W3P82-3783, Forwards Boron Dilution Alarm Sys Setpoint Analysis in Satisfaction of SRP Section 15.4.6

From kanterella
(Redirected from W3P82-3783)
Jump to navigation Jump to search
Forwards Boron Dilution Alarm Sys Setpoint Analysis in Satisfaction of SRP Section 15.4.6
ML20064J691
Person / Time
Site: Waterford Entergy icon.png
Issue date: 01/13/1983
From: Maurin L
LOUISIANA POWER & LIGHT CO.
To: Novak T
Office of Nuclear Reactor Regulation
References
W3P82-3783, NUDOCS 8301180172
Download: ML20064J691 (25)


Text

<

LOUISIANA 342 OuAnONOt S1neer P O W E R & L I G H T! P O BOX 6000

  • NEW ORLEANS. LOUISIANA * (504) 364 70174 45 M.UOt E SOtJ T H um ms sist January 13, 1983 t,y u4vaju Vtce President Nuclear Operations W3P82-3783 3-A1.01.04 Q-3-G12.Q Mr. Thomas M. Novak Assistant Director for Licensing U.S. Nuclear Regulatory Commission $8"EO2 Washington, D.C. 20555

SUBJECT:

Waterford SES 3 Boron DI.lution Alarm System Setpoint Analysis

Dear Mr. Novak:

The Standard Review Plan (section 15.4.6) specified minimum intervals between the time when a boron dilution alarm sounds and the time of loss of shutdown margin:

1. During refueling - 30 minutes
2. During startup, cold shutdown, hot standby and power operation -

15 minutes.

By th h letter LP&L transmits the Boron Dilution Alarm System setroint analysis for Waterford 3 in satisfaction of the soove Standard Review Plan requirements.

Should you have any questions or comments please feel free to contact me or Mike Meisner at 0 04) 363-8938.

Sincerely, L

//Onf L. V. Maurin LVM/MJM/pco Attachment cc: W. M. Stevenson, E. L. Blake, S. Black (in care of Jim Wilson) 0 0[

0301100172 83011J PDR ADOCK 05000382 A PDR

629(79Z4/J)/sf-3 ABSTRACT This analysis determines the Baron Dilution Alarm System setpoints for the LP&L Waterford III plant. The Boron Dilution Alarm System provides a control grade alarm to alert the operator of a boron dilution event when the reactor is in the shutdown subcritical modes.

~

?

The methodology employed to determine,the, Boron Dilution Alarm System setpoints was to ascertain an acceptable operating limit which meets the related requirements specified in Section 2.0. The calculated setpoint values are summarized in Table 2. The assumptions used in calculating these setpoints are listed in Section 5.0. These setpoints are only applicable .

to the LP&L Waterford III first fuel cycle and the respective hardware -

defined in Reference 5.

.~

Specification Nu. 9270-ICE-6618 Rev. 00 Page 3 of 26 l

l

, 529(79Z4/J)/sf .

TABLE OF CONTENTS SECTION - PAGE NUMBER RECORD OF REVISION - 2

'4-ABSTRACT. .- 3 TABLE OF CONTENTS 4

1.0 INTRODUCTION

5 2.0 CONSTRAINTS AND REQUIREMENTS ,

. 6 3.0 SETPOINT CALCULATION 8 3.1 Determination of Equipment Uncertainties 9

~

3.2 Equipment Setpoint Methodology ,

14

~

3.3 Equipment Setpoint and Reset Time Calcu1ation, 17 4.0 INPUTTING OF SETPOINTS 23 5.0 ASSUMPTIONS 25

6.0 REFERENCES

26 TABLES AND FIGURES TABLES

1. UNCERTAINTIES IN BORON DILUTION ALARM SYSTEM 11

~

2. SETPOINT CALCULATION RESULTS 22 FIGURES
1. SIM?!IFIED DIAGRAM OF BORON DILUTION ALARM SYSTEM 10
2. PROBLEM OF STATIC EQUIPMENT ALARM SETPOINT 18
3. TYPICAL RELATIVE NEUTRON FLUX LEVEL FOR A SHUTDOWN 19
4. TYPICAL FLUX DECAY CURVE WITH ANALYSIS ALARM SETPOINT, 20 EQUIPMENT UNCERTAINTY, AND RANGE OF ALLOWABLE EQUIPMENT ALARM SETPOINT
5. SETPOINT DIAGRAM 24 Specification No. 9270-ICE-6618 Rev. 00 Page 4 of 26

e 9

629(79Z4/J)/sf-5

\

1 l

1.0 INTRODUCTION

This analysis is performed to determine the setpoints for the Boron Dilution Alarm System for the LP&L V-terford III plant.

The Boron Dilution Alarm System will utilize these setpoints to alarm the operator of the occurrence of-an inadvertant Baron Dilution. This alarm will alert the operator, thDs preventing a possible inadvertent criticalit,y due t6 Boron dilut. ion while in Modes 3, 4,. 5 and 6 (Reference 5). ,

The NRC has required an alarm be given to al'ert the operator at

  • least 15 minutes for (Modes 3, 4, 5) before criticality and 30 minutes for (Mode 6) from the Boron Dilution (Reference 1). The Boron Dilution Alarm System was designed to meet this NRC criteria.

The Boron Dilution Alarm System (BDAS) monitors the Nuc~1 ear Instrumentation Startup channel and will provide a control grade alarm if the startup channel indication exceeds a setpoint (Reference 5). The setpoint to which the startup channel indica-tion is compared, is manually adjusted as the neutron flux decays.

Furthermore, time intervals to reset the setpoint are determined

. and an allowable voltage for periodic testing of the bistable is calculated. .

l 1

l

~

Specification No. 9270-ICE-6618 Rev. 00 Page 5 of 26

629(79Z4/J)/sf 2.0 CONSTRAINTS AND REQUIREMENTS The following constraints and requirements are provided for incorporation into the alarm.setpoint calculation process as necessary.

Hardware Constraints

1. There are uncertainties' in*'the"BDAS equipment (defined in Table 1) which are needed for conservat.ively calculating the final equipment setpoint.
2. There is only one alarm setpoint provided to alert the .

l operator of a Boron Dilution Event while in Modes 3, 4, 5 and 6.

3. The operator will input the final equGme.nt alarm setpoirt manually into the Manual Displ.ly Station based on the l

ctrrent flux leval indication. ,

Also, the setpoint must be reinputted every 5.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> based on,the current flux reading. .

NRC Requirements

1. The NRC has required an alarm be given to alert the operator of a Boron Dilution Event. -
2. The NRC has required the alars be generated.15 minutes before criticality while in Modes 3, 4, and 5; and 30 mins. before criticality while in Mode 6. (From Reference 1, these different Reactor Operating modes are specified below, as defined by the C-E Standard Technical Specifications where Keff = K effective, l

TP = thermal power, TAVG = average coolant temperature).

Mode Name Requirements l

l 3 Hot Standby Keff < .99, TP = 0, TAVG > 300'F 4 Hot Shutdown Keff < .99, TP = 0, 300 F > TAVG > 200'F

5 Cold Shutdown Keff < .99, TP = 0, TAVG 1 200*F 6 Refueling Keff 1 95, TP = 0, TAVG $ 140 F Opentional Engineering Constraints
1. There should be a reasonable length of time between resetting the Final Equipment Alarm Setpoint.

