ML20008D762
| ML20008D762 | |
| Person / Time | |
|---|---|
| Site: | Midland |
| Issue date: | 01/13/1969 |
| From: | CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.) |
| To: | |
| References | |
| NUDOCS 8007300641 | |
| Download: ML20008D762 (87) | |
Text
{{#Wiki_filter:. P 42A 0 t X r/' r O O i l l e l l ' O 0001~3 8007300[y[ THIS DOCUMENT CONTAINS POOR QUALITY PAGES
e~ ) APPENDIX 2A r y E'IVIRONMENTAL STUDY METEOROLOGY TABLE OF CONTDITS Title Page II.TRODUCTION 2A-1 PURPOSE OF REPORT 2A-1 CRGANIZATION OF THE ILTESTIGATION 2A-1 SCOPE 2A-1
SUMMARY
AND CONCLUSIONS 2A-1 '1VO-HOUR MODEL 2A-2 TWDiTY-!OUR-HOUR MODEL 2A-2 THIRTY-DAY MODEL 2A-2 SITE LOCATION AND CLIMATOLOGY DATA SOURCES 2A-3 SITE LOCATION - DESCRIPTION 2A-3 CN JIETEOROLOGICAL DATA SOURCESlN_ SITE VICNTY 2A-3 ,- t' ' () GENERAL SITE CLDIATOLOGY 2A-4 TD!PERATURES AND PRECIPITATION 2A-4 CLIMATE OF MIDLAI;D, MICHIGAN 2A-5 CLDIATE OF SAGINAW, MICHIGAN 2A-7 DISCUSSION 2A-8 SEVERE WEATHER 2A-8 STRONG WIIIDS AND nuiwERSTORMS 2A-8 TORNADOES 2A-8 DIFFUSION CLDIATOLOGY 2A-9 i SURFACE WINDS 2A-9 DURATION OF CAI2G 2A-12 PRECIPITATION WIND ROSES, MIDIAND 2A-16 DOW MOITMX SD!MARIES OF EIID SPErn AIID GUSTIIiESS .2A-20 hEAN SOUNDDIG ANALYSIS, ANNUAL AND SEASONAL, FLINT, MICHIGAN 2A-23 l COMPARATIVE CLIMATOLOGY 2A-23 IIIVERSIONS AND 10W WEID SRSEDS ^1-23 CLOUD COVER 2A-23a 'p' 'j REMARKS 2A-23a 000la 2A-1 Amendment No. 2 5/28/69 i
O ^""" "^ TABLE OF CONTENTS (Contd) Title Page STABILITY WIND CATEGCRIES 2A-23a 2 GENERAL 2A-23a DILUTION IUE TO EUILDING EFFECTS 2A-25 DIFFUSION MODELS 2A-28 SELECIION CF DIFFUSION MODEIS 2A-28 TWO-HOUR DIFFUSION MODEL 2A-36 5 l TWENTY-FOUR HOUR MODEL 2A-37f THE ONE-bONTH DIFFUSION MODEL 2A-40 ANNUAL MODEL 2A-h2
SUMMARY
, SITE DISPERSION FACTORS 2A-h2 2l rEORMATION TO BE OBTADED 2A-42c TOWER LOCATION, SENSOR SPECIFICATION, DATA 27 RECORDING AND ACCURACY 2A-42c MAINTENANCE AND CALIBRATION 2A-42f DATA. ANALYSIS PLAN 2A-42g I REFERENCES [C 2A-43 l i I l l t ((~ 000t5 2A-il Amendment No. 27 8/74 r,.,,,, n, y er- - - -
n es
~ m -m - w r* V r * ~ ~ * ~
t AIPEDIX 2A ) V DVI 0?CEi".'AL SIGY METECEOLOGY
- 7. n- ~x, 0:, a m. -
. Table No. Title Pare _ 2A-1 Climatclegi:al Sunra:7, Midland 2A-6 2A-2 C? Matclegical S" ary, Saginav 2A-6 2A-3 Annual Wind Speec (!tl) and Direction Frequency Dcv Chemical Cenpany, Midland, Michigan 2A-10 2A-4 Annual Wind Speed (?ti) a d m -action Frequency Tri-City Airport, Saginav, Michigan 2A-11 2A-5 Seascnal Wind Speed (Mph) and Direction Frequency Dev Chemical Ccepany, Midland, Michigan 2A-13 2A-6 Seasonal Wind Speed (Mph) and Direct.:.;n Frequency Tri-City Airpcrt, Saginav, Michigan 2A-lk 4 2A-7 hequency and.Duratien _of. Cal =, Fd'a-d, Michigan 3_(q Cal: = 0 7ph 2A-15 2A-8 Frequene; cd Duratic: cf Cal =, Midland, Michigan Cah_is 0.or _1 Mph D -17 2A-9 _Mnnthly Percent Occurrence of Wind Direction 7nen Scre Forn of Precipitatien Is Present Dev Chemical Plant, Midhnd, Michigan 1963-1967 2A -19 2A-10 Wind Speed Menthly Sr-a y Dev Chemical Plant, Midland, Michigan, 1966 2A-21 2A-ll Average Gustiness Monthly S,-a y,1966 Icv Che=ical Plant, Midland, Michigan 2A-22 2A-12 S"-a y of 3um
- g Dilutien Facters 2A-27 5
2A-13 Analysis of M nthly Difrasic n, Five Years, 1962-1966 Midland, Michigan 2A-29 2A-lk Cc=parison ef Diffusion Factors, Light Southerly Winds, Euildings kT and kl7, Midland, Michigan Selected Perieds - 1966 2A-33 2A-lha Fercent 3 equency: Pasquill Category Vs Wind Directicn 3 (Nh: Months) 2A-36a /
- s 00Ri6 J
2A-iii Amendment No. 2 s/26/69
APPENDIX 2A (D i,p LIST OF TABLES (Contd) i Table No. Title Page 2A-1kb Percent Frequency: Pasquill Category Vs Wind 2 Direction (Ff ve Ye:.rs) 2A-36b 2A-15 Pasquill Stability Categories, Two-Ecur Model, Saginav, Michigan 2A-36c 2A-15a Percent Frequency: X/Q Vs Directica Sector, Sa6 :av FAA Airport, Nine M,nths 2A-37a 1 2 2A-15b Percent Frequency: X/QVsDirectionSector, Saginaw FAA Airport, 1962-1966 2A-37b 2A-15e- -Percent -Frequency: X/Q Vs Direction Sector, Saginav FAA Airport,1968 2A-37d 2A-15d Percent Frequency: X/Q Vs Direction Secter, .Bov Building h7, 1968 2A-37e 2A-16 .Easquill Stability Categories,.24-Hour Model, for ..Saginaw, Michigan 2A-39 ~ (D D 2A-17 Pastpd11 Stability Categories, One Month Model, for Sa61:aw, Michigan 2A kl 2A-18 Su::rary Relative Cr'ucentrations 2A-42 2 2A-18a Su::: mary Relative Concentrations, Average Hourly X/Q = 1/(we o u)(DF) 2A-h2b 72 27l 2A-19 Sensors Used on 300-Foot Meteorological Tower 2A-42j O l 's l Q.J 000.17 2A-iv Anend=ent No. 27 8/74
1 i l APPENDIX 2A r f I ( ENVIRONMENTAL CTY METICROLOGY LIST OF FIGL'RES Figure No. Title i 2A-1 Site Locatien 2A-2 Site Location 2A-3 Site Envirens 2A-4 Wind Roses, Midland, Michigan 2A-5 Wind Roses, Saginaw, Michigan 2A-6 -Mean-Sounding, -Spring 2A-7 Mean Scunding, Su=r:er 2A-8 Mean Scunding, Fall 2A-9 Mean Sounding, Winter C 4 2A-10 Mean Sounding,. Annual 2A-11 Dilution Factor Vs Devnvind Distance 2A-11a Inversion Frequency 2A-11b Isopleths of Nighttine 2 2A-lle Cu=ulative Percentage Probability cf the Relative Diffusion, X/Q, Being Less Thsn a Speciri.'d Value 2A-lld Fercentage Frequency of X/Q and the Related Pasquill Category, With and Without Effect of Cavity Diffusion l-2A-12 Meteorology Tower Lccations 25 2A-13 Aerial Photo - Nov. 1972, Meteorology Tower Locatien 2A-14 30C FT Tower Location 2'7 . 2A Non-nanual Parking /300 FI Meteorological Tower s 000i8 2A-v Arend=ent so, 27 S/.74-.
b \\'. APPENDIX 2A -,.-} E'NIROIiME: ITAL STUDY METECROIDGY I'1TRODUCTION PURPOSE OF EEPORT The purpose of this repcrt is to present the available data and the analysis thereof in regard to diffusica cli=atology for the vicinity of the proposed n ;1 ear power station (Midland, Midland County, Michigan). A detailed in-y estigation has been =ade of existing weather data frc= Saginav Airport (Tri-City) and data frc= the Dow Che=ical Plant at Midland, Michigan, which is adjacent to the proposed nuclear site. These data are used in esti=ating radiation dosage in nor=al or abnor=al plant cperation. Wind lead design criteria are also developed. CRGANIZATION OF THE IINESTIGATION The basic ai= in this investigation has been to acquire the relevant =etecrol-cgy data, to asse=ble this data into suitable analytical fe m, and then to interpret it as it applies to the safety analysis of the nuclear pcVer station. SCCPE o\\
- (/)
The scope of this =eteorological i=vestigatien. includes the folleving: / - A description of general weather conditions. - Analysis of diffusion W Atology based on available data. - The develep=ent of the folleving diffusien =cdels: 1. The two-hour model. 2. The one-day =cdel. 3 The 30-day =cdel. i 4. The " = 1 model. - Discussion of ster =s and tcrnadces. - Discussion of design vinds. - Conclusions and recc==endations. SONAAT aid CONCLUS'.'ONS The =etecrology ar.d the diffusion cH-ntology of the.41dland site have been - (m O- ') evaluated to provide a basis for esti=ating the effects of release of vaste gas, esti=ates of exposure frc= a postulated accident, and design criteria for stom protection. 00919 2A-1 A=end=ent No. 2 L V28/69
Ii',, ~%....?f i 4 7 g.4 .e 4. a 45
- b. a e IC.'^. ".%...#.". s ',.' ' ^.#.Y i ^.". 4q' n.
+ %.. .c.7 n, l ' ".d C.# ~. ~ re au j v . m c. ca c. y.a. .u....,. e n.e.5-T ~. 1 4 a.e .T.,u e. 4.,.g.. y. + n %. c g. e. n. + a. a u, y .' g n. . c. o_a. .A a . = j .~ v u- .su ov U k a a..,. p c, ._1n 2
- a..r.c. p b. v,
- b. a.
r w a c +. 9..'e. u. e- 'v...+ b., "< c- .h..* ;f.r. a. . b..a.. r n..a a.a a a.- m v -e .~ .c m..,,. c.a o _7 m x.4.r.u. a. 4.. +.s. a.
- 007, c.m.
- a. n 1.
a.4 3
- c. v v..
,M 4 m... w _. nw, cm ... v w. - a. -~.. ...s m .s,,~.%. m v..w4. .n.e o w r,-.,:, c.m. u.e
- o...,., 7 3,,.,.,. _ -
y. ..y ~..c., c, .....2 . u..: ...a u. y--. e, _..i ; ~~ ,a.o. ..~...1. e 2 m,,.:....1., .m.,...., .m...,..m .o.... _n,.r... s. m. c m m. 2 ... y. -.. .j ., ~: 4.. t.. u.r -~ .r 3,,.,, u~,. ...a. .c, 4.. ...r.... ...,%,..,m..- o I-v. m.y c m. .' 7 4.r e.r a-~ . s. ' r, ,%. 9. 4..a,...j ,m,.. < v e.+~n...,..p 9.m pm y m .u w
- h.. +
.c 4 u. a. ..c a-. u.c .. a.l.,..e 4 an+o n. +b ./441nra,
- n. 4 m......r..,...a m.
4Aa -..r. 4 c.. a. a. j a... a-.~ .a ~. .~
- n. a-
.k..n 7.4 r .~k g E ac+a.3+ a.4 .M..1 g + 4 r.r. .n.v, 7.f, o +~n '.... T. A. m A yv m a w _3.7. .-+a-+4 + 4 ug y u ?4.., (' ~cg.m..r.g. ?) en ~. .cr.. %,. o. e...:n.g . 9,,. o-
- 4 u
.~ %r m, n.a.7 7 y _i n m. a; 4 e..n., ..a. a. n e .j c ev a ~ +, b.4 _7 4 * " C '. *. a..c,^ ".4 e c d.".e'"..'."."~a"'e ~.. a. *. '".O u. "..*~a .P, v"w" "_' +v a 'a'a.." a. ~. w' ".~a " - - ~#. a d ^^ avu og a nk?a +, , h.4 -
- n.. a. +..%. u,. c. c ~
- a. o +. a.n. +..
A ..~ _r.- v.h. n _i3_u. o.c . u a.c.~a,., 4 e a. .~., n +. _> a nn ..~ ...m ma ..n -v
- a. x,.,,i na a 0.c e ra
+-a + v, u~v ns.a.~^"~+.4va. "^"."e " v.4..o
- u.". 4w".a. a.
a
- 4'4*"
c a. . ~ - .. ~ ( y,, %. a.~ s ' M..,.
- h.... * "...e e d.' '_', +. M ~. +a 4 ' 4 * 'j c ". *.%..
a 4 cm k _.. .,,+ m# y --.- + ..m m .~ y .c.4 c + c2. e..~..d.Ya"a ". ba.d.3 a ' b.4 ' x ~j a.a. ~^ .d a. s a", .?. - -. ".'.c ."'.."_*ed. . - -+ 4 w. . 7 ,,,a. ,,e..a m.u a c a, n.a, 4. u. .n n.a. ,,. a n. ],
- a..m.. a-.
+. a a a.,, - z _.. v a .. ~ -a ~. . - 4., a. c ~.., ^ a n*.."a
- 4 " n o, 4" *, as a
.# ~.. m~4cm- " " d i e a n _~. T.ha. w o. m - .~._ 4'<e c^n-o ,a ...cc eo.,". ca* a#. " a-
- L...a. "a. 4 ".a+ e d. k."
4_+ c "y ~,.,' a 4 ' 4.*sv c.' cc 4 k - s s ^#
- n' e
~. ~.. c a " A c'.4".4du by a di_'"*4^n.'a^m* ~. m* .2, d"e
- .o
+.b.e a'.'a~. a. v'Q o# _1 9 x a'.O-" a,/.~. 3 a. + n' a. e.v. _' u s 4.c n %. 4 _, a '.".e,
- s o 3 4 "e a n ave."m' ca. m""."_'"
~ < c q bcandary (500 m). 4..c,,4 tN-a. u.r. cur v.GUP t".C"r 7 v u. m . ~ r., + %.. ,, 4 a -., + w - 4 d a * *. 4.#4 a d. a o-da..c ^.".4 k a. d ab^.,ve, _' 3 da"o w a..~. s a..'. a a. *, e d. e -~.~ a a a. w w - s frcm wh:.ch to develop the 2h-hour =cdel. Selection vac based on thase having u.e.$.a. s +.
- ."a. q"~m. a '/
Pa o~g'".4 '.' "va'%a w ~,. a"_d
- h.
b 4 gh...e.+ .#.~. ^e" e w.. '/ ,,4, ^# r m. nc vi p g .~e. .% e m v.4 1 3 ,g t a. e-n.4 a g neA.
- 4 r A. S
. 1 . p u. -uu ..u .c. + % a. c a fgs.e., ..a. a. gya. p na. A. .ca gau anh v u .u a e . a. 4 c.7. 'oa *. d.4." a. ^.
- 4.. w_4*b
- M.
b.4 -ha. " *v a.' b.4 '.4 + f' a a *v e -'u'./ ('.',.', w a a* *. d 4.#.P.' c 4 ' n ') 44 .v .a u e a e v.u C' n.;~a... %.~a v o. c.r +>n~. .. t e d u.4 a n ~ 4.- e. A oy.a.A a n +.%... _1CVa. a. . 4 e.#'. 4 , ~a oe e na no ,.a g aa = o n v w a. a ,.. n 1, v 7, + a a, ...v._7 4..f n.1 4 e. k.f +h.e 3+4m C. +% A o e.,e o =-,,g.m.%. ,e.c k.~ p a c C,,n *..i m., ~, l s n c. m. ~. -- m m y v ..~ (~i.q / % ) a.4 A_4 a,+.c.n. n., .c m... + %.. 7*s.a n.. cL v.m ..:.4 ..n. ra ,j-av.44ea 44 .e n.p_
- e. n, s
a ~s a u ~. . C 's. ^." ^ #. h.0
- +b
- a. v e..l " S 4 "
k,-..% A 4 _1., + 4.0.7 b ""d'.""s v'# A".O
- O e.4 ". a. a.
r vO -- v s. v ~ --,.. ~ X 4 -5 f..3 a vC." 1 e'a. .l'.'n"."_' j' ' n .( W,O< 3.a, G o g,- - .L
- L
..=. a - uc. :. ~'%. .r. 4.r a
- m..~ r. +..b. e e~b + n 4. m o.e.
e. g3*a e a a. t.,.e a A--
- m e
- c. + a. 4 7 4 +.,, a. o + a m.f nk..,
- g.. o.
