802 Acceptable

,j t  ;' ,e . ,

The DLV and DLwL com-

.. ) ,'

j.

a

, { ,, binations must lie be-il ., ' l.

.; low the limit line of

t' l , i l' Fig. Al defined in the

..1  ; l ,  ! j criteria where. ,

'I 8 l .

, I -l le:

a. DLV shall be equal p 3 i e to the arithmetic
I ' '

. I average of all dis-  !

l. ' ' *

,, *, . l- . charge line ,

volumes (m3)

I , .I l I

  • i

]i .;  ; l.

l b. DLwL shall be

! l equal to the cuen-t .; - cher subanergence c

!, 'i ,  ; , s i at high water

,i , i I I' vel (*)  ; f('[9 I{

2. ADS Imad Case i NUREG-0802 Acceptable
, l .

~; '

i EN-l' I .

i f The EV and N com-j .4  ;

l 6l l binations must lie D-il i' '

I I. below the limit line l [-

j'l . '; g i

! of Fig. A2 defined p, I[

, ,. l ,! ,

, l l]'A"**1"*

I i' '

j' h, i a. DLV'shall be equal !

i f

.' f-I f' l  !

e to the arithmetic Ci I

l k l, '-

E .I average of all ADS '

,- discharge line i l e g volumes (m3) .

.i 6 I

I * '

.l 'l ' [,I

, l' l 4 l i .' t ' I Rev. 03, 04/83 l' i i ll , .. ,

c >

. , e. .

i  !

ISS DAR ,

(, -

, LA 1.3-2 (Continuedi (Page 7 of 10)

, , i  ;

i l

l Elteria

.  ! l 4, I l IAS t Inge@.pt P$9nomeegg- NRC_ Acceptance Criteria i Source _-- Josition-l

, e lj i e a

  • i  !

] i, ;  ! l b. DIML shall be -

, i l equal to the dif- l .

I '

ferences between -

li

  • l l t ,

l' l the plant downcomer , l ,

?

l

.I exit elevation and . .

.: 1 l .

the quencher center- 8 l

' Aine elevation (m)

. ,:l l l l l g l

'i ' 3. Frequency Range NURzo-Oe02 Acceptable

' l .

(DAR Section 4.1. 4.1)

{

  • 6;  !.

l l ,' ,  !

[ For the single valve and asynsietric load cases,a

!I

'! I .

U ) '

the timewise compression

['i j' j l

l of the design pressure: l;

  • l ll

- . - signatures shall be in- *

} "l, ' t 4 creased to provide an ll 0

l'lI ,*

r

>overalldominantfre-l . I i

l quency range that ex- 1

  • tends up to 11 Hz.

I ll

  • it. Vertical Pressere NURIG-0002 Acceptable i I I
  • Dirtribution
j. g3 ,  ; 1 I I . '

,; l i g

?g .

l The maximum pressure h< 4I l  !'1 il amplitudes shall be

' ll l i! applied uniformly to

- l, .' ,

the containment and e

I

?

ll l  ?

  • 'l't'. pedestal walls up to i l l .

i an elevation 2.5 feet j,l i

i

?

j

-l i

I i

I above the quencher centerline followed by linear attenuation

.l l, , ,

l l

i

! si

  • to zero at pool s
  • l surface.

' 1 l I . . . -

lThe T-quencher load spect.

T-Oueneber NOREG-0802 Acceptable I Tie Down Loads fication desc bed in SSES

,i  ! I DAR Section my be ap- .

6 i ' - '3 . plied for ev untion of I

'j

^

i j '

1

g quencher and eni:her suo-  !

t i port. i I , il I I e

l. l D. SRV BoonoAgy ', seg gfy,, .A. , 9 p i LoAos  :

g r/e;3 l ,

I l Rev. & _,,2 Il  !

e l i e l

[A/5s5g.T " A " ., g 7 $ # o)

Low

_ p, 52/ LA _

N -

. A Mg o6*j i

A r<44 g %A M @A.t.'),m W CA I-)

f M % h. "W koa k ,6 j

'~~

M

% .sses me. Je 40 GiuhruA L (Jk(*-6 osob Lin 5 s

iM .

pex,g sauru GP , he kra 4. t.u .

.st.v' Tw- AceerAszury or ustu Tfte. .sse.3 I

WAo seecortCATied F-et L6 5 . .

l .

I . _ _ . _ _ _ _ . _ . . _ _ _ . . . . _ _ . . .

i i g'.".

i e i

' I I

l I ,l  !

7[

i  ! 1  ;

> ., I b5DAR  ! 4  ; '! I ' ,

TABLE 1.h-2 (Continue I , (Phge le of 109 l g i'

I, ll j- .

criterfar 14t; i  !

T I. ! 'l I

';isource Posati tcn j i *:E I !

1.oad,ogjhtnamenon telC,Abetytance Criteria . , ,,

4l 11 +

iso criteria specified ' '

! Aoply! e ,'lh .

e, sRv Air pubble ,

Drag Imad for T-guencher ,

plant-unione ,i e j

!'I sinethodology -

1 e

I

  • I'l
l. l ll detined in , ,'

p ros dan ,

.l li-g '.

l

- sectaod 4.1.4 jl, '

, i' no crhteria specifie<l Applyirig I; ' i !i E. steam condensation .

l Iplant-unione I

  • l !l '

Drag Imade '

. methodology l l ~l *

.li defined in Ins DAlt l 1

g ,l. 'I I

  • l'

' I l' .

ll section ic.2 ,

I 8

.I l

Ie, IV. Secondary TMe l. j

,I leegli31lsle Load NUREG-0487 l Acceptable p-

1. Sonic tonee Imad  ; ,

I -

l ledREG-0487 Acceptable i;

.l ,

2. Cosspressiee leave Load Isegligible Imad

! i g l ~, k ,]

. i .

IRfREG-0407 ' Acceptable {*

3. Fallback Lead on leegligible Lead l;,t Submerged Boundary ,

I, I -l .

4. Thrust Imade Kosten6mm belance 10UREG-048 F Accebt ble i , .'l j,.

Standers friction drdg IGUREG-048k Acceptable l  ! ',

5. Friction Oreg ,

calculatione , l leads on vente

6. Vent clearing leegligible Lead 140 REG-048 . Acceptable  !

Foads

    • I , I l ..
7. Foot Smell feethodolegyhocestablish- NUREG-048 toad is negligible l 5 ing loads resulting when compared to l ,

Have toad design basis loads l .

' l f ron post owell wavet to  ;;

]

le evaluated on a plant (Section 4.2.3.til l I imilaue basis. ,

I l , l

'Imad is; negligible l poethodology for establish-i 10UltEG-0407 I

{ j .p'

8. Seismic 81osh Imad ing loads resulting fron
  • I when compared to l

' desagn basas loade l l seismic slosh to le eval ated on a plant, unique , , (Sectaan 4.2.3.7) l l' ,

' ( H basis. . -

i I g.' g; e i i 3  ; .

l' 9'

O b I j;

  • k

$ f .

  1. s e%

! Sc. C=0 v=ur.ne,

' h lMT I

Testi A w

, %sts .

~

o l

tdS6ttA ,6 10 C s

)' M l

' >3 c - ~

__ __ _ unp. ao Q

M &

1 l

l

o , s- u. _- _

D RAF"'

- 5 c. The ca;hbility of the vacuum breakers to perform their intended safety function and not create a steam bypass path during the poo! swell and i

chuggmg pNues of a LOCA must be demcnstrated. Reference NRC Question 480.7)

. - . -a e _ --- - - , -.~ w .

7!e rsp<e 7b A ves dn? 130.W_)A? . lx n cd nft l

_ . f prmW rn fywh/sAma4.

. - - , ~ . __4

- - - - . - - - . - - =4+ -e--+ + -- -e- - - * - --,. - . -

. - * * ~ .. . - _ * , , -*.e--- ese ye w.. --.: --

-e-*a.- .. .+- -- m - - .=e- a- - - - m-

. .. . w-. - e - -.+-a-. . =.

. ,s ~

.e---- - -w me-a..--, . -- - - - - - m e -< -++.-*4.+. e w+ ==-- ==-.e= e, . - --e,ym,,...+,--..---m*. s-w.me.-- --e.-m--...w.--.

\. - .__ . -. - - - - ._ .._ ._.. -._.- .. .._-. - - - .. -

.~.. ~ . - -_. _- -_ ___- _ _ -.-.__-~ _ ..__ -- - _, - .._ _ _ --_.. _. - _ . _ _ _ .._- . _

.-6 -. a. _w.. . - ~ - + .m . .* , - ~i.s e. .- e- - --- = . --- --+-%=-w- -- -.~w m.-- -- -,w = e- - .=w -

g, .

c: OUESTION 480.71 DRAFT l Concerns regarding the capability of the vacuum breaker to perform its function during the pool swell and chugging phases of LOCA have been raised. Provide the design changes, if any, that have been implemented to resolve this concern.