Specification No. 9270-ICE-6618 Rev. 00 Page 6 of 26

~629(79Z4/J)/sf

2. There should not be any spurious alarms which would degrade or invalidate the alarm's function.
3. There needs to be a range or deadband around the periodic reset time of the Final Equipment alarm setpoint in which the operator has to reset the setpoint. '-

P l

E Specification No. 9270-ICE-6618 Rev. 00 Page 7 of 26

'629(7924/J)/sf 3.0 SETPOINT CALCULATION The setpoint calculation for the Boron Dilution Alarm System needs to incorporate several aspects to ensure proper operation of the alarm. The equipment uncertainties will be statistically summed and factored into the equipment alarm setpoint so that the alarm provided.is always given within the require 5' time (e.g. 30 minutes before criticality). Secondly,' the methodology for determining the alarm setpointsneeds to conservatively accommodate the several reactor operating modes for which the alarm setpoint (and alarm) is provided. Thirdly, the final equipment alarm setpoint must conservatively account for the neutron flux decay, experience during the initial days of a shutdown. Further, the -

constraints and requirements derined>in Section 2.'O must be factored into the setpoint calculati'on process as necessary.

A block diagram of the BDAS is shown in Figure 1. The raw neutron flux is observed at the startup channel detector. Signal processing equipmentisusedtoprovidetheobservedneugron. flux,witha range of 1 counts /sec (0.0 volts) to 1.0 x 10 c'ounts/sec (10.0

, . . volts). This flux indication (log scale) is inputted both to the setpoint bistable and the manual display station. The manual display station has one meter which displays the current flux indication and another meter displays the final equipment alarm setpoint in counts per second (CPS). The finsi equipment alarm setpoint, inputted by the operator through the manual display station, is sent to the setpoint bistable. If the. current flux indication is greater than the final equipment alarm setpoint, then the setpoint bistable will generate an alarm to an annunciator in the control room.

Inputting of the setpoint is described in Section 4.0, a graph (Figure 5.0) is provided to make this procedure easier.

I l

1 e

Specification No. 9270-ICE-6618 Rev. 00 Page 8 of 26

'629(7924/J)/sf 3.1 DETERMINATION OF EQUIPMENT UNCERTAINTIES STARTUP CHANNEL NUCLEAR INSTRUMENTATION UNCERTAINTY The startup channel nuclear instrumentation is composed of the startup channel detector and the associated signal processing (Refer to Figure 1). Thestargupchanneloutputis0to10 volts corresponding to 1. to 1. x 10, counts /sec (Reference 5). As listed in TABLE 1, the uncertainties associated yith the startup -

channel are: .

A) Channel Accuracy = +1.5% (of full scale)

B) Long Tera Drift * = +0.5% (of full scale)

C) Buffer Accuracy = +1.0% (of full scale)

~

D) Buffer Long Term Drift * = +0.2% (of full scale)

  • These drift uncertainties are the possible error due to drift after 1000 hours0.0116 days <br />0.278 hours <br />0.00165 weeks <br />3.805e-4 months <br />. For conservatism these drift uncertainties are assumed to always be present. ,.

- SETPOINT BISTABLE UNCERTAINTY The .Setpoint Bistable is the equipment Which will compre the current setpoint to the inputted startup channel indication. If the Setpoint Bistable detects the inputted startup channel indica-tion exceeding the current setpoint, then an annunciation alarm is activated. The following uncertainties arise from this Setpoint Bistable:

E) Bistable Accuracy = +0.35% (of full scale)

F) Repeatability = +0.10% (of full scale)

G) Temperature Effect = +0.05% (of full scale)

Note: It is assumed the drift of this equipment is negligible

, (refer to Section 4.0).

l

~

i MANUAL DISPLAY STATION UNCERTAINTY The Manual Display Station is the equipment which displays the current setpoint and the inputted startup channel indication.

The operator also inputs the current setpoint through this station.

The following uncertainties arise from this Manual Display Station:

l H) Setpoint Accuracy =

10.1% (of full scale) i I) Repeatability = +2.0% (of full scale)

J) Temperature Effect =

10.05% (of full scale) l (of setpoint value)

,. K) Input Accuracy = +0.10% (of full scale)

L) Temperature Effect =

-+0.05% (of full scale)

(of flux indication)

M) Operator's Ability to = +2.0% (of full scale)

Read Flux Indication N) Read Graph = +2.0% (of full scale)

0) Operator /s Ability to = E2.0% (of full scal'e)

Set Current Setpoint J

Specification No. 9270-ICE-6618 Rev. 00 Page 9 of 26

Figure 1 ,

SXMPLIFIED DfAGRAM OF THE BORON DILUT10N ALARM SYSTEM

. . . .r

\/ .

STARTUP CHANNEL ~

DETECTOR ,.

3. . ,

\/

SIGNAL ~

PROCESSING A,B,C,D

. p

\/ g/

MANUAL SETPOINT DISPLAY BISTABLE STATION H,1,J,K,L,M,0 E,F,G .

\/

4LARM ANUNCIATOR Note: The letters t . own are where the ' uncertainties listed in Table 1 occur.

Page10.' of 26

&92Sba -Je&<' _-J%P7

, ,'629(7924/J)/sf TABLE 1 I

UNCERTAINTIES IN BORON DILUTION ALARM SYSTEM 4

Component ' Uncertainty Value Units Reference

. . r Startup Channel A) Channel Accuracy * .+1 5% (of full scale) 6 '

l (including signal B) Long Ters Drift -

+0.5% (of, full scale) 6 processing) C) Buffer Accuracy +1.0% (of full scale) 6 l l D) Buffer Long Term +0. D.' (of full scale) 6 l

Drift l Setpoint E) Bistable Accuracy +0.35% (of fbil scale) 7 l

Bistable F) Repeatability {0.10% (of full scale) 7 G) Temperature +0.05% (of full scale) 7 Effect .

~

Manual Display H) Setpoint. Accuracy 10.1% (of f.ull scale) 7 l Station I) Repeatability +2.0% (of full scale) 7

J) Temperature Effect -+0.05%

, (of full scale) 7 l (of setpoint value)

K) Input Accuracy +0.10% (of full scale) 7 L) Temperature Effect 70.05% (of full scale) 7 (of flux indication) -

l M) Operator's Ability +2.0% (of full scale) assumption 9

to Read Flux Indica. -

tion N) Read Graph +2.0% (of full scale) assumption 6

0) Operator's Ability +2.0% (of full scale) assumption 5 to Set Setpoint l

l Raw Flux Level P) Variation in Flux +2.3% (of full scale) Reference 8 Variation Level Generation l

l Specification No. 9270-ICE-6618 Rev. 00 Page 11 of 26

G29(7924/J)/sf l

There is also a variation in the current flux level being generated in the reactor core. From actual data in Reference 8 of the ANO-II plant, there is an apparent +2.3%'(of full scale) variation in the flux level. This variation will be factored into the l equipment setpoint. This variation is assumed in Section 5.0. '

CALCULATION OF THE TOTAL CMNNEL EQUIPMENT UNCERTAINTY The uncertainties previously det.ai1N will be combined to determine a total channel equipment uncertainty. This total channel uncertainty will be used to determine the equipment setpoints.

The total channel uncertainty will be statistically calculated using the " Root-Sum-Square" methodology. Therefore, the total channel uncertz.inty can be calculated as:

= ((11.5)2 + ( 0.5)2 ,( ),g)2 + (+0.2)2 + (+0.35)2 ,

(+0.10)2 + ( 0.05)2 + ( 0.10)2 + ( 2.0)2 .

