ML20008D783

From kanterella
Jump to navigation Jump to search
Chapter 9 to Midland 1 & 2 PSAR, Auxiliary & Emergency Sys. Includes Revisions 1-36
ML20008D783
Person / Time
Site: Midland
Issue date: 01/13/1969
From:
CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.)
To:
References
NUDOCS 8007300690
Download: ML20008D783 (59)


Text

. . - -_ __ _ . - - _.

l l

l 10 l

t i

1 i

.O 6c9 00005 l

,iS007300 r:$ THIS DOCUMENT CONTAINS POOR QUAllIY PAGES

TAELE OF CO!:TE::TS Section Pace 9 AUXILIARY A'iD R/ERGE'!CY SYSTD/.S 9-1 91 MMTJP A'O FUFIFICATIO!i SYSTD1 9-2 9 1.1 EISIG?i EASES 9-2 9 1.1.1 General System Panction 9-2 9.1.1.2 Letdevn Coolers 9-2 9 1.1 3 Letdewn Centrol valves 9-2 26 l 9 1.1.L Parifiestien Demineralizer 9-24 0,.1.1.5 Makeur. Parrs o, ,1 9 1.1.6 Seal Return Coolers 9-3 9 1.1.7 Makeun Tank 9-3 9 1.1.S Filters 9-3 s

~

9 1.2 SYS D: IIICEIPIIo?s na IVALUATIor 9-3 Q.1.2.1

- Schematic Diagram 9-3 9.1.2.2 Ferrer ance Recuirements 9-3' 9 1.2 3 Mode er C;eratier.

9-3 9 1.2.h Reliability Considerations 95 9 1.2 5 Codes and StandaM s 9-5 9 1.2.6 Systen Isolatien 9-5 9 1.2.7 Leakage Consideratien 95 9 1.2.6 Creratine Conditions 96 92 CEDIICAL ADDITICII SYSTE4 9-9 9 2.1 EESIGI? EASIS 9-9 9 2.1.1 General System Panetion 9-9 9 2.1.2 Berie Acid Mix Tank 9-9

) 9 2.1 3 Berie Acid Addition Tank 9-9 w/

9-1 , , - Amendment No. 26 OOL'U+o3 4/74 m . . _ - , _. . . _ . . . _ . _ - _ , . . _ _ . _ _ _ _ . - . . . _ . . . _ . _ . _

~ . . - - -

O

- i V TP7 0F CONTENTS (Contd)

Section Pace i l

4 9 2.1.L Serie Acid Pumps 9-9 9 2.1 5 Potassius Hydrexide Mix Tank 9-9 9 2.2 SYSTDi IESCRIPIICN AND EVALUATION 9-10 9.2.2.1 Schematic Diarra and System Lescriptien 9-10 i

9 2.2.2 Perfernance Recuire=ents 9-10 9 2.2 3 Mode of Oreration 9-10 9 2.2.L Reliability Considerations 9-11 9 2.2.5 Codes and Standards 9-11 9 2.2.6 Syster Isolation 9-11 9 2.2 7 leakare Considerations 9-11 9 2.2.8 Operating Conditions 9-11

( 93 EECAY EEAT RDOVAL SYSTEM 9-13 931 LESIGN BASES 9-13 9 3 1.1 General Systen Punction 9-13 9 3 1.2 Decay Heat Renoval Pumps 9-13 9313 Decay Heat Renoval Coolers 9-13 932 SYSTEM IESCRIPIION AND EVALUATION 9-13 9 3 2.1 Schematic Diarra= 9-13 9 3 2.2 Perfor-ance h-ouirements 9-13 9323 Mode of C;eration 9-lk 9 3 2.L Reliability Considerations 9-lk

9 3 2.5 Codes and StandaMs 9-lL 9 3 2.6 Syste: Isolation 9-1L 1

9327 Leakare Considerations 9-lh

. ~

g

_) 9 3 2.8 Failure Considerat!ons 9-lh E;A.vs ..ws

[

9-11 d

.- -g n-er-*-w- t-se--+ --v--* w w -v- w-g w -ea-yere*--++ww y ,;.w,- y-

  • svete,--eereve, vs re --s e r e-- --

e---- e v + . * - - - - e r - - - e

TABLE OF CONTE!."IS (Contd) l l

l Section .

Pa:e 9.L FUEL POOL COOLI?G SYSTEM 9-17 9.L.1 RESIGN BASES 9-17 9.L.2 EESCRIPIION AND OPERATION 9-17 95 SRIELD C00Lnn SYSTa4 9-19 9.5.1 DESIGN BASES 9-19 952 DESCRIPTION A?Q OPERATION 9-19 96 COMPota'r 000Lnc SYSTEM 9-20 9.6.1 DESIG" BASES 9-20 9 6.2 DESCRIPIION AND OPERATION 9-20 9.6.3 TESTS AID INSPECIIONS 9-21 97 SERVICE WATER SYSTEM 9-22

' -a) 971 DESIGN BASES 9-22 9.7 2 DESCRIPIION AND OPEPATION 9-22 973 TESTS AIG INSPECTIONS 9-23 1

9.8 AUXILIARY eWATER SYSTD4 9-23 9.8.1 DESIGN BASES 9-23 i

9.8.2 DESCRIPIION AND OPERATION 9-23 99 FUEL HAIGLIIU SYSTH4 9-25 991 DESIGN EASES 9-25 992 SYSTE4 DESCRIPTICN AND OPE *MTION 9-25 9.9 2.1 Receivinc and Storinz Fuel 9-25 l 9 9 2.2 Leadinc and Re= ovine Fuel 9-26

+

9923 Storare of Spent Fuel 9-28 9 9 2.h Safety Provisions 9-28 l.,(V i

9 111 00008

.=

TABLE OF CONTENTS (Contd)

Section Page 9925 Operational Limits 9-3c 992.6 Miscellaneous Fuel Handline Eculpment 9-30 9 10 SA?GLING SYSTE4 9-31 9 10.1 DESIGN BASES 9-31 9

10.2 DESCRIPTION

AND OPERATION 9-31 9 11 INSTRUMENT AND SERVICE AIR SYSTDI 9-32 9 11.1 DESIGN BASES 9-32 9

11.2 DESCRIPTION

AND OPERATION 9-32 9 11 3 TESTS AND INSPECTIONS Q-33 9.12 HEATIIG. VENTILATIIU AND AIR-CONDITIONIIC SYSTEG 9-33 9 12.1 RESIGN BASES 9-33 i 0

9 12.2 SYSTEM DESIGN AND OPERATION 9-33 9 12.2.1 Reactor Buildine Ventilation 9-33 9.12.2.2 Auxiliary Building Ventilation 9-3k l 9.12.2 3 Turbine Building Ventilation 9-3ka l 9 12.2.h Station Heating 9-3ta

l 9 12.2.5 Systen Reliability 9-3ka 9.13 FIRE PROTECTION SYSTEM 9 35 4

9131 DESIGN PASES 9-35 9 13 2 SYSTE4 EESCRIPIION AND OPEPATION 9-35

'O

. 9-iv 00thSS Amendment No. 2 5/28/69

LIST OF TABLES Table No. Title Page 9-1 Makeup and Purification Syste: Perfor:ance rata 9-7 9-2 Makeup and Purification Syste= Equipment fata 9-3 9-3 Chemical Addition System Equipment rata 9-11 9k Decay Heat Re= oval System Perfor=ance Data 9-15 9-5 Decay Heat Removal System Equip =ent Data 9-16 9-6 Auxilian Feedwater Syste Equipment Data 9-25

(

l 0093.0 ,

9-v

1 1

LIST OF FIGURES -

7.-

i t

Figure No.

I 9-1 Flow Diagra Identifications 9-2 Fakeup and Parification System

, 9-3 Chemical Addition System oL Decay Heat Removal System 9-5 Decay Heat Generation Versus Time After Shutdown 9-6 Flow Diagram Fuel Pool Cooling Syste:

9-7 Flev Diagram Shield Cooling System 9-8 Flow Diagram Ccmpenent Cooling System

.i 9-9 Flow Diagram Service Water Syste=

26l 9-10 DELETED

_ 9-11 Flow Diagram Reactor Coolant Sampling Syctem s 9-12 Flow Diagram Instrument and Service Air System 9-13 Flow Diagra: Ventilation System - Reactor Building 9-lh Flow Diagra= 7entilation Syste=s - Turbine and Auxiliary Buildings 1

i s

1 i

i i

i

~C i 1 000 L' 9-vi Amendment No. 26 4/74 i

i

i 9 AUXILIARY AND D'EECY SYSTD'S r

j The auxiliary systems required to support each reactor coolant syste= during j normal operation of Midland Units 1 and 2 are described in the folleving see-tions. Scre of these syste=s are described in detail in Section 6 since they

serve as engineered safeguards. The info.~ation in this section deals pri=arily with the functions served durire nor=al operation.

Most of the ec ponents within these syste=s are 'neated within the auxiliary building. Those systems with ccnnecting piping i tween the reacter building and the auxiliary building are equipped with reac. building isolation valves as described in 5 1 5 The codes and standards used, as appropriate, in the design, fabrication, and '

s testing of ec=ponents, valves, and piping are as follows:

a. ASME Boiler and Pressure Vessel Code,Section II, Material Specifi-cations.
b. ASME Boiler and Pressure Vessel Code,Section III, Nuclear Power

'26l Plant Components.

c. ASME Boiler and Pressure Vessel Code,Section VIII, Unfired Pressure Vessels and ASME Nuclear Case Interpretations.
d. ASME Boiler and Pressure Vessel Code, Secticn IX, Welding Qualifica-I tions.

,(

i i
e. Standards of the A=erican Society for Testing Materials.

26l f. ANSI B31.1 - 1973, Power Piping. -

g. USASI, C50.20-195h Test Code for Polyphase Induction Motors and Generators.

. h. USASI, C50.2-1955 for Alte:nating Current Motors, Induction Machines, and General and Universal Meters.

1. Standards of the American Institute of Electrical and Electronics E gineers.

,) . Standards of the National Electrical Manufacturers Association.

k. Hydraulic Institute Standards.
1. Heating, Ventilating, and Air Conditioning Guide; American Society I

l cf Eeating, Refrigerating, and Air Conditiening Engineers.

7

m. Stsndards of Tubular Exchanger Manufacturers Associatien.

t .

n. Air Moving and Conditiening Association, i o. DELETED 1

' ~

q () Tnt ~"?.,

' A=endment No.-26 9-1 4/74 4

p. Valves and piping will be designed and fabricated to mzet the 5l requirements of USASI B16.5 or FSS SP-66.
q. The pressure-containing parts of all engineered safeguards pumps i

of stainless steel material vill be liquid penetrant-examined in i s-s accordance with Appendix VIII of Section VIII of the ASME Code.

The pressure-containing welds of all. engineered safeguards pu=ps will be radiographically examined in accordance with Paragraph UW-51 of Section VIII of the ASME Code.

26 r. DELETED

s. National Fire Protection Association Underwriters Laboratory Label.

30 t. American Water Works Association Specification AWWA C-301-72, " Standard for Prestressed Concrete Pressure Pipe, Steel Cylinder Type, for Water and Other Liquids."

As an aid to review of the system drawings, a standard set of symbols and ab-breviations has been used and is su=marized in Figure 9-1.

9.1 MAKEUP AND PURIFICATION SYSTEM

9.1.1 DESIGN BASES 0.1.1.1 General System Function J

The system shown on Figure 9-2 supplies the reactor coolant system with fill and operational makeup water; circulates seal water for the reactor coolant i

/N- pumps; receives, purifies, and recirculates reactor coolant system letdown to

(, ) provide water quality and reactor coolant boric acid concentration control; accommodates temporary changes in the required reactor coolant inventory; and i

provides makeup to the core flooding tanks.

9.1.1.2 Letdown Coolers The letdown coolers cool the letdown flow from reactor coolant temperature to a temperature suitable for de=ineralization and injection to the reactor cool-ant pu=p seals. ihe maximum letdown flow is required for a startup from a cold condition late in core life wherein the reactor coolant boron concentration is reduced by an amo'nt corresponding to the change due to moderator temperature reactivity deficit. Heat in the letdown coolers is rejected to the component cooling system. The letdown coolers are designed for high differential tempera-ture and low flow rate applications (16 x 106 Btu /hr at an LMID of 124 and 70 26 gpm). This design precludes their use, following a LOCA, as a backup for the decay heat removal coolers which are designed fc* low differential temperature and high flow rate applications (30 x 106 Btu /hr at an LMTD of 15 and -3,000 gpm) .

9.1.1. 3 Letdown Control Valves Letdown flow is established by use of a block orifice which is sized for the normal purificat17n rate. However, during a startup or shutdown phase when the reactor coolant system is at low pressure, the desired letdown flow is maintained by the supplemental use of a patsllel control valve along with the orifice. Both flow paths are also used when high letdown flow is required, gge e.g. , reactor coolant boron concentration adj ustment.

(1 1

%/

(}E!IIIE$

9-2 Amendment Nc. 30 9/75

. _ ~ . . _ _ _ _ _ . . _ . - . _ . _ _ _ _ _

1 l <

4 9.1.1. 4 Purification Demineralizer The letdown flow is passed through the purification demineralizer to remove reactor coolant impurities other than boron. The purification letdown flow to

, maintain the reactor coolant water quality is equal to one reactor coolant vol-ume per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. Each purification demineralizer is sized for the letdow.  ;

i flow rate as required for boron concentration control. Refer to Table 11-3 '

i 4

1 l

j i

1 a

1 ,

I i

't t

\.

t i

I t

i

?

I.

i i

i P

l 000la l 9-2a Amendment No. 26 4/74

- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ' * - - - ~ ~ ' ~ ~ ' ' ' ~ ' " * ~ ~ ~ ~ ~ ~

O

\- for the maximum anticipated equilibrium fission product accu =ulation in the reactor coolant.

9 1.1 5 Makeup Pumps The takeup pumps are designed to return the letdown flow to the reactor coolant system and supply the seal water flow to the reactor coolant pumps. The design flow capacity is equal to the maximum takeuo flow plus the seal water flow to the reactor coolant pumps. The pumps are sized to meet these requirements with one pump in operation.

9 1.1.t3 Seal Return Coolers The seal return coolers are sized to remove the heat added by the makeup pump and the heat picked up in passage through the reactor coolant pump seals. Heat from these coolers is rejected to the component cooling syste=.

9 1.1 7 Makeup Tank This tank serves as a surge vessel for the takeup pump and as a receiver for ,

the letdown flow, chemical addition, and outside makeup; it also acco=modates temporary changes in reactor coolant syste= volume. The volume of the tank is such that the useful tank volume vill acco==odate the maximum expected expansion and contraction of the reactor coolant system during power transients.

( 9 1.1.6 Filters The filters will prevent the entry of resin fines from the decineralizer and other particulates from the radioactive vaste treat =ent system, chemical addi-tion syste=, and the plant desineralized water supply into the takeup syste and into the seals of the reactor coolant pu=ps.

9 1.2 SYST m DESCRIPTION AND EVALUATION .

9 1.2.1 Schematic Diarra:

The caheup and purif:.. cation syste is shown on Figure 9-2.

, 9 1.2.2 Ferformance Recuirements Tables 9-1 and 9-2 list the system perfor=ance requirements and data for indi-vidual syste ecmponents.

9 1.2 3 Mode cf Operation During nor-al operation of the reactor coolant syste=, one takeup pump contin-nously supplies high-pressure water from the makeup tank to the seals cf each of the reactor coolant pumps, and to a takeup line connection to one of the re-actor inlet lines.

! Makeup flow to the reactor coolant syste= is regulated by the makeup control valve, which operates on signals from the liquid level controller of the reac-tor coolant system pressurizer. A control valve in the injection line to the t

9-3 000i.5

- . , , , ' . .. .,.,.,4-..,__y ,.,m,,. %-.-,,,,.-_,.,..,.,-..,w,...,m, , - - ,.,+,,,.,,.,.,,..._,_..y r rem . - . ,,:,-,,._,.

i pun, seals automatically maintains the desired inlet pressure to the seals. A small part of the water supplied to the seals leaks into the reactor coolant syste=. The re=ainder returns to the makeup tank af ter passing through one of the two seal return coolers.

Seal water inleakage to the reactor coolant system requires a continuous let-l down of reactor coolant to =airtain the desired coolant inventory. In addition, bleed and feed of reactor coolant are required for re= oval of impurities and boric acid fro = the reactor coolant and to acco==odate volume changes in the reactor coolant system during changes in power level. Reactor coolant is re-26l =oved fro = one of the reactor inlet lines, cooled during passage through the letdown coolers, passed from the reactor building through a reactor building isolation valve, reduced in pressure during flow through the letdown flow control station, and then passed through one purification decineralizer to a three-way ,

valve which directs the coolant either to the makeup tank or to the radioactive waste treatment system.

Normally, the three-way valve is positioned to direct the letdown flow to the makeup tank. If the boric acid concentration in the reactor coolant is to be reduced, the three-way valve is positioned to divert the letdown flow to the radioactive waste treatment syste=. Boric acid re= oval is accomplished in the radioactive waste treatment syste= either by directing the letdown flow through a deborating demineralizer with the effluent returned directly to the makeup rank, or by directing the letdown flow to a reactor coolant bleed holdup tank.

The level in the makeup tank is maintained with deborated water from storage or with decineralized water from the plant de=ineralized water storage tank.

The quantity of unborated water received is =easured and limited by inline in-I strumentation and interlocked with shi= rod position controls.

The makeup tank also receives chemicals for addition to the reactor coolant.

