ML20236B072
ML20236B072 | |
Person / Time | |
---|---|
Site: | Diablo Canyon, 05000000 |
Issue date: | 02/08/1977 |
From: | PACIFIC GAS & ELECTRIC CO. |
To: | |
Shared Package | |
ML20236A877 | List:
|
References | |
FOIA-87-214 PROC-770208, NUDOCS 8707280325 | |
Download: ML20236B072 (42) | |
Text
- - _ _ _ _ _ _ _ _ . . - _ - - _ _ .
,e ENCLOSURE 2 i
l DI ABLO CAllY0ll l
l l
I l
1
'l SPECIFICATI0fl FOR SEISMIC REVIEll 0F l f%JOR STRUCTURES FOR 7.5!! 110SGRI EARTHQUAKE .
l l
l i
FEBRUARY 2,1977 REVISED FEBRUARY 8, 1977 l
8707200325 B70721 PDR FOIA CONNORB7-214 PDR
- *4 DIABLO CANYON SPECIFICALLY 0H FOR SEISMIC REVIEW OF MAJOR STROCTURES FOR 7.5M 110SGRI EARTHQUAKE CONTENTS page
- n. Basic Approach ................................................. I 1
- 2. Seismic inputs to Structures ................................... 2 A. Horizontal D. Vertical ,
1 C. Damping and Ductility l 3 Ma t e r i a l P ro p e r t i e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 A. Steel B. Concrete
- 4. Analysis Procedures ............................................ 5 A. Class i Structures B. Class 11 Structures 5 Smoothing Raw Hosgri Floor Response Spectra .................... 7
- 6. Time-History Motions ........................................... 8
- 7. Acceptance Criteria ............................................ 9 A. Class i Structures B. Class 11 Structures
- 8. References ........................ ............................ 10
-i-
FIGURES
- 1. 7.Sti Husgri Transnational Blume tau = 0 perioJ spectra .
- 2. 7.5M llosgri Tran:,lational Blume tau = .04 period spectra 3 7.511 Hosgri Transnational Blume tau = .052 period spectra 4, 7.5M llosgri Transnational Blume tau n .08 pericd t.pectra 5 7.5M Hosgri Transnational Blume tau = 0 frequency spectra
- 6. 7.511 Hosgri Transnational Blume tau = .04 frequency spectra 7 7.5M Hosgri Transnational Blume tau .052 f requency spectra
- 8. 7.Sti Hosgri Transnational Blune tau = .08 frequency spectra
- 9. 7.5M Hosgr1 Transnational tiewmark tau = 0 period spectra
- 10. 7.Sti Hosgri Translati al tiewmark tau = .04 period spectra 11, 7.5M Hosgri Transnational tiewaark tau = .052 period spect ra
- 12. 7.5M Hosgri Transnational tiewmark tau > .067 period spectra 13 7.5M Hosgri Transnational tiewmark tau = 0 frequency spectra
- 14. 7 5M Hosgri Transnational tiewmark tau = .04 frequency spectra
- 15. 7.5M Hosgri Transnational tiewmark tau = .052 frequency spectra
- 16. 7.5M Hosgr1 Transnational flewmark tau >_ .067 frequency spectra 17, 7.5t1 Hosgri Vertical Blume period spectra
- 18. 7.5M Hosgri vertical Blume frequency spectra 19 7.5M Hosgri Vertical tiewmark period spectra
- 20. 7.5M Hosgri vertical tiewmark f requency spectra
- 21. 7.5M Hosgri Transnational Blume tau = 0 Acceleration T-H l 22. 7.5M Hosgri Transnational Blume tau = .04 /secclerat ion T-H l
23 7 5M Hosgri Transnational Blume tau = .052 Acceleration T-il l l 24. 7.5M Hosgri Transnational Blume tau .08 Acceleration T-ll l l 25. 7.Sil Hosgri Transnational tiewmark tau = 0 Acceleration T-H
- 26. 7.Sil Hosgri Transnational flewmark tau = .04 Acceleration T-il
- 27. 7.Sil Hosgri Transnational tiewmark tau = .052 Acceleration T-H
- 28. 7.5ft Hosgri Transnational tiewmark tau > .067 Acceleration T-li
- ii -
1
- 1. Basic Approach This specificat ion delineates ciiteria to he used in reviewing the major Diablo Canyon structures for response to the postulated 7 5M Hosgri earthquake. The structures considered and their seismic
- classifications are:
(a) Containment Structure (Class I)
(b) Auxiliary Building (Class 1)
(c) Turbine fluilding (Class ll)
(d) Intake Structure (Class ll) j The basic approach to be used in this review calls for use of the same analysis procedures and criteria which were used and accepted at the time of the original DDE analyses, but with the following specific changes each as clarified in the following pages:
(a) use the new 7.5M Hosgri spectra (b) use Reg. Guide 1.61 dampings (c) use actual noterial propertics (d) allow ductility in certain cases (e) use of fixed based mathematical models permitted (V, > 3500 fps)
(f) use accidental torsion or equivalent (in addition to geometric torsion)
(g) use vertical response analysis or equivalent l
(h) use modified smoothir.g of the new raw floor spectra (i) combine horizontal and vertical responses on 3-component SRSS basis or equivalent The purpose of this specification is to delir.eate criteria only and not ,
1 to spqcify that seismic reviews be accomplished by complete reanalyses.