(10.05)2 + ( 2.0)2 + ( 0.10)2 + ( 0.05)2 (12.0)2+(+2.0)2+(2.3)2)14

=

14.99% (of full scale)

Rounding the uncertainty in the conservative direction, the total channel equipment uncertainty is: +5.0% (of full scale)

~

CALCULATION OF AN ALLOWABLE VALUE An allowable value for the Baron Dilution Alarm System needs to be calculated to facilitate testing of the Setpoint Bistable equipment. To calculate the allowable value, the uncertainties of the Setpoint Bistable need to be employed. As listed in Table 1, the uncertainties with the Setpoint Bistable are:

E. Bistable Accuracy 10.35% (of full scale)

F. Repeatability - +0.10% (of full scale)

G. Temperature Effect ,+0.05% (of full scale)

The allowable valueis calculated by statistically combining the equipment uncertainties attributed tc the Setpoint Bistable.

Thus, the allowable value can be calculated as:

=

((10.35)2 + (+0.10)2 + ( 0.05)2) 1/2

= +0.37% (of full scale)

Specification No. 9270-ICE-6618 Rev. 00 Page 12 of 26

~

.629(79Z4/J)/sf-13 .

. Rounding the result in the conservative direction, the allowable value for the BDA5 is: .

+0.35% (of full scale) . .

(ce)

+0,035 volts ,

Note: The allowable value provided is actually the delta increment above the current equipment alarm setpoint.

The Bistable must indicate an alarm before the allowable '

value plus current equipment alarm setpoint is exceeded by inputted test equipment. The allowable value is ,

only defined in the "PLUS" direction because this is the direction cf the alarms indication (i.e. if the uncertainty due to the Setpoint Bistable in this "PLUS" direction is more than expected, then the setpoint alarm will be non-conservative). ,.

1 .:

i Specification No. 9270-ICE-6618 Rev. 00 Page 13 of 26 f

I , .:__

629(79Z4/J)/sf 3.2 EQUIPMENT SETPOINT METHODOLOGY The setpoints calculated for the Poron Dilution Alarm System will be governed by the constraints and requirements specified in Section 2.0. Analysis setpoints were obtained from the Physics '

group (Ref. 9). The analysis setpoint provided for each mode is listed .in the following table. These.alafw setpoints are .

the point when an alarn must be given-t'o meet the NRC requirements.

The NRC requires an alarm be gi,ven 15 mins. before criticality (30 mins. for mode 6) for a boron dilution event. The BDAS is designed to provide an alarm while in modes 3-6.

TABLE OF ANALYSIS SETPOINTS ,

Mode Analysis Setpoint 3-Hot Standby 12.2 (ratio) .

4-Hot Shutdown 12.2 (ratio) 5-Cold Shutdown 4.6 (ratio) ~

5'-Cold Shutdown 6.0 (ratio)

. (reduced volume, 1 pump -

operational) 6-Refueling 6.4 (ratio)

Note: Reference 9 which transmitted these analysis setpoints, actually specified a range where the analysis setpoint should be depending on the initial conditions of boron dilution. For conservatism, the limiting (smaller) value is used in the above table. '

1

! The limiting analysis setpoint of modes 3, 4, 5, 5 (with reduced volume and 1 pump operational) & 6 is 4.6. This analysis setpoint is actually the ratio of the analysis alarm setpoi,nt to the current flux indication. (The reason the provided analysis setpoint is a ratio is because the actual current indication experienced during the shutdown cannot be exactly "

determined).

An example of this ratio follows:

2 Example: If current flux indication is = 1.0 X 10 counts /sec l

analysis setpoint (ratio) is = 4.6 (ratio) current analysis alarm setpoint *

= 4.6 X 102 .ounts/sec l

Thus the current analysis alarm setpoint is 4.6 times the current flux indication.

Equipment Uncertainties need to be factored into the current analysis alarm setpoint to derive the current equipment alarm

setpoint. The uncertainties will be applied such that the alarm l

is provided within the required time (e.g. 15 mins.). As caleciated l in Section 3.1, the total channel equipment uncertainty is +5.6%

(of full scale).

Specification No. 9270-ICE-6618 Rev. 00 Page 14 of 26

629(79Z4/J)/sf , ,

The current flux indication and current alarm setpoint will botn b'edisplayedona'meterwhicgindicatesfrom0.0to10.0 volts which represents 1 to 1 X 10 counts /sec. (respectively). The correlation between X counts /sec and Y volts is:

log 10 ( X counts /sec)

  • 2.0 = Y volts ,

First, we will continue to use pur example agd convert the current analysis alarm setpoint calculated (4.6 x 10 counts), to volts.

sec 2

log 10 (4.6 X 10 counts /sec)

  • 2.0 = Y volts .

current ar,alysis alarm , ,

setpoint (in volts) .

= +5.325 volts The calculated total channel equipment uncertainty can easily be converted to volts units because it is represented in "% of full scale". The full scale indication of the meter is 10.0 volts.

~

Thus:

Y volts = 5.0% fq11 scale

  • 10.0 volts (full scale) ~

100%

0,5 volts = total channel equipment uncertainty (in volts) k The current equipment alarm setpoint (for our example) can be calculated as follows:

- Current analysis = + 5.325 volts alarm setpoint total channel = .50 volts equipment uncertainty current equipme'nt = + 4.825 volts " ~

- alarm setpoint L

Thus the current equipment alarm setpoint (for our example) is

+0.825 volts. This current equipr.ent alarm setpoint can also be represented as a delta increment over the current flux2 indication.

In our example, the current Flux Indication was 1 X 10 counts /sec.,

which converts to 4.0 volts. The delta increment would then be:

current equipment alarm setpoint = 4.825 volts current flux indication = 4.0 volts delta increment = 0.825 volts of equipment setpoint

  • over flux indication Specification No. 9270-ICE-6618 Rev. 00 Page 15 of 26

629(79Z4/J)/sf Let us quickly do another example to observe an interesting phenomena.

4 current flux = 1 X 10 CPS or (8.0 volts) analysis setpoint = 4.6 (ratio ~

(ratio) current analysis = '4.6 X 10 4 CPS or (9.325 volts) alarm setpoint Continuing: .

current analysis = 9.32,5 volts 61 arm setpoint total equipment = 0.5 volts uncertainty current equipment

- alarm setpoint = 8.825 volts Delta increment is:

current equipment alarm setpoint = 8.825 volts current flux indication 8.0 volts.

delta increment 0.825 volts As shown by these two examples, the delta increment of the current equipment alarm setpoint over *he current flux indication is 0.825 volts, for all times. The operator will input the current equipment alarm setpoint as a delta increment over the present indication of the flux. The final equipmenE alarm setpoint si'11

~

be calculated in the next section based on timing constraints and the above methodology.

Specification No. 9270-ICE-6618 Rev. 00 Page 26 of 26

629(7924/J)/sf 3.3 EQUIPMENT SETPOINT AND RESET TIME CALCULATION The above methodology for calculation of the equipment alarm -

setpoint was generated based- on a current flux indication. When the operator sets the equipment alarm setpoint, he will place it at a delta increment above the current flux indication. A problem arises in that the flux in the reacte- will decay ~sith respect to l time. After some period of time, the inputted setpoint will i become invalid because the flux'would have decayed so far that if a boron dilution event occurred, the alarm would NOT be given within 15 mins (or 30 mins for mode 6) before criticality. This is basically because the event is now starting at a much lower -

flux level than the setpoint was set (See Figure 2). Therefore, the operator needs to periodically reset the equipment alarm i

setpoint to account for this flux decay during shutdown.

