ML20098F586

From kanterella
Jump to navigation Jump to search
Forwards Status of Open Items Identified in Section 1.7 of Draft Ser.Resolutions to Draft SER Open Items & FSAR Questions Also Encl for Review & Approval
ML20098F586
Person / Time
Site: Hope Creek PSEG icon.png
Issue date: 09/28/1984
From: Mittl R
Public Service Enterprise Group
To: Schwencer A
Office of Nuclear Reactor Regulation
References
NUDOCS 8410030160
Download: ML20098F586 (109)


Text

'

' '1 Pubhc Service

.l- Electnc and G is Cornpany 80 Park Plaza, Newark, NJ 07101/ 201430-8217 MAILING ADDRESS / P.O. Box 570, Newark, NJ 07101 Robert L. Mitti General Manager Nuclear Assurance and Regulation September 28, 1984 Director of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission 7920 Norfolk Avenue Bethesda, MD 20814 Attention: Mr. Albert Schwencer, Chief Licensing Branch 2 Division of Licensing Gentlemen:

HOPE CREEK GENERATING STATION DOCKET NO. 50-354 DRAFT SAFETY EVALUATION REPORT OPEN ITEM STATUS Attachment 1 is a current list which provides a status of the open items identified in Section 1.7 of the Draft Safety Evaluation Report (SER). Items identified as " complete" are those for which PSE&G has provided responses and no confir-mation of status has been received from the staff. We will consider these items closed unless notified otherwise. In order to permit timely resolution of items identified as

" complete" which may not be resolved to the staff's. satis-faction, please provide a specific description of the issue which remains to be resolved.

Attachment 2 is a current list which identifies Draft SER Sections not yet provided.

Enclosed for your review and approval (see Attachment 4) are the resolutions to the Draft SER open items and FSAR Questions listed in Attachment 3.

f 8410030160 840928 0' O'

PDR ADOCK 05000354 E PDR p The Energy People 95 4912 (4VI 7 83

Director of Nuclear

-Reactor Regulation. 2 9/28/84 In addition, pursuant to: discussions with the Containment Systems Branch, enclosed (see Attachment 5) is a copy of '

revised FSAR Section 6.2.5.2.1 previously transmitted on September 27, 1984.

-PSEEG will provide an agumented inservice inspection program for the HCGS outboard feedwater check valves (F074 A&B).

This; inspection program will include a magnetic partical or

' dye penetrant examination of the outlet and inner valve body surfaces at the first refueling outage and at other times when-the valve is completely disassembled for maintenance.

This surface examination will be sufficient sensitivity to detect a minimum crack length of 5 inches.

A signed original of the required affidavit is provided to

. document the submittal of these items.

Should you have any questions or require any additional information on these items, please contact us.

Very truly yours, lll /

Attachments / Enclosure C D. H. Wagner USNRC Licensing Project Manager (w/ attach.)

W. H. Bateman USNRC Senior Resident Inspector (w/ attach.)

p.

UNITED STATES OF AMERICA NUCLEAR REGULATORY COMMISSION DOCKET NO. 50-354 PUBLIC SERVICE ELECTRIC AND GAS COMPANY

'Public Service Electric and Gas Company-hereby submits the

! enclosed responses to DSER'open items and FSAR Ouestions, and revised FSAR Section 6.2.5.2.1-for the Hope Creek

Generating Station.

The' ~ matters set forth in this submittal are true to the best of'my knowledge, information, and belief.

Respectfully submitted, Public Service Electric and Gas Company I

By:

Thomas J. Mjfrtin Vice President -

Engineering and Construction Sworn to and subscribed before me, a Notary Publjc of New Jersey, this 7#raday of September 1984.

<' 2'M -

///[

DAVID X. BURD NOTARYPU8UC OF NEW JERSEY

' MYComm. Espires 10.~3.s5

,i

'MC 28 02

. _ , . _ _- . . - _ . - ~ . . _ _ __. . _ _ . . - - . _ - . , , , . .

DNFEs 9/28/84 j-4 JEDOBENT 1  !

- i 1

j DSER R. L. MITIL TO '

SE:TIGE A. SODE!NCER OPEN NLDSER SUBJECF SUGUS IKITER DNTED l ITEN 1 2.3.1 Designr-basis tamperatures for safety- Complets 8/15/84 related aaxiliary systems -

,- 2a 2.3.3 Accuracies d noteorological Ctsplete 8/15/84 h measurements (Rev. 1) 2b 2.3.3 Accuracies of meteorological Caplete 8/15/84 measurements (Rev. 1) 2 2c 2.3.3 W = -ies d meteorological Couplete 8/15/84 L

measurements (Rev. 2) 2d 2.3.3 Accuracies of meteorological Ccaplets 8/15/84 1 measurements (Rev. 2) 3a 2.3.3 Upgrading d onsite meteorological Camplete 8/15/84 messarements program (III.A.2) (Rev. 2) 3b .2.3.3 Upgrading cf onsita meteorological Ccuplets 8/15/84 naasurements progrant (III.A.2) (Rev. 2) 3c 2.3.3 Upgrading cf onsite noteorological tac Action measurements progrant (III.A.2) 4 2.4.2.2 Ponding, levels Couplete 8/03/84 Wave impact and rurup on service Complete 9/13/84 Sa 2.4.5 (Rev. 3)

-Water Intake Structure I

2.4.5 Wave impact and runup on service Complate' 9/13/84 f 5b (Rev. 3) i ,

water intake structure Sc 2.4.5 Wave impact ard rurup on service Complets 7/27/64 water intake structure Have ingeet ard runup on service ccuplete 9/13/84 I 5d 2.4.5 (Rev. 3) water intake structure

2.4.10 Stability cf erosion protection Ccuplete 8/20/84 6a structures i

2.4.10 stability cf erosion grotection Complete 8/20/84 6b structures 6c 2.4.10 stability d erosion protection Ccaplete 8/03/84 structures M P84 80/121-ga t

'l 1

- i

.i JUDOBerr 1 (cant'd)

DSER R. L. Mrf1T. 10  !

cesi sacrIGE A. SOBROCER ITBE NLBGER SUBJECf S1XIUS IJfrTER DNEED 7a 2.4.11.2 Theamal aspects of ultimate heat sink complete V3/84 .

iI 7b 2.4.11.2 Theamal aspects of ultimate heat sink @mplets 8/3/84 l 8 2.5.2.2 Choice of maximum earthquake for New Complete V15/84 Ehgland - Piedmont Tectonic Prt: wince 9 2.5.4 Soil damping values Complets 6/1/84 A Ocuplets t

10 2.5.4 Poundation level roepanee spectra 6/1/84 l 11 2.5.4 Soil shear d ili variation Complete V1/84 12 2.5.4 Ocabinatica of soil layer properties Complete 6/1/84 13 2.5.4 Lab test shear ardali values Ocuplete 6/1/84 1 14 2.5.4 Liquefaction analysis of river botton Ocuplets 6/1/84 sands

j 15 2.5.4 Tabulations of shear moduli Ccaplete 6/1/84 i

! 16 2.5.4 Drying and wetting effecti en Ccaplete 6/1/84 ,

ll Vincentoint f 17 2.5.4 Power block settlement monitoring Ocuplets 6/1/84

': Caiglets 6/1/84 lI 18 2.5.4 Maxima earth at rest pressure l1 coefficient '

i!. Ocuplete 6/1/84 i! 19 2.5.4 Liquefaction analysis for service I water piping 20 2.5.4 Explanation of observed power block Ccaplets 6/1/84 j.-

I settlement 11

' - 21 2.5.4 Service water pipe settlement records Ctsplete 6/1/84 f 22 2.5.4 Cofferdant stability Complete 6/1/84

,l 5

f i

M P84 80/12 2 - go i

. _ . . - . _ _ _ _ . . - . _ _ _ . _ . _ _ _ . _ _ _ . , . _ _ _ _ , . _ _ . . _ _ . _ . _ _ _ . ~ _ _ _ . _ _ _ _ - - - - - .

~

l l

JurtROBENT 1 (Cont'd)

DSER R. L. MITIL 1tJ A. SOBENCER GW SEC1TGI LEF11R DMED INN IESMR StBJBCf STR!tB 23 2.5.4 Clarification of PSAR Tables 2.5.13 cmplete 6/1/84 '

and 2.5.14 2.5.4 Soil depth nodele for intake Cdmplete 6/1/84

,l 4 24 structure 25 2.5.4 Intake structure soil nodeling Cbsplete 8/10/84 26 2.5.4.4 Intahm structure sliding stability W ate 8/20/84 27 2.5.5 Slope stability Complets 6/1/84 a

i Cduplete 8/30/84 i 28a 3.4.1 Flood protectim I (Rev. 1) 28b 3.4.1 Flood protection Cduplete 8/30/84 (Rev. 1)

I 28c 3.4.1 Flood pr. h tien Complete 8/30/84 (Rev. 1) i 28d 3.4.1 Flood protection Ccamplete 8/30/84 (Rev. 1) 28e 3.4.1 Flood p,rotection Complete 8/30/84 (Rev. 1)

. 28f 3.4.1 Flood p:otection couplete 7/27/84 28g 3.4.1 Flood grotection Cdsplete '7/27/84 l

3.5.1.1 Internally generated missiles (outside Camplete 8/3/84 l' 29 contairument) (Rev. 1) l 1.'

30 3.5.1.2 Internally generated missiles (inside Closed 6/1/84 8 containment) (V30/84-Aux.sys.Mtg.)

31 3.5.1.3 narbine missiles Ccuplete 7/18/84 l

I 32 3.5.1.4 Missiles generated by natural phenomens Ccuplete 7/27/84 33 3.5.2 Structu:es, systems, and ccagonents to Ccaplete 7/27/84 i be grotected fras externally generated missiles

m gggoggNF 1 (Cont'd) ji '

! DSER R. L. MITIL 10 SBCrIGI A. SONENCER GWI ITEM NIEEER SUBJ8CF 2N IEFTER D M D

9

! 34 3.6.2 Uhrestrained whipping pipe inside Caplete 7/18/84  ;

j contalment .

lj 35 3.6.2 ISI program for pipe welds in Czplets 6/29/84

i break esclusion zone 36 3.6.2 Postulated pipe ruptures Czplets 6/29/84

.; 37 3.6.2 Feedwater isolation check valve Caplete 8/20/84 cperability

!j 38 3.6.2 Daeign cf pipe rupture restraints Caplete 8/20/84

,s 39 3.7.2.3 SSE analysis results using finite Caplete 8/3/84 element method and elastic half-space

!?

we for cataiment structure 40 3.7.2.3 SSI analysis results using finite Caplete 8/3/84 element method and elastic half-space epsroach for intake structure ,

41 3.8.2 Steel containment buckling analysis W1ete 6/1/84 42 3.8.2 Steel containnent ultimate capacity Caplete 8/20/ 84 analysis (Rev. 1) 43 3.8.2 SRV/IDC pool dynamic loads C:aplete 6/1/84 44 3.8.3 ACI 349 deviations for internal Caplete 6/1/84 structures 45 3.8.4 ACI 349 deviations for Category I W 1ste ' 8/20/84 structures (Rev. 1) 46 3.8.5 ACI 349 deviations for foundations M lets 8/20/84 (Rev. 1) 47 3.8.6 Base mat response spectra Wete 8/10/84 1

(Rev. 1) 4 48- 3.8.6- Rocking time histories  ::::splete 8/20/84 (Rev. 1) 1 I M P84 80/12 4 - gs 4

-,y ,e -

--e-~,,-.,,,--,-,,,,g_a_.,nm.,ney-_,,, , . , , , , - , _ _,w_

, ,,_,, meg , _ , , - - -

ww.m m

i

j- '

l

- ATDOBENF 1 (Cont'd)

?

. ENER R. L. METE.1D WBI SE:TIGI A. SQDEBKER ITEM NLMER SLBJBCF SUGts IErrER UGED 49 3.8.6 Gross ocmcrete section Caplete 8/20/84 (Rev.1) .

50 3.8.6 Vertical floor flevihility response Caplate 8/20/84

% v. (Rev. 1) 51 3.8.6 Ca parison of Bechtel independent Caplete 8/20/84  !

verificaticm, results with the desigtv- (Rev. 2) basis results 52 3.8.6 Ductility ratica due to pipe break Ccuplete 8/3/84 53 3.8.6 Designi ci seismic category I tanks Ccapiste 8/20/84 (Rev. 1) 54 3.6.6 Cabination of vertical responses Ccaplete 8/10/84 (Rev. 1) 55 3.8.6 Torsional stiffness calmlation Ccaplete- 6/1/84 56 3.8.6 Drywell stick mndal develcoment Ccmplets 8/20/84 (Rev. 1)

)

. 57 3.8.6 Rotational time history inputs Cmplete 6/1/84 58 3.8.6 "O" reference point for auxiliary Ccaplete 6/1/84 building model 59 3.8.6 overturning nrment cf reactor Ccmplets 8/20/84 building foundation mat (Rev. 1) 60 3.8.6 BSAP element size limitations Ca plete 8/20/84 (Rev. 1) 61 3.8.6 Seismic nodeling cf drywell shield Ca plete 6/1/84

. well 62 3.8.6 Drywell shield wall boundary Complete 6/1/84 .

conditions 63 3.8.6 Reactor building dme boundary Ca plets 6/1/84 conditions O

M P84 80/12 5 -

gs

+ ~- -r ,, , --- m..,, ...a- - -,-,mnc----- ,,m.-,- ,,n,_n.n._,, ,--,,..,,wn.,~,.,,,,_,_,_,.m.-, .m.,.,_ ,__-,..mn,m,--,.,-nre-

~

1 i

.f KrDlanner 1 (Cont'd) l DSER R. L. MITIL '10 i GW A. SQRENCEa l

!ECTIGl. ,

sancr sums inesa tzrma Duno

.In _

Ccuplete 8/20/84 64 3.8.6 SSI analysis 12 Hs cutoff frequency )

(Rev. 1).

[

I

~* '

65 .3.8.6 Intake structure crans heavy load ccupiste 6/1/84

  • cp 66 3.8.6 Dgedance analysis for the intake ccuplete 8/10/84 structure (Rev.1) 67 3.8.6 Critical loads calanlation for Ccuplets 6/1/84 reactor building &me

. 68 '3.8.6 Reactor building foundation mat Complete 6/1/84 contact pressures 69 3.8.6 Factors of safety against sliding and Ccaplete 6/1/84 overturning of drywell shield wall

-70 3.8.6 Setemir shear form distribution in CcupInte 6/1/84 cylinder will 71 3.8.6 overturnirg d ' cylinder wall Couplete 6/1/84 72 3.8.6 Deep beast design d fuel ' pool walls Ccaplete 6/1/84 73 3.8.6' ASHSD dme nodal load irputs Camplete 6/1/84 6/1/84 74 3.8.6 Tornado depressurization complete

, 75 3.8.6 Auxiliary building abnormal pressure Ccaplete - 6/1/84

. 76 3.8.6 Tangential shear stresses in &ywell couplete 6/1/84 shield wall ard the cylinder wall 77 3.8.6 Facter d safety.against overturning Complets 8/20/84 d irtake structure (Rev. 1) 78 3.3.6 Dead load calculatims ccuplete 6/1/84 79 3.8.6 Post-modification seismic Inaria for Caiglete 8/20/84 the torus (Rev. 1) x M P84 80/12 5' - gs

--,--,---.---,--+,..,.n.,,,---,--. ,.n --, ,,,,,v-- ,,---,- - , - -,,,,---,--- - - ,n ,,,- , w-r -- ~ n n,n.-e,n,,,r-,,w, -

i l

l JE Ul0BE3FF 1 (Cont'd)

R. L. M1TIL 'ID

DSER A. SQDENCER WBI SETIGI SGMBCF SUGtB IATTER Dh3ED
,.-- IIEN NLSERR 80 3.8.6 *1brue fluid-structure interactions Caplete 6/1/84 i I 81 3.8.6 Seismic displacement of torus Couplete 8/20/84

, (aer. 1)  :

!- 8/20/84 82 3.8.6 Review d seismiic category I tart Caplete  !

dosip (Rev. 1)

)

83 3.8.6 Factors d safety for drywell Ccuplete 6/1/84 i buckling evaluation

' 84 3.8.6 Ultimate capacity ci containment Complets 8/20/84 j (materials) (Rev. 1) 85 3.8.6 Ioad combination ocasistency Ca plete 6/1/84 86 3.9.1 Caputer code validation Complete 8/20/84 i

87 3.9.1 Information on tramients Couplete 8/20/84 i

88 3.9.1 Stress analysis and elastic-plastic Caplete 6/29/84 analysis 89 3.9.2.1 Vibration levels for NSSS piping Caplete 6/29/84 systens-90 3.9.2.1 Vibration reonitoring progran charing Caglete 7/18/84 testing

. 91 3.9.2.2 Piping supports and anchors Cmplets 6/29/84 Cmplets 6/15/84 92 3.9.2.2 Triple flued-head containment penetrations l

93 3 J.3.1 Iond ombinations and allowable Complete 6/29/84 stress limits i

94 3.9.3.2 Desigrt of SRVs and SRV discharge Caplete 6/29/84 I piping i

I l

i ~ M P84 80/12 7 - gs i

_ .____ _- . _ _ .. _ _ _ _ _ .__ _ _ _ _ . _ _ . _ _ _ _ ~ . . _ _ . , _ . _ _

.- . . . .= - . - _ _ - - . . - . ._ .

AT509erf 1 (Cont'd)

a.  :

DSER R. L. M1TIL 10 A. SOBOISR

. GW SBC11GI avuus GTHRDNND ITEN IMMR StBJET 95 3.9.3.2 Fatigue evaluation cm SRV piping Caplete 6/15/84  :

f> and IDCA downcomers 1

3.9.3.3 IE Irfonmation Notice 8H10 Caglets 8/20/84 96 (Rev. 1)

- Ccaplete 3.9.3.3 Buckling criteria used for ocugonent 6/29/84 97 supports 3.9.3.3 Desip d bolts Ccaplete 6/15/84 98 3.9.5 Strees categories and limits for Complete 6/15/84 99a core mapport structures Stress categories and limits for Complete 6/15/84
  • 99b 3.9.5 core support structures 3.9.6 10CFR50.55a paragraph (g) Complete 6/29/84  ;

100s Complete 9/12/W4 4- 100b 3.9.6 10CFR50.55a paragraph (g) (Rev. 1) 3.9.6 PSI and ISI prograns fcr pumps and Ccaplete 9/12/84 101 valves -

(Rev. 1)

Isak testing cf pressure isolation Ccaplete 9/12/84 102 3.9.6 (Bev. 1) valves 3.10 Seimaic and dynamic qualification of Ccaglets 8/20/84 103a1 nochanical and electrical equipment Seismic and dynamic qualification cf Canplete 8/20/84 103a2 3.10 mechanical and electrical equipment 3.10 Selmaic and dynande qualification d Conglets 8/20/84 103a3 modunical and electrical equipment 3.10 Seismic and dynamic qualification d ccuplete 8/20/84 103a4 mechanical and electrical equipment .

i M P64 80/12 8 - gs

i - JtrDOBWIf 1 (Cont'd)_

4 3

.; DSER R. L. MITfL 10 (WW SETIGI A. -

g.fm maeER

^ '

SumIEr snaus M WEEED 103a5 3.10 Seismic and dynamic qualification of complete S/20/84 mechanical and electrical equipment

?

103a6 3.10 Seismic and dynamic qualification cd Ctaplets 8/20/84  ;

mechanical and electrical equipment Selmaic and dynamic qualification of Quplete 8/20/84 ji 103a7 3.10 mechanical and electrical equipment

! 3 103bl 3.10 Seismic and dynamic qualification of Quplets 8/20/84 mechanical and electrical equipment 103b2 3.10 Seismic and dynande qualification of Omplete 4/20/84 mechanical and electrical equipment 103h3 3.10 Seismic and dynmaic qualification of cuplets 8/20/84 mechanical and electrical equigment 103b4 3.10 Selmaic and dynamic qualification of Cceplete 8/20/84 mechanical and electrical equipment 103b5 3.10 Seismic and dynamic qualification of Ctaplete 8/20/84 l mechanical and electrical equipment 103b6 3.10 Seimaic and dynmaic qualificaticn of Caplets 8/20/84  ;

mechariical and electrical equipment t

103c1 3.10 Seismic and dynamic qualification of Ccuplete 8/20/84 i

mechanical and electrical equipment 103c2 3.10 Seismic and dynamic qualification of Ozplets 8/20/84 i

mechanical and electrical equipment i

103c3 3.10 Seimmic and dynamic qualification of Caplete 8/20/84 l anchanical and electrical equipment I

k 3.10 Seimsic and dynamic qualificaticn of Otmplets 8/20/84 103c4 mechanical and electrical equipment 104 3.11 Envircremental qualification of M C Action mechanical and electrical equipment i

M l'84 80/12 9 - gs l

L - _ - - __- _ --

l l

\

ATDOBENF 1 (Cont'd)  :

DSER R. L. METIL 1D !

A. SOBENCER l

- 0935 SECTIGE

' NM SIB 3ET 5"RRE IJfffER DMED

ITWI 105 4.2 Plant-specific medianical fracturing 3:mplete 8/20/84 l analysis (Rev. 1)
  • l IC4 4.2 Applicability d seismic andd IOCA ~:mplete 8/20/84 1 ceding evaluation (Rev. 1) 107 4.2 Ninimal post-irradiation fuel O:mplete 6/29/ 84 l

surveillance programi 108 4.2 cadn11na thornet corukactivity 0:mplete 6/29/84 equation .

109a 4.4.7 DtI-2 Item II.F.2 ~amplete 8/20/84 109b 4.4.7 DEI-2 Itan II.F.2 3mplete 8/20/84 l 110a 4.6 Ranctional design d reactivity 0:mplete 8/30/84 control systems (Rev. 1) 110b 4.6 Rmetional desip d reactivity Omplete 8/30/84

' control systems (Rev. 1) 111a 5.2.4.3 Pmtvice inspection 1;rogram ~.caplete 6/29/84 (cangenents within reactor pressure beundary) 111b 5.2.4.3 Preservice inspection program W iete 6/29/84 (w.y.c-sts within reactor pressure

boundary) lile 5.2.4.3 Preservice inspectica progrant M late -

6/29/84 (w.yn-iAs within reactor pressure I

boundary) 5.2.5 Reactor coolant pressure bouMary O mplete 8/30/84

! 112a (Rev. 1) l

, leakage detection 5.2.5 Reactor coolant pressure boundary M te 8/30/84 112b (Rev. 1) leakage detection l

M P84 80/1210 - gs ,

i l

_ -_ __ _ _ . _ _ _ . . . _ _ . . . ~ . .______ ._. _ . _ _ _ _ _ _ _ _ _

!F l

I - ,

NrtnOBENr 1 (Cont'd)

DSER R. L. MITE. 'IO l SBCTIGE A. SORetCER CPSI

~ ~

stb 3MT SDt!US TEFIER DRIED IISI NLDSER 112c 5.2.5 Reactor coolant pressure boundary couplete 8/30/84 I (Rev. 1) leakage detection 112d 5.2.5 Reactcr coolant pressure boundary Cm plets 8/30/84 (Rev. 1)

]j leakage detection ,

I L.