Such reviewt. iney be possible with brief generic approaches, whenever I
they can be shown to satisfy the basic criteria., in lieu of more lengthy, comple tc reanalyses.
Where the criteria and procedures used in the 7.5M Hosgri seismic review depart in any significant way from present NRC approved approaches, para-metric and cther studies will be simultaneously performed.
-I-l
s e
E 2.. scismic Inputs to Structures A. Horizontal. The free-field horizontal response spectra for the l
site are the Blume and f1mina rk2 spectra shown on Figurcs 1 and 9, respectively, with 0.759 peak ground acceleration (PGA) values. J These spectra conservatively define the 7.5M Hosgri notions in the * )
free-field. In the presence of structures having large, relatively I
rigid foundations in plan, these f ree-field rotions can be expected j to have reduced effective inputs to structures. 1hese effective j inputs are summarized in Table A and given on Figures 2 through 8 I j
(Blume) and 10 through 16 (flewmark). The effective inputs have been f derived by spatial averaging of accelerations across the foundations of each structure by the tau filtering procedure, in no case shall the ef fect ive responses in structures be less than those produced by.
the use of 14ewnark's criteria.
TABLE A - tau and PGA Values Structure tau Blume PGA tjewmark PGA Containment .040 .679 .60g Auxiliary Bldg. .052 .639 .559 .
l Turbine Bldg. .080/.067^ .549 . 5 0g
- Intake .040 .679 .60g
- llewaark PGA corresponds to a maximum tau a .067 B. Vertical. The 7.5M Hosgri vertical response spectra wi11 be the f ree-field (tau = 0) Dlume and tiewmark transnational spectra with amplitudes scaled two-thirds. Peak vertical acceleration is 0.509.
The Blume and lieunark vertical spectra are given on Figures 17 and 18 and on Figures 19 and 20, respectively.
C. D,amping and Ductility, in conjunction with use of the Blume and tjewmark 7.5M ilosgri spectra, damping ana ductility to be used are indicated in Table D.
2-
i TABL E B - Damping and Ductili ty* l 1
1 Blume Newmark Structure Damping pictility Ductility 1 b 6 Containment 7% 13 1.0 b b Auxiliary Bldg. 7% 1.3 l.0 Class i Non-Class I, Turbine Bldg. 6 l 7% c 1.0 c intake b' 7% c 1.0 c,d
- a. Ductilities arc on story basis; however, floor response spectra will, in general, be computed on an clastic analysis basis.
- b. Under normal conditions tiewmark ductility is 1.0 maximum; how- 1 ever, NRC will consider special cases where supporting evidence justifies its use. Blume ductility for Class I structures is 1.3, and will be used only in specific situations,
- c. Concrete 1 3; steel 3, with up to 6 locally.
I 1
- d. Or as may be required to denionstrate that function of Design l Class I equipment will not be adversely affected. 1 i
t L
l
4
, 4 l
- 1 l
l 3 Material Propertles for the determination of the strength and stiffness of structurcs under the 7.5M Hosgri motions, actual material propertics as determlncd by properiy substantiated test results will be used. These values more realistically characterize the actual properties of materials used in the Diablo Canyon structures than would be derived f ror.i the specified minimums used in design. Detailed strength values and substantiating data will be submitted in a separate report.
A. Concrete. The compressive strength of concrete, f', will be taken as the average of the 28-day or 60-day test values, depending on the original curing period specification. The substantial addition-al rc,argin of strength associated with the gain in compressive strength by aging will not be considered.