, _ a a ~ .v ~ a. s. ~ s.. .mm ., e.... _..,a. .a, 4--., mm..e + %.. o,.w. m..~. w... .-<a 44,- o....~ w u. .~ m.a +
- u. 4 r t,,,.~. : c r. a.. w. %.m.4,weueat,.. #4.,4./, c,a.e m., -a.%
w .._4 - a . s ~c..o,.o a. age-m ..-.~ v ev,. o mu _,,~~,u..e m,m 4.,e ,~.,~,a.m .n .u. -
- m.. m.
u .. a. n., ,c~..+.,,. +,, me. sa., 3 - v. n s .~ m ev ..- ~ ~.
- 4... a Aog g.,.,
ca ~. u"- o, + h. h.4 .9. o^ +..~.~~usu".'-f ."."e ^g" a ". y" c.' a..j" v ~.. "n.4 ".d M.." a a. *. 4 u + ^. e ,, u x ..a.e .' o., " a... a. n *.. "uYa.e,
- u.. ^ C ~.' a. e d.
.~--4"..a. c.~.a1,m.a.t-."a + i ~, ' "- a s m.. a'.' *. 4 "_'.' a. d. ~ .y .~ a y n + a. 4 _, $ +. t~u,. a#v, r> ) 2.- c+,. ct 2.6 (c,. 'n n o. _, o, u.n.a u.4../~4 a.~a a' b, a a.t _, v. 4 - a en v ,, e s w. s j s .s .~ ) n. + g a. axe, m.4-" b ou"~d a "" (,R C O.~.. )
- .o
_.r iv. a. au ave."o m, b ~ ' ".'.< o','^,. .u.-5 s. .~. ^#.'._x n n. vm .s v. w a.. - 00W:0 ~ l 2A-2 A.end ent No. 5 L
1 1 -'(' The diffusion =cdels are soundly based on data fro = Tri-City Airport located only ei6ht =iles away and data frc= Dow just across the Tittabawassee River. The =odels are conservative in that (a) no credit is taken for wind direction changes (in the two-hour =cdel), (b) the h0 percent more dilution due to the Dew buildings, or (c) for the ther= ally induced turbulence due to about 1-1/3 square miles of hot water around the reactor site. These data and models are believed to provide a sound basis for the design of the reactor facility. Sin; IOCATION AID CLIMATOLOGY DATA SOURCES SITE IOCATION - DESCRIPTION The site of the proposed nuclear power station is 1. ediately scuth of the City of Midland, Michigan. The actual location lies south of the Tittabavassee River such that Dcw separates She site frc= the residential parts of Midland. At the present time, the site.is outside Ahe bounda=ie, of.the City of Midland. Midland is located in the east central part of lower Michigan, about 15 miles from Saginaw Bay. Figures 2A-1 and 2A-2 show the location of Midland within the State of Michigan and the location of the site in relation to the City c? Midland, respectively. The tcpography of the site is cc=paratively flat with elevations ranging frc= ' p 600 to 63h feet above mean sea level. It is esti=ated that there are no 1(- changes in the tcpography greater than 50 feet within 50 =11es. Thus, topo-graphically induced or altered winds should not be i=p tant at this site. The site is covered by grain types of veEetation and occasional groups of trees on the order of 50 feet high. Due to the peor drainage in the site vicinity, the Brasses tend-toward a type that can survive in saturated soils. The nuclear power plant itself is to be surrcunded by a large water cooling pond. In a relative sense, this pond will be war: cc= pared to the surround-1 ing countryside. Its extent is shown on F16ure 2A-3 In sc=e directions the pond edge is very close to the site boundary. METEOROIOGICAL DATA SOURCES IN SITE VICIITITY Two -nin scurces of data are used in this report. The Dow Plant nearby has reccrded weather records for over ten years. The other source of data is the Saginaw (Tri-City) Airport, about eight =iles southeast of the site (see Figure 2A-2). In addition, sc=e upper air data are used frc= Flint, Michigan, which is about 50 miles southeast of Midland. There are two typec of weather data at Dow. In 1925, the local Weather Bureau station recording precipitation and temperature for Jiialnna was moved f} to Dow. Currently, a weighing rain gauge with a seven-day recorder, a seven-v day ther=ograph, =ax1=u= and =in4-u= ther=c=eter, a U.S. Weather Eureau rain gauge of the dipstick type and a seven-day dew-point recorder are on the Dow 009R1 2A-3 Amend =ent No. 2 5/28/69
property. This station is within the plant co= plex and is located on Fig-Q(,/ ure 2A-3 The station is bordered fJo= the vest through north to east by a chemical =anufacturing co= plex. To the south, it is bounded by waste control operations. A laboratory co= plex is located to the west-southwest at a distance of about 600 feet. The closest building (apprevt-ately 22 feet hich) is located directly east at a distance of about 60 feet. In the ptst ten years Dow bas =aintained two Bendix-Frie: Aerovane vind syste=s. The locations are shown on Figure 2A-3 T; instrurents are the three-bladed propeller type with a starting speed of 1 to 3 =ph. Continucus strip chart recorders are utilized with each instru=ent. One instru=ent is located on a 60-foot =ast (telephone pole) alongside Building 417 within the plant co= plex. Building 417 is a flat roofed building about 15 feet high i= mediately east of the =ast. About 50 feet south of the =ast is a long building lying in the east-west direction about 30 feet high. There are less restrictions to the north and west. The general location is indicated on Figure 2A-3 _ae other vind system is on the top of a 30-foot "TV" type-triangular steel =ast on the top of Buildir.g 47 This building is a large three-story building on the northwest edge of ;he Dov co= plex. Thus, total height aboveground is about 60 feet. The inst 2 a=ent is on the western edge of the flat roof. There vould be little obstruction to airflow from the west. From the east, and particularly the southeast, other plant huildings, although none higher than Building 47, =1ght have influence on the airflow. -(" Weather records began in Saginav in 1896, the same starting date as Midland, and since 1947 have been taken by FAA personnel at the Tri-City Airport. Besides the usual c11=atological data on precipitation and te=perature, -there are also hourly a12 eay observations of sky condition, visibility, vcather, and winds. Although not su - arized, these data are available as microfilm copies of original data. Wind velocity and. direction are meacured with a USWB Type F-420 C cup ane=o=eter and vind vane set. Recordings are =ade by visual inspection of dials; there is no continuous analogue record. At Saginaw, vind sensors are located on a 20-foot =ast well away fro: any obstructions and on very flat grass covered land. Te=perature and dev point are =easured at the sa=e location, but precipitation is =easured with a standard dipstick type of rain gauge on top of the flight service building. GuamAL SITE ClIMAT0IDGY TEMPERATURES MID PRECIFITATION Although the Midland climatological data are certainly the closest to the proposed nuclear site, the Sagir.av data vill also be used in this discus- .sion.since_it ls = ore adaptable for analysis. .A comparison of the climatol-ogy of these two stations will help to detect differences, if any, in climatic elements due to the added roughness and heat sources of Dov. In a.later section, so=e of the Tri,-City Airport data are used in the dif- / } fusion climatology analysis. 00022 2A-4
A 9 Tables 2A-1 and 2A-2 and the folleving associated descriptive paragraphs ' ") are taken directly frc= the C W atological Su== aries prepared by A. H. Eich=eier, Michigan State Cli=atologist. CIlMATE OF MIDIRID, MICHIGAN Weather data for the Midland area show that the highest te=perature ever recorded here is 106 degrees en July 24, 1934 and July 12 and 13, 1936. The icvest te=perature of record is 30 degrees belev sero recorded on February lo, 1912. Te=peratures reach the loo-degree = ark in abcut ace su==er out of six and days with 90 degrees or abcve average 14 per su==er. At the other extre=e, te=peratures fall to zero or lever on an average of six times during the vinter season. On the basis of =ean temerature, Januar/- 1912 is the coldest =enth of record with a =ean reading of 8.2 de-grees. July 1935 is the warmest =onth cf reecrd with a =ean te=perature of 77 9 degrees. The average dates of the last freezing te.:perature in the spring and the first.in the fall are May 12 and October 2, respectively. Precipitation is heaviest during the crop season and averages 58 percent of the annual total during the six =cnths of April through Septe=ber. The heaviest rainfall is in June with an average of 3 15 inches. The largest =enthly rainfall of record is 8.40 inches in April 1909 and the c=allect =cnthly total is 0.01 luch in March 1910. The heaviest intensity of rain-fall occurs in connection with su==ertime thundershower activity and the p greatest recorded 24-hour a= cunt is the 4.31 inches which fell en July 15, -e i ~1932. Hourly intensity of as =uch as "1.10 inches occurs with a frequency 'V of once in two years and two hourly intensity of 2.ho inches or more occurs about once in two years. Two inches of rain in two hours vill occur about once.in.25 years. Twenty-four_ hour.br a=ounts of as much as 3 7 inches and 4.2 inches vill occur about once in 25 years and 50 years, respectively. Snowfall totals 33 3 inches during an average vinter at Midland. However, there has been considerable variation in seasonal totals with a= cunts ranging from as little as 11.8 inches in the 1932-33 season to as =uch as 72.4 inches in the 1951-52 season. Measurable a=ounts of snow have cccurred on eight of the twelve =cnths but there are usually caly five or six =cnths that record =easurable a=ounts. Cloudiness.is greatest.in the late fall and early winter, a condition accen-tuated in Michigan'6 Inver Peninsula by the presence of lake Michigan on the vest and, to sc=e extent, IAke Euron on the east. Prevailing vind direction in the area is southwest and average hourly velocity is greatest.a the early spring and lowest in late su==er and early fall. / \\_ v 009?P. 2A-5
TABLE 2A.1 ,\\ U 5 Dff aeruspT of COhwitet wf athf t Supt AU = coe...rie..m. mient,s i asne, s.rvie. CUM ATCGRAPWT OF ?NS 'JMlf tS Int *s =o ao 20 urms 43* 37' CUMATOLOGICAL
SUMMARY
" ' ' * ' " ' d i *8 "1 ** ** w.amros e4+ 15-ELrf maogut* 647 reet waans ano trTerwes rao Psa:co 1932 - 1961 4 l M...me.,. a y. T mp.r tn. t*F) Pr.apitano. Tee.:. u.en. d l I jo ! I'""*'**"* w e. Entrema snow, sleet I 3 l j i 3s Man r Mia s' a i I l G.l l i 1 t .a l l 5 m 5 = 2 J. lI y p,1Q J'o 1 I a - -J =es re c,, is i.t 2 i4 s e ae i Vi 1 a. i 1 2 !! a i. 3 ! 1 5 h n 2.i a. 3! me o
- q 2
g g > lt3 4; 2ja 8lC E 2 E 3 > ;m 3 2 2 0 2 2 a 3 (a) 30 l 30 30 f 30 30 Jo 30 J0 30 ' 30 l JO ; 30 30 30 JO 30 JAJrVAaY 31 9;17.3 24.6l 61 1950 -20 1959 1220 1.69 1.40 1949 8.4 23.3i1943 0.0i1954 S 0 15 29 2 JAmuAaY 24.7 59 19 2 -21 1936 1180 1.77 1.50 L938 8.5 29.4 1946 12.Si 1946 4 0 13 27 3 rssauAar i risatARY 33.0 16.4 32.9l 79 ' -14 1948 980 2.04 1.68 1948 S.7 14.Si1948 1*.0t1942 6 0 6 25 mAacM 1945* MAncu 41.6 24.2 Arart $6.S 35.5646.0t e6 1935 11 1954 570 2.61 1.96 19e1 1.3 0.6 1952 6.6 1952 6 0 12 0 ApnIL nAY 69.1 46.3[57.7 94 1934 25 1947 250 2.96 1.94 1955 T 1.0l1935 1 0119 5 7 O 2 0 MAY Jutra 79.3 56.5167.9 104 1934 35 1941 60 3.15 2.69 1935 00 0.0 0. 01 6 3 0 0 0 Just Jul.T 84.1 60.4 72.3 106 1936+ 41 1953 10 2.44 4.31 1932 0.3 0. 01 0. 01 5 6 0 0 0 JULY AUGUST 82.1 $9 70.6i 99 1955 36 1934 20 3.00 3.54 1945 0.0 0.0 0.3 6 4 0 0 0 Aucust stFftn3ER 73.0$1.8!62.sl96 1953* 26 1932 130 3.11 2.10 1947 ? 7' 1942 7 1942 6 1 0 1 0 st r7Enssa ocToasA 62.9141.9j$2.4 84 1951 17 1936 390 2.70 3.96 1954 0.1 1.3 1943 1.0 1943= S 0' O 0 octossa 30vaststa 46.4! 31. Sj 39.1 79 1950 1 1949w 780 2.37 1.40 1952*>3.3 17.3 1951 10.0 1940 6 0 2 17 0 movanasa r.51l1120 19 2.94 1.77 1942 l 6.0 21.s 1951 e a 1951 S 0 12 27 1 oscansaa .osanssa 24.a! 21.42 as.1 64 1934,-16 4 .m i .i ., m, i ,r... Year Se, 34 44.3 106 1936 -21 1936 6710 29.74 4.31 1932 3.3 29.4 1946 12. 1946 67 14 de les 6 y, TABLE 2A.2 . ([s j a-wanum e, eeunucten-.., em.n r i . Coe,... nc..m. ces e m.ra ca reur C1Juarecsargt Or fus Uwff te stA*ts wo as - 27 u ". CUMATOLOG CAL SfJMMARY ""'c " S****'" '" 12 ' ' w-cmce
- 4* w w ELIT scacemet(62 raat wtaws ano stToruts r*n PttiCD ge;e - get$
Temperature (*F) Precipitahon Tota:e trach +st M a number of ' O Tem p.r eNees M no Entremes snow, sleet e 2 l Man Mia g L 4 o a$ l a e a j 12 ? A El 7 g i.* I..l e b !as h a .a
- ha 2:
2-i
- 3 o
s .6 ; 1 c t & g a 3 3 3 17: jr I P !m 3 a = 3 3 o 3 ca 4 3;3.n !n 1*o 1 2 2 oeoa 2 ;z 3 m3 2 2 C 2 % a > n. J 3 (al 30 M 10 V1 10 30 M 30 30 l 30 30 M 30 M 30 30 JawtanT M.4 U.* 23.? 62 1953*.-17 1951 1217 1.to 1.26 1849 8.8 19.7 1941 1.1 1927 5 0 17 29 2 Ja5" a t? FE M 4 V ?1.) g Iti.1 - 23.7 67 1910 18 1914 1223 1.t* 1.*6 1910 8.! 23.4 19)? 5.? 1962 4 0 15 27 2 rtnt;att rava 40.1 24.4 32.1 82 1954 -6 1948*
- C 1.95 1.f6 19 2 6.! 10.3 1147 12.8 1947 0
7 25 0 PA *c w a n ti. St.e 14.6 44.8 86 1e42 11 1954 613 2.44 1.12 1941 1.9 11.1, 1952 I?.4 1952 6 0 11 0 4'4?L HT 67.9 45.1 St.3 94 19'4 21 194? 'N 3.14 2.19 1942 5.7 19)$ 4.5 1935 7 O 2 0 PA t 73 3.30 2.99 1931 0 0 0 6 1 0 0 0 J";w! JTrt 79.1 $1.6 te.1 10.4 1*)4 12 1942+f jut? 83.8 18.8 71.5 til 1936 41 1045* 10 2.11 1.20 19.i' O O O 5 6 0 0 0 J 17 acCUTt 91.2 57.9 M.6 102 1031 42 1**6 30 2.!S
- 1. '1 1941 0
0 0 5 0 0 0 rJ c7 TEP*tM31't 72.7 53.7 61.7 103 1953 27 1942 153 2.92 1.27 1941 195)* 1911* 6 2 0 1 0 St"92D 0C790t 41.4 40.9 11.1 86 TM )
- 20 1942 420 2.49 4.89 1H4 7.e 5.0 1911 1.c 191) 0 1
0 cmER BCV DRER 41.1 30.7 17.9 60 1950 -3 1949 900 2.19 1.e3 ggjg 3,9 gy,e g3,3 q,3 gg :1 6 0 4 18 4C' O irR 1.?' 1 47 1909 9.7 26.71 1929 14.7 1929 5 0 14 28 1 tt 93r2 08 Car 1ho 33.5 20.9 27.2 61 1911 -1). 195I nLC 3 J"*7 l
- 7.3.