' 112e 5.2.5 Reactor coolar'. pressure boundary Ccuplete 8/30/84  !

leakage detection (Rev. 1) 113 5.3.4 GE procedure applicability Ccuplete 7/18/84  ;

)

114 5.3.4' Caspliance with Na 2360 cf the Summer Caplete 7/18/84 1972 Addenda to the 1971 A95 Code ,

l

! Drg weight and Charpy v-notch tests Caglete 9/5/84 115 5.3.4 (Rev 1)

)

fcr cicsure flange matorials 116 5.3.4 Charpy v-notch test. data for base Complete 7/18/84 materials as used in shall course No. I 1 17 5.3.4 Ccagliana with NB 2332 of WLnter 1972 Complete 8/20/84 Addenda d the ASME Code

!I 118 5.3.4 Imad factors and neutron fluenom for Ccaplete 8/20/84

,l surveillance capsules q

6.2 'IMI ites II.E.4.1 Ccuplete 6/29/84 j l; 119 120a 6.2 'IMI Itan II.E.4.2 Caglete 8/20/ 84 120b 6.2 * 'DtI Itan II.E.4.2 Complete 8/20/84 l 121 6.2.1.3.3 Use cf NURai-0588 Couplete 7/27/84 t

122 6.2.1.3.3 Tungerature pectile Ccapleto 7/27/ 84 i

, i

!l Ccaglete 6/29 / 84 123 6.2.1.4 Butterfly valve cperation (post l accident)  !

i.

a f

M P64 80/1211 - gs

t.

'3 ATTROneltf 1 (Cont'd)

DSER R. L. MITTL 1D WBf SECTIGI A. SOBENCER

- . r198 NLMBER SL1k7BCT STATUS MTIER DIG 1D 124a 6.2.1.5.1 REV shield annulus analysis amplate' 8/20/84

( a n y . 1 )-

124b 6.2.1.5.1 RPV shield annulus analysis Quplete S/20/84 (ame. 1) 124c 6.2.1.5.1 REV shield annulus analysis Cbmplete 8/20/84 (Dev. 1) 125 6.2.1.5.2 Design drywell head differential Omplets 6/15/84 pressure 126a 6.2.1.6 andundant position indicators for caplete 8/20/84 vacuum breakers (and control roca ala g )

126b 6.2.1.6 Redundant position indicators for Quplets 8/20/84

, vacuum breakers (and control roan

alarms) 127 6.2.1.6 Operability testing of vacuuma breakers cuplete 8/20/84 (Rev. 1) 1" 6.2.2 Air ingestion Ozg,Lete 7/27/84 129 6.2.2 Insulation ingestion C:mplete 6/1/84 8

130 6.2.3 Potential bypass leakage paths cuplets 131 6.2.3 Administration of secondary contain- Caplete 7/18/84 ment openings 132 6.2.4 Containment isolation review Caplete 6/15/84 133a 6.2.4.1 0:ntairunent purge systena Quplete 8'/20/84 133b 6.2.4.1 Contairunent purge system Omplete 8/20/84 133c 6.2.4.1 Contairunent purge system caplete 8/20/84 i

S

- M P64 80/12 12- gs l

-.- - - -. . . . - - - , . . - - _ - . - - , . - . - _ _ , . . - - - - . . . _ . . - . . - . . - . ~ . . - . _ , . - , . - . - . - .

A l

~

g13g3gerg 1 (Cont'd)

R. L. Mr11L "J) ,

DSER A. SODENCER

. GWI S8CITG8 SUGts IATTER OfGED ITSE IGEER SUSHLT Containment leakage tasting - Q te 6/15/84 134 6.2.6.

  • LPC5 and LPCI injection valve  ::cuplete 8/20/84 135 6.3.3 intericcks Plant-specific IECA (see Section M iate 8/20/84 136 6.3.5 (Rev. 1) 15.9.13)

Contxol room habitability Dzgdete 8/20/84 137a 6.4 6.4 Control room habitability n aplete 8/20/84

" 137b Control roca habitability C.aplete 8/20/84 137c 6.k Preservice inspection program for Dzplete 6/29/84 138 6.6 Mass 2 and 3 cagonents MiIV leakage control system r7 ate 1 6/29/84 139 6.7 Spent fuel pool storage D:mplete 9/7/84 140a 9.1.2 (Rev. 2)

Casplete 9/7/84 l _ 140b 9.1.2 Sport fuel pool storage (Rev. 2) i Spent fuel pool storage Casplete 9/7/84 140c 9.1.2 (Rev. 2)-

Cczplete 9/7/84 140d 9.1.2 Spent fuel pool storage (Rev. 2) -

Spent fuel cooling and clearup Ccuplete 8/30/84 141a 9.1.3 (Rev. 1) system Spent fuel cooling and c3sarup Ccaplete 8/30/84 141b 9.1.3 (Rev. 1)

- system Spent fuel pool cooling and cleanup Coglete 8/30/84 141c 9.1.3 (Rev. 1) system M P84 80/1213 - ge vs-,-e*.------~wnm- w ee , - rw -n-=-c, eve-,----, <,, ,--o e.,n , a m- e -w e w m w n m --w- e m-,, werm .-,-,m.=ww--we,-anw_, -pr-e-m >w -*s-w

)

A v

~i

.?l AFDOGENT 1 (Ocnt'd)

DSER R.L.MITIL10l A. SOBelCER  !

]it CPBI S8CTIGO sM IRTIER QUED l ITEN NIEEER SUW BCf 8/30/84

~

Sport fuel pool cooling and cIsarup 7-te 141d 9.1.3 system (Rev. 1) ,

141e 9.1.3 Sport fuel pool coolig and clearup 7---ur Jats 8/30/84 system (Rev.1) 9.1.3 Sport fuel pool cooling and clearup ~7 ate 7 8/30/84

.; 141f system (Rev. J)

~t 7 ate f 8/30/84 14b2 9.1.3 Sport fuel pool cooling ard clearup system (Rev. 1) 9.1.4 Light load hardling system (related ' 7 ate  ? 8/15/84 142a (Rev. 1) to refueling)

! 8/15/84 142b 9.1.4 Light load handling system (related m fate

- to refueling) (Rev. 1) 143a 9.1.'s overhead heavy load handling M 1 ate 9/7/84 Overhead heavy load handling M iete 9/13/84 143b 9.1.5 SL.cion. service water system 7 ate 1 8/15/84

, 144a 9.2.1 (Rev. 1) e .

Staticn service water system M late 8/15/84 I 144b 9.2.1 (Rev. 1)

II 144c 9.2.1 Station service water system M 1 ate 8/15 /84 l (Rev. 1)

~* 6/15/84

l. 145 9.2.2 ISI program ard functional testing cf safety ard turbine auxiliaries s '30/84-cooling systems acr.Sys.Mtg.)

l ;[

Switches and wiring associated with --~ w 6/15/84 146 9.2.6 5 '30/84-HPCI/RCIC torus saction

_.e:x.Sys.Mtg.'

i.

l l

l M P84 80/1214 - go

E*

-. =

i I JG1209Elfr 1 (Cont'd)

DSER R. L. MrrIL 10 A. SQRENCER GW SBCTIGI SUGtB IETHR DATED INH NWSER StBJET

' i 9.3.1 Compressed air syste s Ca plate 9/21/84 1 147a (Rev. 2) -

147b 9.3.1 Capressed air systems ccuplate g8g 9.3.1 Ca pressed air systems Cogdete 9/21/84 147c (Rev. 2) 9.3.1 Ca gressed air systems Caplate 9/21/84 147d (Rev. 2) f 148 9.3.2 Post-accident sampling system Complete 9/12/84 (II.B.3) (Rev. 1) lea 9.3.3 epigment and floor drainage systema Complete 7/27/84 149b 9.3.3 Equtipment and floor drainage systema Caplete 7/27/84 150 9.3.6 Primary contairment irwtrument gas Ccuplete 8/3/84 i

system (Rev. 1) 151a 9.4.1 Control structure ventilation systen Ccuplets 8/30/84 (Rev. 1) 151b 9.4.1 Control' structure ventilation systen Cmplete 8/30/84 (Rev. 1) 152 9.4.4 Radioactivity nonitoring elements Closed 6/1/84 (5/30/84-Aux.Sys.Mtg.)

153 9.4.5 Engineered safety features ventila- Complets 8/30/84 tion system (Rev 2) 154 9.5.1.4.a Metal roof deck construction Caplate 6/1/84 classificiation 155 9.5.1.4.b Ongoing review cf safe shutdown NBC Action capability i

154 9.5.1.4.c Ongoing review of alternate stutdown Mac Action capability

\

1 t

M P84 80/12 15 - gs

i N1'UlG8 err 1 (Cont'd)-

DSM R. L. MITIL 1D N 8ETIW .. .

A. "

- ITWI IE8 W R . 527E:t SUtIUS IATTER OktB 157 9.5.1.4.e Cable tray protection  ::mqdsta 8/20/84 .

158 9.5.1.5.a class a fire detection systes  ::mqdete 6/15/M 159 9.5.1.5.a Primary and secondary power suggplies :bgdets 6/1/84 for fire detection system l 1

160 9.5.1.5.b Fire water gasp capacity lbgdets 8/13/84 161 9.5.1.5.b Fire water valve sapervision  ::mq4ets 6/1/84 i 162 9.5.1.5.c Deluge valves  ::zgdete 6/1/84 163 9.5.1.5.c Manual hoes station pipe sizing :Muplets 6/1/44 ,

164 9.5.1.6.e memote shutdown pensi ventilation M lets 6/1/84 165 9.5.1.6.g neergency diesel ganarator day tank  ::aplete 6/1/84 g &ection 166' 12.3.4.2 Airborne radioactivity monitor :bmplets 9/13/84 positioning (aer. 2) ,

167 12.3.4.2 Portable continuous air monitors :bsplete 7/18/84 r

168 12.5.2 equissnont, training, and procedures W iete 6/29/84 for inplant iodine instrumentation 169 12.5.3 Guidance of Division a Regulatory  ::splete 7/18/84 Guidos 170 13.5.2 Procedures generation package :buglete 6/29/84 sutadttal 171 13.5.2 TNI Item I.C.1 :meplets 6/29/84 l f

172 13.5.2 PGP Ozumitment :bsplets 6/29/84 173 13.5.2 Procedures covering abnormal rel- lbuglete 6/29/84 of radioactivity I

t  !

M P84 80/12 16- go t i  !

'I l

5 AF509Wff 1 (Cont'd)

DSER R. L. MITTL TO CFW SBLTIGI A. 80s e U R SUWBCf S11TU8 12rIER DATED ITWI NLBGER 174 13.5.2 Resolution explanation in FSAR of Complete 6/15/84

  • TME Items I.C.7 and I.C.8 175 13.6 Physical security Open I 176a 14.2 Initial plant test progrant C g lets 8/13/84

.'I J 176b 14.2 Initial plant test program Ccuplets 8/13/84 176c 14.2 Initial plant test progrant Complets 7/27/84 176d 14.2 Initial plant test progrant Complets 8/24/84 (Rev. 2) 176e 14.2 Initial plant test pogram Complete 7/27/84 176f 14.2 Initial plant test programa Ccuplete 8/13/84 176g 14.2 Initial plant test progrant complete 8/20/84 176h 14.2 Initial plant test program Ccuplete 8/13/84 1761 14.2 Initial plant test pregram complete 7/27/84 15 .1 .1 Partiar feedutor heating Complete 8/20/ 84 177 (Rev. 1) 178 15.6.5 IOCA resulting from spectnam of tac Action postulated piping treeks within RCP 179 15 .7.4 Radiological consequences cf fuel tac Action hand 11rts accidents 15.7.5 Spent fuel cask drg accidents NRC Action 180

' 6/29/84 15.9.5 TMI-2 Item II.K.3.3 Complets

. 181 ,

1 182 15.9.10 TMI-2 Item II.K.3.18 Capplets 6/1/84 18 Hope Creek DOOR Ccaplets 8/15/84 183 M P84 80/1217 - ga i

n,~ . . - - - - - - _ . - - - - . - - - - - -

i i

l MrDOBENF 1 (Cont'd)

DSER R. L. MITE TO WSI SETIGI A. SOMNCER ITEN NL3MR StBJECT Sm2tB trrNR DMD g,

I 184 7.2.2.1.e Failures in reactor vessel level M iate 8/1/84

.g

sensing lines (Rev 1) ,
  • 4 185 7.2.2.2 Trip system sensors and cabling in M 1 ate 6/1/84 I turbine building

' 186 7.2.2.3 Testability of plant protection M iate 8/13/84 systems at power (Rev. 1) 187 7.2.2.4 Lifting af leads to perfona surveil- 0:apJmte 8/3/84

' lanos testing l

188 7.2.2.5 Setpoint nothodology :mplate 8/1/84

.s 189 7.2.2.6 Isolation devices 2:mplete 8/1/84 l

l 190 7.2.2.7 Regulatory Guide 1.75  ::mplete 6/1/84 191 7.2.2.8 Scrua discharge volume :mplete 6/29/84

- 192 .7.2.2.9 Reactor node stitch 2:mplete 8/15/84 I

(Rev. 1)

I 193 7.3.2.1.10 Manual initiation d safety systems 2:mplete 8/1/84 l

194 7.3.2.2 Standard review plan deviations W iete 8/1/84 e

(Rev 1) 195a 7.3.2.3 Freeze-protection / water filled 2:mplete 8/1/84 l

instrument and sangling lines and l

cabinet tangerature control 195b 7.3.2.3 Frwa Aut.ection/weter i111ed O mplete 8/1/84 l> instrument and sampling lines and cabinet temperature control 196 7.3.2.4 Sharing of cannon instrunent taps 0 uplete 8/1/84 197 7.3.2.5 Micrtprocessor, nultiplexer and 0:mplete 8/1/84 conguter systens (Rev 1)

M P84 80/12 18 - gs

I l

lt .

Nr!30B ert 1 (Cent'd)

f DSER R. L. MITIL 10 GW SECTEM ,.

A. SGWIGR i

ITEN IRB E R StBJR:T suuus IETTER DUED 1MI Itan II.K.3.18-Ac8 actuation 71=t.e 8/20/84

'l  :,

198 7.3.2.6

.* 199 7.4.2.1 IE Bulletin 79-27-Ioss d non-class 7 1=te 8/24/84 IE instrumentation and control power (Rev. 1) system bus during qieration j

200 7.4.2.2 Remote stutdown system 7 1=te 8/15/84

! (Rev 1) 201 7.4.2.3 RCIC/fWCI interactions 7 1=tm 8/3/84 4

'; 202- 7.5.2.1 ta wl measurement errors as a result 7 1.to 8/3/84

,! of envircraiental temperature offacts

en level instrumentation reference '

i 189

- 203 7.5.2.2 Regulatory Guide 1.97 7 1=te 8/3/84

. 204 7.5.2.3 'DlI Item II.F.1 - Accident nonitoring- 7 1=te 8/1/84 205 7.5.2.4 Platt gocess'camputer system 7 1=te 6/1/84 206 7.6.2.1 High pressure / low possure interine*= M iate 7/27/84 207 7.7.2.1 HELBs and consequential control systant* 71ete 8/24/84

failures (Rev. 1) 208 7.7.2.2 Italtiple control system failures M ista 8/24/84 (Rev. 1) 209 7.7.2.3 Credit for non-safety related systamm: M 1=to 8/1/84 in Chapter 15 d the FSAR (Rev 1) 210 7.7.2.4 Transient analysis recording system M iete 7/27/84 211a 4.5.1 Centrol rod drin structural materiaIzt41ste 7/27/84 211b 4.5.1 Control rod driw structural materialzt.Mista 7/27/84 211e 4.5.1 Control red drin structural notarialmt.I.:splete 7/27/84 i

l l M P84 80/1219 - gs

- , . . , . , - _ - . . . . - . . . - - - , _ , - - . _ - . - _ - . . . _ _ ~ _ _ _ , . _ - -

~

') ASTRGBBIT 1 (Cortt'd)

DSER R. L. MITIT. *ID WW SENIW A. SOBelCER IUSER~ SUIUR2 STA20S MTIER DA2ED ITM 211d 4.5.1 control red <kive strem_1 materials caplete 7/27/84 4

211e 4.5.1 Omtrol rod drive structural materials caplete 7/27/84 212 4.5.2 Reactor internals materials caplete 7/27/84 213 5.2.3 Reactor coolant pressure boundary C g lete 7/27/84 material 214 6.1.1 Engineered safety features ma*erials Caplete 7/27/84 215 10.3.6 Main ste m and feedwater system Caplete 7/27/84 materials 216a 5.3.1 Reactor vessel noterials Cuplete 7/27/84 216b 5.3.1 Reactor vessel materials Caplete 7/27/84

' 217 9.5.1.1 Fire protection ceganization Caplete 8/15/84 218 9.5.1.1 Fire hazards analysis Caplete 6/1/84 l

219 9.5.1.2 Fire protection ackninistrative C g lete 8/15/84 l

controls 220 9.5.1.3 Fire brigade and fire brigade Caplets 8/15/84 training 221 8.2.2.1 Physical separation of offsite Cuplete S/1/84 tranmaissicri lines Design provisions for rutablish- Caplete 9/14/84 222 8.2.2.2 (Rev 1) ment of an offsite power source Independence of offsite circuits Caplete 9/26/84 223 8.2.2.3 (Rev. 3) between the switchyard and class IE buses 8.2.2.4 Oczunon failure made between ensite Caplete 9/26/84 224 and offsite power circuits (Fev. 2) 4 M P84 80/12 20- gs

i i

M D OBeff 1 (Cont'd)

-}- R. L. M1TIL 1D

,~

IMER A. SOpetCER GWI. . SaCTECM. . .......... . .

  • 225 8.2.3.1 Testability cf antamatic transfer of Caplete 9/21/84

!' (Rev. 1) power frtan the ncmaal to preferred . ,

power source 8.2.2.5 Grid stability Complete 8/13/84 1 226

' (Rev. 1)

I 227 8.2.2.6 Capacity and capability of offsite ccsqplets 8/1/84

,! circuits o 8.3.1.1(1) Voltage &qp during transient condi- Complete 8/1/84 j 228

tions

't 8.3.1.1(2) Basis 'for using bus voltage versue ccuplete 8/1/84 229 actual connected Icmd voltage in the

] voltage drty analysis .

I Complets 8/1/84 a 230 8.3.1.l(3) Clarificaticn of Table 8.3-11 8

8.3.1.1(4) Undervoltage trip setpoints caplete 8/1/84 231 8.3.1.1(5) Ioad configuration used for the Ccqplete 8/1/84

. 232 '

voltage &cp analysis

[.

Caplete 9/21/84

'i 233 8.3.3.4.1 Periodic systen testing (Rev. 2)

I 8.3.1.3 Capacity and capability cf onsite complete 8/1/84 234 ~

AC power supplies and uso d ad-l+

ministrative controls to prevent

'I overloading d the diesel generators Diesel generators load acceptance Caplete /8 235 8.3.1.5

{ test 8.3.1.6 Cagdianon with position C.6 cf Cczplete 8/1/84 2 36 IG 1.9 237 8.3.1.7 Decription d the load sequencer Complete g8{

8.2.2.7 Sequencing cf loads on the offsite Ccuplete 9/21/84 238 power system (Rev. 1) j M P84 80/12 21 - gs

l

.j' -

a I, -)' Arm 1 (Cont'd)

DSER R. L. P2TE.'10 SENIGE A. SOBSCER (WW mm ,

. . g.ggy m m 239 ' 8.3.1.8 'heting to verify 808 minimum n --f-te 8/15/84 voltage 240 8.3.1.9 e7 Hance with BIP-PSB-2 n:xplets 8/1/84 241 8.3.1.10 Ioad acomptance test after prolonged M tate 9/21/84 no Iced geration d the diesel (Rev. 3) generator 242 8.3.2.1 Ccagliance with position 1 of Regula- M tate 9/13/84 tory Guide 1.128 (Rev. 1) rTate 9/13/84 243 8.3.3.1.3 Protection or qualification d Class (Rev. 1) 1E equipment frun tre offects of fire sappression systems P7 1

=te 9/28/84 244 8.3.3.3.1 Analysis and test to demonstrate adecpacy d less than specified (Rev. 2A) separation f

"7 ate 9/28/84

245 8.3.3.3.2 'the uso d 18 versus 36 inches d

' separation between raceways (Rev. 2s) 246 8.3.3.3.3 Specified separation d raceways by r 3 1.ta 8/1/84 i

analysi's and test i

9/13/84 l

' 2 47 8.3.3.5.1 Capability d penetrations to with- rTate '

stand long duration short circuits (Rev. 1) l at less than maxima or worst case i short circuit f

e 7 ate 8/1/84

!! 248 8.3.3.5.2 Separatica d penetration primary and backup i;rotections f l-i 8.3.3.5.3 'the uso d bypassed thennal overiced C::mplate 8/1/84

'l i 249 protective devices for penetration j j protections j i

i 8/1/84

, 250 8.3.3.5.4 'Desting d fuses in accordance with " Tate l

R.G. 1.63 i

l l

M P84 80/12 22 - gs

l 1

! -! Arnosert 1 (cont'd) 1 DSER R. L. MITIL '

GWI SOCTIGE A. 90BelCER STMUS IEr!ER OfGED ,

INN IUSER S R7ECT

(

251 8.3.3.5.5 Fault current analysis for all :buglete 9/24/84 representative penetratim circuits (Rev. 3)'

8.3.3.5.6 The use of a single breaker to m :::aplete 9/21/84-252 penetration grotection (Rev. 2) 8.3.3.1.4 Camdtzent to protect all Class lx  ::mplete 9/28/84 ,

253 equipment fra external hazards va- (Rev. 3A) '

only class 15 equipment in one divis===mm 254 8.3.3.1.5 Protection of class lE power supp11m-r *::mplete 9/14/84 from failure of inqualified class 13- (Rev. 1) loads 255 8.3.2.2 Battery capacity M iete 8/1/84 8.3.2.3 Automatic trip of loads to maintmirr *::mplete 9/13/84 256 sufficient bat.tery capacity (Rev. 1) i

. 9/13/83 I 257 8.3.2.5 Justification for a 0 to 13 second "bmplete load cycle (Rev. 1) 258 8.3.2.6 Deelgri and qualification of DC  ::mplete 8/1/84

. system loads to operate between mininda and maxiam voltage levels

  • mplete 9/26/84 259 8.3.3.3.4 Use of an inverter as an isolation (Rev. 2) device 8.3.3.3.5 Use of a single breaker tripped by W iete 9/13/84 260 a IDCA sigral used as an isolation (Rev. 1) device 8.3.3.3.6 Autamatic transfer of loads and W iete 9/13/84 261 (Rev. 1) interconnection between redundant divisions 262 11.4.2.d Solid waste control program M lets 8/20/84 i ,

i M P84 80/12 23- gs

,..--.n-,,--. . . . , , g._ ,

il l

l

[

JtrDO9eff 1 (Omt'd) l DSER R. L. MITTL 10

j '

@DE SECTIGE

A. m i '

STATUS IATTER DNTED ITWE' IUSER ' SUR7ECT ,

263 11.4.2.e Fire grotection fbr solid radueste Omplete 8/13/84 l

'I storage area 264 6.2.5 Sources of oxygen Ozqdets 8/20/84

1 265 6.8.1.4 ESF Filter Testing Quplets 8/13/84

.i 266 6.8.1.4 Field leak tests Ozqdets 8/13/84

I -

i 267 6.4.1 Control rom toxic chemical o g lete 9/13/84 l j

detectors 268 Air filtration unit drains amplete g8{ l 269 5.2.2 code cases16-242 and 16-242-1 Omplete 8/20/84

' caplete 8/20/84 270 5.2.2 0:xle case N-252 TS-1 2.4.14 Closure of watertight hors to safety- open related structures 4.4.4 Single recirculation loop operation open TS-2 TS-3 4.4.5 Coreblowmonitoringforcrudeffects C:mplete 6/1/84

i rm apen

'i TS-4 4.4.6 parts monitoring systasa 4.4.9 Natural circulaticn in normal Open

i 15-5
' operation 1

6.2.3 Secondary cxmtainment negative cpan

- TS-6 Pressure Inleakage and drawdown time in Open

- TS-7 6.2.3

' secondary containment TS-8 6.2.4.1 Imakage integrity testing Open BCCS subsystaus periodic component open

. TS-9 6.3.4.2 testing l

l l

l M P84 80/12 24- gs 1

>l.