! Figure 3 shows a typical relative flux decay curve for a .shutdomi.

The equipment alarm setpoint needs to be placed and periodically reset to remain valid. Figure 4 illustrates the range of acceptable setpoint values with respect to time. Notice that not only is

. the total channel equipment uncertainty subtracted from the current analysis alars setpoint; but the total channel equipment .

uncertainty also needs to be added on to the current flux indication to prevent spurious alarms. Thus, figure 4 shows, in general, t the placement of the equipment alarm setpoint and the periodic resetting time scale.

.? .

The analysis alarm setpoint, as calculated in Sect' ion 3.2, is 1.33 volts above the current flux indication. The current equipment alarm setpoint (from Section 3.2) was calculated as 0.825 volts above the current flux indication. The total channel equipment i uncertainty was determined to be +0.5 volts. A range can be de-termined where the current equipment alarm setpoint should be placed (as illustrated in the example figure below). _

l l 2.33 analysis alars setpoint j -

Y: '1.825 \\ \ \ \ , total channel" equipment uncertainties X: 1.6 _ ,_

uacceptable range for equipment j

alarm setpoitet.

! i c

1.50 { total channel current fluxequipment indication uncertainties 1.0 f The equipment setpoint should be placed just above the current flux level plus total channel equipment uncertainties ( Point i "X"). This is because as the flux decays, the setpoint will remain valid longer. When the flux decays to a point where the i

equipment setpoint reaches the analysis alarm setpoint minus equipment uncertainties (Point "Y"), then the equipment setpoint must be reset.

Specification No. 9270-ICE-6618 Rev. 00 Page 17 of 26

. -___ _ _ _________ - _ _ _ ____ - _ _- _____ __:_ _~ _ _ .

Figure 2 PROBLEM OF STATIC EQUIPMENT ALARM SETPOINT

~'

4 o

JL I

I EQUIPMENT ALARM l SETPOINT (FOR T=0) 8 l

[ ALARM SETPOINT BEdGMES INVA .

r ANALYSIS ALARM l}" DELTA 4 SETPOINT l INCREMENT i

FLUX LEVEL g -

. EQUIPMENT

- UNCERTAINTIES ACTUAL FLUX._f DECAY CURVE TIME > i l

l l

l e

Page 18 of 26 9270 rcs- 66/9 _

Gx ,

T

-9m -

<-24 m dikw>MQ'.MpMSM:rp p g.ug w d &m .sm.5 g @ W = M .w g w : m

%> .%w W w.&-e.J. .o rum %m=cy~%-w:j.w>M _ _ fps-4.AfrcCE.MD5%y-w-um qS 5 t M.m.l.3$g1. W.Sd.M9E.f.Mi..M.M .7! M m --m myy~L*r~&I,&y;a= .m m m y.m

+ c-.~**G--fTQyR$$mm-e-e

. *^..

._ m - '

-- m -1.=+-rM--1+c wm% ==r W (3.W.aG=b . -E,,.

- =- w=~ww~==; = .--s- v. ..-:

=-

m

~- A Qn-- e .==- w=+r--mw_d -=rm%l ==a g-d 3

T{p , p y=>:. n-==D =_n -

ye. ~g -= .m-

=- .

=w-,=_ - -- - m v

==mu .

y f n f.y eg,, . ., ,_ . . . L - =m=

sa map _ . y=====s=mcfm_miys;mamm===sr ,

m

a. -

. _ _ y- == -

m mm=tw=_-num - - - ._

, nm ,

= _,

a. .

. w.

4 .- .,

,- u,

.-W .-wa

.<vm_

,,-,, 32 7 e; 2_m-h3 mmn mm~._ww.q m- # 7 ; . rc,---

n - ag., gnw m.

xa_ ,ar-g-..1y _e_r r-r=__ m..-=

_ . g=n - t.y-e _= - =

m_ = # ; -

r

.m n .__ c ._y -r= m _g a-q d Q.. ..

- - - = u - - NI~W=iN =%5:55$^tt' .e

'D *y"?

W5& .=# E ' i-'4:35'bWi i W *-^-i E=='" . b 5% b^

--h. 5). 0 y=5~' T

=i= 15 m 5-= t=a wC.aer=a-NhN?-$&

i

. = = = = = = = = ~ .=-== =.- =2 W 5 5-- = . a.

. l:..g = $.c'e- ;. --

-=1 -

=-w===-+-- -.._-.

= =sw--w+ = = rie= - _ .- -= ~ - - - ----,:,:_.----+-

g.,3 . , . . .

=---:,---.x+ - - - - - - - - - -

r .__ _ _ ~ ~ --- ya t ,e, ,a .e,

.. n . ---

E - w art r.w gad [ .#

.-- - .mcz=s:.- ..n ~ . . - --

- - = - - g*

~ _ o M

4

('we,. .. . .n.95+ . log 10(5.5x10 )-log 10(2.19x1.M.  : - -

.%.,. . t

.y . ,

m .z , ~tw.-=

~

4 .

j ;.

ip j d, y hp,c >[. '. ,  :

j l. .l l

...i. T.

I, N-. : ,

i 1

- s .122".4-0.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> V ,

u .. . . a 9 ,

F--=.++-.=% -:' _An 4 - r +; n, y

,sa.1 -

<~'H m '; .. g 74. b.

j f)< *~-r1mg g; W ' 7 ' } $' AhiM "Y '= 'CD-' Ps=WlT,mic r1 M' ^=#. :i - f 2=Li- =UEi-TE ' * = =

o - YST

' ?,-i~= =WI W=%-MX=+ W -5=3=hnt=# E=t~s=r _-j 5=: -

h ^

;_;3-_- 3&-*== - n--a

^

=-.=- --r -- = .-X ~. TK --^

~ ^ ~

~~': .~ _, '=&Mim ggjgg.m _y.

y -

g f,"f,- Q,

=2 _n=h=g===-t. ,-

_:  : =.g'-' ._

?._lpyxy=+xyp+if yWQgy -

~ . =- -

ff=gjyy_ - - _ , _ . - - ,

,.n; j.-;;g==p=g;pt 71.w _gy ~.

y .__7-- - -

g -d r=y m m A

,-. -WmWype"9I

,.J..2 ,' . g =, ~'"

Q r-qn%g r Q+m--mg7-4 gc g_-n M. . .Gtr=- d-==t=-==y;&_--.==.=-n--:-=----_==.=_=,-m,,._=..===x._.m__-z o se p

--- =--- -r; 2 m_s:: 2_a:s p_ ._ - .--tu==m c- i mA m.a- t - --t, .=a=-  :-- ~v= w- 1 =m. . q =w=-_

t  ;:

>~s A

~

~ - =.=~ re.

z . - -e-- -x- . = - - - . . - . =

~

d. 4

%eL2=

  • i-Td M5Mi NL-~ z.4 =i-+^=1# tMi Md-M '1~ . -- .2.-WW==-IE f

'/ ',f  ; ~y==-~==~ .23ri"=5M-f_S.i.15==I-f _---- = ^ = ==[~~~"*-h_ ' ==- -~ )

f.;4 L

^===

E

.."p'.;s,_.~_. _:.- : ::-- - -- - Q3= ~ ---

.._;=-_._,- *ne fv:.rrMM=_n== === - -

~ - - - - - - - - ---

\

. n, _- --- __
  • ?c 1

.W. 1

. eD nv .~.. & .- '.-h[,, . p;,- --- wg  !