RESPONSE

p redesign and requalification program the considers the effects of the poolswell and chugging events in: i_: initiated day =ther

- =rsen_H .5. Z _d : 0 :, and her4>etaf funded by three utilities: Philadelphia Electric Co., Pennsylvania Power and Light, and Long Island Lighting Co. Th: 2:: ; c'- ; ='?? '9-l

..,1 rrtct :. Li;;r R% *n-in rt h ::;;.f-er' P h-L Errir- -?

c -'

t_-- . . . o i ' ' i 7. the DAR st-that-t-imee witl ie. repcladecI A b *rii:*y Ches ye Th k.neded a L h 'ek, "he four (4) downcomers on which the wetwell/drywell vacuum breakers ,

are mounted are being capped, thereby eliminating the effects of the chugging phenomenon on the vacuum breakers.

De vacuum breaker has been redesigned so that it will successfully ,

4 perfon its given task during and after pool swell. The adequacy of the redesign has been demonstrated by analysis and test.* '

C 480.71-1 Rev. 2, 03/83

s s

..._--.e _._-e __ . _ _ _ . - _

, CSB h #26 - ... _.e.- ..

CSB has been imable in complete the review of the applicants proposed 8 containment leakage testing program because of unacceptable applicant responses to NRC Questions 480.65 and 480.67 and lack of a response to Question 480.66. ~

~ ~~~~ - ~~ (Open Item - CSS Responsibility)

_. .. _ _ .__...___e.._..

m-m w--e . - .. - mw*-.w-em=me-.=m-ee--m

  • e -e --a 4e me - e -

e,-ew w-.e,w.,- . . .-_.._-e. _.#. -

_. . -..- Nifb_d.Adf DJ G yd . . /b - 1f - . .

7Fne M wK4 g aie h mss,Jswc. -

. _ - --pedshov l /d_EW&Lpahdh. 74 s M ALa_sAav _- _ . -

  • -4 m e-- e ,- -emes *
e. .=- ...w.m--em*

.we we --- m. * *

= esem -m. --es.--mehee *

  • myw es---ame=w.e+-- - -+ .*em+= M * ^ '
  • e- == w.---wee + .=m m.

,e,,em.--a. .m "

m e e-me=.<m--

  • ewe * # '**""'"

-,, - - - - - . 4_ m ,. mmm-.6w- **9

. -.. w -- .. .- . e .- --w u. W -- * **** - "-*- - ' - ' "

, , _ ,, .. .., .-.--e--+-me--. * * = - ---- 6w-.-- -

-me-

- - - - - . -- * . .e,.-..-. -e --m- *'e'*N* * * + - --* **'""

- -m -==mme-- -wen *+w**-.w-*-*- h"***-+=-**'8'- -* - - ~ * ' * - " * " 4

. -..-- - ..m -a.,-.-e.dm.e - e--- + .--* -

, .,.e .... ,---.- . - - -- + - meeee- . e--+-e --+e +. - *--- + e.---e-eh--p- * - - *

%m. - =. m -

- y- -

O 6 IAS FSAR TABLE 6.2-25 trage 1 or 131 f CONTAINMENT PENETRAT10t35 CDNPLIANCE WITH 10 CFR, PART 50, APPENDIX J INBOARD OUTBOARD ISO 1ATION BARRIER ISQLATION BARRISft i

PENET. DRAW- TEST DESCRI PTION/ INSTRUMENT /

i No. SYSTEM INGttF8 TYPE VALVE NUMBER VALVE NUMBER NOTE

- Drywell head flange M-60 B Double 0-Ring - 2 l

' Double 0-Ring 2 1 Equipment accese door M-60 B -

l 2 squigment access door M-60 B Double O-Ring - 2 l and personnel lock l 3A Instrumentation - main M-41 A - XFC-F070D 1 l steam line D flow X FC-F0 7 3 D l 3A Instrumentation - recirc M-43 A - XFC-F003A 1 l l

pump seal pressure l 3B Instrument gas supply M-59 C CR-1005B HV-1298 -

t 1 3C Instrumentation - SPCI M-55 A - KFC-F0244 1 l steam flow l 3C Instrumentation - HPCI M-55 A - IFC-F024C 1 l steam flow l 3D Instrumentation - main M-41 A - IFC-F070A 1 l steam line A flow KFC-F073A {

3D Instrument gas supply M-59 C CR-1112 MO-151B -

l 4 Head access manhole M-60 B Double 0-Ring - 2 l 5 ssure - A - -

6 CRD removal batch M-60 B Double 0-Ring - 2 l 74-D Primary steam M-91 C A0-F022A-D A0-F02 5A-D 1(KFC-101B, {

M3-F001B,F,R,P F,K,P Jnlyp, l XFC-101B,F,E,P 6 (

8 Primary steam line drain M-41 C MO-F016 MO-F019 4 l 9A,8 Feedwater M-41 C CK-F010 A,8 CK-F074A,8 F(40-F105 l l

CK-F032A B only) , j

' MO-109A,8 k. 15 l CK-F039 l C'{ 1 Rev. 16, u1/es

e i

IAS FSAR TABLE 6.2-25 (Cont'd) (Page 2 ot IJi INBOARD OUTBOARD ISOIATION BAP PI ER ISOLATION BARRIER PENET. DRAM- TEST DESCRIPTIOM/ EMSTRUMENT/

No. SYSTEM INGt s u TYPE VALVE NUMBER VALVE NU4sER Nott MO-F013 l MO-FIOS l CF.-1036A,8 l MO-130A,8 l MO-1J3A,8 l 1016 l 10 steam to RCIC turbine d-49 C MO-F007 MO-F005 S l MO-F076 l 11 Steam to BPCI turbine M-55 C MO-F002 MO-F003 S MO-F100 12 RER shutdown cooling supply M-51 pd MO-F009 MO-F008 y l PSV-155 N l 13A,B RHR shutdown return M-51 #C. CR-F050A,B MO-F0154,5 9 l AO-151A,B l 14 RWCU supply M-44 C MO-F001 MO-F004 -

l 15 Spare -

A - - -

l 16A CS pump discharge M-52 g6 CR-F006A MO-F00S V AO-F0394 N 16B CS pump discharge M-52 A C. CR-F006B CR-105 y l AO-F0399 CL__, --

l 17 RPV head spray M-51 pC MO-F022 MO-F02J

%v l PSV-122  !. _ ; _, _ l 18 Spare - A - - -

l 19 Spare -

A - - -

l 20A Instrumentation - RPV level M-42 A -

IFC-FOSSB 1 l t 20A Instrumentation - LPCI P M-51 A -

XFC-1028 1 l 20A Instrumentation - LPCI P M-51 A -

1FC-1039 1 l 20B Instrumentation - RPV level M-42 A -

XFC-F04SC .

1 l 20B Instrumentation - LPCI P M-51 A -

IPC-10JC 1 l Rev. 16, 01/5J "a

same, E

e LGS FSAR

[ TABLE 6.2-25 (Cont'd) (Page 3 of 139 IlWOARD OttfBOARD ISOLATION BARRIER ISOLATION BARRIER PENET. DRAW- TEST DESCRIPTION / INSTPUMENT/

IN348'B TYPE VALVE NU1 PEP WALVE NUMBER N3TR No. SYSTEM 21 service air M-15 C 1140 1139 -

l 22 Instrumentation - drywell M-42 A - sto-147C 11 l pre ssure ,

I mo-sete mo-ros 23 Closed cooling water supply M-13 C N M II s LI l f*10 - t 07 p 8%0 -ee i lE nEl 24 Closed cooling water return M-13 C

^ -

,n;- 1 M-57 C A0-121 ago-in9 3, 12 )

25 Drywell purge supply MD-163 Closed system 1 AO-123 Ao-131 l MO-135 1 26 Drywell purge exhaust M-57 C SV-145 3, l 1

MD-161 Closed system 5(MO-111 1 MO-111 AO-117 only) .