A hydrogen overpressure maintained in the makeup tank supplies the hydrogen added to the reactor coolant. Other chemicals are injected in solution to the makeup tank.

System control is acco=plished remotely from the control room with the excep-tion of the seal return coolers. The letdown flow rate is set by remotely opening the stop valve upstream of the block orifice, and/or positioning the letdown control valve to pass the desired flow rate. The spare purification decineralizer can be placed in service by remote positioning of the demineral-izer isolation valves. Diverting the letdown flow to the radioactive vaste treat =ent system is accomplished by re=ote positioning of the three-way valve and the valves in the radioactive vaste treatment system. The control valve in the injection line to the reactor coolant pu=p seals is auto =atically con-I trolled by a pressure differential controller connected to the reactor cosl-ant system to maintain .he desired inlet pressure to the seals. The pressur-izer =akeup control valve is automatically controlled by the pressurizer level controller. During heatup and cooldown, the reactor coolant system pressure varies from 100 to 2,185 psig, and the discharge pressure of the makeup pu=ps remains about 2,600 psig. The letdown control valve is designed for letdown ,

flow rate control at reduced reactor coolant systen pressure.

For emergency operation as a high-pressure injection supply, the =akeup pumps 26 take suction from the BWST and inject borated water into the reactor coolant i system through the high pressure injection lines. The normal letdown coolant v flow line and the 000 W 9-4 A=endment 26 AITA l

i normal seal injection return line are isolated by an ECCAS signal since 26 they have no active emergency safety function. The makeup purgs and pump motors are designed to operate at the higher flow rates and lower discharge pressures associated with the high-pressure injection requirements. Emergency 1 operation is discussed in detail in 6.1.

9.1.2.4 Reliability Considerations The system has three letdewn control paths in parallel (block orifice, re-notely operated control valve, and manual valve) and two, full-capacity let-down coolers for each nuclear unit to insure the flow capability needed to adjust boric acid concentration. Two, full-capacity, seal return coolers are supplied for each unit.

A spr- rification demineralizer is chared between the two nuclear units.

Interlocks prevent opening the stop valves to one unit if the stop valves to the other unit are not closed.

3 For each unit three makeup pu=ps are supplied; each one is capable of supplying the required reactor coolant pump seal and makeup flow. The letdown coolers and the seal return coolers transfer heat to the component cooling system.

9.1.2.5 Codes and Standards The equipment in this system will be designed to applicable codes and standards tabulated in Section 9.

j'[ Components which are designed to the ASME Code are:

L Letdown Cooler (Pri/Sec) - ASME Section III-2 /III-3 Seal Return Cooler (Pri/Sec)- ASME Section III-3/III-3 26 Purification De=ineralizer - ASME Section III-2 l

Makeup Tank - ASME Section III-2 9.1. 2. 6 System Isolation The letdown line and the reactor coolant pump seal return line penetrate the reactor building. These lines contain power-operated isolation valves which are automatically closed by the reactor building isolation signal.

Four emergency injection lines are used for injecting coolant to the reactor inlet lines after a loss-of-coolant incident. Check valves in the discharge

, of each makeup pump provide further backup for reactor building isolation if required. Af ter use of the lines for emergency injection is discontinued, the remotely. operated valves in each line outside the reactor building are closed by the control room operator.

9.1. 2. 7 Leakaoe Consideration Reactor coolant is normally let down to this system. Each purification domin-eralizer will remove essentially 100 percent of the ionic and solid contami-nants except for boric acid, while gaseous contaminants will tend to collect in the makeup tank as the letdown flow is sprayed into the gas spact or this tank.

mb v

9-5 bN Amendment No. 26 4/74

i 7

~( )

\_ ' The gas void in the makeup tank may be vented to the radioactive vaste treat-cent syste by opening a remotely cperated valve in the vent line. The equip-ment in this system is shielded by concrete. Shielding design criteria are discussed further in Section 5 9 1.2.6 Operating Conditions The makeup tank will be maintained with a fluid inventory between 100 and 500 ft3 Oxygen accu =nlation in the tank will be less than 2 percent by volume.

One letdown cooler and two takeup pumps will be available at all times.

To prevent an inadvertent excessive dilution of the reactor coolant boric acid concentration, three safety reasures are applied to each of the two rethods of diluting, i.e., the bleed and feed method and the deborating decineralizer method. The first safety measure is a lLQ gp limitation on the max 1=u rate of adding demineralized water (5 x 10-6 5f per second). For either dilution method, the demineralized water takeup control valve to the takeup tank is automatically controlled to prevent exceeding a preset flow rate. The second safety measure is a control rod assembly position interlock which either per-mits or prohibits dilution depending on the control rod pattern (see 7.2.2.1.2).

The third safety measure consists of closing the takeup tank takeup valves, and diverting the letdown flow through the three-way valve back to the takeup tank, when the flow has integrated to a preset value. Initiation of dilution cust be by the operator, and the operator can terminate dilution at any time (see IL.l.2.L.2).

I

- \a\l t

, '/ \

i Y

v 9-6 -

\ Table 0-1 J '

Makeup and Purification Syste: Perfcrmance Cata Letdown Flow (Cold), gp L5-lLO Total Flow to Each Reacter Coolant Pump Seal, gp: L5-50 2eal Inleakage te Reactor C001 ant Syster per Reactor Coclant Pump, sp: 6 Injecticn Pressure to Reactor Coclant Pump Seals at Startup, psig 135-2,2;;

Injection Pressure to Reactor Coolant Pump Seals (Ucreal), psig 2,235 Injection Pressure to Reacter Coolant Pump Seals (Maxi n:), psig 2,535 Te perature to Reactor Coolant Pump Seals, F 125 Purification Letdown Fluid Temperature, F 120

_ Makeup Tank Normal Operating Pressure, psig 15

) Makeup Tank Volume ' seen Mini =um and Maxi =um Operating Lt vels , ft LOO Reacter Coolant Water Quality See Table L-2

\

q_7 000.9

_. , , - --,_e. . . - , . --,----,.--..r- - - , . ~ , - - . , - - - - - - - ..-.-.,..w- -.--.. ,,. - -

( w. y,-c-is.,e U

v. ,3y.,.,,
g. a.~ n. , ,.4.

.... rm

<. 4.. ..s. 4 .- . .e., .. ..

4..,._... . . .. , . ._

,s....<.4,,

, a. .

-............-.,.,..e1.,,. . ~ .

3~.....

e.n.a~4.

r . . 4e., ,- e .e

r. .e.

. . .4

. . - , , ve. y...... -..... )

v...o..,.,..,

s.....

. . . . . . . b

,.,.,..,,. u.

. ... ,.<,.3ea_

. C a. +.

.. _.- d '".e = ' ,

.v.. ...a.4

> .. .o.., .e ... _. ,

Ca ra.a. . ' 'g" ,~~~er. =** =.*e~ .e A. =

    • ..p_ _ a4 ,

4'+

. a. .

c.

.e e.

~. g ,. C je *' . e . e d .}

4 u~~..,,.

. -- u.. ., . e.

er . 1m..

n , ., v. . .. ,. .d. a'.

. . o~ 'Ja *,,*, a. ' t. a. . =.

  • p

._ s .4 ~, . 7. ,.=e.c si, .. .e , *e..e c4= 9hm O

.e e..e * ~~ '." e * .-a.* ". e 7

. 000 v.a t... , ., r. ...

. . e , .. e .

s, s . . - .. 4. . y L

-r a 4... ,. , ee v0 t

.,_c.e- O.3 ,-

. m esn . . ,

e.4. e-

.e

  • Cn

.,v

.p..q .4 .~,.' O.e wp.m.u y._.

7 2u0 S r . a . .,. C,, , e ,.

.e ... .. .

n.

s .--...

. 4.y L r,, , ,

. . . . C a ra. .* *.v ,

h. ., ,a. . - ,". k.a.

,. x u.

. ..,... ., . r. .. .e ..ga . .. je. , c. . ,' ' x , 0c.O'.e.. a.**

( j) i re.4.

. .. .... . .r,.. . .. ,. . .

,w q

.,.5 x 1e-reu..., . .. ._ r . . ..,,-a.

. . C'..a..e-a. ,  ?. ,::, 5,,

  • a- *.c0

.v_o.... . . ,.4. , .e.. ,,, _ . / m. ., .w. ,. e v o-/.e.

,.4. ., e. ,,,,, a., e s *.e~

u_. 2 , :, -0.'.

..ps4-..e.. . e_.y.....

. .. . .,,,.. , r. m o.3

.e ,e . .:.._.,. ... . C o ,e . . ,.

s.1 a.. ..4 . ..

r. , .., - Car a,,4 .. 4 "ype Shell an' Tube
c. ..

.. m.., ..r. . e _ .a. , ' ." /k..

. 2.2 x '0* . .

Q

.,.a,.....n.e. . . .  :1,,.,*. , . , w /n *

.i . &2 v ,Q x i A/

v

e. , ,. . . , , , m. . ;e 3..... a. C'ca.e u , .

... . . . . . . . 'LL +~-

. '.c^9.

v.a.. 4 ,

.e..e,.., /m. .,b,. Ce /.c.e

.,_ s <. e-. v e, ,..,. , .,a- .O0

.. ... e .e

'esign Temperatu e. F 200 e c~,., ..+ 4. . - = ..a.., .,..; ..,,. . , w /.. ,

.. v. o._ :, x .-v y y.akeu; Ta.k s . ...y

... . c

-.,...._,r..

i.- .. c%,

.p..e .d - ... O . .. .. ee .., r.4

.e.e- 9. N^

'Asign Ter;erature, F 200 v.~.. e .,.4.a,. C.e. . .> .ya.... .eo C,.a. a m

/ h 5 I As 9-3 (A19i ),-3

. . - - - . . . . .. n__

i i

Table 9-2 (Contd)

~

4

)., Puri.ication Demineralizer ,

Quantity 3 l Type Mixed Bed, Borie Acid Saturated Cation: Anion Ratio 2:1 Material SS Resin Volume, ft 3 50 Flov, gp: 80 Vessel Design Pressure, psig 150 I

Vessel Design Te=perature, F 200 92 CFEMICAL ADDITION SYSTD4 9.2.1 DESIGN BASES 9.2.1.1 General System Punction A separate and complete chemical addition system is supplied for each nuclear 4

unit. Chemical addition operations are required to alter the concentration of varioue chemicals in the reactor coolant and auxiliary systems. The system shown on Figure 9-3 is designed.to add boric acid to the reactor coolant syste=

for reactivity control (see Table 3-5 and Figure 3-1), pctassium hydrcxide for pH control, and hydracine for oxygen control.

,(_

9 2.1.2 Boric Acid Mix Tank A single boric acid mix tank is provided as a source of concentrated boric acid solution. Heaters in the tank =aintain the temperature above that required to insure solubility of the boric acid. Transfer lines vill be electrically traced with dual heating circuits.

i 9 2.1 3 Boric Acid Addition Tank A single boric acid addition tank is provided fur ctorage of borie acid solution

, in sufficient quantity to acco=plish a cold shutdown.

j - 9 2.1.h Boric Acid Pumps j Two. boric acid pu=ps are provided to facilitate transfer of the concentrated i

boric acid solution from the boric acid addition tank to the borated water

} storage tank, the makeup tank, or the spent fuel storage pool. -The pu=ps are sized so that when bot' are operating, one complete charge of concentrated i

boric acid solution f.c= the boric acid addition tank may be irjected into the reactor coolant system in 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />.

9 2.1 5 Fotassium Hydroxide Mix Tank The tank volume contains a sufficient amount of EDH for addition to the reactor coolant syste= so that a concentraticn of 3-6 pp= can be maintained, e l,_

4 kW 9-9 {}()pa ),

u l

/7 o.2.o _evm. mC..1r.w-u - a m

. 1 n?w sm u ALUn. m.CL-

\s/ 1 9.2.2.1 Scheratic riagram and Syster rescription Figure 9-3 is a schematic diagram illustrating the features of the syster. The syste: (except boric acid pumps ) is operated fre local controls. Two boric acid pumps, connected in parallel, take sucticn frc the boric acid addition tank and discharge to either the s'r ent fuel storace tocl, n bcrated water storage tank, or upstream of the takeup tank. At the end cf core life, both boric acid pumps are required to raise the reactor coolant syster bcron concentration frc the minimum end-of-life concentration to the refueling concentration in ap eximately 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />. The boric acid mix tank has a mechanical mixing device an. a neating unit.

The pctassium hydrcxide equipment censists of a mix tank, a single positive dis-placement pump, and connecting piping. The pump discharges upstreat of the takeup tank.

A Mydracine dru: is connected to a positive displacement pump, which discharges to a line leading to the makeup tank. A nitrcgen blanket is used to displace the hydracine as it is recoved from the drum.

l 1

A nitregen supply manifold with controls and distribution lines is used to sur-I ply a gas blanket er a gas purge for the takeup tank, core flooding tanks, l hydracine drum and liquid radioactive vaste treatment tanks (if required).

/-~ Water qualities to be maintained are listed in Tables L-2 and , -c,. The perti-(T)_ nent parameters for each major ec ponent in the chemical addition syster are shown in Table 9-3 9 2.2.2 Performance Recuirements This syste permits chemical addition to ..e reactor coclant syster, the reac-tor auxiliary systers, an_ the radioactive vaste treatment system during ncr al operation and has no active energency function. During a loss-of-coolant acci-f.nt, this system is isolated at the reactor building boundary.

9.2.2 3 Mode of Operation During nortal operation, this syster delivers the following ~he:1cals:

a. Scric acid to the spent fuel storage poc1, the borated water stcrage tank, and the makeup tank.
b. ?ctassium hydroxide to the makeup tank,
c. Hydracine to the makeup tank.
d. Nitrogen as required fcr the core flooding tanks, raneup tank, hydra-eine drum, sad tanks and equipment in the radioactive vaste treatment syster.

g

? j

\

%,_, /

9-10 ' - -

  • i

\ 0. 2.2.h Reliability Considerations The system is not required to function during an emergency, nor is it required to take action to prevent an emergency condition. It is therefore designed to perfor= in accordance with standard practice of the chemical process industry with duplicate equipment.

92.25 Codes and Standards The equipment in this system vill be designed to applicable codes and standards tab'11ated in Section 9 92.2.6 System Isolation Isolation of this system from the reactor building is accomplished by signals from the Engineered Safeguards Actuation System as described in 5.15 and 7.1.

9 2.2.7 Leakage Considerations This syste: delivers additives to the spent fuel storage pool and the makeup, core flooding, and borated water storage tanks. Backflow from the tanks to the positive displacement pumps is prevented by check valves and normally closed shutoff valves between them.

9 2.2.8 operating Conditions

( ,

i The boric acid mix tank is to be =aintained at an average te=perature of 95 F to maintain a boric acid concentration of 7 percent.

Table 9-3 Chemical Addition System Ecuirnent Data (Quantities are for one nuclear unit.

Capacities are for single components. )

Tanks Boric Acid Mix Tank Quantity 1 Type 9 Vertical Cylindrical Volume, ft' 130 Design Pressure, psig Atmospheric Design Te=perature, F 200 Material ,

SS s s

\_-)

9-11 000 M .

L I

Table 9-3 (Contd)

Beric Acid Addition Tank ,

Quantity 1 Type e al Cylindrical Volume, ft 3 1,000 Design Pressure, psig Atmospheric Design Te=perature, F 200 Material SS F

Potassium Hydroxide Mix Tank Quantity 1 Type Vertical Cylindrical Volume, gal 50 Design Pressure, psig Atmospheric Design Temperature, F 150 Material SS t

Hydrazine Drums Qaantity 1 Type Std Comercial 55 gal Dru=s

( Pumps Beric Acid Pu=p i

Quantity _2 '

Type Diaphrag=, Variable Stroke Capacity, sp= 0 - 10 Head, psi 50 Design. Pressure, psig 100 Iesign Temperature, F 200 Material- SS Pctassium Hydroxide Pump Qaantity 1

- Type Diaphrag=, Variable Stroke Capacity, gph - 0.- 10 Head, psi 50 l_

i

- Design Pressure, psig 250

Design Temperature, F 200

) Faterial SS  !

8. ,

I

^

(

1 o.

.d copg '

9-12 i

rc er-wnem n s , -- rer,,,,,,--e-,.e,.-,,v,n.,-,,a-vne-ww.-.,.a,~,-~~~<e-ev.------..~-., me .~ --s. nee ~~~~+-.-----~~~~~ --~v--,---

I Table 9-3 (Contd)

Hydracine Pamp Quant.ty 1 Type Diaphragt, Variable Stroke Capaciuy, sph 0 - 10 Head, psi 50 resign Pressure, psig 100 Design Temperature, F 100 Matelial SS 9.3 rECAY EEAT RE40 VAL SYSTE4 931 DESIGN PASES 9 3 1.1 General Syste: Function The nor:al function of thi, system as shown by Figure 9 L is to remove reactor decay heat durire the latt 3r stages of cooldown and maintain reacter acclant ter-perature during refueling. The emergency functions of this syster are described in 6.1. A curve of decay heat generation versus ti=e after shutdevn is giver in Figure 9-5

.f. v 9 3 1.2 Decay deat Eemoval Pumps The decay heat removal pumps, durire shutdown, circulate the reactor coolatt

-frc: One reactor cutlet line th-cugh the decay heat coolers and return it t; the reactor injection no::les. The design flev is that required to cool the reactor coolant system. fro: 250 F to lho F in IL hours. (The stea: generators are used 4-ediately after shutdevn to reduce ',he reactor coolant syste frc operatire te=perature to 280 F in a 6-hour period. )

9313 Decay Heat Removal Coclers

.The decay heat removal coolers, during shutdown, remove the decay heat frc= the circulated reacter coolant. At 20 hours2.314815e-4 days <br />0.00556 hours <br />3.306878e-5 weeks <br />7.61e-6 months <br /> after shutdown of the reacter (lk hours after reachirg 280 F), two coolers and two pumps vill reduce the reactor coolant temperature to ILO F.