' l- j l

t

.) XITROBeff 1 (Cbnt'd) 1 DSER R. L. MITIL 10 0958 SBCTIGI A. SOBMGR T11SI NLMBER SUR7ECT S1MUS TEFIER DR2ED TS-10 6.7 MlIV leakage rate TS-11 15.2.2 Availability, setpoints, and testirug : gen of turbine bypase systam

'D5-12 15.6.4 Primary coolant activity

.l T4-1 4.2 Fuel rod internal pressure criteria C: aglets 6/1/84 tr-2 4.4.4~ stability analysis sutaitted before  : tan second-cycle operation 9
l u

l .

W M re4 80/12 25- gs

t t

- ATTACHMENT 2 DATE: 9/28/84 2 T l DRAFT SER SECTIONS AND DATES PROVIDED I

'! SECTION' DATE SECTION DATE

- ____ 3.1 3.2.1 11.4.1 See Notes 165 i 3.2.2 11.4.2 See Notes 165 '

5 .1' 11.5.1 See Notes 165

j 5.2.1 11.5.2 See Notes 1&5 ,

il 6.5.1 See Notes 165 13.1.1 See Note 4 i 8.1 See Note 2 13.1.2 See Note 4 8.2.1 See Note 2 13.2.1 See Note 4 See Note 4

.! 8.2.2 See Note 2 13.2.2 1 8.2.3 See Note 2 13.3.1 See Note 4 8.2.4 See Note 2 13.3.2 See Note 4

,;! 8.3.1 See Note 2 13.3.3 See Note' 4

.!" 8.3.2 See Note 2 13.3.4 See Note 4

'j- 8.4.1 See Note 2 13.4 See Note 4 See Note 4

.: 8.4.2 See Note 2 13.5.1 See Note 2 8.4.3 15.2.3

8.4.5 See Note 2 15.2.4 8.4.6 See Note 2 15.2.5 8.4.7 See Note 2 15.2.6 8.4.8 See Note 2 15.2.7 9.5.2 See Note 3 15.2.8 9.5.3 See Note 3 15.7.3 See Notes 165
9.5.7 See Note 3 17.1 8/3/84

, 9.5.8 See Note 3 , 17.2 -

8/3/84

'., 10.1 See Note 3 17.3 8/3/84 t 10.2 See Note 3 - 17.4 8/3/84 10.2.3 See Note 3 10.3.2 See Note 3 10.4.1 See Note 3 10.4.2 See Notes 3&5 10.4.3 See Notes 3&5 10.4.4 S'oe Note 3

11.1.1 See Notes 165 Notest 11.1.2 See Notes 165 l
1. 11.2.1 See Notes 1&5 1. Open items provided in 11.2.2 See Notes 145 letter dated July 24, 1984 11.3.1 See Notes 155 (Schwencer to Mitti) 11.3.2 See Notes 165
2. Open items provided in June 6, 1984 meeting j

- 3. Open items provided in April 17-18,1984 meeting CT:db

4. Open items provided in
May 2. 1984 meting
5. Draft SER Section provided in letter dated August 7, 1984 (Schwencer to Mitti)

i J

' Attachment 3 DSER DSER ITEM SECTION SUBJECT 244 8.3.3.3.1 Analysis and test to demonstrate adequacy of less than specified separation 245 8.3.3.3.2 The use of 18 versus 36 inches of separation between raceways 253 8.3.3.1.4 Commitment to protect all Class

. lE equipment from external hazards versus only Class lE equipment in one division Question No. FSAR Section 6

421.10 7.1 & 7.2 430.65 9.5.2 430.75 9.5.3 430.81 9.5.4 430.101 9.5.5 e

I ,

l i

yv j

f r

3 i

ATTACHMENT 4 4

4 P

j + - - -

\ / -

Rw.2 A sc "D852 open 2tes No. 24d (Desa section 8.3.3.3.1)

ANALYSIS AND TEST TO DEMONSTRATE ADEQUACY OF LESS THAN SPECIFIED SEPARATION The applicant, by Amendment 4 to the PSAR, provided a description l of physical separation between redundant enclosed raceways (covered trays and open top raceways, and between non-Class 1E trays and Class 15 conduit, as follows:

1. In the cable spreading rooms, the main control room, relay roes; and control equipment room, the separation is twelve inches (12") horizontal, and eighteen inchas (18*) vertical.
2. In all other plant areas, the separation is three feet horizontal and five fest vertical.

The applicant further stated that where the separation distances specified above can not be maintained, cable trays shall either be covered with metal tray covers or an analysis, based on test results, will be performed.

The staff concludes that the above separation meets the guide-lines of Regulatory Guide 1.75 and is acceptable escept for the followings (1) The use of 18 versus 36 inches of separation between race-ways is evaluated in Section 8.3.3.3.2 of this report, and (2) The use of an analysis to justify less than specified separation will be pursued with the applicant.

RESPONSE

The response to Question 430.52 has been revised to provide the eequested analysis. des eq of sw ,(* p.e4, f,pos,.7 re, prJ us.r-c o.pda.aAa/ for yo.w use*on Aq u, sr so, T9 H Ls.ber-ass s, .%s+ Report No . s~s ys 9, b e.4< *l

) u)yls

- sVavenehar s o, s tro , p rops.esd he s u s p e. k a.n a s 34 ae.m cia.adric. 3 foM ae Gor- e.t e.c.h.ic s.I w i e e. a.nl c.eJele. i s of a.fia n l o.cci a t- imod ma+* *-*.1 s tu st

.2 n s+; k.+t., % s s o.e<,h . s. a.)me u.a.+ sr's. s , 4 m n

.0 P'e-s.s5a:a A+e.ci . rwm,cA so, o g77, jerepo.re d f-r c Tol e.af.ts.1t o E al be., e.,mp n3 So c c ,ociw*t

'5ap c.: Hon

" Pro 3ree.

F7o(s)

i OMt. t49 Ru2A HCGS FSAR ffte 2.I QUESTION 430.52 (SECTION 8.3.1 and 8.3.2)

Provide a description of separation between redundant enclosed raceways or conduit and open top raceways and between Non Class lE trays and class lE conduit.

RESPONSE

Refer to Section 8.1.4.14 and revised Section 1.8.1.75 for a description of HCGS separation provisions and a discussion of HCGS compliance to Regulatory Guide 1.75.

~

430.52-1

HCGS FSAR 1/84 1.8.1.74- Conformance to Reoulatory Guide 1.74, Revision 0, February 1974: Quality Assurance Terms and Definitions HCGS complies with ANSI N45.2.10-1973, as interpreted in Regulatory Guide 1.74.

See Section 17.2 for further discussion of quality assurance and Section 1.8.2 for the NSSS assessment of this Regulatory Guide.

1.8.1.75 Conformance to Reoulatory Guide 1.75, Revision 2, Sectember 1978: Physical Independence of Electric Systems HCGS complies with IEEE 384-1974, as modified and endorsed by Regulatory Guide 1.75, with the clarifications and exceptions -

outlined below. ,

Position C.1 separation is accomplished in general by supplying non-Class IE loads connected to a Class IE bus through a single breaker with a shunt trip device tripped by a LOCA signal. All non-Class- IE loads will be tripped automatically by LOCA signal.

I Provisions for restoring certain of these loads from the main control room are provided.

l O

(@ggggkm Position C.12HCGS stateshas thatonly redundant a singlecable cablespreading spreadingareas area.should

! be provided.

Position C.12 endorses IEEE 384-1974, Paragraph 5.1.3, which indicates that in cable spreading areas the minimum separation distance between redundant Class 1E cable trays should be 1 foot between trays separated horizontally and 3 feet between trays

! separated vertically. The separation criteria used on RCGS for l cable spreading areas is a minimum of 1-foot horizontal distance and 18-inch vertical distance between redundant Class 1E cable trays. The configurations, for which the redundant cable trays can not be separated by distances specified above, will either be analyzed or tested to demonstrate the compliance with the intent l-of Regulatory Guide 1.75.

Position C.15 specifies that redundant Class 1E batteries be located in separate safety class structures and be served by independent ventilation systems. The 250-V Class 1E batteries for electrical divisions A and B, located on elevation 163 feet of the auxiliary building, are served by a common ventilation 1.0-45 Amendment 4 l

l l

I - - -- _ __ _ _ _ __ _ _ __ , _ _ _ . _ . _ , , _ ,_ .,

HCGS FSAR (Question 430.52/ Item 25)

INSERT A t

Position C.6 states that all analyses to justify lesser separation distances shall tm identified. The following are the HCGS excep-tions to the IEEE~384 separation distances.

There are only three generic cases where analysis is used to justify lesser. separation distances. These are identified and analyzed as

follows

- Conduit-to-conduit less than one (1) inch apart.

Because of spa'ce limitations in some areas of the plant, the minimum separation distance of one inch between rigid steel conduits can not be maintained. The use of the con-duits is limited to instrumentation to instrumentation control to control, and instrumentation to power feeder with maximum 120 Vac or 125 Vdc cables only. Wyle Test i.

Report.No. 56719, prepared for Susquehanna Steam Elsctric Station, showed that rigid steel conduits in contact with each other are acceptable barriers. The testing demon-strated that shorting of conductors in one conduit until failure did not af fect the performance of the conductors

- in the other conduit or . damage the conduit. In addition, Franklin Institute Research Laboratories (FIRL) performed similar testing for the Toledo Edison Company in 1977 with successful results. The test configuration and cables used conservatively bound the HCGS conditions;-therefore, the limited cases where the HCGS separation has not been met in the installation are justified. The two reports referenced have been submitted under separate cover, by letter from R. L. Mittl, PSE&G, to A. Schwencer, NRC, dated August 30, 1984.

Based on the results of this test and analysis progEam, l

separation criteria for Class lE conduit has been estab-lished which assures that (1) any failure or occurrence in a Class lE conduit will not degrade a redundant essential Class lE circuit in adjacent Class lE conduits, ~ (2) a

~

failure or occurrence in a non-Class lE conduit will not degrade redundant essential Class 1E circuits in adjacent Class lE conduits.

The criteria established are as follows:

1. Circuits carrying control, instrumentation, or power 1 of 3

. ._. _. _ . ~ _ . . - _ _ _ ._._. _ .. _ _ _ . _ . _ . _ _ _ . - _ . . . . . . _ . -

Insert A (Corit'd)

( ,

cable (where the power cable is limited to 480 volt or lower and No. 12 AWG or smaller) are allowed to touch each other.

L 2 .' Conduit carrying essential Class lE 4.16 kV power cables or 480' volt load center power cables will have a one inch minimum separation from conduits carrying Class lE circuits of a redundant channel.

3. Conduit carrying non-essential 13.8 kV, 4.16 kV,
  • or 480 volt load center cables that bridge conduits carrying essential Class 1E circuits of redundant channels will be separated from conduit carrying cir-cuits of the redundant channel to give a minimum sepa-

, ration of one inch.

4. Conduit carrying essential Class lE power cable of 480 volt or lower voltage with conductor size larger than number 12 AWG, and not covered by 2. above, will meet the following critoria
a. Will have a minimum of 1/8-inch separation from the surface of any conduit crossing above which contains an essential Class lE circuit of the redundant channel.
b. Are allowed to touch conduits containing an essen-tial Class lE circuit of the redundant channel

' whe'n installed in a horizontal, side-by-side configuration.

c. Will have a minimum separation of one inch from conduits containing an essential Class lE circuit of the redundant channel mounted directly above and running parallel, l 5. Conduit carrying non-essential power cable of 480 volt

! or lower voltage with conductor size larger than num-ber 12 AWG, and not covered by 3. above, that bridge l

conduits carrying essential Class 1E circuits of redun-dant channels will be treated as in 4.a, b, and c for l

l proper separation from the redundant channel.

- Non-Class lE conduit separation.from Class lE tray.

In safety-related areas of the plant there are non-Class lE rigid. steel conduits within one inch of Class lE tray.

The non-Class lE conduit contains only control, instrument-ation or 120 Vac/125 Vdc power cables. The testing performed 2 of 3 i

l

\

. - - - . . - , ~ _ , _ _ - _ . _ _ _ _ . _ _ _ , _ _ , _ _ , _ _ . _ _ _ , _ _ _ _ _ _

Insert A (Cont'd) -- --

a for the above projects demonstrated that the rigid steel conduit is an ef fective barrier for protection of any cabling. Therefore, the HCGS cases where the non-Class lE conduit is not installed as required is justified by the previous testing.

' -- ' Metal-clad cable separation from Class 1E raceways.

Metal-clad cables, type MC, are used in non-Class lE

- circuits only. The minimum separation between the metal-clad cable and Class lE raceways (open top trays or conduits).is one (1) inch. The type MC cable is a factory assembly of one or more conductors, each individually a

insulated, covered with an overall insulating jacket and all- enclosed in a metallic sheath of interlocking galvanized steel. The cable has passed the vertical flame test of IEEE 383-1974.

The above analysis identified the cases on a generic level. The installation and inspection of raceways are ongoing and the specific cases where the analysis appoos are documented on nonconformance reports that are part of the QA/QC program. .

L- g l

l 1

, 3 of 3

__ . _ . _ . }

r Rev.L 6

  • z7, asEn un teen No. 245 (DSER SectiOA I'3*3.3 WEEg RACEMAYS .

g or 13 yERSUS 36 INC358 Cr SEPARATION SET

. In sections 1 8.1.73 and 8.1.d.14.31 ci thsbetween lay room, redundant

~

i stated that separatio:

, cable spreading area, control equipment f separation roome, reinches ver and main control 344=1974. room are separated by 18as c ;.

required by IEEE standard indicated thatthe this l during 1' The applicans, by Amendment <4 to the FSAR,

! l t The staff's .

18 inches of separation was approved i ites states by '

! preliminary safety evolustion report for th s .

that:

. l' 'The applicant claims these separation distances ill be are adequate because a high grade type cabling h wwthat when specified and results of extensive testing from.the occurs s o upper

,_ no cable degradation or flame propagation s *-

i j

i the lower tray, separated by 12 degradation inchestray, is e

" The results of these tests, that demonstrate bove no the tray ex-h applicant.

to cables located in the trays 12 inches apos -

RESPONSE

Question 430.51 8.1.4.14.3.1' a"nd/the response to Sectionbeen revised' to prowlde additional just ification for -

l have *

/ the separation distance.

l l

i-i  ; -

s.

? -

u .

f

(*

I D3/es *

. F70(3) -

'l

?

. .c . :.u 1

. w.., .. : ..j.y i

m --y.- -'t r y-y-w-- + - ' - - -= w- r--w-r-w-www-_ mae a..--wrr- --av---__- -.* wee + we----+s m--.v-r-e------e-arW

Item 26 DSER 245 Rev. 2$

HCGS FSAR OUESTION 430.51 (SECTION 8.3.1 and 8.3.2)

In Sections'1.8.1.75 and 8.1.4.14.3.1 of the FSAR you state that separation between redundant cable trays in the cable spreading area, control equipment room, relay room, and main control room are separated by 18 inches of separation required by IEEE Standard 384-1974. Provide analysis substantiated by test that demonstrates )

the adequacy of 18 inches of separation.

RESPONSE .

The HCGS PSAR was approved with 18 inch vertical separation between redundant cable trays.

A copy of the test' report that substantiated the use of this vertical separation has been submitted under separate cover (letter from R.

L. Mitt, PSEEG, to A. Schwencer, NRC, dated August 15, 1984).

Revised section 8.1.4.14.3.1 provides the analysis based on this test to demonstrate the adequacy of 18 inches separation.

In addition to the above test, an additional cable tray . test will be performed that tests electrical shortingThis of electrical cabling utilizing the 18 inch vertical separation. test plan is being submitted under separate cover.

If the test is unsuccessful, then cable tray covers will be added i to the trays in accordance with IEEE Std 384-1974.

P .

l l

I l

l l

l DSER OPEN ITEM 245 Rev. 2 430.51-1 i

. . . - , - . , _ . _ _ . _ _ _ _ . . _ . , , . . . _ . . _ . _ . _ . _ . . . . _ _ _ _ . . . _ _ _ _ . . . _ _ _ _ _ ~ _ , . . _ . , _ _ _ _ _ , . _ _ _

'..?

- g

. .' yag '

U  ;

  • e 90G8 PSAR spread atrol Equ1pment"Roong
  • aad Cab 1 s.t.d.14.2.1 *:" C 2, Area, Main Control Room . ,

. g

. Mtf1/nmt. '

The cable spreading area, control equipment I y'.roomh:nz, and 1 main control room do not contain high energy equipment such as '

swit.chgear, transformer, rotating equipment, or potential sources l of missiles or pipe whip, and are not used'for storing flammable materials. power supply circuits are limited to those serving er These 208/120=V these areas and their instrument systems. Conduits containing red t cables are installed in conduits. Conduit couplings, L

cables are separated by a minimum of 1 inch.

clamps, locknuts, bushings, etc, shall wat be considered inyor conduits ,

il L

determining the required separation distances. carrying redun not be considered in determining the required separation.

Redundant cable trays 'are separated by at least 18 inchesThe configurations, fo vertically and 12 inches horizontally.can' not be separated by . ,

i' which the redundant _ ^ M ^ wil;l either be analyzed or tested to distances specified above with the intent of Regulatory Guide demonstrate the complianc requirements between Class 1E and non-1.75. separation distan

- Cimas 1E raceways are the same as for the separation among o

redundant channels. , ,

> m%AT A Strict administrative control of operations and maintena potential hazards into these areas.

3.1.4.14,3.2 Limited Bazard Areas 1.inited hazard areas are the general plant areas from which potential nonelectrical hazardsThe s'uch as missiles, hazards in this pipe are area whip, and esposure fires are escluded.

limited to failures or faults internal to the electrical,These ar equipment or cables.124, ~130, and 137 feet in theseparation Minimum muziliary building in w elevation 87 feet in the radweste area.

these C u ,i_,_g press is as follous: .

I

a. Conduits containing redundant cables are separated by a minimum of 1 inch, unless consideration of has'ards Conduit indicates greater separation is required.

couplings, clamps, locknuts, bushings, etc, shall not l' be considered in determining the required separation distances. For conduits carrying redundant neutron

!% A .

8.1-21 Amendment d

1

. 1

""'~* * **'" '.* *

~ ghsgAt A to 'E.I.4.14.% t_

v . ., 84 3' M

.g,g, gg4.sq14 requires a mlaisada V8t4i44l S8Premfl89

% 4,ap', . 74, secas =falmem *e4 e4(i separa4 4ien for ion d gg g .us, vAe 4e' t(swing daalysis resvid** 'j 4he..ius4'f.ea .

L 4hs les**** "Nrd4I*. er.'sfense *, 0 *C WP. 8500 I fests,

. Alt sattes w flame re44PMAgt And med3sse. st3-8914 de l

.g st aperfied in 'f*** **dit.

gaste.4est refer 4s art on 4its and aveH< bit -

L . '

i **d g,, ns indtM in 4st abest pra.genf n ', hig4 enerf y stui ***"4 t

1 I

i rA*dtel nurus *+ missiles or ripe aat y are endadad gen 4(f g from af 4Ae drC46. Pow.c Eframifs in f4 areas wec /gsf4 Ale / /

goalify As barriers; ths = mar mere, yeten4;4,(74,,. e,4 4ke pe.ror st 4re no, is timife/. We us/su veHs 4c. 'er sw y,yf, gg,,

pesar a46tes of hignar petsaftet seryf,9 ,p;p,,4 f, ja, ,rees, 4 e4 444f .q, C., "the caMe fray 4esf referf per4'ermed 4s, S4(em 5 tec<ted st* dirts +ly %elene ano4Qr 4rmy S'rt in a sas,te 4rsg 4ke utter **Lle Army we defendt 4ht difno+ profayate 4eupper emble 4 ray . The +es4 confiye tables I,44e d g f/

4.41,(es were rtgetsenfeftve of f4e #fc4:S destyn it ma verfre,4(

inat ,lasis e ag 4, i cyeer+ fAa4 +ke +*st ua4'ijure4/s,s used ufera4 ton. Sceasse 4ht Setem 4est ges5, demons sepre +r st insis ver4lesi sefsenUen nsas 4/equefe , 44<

dis +aese is jos4illed. ria, sJa, ktryeet,h+Flq;on s..,, s,. c.a s,.s n.. , e ac. a.., &

Aa., h e ,, s L i H . / u sthm s ' d.hd '.n/y is, ny,

,Ca.- R.i..n. H I,ae4 g A. sd mari, s*& cevce (Mier-NAC , dhd A.p.t /s'y tit'y).

k .

  • i I

./ U

.7 '

'# I. .c.

l ,

1 ..

l -- . . . . .

( .- .

os a o m zrna ,9 g [ g ,y, 2, .

DSER 245 (Item 26) l A!STRACT-PHYSICAL SEPARATION TEST PLAN Prg3 1  !

1.0 SCOPE This documeht is a test plan for the purpose of testing physical separation between redundant Class lE cables and Class lE and non-Class lE cables with respect to electrical f aults in configurations representative of HCGS.

1.1 OBJECTIVE

.i The purpose of this procedure is to present the requirements, i procedures, and sequence for testing the design adequacy of the l Hope Creek cable tray-to-cable tray separation. Figure 1 identifies the tray-to-tray seperation test configuration. 1 I

n 1.2 APPLICABLE DOCUMENTS l l

  • HCGS FSAR Section 8.1 1.3 EQUIPMENT DESCRIPTION ,,

This test procedure encompasses testing of control cable and instrument 2 tion cable as described below:

s Item No. Description 1.0 - Okonite 600VAC, two conductor, size # 14 AWG (HCCS No. CO2) 2.0 Okonite 600VAC, two conductor, size 4 12 ANG (HCGS No. P12) 3.0 Eaton 600VAC, two conductor, size # 16 AWG (HCGS No. IO2) 2.0 ,

TEST REQUIREMENTS 2.1 Acceptance Criteria 2.1.1 Insulation Resistance Test Measured insulation resistance on all " target" cables and any other cable, in the target raceway, that might sustain significant damage to its insulation system shall be greater than 1.6 x 106 ohms with an applied potential of 500 VDC for sixty seconds.

~

DSER 245 (Item 26)

Prgo 2 i-2.1.2 High Potential Test There shall be no evidence of insulation breakdown or flashover with an applied potential of 2200 VAC for sixty seconds on all " target" cables and any other cable, in the target raceway, that might sustain significant damage to l its insulation system. l J

2.1.3 Cable continuity Test

~

4 Energized non-fault specimens in the " target" raceway shall conduct 1004 rated current at 120 VAC throughout

'> the overcurrent test.

2.1.4 Cable Temperature i The cabling in the upper cable tray shall be monitored for cable jacket temperature and it shall not exceed the qualified parameter in the environmental qualification of the cable. ,

3.0 TEST PROGRAM s

3.1 Test configuration I

These tests shall consist of a series of tests with two vertically separated horizontal cable trays (see Figure 1).

i The test setup shall be identical for each test with the exception of the location of the f aulted cable.

3.1.1 Purpose The purpose of the tests is to demonstrate the adequacy of design where two horizontal cable trays are physically

< separated by eighteen inches vertically when an electrical fault occurs in the lower cable tray.