1 0"*. j CEO. E f:. Year 16.7 17.8 47 ) Ill 1916 1s 1934 6 m I 28.44 4.58 1954 46.6 26.71 1929 14.7 1929 65 16 57 147 $ Yur I I (el Average length of record, years. Also os earlier datea, sostie,-or years. + [ T Tre. en amt.unt too sma!! to musure Inu than ese half. \\ r
- Same 6S'F (G
2A-6 00, W..' 0-
CLDiATE OF SAGINIS, MECEIGAN ~ The city is far enough frc= Saginaw 3ay and IAke Euron to be considered an inland location, but it sc=eti=es cc=es under the local influence of Saginaw Bay if there is a relatively strong northeast vind blcving inland frc= the bay. The general cl1= ate is =odified, as in other parts of the Lever Peninsula, by the prevailing vesterly winds being v=-a 4-the vinter and cooled in the su==er while crossing Lake Michigan. Available veather data for the Saginav area show that the highest tegera-tre ever recorded here was degees en July 13, 1936, and the icwest of m reccrd was -18 degees en February 9, 1934. Abcut ene cut of seven vinters does not have a te=perature as icv as cero. At the other te=peratre extre=e, 100 degrees or higher is recorded in abcut one su==er cut of fcur, and days with 90 degees or abcve average 16 per su==er. The =ean te=perature of 12.4 degrees in February 1934 =akes that =enth the ecidest of record, and the =ean te=perature of 76.1 degrees in July 1935 gives that = cath the dis-tinction of being the mu=est. The average dates of the last freening te=p-erature in the spring and the first in the fall are May 5 and october 11, respeetively. Precipitation received during the grcving =cnths, or " crop season," (~ April - Septe=ber) averages 59 percent of the annual total. Heaviest rainfan is in May, which has an average of 3 1 inches. The driest =enth of the year is January with an average of 1.60 inches. The greatest a= cunt of rainfall ever received in any one =onth is 8.15 inches in September of 19h5 The least a= cunt ever received in a =cnth is 0.18 inches and thic a= cunt was t y =easured in tvc different =cnths: Nove=ber 1939 and october 1952. The - heaviest recorded 24-hour a= cunt is 4 58 inches, -inich fell en October 3, 1954. The accend grentect 24 "~" ~"~
- s 3 35 inches and feH cn Au-gust 31, 1945 Sncvfan totals 46.6 inches, and seven =cnths of the year have measurable a= cunts during an average vinter. January has the =ost sncv, averaging 8 9 inches, but February is a close second with 8.8 inches. The heaviest sucvfall recorded for a single day is 14.7 inches, and this occurred on December 19, 1929 The heaviest =enthly fall of reecrd is 26.7 inches in i
Dece=ber 1929 C1cudinesc is greatest in late fall and early winter, and least in spring i and su==er. This is accentuated, especially late fall cloudiness, by the i prevam 3 vesterly air currents passing over Lake Michigan. Te=perature l contrasts between the colder air and relatively va = vater are greater at that ti=e, and the result is the addition of va:=th and =cisture to the lower i layer of the air, causing instability and later, condensation and cicudiness. Saginav is not affected by this condition as =:uch as lcealities near Lake ,Michi an. Jovever, the entire Lover Peninsula has increased c1cudiness frc= 6 this action during this pericd of the year, but also enjoys var:er te.:pera-tures than vculd acr= ally cecur at this latitud 1 i i .v 000?5 2A-7
[b]. DISCUSSION Although Midland has had colder record lows and Saginaw var =er record highs, it appears that Mia7n-d averages about 1 F var =er than Saginav. The heating degree-day totals also indicate the var =er te=peratures at Midland. Due to the s1=11arity between these two stations as to topography and distance from the Great Iakes, it is believed that this te=perature difference is possibly due to the Midland station being in the =iddle of a che=1cnl =anufacturing plant co= plex. An exa=ination of average annual te= pere *.ures for only those years when the Saginav station was either at the Saginaw M=icipal Airport, k 5 miles east of Saginaw, 1938-1947, or at the Tri-city Airport, 1947-to date, indicates this tenperature difference is in the 1 5 F to 2.0 F range, 1938 through 1956. Precipitation, annna17y, is 1 34 inches greater, or 4.5 percent, at Midland than at Saginav, but the seasonal distributions are quite s4-iln. Saginav on the average gets =cre sncv. In general, the a=ounts and frequencies of precipitation are quite similar.at the two stations. There is certainly nothing to indicate that these two locations are in dif-ferent cli-ntic regimes. ' a:;Vt nWEATHER TIRONG WINDS AND nUIwtA720 EMS o. Strong vinds and thunderstor=s occur infrequently in the lower De-4=sula ( of Michigan. The =ean annual nu=ber of days with thunderstor=sil at Flint, 50 miles southeast, are 33 The surface vind roses are discussed elsewhere in this Teport. However, at Flint, the highest vind speed recorded was 81 =iles per hour. No higher velocity is rereted for the State of Michigan (l). ASCE Paper No. 3269 gives 85 miles per hour - 4 a= vind velocity.in this area based on a LOO-year period of recurrence. TORNADOES A nu=ber of tornadoes have occurred in Michigan. For 43 years of record between 1916 and 1958, three tornadoes have been obserygd.in Mid'a d county and two have been observed in the vicinity of the site ( ). About 23 tornadoes have been observed in the 43-year period of 1916 through 1958 in Midland county and the adjoining six counties of east central Michigan. In the whole State of Michigan, in the years 1916-1958, 177 tornadoes were observed. The site lies within an area of frequency of ten tornadoes during the h0-year period of 1916-1955 In addition, the site is within an area _ reporting.13 tornadoes per.1 degree. square between 1916-1961. p' O 000 6 2A-8
s DIFFUSION ClIV.ATOIEGY i SUEFACE WINDS Annual surface vinds are su:::ariced for Dov and the Tri-City Ai port in Tables 2A-3 and 2A h, respectively. The Dev data are frca a six-year s"-9 y prepared for 1960-65 by rev persennel and the T:1-City data are frc= a five-year su==ary prepared by the national Weather Eeccris Centerd,. 2 e data are not in the sare period but should s+ R1 be indicative of sirnif-ican: differences cr s1=ilarities be ween the tvc locations. The significant difference between Tables 2A-3 and 2A L is in the vind speed and frequency of calm. The average =cnthly speed at Dev is sc=evhat 1cver than that at Tri-City Airport. The principal difference is probably one of definiticn. Ihe Dov hourly vind data are reccrded "~my each hou-frc= an er-*"9 tion of the continuous vind speed and direction readings for the past hour. An " eye ball" average of this continucus reccrd for the hour is recorded. The Tri-City data ecce frc= an " eye ball" average of the vind speed and direction dials on the. hour. The-averaging pericd-at Tri-City is, at the = cst, a few =inutes. The hour averaging re:hed vill "s=coth cut" the observable extreres: reported calms vill be less frequent and the peak speeds v4 he reduced. Reported hcurly cal =s are abcut three tines as frequent at Tri-City as at Dov.and even then vere only 1.6 percent of the observations. However, the percentage frequency of vind speed in the ranse of 2-3 =ph is greater at Icv. It should be pointed cut that the hourly averaged data are =cre appropriate to the diffusion =cdels to be en- -s ) 71cyed later than are " spor," measure =ents of vini. (- P 8 / 00027 2A-9
f k Table 2A-3 i ).:nual Wind Sceed (Meh) and Direction Wecuenev Dov Chemical Conpany, Midland, Michigan Ave Wind Percent Wind at Velocities of Wind Direction 1-3 4-12 13-24 25+ Total Velocity N 1.4 3.1 0.3 +* 4.9 5.5 NNE 1.0 2.2 0.'3 0 3.6 6.3 NE 0.9 .2. 7 0.7 0 4.4 7.2 ENE 1.1 5.3 1.3 + 7.9 7.8 E 0.6 3.6 0.4 + 4.7 6.8 .ESE 0.4 1.7 0.5 0 .2.1 .5. 7 SE 0.3 1.7 + 0 2.1 5.2 SSE 0.6 2.0 + 0 2.7 4.7 S 1.1 7.8 0.4 + 9.4 6.6 .SSW 0.8 8.5 1.0 + 10.5 7.7 SW 0.7 6.9 1.2 + 9.0 8.0 (. WSW 0.6 5.6 0.8 + 7.1 7.6 W l.3 10.0 1.7 0 13.-2 7.6 WNW 1.1 5.4 1.0 + 7.6 7.4 NW 0.7 3.5 0.6 0 4.9 7.2 NNW 0.8 3.9 0.5 0 5.3 7.0 Calm 0.6 Total 33.4 73.9 10 7 0.1 100 l NOTES: Mean Data for Years 1960-1965 from the anemometer at Building No. 417. .Less than 0.1 percent l 000?8 t i j 2A-10 l....- -..
b Table 2A-h Annual Wind Sneed (b*th) and Direction Frecuency Tri-City Aircort, Saginaw, Michigan Ave Wind Percent Wind at Velocities of Wind Direction 1-3 4-12 13-24 25+ Total Velocity N 0.4 2.4 0.5 +* 3.3 8.3 NNE 0.3 3.0 1.7 0.1 5.1 10.8 NE 0.4 3.3 2.1 0.1 5.8 11.2 ENE 0.2 2.6 1.3 0.1 4.3 10.7 E 0.2 1.3 0.5 + 2.0 9.3 ESE 0.4 3.0 10 + 4.4 9.3 SE 0.5 3.0 0.8 + 4.3 8.7 SSE 0.3 3.6 1.5 0.1 5.5 10.2 S 0.4 .2. 6 0.8 + 3.8 9.2 SSW 0.4 4.9 2.7 0.2 'B.3 11.1 (' SW 0.7 6.6 '3.6 0.3 T1.3 '10.9 WSW 0.5 6.9 5.6 U.9 14.0 13.1 W 0.5 4.7 l.8 ._0. 2 72 _10.0 WNW 0.3 4.3 3.0 0.3 7.9 12.0 NW 0.4 3.3 1.7 0.1 5.5 10.8 NNW 0.3 3.9 1.6 + 5.7 10.3 Calm 1.6 Total 6.2 59.4 30.2 2.6 100 NOTES: Mean Data for Years 1949-1953. Less than 0.1 percent.
- (
t 000ES 2A-ll
[ Southwest is the most frequent and southeast the least frequent wind direc-(( tions at both places. This is also true under light winds (1-3 =ph) at Tri-City but is not as clear a directional preference as under light winds at Dev. This, perhaps, is indicative of the influence of the plant buildings near the Dow ane=c=eter. In no case is there a =arked directiocal preference at either location nor is there a significant difference in wind direction frequency distributions for the two locaticus. Tables 2A-5 and 2A-6 contain seasonal wind rose data for Dow and Tri-City. Figures 2A-4 and 2A-5 also show these data. i The sa=e general ec==ents in reference Tables 2A-3 and 2A 4 apply to Tables 2A-5 and 2A-6. 'Je note that south and scuthwest directions are especially prevalent in the s" er and that the southeasterly direction is particularly lacking in the fall and vinter. The su==er =cnths have the icwest wind speeds with fall a close second. Similarly, su-er and fall =onths have the highest frequency of cal =s. ' DURATION ~0F TALMS Table 2A-7 shows the duration and occurrence of cal =, or :ere wind, in the mean hourly wind speed data for Building 417 (Dev) for the su==er and fall months in 1966 and 1967 These =onths were picked to study because the su==er and fall seasons have the Icwest mean wind speeds of the year. On a mean hourly basis the =ax1:=.:= duration of cal = conditions is five hours , p in October 1966. The largest percentage of total hcurs of cal = observed ^j cn this basis is two, percent in Septe=ber of'both years. In July-nove=ber 19eo, nine of the le occurrences of cal = mean hourly wind speed were of ~ one-hour duration; in 1967, 12 of the 18 occurrences of cal = =ean hourly wind-cpced were of one-hour duraticn. .i e f. ! s_ d 000:'!? 2A-12 t m
i e f Table 2A-5 Seasonal Wind Speed (Mph) and Direction Frequency Dev Chemical Cc=rany, Midland, Micnigan Spring Summer Fall Winter Wind Ave Ave Ave Ave Direction Wind Speed Wind Speed Wind Speed Wind Speed N 4.2 6.5 5.9 4.6 5.2 5.3 4.4 5.7 NNE 3.5 7.1 3.7 4.5 3.4 5.5 3.8 7.9 NE 5.9 8.5 4.5 6.1 3.2 6.8 3.9 7.6 ENE 12.0 8.8 8.1 6.8 3.8 6.9 6.2 8.5 E 7.0 8.1 4.8 5.8 3.2 6.2 3.6 7.5 .ESE 3.1 7.. 0 .2. _1 5.3 .1. 7 5.0 .1. 7 5.8 SE 2.8 5.6 1.8 4.7 2.1 5.4 1.6 5.2 SSE 2.8 5.1 2.7 4.4 3.3 4.7 1.7 4.6 S 8.3 7.2 9.2 5.6 12.9 6.5 7.2 6.9 SSW 7.1 8.5 9.5 6.7 13.3 7.4 12.1 8.2 SW 7.0 8.8 7.6 7.1 9.6 7.6 11.8 8.6 . (V WSW 6.5 9.1 7.6 6.2 6.8 7.3 8.0 7.6 W 10.3 8.3 12.9 6.1 12.7 7.5 16.6 8.4 'WNW '7. 3 8.5 '7. 8 5.8 6.5 ^7. 2 8.^7 ' 8.1 NW .5. 5 8.3 _5. 0 6.0 4.6 6.5 4.4 7.9 NNW 5.2 8.3 5.8 5.7 5.5 7.0 4.6 7.6 Calm 0.4 1.0 0.7 0.4 NOTE: Mean Data is for Years 1960-1965. Spring is March, April and May. 4 'N 0003' 2A-13
Table 2A-6 Seasonal Wind Speed (Mph) and Direction Frequency Tri-City Airport, Saginaw, Micnigan Spring Summer Fall Winter Wind Ave Ave Ave Ave Direction Wind Speed Wind Speed Wind Speed Wind Speed N 3.4 8.2 3.4 7.1 3.8 9.5 2.8 8.5 NNE 6.9 12.4 5.2 8.9 4.3 11.5 4.1 10.3 NE 8.8 12.7 6.2 9.7 3.5 10.9 5.0 10.7 ENE 5.8 12.1 4.7 9.1 2.6 9.5 3.9 11.2 E 3.1 10.2 3.4 7.1 1.2 9.0 2.0 9.9 'ESE '5. 6 '10 15 ~ 4. 3 7.4 "2 17 ~ 8.1 ~5 /2 1023 SE 5.0 9.6 4.2 6.7 3.9 8.5 4.3 9.8 .SSE .5. 0 10.6 5.2 8.0 6.1 .10.3 5.8 11.6 S 2.7 9.7 4.1 7.6 4.8 8.7 3.7 10.8 SSW 5.3 10.8 9.4 9.8 11.1 11.3 6.8 12.6 SW 6.6 11.6 12.1 9.1 14.7 10.8 12.0 12.7 WSW 13.1 14.7 12.8 10.9 13.5 11.9 14.7 14.7 W 6.5 10.5 6.5 8.4 7.9 9.8 8.0 11.3 WNW 8.9 12.5 6.3 10.2 7.4 12.3 8.8 12.4 NW 6.6.11.8 '5.3 8.6 4.2.10.~ 7 5.8 11.4 NNW 5.9 10.5 5.7 8.7 6.8 10.8 4.8 10.9 Calm 0.8 2.8 3.1 0.u NOTE:. Mean Data is for Years 1949 through 1953. Spring is March, .. April and May. .. /3 0003' 2A-14