B. Steel. Doth reinforcing and structural steel yield strengths, f ,
will be taken as the average of actual test values, in no case i 1
will the yield strength value used in strength computations be taken as greater than 70 percent of the corresponding average ]
I ultimate strength value.
1 1
- j
- 4. Analysis Procedures
~ 1 j
A. Class 1 Structures. Analyses of the Class I Containment Structure I 1
and Auxiliary Building will utiiize the same mathematical models j and analysis procedures as used in the DDE analyses, excepting the following:
(1) mathematical model stiffness properties will reflect the increased material properties; (2) in conjunction with use of the structure-specific inputs resulting from spatial averaging of accelerations, models will have fixed bases without soil-structure interaction; (3) 7 percent damping will be used; (4) vertical response will be determined by dynamic analysis; ;
(5) individual responses to the two horizontal and one vertical components will be combined on the SRSS basis unless it can I be shown that the absolute sum combination of individual responses due to one horizontal and the vertical components is essentially equivalent; (6) the seismic inputs of the second horizontal component in the 3-component SRSS procedure is generally recognized as being less than the first; however for conservatism both j
components will be taken as equal.
(7) accidental torsion will be included by consideration of an additional eccentricity in the mathematical models of 5-percent of the building dimension in direction perpendicular to the applied loads or 7 percent if torsional results are computed independently and combined by SRSS basis with trans-lational results, whichever is greater, or an equivalent amount for buildings without rigid floor diaphragms; (8) ductility, when applied in accordance with Table B, is to be by reduction of the clastic response by approximate procedures.
L_ _ _------_ -- -_---_.-_-----____ - - - _ - - - - - - - - _ -
i l
B. Class 11 Structures. Analyses of the Class iI Turbir,e Building and Intake Structure will utilize the same seismic inputs as for the Class I structures because both of these structures contain limited i amounts of Class I equipment.
1 (I) Turbine Building response will be determined by both linear j clastic and nonlinear inciastic methods. Except for the use of nonlinear analysis procedures, tha analysis procedures vill be similar to those for the Class I structures. The inelastic response to the Hosgri motions must be such that ductilities in steel bracing and framing do not exceed 3 on a story basis or 6 locally. Ductilities in concrete shear walls will bc l
l limited to 1.3, and to 6 in reinforcing steel. Because of the j configuration of the building, longitudinal and transverse i analyses will be uncoupled. Torsion will be considered in the l 1 \
l models, and an accidental torsion will be applied as an equiva-1 lent 5 percent eccentricity. The possibility of Impingement between the Turbine Building structure and the Turbine Pedestal will be considered in the response calculations, with the l assumption that limited (controlled) local structural damage, l
such as concrete chipping or spalling, is permissible provided the overall safety of the structures or the Class 1 equipment l is not impaired.
Where nonlinear methods are employed, the lower bound of material strength shall be used but the ductility in bracing shall not excccd 3 In generating the floor response spectra for Class I equipment, two analyses shall be made, elastic and inelastic sing e laTret the lower bound of material strength. The final floor response spectrum shall be the envelope of the two spectra.
l f
l (2) Intake Structure contains the Class l Auxiliary Salt-water Pumps.
Thus, the structure must be shown to avoid collapse which would l impair the safety of the pumps and prevent their receiving an adequate supply of water. Response of this structure to the Hosgri motions will be determined similar to that for the Class I structures. Where stresses calculated on an elastic basis exceed allowable values, more detailed investigations will be made, including consideration of behavior in the inelastic range to verify that the Hosgri motions will be resisteJ without structural collapse and that an adequate supply of wa:er is maintained.
5 Smoothirg Raw Hosgri Floor Response Spectra ;
1 The following smoothing procedure is to be used on the new, raw 7.5M l Hosgri floor spectra generated by the time-history method. It is based on appropriate consideration of the ef fects of new structural strengths and mathematical model properties. Peak spectral amplitudes, assaciated with the structural raodes of vibration, will be widened and smoothed as follows:
I I
A. High Frequency Side of any Peak. In conjunction with use of the !
structure-specific inputs resulting from sptial averaging of accelerations, use 5 percent period broadening to smooth spectra. ,
1 Consideration of higher structural stiffnesses associated with the estimated actual concrete strengths and the use of fixed-base mathematical models eliminates the need for more conservative l smoothing in this situation. New stiffness properties are vir-tually the highest values expected and further shif ts of spectra spikes toward higher f requencies are essentially precit.ded.