3.1.2 Test Specimen Preparation The test specimens shall be placed in the cable tray assembly as shown in Figure 1. This apparatus shall be assembled to the indicated dimensions. The following guidelines shall be observed with regard to the materials and construction of the cable tray assembly:

~

1. The cable trays shall be ladder rung trays 72" by 24" by 4" (horizontal tray) from PSEEG stock. ,
2. The cable trays shall be supported with unistrut hangers and shall be mounted sucu that the bottom of the upper horizontal cable tray is eighteen inches above the top of the upper horizontal cable tray.

.. - - . . , .__.-_..,_.._....____.,________,..,._,,,...mm ._-.__..._,,_,.,,,--_-.,y .m...-m-, . , . . . . , _-

Pago 3

3. The upper and lower cable trays shall be filled to a 50%

fill level (by area) using an assortment of six ft unpowered control and instrumentation cables from PSE&G stock.

4 .' One energized 2/C Size 16 AWG cable and one energized 3/C Size 14 AWG cable shall be placed inside the cable 1

trays that do not have the faulted cable. The energized

- " target" cables shall be located in the worst case locations (directly above, underneath or next to the faulted cable) as shown in . Figure 1. (NOTE: Figure 1 shows the fault and " target" cable locations for the

. two tests). .

3.1.3 Instrumentation Setup

I 3.1.3.1 Thermocou'ple Locations For the test, five thermocouples are to be mounted to the upper and lower cable tray on the edge closest to the f aulted cable in the horizontal cable tray.

These thermocouples.shall be monitored by a Fluke Data-logger feeding a high-speed printer. The datalogger shall be operated at its maximum rate throughout the 'overcurrent test.

3.1.3.2 Electrical Monitoring -- All voltages and phase currents

- of.the energized cables and the fault cable current shall be fed to oscillograph recorders. The oscillographs shall be operated at the 0.1 inch per minute rate throughout the overcurrent test. The oscillograph channels shall be as specified below:

Oscillograph el Channels Channel No. Test No. Signal Location l

1 1 Current 16 AWG Upper Cable Tray 1 2 Current 14 AWG Lower Cable Tray .

2 1 Current 12 AWG Upper Cable Tray 2 2 Current 16 AWG Lower Cable Tray 3 1 Current 16 AWG Upper Cable Tray 3 2 Current 14 AWG Lower Cable Tray l' Voltage 16 AWG Upper Cable Tray i 4 1 4 2 Voltage 12 - AWG Lower Cable Tray 5 1 Voltage 12 AWG Upper Cable Tray l 16 AWG Lower Cable Tray 5 2 Voltage u

l 6 1 Voltage 16 AWG Upper Cable Tray 6 2 Voltage 14 AWG Lower Cable Tray l

l l

!= _ . _ . - _ _ . . . . . - _ . _ . . . . _ _ . _ . , _ . . _ . . _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . . . . _ _ _ _ _ _ _ . _ - _ _ .

P0go 4 Oscillograph 92 Channels-Channel No. Test No. Signal Location 1 1,2 Current Faulted Cable A digital multimeter shall be utilized to measure all phase-to-phase voltages and all phase currents prior to, during, arWI af ter the overcurrent test. These data shall be recorded to provide accurate evidence of the energized specimens' ability to conduct rated current and 120 VAC throughout the overcurrent test. .

3.1.4 Baseline Functional Tests for Cabling in Upper Tray The baseline functional tests shall consist of insulation resistance and high potential tests on the " target" cables.

3.1.4.1 Insulation Resistance Test

1. Using a megohameter, apply a potential of 500 VDC and record the minimum insulation resistance indicated over a period of 60 seconds on the " target" cables.

i 4

2. Perform a high potential test on the " target" cable.

3.1.5 overcurrent Test s 1. Connect the worst case cable (WCC) size to the copper bus bars per Figure 3.

2. Energize the two 3/C Size 14 AWG cables with 120 VAC and 15 amperes.
3. Energize the two 3/C Size 12 AWG cables with 120 VAC and 90 amperes.
4. Energize the worst case cable size with rated current (90 amps).
5. ' Record " target" cable voltages and currents and the 4

fault cable current.

6. Allow the worst case cable size to conduct rated current for 15 minutes.
7. Increase the Multi-Amp Test Set output to 660 amperes in increments of 50 amperes. Hold at each level until cable failure occurs or until thermocouple readings stabilize.
8. Record " target" cable voltages and currents and the f ault cable current and temperatures.

1 i

_ _ ._ _ _ _ . a

m Page 5 ,

9. - De-energize the Multi-Amp Test Set output.

. . . . ' ~ ~ ~

10. Record Multi-Amp Test Set time to f ailure of the faulted cable. __ _ .
11. Record " target" cable voltages and currents.

- 12, De-energize the " target" cables.

13. Photograph the post-test damage.

14.. Remove the f aulted cable and any other cables that were significantly damaged.

~

15. Repeat the applicable portions of Paragraphs. 3.1.2 (Test Specimen Preparation), 3.1.3 (Instrumentation Setup) and 3.1. 4 (Baseline Functional Tests).

, t e

't 4

t

  • -=**e=----------e----,---e-,-r ,c,,--~~--

OSER &

(fttmu

. Tisva e l -

TE5T SETUP Fos. TpJN -To -TRAY sreAnarerv l 4

% i l

ooe ooc :

f c.6 ' -Kv/. 4: 11 p ,

f" rep J ton am y N - -

0oaro oc a ca e-sof, 4\ t l

l e CWA hpCat. < o<.=4rw Cal.

~

etv.u.4 % 4 .oeali en N.4e. 1 -

% .+ c Ltc wril6 ma i 4,d A. Ana +=+ =J d.J =

J e

i Sol (6/01)

m v - - - -A 1 e

6

- === w I gg g(g ==

l qg 7mcC,0 tai 3 % e06 S0M6 i

O L C4R Tmy

/~T*Pf C*u y' j k 4 1

IS jedk Tmy 1 x =

N nuu 5 -ma cal,l.

E o

y ,,,,, Ty " k," h q e, l memnkd on 4b YM cakk Jac.W and cakte adi a5*a+ 4* A g4 1..lle, on J #a. *dla m y , ,

l L

- . - - . - - . , . _- - - - -. . _ . . _m,~-__.m,m,.--- ---,-- m. -

N Fault Cable Tray,6 esmesessumesR 1

e C .

E E i

To Multi- "

amp Test 4

! - Set " 1/4" x 3/8" x 100" Copper Bus Bar ,

g

]ii -'

  • The threeM of the fault cable shall be connected in series.

1

~

i l ,

    • The fault cable shall be wrapped with a single

~

1ayer of s11 temp wide tape No. 65 from the edge of the test area to the bus bar.

=e*

4 l

3 FIGURE F. TYPICAL FAULT CABLE CONNECTIONS I

i a

1 .

t .

C i

.m i - -

d

.n

i. '
.I r-1 .O n F.

l g< 3A -

DSER Open Ites No. 253 (DsBR section 8.3.3.1.4)

COMMITMENT TO PROTECT ALL CLASS 15 EQUIPMENT FROM EXTERNAL BASARDS VERSUS ONLY CLASS IB EQUIPMENT IN ONE DIVISION h In se ction 8.1.14.3.3 of the FSAR, it is stated that where neither compartmentalization nor the construction of barriers is possible (to protect Class 18 circuits or equipment from

~.

hasard' s such as pipe break, flooding, missiles, and fires) l an ana' lysis is performed to . demonstrate that none of the l hasards disables redundant equipment, conduits, or trays.

r L

Based on this statement, the staff concludes that at least

' one of the redundant Class 15 systems and components at Hope Creek need nog be protected from external hazards.

The design, thus, does not meet the protection requirement of of criteria 2 and 4, nor the single failure requirement Criterion 17 of Appendix A to 10 CFR 50. Justification for

( non-compliance with criteria 2, 4, and 17 will ,.be pursued with the applicant.

RESPONSE

f 8.1.4.14.3.3, have The re,sponse to Question 430.38, and Section l

l been revised to provide a discussion of protection of Class lE l systems and components against external hazards. _

l

?

l .

l s

( . . .

I d .

..-.,-_-,,...__.,-.-,.--n-- -

-_,_.,_,,,.,,n...-,_. , ,,,-,--n.,,_,,-_,., . ,____. . . . . ,_ - . , , , , . _ , . . , , , , , , _ , . _ , - . , , . , - - - , - . -

. a, Red. bA r .

HCGS FSAR OUESTION 430.38 (SECTION-8.3.1 and 8.3.2)

' In Sections 8.'t.4.14.3.3 of the FSAR you state that where neither l compartmentalization nor the construction of barriers is possible (to protect Class 1E circuits or equipment from hazards such as pipe break, flooding, missiles, and fires) an analysis is

" p;rformed to dgmonstrate that none of the hazards disables rcdundant equipment, conduits, or. trays. Based on this statement it appears that at least one of the redundant Class IE systems and components at Hope Creek may not be protected from external -

hazards. The design, thus, does not meet the protection requirement of Criteria 2 and 4 nor the single failure Justify requirement of Criterion 17 of Appendix A to 10CFR50.

non-compliance with Criteria 2, 4, and 17.

RESPONSE

Section 3.5 indicatse that Clers 1E equipment is protected f rom postulated missiles by use of plant arrangement or suitable physical barriers such that a single missile.cannot simultaneously damage' a critical system component and its backup system. This is accomplished by locating redundant systems in different areas of the plant or ceparation by missile-proof ' walls. There are no Class 1E electrical equipment and components that can be damaged by missiles generaced externally to the plant.

Section 3.6.1.1 Indicates that, as part of the design basis for protection against dynamic ef fects associated with the postulated 4

rupture of piping, a single active component failure is assumed to occur in systems used to mitigate the consequences of the postulated piping cupture and to shut down the reactor. A thorough review of the plant using the design bases provided in section 3.6.1.1 was conducted and no cases were found where the piping f ailure would prevent safe shutdown (

Reference:

Question / Response 410.23) .

}

Section 8.1.4.14.3.3 has been revised to INSRT "A" -

4 9

/

430.38-1 J.; ;..2 2 : : t ; # " #

/

INSERT A (Question 430.38/ Item 34)

A separation analysis has been performed which addresses protection of all Class lE electrical equipment from external hazards generated by a non-safety system or component. It has been concluded that in certain areas, a break in a fire protection system could af fect some Class lE electrical equipment. HCGS has committed to protect all Class lE equipment from this hazard. In addition, the flooding hazard in the main steam tunnel which results from a feedwater line break could c' a use the failure of some Class lE motor operated valves and some Class lE temperature elements (RTDs). These devices are protected from short circuit damage by Class lE overcurrent protective devices located in hazard free areas. These primary overcurrent protective devices are backed up by additional Class 1E overcurrent protective devices also located in hazard free areas. HCGS will complete an analysis to verify that af ter the back-up isolation device clears the flooded devices,the plant can be safely shutdown with the worst case single failure in a redundant train. If this is not the case flood protection will be provided. Other external hazards were also analyzed and it is concluded that no other Class lE electrical equipment can be damaged by external hazards origi-nating from a non-safety system or component.

l _. ~.

l l

  • V3 4

- . Rev. 3A

' HCGS FSAR 40 monitoring cables, boxes also shall not be considered

' in determing the required separation.

l1 In case of open ventilated trays, redundant trays are b.

separated by 3Iffeet horizontally and 5 feet vertically, the redundant trays cannot be respectively.

separated by the distances specified above, solid o..

L covers for trays are provided as designated in Section 6.1.4 of IEEE 384-1981.

?, Separation requirements between Class IE and non-n Class IE circuits are the same as those required g between redundant circuits. .

U .

8.~1.4.14.3.3 Hazardous Areas .

U I These are areas where one or more of hazards such as pipe break, flooding, missile, and fire can be postulated.

Routing of redundant Class IE circuits or the locating of L

i redundant Class 1E equipment in hazardous areas is avoided. The L preferred separation betiween redundant Class IE circuits or equipment in these areas is by a wall, floor, or barrier that is structurally adequate to shield redundant raceways from' potential-hazards in the area.

Where neither compartmentalization nor the construction of barriers is possible, an analysis is performed to demonstrate that no missile, fire, jet stream impingement, or pipe whip hazard disables redundant equipment, conduits, or trays. In no.. ,

case, regardless of the distance of physical separation, are redundant equipment cable trays located in the direct line of -

sight of the same potential missile source, a

The plant design for fire protection separation of electrical cables and equipment is reviewed against 10 CFR 50, Appendix R, which is discussed in Section 9.5.1. >

.~

\ td St?/ll' */;

8.1-22 .z:;l-.;..i

' e "

..,-,-.------,.p,.v..v n_m.n. _ . _ , . , , , , , ..,.__,__,e_,____.__n_,___ ___ _ _

INSERT A INTb SECT 10ma 8, ! , 4. l'4.1. 3 A separation analysis has been performed which addresses protection of all Class lE electrical equipment from external hazards generated

'tur a non-safety system or component. It has been concluded that in certain areas, a break in a fire protection system could affect

. some Class lE electrical equipment. RCGS has committed to protect all Class lE equipment from this hazard. In addition, the flooding hazard in the main steam tunnel which results from a feedwater line break could cause the failure of some Class lE motor operated valves and some class lE temperature elements (RTDs) . These devices are protected from short circuit damage by Class lE overcurrent protective devices located in hazard free areas. These primary overcurrent protective devices are backed up by additional Class lE overcurrent protective devices also located in hazard free. areas. HCGS will complete an analysis to verify that af ter the back-up isolation device clears the flooded devices,the plant can be safely shutdown with the worst case single failure in a redundant train. If this is not the case flood protection will be provided. Other external hazards were also analyzed and it is concluded that no other Class lE electrical equipment can,be damaged by external hazards origi-4 3

nating 'from a non-safety system or component. .

  • e

)

i i

e 1

1 0

t

- - --, -- , , ,..-,-,.,.-,,--,,.-,--..me w%-w,-e-'--=+ww--*w w- w-v--- e-air-- *w-----

kEU. I HCGS FSAR 4/84 QUESTION 421.10 (SECTION 7.1 & 7.2)

The staff believes that the physical separation provided in the

- design of the RPS cabinets may not satisfy the requirements of Regulatory Guid 1.75 or the plant separation criteria and is, therefore, unacceptable. As an example, it has been noted on similar plants that the cabinet lighting and power circuits (which are not treated as associated circuits) becomes associated with Class IE circuits inside the RPS cabinets. Section 8.1.4.14 includes a brief discussion on the physical separation provided within panels, instrument racks and control boards for the instrumentation and control circuits of different divisions.

Review the design of all Class 1E cabinets for separation between non-Class 1E snd Class IE circuits. Provide the staff with a listing of the cabinets which were reviewed and describe in detail how physical separation is maintained within the panels, racks and boards for those cases where a 6 inch air space cannot be maintained. Provide a summary of the analysis and testing Include in the performed to support this lesser separation.

discussion the separation provided for associated circuits, internal wiring identification and the use of common -

terminations.

RESPONSE

The HCGS RPS cabinets (10C609, 10C611, 10C622 and 10C623) meet the requirements of IEE3 Standard 384 as modified and endorsed by Regulatory Guide 1.75, as stated in Section 1.8.1.75. Cabinet

- lighting and receptacle power circuits are physically separated from RPS circuits by being routed in metallic conduit or by structural steel barriers.

Physical separation between non-Class 1E and Class 1E instrumentation and control circuits is provided in panels, l

instrument racks as and control modified andboards in accordance endorsed by Regulatory withGuide IEEE1.75 Standard 384, as stated in Section 1.8.1.75.

The following is a listing of Class 1E panels, instrument racks and control boards reviewed for the separation requirements of IREE Standard 384:

Panels IAC200 H,/O, Analyzer A Panel f 1BC200 H,/O, Analyzer B Panel

1AC201 SACS Control Panel A l

I IBC201 SACS Control Panel B 1CC201 SACS Control Panel C ..

l IDC201 SACS Control Panel D J

f 10C202 RACS Heat Exchanger and Pumps Control Panel .

l ggg

~

421.10-1 Amendment ~5 i j

'>..~ ..y *

- '.xpg%

U.0 ,*

~

S s-

  • wNd@beg ;mensp

% 4".y..s - ~  %, iQ.%;>.%ff 5

_-. - _ _ . . _ _ _ , _ _ . . _ - , . . _ _ ~ . . _ _ _ _ _ _ _ _ . . _ . _ _ _ . _ . _ _ - . _ _ _ _ _ _ _ _ _ - - _ _ _ _ _ _ _ _ _ _ _

AEN. l 2-laco HCGS FSAR 4/84 1AC213 Instrument Gas' Compressor A Control Panel IBC213 Instrument Gas Compressor B Control Panel

. 1AC215 H, Recombiner A Power Distribution Panel 1BC215 H, Recombiner B Power Distribution Panel 1AC281 Reactor Building Unit Cooler Control Panel 1BC281 Reactor Building Unit Cooler Control Panel 1CC281 Reactor Building Unit Cooler Control Panel IDC281 Reactor Building Unit Cooler Control Panel 1AC285 Reactor Building FRVS Control Panel IBC285 Reactor Building FRVS Control Panel i ICC285 Reactor Building FRYS Control Panel 1DC285 Reactor Building FRVS Control Panel 10C286 Reactor Building Equipment Lock Ventilation 10C399 Remote Shutdown Panel 10C401 Diesel Generator Area Battery Room Panel 10C402 Diesel Generator Area Battery Room Panel 1AC420 Diesel Generator A Exciter Panel IBC420 Diesel Generator B Exciter Panel ICC420 Diesel Generator C Exciter Panel 1DC420 Diesel Generator D Exciter Panel .

IAC421 Diesel Generator A Local Engine Control Panel 1BC421 Diesel Generatcr B Local Engine Control Panel ICC421 Diesel Generator C Local Engine Control Panel 1DC421 Diesel Generator D Local Engine Control Panel 1AC422 Diesel Generator A Remote Control Generator Panel 1BC422 Diesel Generator B Remote Control Generator Panel 1CC422 Diesel Generator C Remote Control Generator Panel IDC422 Diesel Generator D Remote Control Generator Panel 1AC423 , Diesel Generator A Remote Engine Control Panel 1BC423 Diesel Generator B Remote Engine Control Panel ICC423 Diesel Generator C Remote Enoine Control Panel

, IDC423 Diesel Generator D Remote E. :ne Control Panel L

1AC428 Diesel Generator A Load Ser.encer Panel l

1BC428 Diesel Generator B Load Sequencer Panel ICC428 Diesel Generator C Load Sequencer Panel IDC428 Diesel Generator D Load Sequencer Panel l 1AC482 Electric Heater Control Panel 1AVH403 l

1BC482 Electric Heater Control Panel 1BVH403 Diesel Area HVAC Control Panel 1AC483 1BC483 Diesel Area HVAC Control Panel ICC483 Diesel Area RVAC Control Panel 1DC483 Diesel Area HVAC Control Panel 1AC485 Control Area HVAC Control Panel I,85 Control Area HVAC Contrcl Pansf l 1a ,36 Diesel Area Panel Room Supplv di ter 1BC486 Diesel Area Panel Room Su*f-j Jy. en IAC487 Water Chiller Panel IBC487 Water Chiller Panel 1AC488 Chiller AK403 Power Panel IBC488 Chiller BK403 Power Panel IAC489 Electric Heater Centrol Panel 1AVH407 Electric Heater Control Panel 1BVH407 llhIBC489 -

421.10-2 Amendspnt 5 l l

r- 'r- yy -,,--i+w .,--,.--wc- , ,,,-w ,e,yy,, . - - . ,. m,-- - - . , . , - , , -,e._,,-,,,-.._-,,-.%,, , , . , . . , , , - . -

,., --,,,,___._,,yw_.a,..yv- .

,-,m,.,ww%--w

l

[6V 1 3[2G HCGS FSAR 4/84 IAC490 Water Chiller A Control Panel 1BC490 Water Chiller B Control Panel ,

IAC491 Water Chiller A Power Panel l 1BC491 Water Chiller B PGwer Panel 2 1AC492 Electric Heater Control Panel 1BC492 Electric Heater Control Panel

1AC493 Control Panel - Auxiliary Building Diesel IAC494 Control Panel - Auxiliary Building Diesel l 1AC495 Control Panel - Auxiliary Building Diesel IBC495 Control Panel - Auxiliary Building Diesel ICC495 Control Panel - Auxiliary Building Diesel IDC495 Control Panel - Auxiliary Building Diesel

. 1AC515 Traveling Screen Control Panel IBC515 Traveling Screen Control Panel ICC515 Traveling Screen Control Panel IDC515 Traveling Screen Control Panel 1AC516 Service Water Pump Panel IBC516 Service Water Pump Panel ICC516 Service Water Pump Panel

.1DC516 Service Water Pump Panel 1AC581 Intake Structure HVAC Control Panel IBC581 Intake Structure HVAC Control Panel ICC581 Intake Structure HVAC Control Panel IDC581 Intake Structure HVAC Control Panel 10C601 RRCS Division 1 Panel 10C602 RRCS Division 2 Panel 10C604 Class 1E Radiation Monitoring Instrumentation Cabinet 10C617 Division 1 RHR and Core Spray Relay Vertical Board Division 2 RHR and Core Spray Relay Vertical Board

  • 10C618 10C620 HPCI Relay Vertical Board 10C621 RCIC Relay Vertical Board 10C622 Inboard Isolation Valve Relay Vertical Board 10C623 Outboard Isolation Valve Relay Vertical Board 10C628 ADS Division 2 Relay Vertical Board 10C631 ADS Division 4 Relay Vertical Board 1AC633 Post LOCA H, Recombiner A Control Cabinet 1BC633 Post LOCA H Recombiner B Control Cabinet 10C640 Division 4 RHR and Core Spray Relay Vertical Board 10C641 Division 3 RHR and Core Spray Relay Vertical Board 10C650 Main Control Room Vertical Board 10C651 Unit Operators Console 1AC652 1E Solid State Logic Cabinet Channel A 1BC652 1E Solid State Logic Cabinet Channel B ICC652 IE Solid State Logic Cabinet Channel C IDC652 1E Solid State Logic Cabinet Channel D 1AC655 IE Analog Logic Cabinet Channel A IBC655 1E Analog Logic Cabinet Channel B l

! ICC655 1E Analog Logic Cabinet Channel C 1DC655 1E Analog Logic Cabinet Channel D 1AC657 IE Digital Termination Cabinet Channel A 1BC657 IE Digital Termination Cabinet Channel B G ICC657 IE Digital Termination Cabinet Channel C 421.10-3 Amendment 5 .

~

' ~

l l

HCGS FSAR Ml 'l 4/84 IDC657 1E Digital Termination Cabinet Channel D 1AC680 1E Electrical Auxiliary Cabinet Channel A IBC680 1E Electrical Auxiliary Cabinet Channel B ICC680 1E Electrical Auxiliary Cabinet Channel C-

. 1DC680 1E Electrical Auxiliary Cabinet Channel D Instrument Racks 10C002 Reactor Water Clean-up Rack 10C004 Reactor Vessel Level and Pressure A Rzek 10C005 Reactor Vessel Level and Pressure C Rack-10C009 Jet Pump Rack A ,

10C014 HPCI A/H2CI Leak Detection A Rack 10C015 Main Steam C/D and Recire A Flow Rack 10C018 RHR A and ADS Rack 10C021 RHR B and ADS Rack 10C025 Main Steam C/D and Recire A Flow Rack 10CO26 Reactor Vessel Level and Pressure D Rack 10C027 Reactor Vessel Level and Pressure B Rack 10C037 RCIC D/RCIC Leak Detection D Rack 10C041 Main Steam A/B and Recirc B Flow Rack 10C042 Main Steam A/B and Recirc B Flow Rack 10C069 RHR D and ADS Rack 10C208A RCIC/ Reactor Cooling 10C211 RCIC Pump 10C212 RCIC Pump Instrument racks are separated into channels. No two redundant piped or tubed safety-related instruments are located on the same rack.