5 Table 2A-7 Frequency and Duration of Cab Midland, Michigan Calm - 0 Mph 1966 1967 Percent Percent Total Fraction Calm Total Fraction Calm Dura-Fre-Hours of Total of Total Fre-Hours of Total of Total tion quency of Hours Recorded quency of Hours Recorded Month Hours Ntu::ber Calm Recorded Hours Number Calm Recorded Hours July 1 1 1 1 1 2 0 0 0 0 3 2 6 7/744 1 1 3 4/408 1 Aug 1 4 4 5 5 2 0 0 0 0 3 0 0 4/702 1 1 3 8/734 1 ( Sept 1 4 4 4 4 2 2 4 2 4 3 1 3 2 6 4 1 4 15/720 2 1 4 18/710 2 Oct 1 0 0 1 1 2-4 0 0 0 0 5 1 5 5/738 1 0 0 1/744 0.1 Nov .1 0 0 0/710 0 1 1 1/711 0.1 p Note: These data are from one-hour averages of vind speed recorded by the Q Guard at B2141d4"a No. 417 of the Dow Chemical Plant. 2A-15 ^
1 The duration and occurrence of vinds of 1 mph and less for the sa=e location (' and period of record are shown in Table 2A-8, The October 1966 records shov one period of such light vind of lb hour duration; however, the su==er =enths of July-Septe=ber show a greater occurrence of vind of 1 =ph than the fall =onths of October and Nove=ber. FRECIPITATION WIND ROSES, KEDUdiD Table 2A-9 shows the precipitation vind roses for Dov for the period of 1963-67 The vinter =enths are charactericed by two m4-=s of occurrence, na=ely, the R3 quadrant and the SW quadrant, as should be expected as a result of nor=al extratropical cyclones (or vinter storms) =oving through the area. Precipitation =odels concerning this are published by =any in-vestigators. During the late su==er and fall =onths precipitation occurs most frequently with wind directions fro = the south to southwest. Synoptic scale stoms 3 occurring during the =onth of November appear to cause relatively few hours of peipitation when +he flow is from *.he south to vest. southwest. \\ D 00ma: 2A-16 '- ~' - 4 4 w .v ,<n, .,w.-e, -e, ,.,,.--------e s-- -e,-ee +. -,,,~,-~
Table 2A-8 ,( Frequency and Duration of Cal = Midlanc, Micnigan Cal = 1s o or 1 Mpn 1966 1967 Percent Percent Total Fraction Ca22:2 Total Fraction Caln Dura-Fre-Hours of Total of Total Fre-Hours of Total of Total tien quency of Ecurs Recorded quency of Ecurs Recorded Month Hours IPuber Cal = Recorded Ecurs I?mber Cal = Recorded Ecurs July 1 5 3 4 4 2 3 6 1 2 3 2 6 o o k 3 .12 2 8 5 o o 1 5 6 1 6 o o j 7 o o o o 8 2 16 o o p 9 o o o o 10 o o o o 11 1 11 62/744 8 o o 19/408 5 Aug 'l 6 6 12 12 2 3 6 2 4 3 5 15 2 6 4 1 4 1 4 5 1 5 1 5 6 o o o o 7 o o o o 8 o o 1 8 9 o o 36/702 5 1 9 48/734 7 Sept 1 5 5 lo lo 2 4 8 4 8 3 o o 1 3 4 3 2 1 4 5 o o 2 10 6 3 18 3 18 73-U 7 2 14 1 7 8 1 8 1 8 9 1 9 74/720 lo o o 68/710 lo 00035 2A-17
1 i \\ Table 2A-8 (Contd) i Frequency and Dumtion of Cal = Midland, Micnigan Calm is O cr 1 Mpn f i 1966 1967 Percent Percent 4 Total Fraction Cal Total Fraction Cal I Dura-Fre-Ecurs of Total of Total Fre-Ecurs of Total of Tota' tion quency of Ecurs Recorded quency of Hours Recorded Month Hours Nu=ber Cal Recorded Hours Nu=ber Cal Reccrded Hours 1 Oct 1 8 8 5 5 2 1 2 3 6 3-13 0 0 0 0 14 1 14 24/738 3 0 0 11/744 1 Nov 1 2 2 1 1 2 1 2 3 6 + .3 1 3 7/710 1 0 0 7/711 1 if C x [ I k i l i 4 i i 4 j.- d .N0fE: These data are frc= one-hour averages of vind speed recorded by the gaard at i . Building No. 417 of Dov. gy, 2A-18
Table 2A-9 [( s Monthly Percent Occurrence of Wind Direction When Scre Fon:: of Precipitation Is Present Dow Che::lical Plant, Micland, Micnigan 19o3-1907 N NNE NE ENE E ESE SE SSE Jan. 14.8 7.1 9.9 3.5 14.1 2.1 1.4 4.9 Feb. 9.3 11.6 3.9 7.7 7.7 0 0 2.3 Mar. 0.8 1.6 8.5 19.0 14.6 6.5 3.6 6.5 Apr. 4.8 6.1 14.5 13.5 20.5 13.5 7.9 4.8 May 0.7 1.4 12.6 20.9 10.5 7.7 3.5 7.0 June 7.7 15.4 13.5 7.7 1.9 5.8 1.9 0 July 3.5 2.3 1.2 4.6 9.3 7.0 2.3 1.2 l Aug. 5.4 7.0 2.1 5.9 7.5 7.0 6.4 4.2 Sept. 3.7 2.8 6.5 5.6 0.9 2.8 2.8 6.5 Oct. 4.7 3.5 3.5 4.7 7.1 1.2 0 2.4 Nov. .11.7 0.8 1.6 1.6 0 0 0 6.2 Dec. 2.4 2.4 7.3 18.3 22.0 3.7 2.4 4.9 - rO D S SSW SW WSW W WNW NW NNW 6% Jan. 2.1 6.3 14.8 2.8 3.5 0.7 5.7 .6.3 200.0 Feb. 8.5 10.1 10.9 3.9 2.3 3.1 4.7 14.0 100.0 . Mar. 6.5 6.1 4.9 6.1 7.3 2.0 3.6 2.4 100.0 Apr. 4.8 2.6 0.9 1.7 2.2 0.9 0 1.3 100.0 May 8.4 8.4 1.4 12.6 4.2 0.7 0 0 100.0 June 1.9 0 7.7 9.6 5.8 ~7.7 1.9 11.5 100.0 July 9.3 12.8 7.0 5.8 13.9 11.6 1.2 7.0 100.0 Aug. _16.6.11.8 4.2 4.8 7.5 2.7 2.7 4.2 100.0 Sept. 20.4 8.3 19.4 4.6 5.6 4.6 3.7 1.8 100.0 Oct. 16.5 21.2 10.6 8.2 7.1 4.7 2.3 2.3 100.0 Nov. 4.7 7.0 4.7 1.6 24.9 8.6 10.2 16.4 100.0 Dec. 7.3 9.8 11.0 1.2 1.2 2.4 0 3.7 100.0 l l NOTE: Shows percent of the time, during precipitation, when the wind is from the indicated di;ection, computed separately for each month, i, d gott'37 2A.26 2A-19 w
[ DCW MONTELY SUMMARIES OF WIND SPEED AND GUSTINESS a. The average one-hour vind speed (=ph) as a function of time is shown for each month in Table 2A-10 for 1966. Inspection of the table indicates that slow wind speeds, 3 5 to 5 0 =ph, occur dur-i ing the nocturnal hours of June to September. The diurnal dis-tribution of winds in all =onths shows higher dayti=e vinds than at ni6htti=e, as should be expected. The =ini=um hourly wind speed occurs at 0500 local ti=e in July and August, b. Dow has observed the average "gustiness" of the wind for several l years at Building kl7 Table 2A-11 shows the results of these observations. The " guard-observer" noted and recorded each hour the range of a::i=uth of the vind direction in degrees. These are converted to a Dow gustiness category as follows: Dov Gustiness (c. de) Pasquill Category
- Range ce Category 1-
>60 > 10 A,B,C 2 30 to 60 5 to 10 D, E 3 15 to 30 2-1/2 to 5 E, F (v[D 4 <l5 <2-1/2 ~F The above table also indicates the c9gesponding value of as in accordance with the diffusion studies of Slade,W1 and-the corresponding Pesquill category. The highest hourly Dow category (pcar diffusion) of 2 33 occurs at 0700. local time in September with a =ean speed of 4.23 =ph; this corresponds to-a Pasquill Category E. Inspection of Table 2A-ll indicates that the season for pocr diffusion cli=atology in Midland is late su==er and early fall. \\ ' h._./ OON.B 2A-20 Amendment No. 2 5/28/69
' sq (3 p U (.) b Tuble 2A 10 Wind Speed Month 1s Dunmary Dow Chemical Plant, Midland, Michigan, 1966 (Miles per Hour) I HOUR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 100 6.35 5.43 7.94 5.63 5.35 3.71 3.74 4.20 5.07 7.29 7.83 6.52 200 6.2d 5.29 7.74 5.63 5.23 3.37 3.77 4.19 4.93 7.16 7.97 6.45 300 6.42 S.14 7.13 5.87 5.52 3.97 3.55 3.81 4.67 7.23 7.60 6.55 400 6.45 5.39 7.00 6.20 5.81 4.33 3.60 3.61 4.43 7.42 6.97 6.48 500 6.74 5.64 7.i6 6.40 5.81 4.40 3.45 3.45 4.03 7.42 6.77 6.71 i-600 6.97 5.32 7.16 6.80 5.68 4.33 3.52 3.5$ .400 7.55 7.33 6.65 700 6.d1 5.57 6.87 6.40 6.10 4.90 3.84 4.06 4.23 7.55 7.33 6.45 800 7.39 5.32 6.94 6.77 6.61
- f. 27 4.26 3.97 4.50 7.61 7.60 6.48 y
900 7.74 6.07 7.74 7.93 7.19 L.03 5.61 4.4d 5.60 8.68 7.67 6.61 h 1000 7.90 6.68 8.26 8.67 7.55 6.90 5.97 5.45 6.73 9.84 8.23 7.45 1100 8.06 6.79 8.58 8.90 8.08 7.93 6.68 5.61 7.77 10.84 8.53 7.81 1200 8.45 6.79 9.06 9.50 8.59 8.03 1.00 6.1d 8.00 11.32 8.53 8.55 I Cl300 9.03 7.29 9.61 9.80 8.94 8.23 7.23 6.7i 8.33 12.19 9.07 8.68 m tyJ 400 8.61 7.11 9.d5 9.73 9.39 8.77 7.7d 6.94 8.67 12.61 9.07 8.71 hh500 8.48 7.46 9.65 9.93 9.90 8.77 $.00 7.8d 8.50 12.65 9.27 8.52 1600 8.39 7.43 9.84 9.77 9 97 8.97 5.16 7.35 8.27 11.81 9.40 8.00 10 10.26 9.17 E.48 6.84 8.10 11.16 8.80 7.48 1700 7.90 7.46 10.23 1800 6.97 7.50 9.61 9.00 9.45 8.17 8.19 6.8d 7.47 9.26 8.40 7.32 1900 6.87 6.75 9.61 7.90 8.71 6.93 7.39 5.35 6.33 7.68 8.47 7.42 2000 6.81 6.32 8.61 7.23 7.10 5.50 6.13 4.7d 5.77 7.39 8.30 7.10 2100 6.97 6.21 8.19 6.53 6.06 5.43 d.8L 4.45 5.97 7.32 7.93 7.10 2200 6.94 5.39 7.87 6.03 5.55 4.63 4.39 4.52 5.83
- 7. 26 7.70 7.19 2300 6.68 6.14 7.48 6.07 5.06 4.37 4.00 4.81 5.47 7.61 8.43 7.13 2400
( $9 5.68 7.77 5.73 5.26 3.93 4.10 4.6i 5.23 7.48 7.87 6.94
(< n p ) fG % s! quble 2A-11 Average Gustiness Monthly Swnmary,1966 Dow Chemieni Phtnt, Midhuid, Mlehigan llOUR JAN FEB MAR APR MAY JU JUL AUG SEP OCT NOV DEC 100 2,06 1.93 2.03 2.20 2.06 2.00 2.06 1.84 1.97 2.29 1.77 2.06 200 2.10 1.89 1.94 1.93 2.03 1.91 2.06 2.0$ 2.13 2.29 1.80 2.03 300 2.16 1.89 1.77 2.03 2.16 1.91 2.13 2.03 1.83 2 26 1.70 2.06 400 2.10 1.89 1.90 1.97 2.13 2.0d 2.10 1.9d 1.87 2, 1.73 2.03 500 2.10 1.96 1.94 2.00 2.16 2.00 2.10 2.06 2.10 2.26 ? 17 1.94 600 2.03 2.07 2.03 2.03 1.87 1.93 2.00 2.1U 2.30 2.13 2.i. 2.00 700 2.U5 2.04 1.97 2.03 i.90 1.90 2.00 1.81 2.33 2.00 2.10 ? - 01 800 2.23 2.11 2.10 2.10 i.94 1.87 1.81 1.60 2.23 2.03 2.20 2.03 900 2.16 2.07 2.06 2.00 1.68 1.77 1.65 1.61 2.13 1.87 2.00 2.03 {g 1000 2.16 1.95 1.90 1.90 1.65 1.6d i.58 1.61 1.93 i.77 2.00 2.00 Y 1100 2.0$ 1.79 1.84 1.80 1.52 1.57 1.45 1.3d 1.67 i.61 1.83 1.90 M 1200 1.84 1.64 1.71 1.70 i.42 1.47 i.39 1.29 1.57 i.55 1.90 1.74 1300 1.7d 1.68 1.71 1.73 i.48 1.40 1.45 1.26 1.53 1.48 1.90 1.71 1400 1.87 1.61 1.58 1.77 1.45 1.47 1.48 1.32 1.53 i.52 1.77 1.71 1500 1.81 1.64 1.65 1.97 1.55 1.47 1.48 1.39 1.60 i.48 1.80 1.77 C) 1600 1.81 1.75 1.68 2.03 1.65 1.53 i.55 1.55 1.53 1.58 1.77 1.87 O r0 1700 1.94 1.71 1.74 1.83 i.68 1.70 i.65 1.61 1.63 1.74 1.83 1.90 fh 1800 2.0d 1.06 1.94 1.90 1.68 1.73 1.77 1.81 1.73 1.65 1.80 2.00 i 1900 2.1d 1.96 2.00 1.90 i.81 1.80 1.84 1.8d 2.07 1.74 1.80 1.94 2000 2.1d 1.93 2.00 1.93 1.97 1.90 i.81 1.84 2.23 1.77 1.73 1.94 2100 2.06 1.89 1.90 1.83 2.13 1.93 1.87 1.94 2.03 1.84 1.73 1.94 2200 2.16 1.93 2.00 2.03 2.03 2.03 1.87 1.8d 2.07 1.84 1.77 2.03 2300 2.1d 1.89 1.87 2.07 2.13 2.13 2.03 1.97 1.97 1.90 1.80 2.00 2400 2.06 1.93 1.94 2.03 2.00 2.10 2.06 1.81 1.97 2.00 1.83 2.00
) MEAN SOUNDING ANALYSIS, ANNUAL AND SEASONAL, '\\ FLINT, MICHIGAN Data for the construction of the annual and mean seasonal 1,200 GCT vertical temperature distribution at Flint, Michigan, have been obtained from the National Weather Record Center for the period of 1966 and 1967 The corresponding verti-cal temperature distributions are shown in Figures 2A 2A-10. The annual orning sounding (the mean for the year) shows that there is in the mean a slight te=perature inversion from 990 millibar (cb) to 950 mb. Reference to the four mean seasonal soundings shows that this feature of the annual sounding is dete =ined by the mean fall and summer season conditions. In a later section wherein the nine verst conths in a five-year sample are identifiei for diffu-sion climatology at Midland, it is found that these scnths lie between August and Nove:ber inclusive. 'This fitmug is entirely consistent with the character of the seasonal soundings discussed above. The power plant des 1(1 includes the use of a man-=ade cooling pond as a heat sink. This pond.has an area of approximately 1-1/3 square miles, surrounding the plant on three sides, vest, south and east (see Figure 2A-3). It is es-ticated that, during the sucmer, the mean temperature of the por.d during a 24-hour period la about 106 F and, during the vinter, about 71 F. If these pond-te=peratures are plotted on the mean seasonal soundings, it is seen that on a still day a dry adiabat lapse rate would develop to 610 mb in vinter and to about 590 mb in su=cer.in the absence of any condensation. In the case of air moving over the hot pond from the vest er south, this heat source vculd , [D. Induce 2hmal < turbulence,and.hence. increase the vartical diffusion _ rates. !((j However, In our analysis here, we have not taken any credit for these effects which must be considerable. Air moving from the Dev plant (an aerodynamically rough, neated surface) to the power plant site should contain enhanced levels of mechanically and ther= ally induced turbulence. ~This, as will be shown in a later section, increases the dilution power of the atmosphere. COMPARATIVE CLIMATOIOGY INVERSIONS AND LOW WIND SPEEDS In considering the diffusion climatology of Midland, Michigan,
- is useful to be able to ec= pare that part of the United States with other areas which have been studied previcusly. Be ause the two-hour diffusien model is of
. prime importance and because the metcorn1.ogical conditions which go into this model are typically nighttime conditions, it is r.ost useful to examine night-time statistics en lov vind geads,
- mperature inversions, and cloud cover.