932 SYSTD4 LESCRIPTION AND EVALUATION 9 3 2.1 Schematie Diarra:

The decay heat removal system is shown schematically in Figure 9 L.

9 3 2.2 Performance Pequire=ents

-Tables 9-4 and 9-5 at the end of this subsection list system performance data and design data for individual componente.

9-l

000 s

f

, ,\

\

\' ,_/ /

O, . ,: . o . ,: .v.o- a. .r . C.- , .= . 4 . . .

e..-

m...-.. -  :-.. r e. .. . ..-. . , ~ - , . . .. . . r e r . .-.

.a. . .

.w,

. . . . -a - s ;- w...

. .< c-.,.4...

.,.4., . - . . .  ;.<.. .. ..e . < . ,.

.e...... - . . . -..

g,... . . .e v. .- o . ,. .a

.- ..a.

,, .w,....eo..-.

. . .. . .. -.-,c... . . .. e. ..-. . r . ., . .- ,. .-

.. .. 0; . .r . a.,. e-

-j w

. . . 3..

-*4~ <e 4.4 4e+p-...a "..o,*..

. .- ; ...- -...e r-. .4.,,.

.. .m.. -

r. .c.,.4....- .. c

. .-..w. . . . . . .,2..

...e,4..e ..a

-..- -- a i s ak

-.s ' e *.* - "-s-"

~.. *~"~ a. .- .- .. ' e . .e ' . * . ^ *** .a.a.**..^-

.. . . . . . - . v a. .= .= a. .' .

~, :. - - .,. e--e . - . - . , . ..-.,..

4e =.=-. - 4,,w

. g. ....

. . e,- .... .. -. .a.. .,

s.

.,a..,.,.a. e. ,- ..,-.;,.

.. . -. .. -... .e.,

. >. . , . ,,,-.4-,...

1 r . . -.. .. - . . a

, , . 4 ., 4 - c. a < c. .n,,,-

.w.

..- w

..ea*. ^^^. ..'.'-s* ' .e a-'..e^.

. u .c a '- . ' . . - '.."..--a..e-".-a.

r. c-J..,4p.

a...J.- . .e g p .. . <

a

-.. , . .* , . e.a. d . J. r c .

^

o..1.o.L . r. .e '. d.. a..k d. ' ' *. *: v^....e'.a..-=*'..~e rm

- . .> -, , ,. e a.,. ... ..

. -- . 4 .. . 4ec . . ..4 2..-. a . 4. ... w ...

.. r--e.e m.a

. ... ..-.e.

.o

a. . : . w . C,.

R a..e

-n g..a .C + c . a.-.. g h.e .

. . . .w, e ,1-. ,a 4.,.. .-. .w4.e .e, , .- . g .. . - . a.,,. . s. . . a g.e.e- 4-- a

.- g..,4..,v.

r ,. - m. . ag .e a.a-- .e .- --.a-

. , . . a e.

.,w,,,2..

.- -....- 4.a . .een. .. 4 . c. . e..e a e .o;-

w c. ...-.o,--

. . . .~

c . ....

, ,r . w~.,.>..

. .e . - , 4 . ew. ,. e . .

2 re.. .

-.- .- . ... .c,..<

.a.a ,e.e--.a -, e -

....> e a.s. m. =_ 1a,, -. ..e.,

.. . b ,. .-

.. .r 2.r, v s..e u.

a..:.c.4. . .e,:.. . e . e _. 1 e - , -.o . 4.v..

...,. a.. ..--4, c..n.. .. .. c.e,. .e.ye.. + e 4 .e n.---

.,a +- a .-a. a *. +.-." C".*. l e *. ' d. .r.a. .. *.k. . a. .e"^---

-~s ..4c... .. . e4a. a..4 *. o .k. . a. . a. a...* .- va. .c .e a '.s ., *.*.a. . .".".e-".=.e^e

. . . e'd. e. C. **.e e"..+.'-.

. . ... .c.-a

'd.

) .w, .. ..e ... .4.-. 4 .e ...w .~ -ws.. .w.,e .- . ~,.e,.3. ,e . a e-... ..o,ye.e 4

('- j . . . . . . . . . ..,.e- .. . . . . .e e .4..e.e, . .a. . - . - . .

.w. a4.3.w...

..e. e .e4ae . +.w.. -- . w->e. . ,. ... .-.-+ ,,..y. e.....- - = * *

  • s a*.e va'.ve a.a.'- +".a^ . ** e ^. P. ". $- '.v a. .e 4..

. e. n. 4 e e . nll a

.. c + w. . . e. .e .. . a ,.y,. .e a .-a. .~ .-_a '.' v., ^ ' .a .s a. d- ". k. . a. u- a. va. .- .* b.. a. .-a.n^*..-

... 4..e ' . . .

.d.' *. d - . > a. a '.* a. ..*. ^# n .' s c ^..' a. ^. ^. '. a..*. a .^. ^. d d a .. *. .a.

. . . . . ..-..e . . .~ T .. * ...

. .. . *** va -.' ". a.

+ y.

,"r* **

a<.e>..,.,

4 r

e. e .4 5,. -

. . .ce.,. . , - .

v. .w

...e .e.ye_e. . - ... . .u..,. e.n- 4 ... e.ae . .s ...,<

, e,a w . . . -.w e , . .-e..~ ..w,

..... .a. a ...

- 4. a. , .+ .

p

, . . :.. . o . , Las y ,- . ,

- ~. .e-

. - ..e4 an e 4 . .e

. , . < . - . a. ... a * + c .-o^ *re. a +.. .4 . . a ' '. a.a"4- a-- . e^ '. + k.. . a. d.a.a- a v. . a. =. +. .e m_^. va ' syc.e 4e ' A .' s. ,

-e..-e,,.

o.a ... o.. . .

- 4 .e c., o +. 4 - e. ..s

.. .-.. . - . , , e e c, .,1-.e a

. . e. e - . T. ,

... 4 -s- .... > e n. - a. .t ae.. ...a.4..v.4-., #. 3. e .c 4. . .

e a-- . ...e. . .. . c. , w e . ... 4 . . .,. , . ... a. .....as w . ~ ,

.r. ... ..~ ..x.. . . . . r 4 .

.e).e

.4 - 4 . -r . . .s .. . e - . e. -w.,4. . . . - . .

.>e

... . .-- -- -...-a.4m.4-.

.r..., --.. aee, +... .w,

.a. e-- ,w1<.. a-, w. . . e- a --s ,.

.. ve- e. r - . 5. . .4 .g .e .e , . ..

c5Ie ..

- --"--4=,- -. pe - S c"- y,- v,e -- -- -- --

, 21 c.pa- m4 -"- a4e-

-- --- ee 2- -" 4 ,L

- - --o o L 2-

.a . : ..o..: = .- , < . , .. .. ... . c-..<.=, e.....e

. . . a.

x

...e.a,.,.2.....e

. -. ... . u. . s. ,,,sa,.

. - . . . - . . . .,.e,.. - . .

..-- -. e.e. -

...c . ,. . = - +,v . - . -, ...-.. . . . <

tp i i f

\ w_- /

9 Eb .-J

. Amendment No. 25 2/74

Table 9-L Eecay lieat Re: Oval Syste. Perfor ance Eeta 4

(

Reactor Coolant Temperature at Startup l l cf Lecay Heat Re:cval, F 280 i f

Time to Cool Reactor Coolant Syste l Fro: 260 F to lho F, h la Refueling Temperature, F ILO I

recay Heat Generation Figure 9-5 l i

Beron Concentraticn in the Scrated Wate- '

Storage Tank, pp: Scron 2,270 l

1 1

i l

I l

i i

{

l s

I s-.

,9, t/ (mf'.r i, -

9-15 i

l l

l

. . . . - . . . . - - . . . . - . - . . - - . - - - - - ~ - . . - - - - . . - - - - . . - - . - . . , - . , - . - - - - - - - - - - - - - - ~ - - - ~ ~ - - - , - - -

i

'/ Table 9-5 '

l Decay Heat Re=cval System Ecuinnent Ihta (Capacities Are Given for Single Co=ponents)

Pu=ps

Nu=ber 2 per Unit Type Single Stage, Centrifugal j Capacity, gp= 3,000 Head at Rated Capacity, ft 350 3 Motor Horsepower, hp h00 Material SS (Wetted Parts)

Design Pressure, psig 450 4.

Design Temperature, F 300 Coolers Number 2 per Unit Type Shell ard Tube Heat Transferred, Btu /h 30 x 10 6

l. Reactor Coolant Flow, sp= 3,000 Cooling Water Flov, gp: 3,000 4

Reactor Water Inlet Te=perature, F 1ho Material,Shell/ Tube f

CS/SS DesignPressure,Shell/ Tube,psig 100/h50 Design Temperature, F 300 t Borated Water Storage Tank Number 1 i Capacity, gal 650,000 Material Al Design Pressure Hydrostatic Head Design Te=perature, F 125 4

t J

M 000E8 9-16 Amendment No. 2 s/28/69

. _ . . .- . . . - . _ . . ~ . - - . , . - . . . . . . . . - . - . - . . - - . - . - _ - - . - - . - . - . , . . - . - . -

9.h FUEL POOL COOLING SYSTE4 9.h.1 DESIGN BASES The fuel pool cooling system shown on Figure 9-6 serves both units. It is designed to maintain the fuel pool at 125 F with a heat load based on re-moving the decay heat generation from 1/3 core from each unit, after beira infinitely irradiated, one of which has been cooled for 96 '.ours, and one which has been cooled for six months. In addition, the system supplemented by the decay heat removal syste= (through te=porary cennections), has the additional capability to maintain the fuel pool at 125 F while removing the decay heat from 1-2/3 cores.

The heat load on the cooling system from 2/3 core, under the above conditions, is a maximum of 17 0 x 10D Btu /h.

9.L.2 DESCRIPTION AND OPERATION The schematic diagram for the fuel pool c;oling system is shown in Figure 9-6.

Fuel pool cooling is accomplished by pumping water through the heat exchangers and back-to the fuel pool. In addition to this primary function, the system also provides for purification of 'he fuel pool water.

The first design basis of the system is for an operating schedule in which each unit is on an equilibrium refueling period (approxicately 310 full power days 7- p per cycle) with 1/3 of a core being recoved from each unit at the end of each period.

( .V The second design basis for the system considers that it is possible that it will be necessary to totally unload one reactor vessel for maintenance or in-spection' at the time that 2/3 core is alreat, stored in the fuel pool.

The fuel pool cooling system is a cloced loop system consisting of two half capacity pumps, two half capacity heat exchangers, a bypass filter, a bypass demineralicer, a booster pump, piping, valves, and instrumentation.

The clarity and purity of the water in the fuel pool is maintained by passing a portion of the cooling flow through the bypass filter and/or demineralizer.

This purification loop is also designed for removing fission products and other contaminates which may be introduced if a leaking fuel assembly is transferred to the fuel pool. Skic: ers are provided in the fuel pool and refueling canal to prevent dust fro accurulating on the surface of the pool.

Durire normal operation either 1/3 or 2/3 of a core will be stored in the pool and initially.both pumps will be operated to maintain the 125 F temperature.

As the decay heat emitted by the spent fuel decreases, one pump is stopped and the re=aining pump carries the load. Boric acid concentration in the fuel-pool fluid is maintained at 12,000 to 13,000 ppm (2,090 to 2,270 ppm boron).

For the case where 1-2/3 cores are stored (due to complete unloading of one reactor vessel), the decay heat removal system of the unit from which the full

\

core is removed, is used to supplement the fuel pool cooling pumps and heat exchanger to maintain the fuel pool at 125 F. Blanked-off connections are provided for temporary tie-in to the decay heat removal systems for this case.

9-1T 00928

4 i During cold shutdown and refueling conditions, the reactor refueling cavity is filled with water fro = the borated water storage tank. The reactor re- i fueling cavity water can be cooled by the f uel pool heat exchanger and i purified as needed by the filter and/or the decineralizer. The fuel pool i cooling pumps empty the refueling cavity water into the borated water storage

, tank after refueling is completed. The fuel tilting mechanism pits can be i filled and e=ptied through the fuel pool cooling system piping interconnections

[ and fuel pool cooling pumps.

The most serious failure of this system would be complete loss of water in the j fuel pool. To protect against this possibility, the fuel pool cooling connections

enter near or above the water level so that the pool cannot be gravity-drained.

'A backup supply of fresh water is available from the service water system 25 which would be utilized in the unlikely. event of a considerable loss of water

{ from the pool.

i With the exception of piping connections in the reactor building, all piping, valves, pumps and the heat exchangers are located in the auxiliary building

and are readily available for inspection during operation, i

i i

( (~

e i

i 1

i 4

1 i

00030 9-18 Amendment No. 25 2/74

.m N

)

(-. / 05 SHIELD CC'_: LING SYSTEM 951 EEST.iN BASES The reacter shield coolire system is designed to remove nuclear and sensible heat free the concrete primary radiation shield surrcunding the reactor vessel thereby limiting the thermal stresses in the concrete. A closed circulatirg water system transfers heat to the component cooling water system. The system is designed to maintain ecncrete temperatures below 150 F. The shield ec lirg water heat exchancer is designed te furnish cooling water to the shield with cc=ponent cooling water on the shell side Of the heat exchanger.

9 5.2 EESCRIPTION AND OPE".ATION A schematic diagra cf the shield cooling system is shown on Figure 9-7 The shield coolirs system is a closed inhibited loop system consistire of two full capacity sets of cooling coils imbedded in the concrete. F,ach set of ecils consists of three riser sections, each section covering a 120 degree are ci the chield.

Besides the coils, the system consists of two full capacity pumps, one full ca-pacity heat exchanger, a surge tank, and associated piping, valves, instrumenta-tien and centrols. All ce=ponents of the systen are located within the reactor building.

s

\

gj Durirg normal Operation, one shield cooling pump and one cet of coils are in centinuous service. Both pumps can be started and stopped frc= the control roc =, with automatic startirs of the standby pump provided in the event of low discharge header pressure.

Either set of coolire coils cay be placed in service by re=cte manual valving frem the control reon.

The shield ecclire surge tank is provide:d with automatic makeup frc the com-ponent c00 ling system. The surge tank vents to the waste disposal vent header.

High and low surge tank level as well as high temperature in the shield cooling coil discharge header are annu a iatea in the control rec =.

s V

000'11 o-lo,

,- -- - , , y - y ,-n - - - , , n v - - - , , - --> --~ - w

1 y 96 COMPONENT COOLING SYSTEM 9.6.1 RESIGN PASES The ec=ponent cooling water systet is designed to remove heat from the various reactor auxiliary systets which are carrying radioactive fluids. It provides an intermediate barrier between these fluids and the service water system, which transfers the heat to the cooling towers. The system has sufficient redundancy to insure continued heat removal from engineered safeguards co=po-nents in the event of a single failure. It is siced for terminal shutdown cooling conditions and has adequate capacity for normal and ? ergency condi-tions. The syste= is continuously monitored to detect radioactive fluids which may have leaked into the system. All ec=ponents of the two critical 4

loops are tornado protected and designed to Class I Seis=ic Standards.

1

9.

6.2 DESCRIPTION

AND OPEPATION A schematic description of the component cooling system is shown on Figure 9-8 for Unit 1, which is identical in equipment and arracgement to Unit 2, with the fuel pool heat exchanger cooling load being shared between the two units.

The system for each unit consists of two identical critical and one co==cn noneritical closed loops, two motor-driven pumps, two heat exchangers, two surge tanks, associated valves, piping, instrumentation, and controls, and provisions for introducing corrosion inhibitor. ,

During nor=al syste= operation one pu=p and one heat exchanger will be in l _

) operation serving their associated critical cooling loop and the co==on non-2 l critical loop. Folloving a unit shutdown the second pump and heat exchanger are placed in operation to facilitate the cooldown of the primary coolant

from 280 F to 140 F. This operatica requires approximately 14 hours1.62037e-4 days <br />0.00389 hours <br />2.314815e-5 weeks <br />5.327e-6 months <br />. One j purp and one heat exchanger are adequate for cooldown at a reduced rate.

i In the event of a loss-of-coolant accident, the noncritical loop is automatic-ally valved out and the second pump, heat exchanger and critical loop placed in operation. As each loop is self contained and supplies adequate cooling i

for identical ec=ponents which are the=selves capable of 100 percent e=ergency safeguard service, any single failure in one loop vill not reduce emergency cooling below the minima = required.

p The three major components, (co=ponent cooling water pump, heat exchanger, and surge tank) for each critical loop are located in separate rooms of the aux-l iliary building to insure full safeguards cooling capability.

Cross connections between Units 1 and 2 are provided to allow for full capacity back-up capability fer a LOCA should the need arise to re=ove a compenent cooling water pump. and heat exchanger from service for maintenance.

The syste= normally vents to the at=osphere inside the auxiliary building, however upon incidence of a high radiation alar = from the radiation detector i installed,.the surge tank is automatically vented to the radioactive vaste disposal syste=.