~Where a 6-inch air space cannot be maintained between instrumentation and control circuits of diff erent channels (both Class 1E to Class IE and Class 1E to non-Class IE), barriers are provided in accordance with IEEE Standard 384. These barriers are metallic conduit, structural steel barriers, or non-metallic wrap (Havey Industries Siltemp Sleeving Type S or Siltemp Woven l Tape Type WT65). The metallic conduit and structural steel The nonmetallic wrap barriers are noncombustible materials.

(Siltemp) was successfully tested for use as an isolation barrier -

> (reference Wyle Laboratories Test Report Number 56669).

ain types of isolati devices, barriers f the type For ce irements of noted a ve are not feasible. or384these are cases, e met, as llows:

L Section .2.1 of IEEE Standar  !

ration of the wiring t the input and utput "The s terminal of the isolation devt e may be less t n at it 6 inches ( 15 m) as required in .6.2 en provided input and o put is not less han the distance bet terminals.

i g

i l

Ada' '~nwd A 421.10-4 -

Amendment 5

~ .

,,,.,...__.-,._,.-.-,-,,,,,,,.,,.,_-,,,,m,,m-,,,, ,, ,- _ ,__ ,_.,. ,,

, am P ~~~%

, ,g g,,7 ,4 _

y // css , tda<. is ela Nos AM "" "l dic.A  % 4 'A ' 5#*"

r:e do sof a d , b y Asy, dorurs of A sahf t g u ; ,e w e ,[

pe idaufiGed s4sa. are xd AasI4/e - '"

& ikeg air space agola"<d is '"ao0%)n*c! br utriy assoc;Ad w;M. Asa Avicas e ece,o+

a + +9a dovice praixfa;>u.e ihalf wha,.e -m syorsfbn is ks %ce 6dween M?a itof /<rs &a fLe gs;ca. (

Ixp+ and odpat/een 00 +fa isolaNeu device .

72as.e divices c7re:

a) T15c aalog isoietery vuoda ' isb providas 0 lo.ss lG +o no<A- c.(a.ss I 6 iso ledion or l o to l.e y.c.{ awa( iy gh % & (c.u.g{ com h b ) S t r a % r s % a p y e 2.1 9 reta.y provicbs class 18 fo vt ex. -cJa.ss ir isola kou. S r inga+.r

~ ~

~

bb f (Q"Y 4 H n u ec jcdcr- (12.5 vele cony. A.c ~~ ~

hhogafiew vo H== 4. 1:, u. sed b +rv l

unawcieder),

y g ta#

\ e3'Mle.'bott w vu ede ( 700- 2co A )2.P r=% ~

providos c.(x g Ig +a von-c-kss le Tsoldk g fror i nf xts +o % f(c ef duuu rci dor .

%se. dovtvs, are .?uIl l a.s, diose raeA. in ur+ (d)p a 4 % m P0*l;kd b -

4 4ALChow N 7) . I'

  • Rev. ) 4 [to SCGS FSAR , 4/84

'%_ s '

Minimum separa ion requirements do ot apply for ring

, and components ithin the isolation device, howeve ,

eparation shall be provided whereve practicable.

Testin in accordance ith IEEE Standard 72 (Surge With tand Capabil ty) will be per ormed to ensure.tha the Class IE nputs to the i olation devices are not affected by short-circuit failures, ground faults voltage surges on he output sid of '

the isola ion devices. ,

( Single Ta,lurt r.: r-!r analysis tweye,I " " ' 50 performed to support air spaces less than 6 inches, ;i.;; the r v ir----te rf I " Et ndard 384 C e., a.G;fi;d, .ic'for the Neutron Monitoring System Panel (10C608) and the Process Radiation Monitoring System Panels (10C635 and 10C636). M .4 m po, 4 w<e s s <.i A. #ed 4.<oce e c era m / e c.o v e r i K L tt.' H I to A se hwe,uc.e e do.s ed sept e m un 7, atu.)

No associated circuits have been identified in the non-NSSS panels, instrument racks, or control boards. Internal wiring identification is done using color coded insulation or insulation marked with color coded tape. For panel sections of one channel only, internal wiring identification may,not be done. Where common terminations are used, the requirements of IEEE Standard 384 are satisfied as stated above. ,

Electrical equipment and wiring for the reactor protection system (RPS), the nuclear steam supply shutoff systems (NSSSS) and the engineered safeguards subsystems (ESS) are segregated into separate divisions designated I and II, etc., such that no single credible event is capable of disabling sufficient equipment to prevent reactor shutdown, removal of decay heat from the core, or closure of the NSSSS valves in the event of a design basis accident.

No single control panel section (or local panel section or instrument rack) includes wiring essential to the protective function of two systems that are backups for each other (Division I and Division II) except as allowed below:

a. If two panels containing circuits of different separation divisions are less than 3 feet apart, there shall be a steel barrier between the two pancis. Panel ends closed by steel end p*ates are considered to be acceptable barriers provided that terminal boards and wireways are spaced a minimum of one inch from the end plate.
b. Floor-to-panel fire proof barriers must be provided between adjacent panels having closed ends.
c. Penetration of separation barriers within a sub~ divided panel is permitted, provided that such penetrations are sealed or

., otherwise treated so that an electrical fire could not i 421.10-5 Amendment 5 I $

, +W-.- .w.-_w -www-- - ---p-.-,-, s. w,,.--,v a q..e,,,,

  • w

. kFU-l 7 ,,

k ECGS FSAR 4/84

~~ie~asonably propagate from one section to the other and destroy the protective function.

d. Where, for operational reasons, locating manual control switches on separate panels is considered to be prohibitively (or unduly) restrictive to normal functioning of equipment, then the switches may be located on the same '

panel provided no single event in the panel can defeat the

. . - . . ._w._w

-automatic operation of the equipment. _

With the exception of panels 10C608, 10C635 and 10C636, internal wiring of the NSSS panels and racks has dolor-coded insulation.

Associated circuits are treated within a panel or eack in the same manner as the essential circuits. Where common terminations are used, the requirements of IEEE Standard 384 are satisfied.

NI 4 f i.ca! Wh< t.kcu, d.SSrvnkVis hyg, b.g f g, akbd 6e+wun.  % A) pts p'ome rfs two ' amp' /w y a c 04r.J (mcuorr) avv/

l 0es pose -

Q-e.<Ae cs a s doscrM k revised S <.c h 7. /,. l. +. z._.

l G

421.10-4 Amendment 5 5

w g--- w e+e- e,-m--w-wryeee .-r+-m w-r-ew=,- - -,s.+-me- - - . - ---w--- ,e-*-----+-%- ,y--y ,,,-v.my-m-rv-wy--m-g,,n,er ww e-e.w e-ve- y - 3-ww y -w-N***-vwww-wy-pwr-e w w--

HCGS FSAR 4/84 Nm7

. FIGURES (Cont)

Ficure No. Title 7.6-2 NMS IED 7.6-3 Detector Drive System 9

7.6-4 Functional Block Diagram - IRM Channel 7.6-5 AP.RM Circuit Arrangement - Reactor Protection i System Input 7.6-6 Power Range Monitor Detector Assembly Location

.7.6-7 NHS FCD 7.6-8 Redundant Reactivity Control System Initiation

- Logic ,

7.6-9 HCGS Redundant Reactivity Control System ARI valves De eted c,,g 7AgAy, gyu),jg {gpg

  • 0 ~_1 7.7-1 CRD7CD C'* h Obn b0N] T'ld 7.7-2 RMCS Block Diagram-7.7-3 Reactor Manual Control System Operation 7.7-4 Reactor Manual Control Self-Test Provisions 7.7-5 Eleven-Wire Position Probe 7.7-6 Recirculation Flow Control 7.7-7 Feedwater Control System f

E 7.7-8 Simplified Diagram Turbine Pressure & Speed Load Control Requirements 7.7-9 Deleted l l

' (..

i 7-x Amendment 5

? .

- -.~ -.. . - . . , _ . . . - , . - - - - - - . . . - . - . . - - . . - - , - - . - . - . - . . . - -. .-

  • I 9/26 BCGs PsAR coaxial cable. The amplifier is a linear current amplifier whose voltage output is proportional to the current input and therefore proportional to the magnitude of the neutron flux. Low level output signals are provided that are suitable as an input to the computer, recorders, etc. The output of each LPRM amplifier is
isolated to prevent interference of the signal by inadvertent grounding or application of stray voltage at the signal terminal point.

g Qsa. Frr gun b-H) Ski Power for the LPRM is suppliedhrwo non-Class 1E__)

,. uninterruptible power sourcesM. Appro11 mar.ely half of the LPRMs p are supplied.from each bus. Each LPRM amplifier has a separate y' power supply in the main control room, which furnishes the detector polarizing potential. The LPRM amplifier cards are mounted into pages in the NMS cabinet, and each page is suppl,ied

operating voltages from a separate low voltage power supply.

- /Al.S 6 W k -

The trip circuits for the LPRM provide signals to actuate lights and annunciators. Table 7.6-3 lists the LPRM trips.

Each LPRM may be individually bypassed via a switch on the LPRM amplifier card. Placing an LPRM in " bypass" sends a signal to the assigned APRM, electronically causing it to adjust its averaging amplifier's gain to allow for one less LPRM input. In this way, each APRM can continue to produce an accurate signal representing average core power even if some of the assigned LPRMs fail during operation. If the number of functional assigned LPRMs drops to 50% of the normal number, the APRM automatically goes inoperative and a half scram (one trip logic channel deenergized), rod block, and appropriate annunciation are generated. Administrative controls ensure that a minimum number of LPRMs at each level (A, B, C, and D) in the core are saintained or the APRM is declared inoperative and manually I placed in the tripped state.

l l

l' In addition to the signals supplied to the APRMs, the LPRMs also send flux signals to the rod block monitor (RBM). When a central control rod is selected for movement, the output signals from the amplifiers associated with the nearest 16 LPRM detectors are displayed on the main control room vertical board meters and sent to the RBM. The four LPRM detector signals from each of the four i detector assemblies are displayed on 16 separate meters. The operator can readily obtain readings from all the LPRM detectors by selecting the control rods in order. These signals from the 7.6-10

't-zyry Rev.I to/c-IN8ERT A 1,S- 14 M Electrical protection assemblies (EPAs) identic n Section to those used in the reactor protection system (RPS) (described 8.3.1.5.4) are installed between the power range HMS and a two 120V AC feeders from the UPS power sources (see Figure .6-11). The EPAs ensure.that the power range HMS never operates under degraded bus

' voltage or frequency conditions (undervoltage, overvoltage, underfrequency). The power range NMS panel (10C608) was analyzed

' with- this power supply configuration to ensure that no single f ailure of the power range NMS could inhibit the proper oper,ation ,

of the,r'eactor protection system or any other saf ety system required l for the safe operation of the plant. The interf aces between the power range HMS and the RPS have adequate provisions for separation.

The RPS cabling external to the HMS panel conforms to the separation 1 gidelines of Regulatory Guide 1.75, which the RPS must satisfy. l fithin the panelj ydhere the cable and wiring runs to the different RPS divisions do not conform to the Regulatory Guide 1.75 separation criteria, fire-resistant "Sil-Temp" tape is wrapped around the cables and wires. This eliminates the possibility In of fault accordance with paragraph propagation between the RPS divisions.

S.6.2 of IEEE standard 384, thin tape has been. demonstrated to be acceptable.

e e

t e

9 W

Rev.

Ill2.G i

~

four LPRM strings (16 detectors) surrounding the selected rod are used in the RBM to provide protection against local fuel overpower conditions.

7.6.1.4.3 Average Power Range Monitor Subsystem .

The APRM subsystem monitces neutron flux from approximately 1% to above 100% power. There are siz APRM channels, each receiving core flux level signals from 21 or 22 LPRM detectors. Each APRM channel averages the 21'or 22 separate neutron flux signals from the LPRMs assigned to it, and generates a signal representing core average power.

This signal is used to drive a local meter and a remote recorder located on the main control room vertical board. It is also

. applied to a trip unit to provide APRM downscale, inoperative and upscale alarms, and upscale reactor trip signals for use in the

- RPS or RMCS. -

i Refer to Section 7.2.1.1 for a description of the APRM inputs to i the RPS, and Figure 7.6-5 for.the RPS trip circuit input '

arrangement. APRM trips are summarized in Table 7.6-2.

The APRM scram units are set for a reactor scram at 15% core power in " refuel". and "startup" modes. When the mode switch is in "run," the APRM trip reference signal is provided by a signal that varies with recirculation flow. This provides a power follcwing reactor scram setpoint. As power increases, the reactor scram setpoint also increases up to a fixed setpoint above 100%. Reactor power is always bounded with a reactor scram, yet the change in power required to generate the reactor scram does not vary greatly with the operating power level.

Provision is made for manually bypassing one APRM channel at a time. Calibration or maintenance can be performed without Removal of en APRM channel from service l

trippir.g the RPS.

without bypassing it, by unplugging a card, by taking the APRM i

function switch out of " operate," or by having too few assigned l LPRM signals to the APRM, will result in an APRM " inoperative" l condition which causes a half scram, a rod block, and annunciation St5%t The APRM channels receive power from, non-Class 1E uninterruptible e g[ power soureg.

Power for each APRM drip unit is supplied from C &wffy w oeAs (su ?dii % ?9 ' +: 4- , . .

+

p: .

Lsuin

. kev.Io2. jeu Fnon Ac PaOn Ac

. POWER SUPPLT POWER SUPPLY 1AD483 1CD483 1 (See Fig. 8.3-11 sht. 3) (See Fig. 8.?-11, sht. 3)

O db

"

  • s s A S d L _,. 130V AC A -

120V AC

!- , DIST. PNL DIST.PNL.

1AJ483  : ICJ483 NON-CLASS 1E

- - . Cit,_SL1TE _ _

sot,Mayr CLASS 1E en

- Pactactive NON-ESSENTIAL POWER =

QS8,7A} y (g , NON-DIVISIONAL cracurmy l 4.- J SAFETT RELATED SYSTEM N 8

- U- J W ,p Pao Y =

cseconny 5

tih 8 (g a 4-J . y__;

Af

<f 1:

_ POWER RANGE POWER RANGE l 3 A BU 3 l

10C608 10C608 HOPE CMEEK GENERATING STATION FINAL SAFETY ANALYS18 REPORT ELECTRICAL. PROTECTION ASSEM8 LIES '

(EPAs)IN THE POWER EANGE MEUTION 2WNITOR3G SYSTEM FIGURE 7,6l.11 W I w w ,--,- --+-,-- ,--v-+ --,, +_--e,-r,,-.,,m_-,,,,, _,,,,---m-,o , ---,m, _ . _ _.-e,--- m.,em. - , , , . - n,enm,_wma, ,w--mm, - - ,,-w- .,-~n~

. %gg

. u. .

p . ; . _;,- -  : -

l

. :.  ; -' . ... . n. ,

. .c.

.~- . ul 1 ,

. . ~ ' ~ .: ,,

gj j  :

, )

..w \

)

i II,I i il

. g [

n 11 i v

"a.c n

... . . 13 e

f. i.. 4, .

E si },i 1

i l ig-g.4..

i

.i m:

11.  : li. l f#
ri.i M~

~

' ~

H<I '

!,4 iL'! " .,

4,:li . -

  • ! ::::','i . -

1 sii .

[

. -dEii,i E A,,

5 k:s4-i .

s !!!!

...l.u 1111111 . !dm:1- p .,, .

a n- o

.g; 8 . . '

1

.lkt .Ra i p i,l  :

l' IRi EE o

< 1

'33 -

{g/p 3: ,

j V [I: y. $ ..

+ -

2 i - . t

, . . p.

1 i J+1 x a .

. c-le  %'l

__ ? &* 3%- --cWp l[

3 1;

f,12

'lf '.. a

g. g* [,
1. MML . i4 ~

M ^

'l I

~ '

$ SEl -!s!I  ! l .l ,

I j EE , ,_

<[* g j ,7 ; .

g as i, '1."

Ih 1 g.

h i

4 j ,

.: 1

-jay!!

l

$ ,a.,i, I_

io

).

7 I'

=

_E_@ _

r ,

I  % i

g. .

3 i

iiig'

(

3__

i t "3-= n 3g - 4 ,

m l po E! ^ --84 F

= r _ m pw ,

- 45 h I ni ga .

4 i  ;

rpij.ii i .

g n.

"'d I

j_

Li r-il iK -

S. ,

g

C  ;

,sr v i P-l y.

l

. i.

p M .

( -

t l elo .

im

=

1' '

p ;=I e yM ir.3 j .

m f

1: .i. l

) r -;

, . D l.L t .;h h [p: llI I:[E I Iill'['!ut i.,

i l

7 ,j1, 11 J 'l. .

ft j [  :!

l y li, , .

g g [j' ' .

I' .

j ey k!!!!!!!

yh" $x.'xxxae--,

.y

f  % 6

)

x gixm >M ,' Wi ii t .. .(. . . . .- il ,

g l

.i .

!!:$s[.d.

xai 's $!g{j.j:T.T ' T j

- I%f@I

  • ':ffit;g.>k..$! hg

% hj

! a -

i j.

,Tippp --- .2, .. .

c. ....., .: "

it._m_._._s(i mm:.. 4,

..?!.

x. .p
i l 2 - - L.'~ k ,. ih ,, , A,,b.,*x*s .I-nEI-l

'. [1

'n v. iu-~.l . .

i L lO ~: .:L-j,g.f.,.,g:r .

. ij.' . . j i ti k g ei

.gp! , cm=: -I g7 _ .

..i.? ..

b -i

.j iU .'. .') . . . f .' .k e

s.iis r .i.

g- f; i

j e . _.

n-^ -

j-

  • .M,}.g] l<. I Irii h __- -

.th E

.s. _

g. - .

g! ,-B _ __

lrl g }ql, i A rr n-n n k.-- '

g,. ?! I

$d :$ :$ j E& g

g. l 7 j U -'f

- =e

1--] ~

i .

a -

o-: d G1 : -

%. .c . Iki

. i. _

q}._[ l .

! -j'L:h.m y-

.o -

E

+y e

{l Sl 1

I e 'v e- -_.

i , .if

'u I  :{k:.s li?

iis !

h_:

<_i 1

n -

O *- : 'f  : ,t > , 1 O

l

i. __ l.,Q d f' f ,i h-*rfi !' W-- '-!

{}__

I -u-e: _

,_. ll d --

{.}- - -

v/su l na?

6k ,*

3

,1 s

.,!P ' k o!

ua iir 6

1411 i .i n

i i!f,?:

li n, F

!. qa i!:i1 e

l 'il lQ

, 6 .s U2 i l 1 It[!!) E4!! "; y m-3[ _}**-

J j*g b' l ,

g}lii!-_.A\fa i, ku hp M-lliin J.__Je al eligt I--~- .

C- - ^ ~Lsm ~

i r

! I x, n;m;;;;;;

.m.g innumn L . . . __=_. z. _ . -

l .

g __. . , .

Il )

jIIfa""lilli'il '

'"Q i=i:ipiiii '

! h^ - "

9 ed, l Iwy \

_ _ _ _ _ __ _ _ _j

AfV I /Gl2G I

~ ~ ~

$ " "1 $ -. -- ..

li I

I I ft '[ O In an I >l 5 5 r"%

[

bn L

E!

Ill-I '

$8 I ris 1 c.%. - m.

L l- ..

ll l}

i iF n I

8

, O l

g> g"")

gI si ,' ggI --

n WI nl , i l!,l M -

Pg

'#5 ' (S FM 3*E ,_) I -

III $g a i W W

$h "1 $ "1 E,s W i 1 '

A l _

glE' '

g A

i 1 d _ n I i E .

ra l k

$ NO l

GE.NE NG 8 TION g l FINAL SAP TY ANALYSIS RSPORT Eh

  • b 8 i

,IEN g"N>

ud 9 g ILECTRICAL PROTECTION ASSEMBLIES (EPAs) IN RPS PROTECTIVE CIRCUIT l

!  ! 55! riauni s.2.u - _

p. . n . -=- -

u p cmbly/ A{ = w-

- Mu: - . .. . - p gy, ,

l t7lp, SINGLE-FAILUREANALYSISFORTHENdVTRON NITORING AND PROCESS RADIATION MONITOR'ING SYS'fEMS l

f

~ .  ; -

c HOPE CREEK GENERATI0'N S'TATION .

PUBLIC SERVICE ELECTRIC AND GAS

-

  • f l

, i

' AUGUST 1984

. i 3

i I

i

. I i  : ,

. I I

i s

i  !

l i

!. l l -

e .

08J:rs/A08311*-1 8/31/84 I j

y. s g

1'. '3

~

'e-l if. .) ' . :

~

i  ; gu. i

.- i

,. yr/m

- SINGLE-FAILURE ANALYS'IS FOR THd NEUTRON '

MONITORING AN0' PROCE$5 RADIATION MONITORING ShSTEMS

.,l

l.  : 3 ' l, .?.f .' ,

( '

I i . .. .-

,Some of the safety-related* portions of the ne'utron agnitoringsystem(NMS)and theprocessradiationmonitofingsystem(PRHS)for eHope~Creekfenerating Station (HCGS) are not designed and built to conform to the literal separation guidelinesofRegulatoryGuffe1.75. Thisahlysis stablishesthhacceptab ity of these portions of the.NHS and PRMS by demonst ating that they meet the single-failure criteria of IfEE Standard 279, which puires that the con quences of any single, design-basis failure event in a safety-related portion of the systems be tolerated h.ithout the ,' loss ,of any safety functio,'n.

i i .  !

Portions of NHS and PRMS External to the 25'and PRI6 Panels .

I  ! l

, See' Figure' 7.1-1.of'ths.HCGSfFSAR for the separation; concept of the react " " "

protection ' system (RPS) a5d its' relationship [to tim )#15.

.i

! l l Under the reactor vessel, cables from the individual localpdwerrangemonitor d g

(LPRM) detectors and from the individual int 9rmediatcrange monitor (IRM) detectorsaregroupedtocorhespondwiththejRPStri> chann'el designations.

These cable groupings are rui in conduit from the ve isel pedestal area to the

! NHS and PRMS panels.'

(. .

l '

1 l The radiation monitors on the main-steam lines are p 1ysically separated. The l cabling from the individual ! sensors to 'the phnels is run in separa'te metallic conduit.

! I l

Cabling from the NHS and PRMS panels to the iPS cabi lets is also run in metal-l lic conduit, providing electrical isolation and physical. separation'of the NHS tes. I I l andPRMScablingassociatedlwiththeRPSsys .

t

, It is concluded that the safety-related portfons of the NHS and PRMS external l to the letS and PRMS panels kdequately conform to the! separation efiteri Regulatory Guide.l.75. , ,

g

  • 08J:rs/A08311*-2 ~

.'.. . .-. i. -

8/31/84 . ..  :. , . . -

. 6 5441?;

-.a lW jq :'

l Se.n .

t

,__--.-,_-...y.

._ _- ,_ , . __,..__,,.._v. . - - - - _ _ _ , , , . , _ . , __ _ _ . , _ , . . . . _ _ , , , _ . - - - _ - - . . _ , . _ - ,

3 .. -

I /uv./

! /jf 6

. Sinale Failure in the 245 and PR45 Panels ,

t i  !