AO-114 MD-115 12 27A Instrusent gas supply - C CR-1128 MO-151A -

l 27B Instrumentation - HPCI flow M-55 A - Ire-F024B 1 l 27B Instrumentataan - BPCI flow M-55 A - Kr&F024D 1 l 28 A Pecire loop sample M-43 C AO-F019 AO-7020 -

l 28A Drywell Na/Oa sample M-57 C SV-134 SV-144 12 1 M-57 C Sv-132 SV-142 12 l 28 A Drywell a,/0, sample 28B Drywell Ba/Os sample M-57 C SV-133 SV-143 12 SV-195 28 B Spare - A - - -

l 29A Instrumentation - RPV M-41 A - IFC-F009 1 l flange leakage l 29B Instrumentation - CS AP M-52 A - 170-F018A 1 l 30A Instrumentation - main M-41 A - XFC-F071D 1 l steam line D flow XFC-F072D o l M-42 A - MD-1474 4 11 1 308 Instrumentation - drywell pressure l

?

a ,.

b Rev. 16, 01/83

-1

e LGS FS AR TABLE 6.2-25 (Cont'd) (Fage 4 or 133 i

INBOARD OUTBOARD ISOLATION BARRIER ISOLATTON BARRIER FENET. DRAN- TEST DESCRIFTION/

N o. INSTRUMENT /

SYSTDI ING(8?S TYPE VALVE NUtlBER VALVE NrpagpE1t gtg 30B Instrusentation - main M-41 A -

XFC-F071C 1 l steam line C flow XFC-F072C l 31 Instrumentation - jet M-42 A A, .9 pump flow IFC-F0599,D,F,R 1 l

SFC-F051B t IFC-F0538 l 32 Inotrumentation - jet M-42 A -

XFC-F0 59 M, F, S, U A, B pump flow 1 i XFC-5051D l

XFC-F053D l t

33A Instrumentation - pressure M-42 A -

XFC-F055 1 above core plate XFC-F076 33A Instrumentation - pressure M-42 A -

IFC-F061 below core plate 1 I j

339 Instrumentation - RCIC M-49 A -

IFC-F044A,C t 1 l steam flow

]

34A Instrumentation - main M-41 A -

XFC-F070C 1 steam line C flow l XFC-F073C l

, 34B Instrumentation - recire M-43 A -

XFC-F009C,D 1 flow XFC-F010C,D I

35A Instrument gas to TIP M-59 C CR-1056 AO-831 indexing mechanisms l

l 35C-G TIF drives M-59 C XV-141A-E XV-140A-E 12, 20 l B Double 0-Ring l

36 Spare -

A - - -

l 37A-D CRD insert M-47 A Ball check HC'J 13 l 384-D CRD withdraw M-47 A -

HCU 13 l C F010, F011 l F180 F181 l 39A,B Drywell spray M-51 gC. MO-F021 A,B MO- F01,6 4, B 4, [ 12 40A Instrumentation - jet M-42 A -

XFC-F059L.N,R 'yud pump flow 1 l b l j pev. 16, 01/81 "7l

_q

e i

  • 145 FSAR TABLE 6.2-25 (cont'd (Paoe 5 of 131 INBOARD UTBOARD ISOLATION BARRIER JSC1gTION_ BARRIER PENET. DRAW- TEST DESCRI PTION/ INSTRUMENT /

VELVE NUMBER MOTE

.Ho. SYSTDt _ _

INGes?) EPE VALVE NUMBER -

40 B Instrumentation - 1et M-42 A - IPC-F059G 1 pump flow IFC-F051A IFC-F053 A l

40C Instrumentation - 1et M-42 A - FFC-F059A.C.E 1 pup flow 40D instrumentation - pressure M-42 A - IFC-F057 1 below core plate 40D Instrumentation - bottom M-44 A - IFC-870 1 drain flow IFC-171 Instrumentation - drywell M-42 A - MO-147D 11 40E pressure IFC-F044B,D 1 40F Instrumentation - RCIC M-49 A -

steam flow 40F Instrument gas suction N-59 C MO-101 AO-102 5 ILRT data acquisition system M-60 C 1057 1058 5, 12 403 ILRT data acquisition system N-60 C 1071 1070 5, 12 40G 40B Instrument gas supply M-59 C CK-1005A AO-129A -

40H Instrumentation - recire. M-87 A - IFC-156B 21 pump cooler flow IFC-1578 A Ift 102A,B 1 a 41 Instrumentation - RWCU flow M-44 -

3 41 Instrumentation - LPCI &P M-51 A - IFC-103A 1 Standby liquid control M-48 C CK-F007 MO-h006A -

l 42 43A Instrumentation - recire M-43 A - IFC-F040A.C 1

) loop A APg I uB Main st.am sempie M-ti C Ao-r084 Ao-n 85 -

PWCU alternate return M-41 C 1017 101 5 44 PSVH112 l 52P 45A-D LPCI M-51 g C- AO-142A-D &&eh l 9 CK-F041A-D Mo-F017 A-D g, Rev. 19, 04/83 h

14S FSAR f TABLE 6.2-25 (Cont'd) (Page 6 of 131 INBOARD OUTBOARD ISO 1,ATION BApp t FR ISOLATION BARRIFP PEMET. DRAM- TEST DESCPIPTION/ INSTB UMENT/

I p o. SYRTEM INMeTB TYPE VALVE NU*lBER VALVE NUMPER N3TE 46 spare - A - - -

l 47 Instrumentation - RWCU flow M-44 A - IFC-102D 1 l 48A Instrumentation - RPV level M-42 A - IFC-F0658 1 XFC-F047B 48A Instrumentation - CS AP M-52 A - XFC-F018B 1 l 48B Instrumentation - RPV level M-42 A - XFC-F0654 1 XFC-F047A 49A,B Instrumentation - main M-41 A - XFCS F071A,B 1 l steam line A & B flow XFC-F072A,B l 50A Instrumentation - drywell M-42 A - MO-147B 11 l pressure l 50A Instrumentation - recire M-43 A - IFC-F011A,B 1 l flow XFC-F0124,B l

\

50 B Instrumentation - recire M-43 A - XFC-T0044 1 l pump seal pressure l 50B Instrumentation - recire M-87 A - IFC-1564 21 l pump cooler flow XFC+157A l l

51A Instrumentation - recirc M-43 A - IFC-F009A,B 1 l line flow XFC-F010A,n l 51B Instrumentation - jet M-42 A - IFC-F059T 1 1 pump flow XFC-F051C l IFC-F053C l t

52A Instrumentation - main M-41 A - XFC-F070B 1 steam line B flow XFC-F073B 52B Instrumentation - recire M-43 A - IPC-F011C D 1 l line flow XFC-F012C.D l mo-4t$^

ata-42,I2 M 40EM998 mggo.sto4 l 53 Drywell chilled water supply M-87 C , g MD-st4 12. EE 54 Drywell chilled water return M-87 C 90snusepsfuseur 41e-934 l

\ 55 Drywell chilled water supply .M-87 C

-  ;"- . ale-40e g g 113 11 l N -IISGg;s;r Pev. 16, 01/83 5

e tGS FSAR

(

TABLE 6.2-25 (Cont'd) (Page 7 of 13)

INBOARD I 00MOARD ISOLATION BAPRIER @LAMON BARPIER PENET. DRAN- T"ST DESCRIITION/

No. INSTRUMENT /

SYSTEM IN388?B TYPE VALVE NUMBFR V4LVE NUMBER MOTE 56 Drywell chilled water return M-87 C ** ' -

i 0 T8LZ I 57 Instrumentation - RNCU flow M-44 A -

IFC-102C 1 l

58A Instrumentation - recire M-43 A -

l loop B SP IFC-F040s 1 l l

58B Spare -

A - - -

l 59 A, B Spare -

A - - -

l 60 Spare -

A -

l 61 Recire pump seal purge M-43 C CX-10044, B XFC-103A,B 1, 1e {

62 H,/0, sample return M-57 C SV-150 Mo-116 12 l SV-159 l 63 Instrumentation - recire M-43 A l

IFC-F003B 1 l

loop AP; recire pump XFC-F004B Seal pressure XFC-F040D l l

64 Spare -

A - - -

l 65A,B Instrumentation - RPV M-42 A pressure XFC-F0438 1 l

XFC-F049A l 66A Instrumentation - RPV level M-42 A -

IFC-F045D 1 l 66A Instrumentation - LPCI M-51 A -

XFC-102D AP XFC-103D 1

l l

66B Instrumentation - RPV level M-42 A =

IFd-F0454 1 l

66B Instrumentation - LPCI M-51 A -

XFC-102A

&P XFC-103C 1 l l

67A,B Instrumentation - RPV level: M-42 A -

XFh-F041 1 ]

RPV pressure XFC-F0434 l XFC-F0 49 B l 100 Neutron monitoring system M-60 B canister -

A- D 8 l 101 Recire pump power M-60 B Canister -

.- 8 A-D

. p R... ,6, 0,, 1 q

H

e N3 b CS 14S FSAR TABLE 6.2-25 (Cont'd) (Page s et 1J3 INBOARD OUTBOARD ISOLATION B$ftstIER ISOLATION BMt RIEst PENET. DRAM- TEST DESCRIPTION / $NSTRUMENT/

No. SYSTEM INGe a H TYPE VALVE NUMBEP IALVE NU4RER 900TE 102A,B Electrical spare -

A -

-l -

l 103A,B Temperature and loer level M-60 B canister -

e signals l l

10s CF3 position indicator M-60 B Canister -

e l A-D

l 105 Miscellaneous loer-voltage M-60 B canister -

e l A-E power l

106 Loar-voltage control M-60 B canister -

e A-C l l

107 Electrical spare -

A - - I -

l 108 Electrical spore -

A - - -

l 109 Electrical spare -

A - - =

l 110 Electrical spare -

A - - -

l 111 Electrical spare -

A - - ! -

l 112 Electrical spare -

A -

l 113 Electrical spare -

A - - -

l 114 115 Electrical spare Electrical spare A -

-f -

l A - - -

l 116 Standby liquid control M-s8 C CR-F007 MO-F0068 -

l 117A Electrical spare - A - -

f l 1178 Drywell radiation monitoring M-26 C SV 190-A SV 190-C 14 supply and return l SV 190-B SV 190-D l 118 Electrical spare -

A - - -

A,B l l

200 Access hatch M-60 B Double 0-Ring - { z A,B l l

201A Suppression pool purge M-57 C AO-131 AO-121 J, 12 l Rev. 16, ousJ q

-1

IAS FSAR (Page 9 of 13)

TABLE 6.2-25 (Cont'd) f INBOARD OtFrBOARD ISOLAIION_BAR RIEg 1[OT,ATION BARRIEP DRAW- TEST DESOtIPTION/ INITRUMENT/

PENET. IOTE SYSTEM IIOGt a v s . TYPE _ VALVE _)4MBER - TALVE MEMBER

_Egu _

MO-164 Closed syatem eupply AO-124 MO-147 MD-109 201B Spare - A -

Suppression pool purge M-57 C Mo-162 SV-185 3. 5 202 Cloded system 000-105) .