< c i

i -

o-20

' v> Amendment No. 3

(}(D+J " 4 11/ 3/69 4

w --m -sv. - q w--*--e& w re-r ewe-n.----e--- ~ . .c--- y e ur --~ ww--+- P --e*= wm" am*-"---*t-te 'tw- *-*"4e-"--~'" -----"~"^'"'"*"~"*-'w-* -*"T

i Water level in the surge tank is continuously monitored in the control room and makeup is automatically introduced from the Reactor Plant Makeup Water

! System.

Power for the component coolirs water pumps is provided from normal and stand-by sources with backup from the emergency diesel generators.

Both pumps and all remetely operated valves are operable from the main control i

room.

9.6.3 TESTS AND INSFECTIONS All system components will be hydrostatically tested prior to plant startup and will be accessible for periodic inspection durira operation. All electrical compcnents, switchgear, startire controls, and valvirg sequences will be tested periodically. Alternate operation of the pumps and heat exchargers durirs normal cperation will provide assurance of operability of the equipment.

3 t

i 1

i 1

@ l 999y 7 l 9-21 e - . ,-c- ,,. , - ,--, ---- -ee --n , ,- - . ,m, ., - ~ - - - - - - -,e g--.. ~ ,, , ,-, - ,a, ,

  • s

\

g 9.7 SEEVICE *a'ATEE SYSTEM 0.7.1 EESIGN BASES The service water systen supplies cooling water fcr renoval of vaste heat frc:

bcth nuclear and turbine plant auxiliary systers Of the tvc units during ncr-tal, shutdown or energency conditions and is designed to furnish the minimum post-accident cooling requirements after a single failure in the Clacs I per-tiens of the service water system. The service water intake structure and piping rerving the critical nuclear plant auxiliary systems are designed to seismic Class I standards and are ternado protected. The service water piping serving the air cooling units within the reacter building is missile protected.

9 7.2 EESCRIPTION AND GPERATION A schematic diagra of the service water system is shown en Figure 9-9 The service water system is comprised cf essentially two independent closed loops each serving ene-half the compenents of bcth units' nuclear plant auxiliary systems and all of the components of one turbine plant. Each loop also prc-vides cooling for these essential ec penents such as the diesel generators and air ec pressors which are shared between the two units.

Each loop consists of two service water pumps, one two-cell mechanical draft cooling tower, plus the necessary piping, instrumentation, valving and centrols.

One con =0n spare service water pump is provided as a back-up for the two loops.

During nor=al and plant shutdown operations, both locps are in operatict with (s

two service water pumps in each 10cp operating. During normal sunser opera-tion, the cooling tevers are in operation serving as the heat sink, while during the vinter conths, the cooling pend fulfills this requirement.

F0110ving a loss-of-coclant accident in one unit, the turbine plant service water supply to both units is automatichily valved out, with all of the f1:v then being routed to a 1 nuclear plant engineered safeguards cuxiliaries oc each loop. Return flov is routed to the service water pend, assuming ncn-availability of the service water cooling towers, which are not of Class !

design.

The service water pump capacity is such that cne pump provides the minimum cooling requirements for one unit folleving an LOCA in that unit.

Makeup water for the cooling towers during normal operation is prcvided by cne full capacity makeup pump which takes sucticn frc the cooling pend and dis-charges to the service water intake structure. Chemical additier as necessary minimices fouling and maintains the chemistry Of the water cc patible with the systen esterials.

All pu=ps, fans, and all re ctely operated valves can be Operated from the control room. Pump =ctor and cooling tower fan ector power supply is pre-vided frc: the ncr al and standby sources with backup for the pump : tors supplied frc: the emergency diesel generators.

A k

^

v-22 eg g

The system is so designed that each loop services two one-quarter capacity reactor building air recirculation and cooling units in each reacter building, one component cooling water heat exchanger in each unit, plus the emergency diesel generator units and the instrument and service air compressors. The 25 system also provides the backup water supply for the auxiliary feedwater system and the fuel pool cooling system. A failure in either loop does not affect the i other; thus, each loop provides the required engineered safeguards requirements.

The stored quantity of water available in the emergency service water pond (a depressed area in the cooling pond which will provide 120 acre-feet of storage capacity in the event of a dike failure) is sufficient without makeup for operation in excess of one month.

9.7.3 TESTS AND INSPECTIONS l

, All system components are hydrostatically tested prior to plant startup and 1 with the exception of underground piping are accessible for periodic inspection.

All equip =ent, flow paths, and controls not normally in operation are tested on a periodic basis.

9.8 AUXILIARY FEEDWATER 9 BTEM 9.8.1 DESIGN BASES The axuiliary feedwater syste= is designed to provide feedwater to the steam g* generators when the turbine driven main feedwater pumps are not available or following a loss of normal, standby, and emergency electric power. All com-ponents and piping in the system are designed to seismic Class I requirements, and are tornado protected.

9.

8.2 DESCRIPTION

AND OPERATION The schematic diagram for the auxiliary feedwater system is shown in Figure 10-2 25 for Unit 2, which is identical in equipment and arrangement to Unit 1. The aux-111ary feedwater system is utilized during normal unit startup and shutdown.

On startup, the auxiliary feedwater pumps are used to fill and maintain level in the steam generators until the main feedwater pumps are capable of supplying this load. On plant shutdown when main steam pressures are too low to permit operation of the main feedwater pumps, the auxiliary feedwater pumps are used to remove the decay heat until the decay heat removal system can be placed in service.

Following a complete loss of all plant power, or following a postulated steam line break, the auxiliary feedwat er system supplies water direct to the steam generators through the auxiliary feedwater ring header to remove reactor decay heat. Reactor decay heat removal after coastdown of the reactor coolant pumps is provided by the natural circulation characteristics of the reactor coolant i

syste=, Use of the auxiliary feedwater system for cooldown is discontinued when the reactor coolant system temperature decreases to 280 F; further cool-down is accomplished by the decay heat removal system.

, - The auxiliary feedwater system for each unit consists of one steam turbine-3 driven and one electric motor-driven feedwater pump, suction and discharge

' - s/25 piping, valves and associated instrumentation and controls. The pumps take suction from the condensate storage tank or from the condensate feed train

OOFG Amendment No. 25 9-23 2/x

25l during startup. A back-up is also provided from the service water system.

The turbine driver receives steam frem the steam generators and exhausts to the atmosphere; power for the electric-driven pump is taken from the engineered safeguards bus. The condensate storage tank will be sized such that a total condensate inventory is available to the pumps sufficient to remove decay

%at for approximately eight hours plus a subsequent cooldown to 280 F. Low tank level is annunciated in the control room. Ratings and construction of components are shown in Table 9-6.

The capacity of the pumps is determined by the decay heat removal requirements 40 seconds af ter reactor trip at full power (assuming infinite irradiation at 2,552 Wt).

System reliability is achieved by the following features:

1. One motor-driven and one turbine-driven pump are provided.
2. Pump motor power is supplied from normal and standby sources with back-up supplied from the emergency diesel generators.
3. In the event of loss of water supply from the condensate 25 storage tank, a manual back-up is provided from the service water system.
4. Feed to the steam generators is supplied through lines separate from the main feedwater lines and through separate

( steam generator nozzles.

All components of the system are accessible for inspection during plant opera-tion. The auxiliary feedwater pumps will be tested periodically during plant operation discharging via the recirculation piping back to the condensate storage tank or to the cooling pond depending on suction source. Additionally, the motor-driven pumps will be operated during nor=al plant start-up and shutdown.

9.8.3 AUTOMATIC CONTROL FEATURES 25 The automatic control features of the auxiliary feedwater system are describcd in section 7.1.2.2.4.

(

00936 9-24 Amendment No. 25 2/74

<((")

\s_) Table 9-6 Auxiliary Feedwater System Equirrent Data Performance Data Comnonent (Each Unit)

Auxiliary Feedwater Pump Quan+ity 2 Type Centrifugsl Capacity, gp 790 Motor, hp 700 Condensate Storage Tank Quantity 1

Material Carbon Steel Lined 99 FUEL HANDLING SYSTEM s

Q 991 DESIGN BASES The fuel handlins; syste= is designed to provide a safe, effective means of transporting and handling fuel from the time it reaches the plant in an un-irradiated condition until it leaves the plant after post-irradiation cooling.

The system is designed and constructed to minimize the possibility of mi:-

handling or maloperatiens that could cause fuel assembly damage and/or potential fission product release through the use of interlocks, travel and load limiting devices and other protective measu~es.

The reactors are refueled with equipment designed to handle the spent fuel asse=blies under water from the time they leave the reactor vessels until they are placed in a cask for shipment from the site. Underwater transfer of spent fuel assemblies provides an effective, transparent radiation shield, as well as a reliable cooling medium for removal of decay heat. Sarated water insures sub-critical conditions during refueling.

9 9.2 SYSTE4 EESCRIPTION A';D OFEEATION 9 9.2.1 Receiving and Storing imel New fuel assemblies are received in shipping containers and stored in the new fuel storage area. The new fuel storage area is a separate area for the dry storage of new fuel assemblies in the fuel storage and handling area of the aaxiliary building. The new fuel storage area is sized to acco==odate the 7s' maxi =u number of new fuel assemblies required for refueling of the reactors (v; as dictated by the fuel management program. The new fuel assemblies are stored 9-25 OUR

,r

[

d .e. .g . '.s..e s. . g.. 4. . .

.eye g.n .e - .s,. -.. A. m. ~.4en,.. . .- ,g .d + g .4 .,.. ,. y. e.. r -. o. .c .e

. .e, . y .. en

. . c.r e . d.n.eu. ~ ..

+...w S,.. v a.o,n e..e 2 4 . w w S. . a. . .. . . ,. --.

. . . 4.r . r7..eO 4. +w . . . . . . . . ... . ....

O. 3.c.2 6 w

. 44.- e4 :e

. . . + .. . . . . .4..- . . .. m. . . s.

v..

4.a . c. .w.. . 3 g e .e . . k.3 4. .. .e g.. .. ...-,..A

. ,. 4

.k...

. . . . g e.... . . . b. 4

. 7 4. 4 .g- 4 ..

r.. . . . .r +..v.. . r........

.e

4. + ..... g, . 5 .

n.r....

a w

g. +b..

.. . . g...s..... 4 .e .e.. .Ar..,

. .. . . , . e... ,j r....'

.. . . . n. e e ..k. 7. 4 ... e .e,

~ . . s.. s.m..e.

c...e.

4 e.~. +. %. . . . ...g .r,3 7 .e... + - .gg. . . e...g

... . . . .4... +k... . . . . g .. .. .. . w. 4 -. ..a4...g ,

..v... .. . e.k. ...v.. . -p . .4. e. .. +. .

T.E.. .w . . .

C. n' .r+ . .. . + .v. . ,. .. ..E.... . . .S .ew. 1, +.

4

. .d.... , . .. .. . .. r,d . .. . 7 E.e.ee .. w14e,

. . . . . ... . ..s. .. *.%e.

r.. . ... a. .r .-

. *w

. .. a. ~" e'=' #. U a. 7 .c. + *. . g. g . g .o.. d.. e.+. +. +. k..e 4.. g a. +. .

. K. .4 ..' A .4 . s~

%,,g . ..s,.

=.g O.e +k... . . e... , e.7 *"3.e.e .. .. . s . n.o...e .....n g... ..o4 . v.. .. . r. , . 'L .. .. + "1~ e ..c .e *..%..

a n v. . . .q . r. . + . ., 7 + ,,v. e 4. 5 "r

. .. .^

. . '.. ' e ' *

  • M. . ". *Q* #'w' * '. b..*.*+**.*.*.. *k..e'"*~..**.*."..'"'Jw'"d*~ 4 ***

...s...

+w.

. . . . r, .. . g ;. .e+... .g,. g. y. 1. . , ....4 ..e . +,,s.. g . .,.+. 4+. ~e. . +. ,.. p..e, .

pn

.. +w.

. . . . .er o. .i +..,.g...e .r...

.a g ,. 4. .g g , g 6 g+. g y,1.7- r... +k.e

. .. e w.. e . .. . .

+

r.'e'. .**w* . " g'*. vy. ' . .e .# .# . . a..'

  1. . a .#'. .' *. ".e". #.

o7... e,. e o.. ..

v.... . . . ... . . . %,l.4944.- . ..e .e 4 4.

.. . .  %.... . . .c, . e .1 + ...e

,. . e . e . .+ . , .  %. . -

e,..e.m .. .. ,.e 4 .. .~

...v.. . .c. . , el .... a ..e.r . e ,.. n.a . ..a- n , 4.e.n e ..Ae ..v... .

w

.a3.n+-. . .. w...+.4 m a .4 e. -

  • 6 v* . -.y -- 0 , e r rkn.

o . .- 4e -..v42.a.

t--*..-

.r.e ...v.. . .w. g +. 4 ... m e... e .. r. + ..v.. r, , g .' ...g e..r . g ,. . n. .a ... .4 , e~ . %. g e ' ..+.f.. n. .e .e. ~a d ..e.4.. e~ g r. ... . 3 .a .e ..g .. .%.. ' g. .

4".a**S **

6.... r +. v...

pn

.. . g... .4. +. . . . . . .

pp

  • . b.. e S *p * .*.*. .#". e .' ... .e*^**e*e 90 a.' . . , V.e*ek . **cE*e 'S . * * * .

r..

.. 4 5.e a. ..

e

.m. o..n.+.. 4 e. wv.er +%... . . ..1 .. . e. .S.e. c,, .t , .

no.4 ....Ega  %. .o. .e K.' . + .

r- ".*.~.g .en.. . } *.. m ... e .. .r.

- . o ~ .*.a 1 .4g g .g r g .e gp.'g g. de * %.. .

.- . .,ne..

. 'gn.4 R.

. . . A 4 ag~ gy ..~.*A.4w~ . . .s P..

... +..v.e .e. a n .. + m. .(e c.m. e1 .. +. v.. .* r, ... 7 +*aeSr

.... o . . .

ke.

w  %.. p . .e ... S e. .e n..,.e .4 e e. .. 4.

  1. r.ae.4

.... a m. e .e a n.e . +. e S +. .,. . ., n . . . .. .. .7 .av.~. A. y 4..+ b.. .e. . a4 ..emeSe *

. S + e.1,... ..

4*

  1. ..a e & C n... e.s.'. E.e.V. k

.w.

. . . . . g g... . y. ..e .e g,. y .w.4..v. . 443. #477.4 .... v4+w ..6 w . ...+.4 Va*.e." .#C ." .*e .#" *. '. #. *.g~ . .

]... A . n.9

.u e e .#o.. ..-~.a s . e .9 .a g., - .a .1 .= m. k m. t emA.

. .e... ,

c.s . -r + b a. o n. ea

.. .- . .... ... .. . a. e a a. 7 y .9 .... g4 ~~ .

=.*...a.

yg . ..

e

. k..e.. . 9.9 g .e 3..M. . 4 o. .e . .

p9 7.. . 4 e- * .. k a. g b. 4 .* J.4

a. .n a.... . . . .e b +. A.e .a- A. . n. .e ..

.  % .+ . . . .-g- - s ~e..g, + , g ~e 4 -.d e ed

.. .' a. gh ~ .d a..* A.

, ~6 .1 p . +.h.-a . #. . 1 4

..... .g y.

r..

4,.

e .4S %. . e ,, kj, . ..4,

. . . .e,

...v .. . . a.c.

.7+e

, .. %.... w .h

,A 3o4 .g .e. . .. M. . .-en.4 g 4... .. g g g

~ . k.1 y . h. ..s 4 .v. . .~ o 9 ga

. 1 e a n. e.+. +.4 a. .4 .e

..f--.. -..4 4

_. 4.,a.4 k,.

) ...v.o. .' .. e. n. C.

  1. .... 4. . c . , A. *.a.. c. .ed.. . = c. a. .e . 4

. .= .

n .b.,

g.A e ' .d a ..e. . * .* g -y . o. .

. . . '.'*.k.a. .e .. * . .. A

  • a. .c. .e .d . .e.a. v
a. + m 4 A..y4 i . . =.o.
  • k .e +. po. -... 4
  • e ep.,.ai..r g 4A e.g- g.. A. -. .e .r
  • k a. g.e .a
  • a. .* m .e, . - .a

..e 7 -n A..d e e .~ .. ~~ .e ...

. . 4 .e g +. a. .. 7A .e.w . 4 .~ , . c.4 4 + 4 . .s e .

.. ... ... . r.% .. .e..,4.., .. g. . *g ..e.4r .A

. . . . .~ . .n + v.a. 4 .ay,r . . g . 4..4.., .1 * .c.- a 4e *.gs

. m .e.y. + n. . e 4 v. g . r. . . A. a.. *.. . . e n. .A g o. go m. m. .. e m e. . .h~g...

, . 4 ,. o. A. S+. ..A. a.1 .o3... . -e , 4 g

..P... ._r.

. ... se_

, , k,.

.e .4.. e n d .c.g. 4 .e . o. 4 #.4 ... 4

.. g 4

. n. .,. %. a...... .- .. o.o . . . .e o. . + .e .

a e

.m 7 O..4 .~ e.a wee.s . ,

-.'eb. w .r. .h a.

.M .e .. ... A..e

. e .f ~

i

.w. e. .e

.g n...

. . a. .c .e . -.. ...pe p .m. m, .a w .

  • a e,p Mywg g

.Au

..e e...A

. y e.e. 4 .e.. . + e.e g .,.. .;..

i

.e . . .pg .. 3 A. 4.e.e *v.

..e a ,

.1..c....a... . .v m. 4 v. C.. .b.. .9 a .:. .+4e +e. v.