B. Low Frequency Side of any Peak. Use 15 percent period broadening to account for possible sof tening of material and soil stiffness properties under extreme seismic motions and corresponding high stresses. Smooth lesser Hosgri peaks and valleys by free-hand averaging as for the original DDE analyses.
Representat ive floor response spectra, computed by the time-history approach, will be reviewed against similar spectra computed by approximate procedures, not involving time-history computations.
Peak spectral ordinates will not be clipped 10 percent, as in the
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ a
I DDE analyses, except in special cases where the very conservative ,
effects of a smoothing without peak clippings will be reviewed on {
i an individual basis. J j
- 6. Time-History Motions l
l \
For purposes of flocr response spectra computations and time-history response analyses, several artificial horizontal acceleration time l histories have been developed. Each time history closely matches a smooth 7 5M Hosgri response spectrum and models the expected amplitude, frequency content, and duration characteristics. Figures 21 through i 24 (Blume) and 25 through 28 (Newmark) show the various time histories for the free-ficid and cach of the major structures.
l l
l i
1 l
j
r= ,
q
}
- 7. Acceptance criteria Allowable stresses in structural steel and reinforced concrete elements. 1 will be based on actual material properties in lleu of the specified minimum values used in the original DDC structural design.
A) Class i Structures. For the Class I structures, allowable stresses
- will be based on those codes and standards listed in the FSAR unless otherwise noted. ,
')
1 B) Class ll S t r_uc t u res , for purposes of evaluating the seismic adequacy. 1 of the Class 11 structures, the following criteria are to be used:
(1) Load Combinations. Dead, actual acting live,.and 7.5M Hosgri earthquake loads will be combined as followe.
U = D + L' + EQ where U = total load to be resisted D = dead weight load L' = actual live load, if any, acting on element considered EQ =
total combined seismic loads due to both hori-zontal and vertical inputs (2) All_owable Stresses (Ultimate Strength Design Basis)
Element , Code g ;
Concrete shear walls SEAOC (1974), Section 3(C) i Reinforced concrete l elements ACI 318-73 Structural steel AISC 7th Edition, Part 11 (3) Ductility. Lateral forcing resisting elements will be allowed inelastic deformations according to those_ indicated in Table D.
For these elements, the allowable stress limitations of item B above need not apply..
f ft/470ff D/.SCVSS/0A/S ~ al//H 7/L STAf/~ A$/ A/6"CESSARY /F SECAC /t ro &L t/sKD /A/S7// b ,
.g. OF A C/ 2/P-73 l
- 8. References
- 1. URS/ John A. Dlume & Associates, Engineers, "Diablo Canyon, llosgri 7 511 Blume & ilewmark Spectra Plots," report to PGLE, September 22,_
1976.
- 2. 11ewraark, tJathan it. , "A Ra tionale for Development of Des ign Spect ra for Diablo Canyon Reactor Facility," a report to the U.S. iluclear l i
Regulatory Commission, September 3, 1976.
I 3 " Recommended Lateral Force Requirements and Commentary,"'Seisrnology l
l Committee, Structural Engineers Association of California, 1974. I
\
l l
\
l l
l
- I -
8 '
0 kNf 2
/ -
- 7. -
Nk S E 0 T
I M N U U L C
/ 6.
S T 0 S' N/ -
E O S N\
R U Y 1
% T C N SW A U A 7 L 5" R
T C A E .
S 0"'
r I R 0 ^
"' L O T N\
L A L R .
?
0
, ' S M
B G C S E C
. A l C P
= 4."
S I D H S Z~ 0!
M -
^ NN 3 0 -
- 7 2
/
r )
0 1
/ 0 0
0 5 0 5 5
_ s. 1 / 7 0 0 2 2 0 H$ %sk
. /, $ _
%+-
S E TM I
N U c U 9L i
/ r E
R U
N/
O s
A
%N QT T
C YM L U
R NS G S A 7, A
, C a +
N O R r I 0 "N %T M 0, N
I L
B Gc
, A T
I A Se =
N O I Oe C
DHs T x'~
/ -
/ /
{
,/ - -
i s ,. ' 5
- s. o. ,
.
- o e c i i
! % v l! !
- $ yQ &, Qm
- . - ' : ' . l 8 3 0
2 N2 (I R.
U N x s 0 7, 0
G I
T I E F N N M U U
<N 3/
O/
L C l
T 4
0 G Y S N N I
D L.
I U
B I
N M A 7 C
5 .
A l
A L
C 2
5 0
S O
g N x
Y Q /
5 R
A (.
f< y 0 O I .