Exhaust MO-105 40-10m AO-118 12 MD-112 RER puso auction M-51 gC Peo-F00 4A-D Clohd system 4,14 20 3 A- D PSV-F0304-D g RER pump test line M-51 gC MO-125A.B Clobo system 4,14 204 and containsent cooling j A. B 205 Suppression pool spray M-51 KC N0-F027A.B Closed system K 10. 12 A.B j

_p i

CS pump suction M-52 f f- MO-F001A # Closed system 4,14 206 A-D CS pump test M-52 #C MO-F015A. B Closed system f y14 207 A. B and flush  ;

i 208A Spare - A -

5,14 208B CS pump minimum recire M-52 /C sed-F031B Closed evstem BPCI pump suction M-55 #C sco-F042 clo b system V,14 209 M-55 C MO-F072 Closed System 4 14 l 210 BPCI turbine exhaust 211 Spare - A -

M-55 yC MO-F071 Closed system  % 14

' 212 HPCI pump test and flush Spare - A 213 i

214 PCIC pump suction M-49 gC MO-F031 Cloe d system f,14 M-49 C MO-F060 Closed system 4, 14 l 215 RCIC turbine exhaust 6,14

(

216 RCIC minimum flow M-49  % MO-F019 Clowd system Rev. 19. 04/83 9n.

.=

s LGS FSAR t

4 TABLE 6.2-25 (Cont'd) vage 10 of 133 INBOARD . OUTBOARD ISO!ATION B4stRI ER isolation BARpIER FENET. DRAW- TEST DESCRI PT10M/ INSTp DMElFr/

No. SYSTEM IN3(8 M TYPE VALVE NUMBER VALVE NUMBER WOTE 217 RCIC vacuum pump discharge M-49 C MO-F002 C!t-F028 5 1 218 Instrument - gas to M-59 C CK-1001 Ao-135 -

vacuum relief valves 219 Instrumentation - M-55 A -

MO-120 11 1 A,B suppresalon pool level MD-121 j r

220A N,/O, saeple return M-57 C SV-191 SV-190 12 MO-116 SV-150 {

2208 Instrumentation - M-57 A -

SV-101 11 suppression pool pressure; suppression pool level 221A Wetwell Ha/O, sample M-57 C SV-181 SV-141 12 l t

SV-104 j 221B

  • Wetwell R,/O, sample M-57 C SV- 183 SV-186 12 l 222 Indication and control M-60 B Canister -

8 l 223 Spare -

A - - -

l 224 '

Spare -

A - - -

l 225 RHR vacuum relief suction M-51 C MO-130 Mo-131 4, 12 ]

226A,B RRR minimum recise M-51 /0 IE)-105A B ('osed system  % 14 {

+

227 ILRT data acquisition syster M-60 C 1073 1074 5 1 229A,8 Spare -

A -

-f '

l 22sc Spare -

  1. A - - -

l 228D HPCI vacuum relief M-55 C MO-F095 MO-F093 4, 12 l 229A,B Spare -

A - - -

l 230A Strain gauge inetrumentation -

B Canister -

8 l

230B Instrumentation - drywell M-61 A -

M3-102 1 1

, sump level MO-112 l l MO-132 l Ree. 16, 01/93 h

e P

i IAS FSAR '

TABLE 6.2-25 (CDnt'd) (Page 11 Of 1Jp

[

INBOARD ' OUTBOARD ISOIATION BARRIER ISOLATION BARRIER DRAW- TEST DESCRIPTION / ENSTRUMENT/

PENET. geOFE SYSTEM INGEBF8 TYPE VALVE NUMBER VALVE NUMBER No.

M-61 C AO-110 A0-111 12 h l 231A Drywell sump drains 1

M-61 C A0-130 A0-131 12, 13 l 231B Drywell sump drains M-41 - - - 16 l 232 MSRV discharge A-L l 235 Cs pump minimum recirc M-52 /C MO-F031A Closes system 5,14 l HPCI pump minimum recirc M-55 # f, Mo-F012 Closed system 5,1e 1 236 l

237 Suppression pool cleanup M-52 C MD-127 Mo k2e 4(go-1/s)J l pump suction PSV-127 gg ly g 4

A SV-139 - 11 l 237 I.avel instrumentation l

MO-139 238 RER relief valve discharge M-51 g( pSV-106B Closed system #z5 l MO-F104B l PSV-F055B ,

l PSV-101B i l l

239 RER relief valve discharge M-51 #d MO-F103A Closed system W 23 l Psv-106A l PSV-FOSSA l PSV-101A g l

l 240 RBR relief valve discharge M-51 #C- PSV-F097 Closed system )(d3 l l

M-49 C MO-F084 MO-F000 e, 12 l I 241 RCIC vacuum relief t i

CONTAINME)rF PENETRATIONS - COMPLI ANCE WI'ITI 10 CFR PART_50. APPENDIX J l i

NOTES l

' 1. Seismic Category I, Quslity Group A instrument line with an orific and g g

excess flow-check valve or remote manual isolation valve. The excess- g flow check valve is subjected to operability testing, but no Typ formed or required. The line does not isolate during a LOCA and can l leak only if the line or instrument should rupture. Leaktightness of l the line is verified during the integrated leak rate test (Type A ,

l test). l l

1 '

Rev. 16, 01/8J

==l

e a

l MS MM  !

l (Pacre 12 ot IJ)

  • TABLE 6.2-25 (Cont'd)

]

2. Penetration is sealed by a blind flange or door with double 0-ring l seals. 'Ihese seals are leakage rate tested by pressurizing between the l o-rings.

8 l

3. Inboard butterfly valve installed such that tested in the reverse yd[/c ! Sed b5 aN f b / **t l

direction is conservative. gg/ 3gd -W l

4. Inboard gate valve tested in the reverse direction. 7 gbf/Nes[ g g[ h/ g l
5. Inboard globe valve installed such that testing in the reverse direction is conservative.

hh J, l l

6. The MSIVs are tested by pressurizing between the valves. Testing of l the inboard valve in the reverse direction tends to unseat the valve j l

'l and is therefore conservative. The valves are Type C tested at a test #dT* % l

. pressure of 25 peig. duPM/ , g f gg l

7. Gate valve tested in the reverse direction.

J OP7dfMagend y g gh/ l

8. Electrical penetrations are tested by pressurizing between the sea l5. 8
  • l
9. '!he isolation provisions f or this penetration consist of two isolation l valves and a closed system outside containment. .n ;i- -^^r l

"- : n 5: __ ":' ' P- : :::i 2,_^-- ir : ^ "

  • _ l
i r_i : =c^_ , ,
  • l

?.?- Y '_ ' ' ~ ~~ $',

'.f_'p i :? ^- ?i --, i'?;;:x; ". r .' i,__,h?{

[ $_?: r '-- ' ; ' ' [N' ' ^. . :-__

. __ - $/?s0 A Ud /5 Midth l

m. /kse A;,n gP /Ae J z,,g

. =_ =- _ =, w. __. - _ _w_ . . . m== _ v n . _ = = = u . = . . . =; l

= u. = =_: :. : =_ , = m_

- . . _ m_ .m -- - - - - _ . -

. g WN

~.- ._ .._ , --_ .. ... ..-- - .... kspp , /bt* }ss$hsh l M l

10. The isolation provisions f or this line consist of one isolation valve

' outside containment and a closed system outside containment. A single #W[#IAt f/g g/ g l active f ailure can be accommodated. The closed system is missile l protected, seismic Category I, quality group B and designed to the ypNg#g[ W/(/,

l temperature and pressure conditions that the system will encounter l post-LOCA. l System leakage will be minimited in accordance with itUREG-0737, Item l I I I . D.1.1. Any leakage out of the closed system will be into the l reactor enclosure, thus iacilitating collection and treatment. l

11. The valve does not receive an isolation signal but remains open to l measure containment conditions post-LOCA. Leaktightness of the e l penetration is verified during the Type A test. l
12. All isolation barriers are located outside containment. l 38 Fev. i ti, U1/8J

-4

r 6

LGS FSAR s

(Page 13 of 13)

TABLE 6.2-25 (Cont'd)  :

' 13. Isolation provisions for the tRD insert and withdrawal lines ate g

+

described in Section 6.2.4.3.1.4.1. The scram discharge volt.me vent and drain valves are Type C tested.

l 14. ne isolation provisions for this liene consist of a suportesion pool

' water seal, at least one isolation valve outside containment, and a

' closed system outside containment. Tte isolation valve is not exposed to the primary contalment atmosphere because the line termir.ates below i i

the min. imam water level of the suporession pool. The closed e stem is ,

missile protected, seismic Cateaory 1, quality aroup B, and designed to  ;

i NW gM 7st-wCA.Walves will remain water covered the tescerature and pressure conditions that the system will encountep fo #,d a :LOCQ, JAgY aY k 7p C.

system leakage is minimited in accordance with NUREG-0737. Item N*O .