4 . w . .p a, .4 .'e 7 .* .. 4 2 .-. 4.g a.4

.4

.e. 4.. . .h ,. - . .n 3 ,.,#

tmJ. . .. +.ek. o. e+s

h. 8 4 .e.# .E4 +. .a. + .k. a.

. =..e....

e ..'..e.. .. .k.c. ,2 A l  :.** .n. 4e-.. .4 ..

e .k.'e .4

.h.e.

4 -

..X, - e r. . .+ . ...; m ., a. .e +..k.e

. .a.b.e . .w.

. .a. . .a ,r + u... k. n .4

.c A.h e.g.e

,a

\

n OkI,'  %

- 3

.*-c 0

~ _ __ , .._ _

s The reactor closure head assembly is handled by a lifting fixture supported frc the reactor buildire crane. It is lifted cut of the canal onto a hea; storage stand located on the crerating flecr. The stand is designed to pro-tect the gasket surface of the closure head. Tne lift is gulict by two closure head alignment pins installed in two of the stud holes. These pins also pre-vide proper alignment of the reacter closure head with the reactor vessel an' internals when the closure head is replaced after re ueling. The studs and nuts can be rencved frc: the reactor closure head at the storage 10 ation fcr inspection and cleaning using special stud and nut handling fixtures. A stud and align =ent pin stcrage rack is provided.

. Tne annular space between the reacter vessel flange and the botto cf the fuel i,

transfer canal is sealed off, befere the canal is fillei by a seal clamped to the canal shield plate flange and the reacter vessel flange. Tne fuel transfer canal is then filled with berated water.

The upper plenue asse bly is re=0ved from the reactor by tne reacte - building crane and stored under water on a stana on the fuel transfer canal rloor using l .

a liftire device witn special adapters.

Refuelire Operations are carried cut from tv0 fuel handling bridges which span the fuel transfer canal. The main bridge is used to shuttle spent fuel assentlies from the core to the transfer station and new fuel assemblies free the transfer station to the core. Darir6 this cperation, the auxiliary bridge is occupied with relocating partially spent fuel assemblies in the core as specified by the fuel management program.

Fuel assemblies are handled by a pneumatically operated fuel grapple attached to a telescopirg and rotatirg mast which moves laterally on each bridge. Con-trol rod assemblies are handled by a control red grapple attached to a second tast 1ccated on the rain tridge in the reacter building.

Tne main (tve-rast) bridge coves a spent fuel asse bly frem the core under water to the transfer staticn where the fuel assembly is levered into the fuel trans-fer carriage fuel basket. The control rod grapple attached to the second tast is used to transfer a control rod assembly to a new fuel assembly. This new fuel assembly with centrol rod assembly is carried to the reactor by the fuel grapple and located in the core while the spent fuel assembly is being trans-ferred to the spent fuel storage pool.

Spent fuel assemblies removed frc the reactor are transported te the spent fuel stcrage pool frc the reactor buildire via a fuel transfer tube tv teans Of a ,

fuel transfer carriage. The spent fuel assentlies are rencved frc the fuel transfer carriage basket using a pneumatically Operated iuel gra;;1e attached to a 10vatie cart located on the fuel storage handling bridge. This 10tcr-driver tridge spans the spent fuel stcrage pool and per~its the refueling crew tc ricre fuel assemblies in any one of the many vertical storage rack positicns.

The fuel transfer rechanis: is an unde: eater carriage that runs en tracks ex-tendire frc the spent fuel storage poci through the transfer tube and into the reactor building. A rotating fuel basket is mounted en ene end of the g fuel transfer carriage to receive fuel assemblies in a vertical position. Tne hydraulically operated fuel basket on the e..d of the carriage is rotated to a e n.

Q-2"t

,~

/ \

'( _, / horicontal position for passage through the transfer tube, and then rotated back te a artical position in the spent fuel storage pool for vertical re-moval of the fuel assembly.

During operation of the reacter, the carriage is stored in the spent fuel storage pool, thus permitting the gate valve on the spent fuel storage pool side of the transfer tube to be closed and a blind flange to be installed on the reactor building side of the tube.

Once refueling is completed, the fuel transfer canal water is drained and pumped to the borated water storage tank as described in 9.k.

9.O.2 3 Storage of Spent Puel After removal from the reactors and transfer to the auxiliary building, spent fuel is stored in the spent fuel storage pool.

The spent fuel storage pool is a reinforced concrete pool lined with stainless steel; it is located in the fuel storage and handling area of the auxiliary building. The pool is sized to acco codate 300 spent fuel asse=blies which allows for a full core of irradiated fuel assemblies in addition to the con-current storage of the largest quantity of spent fuel asseiblies from the reactors as established by the fuel canagement program. The spent fuel asseiblies are stored in racks having spacing and/or poison sufficient to maintain a keff of less than 0 90 if i==ersed in fresh (unborated) water.

, 7 s, s Control rod asse=blies requiring removal from the reactors are stored in the

) spent fuel asse=blies.

( (J The spent fuel storage pool has space for a spent fuel shipping cask, as well as for required fuel storage. Following a sufficient decay period, the spent fuel assedblies are removed fro storage and leaded into the spent fuel shipping cask under water for removal from the site. Casks up to 100 tons in weight can be handled by the fuel storage building crane.

A decontamination area is located in the building adjacent to the spent fuel storage pool; in this area the outside surfaces of the casks can be decon-taminated before shipment.

9 9 2.L Safety Provisions Safety provisions are designed into the fuel handling system to prevent the development of hazardous conditions in the event of ec=ponent talfuncticn;.

accidental damage, or operational and administrative failures during refuel-ing er transfer operations.

The new and spent fuel assembly storage facilities are designed for non-criticality by use of adequate spacing and/or poisen. Although new fuel assemblies are stored dry, a safe condition is $nsured even if intersed in unborated water. Under these condition., a criticality accident during re-fueling or storage is not credible.

+ F 9-28 i(

O .

n,.1 ,%, n+w .cu a. '. a s s e .~u.v *. .*a~. '. a. - c ,*. *. * * ..

. . , . ~. .. e a.-a. ^ ~.. ^ .*u a. . *.* .. " .*.e *. ". a *. e . . "A m .Sa

- 3.. e. . l e ve ., .4 .r. n...e .eu.. . .. , ...3 .e ..ce. . . -..g., ,..y.a..e e. g 4.. .4. .. .. -c

. .. ,a n .r+ r. m. o+~,

. v a. .- * %. . .. *u , , c ' *. *..e a . '. .* v e '" a.. ..

. . ' * . ". .. e e. a .+. .' . a. 7 a .c e e. u. . *. e .e

'..*.e..".*._a..

. w ." . . . . . . . a. .

c.. ,.. . . t .w. e , -,. .. . 4 . . c .c.... ., rae ,. .  %.. a. .e. ... x. . .c . . . . . . .. .. .#~c. c .

.c a. .*. .'*. a - e , a.= ".a. .' .' .a .e "u a. ~". .~.m. e. .e . . " "a

. - ^~~..a.'.a. ve. .' .' .e "". ". a. .. *~..e'.. .

u,... . c. . 4 . m.

e.

r.4 .,... 4 ... ~. . ... .4... .h. . . .

a n4 __-_ ,.... . . .

_.. .c .m a. ...4 .m . 4 _. ., .....v. 4..

.. h a. 'w . .'r..d ..e a . a. a *~^ va .' .a. .e ~~

  • I

~ - o. * * *. e. ..**.a" *'.'e .. .a'..=*.'.

~. . .~. *-A ..e .a..e..* c . %..".

4 e. ,.~.

".S.. e s , e .*,, . . '" e '. e,~* .ea , o. r. '. ". a'. a .- .i s a.o-la.d. . . ". ** . . . . .e,+.. ..

'"e'.

.. ~ ~ ' .* ~.e .e.v.e..+ a.

as described in 9.!.. A pcVer failure during the refueling cycle vill create

.~- 4. a...'

  • a *., e k a. . a. .* .". .e ~. ~. ~' *u* .*. ~... o".* . ,- +o "~e .'.a.e-a. ".=.*e* . . ve.'. ~ a. *

... k. *. . . *. .. e

r. t, e. i +. =a.v.s 'e.=

. . . c a_a m 1 c... a. .e n,em ., #u.o.1 . .

e+e e ~ rae e pc.1..

Euring the refueling period the water level in both the fuel transfer canal r a r~ ...e s,e...,* '.uel e* * * *...a. sana, a . .. * *.*. . . .'u .vi *. ." . . .e .# e .* * " %. va'..e

.. .a e e eo-'

d **

e ..

. . sw. 4. <c 4 ,,4

. ~ m......

. 4 _u .e .,7 , - ce e .. -5.

. 4. . . . . . 4.3.e .w..e. t.... . . u.. 4 ...,.,..r

...  %. ..~....

the fuel transfer carriage and fuel transfer tube valve operations.

'.~.. e-e # - ,11.". ed . ~.~~ va. a *.*.. c' a *..-a. ~..

. . . 'e . ~ a. . .* = e e *.".. u 3".. *%...*o~..*~~.~..a'.

. . . . .#".e '.

~. a...c 'e. *.u%. . 1u*. . * . e .e d..e d.a.e~.- ." ,*;annir e . de-a.*'.*

c . .. ~e. Al'..- .ye s+ *..,-

...e .-w. ~..._ .4. ,. - s + '. *.k..a. e.vs

  • e_

. . ..a-e ' r.,+.a*.e'. . * .n. +..k.- a '. ". e .' s*~-.-ae e a*' --

k..a.a.'.' . .

  • e a.-a a .'. .-

es.ee .." mai +.e". ..^e a..4 a a-~. .e s... .

  • u.n' - .*
  • v. ." ~.. ."..s ~e ..~. * *. ~ b. e.' . . *.  %. . s
  • a. ,, c '.

refuelirg operations.

, Daring reactor cperation, a ocited and gasketed closure plate located en the

! .3, ,~n ,. w.4,a4.- +, * .*.

m . _ . , . .a.e*. c ' "... e .a e '. .

. . an.e '. a .- * " k., e , *,~^ 3 e *. . . e - ".

m

~

t. e "" e '..

\ + .a. a .c e +,a%.~ va.y. ,oc. a. .a.

, , . . ,, . . .. o o- . . .. a".".

e- -

.a.. . de a n' ',.*4 ..* + 5..e *".be ,

u.4 a e . a,.,. . o .a.

w 4, 4 4 - . 4so,.a.4.n

.% .. ae o n.

.. . b.4.

- e ...a.ry

.r 5 . ,. .b'a sc .

  • 1' oca. .* .. o..e s e.. e . . . +,,el .

storage en,.

pool and the fuel transfer canal are conplete.y lined with stainless

c. e.1

-e . m . . , e . ~.,. . + 4 3 -v.~+ ,, n. e.. .e aa_ ea.ee n.o. .e

. a ,., ~. . a n_. . . . + , .4 ,., -s.

1 . ,. .ru,. e. . , ., n..e r. e ,. . ..u%. .

de a y _, . ,,, ,, , 4. .a. els. a..,,a.,w. . .e .a ., ._%_ee .34.e .. . .e wo .a. .% a 4 . 4 n+. e .,.4 .a.~

. . . ~ .m ,

. es t e. . .e .

, ,e. ...

. c.

. , e. . e ~+ . g e,. ,,,~^. c o .'.~.~~ . ~. % a . . '_A a . .*~O '* v ^..~ .c '. ..* * .,

  1. nel +orams .#en we.ho a e e 4 e.,a pa. + n.

.%..e ~

c

. -o 4..e 4s .. . . . n,e _4 .. + . n.

4 4+

4. a.+ 4. .me e,# . toeb no .w.w.d

_ s=e e

e.,1

.u. yaer.e+ . ro,a 4o,. .. .o ,-_ . u..e v.u,4.1a.d.., - 4 .. . .v. . 4. ->~ .

,u me ca--4.e. ... . 4 r,a,.,.m.v.,~re.. ..4 heing leaded er unloaded.

All electrical gear is located above water fer greater integrity and ease of raintenance. The hydraulic system that at;uetes the rotating fus1 basket uses

.~

c+.- rat e pec 'A ". s+ e .* ...c-- c.ee .,.a+. .i .. + 4n.4 4.e n,.c+a

. m-. 4.a+.4

. .. . . e..

.s. .. . r.o ,.. +.......a. ..r.- C*".*'. .. a..#. . ~ e***~ S.e e ', C ' '. '. S.... * * '* "..#'..' kaVa. *".."o*.^'.*.e.*.-'*..*^..

n 4- . c, m ., _.

6 t y .

n.s ..v . . -we...w . .e..e. . ~ ..,..34....

. . . . . . . 4. e e. .. , . c r .e .. 4. e. ... ~+ -- . . o. 4~,,... ., 4 .r. C ,. .. ,.e .e w . ... . . . .

4..~.. . . ' . ' all ". *...e c~. ~. .' . o'. e. .e e .km' * *. .e "t.~. . . . .-a .e, ve .d .'. . *. %.. . ~ ~ . , .- .."f a c . .; c~..~.~~.~'. .- _.A..e .*1' ba. .~. ~.~ ve. ' a* a~., .e a ~'

.a . . . e. n.. ..._*

  • e = "u.* .* .e *.*.. . ^a.e*".'.'.'.*...3- . . . .

.m. , e. .._ .. . . .. A u.m .. 3.. -w .~~..,,.4..~.d#,~.,.

y .' a'. e .e.

  • c . are c.' = *ee*.. . .'u.1 v aese m..*e=,

o.e

- e ,.e ... .. c. , e. ..~e .era ~ e pca , . ... , . e.,..... . 4 , a, . e. ,, %. b er w..a. ..%.....%...

. . . . . .,e

._. ,. r. .... . e . ...m.. .-+

. ~ n. . A.. 41n. e. 2 am,

. n. .e- r., e. , ,, rs. s .re. c e.

. .. n. +..,4 n.~ .

Each fuel handling bridge nast travel is designed to linit the naxi=ur lift of a fuel assembly to a safe shielding depth.

he2h,

.. - . .. - - - . - , . - - , - - - - - - - . ~ . _ - - , ,

-s

\v)

Relief valves are provided on each stud tensicner to prevent e ve rtensicning Of the studs due to excessive pressure.

Any leaking fuel assemblies will be removed frc: the core for verification cf leakage and placed in a failed fuel container. This Operaticn is done in the fuel transfer canal. The failed fuel is then transferred in the sealed ecntainer to the spent fuel stcrage pocl. Off-site shipment, f:11cv-ing a suitable decay pericd, vill require that fuel be transferred to a liner ec=patible with the shipping cask design.

0 9.2 5 Onerational Limits The expcsure tine vill be limited so that the integrated deses to operating personnel do not exceed the litits of 10 CFR 20.

The fuel handling bridges are limited to handling of fuel and control red assemblies and reactor closure head studs only. All lifts for handling the reacter crane.

c1csure head and reactor internals will use the reactor building Travel speeds for the fuel handling bridges, =asts, and fuel transfer carriage vill be controlled to insure safe handling conditions.

9.9.2.6 Miscellaneous Fuel Handling Ecuipment

.\ ) This equipment consists cf fuel handling bridges, fuel handling tools, new fuel storage .acks, spent fuel storaca cacks, fuel transfer centainers, con-trel rod hand?.ing tools, viewing equipment, and fuel transfer techanist. In addition to the equipment directly associated with the handling of fuel, equip-ment is provided fer handling the reactor closure head and the upper plenus assenbly to expose the core for refueling.

s s l \

( s N.)

ll  :-

(s e'si. ) 4 < >

9-30

h I '

\ y,</ o.Lqv -.%gr-

? *w.

m sesetJ cu cm.

w L w s ~n o . _, n . ,. wrem-

_ c eAerwe The samplirg system previf oa i.les for laboratory analyses which serve t:

guide the cperation cf the seacter Ccclint Systen, the Makeup and Parifica-tion System, the Chemical Add!' u n Syster and the Process Stes: Syster. These samples flow to a central locaticn in the cuxiliar.y build ing >- access to the _

reactor buildirs for purpose is not required during pcVer operation.

Typical of the anal, s perfcr ed en such samples are reactor coolant boric acid concentration, fission product activity level, dissolved gas centent, cerrosien product concentratien and main steam grces activity. Analytical results are used for regulatirg boron concentration adjustments, evaluating the integrity cf fuel rods and the performance cf the de:ineralicers, and regulating chemical addition to the reactor coolant.

9 10.2 EESCRIPTION AIC OPERATION Figure 9-11 is a schematic diagram for cre unit illustratire the features of the systen. This systen permits sampling cf the reactor coolant syster and the reacter auxiliary systers during normal plant power and shutdown opera-tion. Follovire a loss-of-coclant accident, samples of the recirculating ecclant are taken frc the discharge of the decay heat renoval pumps. The sampling syster is operated manually, and on an inter.ittent basis, under ccnditiens ranging frc: full power to cold shutdown operation. During a loss-f'" ,

i, ,!

of-coclant accident, this syster is isolated at the react:

  • buildire soundary.

Euring ncr al operation, liquid and vapor samples may be taken from the follow-ing points:

a. Liquid (1) Reactor Coolant Syster Pressurizer (2) Parification Eerineralicer Inlet (3) Parification Derineralicer Outlet (L) Makeup Tank (5) Zecay Reat Eeroval Parp Discharge (c) Ccre Flcedirs Tanks (7) Boric Acid Solution Makeup (5) Radvaste Syste % cal Grab Samples)

(9) Stcc- Ge ~ rater Drain Lines

b. Vapor and Gas

(

a (1) Pressuricer

  1. e,

)

t 0 'i1

-s

l l

l 4

l (2) Makeup Tank (3) Quench Tank 1 ,

(h) Radvaste " ,oe (Local Grab Samples) 9 (5) Main Stea:

) Samples are collected in containers designed for full operating te=peratures and pressure and at flow velocities which insure transport of suspended parti-eles where appropriate. Sa ple lines are purged to insure that representative samples are obtained.