u5}. This has been done by Hesler .The percentage frequency (day and night) for which a temperature inversion occurs belo 500 feet is shown in Figure 2A-11a (reproduced directly from Hosler(15I)w..As expeeted,: minim = percentage frequencies occur In the spring and su=mer. The Rocky Mountain States, the Central States, and the Southeast States have the greater number of hours of inversion. The Great Lakes and Ccastal areas have the IcVest percentage of hours with inversicas at altitudes .A of less than 500 feet. 'For example, during fall (o'rmaT17 the season with the / greatest air pollution potential), about 35 percent of the total hours at 00M. 2A-23 Amendment No. 2 5/28/69
Midland have inversions balev Sco feet. This frequency at Midland is at least V 10 percent lower than that over the Rocky Mcuntain States and large portions of the Central States. I CLCUD COVER Particularly relevant to the two-hour =cdel is the distributien, by season, cf percent of time that the vind speed is equal to or less than 7 cph in associa-tien with nighttime cicud cover equal to or less than 3/10. This distribution is shown in Figure 2A-llb. As shavn in the figure, the Coastal and Great Iakes areas have the lowest frequencies of light vinds and clear nights. For in-stance, in the fall, this is about h5 percent whereas, for ecst of the United States, it is above 50 percent. In the Southwest, Southeast, and Appalachia, the values are greater than 70 percent. RD4 ARKS The diffusion rli n tology, in a gross sense,ls more favorable at Midland, Michigan, than in much of the United States. Hosler(15) st==arizes as follevs: "This (the Great Lakes) area is characterized by frequent storm passages with their associated cloudiness and high vinds, particularly fw m late fall to early spring, which result in relatively lov fre-quencies _cf. nocturnal radiation inversions. An. analysis of climato-logical data for specific stations in this area shows a high occurrence / .of cloudiness edwing night +4me hours, which apparently reflects the gd -effects of the Great Lakes i= parting moisture to the air in its tra- ,jectory over the lake water. Su==er and fall months shev slightly higher frequencies of lev-level stability than do the vinter and spring months." STABIL m VIND CATEGORIES GE*ERAL Over the last 30-k0 years, many investigators have worked both exper tally +1cally en the problem of ctecspherie diffusion (see Sutton and and theo~N for review). Pasquil1 The theoretical solution cost applicable here is the solution for a centinucus point source at the ground surface in an unidirectional vind field of constant speed. This is 1 - 2 2 0 1 Yoe+Z - (1) X= ex"" ena a 5 2 aa y: y ~ where X = concentration, units /=3 Q -= release rate, units /s c = crossvind standard deviation, m 7 cz = vertical standard deviation, c u = rean vind speed, m/s rm { 2A-23a A=endment No. 2 5/28/69
2 4 In Fickian diffusica, c can be identified with 2Kt where K is a constant g diffusivity and t is time. Fcr ground level release, the concentrations given by Equation (1) should be cultiplied by 2 for the reflecticn boundary conditien, and h (height of release) replaces :. An elevated release veuld reduce the grcundlevelconcentratienwithinadistanceofafewstackheightsfrpetg.e release point but has little effect beycnd the point downvind where c:6 >h. Ic shculd be noted that such a point source sclution is applicable only if tha i time of release is long ec= pared to - " " -a " errival at sc=e pcint devnvind. In additien, only the cencentration at the center line of the cicud vill be considered in this repert; hence, the expenential ter: in Equatien (1) is unity. N), the plure-axis fc = cf Equation (1), assu=ing a reflection In Tuclear Safety boundary ccndition, is =cdifled to X 1 (2) - =(no e: + CA)n Q y where C = an experimentally deter =ined ccustant (range 1/2 to 2) A = cross-sectional area of buflding ec= plex frc= vhich source is being eritted, =- This =odification to Equation (1) accounts for the increased dilution in the wake of a building. The constant C is usually assu=ed to be between 1/2 and 2 although explicit measurements in all stability rategories are lacking. Equation (2) represents one methed of calculating the relative concea W tion, X/Q, including the additional dilution effects on the source fre the building vake. A second =ethod, however, =ay be e= ployed in which experi=entally deter =ined dilution factors are used to =odify the ' point source value of X/Q obtained from Equation (1) for a given downwind distance x and Fasquill category. In this study, this second methed of including the effects of cavity diffusion is used in the calculation of the relative cencentration. This subject is discussed in greater depth in the next section. A variety of methods have been used to predict cy and c z as a function !) dis-tance downvind, but the basically e=pirical sche =e proposed by Pasquill 0 is used here. Fasquill proposed six veather classification categories ranging frem unstable conditions with light vinds thrcugh neutral condition and vind to stable ecnditions and light vinds. The classificatien into six categcries (A to F) depends en surface wind speed, insolation in daytime and cicud ecver at night. In these classifications, horicental spreading was represented by an included , angle.for.the.different categories. Vertical. standard deviation-vas given as j a function of distance devnvind for the different categories. The experimental l. diffusien data that were used in Pasquill's correlation vere reasonably ec=- plete fre categor.'.es 3 through D. However, for categories A, E and F and for distances grester 1. ban ene kiloceter, -the chart is essentially extrapelations. ooma 2A-24 c -r--.g.,.- --,--_...,,-.y.-,- ,w,
' rO Turner (9) provided a quantitative method for categorizing the diffusion condi-
- s. V tiens characteristic for a particular hour of the day. This =ethod uses the regular Weather Bureau surface hourly observations.
Near the ground, stability depends primarily on net radiation and vind speed. During daytime hours, with clear skies, insolation (inec=ing radiation) depends en solar altitude, which is a function of time of day, time of year and latitude. Clouds inhibit both insolation and radiation. In Turner's syste=, insolaticn is estimated by solar altitude and modified for the effect of cicud cover and ceiling height. The Turner number depends on vind speed and net radiation index. The stability categories as dete. ined by the =ethcd of Turner are related to Pasquill categories (A to F) as follevs: Atmospheric Ccodition Pasquill Letter Turner Number Extre=ely Unstable A 1 Unstable B 2 Slightly Unstable C 3 Neutral D 4 'Slightly
- Stable E
5 Stable F 6 Extremely Stable 7 For convenience, Turner No. 6 and No. 7 are both cal Pasquill Letter F for purposes of estimating diffusivity. Recently, Slade has.s m ized.=uch experimental data en continuous point source plume diffusion. The su==ary fp includes the. data used by Pasquill.but also =akes use of = ore recent data. '(] Curve of e and c are presented as_a function of devnvind distance and dif-y z ferent Pasquill stability categories. Slade has also given a method for esti=ating the stability categories frc= a continuous record of wind direction. For a ecutinuous plae extending downwind frc= its source, it is possible for .its vertical growth by diffusion in the "=ixed layer"-to be_ inhibited by the presence of an inversion. Hence, a "vertien1 mixing value," c, developed from z experimentally obtained data, may apply only where no other restraint to mixing exists. This inversion imposes an additional restraint on c, for daytime z i stability categories, which may be significant as downwind distance increases. l By definition, categories E and F have pur# ace-based inversions included in the empirically deter =ined c 's. Holzvorth(10) evaluated =eanradiosondeobserva-z tions and nor=al =ax1=u= surface temperature and used the assumption of a dry adiabatic J. apse _ rate to estimate =onthly mean msudmum.=ixing depth (MMD). This i analysis was done for h5 stations in the United States. As discussed in the fc11oving section, the construction of the two-hour and 24-hour codel for the Midland site, Pasquill E and F stability crede=inate; hence, there is no need to discuss the inclusion of MMD in thes.s models. DILUTION DUE TO BUILDING EFFECTS The continuous point source diffusion equations are only applicable to flow over flat unobstructed terrain; the diffusion studies which have led to the su==ari-sation of Fasquill and.Slade for c7 and og as a function of distance and atmos-( ) pheric stability were done over flat unobstructed terrain. FU l i 2A-25 000M I
} Various appza ^e: have been used to account for the effect of buildings on V airborne evncentrations devnvind. These are: (1) 3e " virtual point source" which = oves the theore31 cal point source far enough upvind so that the plume has about the sa:e dimensions as the building, t3 the location of the building; (2) the a idition of a " cavity diffusion" term to the poit t source equations (ie, CA); (2) the use of a cavity diffusion equation per 3e (ie, X = GX/L 77) 2 where K is an empirically determined constart and L is either length downvind or L2 is building cross-sectional area; and (!+) e=pirically determined dilution factors from full-scale diffusion tests. It is believed that the latter apprcach is the correct cne t 2se because: (1) there are sc=e full-scale data, (2) this method acccunts for the difference due to at cspheric stability, and (3) this =ethod reflects directly the effect en airborne cen entrations. A variety f' Dickson, Start, and Markee ll{hese. kinds of data is su=arized in Table 2A-12. data ec=e frc= surface releases cf a tracer on the devnvind side of the 2xperd ental. Breeder Reacter II at the. National Reactor. Test Station (URTS). The cross-sectional area of 665 square meters is for the reactor build-ing itself, althcuch there are other buildings in the ec= plex. The Pasquill categorizations in Table 2A-12 are based en stability ec=:ents of the auther plus cbserved vind speeds. The data frc= Islitzer(12) come from diffusion studies of a tracer released just downwind from the enain MI'R reactor building at NRTS. ,e r. Q Munn and Cole's dataW) are frem studies conducted at the Central Heating Plant at the National Research Council, Ottava, Canada. Releases were from a 10-foot high stack on top of the 60-fcot high Central Heating Plant. This building does have other large buildings crossvind of it. Crossvind arcs were :from 500 feet to 1,150 feet downwind and dilution factors ranged from 2 5 to 40 over the eleven tests. Detailed infor=ation is not given for each test, but a median dilution factor of 10 is reported at a median dis-tance of TCO feet (213 meters). At these dirtances, the releases from the short stack on top of the building would give the same result as from a ground level release due to the mixing within the wake c' the building. I 1 I l l l l R !,D a y 2A-26 I
..\\ . V( h (V O(8 h TABLE 2A-i2
SUMMARY
OF BUILDING DILUTION FACTORS TEST AREA'2 PANQUIil CATEGORY AUTHOR METERS A B C D E F Dickson, Start, 4.4k7) @ 100m 3,5 (6) 0 100m and MarKee
- 2. 8 (7) @ 200m 4.2 (6) @ 200m 1.8(7)@ 40dm 3.9(6)@ 400m 665 1.4(7)@ 600m 3.2(6)0 600m Islitzer i
2400 3.2 (11) @ ll8m 50 (1) @ ll8m
- 2. 9 (11) @ 350m 3.2(11)@ 550m 2.4 (11) 0 850m y
725 10 (11) 0 21$m Io Martin 1.9 (2) @ 152n
- 9. 6 (6) @ 152m 21(2) @ 183m -
NOTE: 1. The buliding dilution factor 2. The number in () is the number of cases available to establish the dilution factor 3. Downwihd distance from release to diiution measurement '3 5'i I l l
-/O Martin's data are =easured concentrations devnvind of the Ford Nuclear ('h Reactor Building en the north campus of The University of Michigan, of Kr85 emitted frc= the 9 5-foot high stack on top of the h5.5-foot tall build-ings. The crossvind vidth of this building is not given but presu= ably it is of the same order of magnitude as the building in the above tests. As is the case above, there are other buildings in the vicinity of this reactor building also. Only Martin's measure =ent at distances greater than 100 meters are used in this analysis. The data frc= Table 2A-12 are plotted en Figure 2A-11 according to stability category and distance. It is evident that dilution factors increase with an lacrease of stability, and that dilution factors decrease with distance. Dilution factors =ust approach unity as distances increase. Consequently, there is sc=e tendency for dilution factors under stable conditions to de-crease faster with distance than those under unstable conditions. The solid lines on Figure 2A-11 are the dilution facter relationsM ' which are used in the 2-hour model (which is =cstly the ? stability catepry), the 2k-hour =cdel (which is mostly E stability) and the 30-day model (which is D stability category). The dilution factors were allowed to equal unity at 50 kileteters. This gives a dilution factor of 1.2 at 2 kilometers and 1.03 at 10 kilometers. The upper curve in Figure 2A-1. is consistent with the E category. data and are probably. conservative at 10W meters. m DIFFUSION MODELS SELECTION OF DIFFUSION MODELS For the purpose of selecting data to use in determining the input parameters to the diffusion.models (U,. stability category, etc), the five-year period 1962 to 1966, inclusive, w e chosen since =eteorologie data exists for both the Dev Plant and the FAA Saginav Airport, and sc=e vind strip charts ex-ist at Buildings k7 and 417 at the Dev Plant, for 1966 and 1967 On the basis of average vind speed, average "gustiness," and the frequency of cal =s obtained frc= =cathly su== aries frc= building kl7 of the Dov Plant, the verst nine =enths of the five years (ie,15 percent of the sa=ple) were identified..This vas.done for three. sectors, defined in Table 2A-13, se-lected for the shortest distance to the site boundary. This table shevs the average monthly U, Dev gustiness category, and frequency of cal =s. On the basis of 1cvest U, highest Dev gustiness category (note that sigma theta decreases with gustiness ), and highest frequency of cal =s, the nine verst =enths were selected. The final selection was as follows : 1. August 1962
- 6.. August 1965 2.
November 1962 7 July 1966 3 October 1963 8. August 1966 4. Nove=ber 1963 9 Septe=ber 1966 5 July 1965 73 2A-28 ()()(Q7'
'O O G TABLE 2A-13 ANALYSIS OF MONT11LY DIPPUSION, PIVE YEARS, 1962-1966 MIDLAND, MICIIIGAN 360" 080" - 101 E 169" - 191 S P'g" - 259" WSW Percent. i 1962 U Guat U Gust 3 G un t. Calms JANUARY 8.0 2.4 6.0 2.0 5.6 1.9 1.0 PEBRUARY 8.7 2.4 6.4 1.7 7.5 2.0 0.3 j MARCil 8.3 2.4 10.2 2.0 6.2 1.8 0.6 APRIL 7.9 2.2 6.7 1.8 8.5 1.8 0.3 MAY 7.5 2.0 7.9 2.1 9.5 2.0 0.9 JUNE 6.6 2.1 6.5 2.0 6.3 2.0 0.6 JULY 6.9 2.1 5.2 2.0 5.3 2.0 1.3 4 AUGUST
- 7.1 2.1 5.6 1.8 5.2 2.0 2.9 SEPTEMllER 5.7 2.2 5.8 1.9 9.1 2.1 0.8 OCTOBER 7.5 2.4 6.9 1.9 6.9 1.9 0.5 NOVEMBER
- 4.4 2.9 6.4 2.1 7.3 2.0 1.6 DECEMBER 9.4 2.4 7.3 1.8 7.2 2.0 0.1 h
1963 b JANUARY 11.6
- 2. i 8.2 1.9 B3 1.9 0.5 FEllitUARY 4.9 2.4 7.7 2.0 7..'
2.0 0.7 i MARCll 8.7 1.9 6.8 1.6
- 7. r6 1.9 0.9 ApitIL 6.9 2.1 7.5 1.6 12.4 1.8 0.4 MAY 6.9 2.0 6.4 1.7 8.7 1.9 0.7 JUNE 4.8 2.0 5.5 1.6 6.5 1.7 0.8 JULY 5.9 2.d 5.3 1.5 5.0 1.9 0.4 AUGUST 5.3 2.0 5.1 1.6 5.9 1.6 0.7 SEPTEMBElt 5.H 2.3 5.2 1.8 6.7 2.1 0.7 OCTOBhlt*
6.0 2.6 5.3 2.1 6.1 1.9 1.5 NOVEMbERa 1.3 3.3 8.2 2.0 8.9 2.0 0.0 DECEMBER 7.3 2.5 7.3 2.0 6.9 2.1 2.1 C O? t
( r; 'N LJ v' a TABLE 2A-13 (Continued) 360 080 - 101 E 169 - 191 s 237 - 259 WSW Percent 1964 U Gust U Gust U G ud, Calms 12.3 2.2 7.6 1.9 9.4 3.1 0.1 JANUARY 6.2 2.5 6.8 2.0 9.2 1.8 0.0 FEBRUARY 9.6 2.4 9.5 1.9 11.5 1.8 0,2 MARCl! 9.5 2.2 10.7 2.0 13.5 1.8 0.0 APRIL 6.3 2.1 6.7 1.6 12.8 2.0 0.0 MAY 6.6 2.0 6.7 1.6 9.1 1.9 0.7 JUNE 6.1 2.0 6.3 1.6 5.8 1.4 0.4 JULY 8.1 2.d 7.3 1.7 7.3 1.7 0.5 AUGUST 6.5 2.2 6.2 1.8 8.2 1.8 0,8 2 SEPTEMBER 5.5 2.0 7.3 2.0 7.2 2.0 1.2 OCTOBER 6.5 2.3 6.6 1.9 8.3 2.0 0.2 NOVEMBER 6.0 2.6 7.1 1.8 7.3 1.9 0.O DECEMBER to i T 1965 Y 9.0 2.0 6.7 1.6 7.1 1.9 0.0 JANUARY FEBRdARY 10.b 2.4 7.9 1.8 9.7 1.9 0.0 MARCil 12.2 1.s 5.1 1.5 8.5 1.9 0.1 APRIL 6.4 2.0 4.8 1.8 P.2 1.9 0.0 6.1 2.0 5.9 1.8 9.7 1.6 0.4 MAY 5.9 2.0 6.0 1.7 7.1 1.6 0.2 JUNE JULY. 5.0 1.6 5.8 1.6 5.7 1.8 2.2 AUGUST
- 5.1 1.9 4.8 1.9 6.9 1.8 0.3 6.8 2.2 7.3 1.8 6.8 1.6 0.3
( SEPTEMBER OCTOMER 5.5 1.8 5.6 1.7 7.7 1.9 0.4 NOVEMBER 10.0 2.0 6.2 1.6 10.3 2.0 0.2 DECEMBER 4.9 2.6 6.7 1.9 7.0 1.9 0.1 CC r3 ,a CD
- )
O O O TABLE 2A-13 (Continued) 360 080 - 101 E 169o - 191 S 237 - 259 WSW Percent 1966 U Gust ~ U Gust U Gust Calms JANUARY 8.6 2.3 7.5 1.7 6.9 2.0 0.0 FEBRUARY 5.6 1.9 7.1 i.8 6.9 1.6 0.1 MARCil 7.3 2.5 7.3 1.8 7.2 1.7 0.1 8.4 2.0 7.9 1.7 7.7 1.5 0.8 APRIL 5.3 2.0 6.2 1.5 8.4 1.6 0.2 MAY JUNE 5.5 i.8 6.5 1.9 6.5 1.7 0.6 9 JULY
- 4.5 i.6 4.3 1.6 5.7 1.6 0.5 h
AUGUST
- 4.7 2.1 4.9 1.9 5.3 1.7 0.4 SEPTEMBER
- 5.5 2.2 5.6 1.6 4.8 1.7 2.0 5.4 2.3 9.8 i.9 12.I 1.3 0.1 OCTOBER NOVEMBER 5.0 2.4 6.6 1.7 7.0 1.8 0.0 DECEMBER 9.9 2.1 7.0 1.8 7.2 1.9 0.1 NOTE:
- 1.