L 3 G c .
C I
/
S 0 4 E
A 5 X
U A
/ O p = 0 S
D H g t o w
Y w% 7 3
0 T
f #- - 2 7
- 0 1
I
' 0
,~
O 5 0 5 , ,
3 5
? 2 1 , 6 0 h 0 t
sf I ,$$ R . y5 , am Q
_ ,t
lI
]
e
+
, 0. '
0 N' 2
~
~
/ -
Ni / 7. -
0~
S T E N%.l c
/
N M U L U i 6o T C S
/
A / S O/ A N G N
I-DI L
I r
Y N M G A i A c
j L
E 8
5 0
.UB R -
o R/
T 0 _
/
N E-I B
R U
T t
a t
A G C S E
/ O P 0
4 0
O HS x %~
t' _
a 3 I'
- 0
% s ,"-
l p.t 7
2 -
/ rf 2 0
/ /
. 1 I ! .
_ _ 0 0
0, g5 5 0 5, /
g
,o 0
2 /
2 n
% h,}
hCR;yosf 5 :: %%% %
j!lI jL
/
- i.T E I
M N U U L
_ B S N E
R O /
U N M
- T
_ C U 5 i
f A .
T S C7 A R
L
- I
- L O N
A M L RT S
GC0 A SE C
_ S I
/
OP M
D HS x
N o
s 1 \
\'
Q~
\
e e d _
e N
N
/1 5 o.
- 2 z
"! h 1
- ! ' '> l 1
5
~
7 e
/
i Nm y Uut Na LETiY O /
R U
C U
Nm R
T s
S A C v. A
%%I T
N E
M O taTR N L Ba C A '~
A
/osE T
N
- O P C D nS g\
x
- o
\
% \
- + oh.g a
g > '
N -
rr .
,1 5
- o. s, o 5 1
- 2 2 1 o
sD%a -
_ 4 r
se -
S ; h w S b' %~
5
" 3
' 7 o
2
/ s
/
e S u T s i o s
s N u I i f
U t u C
/
a T N / S O A
_,GN Y u L 5 2
I D N s E L A .
C 7 A 2 I
U B
t R 50 Z
- Y O T m_ \
R A
I L
I X
- l. n B s
/
a C 0 o
E P
oR t E T
H U
Dn A S 2 N h% 5N 1
Y C
G u
h W o t
O E
R P
c T g .4 '4 4 O c-g P
S g
o
- 5. 0 S. 0 5 1,. l f 0 q 2
! gn x
qi p :::gm> h%$ y %~ Q4f Q%
lll 1 i
4 S.
g 0
g 2 .
R
/ u
/
E # G s M ,-
T
/ u c N L / -
u e T
. / S N A o
y m L
- s E n 7 . -
- A A c 8 i R 0 Z o n T .
T N_i t a C 0 '
2*RE l s A
s E =
/ o P H -
cnSt j Y
C G
N I
5' N -
E D -
L U -
I _
U Q B
E E K _
N ~
I / -
B 5 R 0 -
U 1 t
O h T _
5 o' +
Qy~
e& -
h
\ 5 T ,*
f c '
[n ,
, o 5 0 5 5 0 .
0
. 0 1 l 2 2 gb'%3 g'
- l. -
hkw p tb$ h $Qg' hQ$ m l l (
s ~N e c o
2 w
{/
NN <t 2
Xg S R . 07. r T A -
N I
MV k
U E S
N /N 6
0
\ E N T R
U O C Y RNA U- M C I
q- N T,C S 7 S
A T
S A
s .
o 'r v
x N\ -
L L
A M
S O R T L &
.B S EC I
R L E
^
~
=
C_A 0 4. ~
S./ O P I = 0 G
N MD H G T ~
/
3
/
M 3 A \
O 0 -
% /* % %
2 3 5 1 2 -
0 -
i '
1
-l s
~
_ 0 i ,' .
o 5
5 2
0 2 " 0 1
- 7 0
5 o O sl %~4 r
jl ; ;,' l l 1i!$B
l >i 1 8 I
~ m I 3 0 2
2 2 f
N f I
S R K
7, 0
G F'
T A N
t i
b M U W 6, I E C 0 I
\N N N T
\
G N O /. S I
D Y A L
I N M 5 L
E 5 U
B I A 7 0 Y C A 2 R I R 5 3 A
I O R T 0 O _
~
L L G C .