1 e s U *.1 *g 3--

.., qd ..,s.-. '. .t..

.a c

.. v .- -N,_ s.

  • e . 3 **t3 m . s .

x .

1 ,-' .

-e 4

  • pFj p,s: Q..r. ii . A* . e i ,
i. 1 .  ! 1 ! s . ,

i

'4 1 . . I a i ,.

4 Y ,

s. i .

P.

..J*( 4.-[. $ . . i, ,i i e I i

i. ,

i 4 JP 'iii1x.i a 4 ,4 6. . I, i

,i  !,

y' 4... gtag'_ - .

% - .! ~ 1 , a , ,

s, - 6, 4,

.m--

i, i

-- - - =

i .

=m

> i

-m w,

--- = ,w -- w..# ..

- I' i

.. z .

-'_1.m-M j ;C-'-L-g;@ee n--i-.# ch'=~JI._L ^" C# EM- C==^JW M= -

, =WE=i5==iiEbd =i$f

[-t = N7sYY'g$[F2-E i l-6~~E'+-*-

- i E

.i*K3 . -2 d

.. . # 'o =7 , 4e=~bPi== =N- : [* Wi=- '-EE=~ ^ =~"'i=pt=t--3-~ i -i 5 G - G * =_ T _' _-T=E-~~~~ i #n=2 ~~. M@-5i5 "f-1J _ 'J _ ='=--S _-~ Li~-;

_ - - - - O.

5 -

_.---_T.-^. i

?.f,; , c,,* 4' &. =.x_?=2= = =--'R. =_=--.E__=.__=:-'_-_3_._5=?=.__i.-_==.==-_-1=_=.+=.6 y v__ - - - - - - e. --- .f. .a

...',.S

=- -- I p .

w-tmjC'- x +- J. L Um' im'== m#i7=_=m+t w m =-EI =e_;n-_-sa E;u.m.;Tr- 5m.-=- !Xw% 4 . ,i .4

=r -- = sF: t-% i-TI,

== :7a, c - e--== w- aq.- v . .=. . .r _ _ .-

,X . >- 4 _

7- M-,

__n-=-ma==---.=,=.-- e

. ,r--r- --=---1

,=r,__==;_4 v- - ==

w- =.. --..=n=u--,-= e m == v==w=-=v-= a_e : y .= r= =. .==

~

r_- .

.--==- _ _ _ . . ,-.y

~

-G+===n~=.__==',====== -,_,___=,==_=_=____- ..g..

. = _Um= : = .._x.:-;_-.i=5.=-5-:&=_'..===~=_-.*==_=_==:===,==__-___--_-__=:_--=_=-____w

'- ~ L =-.==:=_=:=L _~_5 __n -

-._1----=.:=----_=[-_~_

g

  • L.s. _

- - - - - - -- = . _ _ _ _w -

..f,

_-_____~

-- 1 --- z -- 1 .: 2 _a

_ . . . _. =

..3,. m z__ .

q' .

3 ~. , .m. . .

_=-==--:r2==_m_=_-.=-=----.=_-=_m

-=_= _.;-:_. _

-.-s - -

-; . (__; -------=-.-- -

-_o; -

e. .. . . s ,r.,. - -

.,s .

.n =^9.- g. ..-

', .'1)E&

G~ .

'*h

. g. g '.M.A .'E' e-WNQ Q ~-  ;- ,--h -

d

.'. . - M t.u., .s

\.-

.. i . . ._ .

t .

. b-.; 0 ,*$ 5. # i.

s..,<

i j i cei i ,

. x v <.,e , , . > 4 i , ,

. ,-39

.i A D .geQ

$ ii i ,-! <

i i +i , i e i1 - 4 i .  ! t . .i_ iia 1 , i, i , ,

,- 9; ,,.a.

3 g.. ei  ! . 1 1

' i .i i i ii . , ,i r, X 4 ,ii i. e a i 4 i . 4 .. i- ,

sg i 6 a ,'..-

Y,^7.j -,!g #. : g 7pg i 4 i

.m J _iG -n- r_2 ?-= w m s.;-2_-c_:

J m g:#d -.

Q , . =_L. #M=--3-M-;i - . ' . u ne n E=.P.g= 55 M:zN'=-;=.: G=F=5&# ===7 E=v-- =Ee

._-.2 ..r.

=

=2.==-^_ r =W_T-- =i=E==_23_g_=.s_=_-y 7 *q . +- 1

/.. X M' =w g_;_ f e== r -=a w-i -P  :.=- = _-_: = zu  : _ = = - = - - - - - - - - - - -- M=.t=

- - . -- =-_=-

- - - 2=

== _ = - - ------ - c -- - - -- -

% n 4 '% ?. TM
=mX 4 .
:-- .._:=

- -- :._=: y:==-^! - ==; =2^ ~= . .m^=-~'=^=~_ =- 1 = = --- --_: :_=..=t = - = - n = = '*A4

l. u yl,.

e p . ~g_ *,,_ =G T =^ :' .~5=4E=M E~=. = =y5 =. D==E;i?==. ~= = 1. :==- X -

A t- _w - - . . . - -_ . - -

.p l

. p. .

, yo , [ s,_ m ,- - w .

l.. gu ..

mwo

- w- p=:n .xm n m =s w w a-_.--n-======-p_ w -_ m w==~= m n_._== - a.==w._=

m_; , o/

1 .%o .. . 9 ,:, . . n m m- , , -1= -=a m =-- ==g_g_7_- .y;

-o . .x w -.- w, w_.

mv., == == ========c_=a=s= +

w =g._:= m=v gj_ m j7_--_-_.==.=_=_-_==_=_--__----==

- -- -== - -

~pr

. - u zt : n_gg_ =.-.-_

= ~ g,.

.==__=_=m_=_.,_=-=_ _ _ :g .r_=:-.,,;=,:__ +:

__ __.---- ;_ m._2_=x___- ..

s, 2 W $. n., #-._=-.-=,==_m=__y+= .,.

=. C_ ._i 2 ===w.4 r-

_ - ---- -- - ~ - -

====_-7.___----

su :=_ - .

=_ 1..

= = = z:

-= _ - -

-- .*T.

- - . -  :-t 2 y*<' .

- .=- -

n- -

l , g,,, .a, y. -a.,

I

--,-..x=. .-_

a ..< e,.. .-

  • g

. Oo ., .k~m._ .: . .e- ..\% .e s I

d mJ 1 . t t,

,,8

  • [' N
  • L =

z-

..'c

~ . 9n i

>.-g. 1.e %,W l8 i 6. u . . *- .. -* ,.

t- s v@

... .s.-' 1 i a i

.si

  • ! * : 6,
i. i  ! ,4 , i .

1 i i ,a i n . , - 4 .m . .7.,.*

i

-h,. i . i ..< .i < ,,,, , , , , . i ,s i

-y .. .., ..: _ q,o v..

. 1

. . i . .

i.i -4, .. . . . , .. .

..t i . ! i4 , i .. , a 4 . . .

w=w

- g= ~_v -

. - = - e- a _ _ s = ~- - -=m -;

.a. x :

= ApM_ =-x=w= E= = =-x====rau=+.:=a. m -?,e.

l D m -  %=aA -

aw = mr-&=w=-m^ c =_w== c-a-x =M -i~ aun t*5b+===c --. - - - - - ~ -

f ; /..