- Indicates selected " worst" months Eor further arialysis.
C 2. Gtist means gustiness, a stab $.lity rating. Averdge monthly values are shown. CO OC
V) I Data from these nine identified worst months are used to develop the inputs Il to the diffusion =odels. Normally, this may be done either by the methods ] suggested by Turner or Slade. Nevertheless, the Dcw data as recorded by the guard-observer are not suitable for either method for the following reasons: 1. The Dov data include no elcud cover or cloud ceiling data. This eliminates use of Turner cethod. 2. The Dow data have incomplete detail in the "gustiness" categcry to j assign a Slade or Pasquill category. 3 The rav Dow data are too incomplete to use Slade's method. i For these reasons, the method of Turner on meteorological data from the FAA weather station at the Tri-City Airport was used in the analysis of the nine vorst conths identified above. In this regard, it is probably conservative to use the data from the Tri-City Airport, for air passing over the plant complex to Building 417 probably contains core =echanical and ther= ally induced turbulence than at a =cre favorably exposed station, like the Tri-j, City Airport. In order to illustrate this, selected portions of 24 nights during which the vind was light and southerly, at Building 47 on the southern border of the present Dov site were studied. A southerly trajectory brings air from a pastoral area to Pilding 47, whereas the southerly trajectory at En47 ding 417 brings air over the heated plant. For the sa=ple shown in S . Table 2A-14, hourly values of U ce have been calculated at these two loca-tions. The =ean ratio of TJ ce at Building 417 to TJ ce at Building 47 is 1.h4. l t i O .. a oou 2A-32
Table 2A-14 Comparison of Diffusion Facters, Light Nutherly Winds, Buildings A7 and 417, Midland, Mit.'ig Selected Periods - 1966 Building k7 Building 417 Date Wind Wind a g/ aj _., G CAT IIC9 Range U/D0 Hour h 5/DC CAT UG R 1-29 2100 75 5/160 13/3 65 49 6/350 8/4 48 0.739 2-1 1800 39 4/190 6/5 24 90 4/190 15/3 60 2 50 2-2 1700 38 5/190 6/5 30 100 3/180 17/3 51 1.70 1800 30 5/190 5/5 25 84 2/170 14/3 28 1.22 2-5 2000 31 5/170 5/5 25 69 5/180 11/4 55 2.20 2100 45 5/160 8/4 40 86 3/150 14/2 42 1.05 2300 43 5/160 7/5 35 81 3/160 14/2 42 1.20 ' f,\\ O 2-6 0000 42 4/150 7/5 28 81 2/160 14/3 28 1.00 0100 46 5/160 8/4 40 92 3/160 15/3 45 1.13 0200 36 5/160 6/5 30 98 h/160 16/3 64 2.13 0300 45 5/150 8/4 40 91 3/160 15/3 45 1.13 2200 48 '5/160 8/4 40 94 4/170 16/3 64 1.60 2300 65 5/15o 11/4 50 96 3/160 16/3 48 0.873 2-7 1100 98 3/150 16/3 48 123 4/140 20/2 60 1.25 1300 65 4/190 11/4 44 108 3/190 18/2 54 1.229 l 2-27 0000 33 2/190 5/5 lo 53 4/190 9/4 36 3.60 0700-43 5/170 7/5 35 112 3/170 19/2 57 .1.63 0800 53 4/180 9/4 36 uh 3/190 24 1 72 2.00 1000 63 3 170 10/4 30 149 3/150 25 1 75 2 50 1100 80 3 0 13/3 39 74 4/13o 12 4 48 1.23 1300 97 5 140 16/3 80 109 5/130 18 2 90 1.12 1400 136 - 4/110 23/1 92 116 4/130 19/2 76 0.826 2-28 0500 41 2/190 7/5 14 61 '3/200 10/2 30 2.14 d 000b? 2A-33 i
Table 2A-14 (Contd) Eu11 ding 47 Building 417 Date Wind Wind Hour Range U/D j af CAT U00 Range U/D0 CAT E09 R 3-2 0600 39 3/200 6/5 18 54 5/190 9/4 45 25 .3.-l 0200 70 4/200 12/4 48 121 3/180 20/2 60 1.25 9-10 0400 47 4/190 7/4 30 46 5/19c 8/4 40 1 33 0500 42 4/200 7/4 28 50 4/200 8/4 32 1.14 0600 35 5/190 6/4 30 58 6/19 0 lo/h 60 2.0 0800 109 3/160 18/2 54 106 3/160 18/2 54 1.0 ..noo. 47 3/180 8/4 24 59 -4/190 10/4 -40
- 1. 6 1200 40 5/180 7/5 35 71 5/190 12/4 60 17 3-n 1400 62 5/160 10/4 50 2n 3/160 18/2 54 1.08 1800 133 4/160 22/2 88 lol 3/150 17/3 51 0 58 9-17 0400 74 4/170 12/4 48 85 3/140 14/3 42 0.875 3-20 1900 50 5/180 8/4 40 84 3/170 14/3 42 1.05 2000 61 4/180 10/4 40 75 4/180 12/4 48 1.20 2100 81 4/140 13/3 52 94 2/.160 16/3 32 0.615 3-21 0200 117 3/150 19/2 57 108 3/150 18/2 5h 0 947 0300 81 5/160 13/-
65 86 4/160 14/3 56 0.892 3-22 0600 71 4/200 12/4 48 69 4/190 12/4 48 1.00 5-7 1200 -180 2/170 30/1 60 78 3/200 13/3 39 0.65 1300 144 2/140 24/1 48 110 3/180 18/2 54 1.125
- 5-11 0300
'121 2/140 20/2 40 143 3/150 24/1 72 1.80 0600 99 3/160 16/3 48 93 4/150 15/3 60 1.25 0700 73 5/140 .12/4 60 99 6/220 16 3 96 1.60 0800 95 4/160 - 16/3 64 69 6/150 n4 66 1.03 ,, ' h 00053
Table 2A-14 (Contd) , h. ) Building 47 Building 417 2 Date Wind Wind / Hour Range U/D CAT UCG Range U/D0 CAT E09 R 173 4/200 29/1 116 68 15/40 11/4 165 1.42 1Soo 217 5/160 36/1 118 55 14/50 9/4 126 0.70 s-14 1400 123 5/200 20/2 loo 141 5/210 23/1 115 1.15 2000 57 5/190 10/4 50 62 4/350 10/4 40 0.80 5-15 4 1200 175 4/190 29/1 116 319 4/260 53/1 212 1.83 1500 123 5/200 20/2 loo 102 7/190 17/3 119 1.19 5-16 0000 135 5/190 23/1 115 63 7/270 10/4 To o.68 0100 96 4/160 16/3 64 52 5/320 9/4 45 0.865 5-17 0600 92 3/160 15/3 45 54 13/210 9/4 117 2.60 1100 150 3/170 25/1 75 58 14/260 10/4 140 1.86 l(T \\ 1200 191 4 160 32/1 128 71 16/250 12/4 192 1.50 1300 147 4 150 24/1 96 71 18/250 12/4 216 2.25 2-1400 96 5 190 16/3 80 84 16/270 14/3 224 2.80 1900 120 3/140 20/2 60 86 6/330 14/3 84 _1.40 J-23 0200 39 2/180 55 lo 39 3/200 5/5 15 1 50 0200 42 1/170 75 7 50 2/190 8/4 16 2.28 0300 43 3/180 75 21 61 4/190 10/4 40 1 91 0400 54 3/190 9/4 27 69 3/200 11/4 33 1.12 Avg 1.44 Notes: 1. Range is 30-minute variation in direction. 2. U is 30-minute average vind speed, miles per hour. 3.. IB is 30-minute average wind direction. 4. 00 is range divided by 6. 5 CAT is Slade stability category. R is ratio (Uo9)gp/(Eos)g7 6. 'C 0 Lu 00054 2A-35
Hence, it is likely that under light southerly winds, dilution over the aero-dynamically rough, heated Dov Plant is, on the average, more than 40 percent ,.s greater than ever the flat natural terrain. No credit is taken in the analysis ~ V) for this dilution effect over the rough heated plant, but data from Saginaw I Airport were used. Although the weather record for the worst nine months was used to develop input data to the diffusion model, it is also of interest to compare these data with those obtained from the ec=plete five-year Tri-City weather history. The stability wind roses versus wind direction for the nine conths considered in the =cdel and for the whole five years are given in Tables 2A-lha and 2A-14b, respectively. The results show that the nine-month average has censiderably poorer diffusion conditions than the five-year average. For exa=ple, cal =s occurred 6 3 percent of the time in nine =onths and only 4.0 percent of the time in the five years. The Pasquill F stability category occurs 18.h percent of the time versus 11 9 percent for the five years. In both cases, the =ost frequent wind direction for all stability categories, as well as for the Pasquill F category .is from the west to southwest..However, the =axi=u= frequency of occurrence of Category F from any one direction is only 1.2 perceat based on the first-year history. The wind speeds as a function of.Pasquill category for the nine-=onth and five-year records were also ec= pared. In the nine-=onth record, wind speeds of seven knots or less occurred about 55 percent of the time.and only about 39 percent of the time when the five-year record is considered. In both records, k[h N uind speeds in the range of four to ceven knoto occurred about 33 percent of the time during Category F conditions. Category F wind speeds of three knots (1 5 meters per second) or less, including calms and all wind directions, occurred only about 3 9 percent of the time in tne five years. Tha five-year data from Saginaw show that the =ean wind speed under Category F conditions is about 2 5 =ps. This is the same as the weighted mean wind speed used in the two-hour =odel (taken frc= nine-month history).
- Thus, the five years of data substantiate the speed used in the two-hour =odel.
WO-ECUR DIFRJSION MODEL Hourly =eteorological data, Saginaw, from the nine worst =onths (identified in the previous section) were used to deter =ine the hourly Pasquill category (by l l the method of Turner) a.a mean wind speed, E. Each of the nights in these nine months was examined, and the worst consecutive two-hour period was selected on the basis of Pasquill entegory. The Table 2A-15 shows the results of the exami-nation of some 270 nights. The first hour of the two-hour model is constituted of 81 percent Category F,12 percent Category E, and 7 percent Category D. The second hour is cc= posed of 72 percent.F, 17 percent I and 22 percent.D. l'he average hourly value of X/Q for a cor.tinuous point source, cps, was calculated as a function of range. ,p l 2A-36 00M; Amend =ent No. 2 5/28/69
~ ( N.d A Table 2A-14a Percent Frequency: Pasquill Category Vs Wind Eirection Saginaw FAA Airport, Nine Months Wind Direc-Pasquill Category tion A B C D E F Total N o.o2 0 32 o.45 2.27 o.57 o.89 4.5 NE o.03 o.23 0 56 3 28 0 30 0 71 51 IE o.02 0 32 0 54 4 38 o.3o o.82 6.4 EE o.02 0.21 0.42 2 34 o.22 o.57 39 'E o.06 o.26 0 32 2.12 0 50 0.88 4.1 ESE o.o6 0.16 0.o7 o.77 o.1k o.45 17 SE o.24 0.23 1.45 0.23 o.70 2.8 ssE o.02 _o.21 0.27 1.81 0 59 o.48 3.4 s o.06 o.39 0 53 2.26 0 51 o.62 4.4
- r[J N
SSR 0.61 1.03 4:73 0.86 '1 53 8.8 sw o.04 o.77 1.15 _5 79 1.03 1.86 10.6 Wsw o.04 0 59 0.88 5 55 2.06 .l.51 9.6 W o.08 o.66 1 93 6.83 1.22 2.18 12 9 WIN o.02 0.21 0.44 3 28 o.45 0 73 51 IN o.01 0.k4 0 50 3 52 0.41 0.89 5.8 NIN o.03 o.21 0 32 2.68 o.35 1.09 h.7 CAIM o.71 0 56 1.48 1.oh o.03 2.h6 .3 _ Total 1.2 6.4 11.1 54.1 8.8 18.4 loo Note: Includes 6617 of a possible 6624 observations. U) /~ 000% 2A-36a Amend =ent No. 2 5/28/69
( ( Table 2A-14b Percent Frequency: Pasquill Category Vs Wind Direction Saginaw FAA Airport, 19e2-19eo Wind Direc-Pasquill Category tien A B C D E F Total N o.o2 0.21 0.42 2.M o.54 o.64 43 NNE o.02 0.21 o.M 2.89 o.39 o.40 4.4 E o.01 0.24 0 58 4.06 o.47 o.49 59 .E E o.01 0.17 0.40 2 77 o.40 0 39 4.1 E o.ok o.05 o.M 2 59 o.53 o.63 43 ESE o.03 0.14 0.14 1 33 0.27 0 34 23 SE o.02 0.15 0.22 1.65 0.27 0.42 27 ssE o.02 0.13 0.26 1 99 o.43 o.32 31 s o.02 0.22 o.48 3.87 o.69 0 52 5.8 I I ssW o.02 0.24 o.73 5 16 o.95 0.83 79 SW o.03 o.35 1.07 7.80 1 37 1.22 11.8 Wsw 0.03 0.25 0 97 6.93 1.15 0.85 10.2 W o.02 0.29 o.90 8.17 1.M 1.13 11 9 WIN o.01 0.15 o.M 4.29 0.84 0 51 63 IM o.01 0.20 0.49 4.07 0 71 o.66 6.1 ma o.01 0.15 0 39 3 14 o.50 0.67 4.9 CAI14 o.36 0.27 o.62_ o.87 o.01 1.89 4.o Total o.7 3.4 9.o 64.o .11.o 11 9 loo Note: Includes 42,480 observations of a total possible of 43.824. 'i _~, ODME 2A-36b Amendment No. 2 5/28/69
=- fx Table 2A-15 Pasquill Stabilit! Categcries. ?so-Ecur Model. Saginav. Micnigan Average Wind Speed Pasquill Categerv Categerv Frequancy Encts =/s First Ecur a F C.81 h.1 2.2 r -,o 42 j.s; V D 0.07 92 E.7 Mean 25 Secced Ecur 0.,g. 39 c.3 -E 0.17 6.6 3.h D 0.12 77 E.0 Mean 25 (3 ^ -b ?so-Ecur Mean 25 The data frc= Dov N4' ding 417 at.tiidland vere not used to develop the tyc-hour =cdel; hcVever, it was evaluated and ec= pared with the Saginav data for the sa=e pe= icd of ti=e (19c6 data). The result of this evaluatics showed that Category F cecurred 1.0 to 10 percent of the ti=e (depending on the Pasquill ? content of Dev gustiness Category 3) at Building bl7 and 15 3 percent of the ti=e at Saginav. It was also found that the vind frequency in the h to 12 knct range was about the sa=e for both locations. Wind speeds of 3 knots or less, including cal =s, cecurred about IS percent of the ti=e at Building bl7 as cc= pared to 13 percent at Saginav. Mean vind speeds of 1 5 =ps during Category F ccnditiens occurred only 15 percent of the ti=e at Building ~ 417 As previously =entioned, the icver frequency of Category F conditions at Dev Euilding kl7 is.ccasidered to be due to the roughened and heated surfaces of other buildings in the vacinity cf Building h17 Si=ilarly, it is reasonable to assu=e that the diffusion of vinds fleving frc= the site to the tevn cf .Mid'and will be,6reater than that used in the =cMa' e because the Dev cc= plex with its mughened and heated surfaces lies between the site a-d Vmand. Trc= this ec=parison, it also appears that the frequency of Category F and the tve-hour =een vind speed shavn in Table 2A-15 are censervative. . /'~5 .g. 4 e y-] Amend =ent Ib. 2 2A-36c 00(<)38 5/2e/69
To obtain the average hourly value of X/Q, including the effect of cavity dif-fusion, the dilution facter was employed, Figure 2A-ll, for Category . *:hi ch is a conservative choice since experimental data indicate that the diluti:n ( - factor for Category F should be larger. Thus, the resulting two-hour model is s es# V ,..o _ g,u... y, b, .~.... X/Qces Dilution Fuctor c' Distance, r i c~ ,.o; ,o tv w -u c, o, .3,., -,,-4 ..-~ .,V ,.I; .7 ..n ~.. ..-co '..'_o - _10 - ? '.. c ~. s -? ^ s ..v 2 s o'.,. ' r - b,. ,-,Ccc
- v..,a. x ',r.