Gaseous leakage is collected by placing the sampling station under a hood pro-vided with an off-gas vent to the radvacte area ventilation system. Liquid leakage from the valves in the hy'd and sampling effluents are drained to the vaste disposal system.

4 9 11 INSTRUMEI Q C SERVICE AIR SYSTE4

[

9.11.1 LESIGN BASES i .

The Instrument and Service Air System is designed to provide a reliable con-tinu0us supply of dry, oil-free compressed air for pneumatic instrument opera-tion and for control of pneumatic valves. The system also supplies air to service outlets throughout the station for operation of pneumatic tools or i other requirements. The ec= pressors supply air at a pressure of 100 psig with pressure reduced as necessary for the various service require =ents.

' ([ 9 11.2 EESCRIPfION AIO OPERATION Figure 9-12 is a sche =atic diagra= illustrating the features of the syste=.

During normal operation, two of the three full capacity, nonlubricated air co: pressors operate continuously to supply station instrument and service air requirements. The re=aining air compressor is placed in Euto=atic standby from the control room and vill start upon decrease of supply air header pressure.

Operation of the standby air compressor is annunciated in the control room.

To insure instrument air supply, the service air header is automatically valved

, off when the compressed air syste: pressure drops to a preset vid.ue, i

i

Protection against loss of instrument air is provided by redundascy in active components co=prising the instrument air system. In addition, in the event of a loss of all instrument air supply, all pneumatically operated valves are arranged to assume their respective saic rasitions.

i l Th maintain acceptable purity and lov 'v point, a dual tower dessicant type I

air dryer and two full capacity filters are provided from which the instrument air supply is split into headers; branch lines are taken off to supply all areas of the station.

, The power source for the compressor motors is the normal a-c distribution system.

29l l () 9-32 Amendment No. 29

( 00942

P 1

I TESTS MD INSFI.CICNS f 9 11 3 Each ecepressor is inspected periodically to insure equipment Operability.

During normal operation, the three ec:;ressors are c;eratec alternately.

l 4

9 12 mTIm. vmIuTIm em AIR-ccNDITIONIm SYSTm3 9 12.1 SESIGN 3ASES I The heating, ventilating, and air-conditionir4 systers for the plant are designed to provide a suitable environment for equip =ent and perso. el with equipment arranged in cones so that pctentially centaminated areas are se;-

! arated fren clean areas. The path of ventilating air in the auxiliary buildire 1

is frc: areas of low activity toward areas of progressively higher activity.

Conditioned air is recirculated in nor: ally clean areas only.

4 9 12.2 SYST m RESIGN AND OPERATION b

A flow diagra
cf the containment air cooling and purge syste is shown in 1 Figure 9-13 The remainire ventilating syste=s for the station are shown on

! Figure 9-lL.

9 12.2.1 Reacter Building ventilation- -

r The reactor building ventilation syste: for each unit is c0= posed of the l recirculating cooling syste: and the purge syste=, which acec=plish four  !

functions
'

i I

j a. To re=cve heat released by equipment and piping in the reacter

building during nor=al operation.

t

b. To clean the reactor building air of gross particulate satter and to purge the reactor building with clean fresh air whenever l access is desired.

a

c. To recirculate and cool the reactor building at=osphere and to reduce the reacter building pressure s.fter a less-Of-coolant accident.
d. To vent hydrogen from the reacter building after a less-ef-coclant accident.

1 f

The third function of the reacter building air coolirg syste: is further des-cribed in Secticn 6, Engineered Safeguards. l Tne ner:11 cooling system consists cf the four reactor building air recircula-tion and cooling units each of which contains a roughing filter, c clirg ecils and two fans with direct-connected =ctors. All units are located in the reacter buildire outside the secondary shielding. The coolers use plant service water

, as the heat re=0 val redium. The fan units discharge the cooled air through ducts j to provide adequate distribution to the buildirg and equip =ent.

1 l 5

-l p 9 "v

()D9 q' ;

h=end=ent No. 2 5/28/69

[

s

- ><v re -- , e~- ~,,-sw. , n w, r-e n g e- < ,<,--,,vaeneme<- e- ,ee~, e ---s,vr,--,-w-ww,n v,,-,ywv-,,, - ,,-,-.-.<, ,,we-esv,--www--w-ww-,- -e----~, w - - r - -r r

/ \

-\

's ') Nornally, the purge syster is not in cperatier and the purge syste: isclation valves are closed. 'ihen access to the reacter building is desired, the purge f ans are started and the isolation valves opened. Supply air is taken through an cutside air intake, purge supply fan, roughing filter, and a heating ceil if re quired. The purge supply air is distributed through the reacter building cooler ductverk distribution system into the reacter building. The purge air is exhausted by the purge exhaust f an through a rcughing filter and a high efficiency filter to reduce airborne particulate activity. The purge systen discharge to the vent stack is =cnitcred and alarued. The purge fans with associated filters and isolation valves are located outside the reactor build-ing. The purge syste= is provided with double autenatic isolation valves (cr da:pers) in both the supply and fischarge ducts. These valves are normally closed and are opened only fer the purging Operation. The isclatien signal and centrols are discussed in 5.1.5.

During ner al plant conditions, the hydregen vent syster is net in cpern-tien. The syste for each unit censists of an electric =oter driven fan, a roughing filter, a high efficiency particulate air (EEFA) filter, an electric heater and a charcoal filter. Instrumentation consists cf devices for the indication and recording in the control roc cf the airflev, radic-activity level and hydrogen ecntent of the exhaust gases.

Reacter building hydrcgen venting after a loss-of-coolant accident is ac-ec plished by drawing reacter building air frc= a point near the upper region cf the reacter buildin- e through the filters. The electric heater =aintains j (,~) the relative hu=idity of the air entering the charcoal filter at $0% er less.

(._ /

~

Frc= the fan the gases are discharged to the at csphere through the =ain plant exhaust fans (which need not operate) to the vent stack.

Fan =cter and electric heater power is supplied frc: nor=al and standby scarces. The fan, heater and reacter building isolation valves are cperable frc: the con rcl roce.

9 12.2.2 Auxiliary Building ventilatien The auxiliary building is servec by separate ventilation syste=s for the fuel handling area, the radioactive equipment areas, the nenradicactive equipment areas, the offices, the control rocs, the switchgear racts, and the cable spreading roc =.

Outside air is =1xed with recirculated air frce clean, nonradicactive areas to conserve heat. Recirculated air is used in the con:rci rocs, switchgear roc and cable spreading roces, ccnference roc and office areas. Ventilating air fcr the fuel handling rect and radvaste areas is designed On a "Once-through" basis to control the directicn of airflew and to direct all pcten-tially centaminated air to an exhaust syster connected directly tc the vent stack.

ry l

x. _ '

9-9 00 % Acenc:ent 50. 2 5/28/69

, . __ ___ _. _ _ ~ . . _

s 1

Ventilating air froc potentially centa=inated areas is exhausted through high efficiency filters to reduce airborne particulate activity and is =enitored before it is discharged frc= the plant through the vent stack. In order that the air frc= these spaces is passed through the filters, the exhaust flev exceeds the supply flew, thereby insuring in-leakage, rather than out-leakage, frc= these spaces.

I in addition, the exhaust ducting fro = the potentially conta=inated areas is <

fitted with charcoal filter ele =ents that are bypassed during ner=al operation of the plant. Upon detection of high activity levels in these areas, remote

) controlled da=pers in the exhaust ducting fro = the applicable area are auto-

=s' 'cally aligned to direct the exhaust flow through the charccal filter elssent. This align =ent can also be effected by operator action in the control roo=. During spent fuel handling, the exhaust air fro = the fuel pool area is pressed through the charcoal filters. The exhaust fan =ctors on exhaust aucting for these spaces are supplied frc= nor=al and standby Ecurces.

7 '

9 12.2 3 Turbine Building ventilation '

Turbine building ventilation is provided by =eans of several fresh air supply 4

syste=s which conduct cooling air to =otors and equip =ent. The air is re-circulated in cold weather to conserve heat. Gutside air is provided in het veather by =eans of vall fans with louvers which are located in the areas of

=axi=u= cooling loads. Air is exhausted from the turbine building through

roof exhaust fans.

k ('~

( Ventilation for the e=ergency diesel generator roc =s, the intake structure and the service water building are all served by individual fresh air syste=s in the sa e.=anner as the turbine building syste=s.

4 9.12.2.4 statien Heating The station uses low-pressure extraction stea= for station heating.

9.12.2.5 Fyste= Peliability i

Ventilation syste= and equip =ent are designed in accordance with the recc=-

= ended practices of the A=erican Society of Heating, Refrigeration and Air-Conditioning Engineers Guide, the Air Moving and Conditioning Association and l tne National Fire Protection Associatien. Redundant exhaust fans are provided j for the potentially conta=inated areas.

i i

3 5

i 9-3ha- f)(Ifl '?k Amend =ent No. 6 12/26/69 4

y r.-,-- e v-,--9w-,,g.. v.e. -,,-....,r..-m.,,,,,-, ,-,,wy,w.,.ye.e-,--y, ,,,,-,,,,,e,.,em>,w.,,,,-,,--,--,,w,m--,--r,,me,,,,,rar-,,3-mv#w,%.-.~,,,y.v-,-+.,-e,

i 9 13 FIRE PROTECTION SYSTE4 9.13 1 DESIGN 3ASES

) Squip=ent and facilities for fire protection, including detection, alar: and estinguishin6 are provided to protect plant equip =ent, structures and personnel frc= fire and explosion and the resultant release of toxic vapors. Both vet and dry types of fire fightinc equip =ent are previded. Particular attention has been given to fire hazards. Fire valls, barriers and physice' separation are provided as necessary. Details of the electrical cable inst .ation are fu-ther outlined in 3.2.2 9 The fire protectier system is designed in accordance with the requirements of i

the National Fire Protection Association, the A=erican Insurance Associati:n, i

the Nuclear Energy,,3roperty Insurance Association and the applicable codes and

regulations of the State of Michigan.

1 -

t 25 Deleted l

9 13 2 SYSTD4 DESCRIPTION AND OPEPATION Fire protection is provided by =eans of fixed fog deluge syste=s, sprinklers, hose lines, portable extinguishers, instrumentation, and controls.

Water for the fire protection system is provided by two full capacity . vertical turbine fire pu=ps. One pu=p is electrically driven, the other is diesel-engine driven. Both pumps are arranged to start manually or automatically on lov fire j syste= header pressure, with the diesel engine-4 riven pump being started at a lover pressure switch setting than the motor- riven pump. The diesel pump

=ay be started from the main control board. A ,ockey pump, co=plete with local controls, is provided to maintain the system full and pressurized. System pressure is monitored in the control roo= with lov system pressure and fire pump start annunciated.

The fire.pu=ps are located in the service water pump house with suction taken fro: the cooling pond. The pu=ps discharge into the rain fire protecticn water header which co=pletely encircles the station buildings. Eranch lines are taken off the fire main header to supply each fire hydrant, each deluge system, each sprinkler syste=, and each vet standpipe syste=. Fixed fog deluge systems, auto =atically actuated, protect the hydrogen seal oil units for the main Een-erators, the main, startup and station auxiliary transforcers and the oil 5

t rage r o=s for the =ain turbines (containing the oil storage tanks, oil reservoirs, and oil filters). Wet' pipe fusible heat sprinkler systems pro-

' q 7-~ vide fire protection to the cable spreading roc =, electrical penetration j j rooms, the diesel generator roc =s, and the turbine building basement areas v where oil could spill.

' c

9-35 004 R ^**3lfygt No. 25

N I

I

3. 4 4 , .,. 2. -^. a s e d.b'. e ". a a. '. .c"m a* a d "
n. .e m.., - '.-

..-v .c a_ . d. . a -c* . a.-+. .d -.. .e ..**v*.. 'w--e *e ~, . ,  ;. .". -. . l e e J< .-a-

. ,,wq...a

.. s +...+.g..

w .. . . ~ w aun . . + g. ,. eu

. . l e...r.. . e m. .w3. .o 3 .11 3, e. g e -

4

.. . g. .. +.-., ,ww. 4. r.g n. r. a a' ' 7. ' 1.-.

.. 4 0 "' 3 4 . ,n o + /-

v.

u. , 41. 4 4 v ,e R .-

. og .*.e 4 + b. ... w c.n.. s .. 3 X4 ... , . . ') O .c & ;c -e,-

es.S [;.4. r. 4. . ., . ') L' . .. q , ... op p i. .

.O - , 3 k

. . 7... .c4...e o.y. -.v. 4.r e-,j ..eh d

o. .e o wn. .s
y. ..44ae-. 4 g+. n. n . . , g r. .aer.+* n

. m n.a. g v en

o. c e t t. 7. e 1 C '. 3 -
  • '4 #" '

+4'.'"...C..

.. ". .". e e 7* *. *.-6'"

  • e b i " 5' "e'#*

- + - - *

- *- * & " e "r -- *u' '* 4 "

  • 4 'a'a
  • e " #

* -* *-+-- * - k a " # #++-+*~31" cr. C'. ",), . C " .Y 3 .e.

,,-,7n+-

g ,p .4 .wo. 4 ky +..w,9 . - g u m o * .' a~g"re4.e .

-b -+- - *-- +w9

-" egwy- ,- - - e - g- g +r+4e* - C#

4, 4

~ +w- e a.eo_.

e. .

g4. . w .w,

. , .... - - o y , ge. + 4.v+ n vr r. ,,r a..-.

m a p .g . v d ,,.4 e4 e . e4n~. ..g 3.7 7 9 4, ,e.4 e g..g n- ,,4 . . - ummv -y .wC .e.m.. . e. a,e eg.4')1e c 4 g ga4 7.s,. 3n.e . ..

m w -o.

p 4. 0-.4^ ..  % # ". e "y e C o .' C ". . . "'e

. e .-* .C a"e "3-."4+0.#4 a . C' ll,Y ^ ^ os. ".4.U C +* e 4.

{ue g m e m 4. 2".C e '*' # *.vb. . ' ' . " . * . "e

.%.. . . 'g" # ". a .. e ".*w

. -. 4 m* C.# *b v . . e. " a. g'.' '..5..+ n .",V

. a"d u. #...

". C U "3 ".

  • F.

. .. ag~ e .v ". a .dA. .e .

l so~.- t.

O o.;b

-,n--,-,,--,w-w ,-r, ~ , - - , , - - , , - ,,,e--- -. .-- -

w- - - .-

[

~ ~ ~ = = L , . . , , ;, ' . ,

I

,n .h ..... 2 iy?::: :::.'::::

hi. H ._1 ..

.l i

I H stow OEMES ;E aest-<A icN5 E5 f N;:*.E EfrE; !aTELJA 0 5 0*A L OEAN r L' #1* 5?08 < A' CA C E M *.f ii A.IIE D p. Aig a "Y0 0314

- "1 N2 N'I800EN C S SAVPUNG m VENT k! ADER -

r afj ECBE a v VENT ,,;;7;E F; A' FEE 06 ATER LO LC0vf3 OPEN LC LOOx!D CLC5ED Od

'f c-c r%AR ms-

- INST R JUE NTAT tCN 54U90LS

f. E LECTR O FUNCT!ON FEFORVE O BY e M GCEf COMpu1ER ce OATA LOGGEO I

LOC ALLY MOUNTED CONTROLEDCM MOUN E 90TAtmo SOLE C letLETTER f ra T-RU Sim LETTER F FLOW A AL ARM L LEVEL C CONT ROLLE R P FRE55URE INoiCATOR R RECCROEE QT P

P:STON $

R ASAT10*4 R

f TEYPE RATJRE S $ritTCH p bALVE Z INTEGRATOR ,q.gyg X TEST PO5Ni cisp6 A;E MENT n

f g, ,d POWER @

VALVE SYSTEM AS9REVLATIOe.S RC RE ACTOR COOL ANT MU MAKEUP A4D PURflCATION

~

CH CECAY HEAT REMOVA CC COMPONENT COOUNG

,[A gf p;pg syggog Curt B5 REACTCR BUILDtNa SPRAY FF FJEL POOL COOUNG < )

CA CmEMiCAL ACOtTION L3c3 D 5C sugta cooyy3 L:FT Cmg MATL 55 SAMPLING -S;ZE VAWE RB RE ACTop BuiLDM COOUNS WD EA 40 ACTIVE f;ASTE Tmi./NENT(f.ASTE Dr5POSAL) 5W SERVICE WATER eF SECO*:OARY PLANT INSTRUMENT LINES

$ EQUIPMENT UNES $40 CX CF CORE FLOOoiNG CF OTHER SYSTEMS sAWE C THREE WAY VAvE Q 'ydy"[ 0

- SE!SMIC CMANGE TO NEEDLE CLA55 I PME R 5 op B

INI BJTTEE OR CA' t 00 % 0 P%EE :

l d BJTTEF M OW

. A

\

I

'h 7 6 5 l i l I

~.sa L

  • - I' i *
  • n . . .  ! 4 ee , , , , , ,

+ 1 H ,

'ENO i N {0 A

^ ~

I*

aiLY CF E N --

F -

h ALLT ((C$E D

/*

(-

i vawg .h__. B.CAER

  • g' gata

Adu f PWALLY WTT.EO CR F AN 1

7 .7 H C FLUtD NE AT;NG COtL FOCT W E lbd I f

l I r

~

Q ., f

\ALkE C C Fwut0 C00LM COIL FiLT E R P R]Ja*+NS FILTE R f 3 m _

r.77q RV E F %A E

$ gg n

p'E -

PE E ATED 1- C TE wALVE -

l

- " E ST "'CTWG COOLI. COIL

' ORIFICE &_

q - ,

CEwNE R ALi2 E 4 ECUCTom Hf ATir4G Coit AMPE R Z D

'K PC$TivE D$PLMEMM T TEAP

}s IM*AE ES ON HEATER PUMP s

~

c CENTOFUGAL 7 Bar. FtLTER Cx CAFFE0 A NT we ' m O

a--

tE ATED cAcE st Ass

-h- FLANGE 0 soiNT CuA7c0AL FitTE R

+

l

<= s m ,, uACT0, mm.