  • G. , , .1. ,--.,.m_=,-....m.y=rr---  :=-.=--___.--z---.- s.

-'t 1 -- - -

- 5- . - -

=--=.===&---%--.:=1--Wr=_=_. =:

_a w_ --

.=x. -- :_

=:::z - ._-

:  : ==- =-2 =T=-

~1 E ,

. 'f, .

r-

^ ,

==:_._--g===~ = == --

==_.d=.~.._..__u==..=-1

--v,._-._--- -

.._,__~

' . s.y..,,.g, .s:

s,_. -,

{ It _===.h:===_=.-- -._  %~p- ' 7EG5 E%4 i=r3m -- g;

, ____ _ _p=M -mn ~ s V-u-m=i-m-- wi-D t-a =

5 @-T=i [^il(--QO -2%sfg_*-;-h_Ig gMMwn3_jf s=@- ==e

-;c+ -

-mmassw Aumn-a .c

~ ..

5=i;- T'rL

  • . - . . - -sun .-4 -

.= .-

M My

  • f Y.lk..>~ T 51_7'I W i"*~ m'7

==

w v ==_s%= y =.=m - -as. == - :.n-===- = w-=- =n

_ _ _ - . _=-=. = ~ =

=

=._===a-----,*-

-"====c=-- - - - c- ku.

Q

= -i. m~-

==r=t--~~g=_h~h-@=hyEpM J2pmd

, Q.,P ed .'....y' 2 mzt =

&R& ^- ~, = aw=im--C -^~:~~~~ =- T--~-~~~~=

.W M=l=i-?[j&f a.

y - --

..s-

=; w -. =p ;p...

.g

(~ . : :. ~.,, ,.

3,
_-. m _

\ _m._ +** -+ -7

. v.

4

. . ,..:.s :9:*= 2.

  • r ,

e-2.

v-4::. g -V  : .

?. ;.1

^.w s'.W. .; . i  : ,

n..,.. .

a 2 .

i <ii

,- i

, i

. . . .i

.._ ,1 . .

1

.2

. . , . ,^ ,,

. 4

'1 ii mi ,

1

,! . ..a . > i .. . ., . - . . . > - ' . , 4 . . .. .

-/; e. ' - e.

4 . 1 y> .

. "p t .sy,.m,sm~m .,. p.m . - n. - . , ,,, .s : w.y

.W sc y,.yJ . 4 ,yd. . n . ...

w w pe ,p<m*-w%g.@h"-by.s4.q.p.'y.5%-p3;&eg vv:

w: v d~ .  :.

. .W ?;- - .% . h, q.26. v \. mW. $ yd;.w, .,-

-t Q p.r .7

.f.=:.. . . - .Q _  %.. ,e w ~::~,C om d- Dy.Jc.c. -

._i6.4.4. . ...m' m. 4. ^qh.

u . ...~a._ .m.~. , ,. Pa ge 1 o of.- - .u. ..

..p. . .- , . . + . .. ..e ==> .* ** e* **o.= - - - ~-- - - -

O e I

' e We

. N- -11. F - A

. . go . .

Ihf._.-

_vJm _ sgy 3 --.

  • Iwyf v

m . m .

y%y--- w '%e'..'NhLa

-' Y .

- 88. - -

- %r

- 1

-- y T

3- m_ ;

'1 ia I EutY

'-. n ' aE BWm,E T

y m,,

y.r,a ::._v, r.p a

-=1.A. m ia J

-w., P.m-_P*w u

^* : - rag'

==

C iF.

= 'ae'P h - Ew3'I-.- IA '

^,

^-^

- I'wLIM"F- =w I

i

,J 3

4 eder i1 Orm x x s

. 1 N

'x s ..s s i M ~. - s v s' s s m

- - - ..x s s1 s

r u ?7:i .Ir- a iri .

A i.

1

-x r= 1  ; wn r= . , rs ru . .r rmr :r-y) -s

>- '. 's s'. m .

- ,/ T N,-.. . .'e - A'.,'., .L,.v.,.-

-- 1^7 -

g

,x

. .._W s /Ps X 14. .

y M 'ssT.s.sT. ..s

.E rumwx i.

sss X s.

4. s

. 5 Y _ %

s.1Nx~ x

~

C x~. ~

_ s , . _ __

V'-.__._

.- r. _ _ _ .

M

x. 1
s. _ I.I.Y -

.'.h . >.

I

-IT T ..T .b~. a._?- .ban'__. . .

~

e .~. ~

.X tf_

X.. .

~X...,.

c . ~

. . s.1.. . .

s. R.

s

D g,
  • .%.'s .

m1s.X'J s1

'.. m.

M. 1 m,

u_ s._ .

. _ ._,s .,

f.

. s. ..,., .

s. .. .....-.. . - ...AA '

1 _._. _

.__.Em 1 -.

s 1__.' i. _I M_9 _

1 ,.T. .

lI_

NsX1 m X

T.

s a-E Yh Z1L. M . A .

-6 1 A 2  %.x1

, m- -

ra m.  %

. 7"

. .-', ._ -I_:1_'1 J, .. ..-.

I -T s

an I m, .uix at---- 2 sh 1N i:- - -. -

I

--,EJr . .

R.

.'s.'.

. .r 03 i 's

p ..

s s

t .j. -

x -- . s s N'3 ,

ss .

s.. ~

~

E . '

s

w. .A  %\. \

..x m

- s xs ,

m- ______ _.. ..i ivI u a m. .

m=. I -s a m D63 V ..3gr 6 -' = - ua s

2 s s.

X X.

I o 3- #/ 5 7

/ -

2. s. s 92M -rrp-c.p, TIME (DAYS) Pace 10/of 26

, }629(79Z4/J)/sf .

The slope of the decay curve (from Figure 3) is -18 CPS per haur or -0.0427 volts / hour. (This si the steepest slope obtained from the range of shutdown slopes provided i.7 Reference 10; which is conservative). - -

Thus: ,.

Top limit of equipment alayw .- = 0.825 volts (relative) setpoint is Bottom I?mit of equipment alars = 0.60 volts (relative)*

setpoint is Delta limit = 0.225 volts Time delta limit available = slope of decay = 0.225 volts 0.0427 volts / hour before resetting -

Time Between = 5.28 hours3.240741e-4 days <br />0.00778 hours <br />4.62963e-5 weeks <br />1.0654e-5 months <br /> '-

resetting ,

In the procedures, the operator will be informed to reset the equipment alarm setpoint within a + 1/4 hour range. Thus, the reset time will be conservatively set to:

5.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br /> The equipment alarm setpoint will be set, in order to support the above reset time calculation to, 0 .60 volts above the current flux indication.

  • Note: This number was chosen since it is in the allowable range on Figure 4 and it permits a reasonable period of time between alarm reset.

l l

Specification No. 9270-ICE-6618 Rev. 00 Page 21 of 26 9220-zcs-sc.or

, , ,6,v(79Z4/J)/sf-22 TABLE 2 SETPOINT CALCULATION RESULTS Final equipment alarm = +0.60 volts setpoint (delta increment above .-

highest current flux level)

Periodic reset time = 5.0' hours (Refer to note below) .

Allowable setpoint value =i +0.035 volts (for periodic testing of setpoint bistable) l l

1 NOTE: There is a + 1/4 hour dead band around this periodic reset time within which the operator must reset the equipment alarm setpoint.