o . -o ..s _n, eg .a. e, . 10 - a.a x. ,o-o m - a ..v3 v lo,CCO h.5 x 10 3 1.0 h.5 x 10 3 50,CCO 1 31 x 10-o 1.0 1 3 x 1C-o Again, for comparisen purposes, X/Q probability roses were developed at one specified distance downwind.for a continuous point source (cps) using the five-year weather data at Saginaw. The results are shown in Tables 2A-15s and 2A-15b. This study reveals that the X/Q value obtained from the nine-manth data is more conservative, in a diffusion sense, than that obtained from the five-year data. The cumulative percentage probability of the relative concentration (X/Q) being /~5 less than a specified value for a contitucus point source is plotted in Fi ure C PA-Lle. These data are based on the fivo-year history and a distance dewnwind (~ of 1170 meters. From this curve, it is seen that the diffusien ccaditions will be more favorable than-those used in the two-hcur =cdel (X/Q at 1170 meters) V 93 percent of the time. The X/Q roses developed frc= the five-year record reveal that the percentage probability of the two-hour diffusion model being exceeded in any one direction, again assuming a unidirectional wind for two hours, is less than one percent. See the West direction. This is less than the probability of a calm, which is 3 percent. If the va7ue of X/Q lies in the asymptote of Figure 2A-lle, the probability of its occurrence is near sero. It shculd be noted that, at the Midland plant site, the X/Q associated with the F category and a wind speed of 1 m/s does lie on this asymptote and thus has a probability of occurrence of a small fraction of a percent. This means that it is either calm or has a velocity Creater than 1 mps. This is reasonable since the stalling speed on most air-pcrt anemcmeter systems is aboat 1.0 to 1.5 mps. \\lk~nyJu. Ct e g,, Anena. ment.. o. 5 2A-37 1.,/sffo a ~
Table 2A-15a Percent Frequency: X/Q Vs Direction Sector Saginaw FAA Airport, Nine Months X/Q, lo ,1170 Meters, s /m3 From 0.002 0.071 1.01 2.To h.40 9 50 Sector to 0.07 to 1.0 to 2.75 to h.45 to 5 50 to 11 Total N o.36 31 0.83 0.091 0.091 h.5 NNE o.h6 38 0.6h o.152 0.106 51 NE o.42 h.h 0 53 0.120 0.167 5.6 ENE o.27 29 o.h6 o.1ho 0.046 38 E o.23 2.6 0 9h o.167 0.076 h.o ESE o.18 1.0 0 33 0.076 0.015 1.6 SE o.23 2.0 0 58 0.120 0.076 3.o SSE o.21 2.6 o.hk o.o76 o.030 34 S o.h6 33 0 38 o.200 0.091 k.4 SSW o.64 65 1.05 0 360 0.2co 8.8 SW o.93 76 1.80 0.140 0.046 10 5 WSW o.91 7.8 1.h5 0.130 0.030 10 3 W 1.25 97 1.88 o.320 0.106 13 3 0 0.26 h.o 0 56 0.091 0.061 50 NW o.50 39 o.68 o.120 0.076 53 NNW o.38 36 o.85 0.2co 0.061 51 calm 6.2 Total 77 68.8 13.h 25 13 o.o 100 Note: Hours used for development of two-hour model include 6589 of 6630 possible observations. ,m v' 00%' O 2A-37a Amendment No. 2 5/28/69
Table 2A-15b 'A
- / fQ.
Percent Frequency: X/Q Vs Direction sector Saginaw FAA Airport, 19c2-1966 X/Q. lo ,1170 Meters. s /m3 From o.co2 o.071 1.01 2 7c 4.40 9 5o Sector to 0.07 to 1.0 to 2 75 to 4.45 to 5 50 to 11 Total N o.28 31 0.64 0.037 o.c35 0.0046 4.2 miE o.33 35 o.39 0.138 0.025 4.4 NE o.43 4.7 o.48 o.064 0.058 57 ENE o.26 34 o.36 0.064 0.032 4.1 E o.31 33 o.54 0.133 0.048 4.1 EsE o.17 1.6 o.a8 0.046 0.021 2.1 SE o.20 2.2 0 34 0.062 0.046 29 .ssE o.16 .25 o.32 0.055 0.018 31 s 0 36 4.8 o.47 0.081 0.032 0.0023 5.8 ssW o.42 6.5 0 73 0.129 o.ok4 79 sw o.67 9.6 o.99 0.087 0.039 11.4 Wsw o.58 10.8 o.78 0.090 0.023 0.0023 12 3 W 0.60 10.4 1.02 0.099 0.048 22.2 m WNW o.2T h.9 o.49 0.062 0.016 0.0023 58 ,I (V) NW o.45 51 0 58 0.074 0.021 6.2 NNW o.23 38 o.60 0.067 0.014 47 calm 3.o Total 57 80.2 30 13 0 52 0.01 loo Note: Includes 43,hh8 of 48,800 possible observations. i l l l l ~ 2A-37b Amendment No. 2 5/28/69 \\
G j -"t In Figure 2A-lle, the asy=ptote located at (100 percent - percent of cal =s) is D; of special interest in that the accumulated percentage probability of X/Q being equal to or less than a given value is very steep near this asymptote. The steepness reflects an important characteristic of the diffusion climatology of the plant site: namely, either the ' ind conditions are calm (3 2 percent prob-ability) or there is a 93 percent chance that diffusion conditions for a eps are such that X/Q <l.75 x 10-4 s/m3 (the two-hour =cdel withcut ccrrection for cavity diffusien). The (X/Q) cps probability distribution, percentac: ^ w:ncy of Pasquill F cate-gory, and the X/Q probability distributir, including the effects of cavity dif-fusion for a single reactor building as a function of Pasquill F category, is presented in Figure 2A-lld in a single frequency diagra=. Frc= this plot, it is seen that, during 93 percent of the time, diffusion conditions are more favor-able than represented by the two-hcur codel. This diagram shows that, when the vind velocity, u, is greater than the stal!ing speed of the ane=cteter, the odds are 93 to 4 that the diffusien conditians are better than shown in the two-hour =cdel. Pasqu m F and.1 =ps vind speed for two tours lead to a value of X/Q whose probability of occurrence is abcut 10-2, The previous discussion of X/Q 3 robability distributions was based on Saginav data and Turner classificatica of stability. It is now pertinent to ec= pare, for a ec==cn time period, the X/Q distributions for Turnerized Saginav data (Table 2A-15a) and Sladeized data from Dov, Building h7 (Table 2A-15b). Building kT was selected instead of Building kl7 because it is located on the . edge of the Dow property instead.of in_the center of the plant and presurably V is less affected by the plant. An examination of the data in Tables 2A-15e and 2A-15d indicates that the X/Q distribution at Dov is shifted tcvard lover values of the relative concentra-tien.in ec=parison with Saginav. This is reflected in an increase In percentage 0.002 and 0.07 x 10 greent at Saginav to 50.h percent at Dev for X/Q between frequency frca 5 9 p Thisfeatgealsooccursintheothercolu=ns. In the range of X/Q cf 1.01 to 2 76 x 10, the shift in frequency of occurrence is of particular interest in that this is the range in which the two-hour c(del lies. The reduced percentage frequency at Dov in the directicus of North-Northwest to East corresponds to flow over the town area, and presu= ably increased techanical turbulence. The airflow from the directions East through South ceces from over the Dev plant, a rough, heated area. The percentage fre-quency of the X/Q's at.Dov for these directions is reduced in ec=;arison with Saginav. ' Scte of the differences between Tables 2A-15c and 2A-15d in the distributions of X/Q could be due to differences between the Slade and Turner methods of analysis; cc= pare the distributions for the NW quadrant which, at Dow, is open. However, the: reductions in the other quadrants cited above are much greater than this. They are probai.17 real and result frc= increased diffusion in the air that passed over aerodyna=ically rough heated areas. It should also be ~ (h y) ( i 1 00DW 2A-37c Amend ent No. 2 5/28/69
O Table 2A-15c Percent Frequency: X/Q Vs Direction Sector i' Saginav EAA Airport. 1966 X/Q. lo-b 1170 Meters, s /m3 From o.002 0.071 1.01 2 76 4.ho 9 50 Se ctor to 0.07 to 1.0 to 2.75 to h.h5 to 5 50 to 11 Total N o.33 43 o.h6 o.103 52 NNE o.29 2.1 0 33 0.046 o.o34 2.8 NE o.25 h.o 0 37 o.o57 0.023 k.T JUE o.23 34 0 31 0.o91 4.0 E o.38 35 o.43 c.o68 .4 ESE o.26 25 0 51 0.057 o.011 33 SE o.18 2.6 0.19 o.023 30 38 SSE o.21 3.~2 o.32 0.034 0.011 l S o.67 8.o 0 57 0.057 0.023 93 SSW o.48 T.6 0 74 0.068 8.9 SW o.58 8.1 0 90 0.o34 o.o23 9.6 Wsw o.57 10.1 o.65 o.011 11 3 rsw o.66 20.8 o.67 o.08o 0.011 12.2 'if61 10.18 5.8 o.h5 0.034 0.011 6.5 t NW o.33 55 0.41 0.023 63 NNV o.27 34 0 51 o.068 0.023 43 o.4 cals Total 59 84 9 T.8 0.85 o.17 0.0 loo i l l j Note: Includes 8,762 of 8,784 possible observations. l t 13 0 () 6 ? 2A-3Td Amendment No. 2 5/28/69
l i f -r t-(:da)-, h model = (x/q)c.es ne c4 % -- -' - r.s r'. m l & ,. ~ ~,.., q'..- l. n, .,v u 1., z,,j.,u, ~ ~, ,,..a 4 l _~.4-1,.,. x., L.. c..' ~.. .'a - ~..".. u o..._.,.,', c vs n. Inus, the resulting 2L-hour model is _e, n.._....,.. a. (.,y,.) epa ..vu. h D u.,ut..cn caetor w:w r.a n: <e. i I4 500 h.h x lo 4.2 3.' v 'o ;3 -h 1,utu 1 3 x to,. 19 a..a x 10 s ,,n ...c,a x .U, a .y , n, , sv ..m 1,6CO d.3. 10'> 15 13x10-! _0-5 1., p+. 3 .v. c, nn - 3 3. o .y w-p n l mvu y .o l'a',, nCO h. ~' .v. .0,. ..O3 .v 3 ' 0-16,000 2 5 x 10-o 1.0 7.8 x 10 ' 50,c00 6.8 x 10-7 1.0 2.1. 10-7 I The X/Q valuec presented above were developed from the nighttime weather record cecauce Turner's method of categorizing hourly weather usta V doer. not permit Pasquill F's to be determined in the daytime. Thuc, an in-nependent ctudy '.tas n.ade en the 1966 radiosonde 7:00 FM cata of Flint, Michigan, to develop information on daytime temperature invercicnc. This ctudy revealed that there were 31 cases of daytime :.nversicnc during the year. This is 8.6 percent of the da.va. ne highest frequency of daJ' time ~~ l inversions cecurs in winter (10 events) and spring (11 events) seasonc. I Examination of thece 21 cases revealed that 18 had winds in excess of 2 mps; I tn.. eliminatec them from the Class F categor.y. Tnic i::. plies,.herefore, + tha t, the chance of having daytima Pasquill Clus; F category is abcut cnu Lereent. I I r .s. '-) e g g 4* g "7'_ :3 nmenument so. ~ 11/3/69 -w -+..w+%,- .--.-..,--v-=--e.-.--m.-ere,.~-,--ie --..~w..-+..--e.......-- .,---.---we.--..-----w--.-
- -..----w-.---u-..-,-~=
iable 2A-16 Pasquill Stability Categories, 24-Hour Mcdel, for Saginaw, Michigan Wind A 3 C D E F All Dir %f i %f E %f E 4f E $f E %f E If E N o .2 5.0 0 5 4.5 0 2.1 39 4.05 NNE O .2 4.0 3 9.0 1.6 8.0 0 2.1 4.2 2.e 5 95 NE O .2 2.0 7 27 1.6 7.0 3 6.0 2.3 6.2 h.2 4.e4 ENE 0 .2 50 -5 75 1.0 8.0 0 9 4.5 5.6 6 32 E O 1.0 4.25 6.3 2.1 6.1 9 6.0 32 4.6 2.6 52 ESE O .2 6.0 .i 6.0 7 8.7 0 35 33 8.6 4.42 SE O 5 4.5 7 3.67 7 63 .2 50 2.1 4.3 4.9 4.61 SSE O 7 3.67 .2 4.0 9 45 .2 70 5 35 4.2 43 s 0 1.4 4.17 1.2 5.8 .2 8.0 0 1.6 3.4 25 4.52 ssW 0 1.2 5.4 7 6.67 1.6 5.6 3 90 25 36 -4.4 50 SW 0 1.6 3.86 30 6.0 30 52 0 2.6 4.9 6.3 5 16 WSW 0 5 h.5 23 6.4 1.0 55 .2 h.o 23 4.4 10.2 4.94 W 0 30 3.61 4.6 T.05 2.8 6.1 5 55 4.4 39 63 5.26 WNW 0 o .2 30 7 53 0 1.6 33 15 3 3.82 NW 0 0 9 35 2 4.0 0 5 30 25 3.43 NNW 0 o .2 30 .2 15 0 0 2.1 34 1.6 4.43 calm 1.2 1.6 32 .2 0 93 2.5 if O 15 5 %/u 1.2 12 5 36 20.6 4.4 19 0 71 2.6 6.0 44.1 31100.0 4.2 . Notes: 1. 24 hours taken from 18 selected days from 5 selected years, 1962-1966. 2. II is average vind speed, knots. 3 % is percent of total observations. 4. Total number of observations is 431. i l j i (l . 'th 2A-39
1 ,=. =... -,. : ,=m, w....n; L . sV ....s v.s. ....v. s... . v.s. s. J p.s., v .,.,..,.,r.+.',. p 4 ' O. 1.-4-,,
- w. y 1 A. o.
..a.. 4, .~ a.., 4,. y l l,,s. 3 ...wl.,3 ',, A. v.4 4 1.,. A u. %wAv.. .,'r.n_.s v.c +wp +, u .,w .a. . v-s..m -^',.;. s.
- r..s.,
+;3 ,4 4. 4. p r. + 4.. s.. sv .< -.,..- y - i,,.. 0. u ,s. .,s... n , -. 3 -. 1 1 o...m. .e n, u, o. g ,.I o *.u..- .,,,p... -r w - i,,, '.s 7 3 7 ' m.,.- 4., 4.m 3 .t ..,,,,,a;.. e 63
- e
.s .s...,,.. .e .n., - :,. i. m i s *.. a. I.. I, 47 .s - p~ c s + s. t.
- r.,
. m m. +..'.r.i..-- vp *. ~. + _m
- - ~.. -,
~,. m _._.4_ .h -.o.,. { e- ,.+ 7.- a. -., w c, O s- .O,.,~,.<%. ,3, , S , + ,3 C,.. ..9.., 4.' n p a. ...:,3.; i .. + .o...-. ~.r3. .T.o m.. .. a..n... s. 1,* - p.., ..2..- +4 .v 7 a..,. ~..-.a..s
- ..-.o'.
+p ..o.,. .....v. c.a s. i.. ;.,.,.1, j*
- c.t r.
~.r .1 i.s
- i.> - d
( ' *i e n. w +w 4.m.v} 4.<.-).',3 -, a.e, ? * .v .'v 4 o w +., e4
- r a c *. e m 'a' *. '. *
- e o..c *-.
- s.*
v ,-w -v .ia ..g-.. r_.y.. a6 _T. a. s a.m. _'. o_ w ( 4 ). .h..,.; o o, a t-3 s. f o_ n .w, n..,r 2
- h. o_
3.yp,-q,a. ~ ** ,,, + m+- .e 4
- w3
.n. y_. 1..*,r . 1 ,.. t 6. a. n.o . t., . t.' 1.
- 1.. o., - n. n. e.n. +w.n.
4 m.n. 4e w L.I. v ew ww. s .wv (x/Q)1~ (x/Q)C"~a 19.. Drt ** D =
- C.".' b Ca.
~~ a y ssJ /^ ..k.o
- o. (v../,)c s
.+'wO.. q.. a.
- o. o S +o. S C t., +.b.o. a S +. b.Ln ko. a. n c a.l o" 7 a'o d aS e'
4 v .'.. a * #,403 C.P a ~ -..a M-r is 'ah- ' "N#-ad-i"" di'u+-#c '"'c'^r cuv a ,,. m n. ._..o. CAT D 4-Figure 2/.-11. The resulting one-conth diffusion model is / D.4 1,. 4, n (y fp C 6. a..'. "v... h. m* ' '. c A. =. '. t Rance, m ces ' ' " ' CAT D
- /0, s/n3
%,d V l _a _s 500 1.52 x 10 2.60 1.1 x 10 ' _ s. _s h.h6 x 10_;' 1,000 l. 'T 5 0.5 x 10_, c 1.60 0.h x 10 ' 1,170 3.5 x 10 .', 6 n. v' .4 x'0' _ _o 0.3 v ' "s-1.7 x 10_r$ 1.30
- 0. 2.-. 10 '.