N I
X 0 G
U A
B 5 E =
4.o 0 c A O P I
N t G I D H S s P
M ,
A _
)
- f. 5.T _
% 0
% % 7 2 3 2 _
0 _
N[
I 1
0 I
f,.
o ._
S 0 5 -
5 0 2 2 l 1 5. s . o' 0o .
$! b &% -
i > m$5 hQg3 Nmg m
1)lll! l ,
- ' s 2
1
~ ~ 8 0 _
E _
2 R _
J -
/ L -
/ 7 G
/
K 0 F S R T
I A A
N A U W 6 E c i
0 N N T O/ S G Y M N
I N 5 A.
- l. 5 -
D.A .
E 0S C 7 A L
I U D B I R 7 N E- O R T 6 O N L 0 G I B B G C O. 4. C E N A S E l
R.
I P
U T / O P Z 0S M DH S t A 7 3
/
3
% Yo zs x 0 2 S 2 2
0 1
li
~ .
0
~
o 0 5 o. 5 _
- s. .
1 l 0 o _
e 2
%l- 2;
- ~ ;!> ! 2 i 00
i
- 1 5
5 3 3 1
0 2
E f R I
K U G
S R t 0
3 /
T fA W7 I
P N W h U E S
E N /.N c
- R U
T O i G C
U M T t R
T N G S S A 7 A A L
L C R L A
O R T E
/
M S
l C
b G C 0 0Z 2T S
l E E' I A I O P = R E
M
- DH S2 H Y
s 5 1
C N
G I
L G
E M
N F 0
1 G
N I
P M .
5 A
D A* I y.
h #* 7 2 a
,_ f
,1 l}
l O
s
- s. o. s. o. .
O 2 2 i 1 o w
- L
- l F i l)?b
.' : 5
- 3 4 0 1
- G. -
0 2 e l
N
/
R e-u S A 0 s-i-
8 3
T I M f N W C .
I U E T -
N&l N _
S E N / A Rb U
5 L 2 T
C Y M G -
U R N G -
T S
A 7 A C
T ) R 4 .
2 OR T 0 N
E M t 0
T
' N I
G C 0 -
2RE A I S E T = H N IA O P -
O _
C D H S T >
Y C
N 5 N _
1 E _
U Q _
G R
F N o t
\ h
\ -
6 -
N I _
P s n.
M A '-
D g. % %
% 5 5 7 2 '
i o
5 0, o s. o.
t o 0
$ e. t k:::: 4
, b l' h 3hf
I\I
- - F 1-5 5 5
1
~
0 2_
E
$" R I
K U S R I 3
0 C~
T A !
r N M I
C U E W /
T N S A~ G N
I D
L N /.
O Y M N 5 .
A L
E G
2 7
I U A A 2 Z B C / R 5 T O R T 0 Y
R A
. R I L G C 0 .
oE l L B tH I / S E =
X U A
/ C P A
3 H ST 1
Y C
5 N
/E U
N G E
K F
o f
G
\
- N _
N I
P M 5 A'
' D '
% /'. % %
2 3 0 7 I I i
g I' g
o s. o s.
0 6 1 o 2 t l
t '
l l; l) 9 g $$B*
I,llll C fo s B /
~ o 2 G 2
{ F
/
U K 0 G R >
3 r
S A f T
- / M C N W I U /E T A S N / A 5 l
b 4 L 2
Y A E 5
N 7 A A 7 .
C Z G
N
/ R 6 T I O R T 0 . oR b 'L I S G C O 2E U I S E B B A I Q P ?
E N DHS T ,
I B Y R C U
v T 5N 1
E
/
L _
G _
E _
R
/
N% o t
\
N N G .
N I
P 5 M
A '
)f v. %
% s s 7 2
/
I o
5 0, 5 o
- s. 0 / 0 2 2 t
%b " s 1> }38 D
il1l1 !
8 7 1
0 _
E -
2 .
e 4
NDxN l J E T
I A
s I
7 0
u G
t f
N u NyNx U L A N 5 T R I 6
0 -
O/ C Y M E _
N P -
%NN A 7 C
5 I
. S L
A 5
0 3
\ l o R C 3
/
N c\ NN l
bl G ~
T 4. O A Os I
R I
O C E
+ E J DHV o
't n, ** S 2 :<>
7~
x S O
T 2
0 f
lf '
7 1
0 o _
g 0 5 O 0 ' 1 o -
c w ^es
5 3 S
?. '
4 I
E S "
T I E U 0 G N M A l
5 '
U U R "
L T N S C O I E
~ Y N
/d P A
l 6 2
J A S C 7 L z A r _
O I a
L R C I
e l5 6 T i 0n 2
A S R ,
/ O E y _
31 H V c n
e 5u
/ q N s a
F 0
% N 1
- v s\i.