Figures 1 and 2 depict schematic' ally the physical arransement of the equipm in MS and PRMS panels H11-P608, H11-P635, and H'11-P636., The designs of these panels are similar to those of 1645 and PRMS panels used'in uvaral BWR plants accepted by the NRC.

i .

The layoub of the panels and the assignments of specific RPS trip logic l circuitry provides the designs w'ith the required' tolerance to postulated single failuns. Thsworst-casesinglefailunwoul'dbetheIdssofanycombination  !

of trip signals within one bay o'f any panel. However, the loss of any bay and its associated wiring would not prevent a scram. Avalidscraasignalwouldbi ,

transmitted via the other bays because of the redundancy in the panel designs l and the interconnections to the RPS (see Figure 7.1-1 of the HCGS FSAR).

t i l '

TheeightIRMchannelsandthesixaveragepower'rangemonitor(APRM) channels are electrically isolated and physically separated. Within the IRM and APRM modules, analog outputs are derived for use with control room meters, record-ers, and the process computer. Electrical isola. tion at the interfaces would prevent any single failure from influencing the trip unit output.

Physical Separation in the NHS and PRMS Panels Adequate separation in the MS and PRMS panels is achieved by using the bay 5 design depicted in Figures 1 and 2, by using relay coil-to-contact as suffi-cient separation / isolation, and by separation between divisions / channels / wiring.

l Where conformation with Regulatory Guide 1.75 separatfob criteria cannot be l achieved, the best-effort design is used. f,

$e RPS an phsically Circuits that provide inputs to different divis ons of separated by airgaps or by the walls between the. bays. 'Within the pan where the cable and wiring runs to the different RPS divisions do-cot conform ...

to the Regulatory Guide 1.75 separation critaria, fire-yesistant "Sil-Temp" tape is wrapped around the cables and wires. Tliis el.iminates the possibility

! of fault propagation between the RPS divisions. 'oIn ace' rdance with parag i

h ofIEEEStandard384,thistape'hasbeendemonsdratedt5beacceptabfe.

l j ..

t 08J:rn/A083118-3 '

8/31/84 l

l

- , _ _ _ - _ _ . . . _ _ _ _ . _ _ . - , _ _ _ _ . _ _ _ _ _ _l

tiCV. /

l i

~

zo/zG Separatedductsareprovidedin'thepanelfortheinconjngcircuitwiresfrom the sensors that belong to UPS Bus 1 or Bus 2. ,

i As shown in Figure 3, the isolation / separation precludes the propagation from outsidethe'NMScabinets(failuresthatcouldcausethelossofanysafety function. .

~

NMS/PRMS Interface to RPS i .

! l Although the LPRM sensors are not required to meet Class 1E requirements, the design bases of the APRMs specify that the LPRM signals used for the APRMs be so selected, powered, and routed that the APRMs do meet' applicable safety criteria. The LPRM signal conditioners and associated power supplies are isolated and separated into groups. ,

{

The logic circuitry for the MS'and PRMS scras trip signals conforms to the single-failure criteria. The contact configurat' ions anf failure consequences

[ associated with IRM A (see Figure 4) and APRM A ,(see Figure 5) are typical of i

the other trip channels and are described in wha,t folloys, i l With the reactor scram mode switch in the " Shutdown l,"

~

positions, IRM A upscale or inoperating signals (unless bypassed) or APRM A upscale or inoperative signals (unless bypassed) would produce a channel trip of the output relay. f i l
  • ' WithYthe reactor system mode switch in theNRun" p sition, IRM A upscale orinoperativesignals(unlessbypasted)andanAPRMAdownscalesignal (unlessbypassed)orAPRMAupscaleneutrontriporupscalethermaltrip or inoperative signals (unless bypassed) we'ld u produce a channel trip of the output relay. ,

i t i

  • A trip of the channel outpu't relay for IRM A and AFRM A or a trip of the l

channel output relay for IRN E and APRM E would pro' duce an RPS Al channel

~

trip. In PRMS, the log radiation monitor A'would p'roduce an RPS Al channeltrip(seeFigure6). '

h ,

0

^ - '

08J:rs/A083118-4 t a

! 8/31/84 0 - ~

.i x.

t -

}

~**,

,. Q . hv. /

  • 7./[24

. I g  :

. For MS, one tripped (unbypassed) channel on the APS tri p system.vould.cause a half scras. If one APRM bay were to fail in an untrippid condition, the remaining bays would be capable of sending RPS sufficient scram signals to produce a full scram, even if one of them were bypassed.'

i

i .

As shown in Figures 2 and 7, if one bay of panels H11-P635 or H11-P636 were to fail in an untripped condition, the remaining bays would be capable of sending sufficient RPS signals even if one of the IRM channels were bypassed. The IRM bypass switches can bypass one IRM channel at a time.

Similarly for'PRMS, if one bay were to fail in a'n untripped condition, the remaining bays would be capable of sending sufficient RpS trip signals to

i l l

Common Power Supply Justificatio'n -

The NHS is supplied with 120-Vac, 60-Hz power from UPS b'usses 1 & 2. A design change has been authorized for the installation on.each' bus of redundant. . .

electrical protection assemblies (EPAs), which will monitor the incoming voltage and frequency.  ;

i r i

Any fault in one MS channel could not cause an unsafe f allure in another channel sharing the same low vol'tage power cupply becauda 10-sep fuses are installed for wire protection, and the power supplies a$e designed with over-voltage and over-current protection circuitry at t/eir output.

I The PRMS is supplied with 120-Va'c, 60-Hz power f' rom RPS busses A and EPAsB.

i arealreadyinstalledoneachbustoprovidevoltageandfrequencyprotection.

I l i Any fault in one PRMS channel could not cause an unsafe failure in another channel sharing the same power supply because 5-amp fuse's are installed for wire protection, and the power supplies are designed wit'h over-voltage and over-current protection circuitrh at their outpu't .  !

! i h . .

1 " " -

08J:re/A08311*-5 .

8/31/84 0 -

. v

  • ' Rev. I l l i j n/z6

- Because of the fail-safe MS/PRh5 logic configuration, a loss of one supply would result in a half screa signal to RPS. Lossofbothsupplieswouldresult

' in a full scras.  ;

I

~

Common Associated Circuit Inte aces ,

Nenessential(associated)circuitstocommoninformatiolnequipmentarecurrent limited and protected such that their failure can'not je'pardize an adjacent circuit. .-

- Figure 8 provides an example of an associated c'reuit interface on LPRM card Z11. Atthezero-to-160-sVcomputeroutput,thdcardi'sprotectedwitha30-MA fuse. The zero-to-10-V output to the rod block monitor' has an additional ,

isolator protection for the card. ,

i i..

1 1

t i

I I

I

~

DOJ:re/A08311*-6 .

s/31/84 g

  • P

- -. - -. . , . - . . . , . _ - - , . . . _ - , - - -n.,-. , . . -- . . _ _ - _ m.,-n,n,

V I l

gfV.I ,

1

/

$ . Ib )

- 1 -

I i MPs ' MN APS (M) (A2) (N) (As) o u o o l

APRM CH. A APRM M C APRM CK E

_ PANEL (l@$ Bus j) (UP.sBus$) (UPA Bus 2) ~

yfj.gg .---.--- -------- - - - - - - - ------- - - - - - - -

.. ammunaamanum RAY i BAYL BAY 3 BAY 4 BAY C ,

APRM.CN.F APMN CMb APRM CN.b (UPS30$2) (096 SU$ 1) (UPS Buss) .

( ) (Y) (h)

RPS RPA RP6

. t

', t

, FIGURE 1 - APRM Panel Assignment i i I i i EP6N E!$O MPsth) a a MPsIN) a a Lo4.MA Meu Las tAkhau Los. WAD.htw Los2Aab '

M 2MW OU30 $NM OUS A

  1. g3G 224VDC Sus g 2MVOC SUS.

Nr-#635 ZMM IMM ~//-#G ZMM ZRM CN.D CW.H CKC CH. 4 CM a ex.y ca.A eM.i l

l' I t ,

3 s e s > < > <p qi mas pas ass ans ans ' ges nas 1

\

(Sil (BA val . . .. (k) (All (N) (N) i FIGURE $ . Radiatioit Monitoring P5nelbkh[". .d.j; '

i

. ..-. . . .u. -. .:.... _

. . p .:

. .  ; E686M""W

..t

\

5:

2.%NT,  % %

. ..,, ..k.ib

.; r 1.

.o. .. uten,; :.w x. ,.2 ..

+

..u.y ;w. :

- * ' .. . , 2:

x,;2+.: = x :.3,y t:1, 9 . ,

e l

l

1 .- V

, f6V./

I '

  • zflzu

. 1 i

! I l

. s i  !

I -

- APRM METRATICws QUAD TRIP Con a u . Rn I nil-F608 ~~~~~~~~~~~I,

  • I I

, -1

  • pl ...

ovaco l ArnN ., I e Mr.1 l CH. ! " y, W I I rl! 1.

g I

cwneo  ! AN #" , g a i l

~

Fr l y mv. /

pgy APRM eM. C l

LFAN <

um=.5 d! ,

i sw2co l APRM gg,8

  • A VI NW

l gpgg gy,, n ' Es l

> 3"V 1 I

O i, i-Aw200 I APRM cu. a

_ 3 cV Nl---l

s I i j ,y ,

l Ml

, . d! l i 1

===----------.-.--.is FIGURE 3 '- APRM/RPS Signak Separation I

J-L Q .,,,,

-C

, , - - - . - - - - - , - ,,w--mw--m ,,_w, , - - , . _ m-,,, nm,-,-=m-,,-

g cV.(

~

l \ > <!*

  • I e .
l. I.
r. e

? I i

useen.a a ._J. r - ,%

4

.ase s

veen s

B e 38 -

e 'N - **

- by man unit rn 4= .;.

' ~

FIGURE 4 - IRM Channel A i l i .

A80s Ossesti. A ptes

. S

%? 9. m '*$,_ .

ss ,
e,o = ,

. mar.. ,

s

. 2 . -

8 4 l

s *  :

w 1

6

. ,. se

=
  • se M

- me

. e':g,ians i i x, =

8%%l j

1 t

I

  • FTGURE . APRM Channel A g ',

.I

,# , bM g ,.*

  • ~.~'s l

- ~ .-;

,a .f ? _ [h{

c g *

~. ...) ,

1 3_.::u

  • ' ' ,.: %'n fr..

@;,,.y:

';ygy 5-g ,,y'.'*;-f];-yj.

  • - ;I .

m esse I

l v - - .., ,,,- w -.,a.v-,--,----,,,.- - , - . - , - - , . - , , -

..._..,,,,,..-vw ,v,,,m-g.,,,,.n.,,,_ ,,,_e- -

,-a,,-,-,,,,an.-, v-n,-,,,,,-en-----

! AGV. l

- I I n .

26/2G

! I PANGL

! W M MWM W PLY gy_pg3f7 ggmm 0U0 ^ '

RPS BU$ A NW NWR.RPflY MNEL _ DM}VnQJWtt,y BUS B . NN pcz4 ppg gyg a FIGURE 7 - Radiation Monitoring Panef1s Power Sources I  !

i I a

i s

e

=

. . _ . q., ,, , , ,

3%. ..

IMT 'm -___

Jne

-d" hj

.. =

met L= JN _ , , , , --

, _'L M mn

~

.f"a"ba

E S _" d ,,

t -

8 W l,

4 4 g j

_%Ah E *' t 9****ttotat

." 8.-* ' --*

  • J- O ,.

Wc g ,

s -

eTe d.' ;l

- em .

- eg,% g = a -

2 i

=[Y

  • one .

ML

.I h

.w w)A M. = -i>

se p=

, '} **ew .e te.masivtes f .  ; .

eres .

g,? . m ...

am FIGURE 8 'LPRM Circuit Ca '.

O l &,, . .. (

W ,2*.; iW '. .r

.."=W-

.N

e t- .
g *. '

l 1 .. ,, 1r? -  ;

. . i/w ' , ". , .' ,

1

.v-

4i

  • i *4,.. gfg4 BCGS FSAR

~

fjy

" OUEST305_430.55 (SECTION 9.5.2)

The information regarding the onsite communications system (Section 9.5.2) does not adequately cover the system capabilities during transients and accidents. Provide the following

.information:

a. Identify all working stations on the plant site where it may be necessary for plant personnel to communicate with the control room or the emergency shutdown panel during and/or following transients and/or accidents (including fires) in order to sitigate the consequencet of the event and to attain a safe cold plant shutdown.

~

b. Indicate the maximum sound levels that could esist at each of the above identified working stations for all transients and accident conditions.

l

c. Indicate the types of communication systems available l

at each of the above identified working stations.-

d. Indicate the maximum background noise level that could l exist at each working station and yet reliably espect  ;

r effective communication with the control room usiner  ;

~

1. the page party communistions systems, and

. 2. any other additional communication system provideC that working station. .

e. Describe the performance requirements and tests that the above onsite working stations communicaf. ion syntes; will be required to pass in order to be assured that effective communication with the control room or emergency shutdown panel is possible under all i

! conditions. ..

f. Identify and describe the power soutzee(s) provided for each of the communications systems.

l (SRP 9.5.2 Parts II & III). <

,f RESPQMSI 388'N .________ . .......'._ .

a.

dentification of all working stati N ate with for plant personnel to ing transients

, ) bene the control r ing and/ored la because all necessary.

and/or accidents is tions are located plant shutdown co el and necessity of oom which proc er l

( within the having

,st .

personnel located at any pa If, however, plant . . ~ . .

shutdown is conte l '

r ...

d30.65-1 Amendment 4:

? .- .

ytn -

BCGS FSAR [ 1/34

~

emergency shutdown panel, then it may be sete necessary we plant personnel able to co p controls from three work ations which have and indications. The roe et are at the diesel generator remote co panels rooms (4 total), <

the Class IE switchge tal), and at the s ator set  !

raaetor protect stem (RPS) moto I vent of fires, the fire be eports

! area. In i to t octed area (s) and the areas are ist

  • on 9.5.1.2.15.

,_ ,_ l sound evels ave no been de ned to the bi asia atto The factive se of he a ve rking ted du ing e I uni tion s tem (s will demonst c 0;;-t . ora =_ of -

pr i s. Cha perait=(='-

er 1 '

nsert r==}==e--.::5 .

c. The page party communication system Inisaddition, availableaattwo- or nearby way radio the above working stations.nication system is available as a ba syntes. g,ggg g, ,

__ .y

d. ?t:  :::1-"_- b r,9- re '...:.  :.ier.

.. 1r e1

._..,6 rt t'.s. ,x:'.'..:, :_" .;, .;,-

. 6. .... __ _. -

55- -3f5Edi. 335 5il E 3 I 5Ee communication"s' systems provided on BCGS are of proven design as used the in previously approved plants. Inested addition, as described in

' communication system will be -

Part (e) of this response n y,q p]

. - - '> See response to Question 430.68, communication syst,eas

e. In-plant i

performance requirements and tests.

communication tests areThe alsotest described method la -

states that l

Section 14.2.12.1.38.

l communication is checked between the control room and the remote shutdown panel.6nser 4- E.]

f. The power source to the page party communication systes i

l 1s from an uninterruptible power supply feeding the public address systes distribution panel 10D494 which in turn supplies the public address system cabJnserf f---g) 10C685, as shown on Sheet 2 of Figure 8.3-11 c . J l

t i

d30.45-2 Amendsent d i

i

,, (pd f o. M y .. .v s.

i Insert A

~

Table 9.5-17 identifies all necessary working stati=ms where it may be necessary for plant personnel to communicate witth the control room or the emergency shutdown panel during and/or following transients and/or accidents (including fires) in order to mitigate the consequences of the event and to attain a sa fe =old plant shutdown. The identified working stations ~or areas in this table i , are selected f rom the Fire Hazard Analysis presented im Appendix 9A wherein all areas containing safe shutdown equipmes:t and cables are evaluated for effect of fire on the~ ability to achieve and maintain cold shutdown. The areas shown on Table 9.5-17 are tiose which -

contain equipment required for shutdown, areas cont: mining only raceways hnd cables are not shown.

Insert 5 -

The locations of public address loudspeakers and handset / speaker amplifier are selected to provide effective communi.=ations and to ,

accommodate areas with high noise levels during nor mal plant operation

and accident condition, including fire. The design of these public address components includes provisions for volume emntrol of the loudspeakers, adjustment in loudspeaker mounting to provide maximum coverage , and special noise-cancelling handset whic
h are e f fective l in high ambient noise areas without use of acoustic: booths. As indicated in Section 14.2.12.1.38, the public addresas system will be tested with area equipment running. Any relocat. ion and adjustment of the public address components will be provided as r.ecessary as i result a of the testing. Estimates of maximum sound levels are provided as indicated on Table 9.5-17. These estiimates are based on equip, ment being energized or running a,nd based =m :o sound level attenuation which would result from accountimg for room I constant and distance and . location of the noise scuzrce(s) .

Insert C Table 9.5-17 also shows for each of the safety-relmted rooms the types of communication system components available with the associated maximum sound levels within the room. All of the =namunication components have the capability to function in the son =4 environments .

i that are listed in the Table 9.5-17. The table 9.E-17 defines the maximum sound level capability for each communication component.

l Insert D As part of Table 9.5-17, the maximum noise levels stre estimated for the areas where personnel will be communicating wi=h the control room or remote shutdown panel room. Generally, PA hasdsets and telephones are not located in areas with high noise levels. The '

maximum noise levels are estimated based on the tTPe of operating equipment in the area with the sound defined by in<flustry standards, such as NEMA Publication MG I and IEEE standards. If several i types of equipment are in the same area, then the moise level l l

associated with the noisiest equipment is shown on this table. '

4 e

,.-,-v- ,--n._-,en, w - -.~ -- - _.--

()p10. 5 I Q *D *

. -Insert E '

i, ,

The communication systems are preoperationally tested to demonstrate that the public address system is effective in areas with high noise levels and that other communication systems are effective between the control room or emergency shutdown panel and working stations as indicated in Table 9.5-17.

Insert F -

This uninterruptible power supply (UPS) is fed f rom Class lE,

  • Channel A, distribution buses. The UHF radio system is also supplied with a non-class lE uninterruptible power supply. The design of each UPS, as shown on Figure 8.3-11, is such that there are three input power feeders - two f rom 480V ac motor control centers and one from a 125V de switchgear. In the case of the UHF radio system, the non-class lE 480V ac motor control centers, which are connected to class lE 480V load centers, are tripped on a LOCA signal. The radio system will be powered f rom the non-class lE batteries (4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> rated) through the UPS under all accident

' cases. Af ter a .LOCA the operator can manually reconnect the non class lE UP.9 to the Class lE load center that is powered from the stand-by diesel generator. The UHF radio system will be powered at all times during any power distribution transfers. The non-class lE UPS, batteries, and associated electrical distribution i equipment that supply power to the radio system were purchased l under -the same technical specifications as the Class lE equipment I

}

and are located in Seismic Category I structures.

g .

l I -

l

QuOcticn 430.65 Tcble Nston far Tablo 9.5-17

1. 'Ihese lighting levels are-at the panel or eque -nt surf ace.
2. The following are the maximum sound levels (dtra 2 hat the communication components are capable of produn--- ,rry or operating in.

Component Sound LevumeCl PA speaker 120 (driven by 30w amplifier) ,

, . PA headset 110 6 e

UHF radio portable set 80 Telephone 70

3. In these rooms the UHF radio sets' sound cap e " ity is below the maximum sound level that could be experie.W in the room.

In these rooms the adjacent hallway can be ut; ~' ed for communication with the UHF radio set. .

4. The work stations identified on the table are urreas that may be required to be manned during design basis ace- me-ts or during the improbable event of a loss of all ac power:...
5. These rooms have a PA handset for two way c - m ication in the adjacent hallway, corridor or room (within apt- - -imately 50 ft of these rooms).
6. All Class lE batterie's are passive electrical ==arponents and do not require any inspection during a station bi mout per the HCGS station blackout procedures. The electr- il status of the Class lE batteries is available in the controi l

rocia.

7. All Class lE de switchgear (HPCI, RCIC, etc),

worters and. -

l battery chargers can be monitored at the con; room and require no local control per the HCGS statiort = lackout procedures.

8. These rooms and equipment are not required ta ame locally monitored or are not required during the sta r -mn blackout condition per the HCGS procedures.
9. The 2 f t candle lighting level is a design irim which will cover a suf ficient area of the corridor to pr.-rSe safe ingress and egress routes. Any hazards within the c. -dor will be l lighted to provide safe passage.
10. In addition to areas of the plant which have e least 10 ft candles of emergency lighting, trouble shoott% during a station blackout may be required in the diesel fuel c- storage tank and pump rooms and the diesel generator batter:-y roons, ee6644p44me Be iWs Cewidairs m MkwaW dient M eil wm w skudmadgun vttwwpin.as in M.reme M d'est s** Wi% wasu_____

mm a _.- _ -a _ _.e._a.. _ _ u.s w- - -

lI T h e d i. \.y..A. . .i d d . , a s g i w A . di 4 c.w6 ~ ; 4 . r a . ,. o g .g s ad Jaenke. gp f4, y4 fvew b ceM pn 3 '

.g,.A;,. L, is =t==um 4.p. b .$

A Ser.l 7 .s.,4., .. ,

f i

e e

6 t

l i

I

. , - - . - - - - , - - - - - ,~-%,-,-ww---. - - . <,---,-,- ...... _,r-,_w.- -

-, , - . _ _ __--.w--w.wwaey- .-o,*

- s

.' I

) ) )* N

~

i 3 ds

  • - ( f

~

- 4 C E f E 3 *f

' T T e r T*

e u l g T s l

A S a

- g t

d a,

M C

( 8 4

e c.

t.

3 c,

g

  • A F 5 e c.

l p S 3 1

. g g P u

t e

0 l

[, (. (,

.. e g g

4 U g 4

o g n a

p g ' l 5 g 3 3

.A .

m 1 g s A _ ou g

[e l f y ", s d

s t.

s..

0 .

s s -

D t, a ~

T \. A

)

l .

g r t E i 7

8 -

S t

s. e t F ,

L g

. c L t 4 Y v A e.

5 .

n o .

y m. , I D 3 3 s h t

u,

, t s, s s E  :

l v% N g g o _

'. n L- -

4 t m s 4g [g

.ig

_tg _

ye e l

n =

=

.r Mf 8

2 i

S q. h g,, p g,

o s _

_ N l

7

('

8

. n _

8 .

. 'T i 0 . .** A .. t86 1 r e

5 * . v. .,. s n y,

'8

%4 ."( 4 A e

3

. cW s c, o e - b 0

.,.."I

  1. S . ,

8

' % r. r, p4 a b 0 r.

u S T . E 5 a

8 I

?

i ri =

o g

t c 6 . e *' lae .r t,i - ( 4 <. t. _

8 ML s

i, m *l (d 4 _

4 T

a S l. e i- t~a/ ,s e . s E *> A

  • s .

e

) )

1 . .

  • 5 g s 8

s . -t A

r 1 t 8

  • et L

3 s t t .

s' ri w1t o

.I S _

t

  • t P O , e 4 l n

i g

E s

n a.oPn .

. r '. /.kHs&

f e I t D --

I

, m ,

I mt-L A MAP AF TL KA 8 t 4s "L 4 s 3 _

4. cs.

. . t _

D no a4 t

f 3e , _

tr 7 s s e . , ,

l 2,(s N A

. r c cig o4 s

d. "I t 2 3,

- 4 i I 3

,( '

l e

e

)

(

re

'M _  ?

g gfs f

. G . L s t s

t t

4 i

( .