N III.D.1.1. Any leakage out of the closed system will be into the reactor enclosure, thus facilatating collection and treatment.

15. The inciation barrier remains water filled most- w CA and will be tested with water.
16. Dese lines penetrate the diaphragm slab and are not subject to j Appendix J 1eakage rate testing. g i
17. Table 1.8-2 contains a cross-reference to figure numbers.
18. Feedwater perietrations will remain water filled post-LOCA as described in Section 6.2.3.2.3.

i

19. Check valve used instead of flow orifice. 1 Penetration is esal'ed by a flange with double o-ring seals. These I
20. l seals are Isakage rate asted by pressurizing between the o-rinos. The 3 TIP drive tube is welde m the flange. The ball valves (IV-1814-El

! 3 are leak tested. It is ut.. practice to leak test the shear valves l (IV-1404-E) because squib tiring is required for closure.  !

21. Seismic Category I, Quality Group B instrument line with an excess flow check valve. Because the instrument line is connected to a closed cooling water system inside containment, no flow orifice is provided.'

The line does not isolate 6uring a LOCA and can leak only if the line or instrument should rupture. leaktichtness of the line is verified during the integrated leak rate test (Type A test).

w m .

g new. i,,0.,83 1o

/77p/ %(g+ f/9 @+ +((g\k IMAGE EVALUATION g// /

+

f e

TEST TARGET (MT-3) 4 a# r,'4 10 p en saa c5mis s =u j,l {'sEE B

I.25 I.4 1.6 4 150mm 4 6" 44 4$ 4 6'

  • Ihf,e///f

, '4d>.[4k 4

@ s@h

  1. A IMAGE EVALUATION  %

k k/77p \@]'f x$/// TEST TARGET (MT-3) (([//f\%[<g,8 #$ 5 +

+<><> <'k+

I.0 if M E li ? W3 1.I b EE In 1.25 1.4 1.6

< 150mm

< 6"

+4

  1. S $)

ppppf// tf

esa ddm #26 Aset d. _. . .-.

A s shd A ns, s/s 9;c c w DRAF#

.n

. - - AaJelsfa&sn_Ae_edns;& ..

. .. 4- . m.=. . - . , #

anydd_hnn &_ed/an z/e sAf>she, a_Aus_seeat 4 apad_A_s,n&2med ,anac Anh & _suBM_zaundafir/ayd zoen.zn sd%pw, n?sBiaAms oXdep&med a/ #e' &/

a ds19_ L 4c2 M 4 _ Aes/ 4 4 y x a n as / a d ded_h&g_dbahnAeredsakAn?sdAA_/eAlu&

D Ers._ 4 sysd Shpd Ade wha a yad //4 &;hs/au -

pysm e Ased -> As a44 hs/esn&n d idsA_6& Wl/ yd AAyw s/ #e

/eley'esta_ s?idJA,i<mM sydo?: . - _

< As_/ehbLrshe_sx mahAae/m,msf y eAxd 1_ 7 Mar _

J. _ The_re/d? gems _w&ss ez inI?I s/db/cssz$maed 1 pa-an_ na a s u n f As ode da J endsna es&y ._ .

l c. The edif+sha s/e a/ expsed h A4 pasay onf&an?sh s4spha deme as ha dash teAu #s ammiam wh he/s/ #e sy,aewn P"I J 7As Joes edb/ eon 6smen/ sa ps//s/ s 1

F l

'h )- a

^

" '*~"

)

l.x \

cAe/s w bl Ym ad;wnded/ sesmd oh,,pbn.exyr;,,aps d 4s Aas

- ._ ___Aapraka sndAwwa_andht14/_ & yAn

_ e/ esconde

.-.- _e._Ap6n_Jadays AK-asikedimA<e od

.___AW6:437_.zhn_xw

. A Ay _ds/sp km w//4 Ab Sb av!s/ AJp%4 asehe-ene4we & ha '

- asha ad

. h6A.

--- e- -4w - -*- eue.-+--.sw- w em.p.-m.~-m---we-4wewm--W- m--e- - - - --pas ~*--,*

e-- e44-tm-%--- - e +e'-++we-e-e-i-ww.-wee emum e-w+-* -*-+- * - -

e e- p. - - . -. . . _ - . .e - . ,-. _ . - _ _ -

-m.g._-w-a.--y--e-o n emme e-m.ep. .semim a me--me.es .mu.-e-----w.ew-= **e-----e*-m---i- h mewwwm aw-= , 4-u

-w ,w -- ,,emm. mwe--h- -r-== . - , *-- - . -

- .,%m. **+e----- ,w** +

~

l

- - - , . - . ..- - -------e --- + , -e-<wm---_m ,-- - - e.

S ,

DRAF71 p ,,,, c--w-- y - e -- . -em .e,-msm - -%-.w., -o.., - -

. . J sn # 2 y w / [ cdb A ns h i a 6 f) .-.

A J /A m o,A % A 4 C

- s ofs4 h Mk-9m L A44,4s

- __s / a /e d y' d h s 2 d s o f_ 4 _ m W. p _ -_ - -

4 Au M Ass

-- ---_ - . - . . - -_-._ . - -- e - - - . ._ --

mhew-se-is. + w--* wegm.-- m amme -

= -.---mm, +=.we--ame+%ex>+--- e- u. - - - - .-.sa3ww w ,e me.ns==-m p.mo., mm+-me.,, .sese --w,.-

-w , ,,. . = . .e-w .---.---e.-- - e - - , - - -m- -----  % - -- m e *---m-a,,e ea. ea - #.e.e w . -awm.

samp-wee-a we e geee----me--+--wom-enhame.--e-=- we 4+ y--eeww-eme= www eren--e.mune.e-i.~~mem-es.=Se -

,+,a---.- e . e. ' - mep +- eee.e-e me e me== -=+=w- - .+wa-o.-w-4sei-,s.- ---rem e e- N m.e e e- e, -ve pe++-umm.u-m----*g- --nmi- c .= re a, . ,

,imui em .,s.e-* ,+wm=Ew e e im-a g.--. 4-eeym.-w e#4,s. mm mm em.=-g ea e-main-*--pmm."w=--emem=-e a mpe== *eeg- whm ==.en-a- e>-*

-we- e umme --..nm,% *=e.-+---ew& - ==>.,0 e,m.e-. we,- .--e. --- m. e - -- - --m e.-em. a ene-- - = ge- ,w wwmm-emen-mm== m - - em m e e .---e-m- --..f w ws-==9mia--i D-4esimumme-waman-.mu em .-we+-ee--*em-e4 e-em mesmammu" . e-a-s-me iee-qu-- - h- -++w + +w=m-wa-N-==iumaa. .* . e.. eeh w-e--.-.g-- -,q.. - ,. e.%.sww.--e-.+--ya-mm-or-*a - .-e- -w--.e4- - e-wA* -e-- +*ge*-e e. . -

eh er-,e---*-w mettew w-i ***-u-re=-hmm -mutes -eme nw -memmi> 8*4==ww- -%eh =*N41sm'-semede6C-4e-eeu-u--%waresem-..-em-e

__ __..,e____ _ . . _ _ .__ _ _ _ _ ___m- _ _ _ _ _ _ .e_____ . _

_._ _ .. _ _ -_.___-._e- __ _ _ __ ____ . _ _ . -_. .__= _ ___e _..__ . _.e._.__ .

ew e---- e.%----mwN enw--m-#m*-=w w -==- w ~w -um-- -. > ea-,aw=wass uemeww - - a--w4ama-- ass-s-e---.ee

. . - - - -..-.- - . ....- e - -..e- -. ..--. ....._. . . ..___ ._. - . - - e _. -- -

- + w - - m+ a~- - .

- -- ww- +-- 4 eses,---- gi--.-- e.mgs.,--+- 4--m----.--y-- -- -u. e .- --% *

= -. -mm. e, ,--- -ev - y >

. e-O

% (pu.rg a l LGS FSAR '

I multiple valves is required for system operation. Sample inlet and return valve controls for the drywell radiation monitors and combustible gas analyzers are ganged as described in Sections 6.2.4.3.1.3.2.8 and 6.2.4.3.1.3.2.1. Drywell chilled water valve controls are ganged as described in Section 6.2.4.3.1.4.2.