.Am 7

.E VENT P.PE FLExtBLE HOSE 3 hx. ATE, wtvE W ! i j

ANg . .. .

A% .e ro..... ,+ (

EDEAY HEAD T---- id*

Y- 5TRA NER -

g escN m co uAM, aniDLAND PL ANT CONSUMfIl POwla COMP ANY l FLOW DIAGRAM j gt OuiCW. D:SCONNECT COUPLIM pgpTugg Otsc A

,j'g g ICE NTIFic ATiONS

., .. -. 1 $

j f 1130 fig 3*\ l E

f Q ,

l l mwonenr 5 l

~~ '

l 4 3 l 2  ! I l

j

' .s l "

t . r------?'!*'.t""!__......__ i j .

. v u... ,

. . =n..---,

..... a e,* ,

' @, I.c h '

w+&~' .

'~

e .5 6 i = - <psm -

= . . ...

r.: @

b, e d -

A-< v pw 1P Jb s -I 4 -

cc

~H ..

g gg "***++4J* M' a

. . = = . . ,

.. sun . .r. teen .s.

A,,-,__ ...... u = .n.= c .

'** ."%'L , v ,

z

@ Y _

-.p.

x ,

+ .

  • } ec
e. '
  • = i H

y >>

L.--_-_.__"'i$"2_.__....,

. .... g J . <

i.

' s -1

=

l l

'h>4 I

e i

e .

.= is . ,

is ca. n.

u.

. "* I8'

"~ " * .

'W T ,,,,, -

. [ .. .. J i ..e_

.. >** ~*

x -

f ( ._- -- _

x i ..

. .. _ . . _ 4.. = m4~ ..

r**.

y.. = --@

M >x=4-o< w 4.u> ,

_ 5 u M' -

o L&4 i..., ..

..e==.

...n..

%h ,, ._ . 4 m, . .. . . .

J

_ E3 - ,

$~ .

= w

[

's , - _

l l

l 00iW.?

l l

=

k

. .....m-...... .

I)  ! :8: __k! ,

s.. ,, ,, ,, ' ,. ,

., I ..

n a o a  ; a i

a t  !

r.O '

s e

- q .:...  ;

. f, l L,,........ ,

1

, i I IX  ;  :: I I l A A l A A l q

g c  :-: x _

.m _

r - - - - - - - - - - - - - - - - - - - - - * - - ' r------)

--e. .

-_..-_ i; e. '# .

...........___. S

- -w...,.....-.

A _

y {3 m ,m fl

--=-  ; e ,1, 63 ,- w . . . . ~::

. t w. ... , , a_...........-

.. e-i

. I, I.

. ..e.e.

. v.... - . l

. . H, . 4

' M *

---M-

.... m -_-_ i

"' ' 14

=

c.

ca . .

es .

i m.

v ...

M g ...

ua........

w - _ _ @.. gj ,

u.

      • h m

{-@ q 1

u .,w... .. ,,

i. o .

I m r, -_ ..,x... ... w v .

tg.

a, n i .. e u.. . c.= .a . . .. - .

A,

. ..,.,........u,v..,.

i.,.....u .... .a.

p., ,

/*

e

-: 1 I.........

".'"='~ AMENDMENT N O. 6 ll c.: A  : -

s I:'/26/69 MAKEUP AND PURIFICATION SYSTEM p u.. . ., .

Figure 9-2 ,

Q(Ja:c9 - du l

J

', Ce Y

A

"' A_

7-.

j!.____. /t W '

_.: v

- - - - - - - c :3 B^,alC ACID wat TAtt LOC AL

  • >4 - o 3

LOCA HI g

.[' V *

/Gh LO

> BCRIC ACIO


d ADDITION TAhn

& = 60 lf y L1 Ak Y.,

boric Atl0 P WP5 TO SPENT FDEL c hI STORAGE POOL TO BORATED DATER: M STOR AGE T Ant TO UPSTRE W OF

  • PORIFICAfl0m FILTERS

( _

\ -

O(E lbM, o

i,

L f

I, 8

. 6 v

l I

-yg

@ __ ..:caz .e :..-

+~ -Ca'-H h  : as't ':' "'-"':')

,et sse.- ,,;,,,,,,

y

,,:n n :t ,,

wi s T aca 4*

3

+cQ_ .:s: u .s ca

\/ g

_ y _ .: ->< -- W -- .: :: 1. us.

s _N ___

LO: A 1 ->I}--H -

est:scein e :.ts: no

/. / 5

>4 M I e X X I l k l

[ [ { 7 q) roussiu-

>:eu ct q] *,:ozi.e

,,, , 9 T Ann I@ I@

O -

O- -GE i

..L .

T...

' . . ,1,,,/

,c.. ....,

E >

I I t > ~

I F ,:.

  • t I T PO gem wa%iFOLO TO LP57 peas Cr PLR! F IC ATi ch FILI [#$

m3*l$-

I. Foe ttst e ag; h0MittL ATL8E SCE Fit;ef 9-1 2 tult 7 An anGEwiti 15 t;PLICATE C5 tult t Se 03 % A50vE.

. CHEMICAL ADDITION SY ST EM e

OO!,,;~;D i

Figure 9-3i t

Amendment No. 2

E s

/ >t5 :1 i

se

=

15

[ria

  • ~

e tsy Le b!

~~

[r

! l

,.ess a;s

_ LA I4 l

se s , .,

70 F =PS TO at a;TC# vf55tL <

F LOGC it6 L e hl$ e ES k

  • -. . A .)

C }to

/, {;',

L / 5 n L

h*M

,, m V

TC IPC lhH~

r e.

Q~ to uc

/

CEtte > tat cc RB cc h

L-LETDon raw ets0TC# C00t147 c.ftar utaf P 5Y$1t= 7

  1. 9 L - ts 0

g \

LC LC

  • N l N' Po .

v ni L0 O pg At actos I

tw wCV

>"'  ! 6;y v.

n ,, ,

n'u  ;

- Y

~

l l T3 sprat PWS

./

g, g

. . 1 , . 1,.

$10 east Tatu

?

00v, w:s - um

(

S I

t l

5 f;aa?tC maita I

I Ptairitation 1 s, I

i i

I

. , I r -- 1

sou.2 1

u i s __

-- p (W l$

t bf8&fl0 V tc i 1

'T. \ ..:r, s

--J

,s H- steansi $ n.:t ti.. gr itts ii., <._

s4 dv .

s gtge or g)

=

V

-HH j To m rg -u. io er c. c. r X

a .,

9' -

- ......,i.,i..-,

<L-.

-,s rn ts J d r- - --r- -

Ctest c. te.

' ' 8; PATED MATER

$TCR AGE 1aga (Ev[L L Q.

, i tC L . C.

h)[ b)[

M.- ; - ) d d { FRN F.C

$- \-

fto m

AMENDMENT NO. 6 12/26/69

5 DEC AY HEAT REMOV AL SY STEM i SYSTiw 5*3 4 14 N O R* 4L DEC&Y #fal 8E"0 VAL "00E 2 FOR LEGEm3 4 tsutettatutt $lt f ikDE 9- L .

) ;, . 7 {

3 Leit 2 anaa.stwtgY 15 CLPL IC ATE C' u411 l sac == aeovE {jgyrg g s-. > 31

e m

g ,7 .

_g . J.

j. ,

, f. 1l{

_ , WI

/ 4l

,l!L t , , . . ._ .},

.3 " . ,I I{; , j%.T

,. }

'7' -T f.i1 _ .

, J..t J.

';? i

. _ _ f_ .'

4,

{ ~

,3_

!l , 7 ' I

_ ._ I/". _ }

I .,l i

,!; 7

'l

. , _ ._ T -.

\ _ . . _ ,,,

s T. , .

ddc. ', ;.  ; *. _ ._ _ -

_ e a .

_. i

. t"o- ,.

  • _

7_-y4., _

i _ - _

e ,!4 .

_1

,. },

7}4j ,

7_

4 [: j j . 4j ,j;,'G_;,E "., . .

> 4 4_ _ _ __ _ L ._3 a  ; _

. - i

' ) ,_ .

o , ',

I4

$ i i.1l _ _ __ . _

3 _.

i 7 i .

o _ __

7 \- .

.e yi o ,

o _ _

6 3 _ _ - _ _

s . _.

ie o n i 2

/ , _ _ _

-q _. _

e .

s} 4 i

,_. l 1.1,..".

7 i,7 . . c }

p) 9. J l

. i

~ .. _ _. __

. __ +

l

_ _ _. . q_ _ _ -_

~_ .

. .__ '_ ~ .

~

"- e e*

eCg' O p-6

M

\

+ --- 3-_.-

i q -

. - - - - :__._._._._.4 )

+ + --.4 j j ' i- L i _ +-. _ M ._

t f

, , ,  ;; . p 1

! I ' 'i  !' ' i '

, i i i i l I 'il l l ! i ,

+}<- =

A I I l l '

l . _, '.t : 1 l '+1  ;  ;

,! fI $ 'l 'I  !

!,Il !i e j!  !  ! i , .

4 , l r-i . ,,

. * --+

- 1

. i,ii, i  ! .! .,' l

-. _~

l 17 I,f !E <5,! S ,O j 'iI ! EI >

i!

!*i!, l  ;

d

  • (  :

! n!

t

't e

i

( "_ : i

, c_, t i 1-i il -:!! 'g{3I

=

l i 3 l

I

, I l ,t i

i g- l 4

i 1

j

^

'.---.A 4 7

_1- - _..

7 4 I kII , ,

-4

-+--.7--

'>i r i i ..i , , ,

i a

' i l ! i i l i i l #

l  !

l  ! l l  !

llh l }*l  ! 'l } f s iiiin  : j III i i :

a  : < !j  :

I I I !t l '

i f{!f { f l f

} !!! j!

i I, I

' I i . i i i <i j

,.i t

e , l ll i

!! 4 4

i M ,

\! ' < . X .  !

' i ,i ,i i;.i i

' N 4 s > i

~'

i I i i i J  ! $

i I  ! i if ii i i I I !-l

,i i i ff I il i !ii l

! . - 4_.I .I l- ____ .

i l l f l

i I i i

!5!

)!

1 i

! I I i I I :

i ' !

l -

fl l ! ! ;i 1, i 1!

.i l' i

=

I

[

' , I f I

!1 I!

e

. ! i !'

i I t . i Ii i f

' l ', m f

1i

_i l

3 m' # et ce f i 1..e.se:

DECAY HEAT GEM:. RATION VERSUS TIME AFTER SHUTDOWN .

Figure 9-5 O u".

n . m M.

_m Au=* ,um...J-.--..a-.u- _-1u.-4 --A 4--+.a.-+, m 43- -- d- * . _ - - m-- +-- --wda 2 -e-s t__s -x-_, .$m_. w-a#-ia .

! P i

+

, e ' u * '

  • 9 . . I I e *
3

. l 1 P I i  !!

a stJi h -

Il gg _lea

."- Il L' i  !

j i l j

,g i

} sj -

J l a

( .

-J

~

j { l(

y. t

\

i.

!~ m%

i"

~

sl h Ig i (

- Q $.1 i (.

if

[- .. .

A:

4 11 inlill lI lI lI' t,i f

t 1

1'

- 1 I 1 T -

?l F }.j, i

_ + t 1 i - r -

J. .

1.  % .

~ '

}  !.{

I h- -

lu

~ ',! ! t g-- -= F I

i' (

- l I 'l 4;

8; r

, i lig

  • p!

L 4

i lij p, e

- r 4  :

4 k

~

}

l[l :

. %r 4 1 3

~ .g .

9

- 4' 4 9 < <

~

I! ,ti:

4

. ~

- *3 b4 4 I fitf  :* C l.li

  • i E 2C 4, t !I ctw i il F
  • " ,' i l

, , f

_ a ,

[

2 3 i 4 1 1 O  !

.s il' l

. f s .

II , i '

5 g

_ ll l I~

1 tt ,

. t .

1  : Ia0 Y i' .i ii E- 155 i L-

~

l }~,g!!lij  !{1 -

I
lh li i 1 ii*

in 2

2Il ,. l )!!

i i

i:

4-< h

. b:t t -

=<

g L

i

! [l 15-

.s 4

l N

r 5 -

.g-

~

-l

,n -s s*}

l -

  • s i e 6

- . .g . u u . ss6 1 t

e.=me ene g" ; I

,, a a egn il.

g gaeaeee'ee

... .'i "il!'!'!' !!!! fg a llll l l lllI{lll l geay3y3 t 6 lIlll a s 1 m a e aa ra e m;g

, 6 i

s

{ H G

4 1

F O

V' D

C 8 i W'y l!

I C C mn E 5 HIE t :

HCAT m1 F

00ib1 A

I

/

3 p 7 l 6

ggg g (6 l lllfl!!!!I l 'O ! I [g"g !{ { l l I l l l l ((T.] l { l l ,8 i I 6 l ,

r M

r

~

r

>. COOLING Coll-t t F

,.~

~

~

,\

  • v ts E

> m C0 CLING C 08 LS

SURGE -

) TANF v

D C

C C ouf

/>

D -

SwiftC CCOLtNG PUMDS

/, 7 D

S i COOLING

.XCHANGE2 wDLAND PL ANT

  • cowsuusas towra comeAur FLO 4 DI ACE AM  !

SHIELD CoouNG SYSTEM- ,A-00062 nc g;

5. l 4 l 3. I 2 1 1

eL*.m ena

[f lI!lll!!IllllllIIIlilll!!III!IllIII!IIIIIIIllII [ . l. .l .I .I .I .l .} .l .l .I .l .l .l. .l .I .l .I .l .l .l .! .l [ f.n l . .

l

.l l l .I

, . .I .I ,l 1 l 8 l

( H L . ,

G

(

_v_...

  • Dode e

, & G Fut t Po g og.ctos coct.e., .unes HE AT ince..ot eesta try .e46 er ) -

i v . . . . . .

saw no W.STE 6 6 Coasa.CSior5

- i ~v -C r, t m . . .

C .

U V D . . o. ac4.

. , _=. e)

..._. _ ,,, u o m.,

O

~V

'. y p

i

~

A _A v

l 1

v -

- termu cootees __ - s. tr errio cas - - -

l c n _n i

V U b l ..;,~ t

n =

l l

v uw.

r..

s.in,o coe.edGth est a EEC N Y

l i

u O x _

l' s

w.

k A -

-f, 00.)c..e5 -~4 a l 7 l. s j 5 l

f ,- , i rpr, e s:n a

i. 1 i. 1 .i ~i t

.' .' l

,i .I

,, t .i i, I, . .i .I , i l

. l H

l t

i _

O O

a G

n n

  • /

u - -V iI 4I.--h, _

/ \

_a i h _

\ '

F

/

\.

- cc.,

.m. .m ...

cao.i i

s .

U b 2,*.

g

> es .c.c. e,u,. e,~c o c.o.im,e. .c-m s>

-. .-o j> - , . . . . ,

e n.r <.c

    • ~

l t

l

/

r\ 3 s

i _

\j D

NG Pt;UD CCOLIN G

\\ -

f .--

( ..

G

.... ~ .

C 7 7

\ l lI v .,.,y .m i~

_., _. 2

. ,. to . . .. w t

.c cx n r. ,

w

~ a%+

,)Tasee m-,

' ; -o-L,b t' hea Ls.dtt at I

43 >

Q l! Q us a T k T N I A% .... - .l i I .

l l _

A N w'sirerea'.$==

_.2. . '.d ;. .m.

i i 6

+-. s 3.L i ===  ! .= . 4

~'

S O C N T I L C o ns p A as ?

mitDL AND PL AN T CON $UM(t$ power COMPANY FLOW Dt4 GR A M A ?

CiNPONDP C00LwG SYS*EM n,

OUT ;,9 i~

nro Lf n6o-e .

\

AMENDvENT 5 4 3 l 2  ; I l

. . ...a.ra..#...4 ._,_w 4.au.a.. _m_r.~ 4.x .vmu_..=.4_w.s -s -- . . .mm %- .m m.a m

  • _um.&a. Am..A.m. ._a 2 m_m.m.4s

! l 1

T

=

  • 1 - - I . v i . .

e - 2 5 ,* +

j  ! II

, E
. 4-

- st le,s a

w *

  • 6-l 4.

1 c

2 i  : g!

  • b j 2 lj !aI

. i

,l e

a c

I j' . . = i:

, 5 M - _4 A

i i

_ T. <t- .

=g

k. .

e 3

I i ._3

- i 3 i 1 * "Y I 5

^

L I i . i , i k

~

l ~~ .* nY $

. l  !

i l,,, .T 4 't; kp,m o bT 'ti !.

j - --

p

i 4 l s .