S
,2 i
'I (
o 0 s s. o 2 /
o gl ~ m $
r _
l l
i -
91 8 E-0 F 2
u x
2
$ G
/-
/
<l 7 f S K 0 T A x
/
N M A U W R _
E 6 N N T I o
O/ C x Y N M P E
5 5 A 5 _
C 7 I
L o J
N O I A C
.D L K /
N R 6 T N
O A s R 4. C I
0 1 o E E G 3 1 H V J N
I P 5. T, 0
A D
% % v. %
2 3 e 7 2 0
/ -
1
/
0 o
0 o 5 O
' O 7 '
t.
tk k
5 o 3 2 2 e 6
/
e S K u_
- R s.
T I 0 i_
e_
I A 3 ,_
N M A U W R _
E T N N C O / E I 5 Y M P 2 N 5 J A 7 L _
C L _
l A T _
t _
O R C f e
5 G
/
T l
oH t -
( _
A J R Y,
I O E C D H V N
E _
5 U 1 Q _
x E _
l F
G N
/
P
\
N W -
0 1
M 5 A
3
/
%2 %
3 ss %7 I
l /
gu
) o
- 5. , 5 g O. I ,. 0 2 -
ak1
G. E0 nl, t e P k M 0 A=
g 2 CT f
9
/ %(
71 j h a.
HU G Ct
_ /
TT AC
- {
- 4. T.
M 4D
_ j i1' / 0
- N 7 o
o 2
.ce O s
l jj 1 2 TP
[
n sJ
_ il /
. l t
G f
_ l i-
- 9. M e E l,
I N
_. T E
_ 2 G
- .L 7
_ l Y
<f k R//
[ 8 4, O j
. T5 S
I je .
4 H1
_ I 2 ..
E MI
- o. TH
- . 4 o 0 o o
0 0 g 0 0 5, c. o 1
/ 0 o - -
ofoauu x
_ . , 3 c. i
5s , ,e
- uli a
o
+
rp . .
i 1 N D!
4!
a l' t o -
s
~
' -ss.
N k N
% _q % i to o. f
. Q-f a
Eo s
~$
c h i
O \.>
A to D
I+? W -
g b *t i=
u A
ugg
% 4f
,,S Q s- lg = s m
--.= g, 7 _-- e .. v4
-=aer o
O Q(b d;5 Um:q ow 0 =
n m5 bNu 4 O
t
- i
- s Qt < ;
0; s
},. (O g4 e
i J T-gb W 7 "~ - *Q to e.
g T
<:r-
-- N I
_ ~ ~ -( e - -%_
2 su 5 4g-4 u U
%{
6
- w c ,- j e_
m 6b w _ , _m 4
'w 9 yN M1 -
t oa yw
~
m _.
= ==.. -
s
~ a:-
4-g 8 m .- ,..
g L4% y, C l %_
Q~' % qb0
~7=v ' -
o s
o O o h -
o o 0 :
0 o
- s
/ N O / ,f, p' b' y 7 p
- v'
- 0
G. E 50 1
2 P f M0
- j A=
f A
V 2 DT A'l
(
t 9
/ %(
71 k
bp 8 HU
!*M G cR
)
/ '
'l T
- W
)
ACE j\ .
- 4. S M P Ui l
( .
4D
/ O J t
l N T E l
O 0 C J h
l p
2 E D N
!i l
/ J E l
N T
l I 6. P R E i
h G I
[iI -
- 9. E M G R
I T
N 1p - EE 1
- 2 GM J ) 7 I y" s' YL Nl =
3 R//
i"' 8 OM j
4, TS S
- 1 ,
lj' fl I
(
l I
j9 4 HI ti 2
{1 l
i EG if I
M I
. ~ - .
- o. TH 0 o O 0 o 0 0 0 5, c. S.
/
0 o o 1
=D, y e 3 u> U T
U l! ;
0 I E
4 -
2
~
f )0
- D6
\
~
l\ -
)
G.