Position (5), Clarification (6) l The setpoint for the drywell high pressure isolation signal is set at the minimum compatible with normal operation. Section 7.3.1.1.2.4.6 describes the selection of the drywell high pressure setpoint.

Position (6), Clarification (7) l Containment purge valves comply with Branch Technical Position CSB 6-4 as discussed below. Two purge isolation valves have closure times greater than 5 seconds: 2"-HV-105 and 2"-HV-111 have cicsure times of 30 seconds. An analysis of the radiological consequences of a LOCA that occurs during purging was performed to justify the line size and the valve closure time used in the pu'rge system. Using the assumptions of BTP CSB 6-4, the resulting doses were a small fraction of the 10CFR100 limits.

For local leak rate tests, the leakage rate of the purge isolation valves, combined with the leakage rate for all other penetrations and valves subject to Type B and C tests will be less than 0.60 La, in accordance with Appendix J to 10CFR50.

Position (7) ggggg*, l The containment purge isolation valves isolate on receipt of any one of the following ignals:

a. high drywell pressure l
b. reactor low water level l
c. reactor enclosure high radiation 7 , l d.

} (__ refueling floor high radiation l An analysis has been performed to demonstrate that the offsite doses that might result if a LOCA were to occur during purging operations would be less than both 10CFR100 and EPA Protection Action Guide limits. This analysis used the assumptions of NUREG 0800 Section 6.2.4 and Branch Technical Position CSB 6-4 and assumes a pre-existing spike that results in coolant activity levels in excess of Technical Specification limits. The analysis methodology was in accordance with the letter from T.J. Dente (BWR Owners Group) to D.G. Eisenhut (NRC) " Supplement to BWR Owners Group Evaluation of NUREG 0737 Item II.E.4.2(7)", dated June 14, 1982.

1.13-39 Rev. 16, 01/E3

to se a" e ~* h A s t' n :)

g, g,, afh,/ei,

/

n - ;as

% // - i w y m s,/ / ,/wa au4 m/. m uposs 4W a&e, - A _adamst yp m k Adn wha smai? Abn i A o%A/ .

/SC bid s/? Rjh/ o! _ d 17s77%d,?? M/Mo a s.Ac/ A%'

- - . . sm Ay2' as4% s/pkd .-

- . -- e. - - -- e .e= - - ---. -

e - ,, -_ . .

- - -,. -.-. . -m*% . --- ,

. . _~ -- s ---mmi. - -e--.. ,_wm-- -e - ~ - . -

-e%-,e e . . . , , - - - - =, ..- -- -- - - . - - - -- .-- - --,..---->-.-.--m-- + + ,. -- ..  %-- - ---, ,

. m- . ..,- . ,. ,. a -

._- - . . . -- - - . .-.- , - - m 4.,e- . ee-e-- h-.. -++ = -- - - - -----*..m._ w + es e-- =- e- - ,=.--. -e------ . .~ -,

=- -- - ---- - s ---e + ,wa.- - - - .m- ,.-- + - - -  % .- --

.m -,- - - -- -- .- . , - - . - - --...-a#sm% .

--.m. _ .- -- 4. - . . . 4 .- -_ ,-

+-eww.--e . , -=--e*-- ---ea e h - , - - ~, w ----,--%+ - -,* -- --4.-------- + - -

  • e-+m- - - - - .-e --- --- -+- -- -+ --

, - . . . ..m a - - e -w.- e -. . wwe-- - - - -

4 e-- - .-- - . e= +--w--. m.m- -- ** --e.- ee-+ - e -

  • -- - - * - -em-

~ .- -=-

LGS FSAR g - ~

d. Outboard suppression pool sample and return isolation valves SV-184, SV-185, SV-186, SV-190, and SV-195 are ganged on HS-187.

6.2.4.3.1.3.2.2 Drywell Equipment and Floor Drain Lines The drywell equipment and floor drain lines are provided with two normally closed air-operated spring-closed valves located outside the primary containment. The inner valve is located directly on the containment. Both valves are automatically closed upon receipt of a containment isolation signal.

6.2.4.3.1.3.2.3 Containment Purge and Hydrogen Recombiner Lines l The high-volume purge lines for the drywell and suppression chamber are each provided with two isolation valves located outside the primary containment. The inboard valve in each line is a normally-closed, air-operated butterfly valve located as close as practical to the primary containment penetration. The outboard valve in each line is a normally-closed, motor-operated butterfly valve. The hydrogen recombiner lines connect to the high-volume purge lines between the containment penetration and the inboard isolation valve in the latter lines. Each of the hydrogen recombiner lines is a seismic Category I line and is provided with a normally closed motor-operated butterfly valve that can be remote manually actuated from the control room. A description of the type and the arrangement of containment .

isolation valves used in the low-volume purge exhaust lines is provided in Section 9.4.5.1.2.

The isolation valves in the containment purge and hydrogen recombiner lines each receive an automatic isolation signal and ensure isolation of these lines in the event of a break and long-term leakage control. In addition, the piping is considered an extension of the containment boundary since it must be available for long-term usage following an accident, and as such is designed to the same quality standards as the primary containment. g g The high-volume purge lines are provided with debris screens located at the point where each purge line terminates inside the primary containment. The debris screens are designated as seismic Category I and are designed to withstand the maximum .

differential pressure across the screen that could result from a l LOCA.

6.2.4.3.1.3.2.4 RCIC and HPCI Turbine Exhaust Vacuum Breaker Lines These lines are provided with two normally open motor-operated remote manually actuated gate valves. The valves are automatically closed on receipt of an RCIC or HPCI isolation signal.

6.2-57 Rev. 19, 04/83

, _ _ _ _ _--_-_ - _ . _ . _--- _ _ _ - - _ . _ . . . - - - - - - - - . - - - - - - - - - - l

khb $ &l b hY M midra Adda sam / s de se w6 W Jr de aa dilm / x x w_hs

'df a a pads AA 4 4 a dia ds i

_e--e---- .

mee.m- pa m

  • -w- e-w-4.-u.-e.%  %.

wm- -.e-e,-we--mme-%-.m.ese -m_ m_ m --,mme --- ' ww

..-he-.-,-o~=-**w a - w ---m--- --~

_w ... _ - _

<---...-%a-. w.. .-a - - ---- -

--- . .-, -, - ~ _ _ _

e f .

4 - . _ _ _ _ _ _ _ . . _ _ . . . . _ - . _ _ .--- - ,- - - _ ,

L65 FSAR TABLE 6.2-17 (Cont'd)

L(MT '

PIrt C0%TAlhMmT hDC G!hf RAL C0kt.

Ff hiTE ATION LIN[ llh[ CISIGk [5F [55!hilE VALVE valve M vE VRVE TYPE C C"JT5f a N ??[R 153; Ai[D FLUID SIZE (ie.)CRli[810N SY5ilm 25TE M h pf[ R TfF[(1) 10Ca110% AM A%!Mi%"1(2) itST

  • 1 Alv[

I-208 Irstr cen- bat er 1 55 - - F045C EFC Outside (37) No 2*.2*

tation-FIV level 1 208 lestr een- bater 1 55 - - 102C XT C Out s ide (40) ho 13c t at i on.

LFCI @

I-21 Service air Gas 3 56 ho ho 1140 GT leside (8) Yes -

he ho 1139 GT Outside 0*

1-22 I ns

  • r ren- Gas 1 56 - - 147C GB Dutside (41) No 8' tatien - dry-welt Ve',su r e I-23 r e ctre p rp k at er 4 57 43 ho 106 GT Outside (13) Yes 0* .
  • cc:1. ; .ater sep;ly 1 24 Secirc p r p hater 4 57 ha ha 107 GT Outside (13) Yes 0*

c rlieg =ater return X-25 0 pell Gas 24 56 No ho 135 BF Octside (5) Yes 16'-7*

g rge Yes Yes 121 BF Octside' 3'-11C s4;)y to ho 123 BF Outsice 3'-4*

Yes Yes 131 bF Cutside 60'-7*

Yes Yes 163 BF Outside 3'-9*

In ha 109 BF Outside 42'-2*

1-26 C+pel l Gas 24 56 ho ho  !!5 BT Dut side (27) Yes 53'-7*

ppge Yes Yes 145 GT 0etside muser G ed.a st ho ho 111 68 Octsice 6'-3*

No ho 114 SF Outside 49'-7*

Yes Yes 161 SF Outs ide 4'-5*

ho ho 117 GB Outside we6 I-27A les't r1r ent Gas 1 $6 ho Yes 1128 CK Inside (48) Yes -

gas supply ha Yes 151A GB Ntside 7*

I-278 lestrume9- Steam 1 55 - - F0248 IFC Det s ide (40) No 12*

t at i:r-MC I I-278 lestrree- Steam 1 55 - - F 074 D Irc 0 ' side (40) ka 12' tetip-rFCI Flow IIColi M-01V

_ _ _ _ . ________.m _ _ _ _ . -.