, A s i) n ,s art ( , ~h. n. ,- O c r,1s iI .

. i l i 1 i 1

. v ;,i .. ,. s',l

. v :n :l ,

I . 1 9, :.

i ,

c-1i ei n.'-ri,es,r,) + -1 . g m.

. ay J:-

I

.i Ig E 4

1 g 4 J 1

E 3 I tg ,

4 w I I '

!! I * - l I l ~l j,g M l _,

C s  : I

+

t

- ,u - l ,

c w .

t

a. .. 4. . --- l t -

t c,, Q ,!

{

~

y ,

f Od-w Pt f h & -

t, - -. L- i j i y -

4 -. - t, -. m -. Ip i n ll illjiA l

-i I  ! Y br i

  • 3 4

-. i .

...-~

.( -b , - Ci b .,.

~

. - I ,

1 -

j cw'1  % -- l h,---- il I .

. . 11

@- J

@w- ) - m {. N c-2 l

r1 t

r *v

. - i -

.m ;je r

f,e$ ?mN. . Y Y.Y. f .. ?y =

  • 'e 4

p Q *6 me l

l

?

.-r .;  ; A :. .- p

-, 1 3'  ! i ,

l l

[~

n-l., 4 h

- f3'- .,

,,,; M h<l -

i j

a y e 4 i t.,. t . i j-
: . '; I e j 1 (  !
I -'Ci O-i - Ci l
  • l

~

, I,? ! l l ,

l

'1 1.hf 'ai.O ----

: 2 - , a

-la

-; } 1 15 lta 4  :

^ g! -lpJ l ji i _L it : i l i y]24 }'i i E- l ty)  :

l" ' (i A A Il j g. , 1 l M l. ,t i . 2 m 1, . -Q,L -

g

, v 4 aii 7,- ,- cIl,1 I7 - 9,t f .;

1 y, i.>: g.i*. u.

.Tq Ir - aa-a+i r. -T~,-;m*q; , - -

+

+,

> f c  ; r2

. . ^:

- - - ~ .

ir .

. . .~ .> t -: * ;"

i .

~ u.. *-

t ,

6 I. -

j  ! * *='*

W l ) 1 p.

i  : > l . 2 -

t , i 4 j .5 i '

. 4 e * . e i e  !

d 91r***-  !

l a

is , . .  ; I -

i

' qi li

3
  • 1, 4 5 ""*

'  ?

i -

i i - l t

-i . . . . . . .

i -

i i 00 % 5 i 4.

4 1'

t,

" me --r. -ygy -sp yg, ww.e -P *wvW g+ pew ,. . .ym e ut e*w .y+weg wm -ee w ee-ewww ery,ec %, ,,,,,-e-ee uw s - _ mw^*e*

    • = **

i+ir- . 4 . .....o...o.o.. [M.J!l,1 I ,f ,i ,' I .i .i t .1.i .i .I .! g, i

It; { ", z 8.8 i .; I i s

sus..-..- . - - , _ _ , , , _ .

j

=

y.

a

., 4

+-

$ 8 / e . '. - .*

=

I [' .+  % -

. **e*

.! j-g '

tr !e[ h....=.

,G 4 f. - - -

g _l*,,,,.yf s

j l I

( ,. - .. .

g

\ ,J . .

! l l l i

! .- g m.:.5_. ._

LP

{

A - ~>%A w) ,' -

1 s~n.s asa ws ===***

w <,//,.s

,,/'

'e ,_,'

f- Mm.,.Q '

N  %'

' cm

~% .--?

E u

, / , ' ,,/-- ,

.x l j 'h . / .p]I s. [. a. -

k ,-. '/ / '

,/- ,s

s. < j NssN ' N f- *./,

s 4 3 e

' # g l

~,b, ' >*  ; 9 h, w -- i

. fy N,r.?';: li g, ' 9"'s 3 ~ 4u~<t, gawj'

- d

  • m

$s \a= , ,;L '

L lE n/ /. ~. 6

.st.

/ j/- N. p / Ni

'* ' g j _

e I / ,

./

, \

\ \ y fe 9h. I, f e y

xjd S-K f -' _

l

,- .ht -

[g s i m__

-- s.- - e

- _ o m ..1. _.

.4

l.  : Ma_ 8'-

Il ll.Yi l'

g .

j I l i /! l f[

[o s i // / 'k-l 8 l \\\s /!! -15K':?

//

/ ,

?

\i

!/ .C=

\\ h^

  • / , p,. .

/p/.:, e .

I s1\ \ .

f?- 1

%.= -

M I

\x / f/

n l \s% b -

! j//

' ,/ $p -

_ -p I h-E I

B i

1 T s3kmeew' C'E m' tamma WLassp

~'

$6m& EM & . 94 sues a6=s ca m., T.,== ov am ba W M e,- Essc w We>~e> =*e.mo  %*

7 La ma ed.a* rem ag.nme

$ u m ( sa . w

  1. , 9 6e m. wt emot,w **-.m e 6.e4.m eneSat SEE vi8 '4=a 8hJiu'W g mM+ " Emes
2. - D.efdhe n . _ . -

? setM es.46 mm.m.

se ed*ed *w* ,1ltsEMF ,% c, Wh $$4NE  !

7 6 l 4 3 i l f

I ' I iil iI 1 i f ' J I f '1 .I .I T"*9 I i 3 4 sitt t

l. t. . , .I -

l . I 1

~

g I ~: _v.

i  ; l&- I

,
- , 4 T * -

H 4,5 4, , f. -

_ _ _ L _ n.,

+' s-. , .

_ __ _ q a ;

, , 3 f

%a-..w2 .b. . . . -- ,, - - * -

,-..-_n,.,. ,i - --

! .a- -- + -

._ . . y _ - _ . _ , p ,7 7 , ;-_ 7

  • ~ - ~ ' ~ ^-^ ~ - - --

3r -+ R s -

" _,_?'..

1 .'.' ,e j;{>' -* V K j Q [ f tb l I i

- + + 1..>e , t__i i..s a,..'.. "_._..

i i/ , .- 3 f

, l ,

r ta ) '. u

.i,*=

- !p . ' ,. \ , _g w -

If 4g I'b =% .[EM b-j, .e,I ..

F) . *e *~

G

-m .

. , w = ___ ag .-- .a t_,. v l'

,?

S I

" 1- t i I

t e

l i y ns .* sas  % -e_a;u.-a wm

)f  : 6,w pa ,-

~ yw O l lC 0, __..A  :

g

._ . ,g iI 3

.__-_..{eJ_- )

o e-o i E, '

b l;T I l:' 6

/, yg

/ - '

~N NNq I Y '___"9=_?9 lN

%. , , l- , - _ _ . g,,

g

  • N

,/ /7 .I h7*"

s-w.

~"

w

.g,7

,o fe / ,,,/ .

vs

'7 *{ $ ii j  %.'1 \, // j' f

%gx' N 'N\\

e i, . .

. l e.

% ,r.-

i

-f4 ,

sN , -

, l IGN. r:,-- - .* d. - Y [o/,'//,/,

p~~ Y h. ,. -

D]

  • I i' .*fd
  • _3,,. - . ,

1 Yg kh"* / /d W p Il4*['-

___S,

-i3 -

- - p: - - .. -

,N i /

/

\* -' g

-__7- ; >- .twk._._-!!p/ h_g <*4y

f. , e

/ s

_N.[___  : I i g 's {

/

-  ; r.[' '

~ .

/ 3

. e. .

,N s r== pe 1.'."f .. c.s N's ' q,.7g ,, ,l ,,,. sv' / N' '

8, l '

l -

\

s@q eae - , m ., ,, i L - *h" h .tf'j i  ! - i E,tw y

( ,', .

x N

l ,

B 4-a . v.  ;

1.- m w h-o.=

t

.-_-.a

, m y.._. _ _ ~ . i.,

3 6_ ... _ _ _ _ ._ _m ,, 2 -

. . . 6 . . e r, j 6%p

_a

. ..lj l  % sr L24- m

\ > { L f) ,

_l g -

T -

l..

. 6 r,.1.

. . . .h.'t ,

, D

,\ \

t

-.-, r.-s-r : -

, 5 x s a, t

.._-, o,

- -. \ x /

' sj3 . ' //

N A.M.4 w-e tm i--- o, 1 g

\ .i / _

  • $ , + _g 4 9%

\

m- - 1 g

~ - - ,

n -

g

(

3 3\

x

\

i r

3 0, m, f .i i . \

/ p ' / C b = tr_ _,gy ___

t, *  !

\

I k \NY '. # p s  % g  %

s*"

,/

N C _

l

?

B BECHTEL -

Q, .,,, . - = * * ~

..a.=,.e,.. ce.*-*c x -

-c~ .,m... n .n umas i a causeum rowne coeans (maw uscenom F4 AC TC r= E AJ s lu AM BU L O N5 s= AN AT R F V "' 9 C" A

. _i __

/ 7220 ? M -l C)i F fG.1-2 AMLNLWla s i e't 4 3 i a l t l004 smr . ,. z l

i h een gy6l fljl!l!llllll}{ if f fllIll*leillii f'llll!IIIIII' l}lljjlj({lllltlllllll a e s

  • e,

{ I""a, g g j l l [ j,g 1 ,,,..,,,

e e * *a I l A [

I'

)

{ H w@

O w _

) faces mea.es 4 STEane 6M5 Maw Sttate Saenegg y COOL C #

G  ::

N n

O r ,

d M -

' l'EAa* f,Ckste.vce j y g

&An'%E at 89 E A C esa w&f t Y,

k &

F e

O$ Q W  %

i v r, -

MC AT CICWANMS

__,f. __

u T

- -, a 4

g i

l pue#W ata O u'

l on.e. :.. wra 4 Des -

8 W.

I(

j Q

DECAF ae( AT SWhe# OsKasAar.g -m _

'I 4

I g Cd emast en tilt e x _

! OUTLET Maass Yahw" Q

C <- o t -t Gal s**C t. I l

! se .n m. _- y . ..

sas sms C

O

-= e d
=

c i conc,-rum.e=

O -

=

00RC ACID '

SCL b?M)t, ATC?pO4 548sst2 i

i B u e u m a w>o..ca l

iL( .

0006S

)

j 7 l 6 1 5 1

))

, j

,I , . /,9 . i. .e .i i

- .I .I .I f l '~ "

  • I ,! =

I i e .' $:28 (

i h H

P 1

A G

I m mewaar samagg

>4-=~ --

~~

ecm.sa eta a)

?I _

}<->-caw h >-( - -

--f + >4--.-

LI%= se-M i wora a = ' E I

e F4

.h- evawr va et:sv *.=* h4*h D -

A :: -

%n: e a.t D j ram.m I

% p~om - - - - _ _

x l

_.,_m D58oW haast up vene s M AL ta'eMe l,

?C C

w- m u.. ra j wavte gaan.g

- - - - - -  ;; *ma.a

~t eaauf ang-ttc l ha 'IR I11111111 glliIlIIll /

I o

/ s A> i i i,!! i l

1 A% *"*ifaiW 4 s i i i iii A N es w re..... r$ igj, "

4 *** ** DS"C8** . . . . , -  ! ea BICNTEL COMP ANY an'DtAND P L A N T CON $UMER5 PowEt COMPANY r' C = CI A G R AM

+

FEACTcc m >sisauPut6 Si!T E U A

~

{ OJ;Q "' - "-

f p l'

/

.A- y mo l FIS (3-se  !

AwENDuENT K'- 5

~

4 j 3 l 2 I I

r m { j' l .l i ..l ..

.l .t . !.' l.' ! ! !.' !.' i ! ! 81 ! ! ' l.l l.l l.l l.l !.l l.l l.i ![l I l l l n fi",flff}ffff fI}fdI)) .))

,e 4 ' ~

i __

H G - -

'4-a .'4_

~

INStevufNT AIC DDT[PS 7

F f

E A

m. =

D i i

G O v v ATTERCOC C

A

  1. 4 ritT t a A--

SILENCERS Lt N

B

\ ^ 00P ,' .9

(

3 e 7 l 6 i

4

[g9. I..l.1 l l .i j i l Ij I[] i,9 I - Ii I. I. l l

. . .l .t ,I l ft [3T. f

.f .f .I .I .I krt t l

i I

'I I.

H

% W,+ W k3 _

  • c.*

W-G N N D .vf %T A A r>.?[E5

~

Y(

v' F

m 1 T -

1 E

.R RECEltf E RS D

I

-- f -s w.

V Sta vh t A' A f N5%wf N' A's LESS we D{5 NC.0ES C

A D

Lal -

f k g

icd 5? A UwlNT ( SER VEI OfA cowporiS085 s.aota mo P L A N T Consuwits Powlt CowPANY FLC.* vv Os A 0R A M

  • Q(({I ,

F.S*PNM e 5EE ACE A E Ev5?EM A

l FIG 9-f 2 l*-

s 1 4 i i 1 2  ! i l

--  ;; ..., ; n . s. n.;.n.: n.u.n.u.n.u.n.i.o.n.i: n.-ee t : n i t.u.n  ;;u..a .i . .i .i .i .i .i .i i t .i .i .i i .r--..i r: i i ri ., i. .i .e i .! .!  : .i .i i l i f 2

/.

G t

F l

l E '

( - , -,

/ >

e r, m mrs

.. nne.. -  ;,

i lh ,

/

/

/

f e, i' /

W7///////j / <'

z f

'/

/

n c.

  • ~~ \

/ ,','

ov.es.,ec l - --, h- nw d, / /

Lf -- l e c4

- /

c s, 1

) /

s

/

l ,

' /

C

/

o r /

/ ,, f r a  !,lf Y , j s

'/ -

//}

?%M W &,Msiff

(

\

( 00t'P a l 7 l 6 1 5 l

L!!!! II. !!!!!!!!!! FP9  !  ! . !  !  ! sin e i I i 1

H

(

I \ ~

l G

l aIAEACTOM f Bt DC.

STACK -

o:k I F

CH l O-x

__ U 3 -

W d #nI A /

la e ..w van t

non O YYYi

4 4 13 R Mt'LJw T1 U

ny I U8 I. 2' .mumt ~nma

" ^m*E'" } -

wvoeoets. vtwY Fame M

em74 -

D ven&tu vr%T'rmau

_cIHitan.GIfA B A g  ;

a- s Iml m h l l- Tvtsc AL rca 4 veYs l

J t i

C i

j 2

B A!

AN, ..... ,. ... 5 A%d 4*a e r* n . . N c- 1 ,_ -- , hey 1=

'~

SBCNTIL COMP 4NY WDtAND PL ANT CON 50Mit5 Powlt COMPANY A

f t ' r DI AGR AM VINTIL A .'* s N SYSTEM PEACTOG B UIL Ci NC4 A

,~- .. -. -

U\ q # ;

i if sno FIG 9 - 13 B Awe.2dsec *Jo s 4 l 3 l 2 l 1 o

I

    • "'** ild.i !!!!'!fi !,I '!;ih'!!!Id!!'d I I!!31'ill'1Il' IP}!!!!ljj!!!!!.!!jjjjjj I,": llll}}}},

y, . ,,< .I t i i r

                                   \-

l H i a

                                                                                                            ~]             fQ2-{-g                                                                   ^ rJ~1T*~                       ]

I a ! t i 1_ i i, a iIF k i

                                                                                  .I E
                                                                                                                                                                                                           \@l
                                                                                    ! --                                            ~

I i-y  ? o;L pt Tu A ssNE g E g 8

                                                                                                                     "         z          jj                                  eueLoe w c.

I i I.-

( - ( m ,

$ 5 I 3 I f,D l 1 s-I I i 1 4 8 "O $ D I IC t. t w mat o' E S E 'om  :- l , R O O hA f

                                                                                      .i t

s. f IB f I t-J- 00075 5

  1. A
         , ~; .

7 s i s li s i l _j

 .i .i .i .i .i       r. . i. i. i i .i .i.               .t .i .i .i   U cm.

i

                                                                                        .    .i -.i
                                                                                                    '   i
                                                                                                              .i                         uni i

H hS%+ A _ ifHf-O co~'*o' a=~ o m_ H. M. - q-_.% _ f i HHV CABLE %PAEAD _ \g;t/ r bW iT C** GEh R

                                                                                                                                                        ~
                                                                                     +

E E UE L H A NDLi N C. AREA I l c D aun BLDCs G7ACC1 _

q. mk y W RADiOACTavE [Gurp A R E.A u g I C a *
          -                                                              ACCC% CONTROL                     _

C SHOWE R% 4 L AUNDRV ARLA W C.ONTROLLCD L AB g  %, _ C O UN TI NG. ROOM A P

                                                                                                                                                       ~
                  / TECM GA5MTNGE AEADEEi N       U641 LAG I M33IT.15 L N>+A%E m                                                                 f., )

N U* a rT_ p te g._, _ _ _ _

                   #M5WP A%" G A5 DISC 4 AW-                                                          M-                               -

5 h ig8st'M2 rima ==- .tl5t = " ~a - 5 MQMMCGE% A9I 4N9 MhD D M N ***D80 f *** gh.%tet D To

                                                                                                       ~t-1              -

P. % A R. h 1.nThlg

                                                                                                      - - !-                    !- * * * ~ i =

esCutta ComPawY - M'DLAND PLANT WN4Tl 8 & 2 CONSUmf t1 POwlt COMPANY F LO W DI AG A AM VE NT t LATION SYSTEMS Tuce GINE 4 Aerst Any BLOGS A

                                                                                                             ~/       7220       F I G 9 - 14 AutNOutur we c c        00975 !;

4 1 3 l 2 i l 1}}