1 2
G0 P 0 M
A=
~
k[m f
h t
s t+
n 2
9
/
DT
%(
v 74
\ r HU A
NI, 8 -
G C R. -
t n
/
TT -
-y ACE
- 4. f. M P 4J D
_ l o J l
- /
N T E G k
O N I
s C J D L
- 0. E
@I. DN I 2
l a
1 J E U B
, T *O E Y N /
N I
l sJ I B
cl I G
- 9. E RE E
R U
M R T T
I N
EE
.+ ;?
2 GM -
7 U 4
- t. YL R/ ro 8 -
4, OM -
T5 S 7 l
ig.
I -
4 H I.
? ,. R _
E6 J
M I O _
' ~
0 TH .
0 0 0 0 0 0
- 0. 5, 0 6 0
/ 0 0 0 /
.D, g @U T
Al, l 6 1
)
0
[W 2 D0 E 0 A P -
b l
V 2
M=
_ %']
9 1 AT d"\ D(
lag
(
- 6 %M G 7 UR dP I J
4 i[
A l
O -
HT C I
4 -
C E
)
- 4. O N TP L 4 bI AJ
, , i 4
. I C .
k ,
E .
M 2 J
O.
os
)
e N I
T N
- l O
di l
3 t
\
r i
- 6. MI 1' AR T
- i R
E K
- i l NAR l .
j 2 EM
\
f j' (l 7 GW
_ t
. i i
E
]b YN i
j 6 R/
, O
- . f 4 OM
' k.j T6
_ l I
J7 I
0 4 HI (f
I p 2 .
R I
EG MJ i
_ I g ' . 0 TH 0 0 0 o 0 0 6 0 s. 0 0
1 o 0 o 1
?& % kyl3Y G
_ ~
^ 6 t
0 e I
6 D
! E M
-I 2
P0
- 9 M M t A' D(
b
. s. %
l s
i 7 J
H O
C
- 4. O N
[3 l 4 i C T
l AJ E M J
l
- o. Os 1
e i
N I
TN D
l E .
- 6. MI TE l
l' j
l
- 9T AR
)j R E
r I1 2 N E1
' {
7 j'l G
!;I i Y
8, R/
4 O TE
{
(
I J7 I
~
4 HI 4f e
!f I
E f1 M
I dY4 _ -
- o. T o o o o 0o 0
- o. s. o. s.
/ o o o /
. o, 3 s uj*y'
4[
I G.
/
c D0 E0 P=
MC N"y 2
_ 9 A(
f[Y 1
DM 8
%U
_ . 7 s
h[t I HC I, C 4
7 f
3 T
- 4. A 4 N ll i 1 C
O ME E oN 0
J TO 2
1 NI D E
E TR l
M A<
_ 1
_ G. I
_ 9 T t R!
E NA 0
,l 2 E G
_ 7 YN 1 ,
_ li R
_ (
}
f 8 O f.
T
{ '
S I
_ J 4 HI 2
E f
M
_ I 0 TH 0 0 0 o 0
_ 0 0 6 0
_ 0 5 l O O 0 1
' O, t ogUy
.. .>,- , c' h
O y q 5
o
?
b hd 6 e
o d
V
% ~
g E' u QO it '
b (r; .
Q O I
tr os k4 ,
VD s , &*
s 3, i Qv 4; !
i i .:=
IV I TE f $ tw Wb c l
M i %
<y '
O t o o
b f l
v%
i
-- u- . :=. ,
S syO L (to E.
1 1
y
- 3q 3 r%. to q G l
'=2=-
b na 'A l
O5
__ h 0.
s) N }, Q Lu a
=M+:r -
s s Q %
i u) G Ct E
'C % l g U2 %. =a H
os ls to
~=
m
, #' l Ty
- 0. sp
,~
n
=-
yy mye - tu M gN
,_ ._: = ~
r,. -
OJ g
- OsA
_ w._ 7 i
$ EN !
4~ ~~ ~ ~
T. O Is (Ea l
-m'_'
ng_
5g s
-o ~c
- w. T %s so .- y DG
~~Q._.
N
- Q% 0
- . @W . , o b ;
@ 8 o o o 0 -
@ o q
4 O o o' I s
.(
a 9, N/ NOI.L V2/9*7 eppy e
l
x{2TM I R
N R
\ U T O I
T C
YM S
U N5 R
_ T A A7 S L
_ T N
.l C' A E E
M I R N O L RT 4 I
A GC 0 T
N B SE 0 G
O C AOP
/ =
DHS N
I P
t M
A D
2 3
/
/ '
5 0 5 0 6 5 1
2 2 l o0 s
a gs*gqQnN$B o ,
, ' ' ' i