\

a Also Amikhk W ftperture ced

D R A FF' (Fase 3 of 19) or

' *t FNER 70 rEl'%RY SECO<tJY C."At SHUT W N F05T- FAliURE Div!PSE v4Lvt 6

METwoO OF PITHOD or K vt vii vt A;C!DE%T **t VE  !? X AT!OM 15:r. ATIC4 Ct05cEE FO-ER

_ A;TUATIow(3) A:TUATIC4 PC5' T ICM4) P051 TION F 051 T ! C% F C517 ! C'M 5 ? M (5) !! Gh A' ( 1_2J, T!=t(6) 50"SCE(7) El645 F 13. - 0 0 0 - - - - -

rios - 0 0 0 - - - - -

Noaoal -

C C C - - - - '-

wa n,, a 1 -

C C C - - - - -

t* motor Fa ual 0 0 0 AS 15 RM -

30 sec C AC mctor wna ual 0 0 C A5 15 kN ho Standard C (15)

AC mtor Manual 0 0 C A5 !5 AM ho Star <a-d C (15)

A~ motor W a % 81 C 0 C A5 15 E,t," v Ves 5** sec S Cv.p air  !;,r i ng C C C C f , t 3,V ,

h4 5'* sec A w p a6r Spr ir g C 0 C C f ,l . A, W Yes 5" bec 4 Ccrp air SV ing C C C C F,*,k M 5 sec A A mt or "awai C C 0 AS is e ,i ,e na 5 f.ec 0 AC metor "a%al C C C a.5 15 f , * , f:fw' Yts 5" sec B L,4,A*

Manu al C 0 C A5 15 f ,' ,5. V Yes 5" sec A ACmotorcoil - 0 0 0 C  !,1,t' M 2 see D A: % t or Paneel C C C A5 15 P , b , f. Yes 30** sec B >

Cu ; air Sring C 0 C C E . & ,i ,.d Tes 5" se e

, . Ac mc tor Ma ,al C C C A5 !5 f,*,$ Ma $ sec C D 3 Coc: air Spring C C C C F.F.R 1es 5" sec A F1os - 0 0 C - - - - -

AC metor Pa wal 0 0 C A5 IS F AA 30 sM M Flos - 0 0 0 - - - - -

rio. - 0 0 0 . - - - -

} C. u . lb, 12iE2 IM '

i W

. - . A- L - -- --

0AlJ I i

l 830 6 010 cl@ 4 l

f J

1 t

4

- - ~ - - - - - - - - - - - .--- .. ..

LG5 F5tJt TABLE E.2-1? (Cent'd) '

Lfh3TX PIPI F C OMi A! W 4T h4C Gih!8Ai CDhT.

Flh!TsAT10h LINE LINE UtslGN ESF E 55t *T14i nRWE VRVE V A' V E VRvt TYPE C OUTS!8 hMf C QO; Atf D FlulD 5!?I(ia.) CRITip104 Sr5 TEM SYST(M h ?BER TYPEll) t0'AT!0h U s M r=f9?(2) Test yttyts I-66A lastra en- bater 1 55 - -

F045D IFC Outside (37) ho 13' tation -

kPW level 1 65A Instr > en- Water 1 55 - - ID?D Kr0 Outside (40) ho 13*

tation - - -

103D IFC Outside 13*

LP;! P T-6E8 Ir str ee% kater 1 55 - - FNSA IFC 06tside (37) ho 14*

tation -

RPV level I-6tB Instr pen. 'nater 1 55 - -

102A IFC Cutside (40) ho 12' tation -

LPCI P J-67A,9 le s t e rm- Water 1 55 - - F041 IFC Outside (37) No 21' tation - - - FC43A IFC 0.:t sid e 12' U V level; - - F CJ 93 IFC Outsidt 13' Ut premre I-116 St anoy kdite 2 55 Yes Yes FfC7 CK Inside (10) Yes -

l'ond pria- Yes Yes FOO!B SCK Oviside O' cortrol teate so btion 3-1378 C y-ell Cas 1 56 No No 190-4,B GT Outside (23) Yes t**.= j radiation s ampl in; su; ply ho ha 190-C,0, GT Outside W(

ar.d ret urn 3 -201 a Sgpression Gas 20 56 ho ho 109 BF Ostside (7) Yes 42'-9*

rect pu 9e No ho 147 BF Oatside 17'-5*

supply ko hn 124 BF 0;;t s ide 13'-5*

  • es Yes 131 BF Outside 7'-9' Yes Yes 164 BF 0;tside 8'-2*

1es Yes 121 BF Dutside E9'-II" X-202 Sv;4 res sion Gas 18 56 Yes No 112 BF 0;tside (15) Yes 18'-6*

gel pw*ge Yes Yes 185 GT Outside bear l exhaust Yes Yes 162 BF Outside 3'-10*

ho ho 105 GB 0.tside 6'-10" ho ho 104 BF Oat s ide 4'-G*

] ho ha 119 BF 0.tside e t==J3

_ ~

~

ilX155CCiv A , _ . , . . _

h.0 AD d

\

r e

{

Jyo h** ., d y,,eere ( 7

f'

- - - - - . ~ . . - - . - ._ - ..

DRAFT Page 11 of 19) or pt P7.ER

'O PRI%1T SECCOARY VNM $4UT L M POST- F AIL UPE C! VERSE V A', vE stETM00 Or eETwoD Or V At yt VAtvE ACCIDENT V AL VE  !$0LATION ISOLATION CLCSURE PWE R

_ ACTUATIO%(3) ACTi:ATION P05} T10%(4) POSITION P051 TIC 4 P051 TION Sl;W S) 516%At(12) TIME (6) 50JRCE(7) E E *.A0x 5 F1 mr - 0 0 0 - - - - -

F1me - 0 0 0 - - - - -

Flow -

0 0 0 - - - - -

Flow -

0 0 0 - - - - -

F1 m, - 0 0 0 - - - - -

F1mr - 0 0 0 - - - - -

F1ms - O 0 0 - - - - -

Flow - 0 . 0 0 - - - - -

Flo. - C C C - - - - -

Flow AC Mctor 0 0 0 AS 15 FM MA Standard sets 8 At teil - 0 C f't'AC b coil -

0 C C

C C

C f.H B.H Tes Tes 2 see 2 set h=6 r 4 8 heamsq 8 i

AC m. tor Manual C C A5 15 E.h,Rd AC actor Mosel C Yes 5** sec B C 0 0 A5 15 e,u,R, g Yes $** su 8 #

Cmp air spring C 0 C C f .F, P ,p Tes t," sec A l

Comp air Spring C At notor C C C E. M.E ..d hA 5** sec A Manual C C 0 AS IS E,9,R C m p air NA 5 sec 0 spring C C C C f . M .5, W AA 5" sec A AC motor Fenwel C 0 0 A5 15 B.M,R RA 5** sec A

'4r,AC ccil - 0 0 0 6,H.R,V C hA 2 sec C At rotor Manual C C 0 A5 15 e,H,E mA 5 sec C AC snotor Maa.ual C C C A5 15 Tes 30** see B E . H .R .

C:rp air Spring C 0 C C E,H 9,W Yes $" sec 8

'si'Ccsp air Spring C C C C E,H,A Yes 5** sec A ke. 15, 12/s2 l

8 30 6 0101C(K-OL i-

LGS-FSAR TABLE 6.2-17 (Cont'd) (Page 17 of 19)

LFRH With RHR pump running, opens on low flow in associated pipe, closes when flow is above set point M Low differential pressure between the instrument gas line and the primary containment P* Low main steam line pressure at inlet to turbine (RUN mode only)

Q* Low condenser vacuum and turbine stop valve more than 90% open R* High radioactivity in reactor enclosure or refueling floor ventilation exhaust ducts S* High radiation in the reactor enclosure T* Low differential pressure between the outside atmosphere and either the secondary yggrD b containment or refueling area V' High reactor pressure (shutdown cooling m mode only) e Y Standby liquid control system actuated RM* Remote manual switch from control room (all power-operated isolation valves are capable of being operated remote-manually from the control room)

  • These are the isolation functions of the primary con-tainment and reactor vessel isointion control system; other functions are given for information only.

(6) The standard minimum closing rate for automatic isolation gate valves is based on a nominal line size of 12 inches. Using the standard closing rate, a 12-inch line is isolated in 60 seconds. Conversion to closing time can be made on this basis using the actual size of the line in which the gate valve is installed.

The closure times for isolation valves in lines in which high-energy line breaks could occur are identi-fied with a single asterisk. The closure times for isolation valves in lines which provide an open path from the containment to the environs are identified with a double asterisk.

T1001550-01V Rev. 11, 10/82

9 9

e y s# ~4*- l WM I 11 b d m d/ pdel e Edo / ApX

/w/a4h

"^"

[ 7.6.1.1.9.4 NSE-RMS Testability DRArT Built-in radioactive check sources for simulating mid-range radiation levels are provided for each channel for test purposes.