Qnr sat 4 g t g .

t t

n e

T 4

g a i e 4' s N

  • M. . s. s s,. s rs a _

r.

. e t n s L l g

t LE e

cs tgw taae l.

n T ke 0p 4o t . d r ,

4 i

t e uL1 4

Es , v

e. e -

s .T .

g. i t_

1 S .

o a C E c e i e 5 e.

4 ff L' S

- . t

. t. g n, l a

s f' i e

. t u.o men s e 3 a.

5fA i

p s,c, s p.2. /

t -

s 8

5 6. sl u m 4 > L M t t s Ls noc

. 4,

m. 8 i

a t s "2onm 1 i.

. 4 -

E z

r. e *,

r.,

- t .. t'crc cI 8 L u

~

k A Mg.uLt i N

iH f

L P

f. A oce mD I 4 r

8 1 8

t;  ;.! l l,i igll .. ,1 )ibI:l 2.ii j Il;Il <l3

i i

~

H C M. F SAS.,

l i

Pa.;C 2 of N TA BLE (i.G -(7 ,

I -

l co.4gonic.41isML Anb EM L g c.t N4Y Lut{ TIN 4 C '( L T c m % Fed. 54f t. 5# .17C6 WM Adfd' cc,u m aeu rd rs:rt s. a 4 5 u ,e c. s.. e. .

LaiuMa*(Y L 4st r:M sys7 rat i e 46 a8s ;

l .. . . . .

" d ###y s m4T(. Feet (AkC4.E S A1 e 40 4 P"8 #( id884" M'[tfe'.fe'.*

!* N((c. 'tt vIi. . ,,,, ,m,n m anu /e coisuar 41uu at uu , a4 ts ~1,,u 4 c 7 _

! A uge, Liar i t.ot tt.a eg - _

L E68dk LL4 tra D, con *iswag;, I

  • P4 114"*50 48 A
  • D*48M L g f 2 s PA Sft 4KL 4 4- 5d U6 HT' O li, e Ta.te.Pflod E. 4, = s 55 'f t(d4 4 ,KADIO _

f

Rt.Ctd S
09 , EL. Si *2., t <. 2 0 ,

3 ( g gyg te)

! ..es eo .u. m u. (sc.n.it s.) mresa ,

1 M us nno ?os<rs Acc.4 si s o , FL.51 1. . A ceo - . ,. i Gas,asefEt*) ,

oie.se i. i.w.i. r,.i use idir' Cus, esevis 5 ) art to a

! i4dx. 4an raine S"* 5"t JL 54 42 <so g,g 3 pg,(se,s,.Norg1) l cnMuoA, (se,c. NeTE 5.)

s l an,in v n 2. ,(L .54 theAarou vs.wisat4, s,4 ao p.yE 5 y p g (gg gg (d i e a r ive.x, At,L*4 *,81 $ , b a Q 2,4 450 , 3 1

, m c. u .,v.a (5"*TE 5) w.rsc,5 -

i t

l &66*4 "5 *? 'i , t L. 54 4,2, 4 'I D , go l

  • 1 6 ($4(,,NOTC$ I MSIIT

^~i,ac w en,

! bon 5101,EL.n7 23 4 450 . -

3 3 (,5ce, mig g)

Weu a l nena.wn3

~

H c M. FSASi, .

s ,7 p,$, 3 - ,( gg ;e .

! TA 6;Lc 9. S - l 1

~ '

cs o4uecc41aeHL . Artb EME#d LN4Y t.A 6 HT sd 4 S'isTe m *. FOM. SME SWJ706WN Ndidi.

cc,MMortstAvecit p. & twd6eset*( L Aagrgg4 Syg trM i & di ur t **, ,

l ~. . ... . Aiu

.. v. -t 1. . . . .

C o 4fte41Mt s E ST"4 ' C' "48"d AfrAoyam4Tc. FeeTcAsuCLE T, 41 2 (U4P*A#ff I8'484-i m A:LA r,t t M os t t a.v 6 t. . _

l A8ttrA/tOtllPltfAT AT AAAA AT AFC A elB A __

L%8*8Ts'nt. 4 C _

E-*#euA 154TF8 8T FAtX L E('8 d D LA.4t A -D f A c ,,t u 7./ - L'. **

  • L :81 '-

WetA l (pres .s sili b. t

  • P4 1848D581 M B A s Dr.48M L . .~
'. 25 PA Sysantg 4.saamHTto SmW _

l 1, = ru.a.relee8 E <, = i.e ss TitAeJ _

j 4. AAD80

( . . .-

j goce.1 t. iso ,5&.54 2. , 4 <. i o -

3 4 .

q 7-j ,iae u <en envele (semerav)

- T4 1 4e*b bt Wt iCai6tria* -

~

1

?., 4 ( ste- A too -

3 l

noom cret. , EE,.77 D/(3 f,g.c e4 nW4C CoctL, m ) NOTE $

  1. 1

$b it.L Ct"J 0LAll0Al t elet l -.

i '

' ou4 52.ci, 0 "F7 7 ,4 (s e.g 3} ,c go *

% a= ==. '** 4ao s u.iii a +'t A,.> pscoces. aries paw '

l' Acom 5140 g&.11 t' 4 ( se e.W6M <N1L o 4/(, asse swiu, cosa48- . 3

,wu swsmnwiense saw AWD 5 Norg & *P %

8 * "a 5' f51'? 5 ' '"

t/) d.cc, . casssa. 2>4 N e f t. 3 < i t, c, AND MCW@d.4flum l'Afd 4*# E pse[g'$ d

~

M O y *. 3 6 I),2 J gyg g I i

i -

h

' H Lid FW y 4 gg .

tat >LC. 9.S - Il .

(pMMONIC.41 s 0ML ArtD EM t sCdit r44Y LudTar44 S'istee*ti. Port 54f L SsJ J7Wesef AMAS t

  • ~

~ - - ., .

l.m#he d(y La g, sly,33.g S y 33 g ,4 g , ,3., .j p E O C&MMGMt(AT804 ... F&A v u v g. 9., ,. . _ .

comf*6Me urs E ST8'9A~l 8 C" WM , Ag'rAoyem41g_ peercA@LA S 41 f (U 8 P**'A dT f a4- t Aw A L A r,L t. 40t?.C. ttVE L 5 NouA pgr7f my 7A(s<

L % 8 NT8Lt-8 4 C.

ARkE b MIIH N AT AKi A_ AT A K C A sl.B 4 l .-

h 'Adysusi4 Fel88 08 *a.;

  • _

L E &sdy,. 4 t ,c4 D Vg _

C(alt.sasu .':. ga pa ga,eostl 4 8A s Da(8M 8- i 4.Wat6eMEO gg L

s FA 1.Pt4Kt4 ~

4 : LE SS T8I'l^I

~ - -

! g. :g.ts. Prise 8L .

4 4e.KApio Roon $5toi, L L . gD L 2. , A. l x hp g S* l -

i craniper.

1 - -

y ,r,et O c 2 . kt- 3D L ci,ai nu -e'.<J s t t

~L,(,4p Nors 5) 44s posTr 3 #1 h

Afe6M 5%4 . ELa l0L 1s+ 43 4i US 5 (M mf6 4 x 50 .

1 D/4 s. sit, cc41d4L ra,stts f Lt,r.t S3C.C , b

  • Ag4 (%M NbMM ensf g

<ggo "b {Ie6 W5 0 X lO -

p (A ris. cwws a. :'r8,Il i C

! geo-i v.,

5 %b . M. 88 V

,, ,, ,,, <-, < r ,m 3>4 (.ge, p.b5) ,

'"o We s(u

  • m iO x to

.- no s.,. .., z,4r.w a,.a) * , go i

! sf. m .as Ws 3(namwtQ i

VL'1\b *L L NQ g

. s -

I .

i

l4C*e,j @ P 3c 5 c f E ,s .: -

TA tiLC 9. G. - i']

l .  ;.

I c,ompoNif.41 aMt. Art h EMtedi tNCY LWT N4 C'(5Te at s tcA 54fL 9 dThesdd A445 '.

. *~ .

e - - _ . .

3 '* #^* d f T Lt 4 81 T 84 SYS t rs4 .i.e sh :f..r 4 ;,

c.c,Mmumt4 r:M

-. .H. A v u r c. s . ... . ..

c s.<rens nr 1 l sino'en ae la *Mrs=ms*s Ag>rga,y, masc. poorcues.1 s An a su s t -~e nt' t *s *A -

Aw At L A r,s. L e40 sSC. L L vl L.

AREA [f MiililNT AT A4148 _A T A F C A , d.b 4 _ L%Ee:Ts M t. 4 C, $ sious lutgra rg fat #<

Auyst,fiA*( DiJ tt 14 an4. - ,I::,E {g8 ,d E LL4c A D cut enet.O ia P4 wiost1 A s h b s p t- . WOS,$.

i "J, :: PA SPLAKER 4-WA8b O O gg

) 3 e -TLLs.Palede. 4 :.,g,ggg TWAW - 7

, 4s.F.ADIO i '

600NI 7-[0! . NgMM '23i 4 g g, ,

3 ~s i ccuic,,e.f 4ccc ss A ec 4 (sa METE 5) Nefs 6 .

2.

I F 5LM 5 4 C' I L- . Ill- 6 g,7,,,4 4 gg. ,

3 ~

! gggggryp, n were'7 2. .

l Act,M C404 . k L.124 g , 2,4 4,. *so .sse Watt & 3

~

(dWites e;,

t At>ce4 S M . E L 87'l 3 , t. , 4 .c g o ====

3 l < c.u . c,..t werg & 7_ .

3 econ ':.4 i:>. E L . l28 17.,4 .c. c s g ( Ss.s note 1) pft, 5 n n . n. Lwises t.

3

. Y

! en,,w. au.s4. nase. .

< <, wi sn,ts.,sse s .w: .a ,, , s.v.t, e n . a <. ,

I,z,4 <,o YEs y 10 y 10 '(seca*TC0 i

acc o . o e,. v f. r .n i..s j .i

[E7,ii.5.N,'. ',sfI.7* ')* ' i ' 6 ': '(Es y Io y go (sec. n*W 0 rm v ,,... uennes, i i r IO ('C'"'T# U ow. csn. ri.no i 1,4 m i

i s w a u wana.,s n cam e s. 3 . Tgs y io mL- n,, eu, n,aa,s -

i

d N )$ O '

0

  • C T ka

,~

7 9,

  • W O

d 6

I

g ,

d 7

g r "#

. g N

  • S .

g g, _ .

t L C

f 4

A o o 0t o l

s (* .

. 4(

t m

t y

i.

r

'a r

a-y- g 5 5-A t T D .. e 6 N 4

4 5 7 1 f- d s

E W

S S S s s t

. M  % ,4 T E E W E be _t t t

t L E OO Y T Y.

W o N N e

e T

. WS l

] _ O. a l s .

. s A(

1 . eT 8 h - 5 . A H T .

A S.

h 8

4l 6 6ad SS S . 4 . . Ld t. 8 F 9 N 4vL A 4 e- s. s. y o . o r

g-D D4 t o c l t T .

e o s , -

x MC = L 4

H g.. # s ' '

.C h u, c C

H L

S u.r L

s*

u

r.
  • E R A

f 4 A E S 4 c. '

A i

. T L M 4

T Y .

g. A '

C p. .

) 4

  • N.

t d

i t

s g

a f

I

'1 4 f-L K rJo 8

s

.2 n , *1 h 5 'I u.

ei T.

A' .b 0 4 l L s, u,. o

(= hA e, tt P O i

'8 M . 4#

t

=IEA s s.L D I 8 w ..e, E o kl4A t 4 1 4* a Mm tA P FA TA L A - ,

4 35 O b

tt

. M M,

i T

I

[*

z 6

i 1(5 -

s .

zu

( r. s .

7-A (,

A_ LE_I J. 3f , i 1 3 l _

I t

M S

- c.,-<. < A' F- 5 t

s Odli d8 '

e .

yt ,.

4 us .

lMA Mi 1

4 N r

e . *I .

t a t i, ls f t s

f. #i m. H C ift,# a w t

t . =

L

(.

e s

- *w

\'

. . v 4 . T l-woe s e . s c l

. t Ls N i b2 Le s s, k o ,' Ke 0

cG5e h-t G 4 E D i

s. ts 'N S mE f.

,6,i

't

,e a sd ~

c. H L t t, 8 ne - 3rse 1a A _

e p - Pl 8 8

a t c4 '

, t 4

. m. 43,f e i

9a 4. . 5-e.

' 4 l c d t ,

41 eL .  : - i 4C 4e 5<

0 L6 i

. 0  ! .. 4, M  : 5a $ .-. c.

E

  • g
  • s 4 m. t' .

8 c - s c W a 5 i ,

c 'l e t.

/ o ' g, . e

/

A i g

E n st , 4 6 L g . v,, R a, mtf r,

t i

m,45 viL ovJ r s

,nse f

esp cf n if unA us t

E Le 1 s 61( ,. c p /(3 4 o, w f i$

o. f _

- R gn u/4 #

m py d e ah7 _

A ( _

~

su,s esas.

Pye ~F cf & -

TA i$LE 't.S - il '

cpMMuNif.41 e SML Aetn EME dd LNLY Lt 4 tiTir:4 G 't sie at

  • FDA SME s#d7Doadel A445 .

Laneessic's' La u rude systr.4 e e ,n a,.s ; .

cc, aum(4 rica e.a 45 A .c..s .,

c o.ercat grs E STs s'84'l 8 > **4*mual Ag>fADysm4TC. F#8T(A10Lt. 5 A1 8 4p Pa.a dT 8#884-i

^^' "'

kA A ARCA B EssenTset. 4(. 5-Hood 74774 **( PA(4 l

AREA [fIMPITLAT _

T -

l Adyst t ri/ 'g* iblL Dat fe -i L E(af dk LE.4ridD

c crisi e oci t> t
PA innaostl 28A Duspt-i WO11.h

-),s pA $Pr. AKL4 4.na8 El(SHTE D 4, = La SS T8(Aed 1, a TELEFilerJ f-4 ,6AosO

* U *''V' *l  %(.ssstit*2rltLNT x G Lr g i .

Econ sce u ,6L. 8%~l 1, 'i- a l s *I (N Qgy , (g g I i c.ON1rLt 9oce4 F M ie$ ,

ANO ti N% CALL &

litt,6er s. Cv1, E. L . le~l 1(in 444 CENT 4. 6D -.

3 g (g gpgkg, d

(,(,etAL De4 vt uieutt ),~2,4 @TC $

Acet4 SC 7. Y. 4.L . I'7 4 j u,,vey c weas. <a' - (ge, seorc f) ( (,, T *=

NOTE".O

$ 7 80 M l S t V irn. WATT. M8m70s' I i ti.

u ,,, ~ .. - du.,.> , .

s' j- Q

u.n,g

! ..., 3 . w, m l

l PAT 1Er( C83 4f ds(** *. .

ta l,)( Ants t+41. 84 tSI'0 0*

k 4

(p gl$l's $ gg{g .

bs S ta l, t.'. 5* at t uvi,,ae'(4..$% (.4* ,.rc s) <." 3 1. (Sec. N'Ts 8*)

i ti.<,,.= n o . ,si.. i v t t,4

. #ria ,, _.,_,_\

l g p,yg g) ' V- .- L 1. - - - = 3

4AfWS8(

, . . G.AsefA4 . filSs rs6 .

s

- )0 4 G

- _4 8

8 S )# T

, ..f

." T l

E M

g -

1 _T 8

e # K T

e 4 g 4 1

a c A

s a W 4

.! s - P s (

, . i P

s u a y h 4 5

(,

d -

9 '.

4 , eH

g. g t g / -

M 1

A e M 5 2 -

, T .

A

. 1 T

S 4 do .

o 4 . Y,5 S

p W 1 s.

d 6 g _

_ G

. 0 _

T 4 9 I A

_ I L .

  • c f

r _

__ T a S .

f 8 e -

4 F _ -

E 8 c

. L 7 C .

T A 4

5 T 4 _

N mt n.

s b h. 3 y 3 "

t, t

o T 3 3 -

O O ~ ~~

N o l 5 s M" A gk * .

F

  • f W t 6 _

m3

. M- A Lt l

ggg $g E

T y M W*

O "w

T.

=W O c

w E . e s p N N w W w. -

1 T 5 . .m

_ D a l N

t

(

.s e .ET h P -

S' . m4 8- H T S

A S.

~

5 4

a . b. pa6 s 5

f tM a 5 F 9 i r :C el ts i

s. e a

s 1LL A DD4 v , e-o 6a t s

T . c c L' E i C.-

7 E

8 r 2 = s $ G f t.

e t . ,

M. L & .

e.Awe E .R f4 A / < < < (,

C H

G A

t L

. s us.Te t A L a <

)

AT .S G T L W T Y . &E4 A N )

/.

F.

),N 65 5 )

N .

) ) s Li 4 ( t- ) 5 t sT M .

. TS 0 1 t 5 K 8

do

  • r 3

t g MA e

s

  • u

. E A.Tk

(-

4 8L A

  • 4 ase i

r o

a r r e

( 4 h a M t t 8 dbE E i

t s P. s e M E e 4 K a. o v es [, i .

L,u.

88A A

- l *

. M t

f L '

4A P p r uA A 4 t

, 4t m Q

s D ' - ,e 4s 4s .s 4y i

M, 4*A T

, 4 E I

( c ts . t e E a s ., . 2 4 3 A .

c CMA ' i - a 4 2 (, 0

. / . .

L i , C (

M _

t 4 . - S~

S . e ti 4 i. 3 8 s . i

.f s ' ,-

r gr t

1 4 . - 1 u I

~f-e ,. , t.

i s n i

(

M 6 8

C . '

e . +

t 4 T 4 M 6.e ., w e 8

. 4m,4 s

n L &

> .I

_ e . t ' l i a, a u d i

(

w ,. e. k e. .

(&

e uM.f n -

p L M . e t

t 1 M i t *4 ,. -

m .

o- ,w 4r i

s , C Pl o ,

4 e 4 n -

c r s c 0. e.  :

. Q d .s  %

4- 45! >

.4 c t. 4 5 mmPe t,

,i c c.

f L -

- e,

~-

.a t 4 e. S t.

5 c. w L=

[

E ra3,

, 5y5A4, o e, r, w

.s t.

e -

- i , i ca 4 i t- t 16 .. 4ce. s. t A t, u 5, a;

- 1 -n o- t tn or u

. 8

. 6 om s

r.

t R or ,u c t - 4 o n, ruf 4-5 t' t c u U ^~ sc b.

f c. d" A t

/ c k s p. e t j l4'.[ [,j

n uit esAs- Pqe 4 cf E . -

u si.c 10 - ry ,

(p g g ue4tC.4188ttL ArtD EMi d.dil N4Y L4 HT f #J 4 ' 'f 5TE 'n *. F ost, 54f E S HtJT L6ad d A 4 4 '.

COMMuettcAT*0#4 f-EATu#P ( g, b" A8 #4('l LI is 811'i#J4 S'(57(M f & # "I -f e's *,* -

8 C esnt*t.nl MTS L $ino'tA E L Co *M$eess*'s gygggy,,,,qqg, payrga,,psg, s g3 g go g g s s g g asest__

M As L A 6L t. 84 e 5E. L LVE t-ARs A /t CotPitti4T AT AKEA AT ARC A d.E A __

E.*A8 NTe M t. 4 C __ 5-8 food getrar-( pac g h .Yt e s.*. Ar: t* : ' s ' ** - t. E t,sa k qcan MA desh . $4 t orn,e,4in e a i , p4 gego.,1 2.s PA SPtARE& 4- 5d8'6'iT' O sygg[gd

3. Ts.Ls.FelseJE 4 = g.s 55 Te(sid -

43 AADIO ACSM 5000, t L. $(p g3 4 <, 9 C .g,

  • sil s si AL4,: e c:.: . t sc s.s. x,5 4ND D/A B A I*8 ie' s* ft i !.i N NN g{g y t.y HAd'It i4sni .

Aeoni <. r,:. r . L. t. . t 8 5 f- 4 (tc s ee e t es t ~ , O c. '-+d t t C alist aM ,

c,r.- 814 e'-( C44FA*tt A '* D g w tierg5) pgTg 7 3

  1. k PuSL ECY - .

gtpoet s&Ofs , E t . (G'5,-G ( 7,,, ( A A.!Ff lia' 'E E O g 6 L (Q,3 MOTE 4) c w ,,,< c u.a.ee. c , 4 A t,0m %f,'t , I- 3 U"

  • 0 f ($64 M E .c. 5 0 ====

4 t

omw ee :. 6Aerg g hie l it.it i ii . ld. L

< . y e. ,; (l (50 -

n.rg g q gh  %

p. s st n. , s. s. . IV, G A, \ .c s o  % 48, ly,n,,0 Y c oa
  • st.e s z

A 8'Caat %7'l , Ib N 6 4.90 s= y g es8Amem>,u.. pes,sas 1, t. ,4 ha. pen 5/l NOTE 7 ko & M .

Em eest s stcon st.s.o ( A 4 6 h le ts.a vu o . e ,,, , . . c u .s . s e ,

c e,,. y c.i , ... . .: ., .. . . . . .c, 2.,4y,g &. /

,W 6.Td 3

uttal 4. s ta e s a..r es st eer i a:s, , Age $ $

4........ .....:.. , , . , . . .

H r.6L F5A >> {, age - 18. J K f-TASLE 9. di, - Il -

coggue4tc41:s*45 Arth EMEMiLNLY LM HTiric; s'is te m s FDA 54R SHdTLoadeJ A44!. . - . . -

~

E m e Ms*(Y Li44rres6 systrai t e ,!usc a ,

c.c,u m aei u a rio,4 -s.e. 4,u ,e c g . -- .

c e*4rt,r+ t ea r s L STs,es4 ra > at4 m uat 4gef#LCsyst'e4TC. F84TtAdalOLE % A1 e eo Pe**Asd*l I86'4 -

Aw anLA P,L F. en$l1E. LLVI t. 5 ofood.lsgryday FAcK AT AAEA AT A #C A , al.B A E%8NTe8st 4 C __ _

ARE A [E GdlPI(Lt4T jar,i n A;-( coss.t s\L - L.E&Ereg. t.s.c,Ers 0

- - - Volt.y.,

carits alus b g3 p4 inanost1 d BA s Ds48Ead t- e "-

4 -8d E'6HT'- O SThTl@

s PA SPt4KLA

- g, . -rt.La.FilorJ I- 4 =. t E 55 T8(Ad ,

4. KApio Mm 5 782. . t.L . Il t g 7,[,,4 agact a x (qo ,

t,.

(3eg Weg's h f

con i .4r,.

J g,,c. 4 , a gyg 9 gr..*.%4,a.L.:s) t(Lreatto AWAY 4gpq ""' 1 .g ,

j ct,4tir % 4,p. L. st t.

lyric s taoir..itert ete L et t AtM saetst ST O('sc"e"'.'T),2*iare 'O NOI ) .

l

, ft.LSt 1Let 9.0 es.t *tth === g(

4;06 .g,,

g { g,N k'g { { k ,,m ~~ t (884 A C J4ti's
  • vi ,,..om 2. a Nort 8 L ,, . uu , r..,4 e pein mi( <1 (.W4HmTCN i.

I iL i, lIl ..

l(Lvnui.kik.