Further, the equipment alarm setpoint only l needs to be initially set after entering Mode 3 and then reset for up to (6) days.

l I

Specification No. 9270-ICE-6618 Rev. 00 Page 22 of 26

~

, , ;629(7924/J)/sf-23 4.0 INPUTTING OF SETPOINTS The manual BDAS has two meters on the front panel. One meter shows the current flux in cotnts per second (CPS). The other meter is for inputting. the setpoint also in CPS.

The input for the sitpoint in CPS can b.e found by~.bsing Graph 5.

The following steps should be followed: ,

1. Look up the current flux in CPS off of the appropriate meter. .

Read it on Graph 5 by going across to the process line.

2.

3. Go up to the setpoint line and "go across to read the flux setpoint on the left-hand side.

These steps are illustrated by the dotted line on Graph 5.

This value is the flux setpoint to be inputted every 5.0 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />

, + 1/4 hour. -

Specification No. 9270-ICE-6618 Rev. 00 Page 23 of 26

.-e=1. a'f. a .i. . ~~ *rt ..ah *uG..k',..

.m

.,' ~. . :,-- . . o , . .. ~ .U.. }*ds. ',.4 . . .~p . .; ..

v

  • M... m*
  • n,, w ,W*J %. " J -- * :.+Wr g
  • M';^;* .

' Qu,J e

. c.d. .c@. ... . .. t s . eb

. ..e n* &. .y ..c1

.. e . J. 5 * . .  %. M'.i. Cw, ,u*

  • v _,. s..,~.e.. Q .tv...J.--

p rT .-(**:

Aa. .s *..pj?i g %.4 ,.. T Y'.... ..s'..- . . = -

?'~ ** P % ~' 3' r ', , ".,%..> . ' *" e~ e . Ny: 4 q.. 3

A d.q:M .'p"r'.-J~*jJ.J"ii4* .

s .

q.qQg.-s- . ' , . : t .i *y-. P

  • s' ? nn*:.V ". .V .?. . .

m. v .m;n m m.- w.;-g.-- - r x== m--- --- _ ;=e fc _= w-mg

.,,, , cym _m

- -.,q,

.s ..A. :, - -- -g--w=.=, -x-=w: _n g= y.

=-

'-~~s.S- - - -R _=---:,.:-.

= MT.w=~~= _w. m.. --

.=t=M9M.w. --- ,5=w--i==s:.g.-

. . - . - ~ - - - ='.Lw= = - - ._ . - - - . - - - -.~.._:. ^'

'4 G ----- - j' &)--~~==;----

^

. - - - - --N*bEEE r-

;M '$- ~'"P =--% ^ ^ ' ^ ^ ' ^--~.3'~^^^- 1- ~ -

mTPO.aG= Law

  • y . - -

r.;.

-- ==== ,4 z p

=3-- =_ r, _ - = =5 _ _. r- - - --_

&*.t.*'s

.,,a..

m .y,c_._._

.~* .

-----~-

aff

.N. ,e

.f

  • y 7. g~, ~~ - - -

-- n -;.n w e -ey"z t 5 +-- . g = n=:;W.x

=

- ~ 4 -s-=15 - : pmM.w -

%** 1 w Pn m: = w -- m5 -?- -

  • * ' ' '-"-===.:3" ' ~ " - -

e***5hL'"' D

-* -. ~

u

  • . 4^

'm-=-. sad.*=--".-"a*W-=-,2m--.---MT'.~-~1.-^=.--=~*=v-------l~f--L5'J-.- m"'--,~===T=r

_.__--..,.x__._-_--.=,----.- .---w= - - - - - ~~--_=:--- .--.'."" , .,3

.g ~, . - - -

s-

,2C1'._l^3 :s_i-...=..--.=.=.a-r_ -----

_=

=s ._.= -

w -. .

. = ~ ' . -  : m.= . r ---- - - Q ==~:x ;

-__4-_=__-_2--- . .:


:==___-r==----=----v.=- ._ _- -

==_g _=_- _ _- ,

.*. t y :g=-

_ : 2 -- --

r =3 t- -4,

+ ?_

-- - f.=p.

.. ,g,, .. _

av -

,. g. _._--~_a__.-.- ~~~

~~ .~;'  ?. 13;'

, Z*r- (. . * ' ' ) . *

.e

=~.

4 a.. , 0. . . . . . a.7.

,e -. .

aV ..,-*

(y a.I--- ..$.-

g .

d I E

+e

.:*.Q ;y' f n .c r

_ , '- ps 1

. _a

-y' . e s

i = a i i i .-'I I M  ! I i I i'f i - 1 ( I,.

Q * .p* #

Y,'<.****- 4 1 * ,I i

i i j ' i t * , I i , t 1 6 e i .MI I ma# 1 i 1 - I ie i i

  1. i i  !

I I.

e. *

=4 _i.'. w _ w,_-._.,

6

i. . . i .i . . i . . 6 f . r y . i.6 + .

p,m.;., go 1

w= n _

n.: g_w gim_ -_ /$ $,m__. _. _..- -. -_- =- -- -. -, . = - . ' ' ~ - ~^ .~'.2' e , m m ----w.^w. _ - . _ _.. ' ^ . - ~ ~ ..- . .::--- " n 4-

, ' . ~ -6 . . b' . g====-O . _ . -'. --:v =Y. = '^ .,

- ~25 4. .==~-=

-u-=-_ -~ -- N

-==?-.-.=i_--'m --- "K^~~~%==,.=a=--a~^.^~---

p, . . .~g e _=_; *

-:.-__=---.._.-,=_--=_---~,~^~.~.~==.------.-."_.--~'^':~-~~X'~~-

,., h. .

.y===== __ _.=_s.--_-_---_ _- . _ _ - .

=-

---z=,.1-,

, e .. a.;* s 6 - +

.* ..i . 5. _ -- - --

_ - Y I: - -

Y?^ , -- - . - - - '.

~~

Y=b- -n_--- __

Y- -

?N ~ = '

f&, - . .----.__=.______._-,--:==--__ : - - - - - - -3 y

p -

.wg,9,. =.n. _ . __ =- -

g. --- - --- ry -

?

.N * ,.

'.W.*., g-- -

.c, _ - - _ _ - - - - -- --

  • qs e

. ,- ,n

.~ , .

9

,#'d . / 1

%

  • l l J - I I h {

i e / i I t t 8 I 6 1 , .

4 g i } i e f e 1 /-

y . , , , . - . .I, i, e.

g .

t, _ .i v+- - 6

. c--w - w=- - .+=- w & w---s =F -% 2 = =-e --~ - = = === li - - - - -

- - -^ -

u- -

s =  :

=.-. -== == =a

~~-----4=_m=p==-----=_i=--==1-r========-====y====-,=-=--3 --

= = ~- .= -- - - - - - ----

r

---r-

.== .,. s

~--_=._._-----=_-.~---_.._,r===~==~.--==..-y=---.---_-_ --- --

-- . t f- -

---.4...

. *~' y- =

=._. -- - - - -

s.n -

.--r ---

, ,-m, , c. s *- =  ;-_ _ __

f _

  • y .-

a- ==~=n=*P-=- - t s*W=2' "E iE<=v=eEq sOz .2

~*

. w><s~~~~ 75.=--

~ ~ "

j a .pg= s M_ -_'Z ~ =i^=l-~.- ~~-. ~h= ,&W~-5-%-

-- w_% .