These tests are conducted by an operator stationed in the auxiliary equipment room. Remote-controlled purge capability is provided. The operability of each monitoring channel can be routinely verified by comparing the outputs of the channels during power operation.

7.6.1.1.9.5 NSE-RMS Environmental Considerations The wide-range gas monitor has been designed and qualified to meet environmental conditions under all modes of plant operation, including accidents. The subsystem dedicated to monitoring under normal plant operating conditions is intended to shut off when its operating range is exceeded.

7.6.1.1.9.6 NSE-RMS Operational Considerations Annunciation, computation, and recording capabilities are provided for this system. - - - tic 4&e2 0tica 5 etvv40md.

The equipment is located in En area where the radiation environment is sufficiently low to afford personnel access over the range of plant operating conditions. However, the

( instrumentation is designed to afford remote operation and control as well as data retrieval.

7.6.1.2 Hich-Pressure / Low-Pressure Systems Interlocks (HPLPSI) -

Instrumentation and Controls 7.6.1.2.1 HPLPSI Function Identification The low-pressure systems that interface with the reactor coolant pressure boundary (RCPB), and the instrumentation that protects them from overpressurization, are discussed in this section.

7.6.1.2.2 HPLPSI Power Sources The power for the interlocks is provided from the essential power supplies for the associated systems: RHR for the RHR valves, and core spray (CS) for the CS valves.

7.6.1.2.3 HPLPSI Equipment Design At least two valves are provided in series in each line, except for the RHR high-pressure / low-pressure interface steam condensing mode line that has a pressure-reducing valve with a relief valve on the low-pressure side.

( The following high-pressure / low-pressure interlock equipment is provided:

7.6-17

LGS FSAR The stack radiation monitoring system, including the 1 sampling system and the wide-range accident monitoring,sokinetic subsystem, is designed to carry out the following functions:

a. To provide continuous isokinetic and representative samples of the stack flow in compliance with the requirements of General Design Criterion 64 of 10CFR50, Appendix A, Regulatory Guide 1.21, and ANSI 13.1-1971.
b. To continuously record releases of radioactive particulates, iodines and noble gases to the envirors so that the total quantity of radioactive material released can be evaluated.
c. To alarm, in event that specified rates of release of l radioactive material are exceeded. l
d. To provide continuous real-time indications of 77jg,,rgf d3 radioactive releases during the accident and post-accident modes of operation.

O>

(

The north stack exhausts from the following systems: l

a. Unit 1 turbine enclosure exhaust l
b. Unit I turbine enclosure equipment compartment exhaust (including mechanical vacuum pump exhaust)
c. Unit 2 turbine enclosure exhaust ,

l

d. Unit 2 turbine enclosure equ.ipment compartment exhaust (including mechanical vacuum pump exhaust) '
e. Radwaste enclosure equipment compartment exhaust l I
f. Radwaste enclosure fume hood exhaust l
g. Radwaste, service and control area exhaust l

/

\

11.5-11 Rev. 17, 02/83

9 4 ,

'" *Nd%

~~ ~ ' ~ "*'-~ ~ ~ , _ _ . , .,_,_

- . -e. _7sy m A u s / A __sy'w/ d & - . . _- -

zersan a Q wpt_ e ba__

l ess_a Ak & a pea _3 % -- -- -.

- Knee--

-_A y!__/27ab!&-d A nack. 6 he L _ _ efdad. _ - - -. _ ._ . - - -. -.

-a_-..--m,.e. w e- -.%. .--%--.. * , - -4.--.---w.m.-. -- . imm ee -e. ,wwi.--,- .-~ . - . -. -- -* - - - - --- .

.e.-----

_..-._ _ - --- - - . _.m . .. . -.. - - . .

_heheme-*,. g.m_(e m ymm. me . + - - ,,.i, , + - - - - w - -

Fee w e muse m e m .a me e a wmu-wow m a_awM -wi.-*w--w-wm_-a.w-i.-war- -mem.umi--.ew-we mw-e - m.m- w =uem .-w=,mumme+-er- - - m < www =u --m --ee eeem-mW umm-mmerm.e- giu w e eg==m.we.,

e.m -aw.e6-m m ere h w o me.mw_w._me Weedeemem am 'wrN*-s **,m sween--ee-O_me w-m- w Whe em- 4-#6 m ms-- - =md 4mm--_-upmyeum-- e w -m- d.

.e .-.--w.mwN^adu. ma gn* . mmee .- %me-m s=ume 4e*.ede-- u em m.emina.m.' s aa,-mm. gar- he_ -gee =w.aes-en,wmmmirsame-m -y-.uF wwenwe.--+eeh-

._-_ _ __. _._ _ _ .. . _.- ___ .._ . . _ _ _ _ .-.e ._. ___ .. . _ _ _ . ..__.-_ - . _ . . _ __ _ . ___ .._ _. e_ _ _

i

-_~*,ee, ,--we_.--- --e me e,-mequenew..m-_.am--+.em 4 .g--*'=gma-

-- -h- -ee_,mmmmmme_w-ee.e e mem-mu ee-mm. --meg.-.-a,* -.e-a.eee---- m.-mm m+w=--'+- - r +.* - *-+e.

-e.-mee ee.eae.-.,.=.--ms -_m -n. w e h upa--w- == . --- .w- w w* a4 -

,- _. . .__ __ _ . - ._ ,, _ - . - _ . - -.e.e- . - - - -.~. .-. _= .- . _ - - ---~.- _ - - ---.~

_.-._____e__ _ _ _ __ . _ __ ___._ _ _ . . _ _ . .

j _

l _.__. - - _ _-___ _ _ _ _-_ _. _ - - __. . . _ - _.__ __ . . ___ _ _.- __._ ._.. _ . - _ .. _

p

- ma-+ -4.- e e w # -

1 g .~ , .-_ .

~

f L.

,,S ,,,, DRAFT OUESTION 480.35 (Section 6.2.4)

NUREG-0737 Item II.E.4.2 pertains to containment isolation dependability. Describe how each paragraph of Item II.E.4.2 is satisfied. Specifically indicate whether each valve listed in Table 6.2-17 is essential or nonessential. Concerning Position (3) and Clarification (2), explain why the following valves in systems which are not listed as ESF systems in Table 6.2-17 do not receive automatic containment isolation signals:

Penetration Line Valve X-35C-G TIP drives 141A-E X-217 RCIC vacuum pump discharge F002

RESPONSE

Sections 1.13, 6.2.4, and 7.3.1.1.2 have been changed to describe how each paragraph of NUREG-0737 Item II.E.4.2 has been satisfied. Tables 6.2-17 and 7.1-3 have been changed and Table 6.2-27 has been added so that essential and nonessential systems for the purpose of isolation are properly identified.

h/W 1

I 480.35-1 Rev. 16, 01/83 I

,gt_ a e

L - -- - XMd_ f--- '

] _ !'- ( .-_. .

e mwmwne w wememw use > . = "** '" '

&&ndoAL4 nt p7eples. afh vi e /1 Mmh 7

+ _ -

wkhs> s d&fc sedh siff d / _.- -
-dy & ebmlpKLnM gha - -

. _ _xm --- - - . - _

e e-ems.Jeme--.--we--+ememem- -.eeh.me- --he.e .a--e- .m-we - =, e - -=,e m=

. _._ - - .- - . .e._ - - - - - - --.-- .- - --.--.... . --- - .-. -

4-m.--eeewe i sea em aw-me..mems>w -.4 -w. e em sw eeng - .4mmm- w e wem mem--- 1-. -m-s-en.e. a-i m -.e -e ., ., ,.m -- - ,-.--e-- -

4 ,e*.--swo--.pd -.-- - %e.es.- e,m- =-eemy..gme ,-inei-- e_g -wu-.--s, . - , - --- . _ .e-..

. .. . _......__-_--_,,.w-e. . - . . . .,,--_- - - - . , . - .. . - - -. ..., . _ _ _. - . ,. .. . . -.-

---,%ew ma->..e. == e.pamm-mm ww.ae -mm-mum -eegwe-w . ---.me. +- mw,+ e . .* --ee-7 .- _ - - . ------- ... - - . . . . . - - . . - - - - - . - . -

,. ~ _ . - - - - -- _ ~ . - - __-- .----~~--- -- -. ~- - --- -

_-a----m--m--.-e- = - -- -ww- e . amee-e---e= w-m-e --m- -- - m- - ---- --

mammes ames-mmesy.ea-g.is ewa-m*+...-m.s-emyw .- e emme a + e---www.m ==1==w. n - - ' *

  • w - -- - -

_e___--..._.-_e_ _ _ _ _ . _._ ... _ . .____.-_w ._. .... -.

me--- y ---e---+--6.u.-  %>-,evw-yv - -,s-r%...-,em h-T- #. - + - - - -e--W'7- * -* ' - +-+-*- e' ' ~ - - * = ' - ----bw--*7 Y'+-----7J--*v---~~'r9 -TPT+ +M----****'-- - - = ' - - + - - ---P +* --- .e "'