41LL ,ll. s l lilll 8)

Usaweit bte g S i

l i s o s.- Ano.,%.54 e s t nu r .ow s n , <, n o s i et,v. <,es , . r.:i' r c ri'a v a ,ti r.oi ) , t ,.t =- I5 Nh E Oldt*1 t o & a f et *, (TpCC.$8t>TC,)

i i 88 tM is t, i .5kW i im e.i,J Ac t 'st

  • 3 #

RILA tos4P. ,;&ttiT h.t*.t', #I i t ti.(st's sit F >W-)[

t,=., ,t...,. ,.,,, ,4 . org g 86'. t. ve sa- c p ' F- t N*TC3} .

i i

1 a

p.. .

le, a

.t3 t o t 3, CO .

, ' i

  • ,s Q' y ' ' .

l i

.f~sZ i 3-u -is =

v i *'t &

w ~E

  • x T & d & t cJ e r . r. .

N 5*$

. F .) s*

5 =

3 e' i

.o . N ac .

N ',.

.c a .

T u .

s C t .

@ T 4

  • .g u.  !

d.7 e

0 0 e .%

> IeJ y, t. c A n A

bs2

'- 2 y5 h5 b og' . to r' gr- g r.

L .c a d g e-

.. Ig,. 3 p g u ri I. .

1 3 3 E t-c:r i t.,

I o2 a n o i 11 < J$P

- c if,&=gJ .A 2hw #e Oi3 m.3 g

la - W  %

e Aw>

c, ne e o o 5,

%I e.s ' '* 8 < % il D +3

: 4

,e T,. w

.i o -

V

- .s U

s<5ge .,< * ,g V Q V w/

N 2

$ .2

.f ,,

' h. j g al d N hay O M /

t is m&

a s g* w es a d

3i d W

i. afa <!wo%

5.E o = $_

t L Q R

.) J-gO gin 8 g 'J t 'Z .s R*.

y u

, az o

-tc 4

.w at 3 e ws -

O a.

ew 3 3 Y

    • t$$N ri 25v  %~ g 4 Y C s

c t I i<f*r hg-w ,, ,, u s '.a ' v3 c' **

~ ~J

< , 4 uter % a ,eeng -

o a e o r .%

p r .i = - e e o -s a" 27: ,

T dY 36T ~ ~ 7. I s*. O 3 e4 N H . c s e;sw , -

2 . .

v wo .

J o

1 q

.a 4_

x $. 32 3' o$*o2 a

~ b. 0 J.a -.5 k r 2 .,' a s243x -

' i- .--

r.c- ' " ;, '

r' ":  :' - ** ~#- ' - ~' -

'#N!

3 I h $3 g'd { aN J $ b d E. h . 5 k I

( .g E p{ { ;[$ ~MEE$ 0 i i'I.(iT E

$' *- T0 {

.u,. a' ., .a 50$.,

C z .,

<t,$. 4$- , =a i

. *2 W % 4

  • u, 3 d=4*Su g

< g* 4y ! g g 3

H C.6 L F *-

p i g, i TASLE '). S - I'l ~

i -

pe4gudit.41:aM5 artD EM e su LNCY LA &HTIN/i G157 e at 5 F Ort 54f L 5NdTDeadd A44% * * * ~

cc,mmorts:ATscrt L8'"'48 84('l Lt 4 8t fiM4 SYSr.M. # & sl1:f r t O. _

p. a A _t u A .L..s -

Arracy. marc. peerc4,goce s 41 e eu P-a dT f ** *4 -

c a.4reNa nts L 5Te a'41 ' & N"

Aw AsLA 6L t. 4911E. Lt.VI L i

AT ARE A sLEA E55sNTest. Ac s.esouA.#TTHT PA(K i

ARE A /t INtPitkr1T __

AT AAEA i -

stt' Aci:/ t,si' psesti . L E/a8dDL Lt.4t A D l

4

( 8M? 8 W 4 */

is PA 164405t1 28A a Ds48ML i ' ~

2 s PA sh 4RE 8. 4-*HT' O WON'N

( = ts55 Tef,td _ M N_

1 -

s . TLt.e.PilotJ 8-

)

i 4. AAp10 I

A** *t 4 t *S. t L . s + g (,,, 4g ,g g , ,a 1 < Io * .

h 7,.

$ N #* I'J MI 3 O 4* D LLECtAsC4L AE8Mh L)MtT (OOLLC ,4 (p gg.

1 (tal 4 DJ4CEdT 4 10 % ,

Ae0M 4tti i E t. 5 4 eu.cuia< **oab 3-mau rose ,,c m ro r, Mce in'1Ao.aern 84cr. , unit 2ii C3aa.Wef(})

cec i.u.s

]

ADOM 4it4 , E L .C4 g [ges A pJ4CasN T (. l g 6 CCMt. SPAAy h,MP A,s ti vf 5 teSoa.L) 3 2., 4 %Qg g l

c5., mye ))

==.x r . . w.

l fooM < ii s . E i. , s 4 i ( m 4w,ic.,.., ( io g ,

ook scroy rmqr en 13 j

{g)'y y,y,,,g.,,{

?-

j Lillit i n t I.,i s N8TS$

^"" 1 u i , u . ,, u , ,. ,. i.., ,. < , , i r u, L

}

I g it.co tq ),1,1 ~

68'2'4 47.!st . F. L . Il t,2 34 eino b Z.

1sesfriansNT Ase.r . (p gyg ,

R ** M d t t. t . LL.11 a, '4 h z 130' "*

  • 1 s R yg 1

1

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ ~ ~

H C.C,% (* e,y ,s u, . .

TASLE '1.5 - Il L.u HTar44 S 'i s i e nt i. FoA 54f E SHdTDosdd AE45

g,pgguait.41:sd5 ArtD E M L 4di i.N(.Y .. ...-

3 M# M M LidelTie34 a SYS*t f e4 f i sl1:f /f t MMut4t(ATs04 FE 4 rud .-.-, . . ....t *. .

5.Stant4'ri P w m At'fAOyam4TC F##T/Ar#04.L S A'I f 4U 8 P'ws WT Idet4-C euf4ME NTS AwAsLA6LL MetSE. LLVE L g.sfood pat 7da-( PAtK AM,A/EQOl?tMMT __

A1 AAEA At ARE A , J.S A _

E%ee:T Mt. 4c Af,4f to A Edi kes t4 4 *- L M8#% LE tif tJ D

!! ggat eestsC D ga pg iM,enSt1 g g A , p gg g g g. , Nb I 2,s PA SPt.4KLK. 4. wit M TE D ggphy

!, g s TLLLPil8838- ( ,r. LE SS T8IAg %

[ 4 . K. Apt O . _

E ste m 4 t.cs ,t .T1 t3 4 4E5 - 3 2

{- Au. irt ano earl (Sas psed 5) SleTE S

!. CCoa.LK .

h -

gceM 47.09 ,f L.*Il I (t A A DJ Ate n*n 4. l G O == 3 g M

i. yng.vos ML) 'ktitidd d
  • A;** *. vt ST 4kJt.s ',; , 4 NOT(S
j. (.w. nears >)

ASOM 41, t 0 , F L .*l*l 2 4 3 4 gg gavtguess #415 (,M GBGTC I "

3 7,.

NT%

4%T

~

l. p,e cs 42.t d , L L . ~l'I  ?. _ g r-
j. c u. ii e c 3.i ru O w.r, g p,c,e m 4 I t v , ( L . ~ll 1 4 3 C (e T -= b '3 lNlI[lfl) f'NI i f 1

! o.4 u .6 ,.i, n

! c. A. -

c. , .4 ,c s.) .

n ,,

v.,rc s > p' r.

! J j g as,M 4 L tl , S L *1 1 g 7 4 4 g,,y .

! Lat%18:sais s:T HL4 ggg g _

Z,.

! N4 4Il9 g E: L. *ll T *, 4 4 (,T 3 2.

l Il45T/ omt an'*. (,5ca, asefgy) g f

..q _

g .

.e

.s -

g

ta d,

4 _

s r 7 a a c nK _

g I .

.i s , F a s e y

- A t

g _

i.,o g

i 4 r

,H T .

. g L E L Z.

M_rM '4 7 2 _

A .

t 3 A

4 u S o 4 .Y g f a

W S ,.

o . 3 5 D c, .

T J 4 ,

d . ** c W T r, S .

1 8 ,

p 4 _

E 8 f .

L g, C 4 , A 5 Y 4, . .

,t

.W ,

y ae g 3  ?,, 1 g .

  1. 3 N.

O _ #6 p

o Tn e N 3 3 i s , O g %"y . . S F 7 ec ss XT

,L g -

7

. t _y -

S L-g E Rn g =

g 'f OT f,

-Qr g gf e gg M _ 0 g e WS 0 e a f e

1 1

T 5

.t

_a 0

4 44 4 N N W gN f r

' . T e H v 5

.e

_ 4 L 6

S. . B. Ms s s

4 . tl 8 9 N c' i s tw

e. a.. -

v 0 D 0, g

i s

I stt 6 0 Dd4 'c uo T A E H

t. _ -rL E g =

g 0 M 1 9 4

2-(

L a _ d.A'a E.M t

A 1

4 4 < 4 S usT S A (

q A

T u.A Y _ E .E

  • A v .S D &

I T 4 8

C F- .

pY 4y )

N 3 4

Ei 4 g, E A T WS) e

, )5 D ' ).I -

de _ T.s.

0 s

l L e

s Km ~

qg 4c 5a l 2,g )

f C E T

C T

st M .A.tr .t A o4 P t

a e

r. O o.

s n6 8 e T

e e

e p

e e e s

E m.nL u omAA abE s kmS s..D I

1 4 at a

  • d s 4*

t 4

o A d 4A s.A ,

46 4e ,4 D

M M

M, t

rL

4. A ov A i

T 6 8

P F vA s . .

s 2

z.

, 4@g (c r@(M

, c.

r 4,

s oi t

o

t. L

,8 2 (9, 3e 2S

(

~d.d

(

3 tx C c cA E. t 2 I t A

L _ i2 34 t

_ 5 ',

d _

s ,t

,i s: v. 1 1

4

't t

. 2h v

- t th A os / e, s

t t

a 2

r.

t G

1,.

c a

c _ 0 d A S f I i - o t 8

vs t I

t w . 8

l

. l. .*.4 .

. n, <. s t i t .

(

o t L E

t 6 Ai d s. e.ni t

E e s. s t

t #,

L

,* t g 4 :s ,

, t, E t t e a u'

.o . N t,

3 ,

sd o c

,5 nt 1

e 4, )

g o- I t

i

- e 4 mtwm r,u mra 4 r l V

- a r

7 e 'i,

s. o v "-

M Av z. *i t

c 4', r:i 4 i

e r 4' ay c i

t -

9 r.

i

_ oL t a 4

E t e i n e 4 4 Pcx o c u e

t 4 1 n 4

s (2 4

! sC i,,

- L d 4% 4 1 4. t, r. n t e  : G t w

-n mC o y . '*

g.

H, s=n

- i A t

. c e ci L C

A a

  • x oC o c oa e g, gScA ao n ,,

'ge nn E t

A r

. - D A

E G r t c Re R>o4 ASca >~

'l

_ Ac 'I ,'

- . - . *'~ . .

L , ylll!il4lj.)  ; fii Ji.

]cl,I

g g,g

~

H C M. FChb g ,

..t TAtit.C 9.5 - Il -

cpggoe4tC41e8ML ArtD EMt t.d LN4Y t.u dTIN 4 S'f 572 =t t FDA SAF L ssJtJTf,6sdd ' A44!, * * .=

1 . .

L"18KOE 84C'l Ll ds 4 TIMA SYS Tg M gg41: leg j-C.084MGMl( AT30e(

-.fEATup ( g L STs

  • 4't E D 8'45 m unit g pgg,y,,,,4,g, p,,7f,,380LL S A1 e 4u s P *.a #T f ****4 --

C aserteet 4TS Aw A:LA AL t. 49 sE. Lt.vt L g sgood .54ma.t FAtM Aas A /E QotPittAT AT AAaA AT AMC A d.b 4 i __

E558NTeat. 4 C LE6e8#4E 4 't J4 TA.4 L t'T rioc' toe's.

LE.tif A D Is PA 114,405E1 28A:Duspi-, b f .

2: pA setaseg 4.ws6iTEo Smygog@

!. g rL Ls.Pflo d E. 4, = tsSS TilAM ~

I f . F AD 0 i' ~

Riet* *4 I(A , E L. "I 9 - % 2 30 3 g- ,

l V 8it vt 'a h.,e,(6 gsggg, $ ) 6I .

n g L a,4 -. y -----

l.' ft.co m (4 0 . CL .~R- S V4Lvt 5 ($C6$88TI E) g W

i A ps a 2.o '= . LL.% g isu ADJactn1 4W ~

lD t n

t4ct

,tce>4 , , 2 , 4 NTC &

p,ooer 2c4 ,EL. 9> I (iea 40Jettral .c.: o 4. -

5 N#TT, % 1 rom es .vatvs.s A*5 0 G M ) , t , + ( p , ,,

{ fontac t rr.n t t. 5 ) .

l l l MLLt hoo,s,4 Ndi l' L l ' . t. ( e A w,i<ta r <in - r lfy,

c. m,*11;'J'A ,,, 'Q .

wwr S z.

s . t u, .

a"m . (4xa *=r43) ,

Travs t seat u.h 4 as 7e 4 ( g,o = io .

i t&N1rl.t AMt&L (M M .

! L t. . :4 -

{ travgter..: arstee 18i 4 to to .

j mu st. c.u.e t ra i'.

e U8N NI$ ,

i i

N f s g g -

T4 an.c 9.s, - ri FDA SM E SWs.!TDosdd AA44!,

(pgguNth41eDMS ArtD EMEMiLNCY u'HTid 4 S'f 5TE M,5

.... _ -- .. ... .. . ..  : . . _. .. . . . ~

es s.**M M-( LlastadA sys'1r m r a n, nes ;

cumumca.tio,4 .avoxcs AffADW8844TC. F#eTtAMS A ! 2 (US P*&dT f a*'4-i .

Comf6ME NTs EsTsm411 P %m

!' '. sgw ALLA e>L t. 491sE. Lt.vi L AT ARE A , J.B A ESSENTsat. 4t. 5 NooA 541744 FACK_

i AMA/EOdlPMMT -- AT AAEA _

hn14KE Vidoc tJU. - L868DL t.&.4Esep ' '

E l' (areTimut> l* PA M *SE1 2 s FA stt AKEg 3SAaDs48688-4.Wst4HTK D  %

gggg) i ~

J s a Tt.t.LFe{ad f. 4 ,, gg 35 Ts(A4 \

4 ,AADIO j Fans M g O Q u % .3 )

meg 10 gb l

O i Aoon vt , Sit , EL t1.L i 23 i

<0

(,m we,r3)"'

3 e 4,45 N*rg a i

i STAm. WELLS 2. 430 -

5 10 (N ContreIg be* N'TC ( MS l

b>,shbelat Y s i

i l

i .

i

Cl<2dh"kbN HCGS FSAR #11 QUESTION 430.75 (SECTION 9.5.3)

In Section 9.5.2.4 of the . FSAR you state that intervice inspec. tion tests, preventative maintenance, and operability checks are performed periodically to prove the availability of the communication systems.

However no description is provided for the inservice inspection tests, preventative maintenance and operability checks to prove the availability of the emergency lighting systems. Describe the tests and checks that will be performed on the emergency lighting systems and their frequency. (SRP 9.5.3, Parts I & II).

RESPONSE

The emergency lighting systems will be demonstrated operable by s.

energizing the lighting systems. Visual inspections will be

_ perf ormed: (1) Semiannually for those areas of the plant that are accessibler and (2) Within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of achieving cold shutdown for those areas of the plant that are not accessible during plant operation, unless emergency lighting operability has been demonstrated in those areas within the past six months. -

Testing of the Class 1E feed will be performed in conjunction with the standby diesel generator load testing.

Additionally the dc emergency battery pack lighting units, as well as stored onsite portable de lighting packs, will be tested on an 18 month interval in accordanced with manufacturers recommendations to insure that rated illumination is available. As a minimum this will include the followings

a. Check of battery voltmeter.
b. Functional test of the unit by an installed push button to verify lamp operation, power transfer, and battery operability.

On a periodic basis the capability of the de lighting packs to

. perform the design safety function shall be verified by testing a 54 sample in accordance with the manufacturer's recommendations

! - and as specified in the maintenance procedures. In the event of a failure additional 54 samples will be tested until there are no failures in a sample.

f i

.- ,.y.- _.w.v.w.w-,,,,,.,_,

HCGS'FSAR

(

OUESTION 430.81 (SECTION 9.5.4)

In Section 9.5.4.2.1 of the FSAR you state that "The interior and exterior surfaces of the (fuel oil storage] tank are corrosion protected by carboline carbo zine 11 coatings. I&E circular 77-15 discusses the incompatibility between diesel fuel oil and zinc. The reaction results in a substance resembling soap which when heated becomes insoluble and this substance could render diesel generators inoperable due to blocked fuel lines, injectors, etc. This is not acceptable. It is our position that fuel oil storage tanks be provided with, internal corrosion

, protection. Therefore provide the results of tests which show that over the lifetime of the plant that the carboline carbo zine 11 coating used is compatible with the type of diesel fuel oil that-will be used at your plant and that the condition described in the circular will not occur or replace the internal coating with a non-zine base type that is compatible with diesel fuel oil. (SRP 9.5.4, Part II)

RESPONSE

Hope Creek will remove the existing inorganic zinc coating from the diesel generator fuel oil tanks. The tanks will be blasted to the white metal criteria of SSPC-SPS. Two coats of Amercoat No. 90 or ecuivalent will be applied to the tank interior to a height of one foot from the bottom.

l E

9-11 -I]

#38 i

HCGS FSAR QUESTION 430.101 (SECTION 9.5.5)

Provide the results of a failure mode and effects analysis to show that failure'of a piping connection between subsystems (engine water . jacket, lube ' oil cooler, governor lube oil cooler, and engine air inter-cooler) will not degrade engine performance or cause engine failure. (SRP 9. 5. 5, Parts II & III)

RESPONSE

The interconnecting piping (SACS water side) between the intercooler heat exchanger, jacket water heat exchanger, and lube oil hea't exchanger, is moderate energy piping and is designed to Seismic Category I criteria. As discussed in Section 9.2.2, during an LOP /LOCA each of the two SACS loops provide cooling to the two diesel engines dedicated to each loop. However, if one of the loops is in a limited condition for operation'as discussed in item 3 below, the two diesel engines dedicated to this loop will be realigned to the operating SACS loop by manually opening the valves in the intertie lines. These intertie valves will be locked open in this LCO mode. If a pipe break occurs in the interconnecting piping between the cooling subsystems of a diesel engine which results in leakage exceeding the makeup supply capability, the low-low switch in the expansion tank will ultimately activate an alarm in the main control room. This diesel engine will then be isolated from the SACS by manually closing the isolation valves (shown on Figure 9.2-5). Therefore failure of the cooling water piping will cause loss of cooling water supply to only one engine.

Loss of cooling water will result in shutdown of this diesel engine.

However, as stated in Section 9.5.4.3, since only three of the four SDGs are required for safety loads, failure of the SDG does not preclude safe shutdown of the plant following LOCA/ LOP.

The design basis for the safety auxiliaries cooling system (SACS) is that no single active failure can disable an entire loop. The SACS l

l is also designed to prevent a complete loss of function due to a

passive failure during the long term containment cooling mode l following a LOCA. Leakage from a passive failure is assumed
equivalent to that resulting from pump seal failure. The rate of l

leakage is such that after receipt of a low-low SACS expansion tank l alarm suf ficient operator action time, approximately 30 minutes, is available to realign the diesel generator cooling to the remaining SACS loop.

The proposed draf t technical specifications for the SACS system, to be submitted for review and approval by the NRC, will contain the following conditions:

! 1. With one SACS pump or heat exchanger inoperable, restore the inoperable pump or heat exchanger to OPERABLE status l within 14 days or be in at least HOT SHUTDOWN within the

. next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

l l-l

' 430.101-1 l

- Pagg two- 03E 9 1.~1 - N 2.- With one SACS pump or heat exchanger in each subsystem inoperable, restore at least one inoperable pump or heat exchanger to OPERABLE status Within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> or be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

3. With one SACS subsystem inoperable, restore the inoperable subsystem to OPERABLE status with at least one OPERABLE pump and flow path within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> or be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. Realign the affected diesel generators to the OPERABLE SACS subsystem.
4. With both SACS subsystems inoperable, restore at least one subsystem to OPERABLE status within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> or be in at least HOT SHUTDOWN within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

The definition of a SACS subsystem is:

a. Two OPERABLE SACS pumps, and
b. An OPERABLE flow path consisting of a ' closed loop through the SACS heat exchangers, SACS pumps and associated safety related equipment.

Realignment of diesel generators from their normal SACS supply is only required when one SACS subsystem is completely inoperable.

One SACS pump and one heat exchanger in each subsystem have sufficient capacity to provide cooling to connected diesel generators and safely shut the plant down.

The justification for the time periods will be provided at a later date.

430.101-2

r.

O ATTACHMENT 5 4

. r}-(

HCGS FSAR

'f and performance data. All safety-related portions of the CACS are environmentally qualified to normal and accident environments according 'to Section 3.11 requirements. -

- .The CACS is shown schematically on Figure 6.2-29. The system is

- located within the reactor building except for the nitrogen vaporizer, which is located in the auxiliary building; the H0AS 1

hydrog'en bottles, which are located on the reactor building roof; and the control cabinets, which are located in the auxiliary building.

.6.2.5.2.1 Nitrogen Inerting ,

During normaltpower opera' tion of the reactor, the oxygen content of the primary containment atmosphere is maintained at a concentration no greater than 4% by volume by the containment inerting and purge system (CIPS). This limit is established to preclude the attainment of a combustible gas mixture insi.de the

)

. containment if combustible gases are released into the I containment atmosphere following a postulated accident. Oxygen monitoring during normal operation is done by analyzing grab

. ,.T samples taken by the plant leak detection system located in the

\,,/ reactor building and discussed in Section 11.5.2.

This. low oxygen atmosphere is achieved by displaying air in the primary containment with nitrogen gas. Prior to reactor ,

, operation, the nitrogen is supplied from a liquid nitrogen facility, which consists of two liquid nitrogen storage tanks and one steam-heated water bath vaporizer.

Gaseous nitrogen from the discharge of the vaporizer is supplied to the drywell and/or the suppression chamber as selected ~by the operator. The flow rate of. nitrogen is controlled to a.value that is also selected by the operator. Displaced gases released from the primary containment during nitrogen inerting are l processed through the HEPA filters of the RBVS exhaust system and monitored for radioactivity before release to the environment.

The RSVS is discussed in Section 9.4.2.  ;

During the inerting operation, nitrogen is supplied to the containment through the two R5VS supply purge pe'netrations, and gases are released from the contai'nment through the two RBVS ,

Once the 4% by volume oxygen i exhaust concentration purge penetrations,g(Icontainment in the primary has been achieved,

. N 6.2-69

~

HCGS FSAR Insert A to Section 6.2.5.2.1 l Because the'24- and outboard 26-inch containment vent and purge

' butterfly valves are sealed closed and under administrative control during normal plant operating conditions (Operational Conditions 1,2, and 3), inerting is restricted to makeup operation under these conditions. During the makeup operation, nitrogen is supplied to the containment through the one inch nitrogen makeup line, and gases are released from the containment to the RBVS exhaust system by opening the inboard 26-inch purge and vent valve and the 2-inch

. bypass valve around the sealed closed 26-inch outboard purge and vent <

valve (Reference Figure 6.2-29) .

d e

t

  • l f
  • e r

l-I-

, . _- .- ..-...-____._...._.-_.._,.._..,,_-_..__..-,--.__-.,_.,_.,m_-,_---_.._,_,-