. - ====-_==-a-

==m- = . s_._

Ss 2^~/ _p.+h

^--' WL' -

n=

^f=^^^

" -r

~="-Y~'~~.^^Y*~~~~'"-'h-^Y.:Y* *i~b?T:~~ T"-.

E e=r= ms; p

w--

u _ _ .

r- ,,-> -=:=--- =r --

r--.-.====~_-__.-,.=.===..---

a - .: - - - - - - - - - - - - - - - + .*----r-- .

===----~':=~=-- ~

- - - ~

. u.3-- _=- -

'4^*-..

s;

, s e "r .. 2.-- -

.z..- , <

0=..

i e i

c, ., ...'. . - r z

i I i

i

.,oe 4- t i i ie if i , a ' i

-* gq . i . . . i i i i

  • g.

i f- .

. f. *=

u - - - - ---

2= 5 3 4-F3: = ^= _H:._ .__...

o . pQ~ .  ;-i. = b c; , +- w u f- . = ^ F = ' - ' = =" ' =2 -

--- -s.-- ~ ^ - - ~ ~ - = - - '==~^ ---. - - - - . - -- _ - -

_.=.=..=._'T+..-=:-=n_.==---.f-_f.--_-------

~

,,K. ,

.ao__ -.

- - - - -- = - a-t--------- ---

,ed - --

t

,wsea ,, yp_  :=.-.=.==.=~-=-----.=.--.=-,/=;.-..s=--==---

- - - + - -

== - - - - - - - - - - -

=._.-_-_ -- - -

  1. - -4

. .vs. 3Y, so. _f l- o. w* =% E k=%sfe--%. -E-xmW=nL__.

I

    • ~ ~'- M w =-.t! -m :. --+. -+ -.

=-=n- a=;= .==-;

=w =-c= -- tx&-+

= =37zgm T z -- +=E_== == %s=e=T =- -
T ".: -2^'

a=_s === == . w g- = =r- - Ai=== .-i- - ..

- = = - - ---

__ zan=w- - - - - _ .- _ . . -

se_ g_:=-a _m.-..._=-.---===-.----

. u6 .. _ . -

-_=

= s ==- - -

.-===- - - - -

_-_.-._==_.=_---,,::=--_=.=====,r- *._ _ -+ --- -

.. 5 u ~=-==

+n =-* - :- :-=_ _ =.. _2 p==:~ . _4-

_ ga,p , w. .

E --.-_-- -

- *3 ga A.. to.

53 ww ,

en ,

l iA , i ,

[ i +

i if ' e

. i y .- so, e - . _ s 'T.. .-_. s. t.

t y m.=__-,.

s '

__ m___ . . _ _ . . m_ s___=___.

. _ _ __m__,

__.--[-

7

--~~~~~-

g,, _ . _ _ _ . . _ _ . -_ ~

L' ~~ ~ *=" -f-t -_-__._._.__~i_ ---_.Z _T. ~EE =~- _ _ _ _~ ~~~-~' __ Z --T. T - ~- ~~ T

._ - ^ -

.p'g y-- -M = + ~=T ,=/_sG_- ~_=- Z^= ==f .' Z

4. ----r---

.._.____g.- .--

Q . - - - .p - - f --

g T** n -nc -  :=-+'T=

em m a== r_W.--n-n-ame-==- =1 1 a-=+ Ca== - -__ -r -= --s1:'4 = _=a_p==W- == 7---- -

=w=.

- w=ra mee-cn-

_=- ==--- g=3-  ; .- ====-
7. - a_

r-r ~~

_ = = - = . . . . _._ -ym. . =_3__ m..y---_r-..-_...-~_,.-_,-

a,

-_,----,=~(--.----_--m.=--,-._.--=.=-_,_.=..,----.e.

- =

... _x=. .

_ _ = _- _=_ = . _ - _ . - _ -_ - - .- .

3= __ .

~.

.: s, =[-= ==f- :_- . ~ - _ - - - - - - ._

=,_ -; - - --

' /"N rf U ,

H.

. e,s - >

2.'. I J

  • g- J I t r,

.e 1.

o  ; Z 3 Y S-G . - 7 8 -9 10 roc ^.s- k .

@22a_-A m-41B _

VOLTS -

Page_24f 6f 26 _ i, .

[629(79Z4/J)/sf 5.0 ASSUMPTIONS

1. The Baron Dilution measurement channel power supply variation is assumed to be negligible (from Reference 7).
2. The Boron Dilution measurement channel is assumed to be in a

~ temperature controlled environment with a teSperature variation of 15*F (from Reference 7),* -

3. Test equipment for calibration of the Boron Dilution measurement channel is assumed to be four times more accurate than the measurement instrumentation. (Reference 7). .
4. The variation in the observed s.tartup channe1' indication is assumed to be less than 12.3% of full scale.
  • 5. The operator's ability to adjust the setpoint is a'ssumed to have en accuracy of +2.0% of full scale.
  • 6. The operators ability to read the graph for a setpoint flux is assumed to be 12.0% of full scale.
7. The uncertainty due to drift is co'nsidered negligible, if the equipment is recalibrated within the time interval specified by the manufacturer.
8. It is assumed that the thermal power i: zero, uniform mixing occurs, and each charging pump produces 44 gallons per min.

flow rate, for the Boron Dilution Analysis (from References 2 & 3).

  • 9. The operators ability to read the flux off the meter is assumed to have an accuracy of 2.0% of full scale.
  • Note: These represent conservative est. mates.

~

l l

l Specification No. 9270-ICE-6618 Rev. 00 Page 25 of 26

r 629(79Z4/j)/sf

6.0 REFERENCES

1. NRC Standard Review Plan, " Chemical and Volume Control System Malfunction That.Results in a Decrease in Boron Concentration in the Reactor Coolant (PWR)", Section 15.4.6, da^ed April, 1975.

s.

2. A. A. Mody, "PSS Input to the Waterford Startup Channel Alarm Setpoints for Boron Dilution Protection", Memo Number C-PSS-81-008, to G. P. Cavanaugh, dated July 27, 1981.
3. A. A. Mody, "PSS Input to the Waterford Startup Channel Alarm Analysis: RCS Mass Replacement", Memo Number C-PSS-81-013, -

to G. P. Cavanaugh, dated September 10, 1981.

4.. A. A. Mody, "QA Verification of PSAE (Formerly PSS) Data Transmittal to Nuclear Engineering on Waterford Startup Channel Alarm Analysis", Memo Number C-PSAE-82-004, to G. P.

Cavanaugh, dated March 15, 1982.

t

. 5. " Functional Design Specifications for Boron Dilution Alarm System for LP&L Waterford 3", Functional Design Specification.

6. P. Dowgewiez, "Waterford Unit 3 Startup Channel NI Uncertainties",

10C to M. G. Tsiouris, dated July 8, 1982.

7. "NSSS Manual Boron Dilution Alarm System Unce.rtainties",

Analysis Number 9270-ICE-4607.

8. Recording of Startup Flux Channel from ANO-II plant, dated September 3, 1980,
9. L. B. Tarko, " Source Range Monitor Response Ratio for Waterford III, Cycle I During Baron Dilution Events", Memo Number C-PH-133, to M. G. Tsiouris, dated September 8, 1982.
10. D. W. Stephen, " Source Range Monitor Response for SCE 2/3 During Boron Dilution Events," Memo Number S-PH-257, to J. G. Castagno, dated December 8, 1980.

l Specification No. 9270-ICE-6618 Rev. 00 Page 26 of 26

-