2,C00 _n 1A,Ar^vsU A._ X-1. U ") p > 1 r) 1A ^
- 1. L'3 X
v s e s.~ n _n _19,DO Q.CJ .-{ 1 Q .*7 ] n G. .Y. 1D ~ w vv
- .v
-s r.? . 7eO l c,. c, O.s J a -.s'.,...i n
- 1.. A J
PA 1 s y s s J J - .\\ a i i l l l t l l l l l { e.s. ) ' ),.,.,' u t )\\' i J \\...o nrl.**..e n.'w **r C a s .s v e ) n, 7/60 1 2 'A0
/Q Table 2A-17 ^ ) Pasquill Stability Categories, one Month Mcdel, for Saginav, Michigan Wind A B C D E F All Dir %r U %r U %r E %r E %r U %r U %r g 05 3 h.o 5 53 23 79 5 8.3 .8 4.4 h.4 6.7 N + NNE .1 h.5 .2 4.9 5 7.2 33 9.4 3 53 .8 4.8 52 7.7 4.0 3 50 .4 77 4.1 8.4 .2 57 7 4.1 57 75 NE + ENE + 5.o .2 4.7 3 6.3 2.5 8.3 .2 5.6 .7 4.3 39 7.1 E .1 h.o 3 4.6 3 56-2.1 6.9 .4 6.0 1.1 4.5 43 59 ESE + 35 .2 53 .1 5.4 .8 6.5 .1 57 5 4.5
- 1. 7 56 SE o
0 .2 4.5 3 5.6 15 7.2 .2 55 .8 4.5 30 6.0 SSE + 30 .2 53 3 53 1.8 77 .6 7.1 5 4.4 3.4 6.8 s + 4.0 .4 4.8 .6 6.8 23 8.4 5 7.4 .6 3.8 4.4 72 ssw o o .6 52 1.0 6.7 4.1 8.6 9 6.6 1.6 4.0 8.2 7.0 4.5 7 51 1.4 71 59 8.4 1.1 6.5 19 4.7 11.0 7.2 sw + Wsw + 4.0 5 52 1.2 7.6 5.8 9.4 1.1 7.4 1.6 50 10.2 8.1 W .1 4.8 .8 4.8 19 72 7.2 8.5
- 1. 2 75 2.2 4.7 13.4 73 WNW
+ 50 .2 4.4 .4 52 31 10.2 5 73 .6 4.4 4.9 8.5 NW + 30 .4 5.1 5 55 33 8.8 4 6.1 7 4.4 53 6.7 NNW .1 4.0 -. 2 39 3 6.1 2.7 9.4 .4 70 9 4.5 4.6 77 .,p calm 7 .6 15 1.1 0 25 6.4
- ( ("j
~ %/U 1.2 1.6 6.3 4.5 11 5 5.8 53 9 8.4 8.6 69 18.5 39100.0 6.8 Notes: 1. All days frem nine selected months of five years, 1952-1966. 2. u is average vind speed, knots. 3 % is percent of total observations. 4 Total number of observations is 6,508.
- 0, O 2A-41 00E//
sv .. n v. -. 4. ~. n.s t_ v .. <.,s..m..,,,., .,:..,-...2.,.,2...e-c., -. g_ ..s o ~ ,o_, .>.2.. . u. e 3.. o_,,_.. a c.. %..,,.... ~, ~. 4 v.,,.... v.1 ~. . g.. p.. y 7.,. v.. ..g .....,s, . u.,.. l,. a j._, . : _._x
- u.,.,.,-
..,._m .....,L,. _, : a_
- w..,
s.-.,_,,,_, . v. a.,, M. s * ._2 r= Y. /,7, .e,'m.- -5 500 0.c x 10-S .,nnr; C. 1 x- .n - s v ,, a ., ~i.
- n.. _o x _, n.
. n.- ., t n_ n.1 x, e -5 n, m, n. n n. .. n,s y v.. ') .,cc- ,J., x,.,] -t 16,000 0.5 x 10 -7 S u,, L, u o 0.1 x 10 -.. n... v., c: a 1.~r n qar.e. qIO.7 TA"..'n..:.S m .s.-.. .o i_.8 e. v s
- .b.. _ e'*e d.is"e s'^.a.." c'.
.a, a~. a."_' e~ a_.b. c ".".'.", .V. /n "e."o-us d.is- ..s,, 1 o. ^*- ,,,,' c e, for the two-hour, twenty-four-hour, one-menth and annual diffusion.cdels. t a; m.,,,,,-4, ".~u. i n.,"7 c " O..a. +. a.. s '.- ~... "..'. a. n,.' a.r. *.. ~..".a..X / s' v ' ' " e e .o.. cv.. i r. ,e ._v. .a a l %,.,/ ..o. k, t. W. s _.1. 's..e e e,,1 C m.7. Cu _i n o_ d .n_.n..A.4.e C o c.c. o. A. 4n +. k..o C n .1
- C.-
-- + -.s v-e +b4 n m 1 ,v v. v4v. u -uAS v c h:tp t e r. '"able 2A-18 e,, op,a+.4yn. e-o v c., o.... 4 n.. - ~t....s..,, 2 .a ._.v a,.. _, m..u..._,,, yi, _./(. e,, ~," (.*',T / (."., I 7,,,, T, .1 .o s - u
- s\\k 1
- Distance, X/0, s/n"
'.'.e t e r 2-Hour 2h-Hour 1 "cn+h 1-Year _h SC0 1.9 x 10_a, 3.1 x 10_5 1.1 x 10,s o 6 x 10_5 _c '2,Cor 1.' x.,' o.- .x. 2.u0 x 10 0.;.x 'O ' v.' .v. 10 ' o s s ~c ,..-a.., n.- . L.~, ~ - n.0.x, n. -^ y. -? c 0 .,x, a l .t, %.u ..c; x. L, - 2.a.x a v 0.2 x to-C.., x .,O ,c c o, r, .o (3.1. x,i v. 7_. U x,.n L,. mo...n > n.7 x
- 7. o.
s,v r ^ y s p-v e v 3 - -u , - x, 0.c 0.<: x ,,-o o i,., #s J C.3 x.,. o - ..j c., x, u, c a..., _n i .,._,cv y i n., . c,...n. .n .I.o ...,.s s ,.) -o ,i L..' x 'I s m r, n, r,i ...s, .. in o, -l y y 1 m. u.9 n p 1 .s I i I l f is frequency factor appi.ed to all X/Q except 2-hour =cdel. { \\ I "..n,+v<... nTt ..u.,,,,, ..e., + %... L.1...,44.u.. o .if + O.. O.- t.k..e p c. cec. O.e + 1. l e wo. n e .- W 4 1 A. 4..C. c v c i v 4.v vw. un. />~m {1 k
~... i' l \\ i 1 Calculations have also been made using the cavity dilution factors considered i " reasonable" by the Environmental Meteorology Branch of ESSA, in its co==ents the =eteorology analysis of the Zion Station Units 1 and 2. The dilution l factors are compared with those used in the Midland models and are presented below. 3. Midland Plant j 2 'f our, Zion j-Hour One-Month I 300 Meters h.8 Net Used Not Used f h15 Meters 3.3 Not Used Not Used i 500 Meters (2.75) h.2 2.6 I 600 Meters 2.h (3.2) (2.h) 1000 Meters 1.5 1.9 1.75 To deter =ine the significance of the difference in these dilution factors, i the relative concentration (X/Q) for Midland was calculated using the Zion cavity-dilution factors. These values are ec= pared with the 7/Q values to l be used in the Midland Plant Tadiolo6ical analysis in Table 2A-18a. {(L.- 4 i f t i l 1 i I F ( ', 'k 00069 l 2A h2a A=endment No. 2 5/28/69 l I- - _,. ~.
Table 2A-18a Sc= nary Relative Concentrations Average Hourly X/Q = 1/(n c c, E) (DF) Y ~ X/0, sec/m" 2-Hour 2!.-Hour 1-Month 1-Year Dist ance, Orig Zicn Orig Zion Orig Zicn Crig Zion Meters DF DF DF DF DF DF DF DF LOO 2.1-3.5-3.h-5.h-5 1.3 1.1 g,7 0.6-5 -5 -5 -5 -5 -5 -5 500 1.9-2.8-3.1 h.6-5 1.1 1.0 0.6-5 0.6-5 -5 -5 -5 1,000 1.1-1.5-2.2 2.6-5 0.5 0.6-5 0.3 g,3-5 1,170 2.0 2.3-1.8-5 2.2-5 0.h-5 0.5 0.2 0.3'-5 -5 -5 -5 -5 -5 -5 -5 -5 1,600 .5 9.0 1.3-5 1.5 0.3 0.3 0.1 -5 6.8-5 1.0 1.2 0.2 0.1 -5 -5 -5 -5 2,000 6.1 -6 ~6 -6 -6 20,000 8.3 y,3 0.2 0.1 -6 -7 () 16,000. h.5 7.8-I 0.1-6 g,5 r e-Nd' -6 -7 0.2 0.1 -7 -7 50,000 1.3 2.1 Note: 1. DF is the dilution factor for the aeredynamic vake effect of the reactor building. a 2. Orig DF is the X/Q originally shown in the Midland Plant PSAR, brought to h00 meters. 3. Zion DF is a new X/Q related to the Midland Plant analysis using DF's adopted fran the Zion FSAR. I
- h..2.1-means 2.1 x 10.
I' I i l i (' \\m. 2A h2b El!)k ( knendment No. 2 5/28/69 i l ., -,. -. - _ _...,.. -. _. -.. _.. _ _ -. _,. - _. - -. _ _, - _ ~. _. ~. _
m ./ v 2 INFORMATION TO BE OBTAINED A metecrological monitoring program vill be conducted at the Midland Plant site. The program vill provide data with which to evaluate and, if necessary, upgrade the meteorological diffusion estimates presented in Section 2.3 and Appendix 2A.' Meteorological data vill be obtained from three meteorological towers (one 300-foot tower and two ten-ceter towers) located on or adjacent to the plant site (reference Figures 2Al2, 2A13, 2Alh and 2A15). The sen-v sitivity of the detection instrumentation and the instrument location on the towers are in conpliance with Regulatory Guide 1.23 At least one yetr's data vill be collected and evaluated prior to issuance of the M1 tland Plant final safety analysis report. TOWER LOCATION, SENSOR SPECIFICATION, DATA RECORDING AND ACCURACY The specific location of each tower and the data to be obtained together with the measuring systems and overall accuracies are discussed below. 300-Foot Tower n I ) h/ The 300-foot tower will be located in the nonmuual parking lot, north 27 of the lay-down area, about 1,150 feet vest of the nearest reactor build-ing (reference Figures 2A12.and 2Alk)...The. distances.from the tower to the pond dikes are about 1,200 feet to the south and 1,050 feet to the . southeast..The elevation of the top of the dike.ls 632 feet and the elevation of the base of the tower is 61h feet. The grade level at the reactor building is c.t 63h feet. The top of the building is 787 feet. Bullock Creek diversion flows from southwest to northeast in the area vest of the tower location. The diversion is 150 feet vide at its banks. The bed of the diversion gradually slopes down from its banks toward the central bottom (15 feet vide) at elevation 592 feet. The distance frem the tower to the eastern bank of the diversion is about 50 feet. The i tops of its vestern and eastern banks are, respectively, 616.5-foot and 61h-foot elevations. Two ponds owned by Dow Chemical Company (one i existing and one to be filled in 197h) are located in the area vest of the diversion (reference Figure 2A13). The two ponds cover about 350 acres. The temporary construction offices stand east of the tower lo-cation on an elevated area of 63h feet elevation. The distance from the tower to the elevated area is about h50 feet. The road which runs to -the northeast -from Miller Road between the normnnual parking and tne lay-down area is 300 feet south of the tower. The north-south road directly east of the norsanual parking area is 275 feet east of the tower location. .) OOM1 2A-42c A=endment 27 8/Th
Y 4 9 Since space is limited at the Midland Plant site, the tower will be located in the nonsanual-parking lot. However, no automobiles vill park within the area whl.ch vill be fenced out from the parking lot (reference Figure 2A15). The distance from the tower base to the nearest cars parked just outside the fence is 130 feet. Besides, no cars will park in the area vest and north of the tower where the Bullock Creek diver-sion flows. The meteorological variables to be measured on the 300-foot tower are: 10-Meter Level - U, Tu, E. a o h0 Meter Level - U, Tu, E 60-Meter Level - U, Tu, E, e, a 300-Foot Level - U, Tu, E where: U = Wind Speed Tu== Ambient Air Temperature E = Dev Poico 0 = Wind Direction o = Wind Direction Fluctuation (Standard Deviation) Table 2A19 shows the quantity, manufacturer, model number and the speci-fications of the sensors used on the -tower. All-wind direction and speed sensors vill be mounted at least two -tower vidths -from the -tower and each g ) sensor vill be six feet or more from any other scncer. Temperature and .-I -' dev point sensors will be at least one tower vidth from the tower. An EG&G digital system is planned to convert the sensor outputs to 15-27 minute average data reports, in engineering units, for the above-mentioned variables. In addition,.the temperature differences ( AT) o=puted from the mEasu b, 60m - 10m and (AT) 300 ft - los (Ad are temperatures and included in the data reports. The data reports are automatically listed on an ASR-33 teletype printer and recorded on an IBM compatible, 9-track, 800 BPI, magnetic tape. The digital system includes an Interdata Model 7/16 processor of 32K byte memory =odule and 16 general. registers. The processor polls the sensors approximately four times per minute. Following each poll, a 15-minute average is ccm-puted. This feature allows a rapid assessment of the measured meteoro-logical variables because a data report is immediately available upon request. Eight dual-channel strip chart recorders (Esterline Angus Model 1102S) vill be utilized to produce the analog records of the measured variables as a backup to the digital system. Instead of recording the ambient air temperatures measured.at the 300-foot, 60-meter-..and 40-meter. levels, the temperature differences ( AT) W - n' (UT} 66 - W and (AT) 300-ft - 10m are recorded on the strip charts, along with the temperature at the 10-meter level. The full scale of AT is 10 C. Each analog recorder has [ \\ a 10-inch vide chart paper running at a speed of h inches per hour. The - /L >m./ ' direct recording of temperature difference vill provide an accuracy of M vithin 0.1 C. .{}(){Y'n r 2A-42d Amendment 27 8/Th
1 \\ All data receiving and recording equip =ent for the 300-fcc tower is located in an environ =entally centrolled structure at the base of the tover. The accuracy of a =easured variable depends upon the sensor, the electronics and the recording equiptent used. The overall ac-curacies cf the =easured variables en the 300-fcot tcver are esti=ated as felW. : Wind Speed - 3etter than : 0.5 =ph up to L8 =ph vind speed for both autc=atic and backup "aa^*'" gs. Wind Direction - 32 over range frc= 0 to 356 for both aute=atic and backup recordings. 0.Ok C on te=perature =easurement over range Te=perature frc= -50 C to 50oC, and : 0.06 C on te=pera-ture difference for aute=atic recordirs, 0.07 C on temperature difference for backup i 1 recording. Dev Point - n 0.h C over range frc= -50 C to 50 C for autc=atic recording and 2 G.5 C for backup 27 recording. ' (m) 10-Meter Tcvers v Data frc= the two 10-=eter towers vill be used to supple =ent the data frc= the 300-foot.tover. Each.,10-meter tower station vill have instru- =entation to =easure vind speed, vind direction, a=bient air te=perature .and. relative humidity. 10-Meter Tover No 1 This tower is located abcut 800 feet northeast of the reactor building j cn the bank of the Tittabavnssee River. The specific purpose of this tower is to provide =eteorological data for vinds frc= the northeast quadrant after they have traversed the Dev Chemical Co plant site and the Tittabavassee River. The base of the tower is 60broot elevation. The water level in the Tittabavassee River is esti=ated to be about 590 feet about 50% of the year. i 10-Meter Tever No 2 'This i,cver is located about 6,600 Teet south of the reactor building and about kOO feet south of the cooling and storage pond dike. It vill -provide infor=ation concerning vinds with southerly ec=ponents before they are possibly affected by the cooling pond. The elevation of the base of the tower is 628 feet. The elevation of the top of the dike s h00 feet to the ncrth, is 632 feet. n }. f(N.,,/ 00073 2A-42e Amend =ent 27 8/Th ~.
OV Table 2A20 shows the quantity, the manufacturer, the model nu=ber and the specifications of the sensors used at each of the 10-meter tower j stations. The wind speed (Climet WS-Oll-1) and direction (Climet WD-012-30) sensors will be located on top of the 10-meter tower six feet apart. A Climet Model 025-9 veatherproof pc-table (battery povered) translator vill be used in the wind measurements. An Esterline Angus Model No A601C recorder will provide the analog records of the vind speed and direction measured at each 10-meter tower. The recorder uses a 6-inch vide chart paper running at a speed of four inches per hour. The translator and the analog recorder vill be housed in an environmentally sealed enclosure (36" x 30" x 16"). The ambient air temperature and relative humidity at each 10-meter tower station vill be measured and recorded by Science Associates Inc, No 255 hygrothermcgraph. The recorder drive is spring-driven and can last for a period of eight days. ~The hygrothermograph will-be housed in a Weather Measure ISI instrument shelter which will be located in the vicinity of the 10-meter tower. No automatic digital data acquisition equipment is planned to record data for the two 10-meter tower stations. O 27 The overall accuracies of the vind speed, vind direction, air temperature i r (,/ and relative humidity measured at each of the 10-meter tower stations are estimated as follows: Wind Speed - Le ter than 0.5 uph up to 33 =ph vind veed. k.9 over range from o to 356. Wind Direction l Temperature 1 F. . Relative Humidity - 3%. MAINTENANCE AND CALIBRATION In order to assure the accuracy of the measured variables and to minimize the loss of data, instrument maintenance services will be made at least twice weekly and calibrations made semiannually for the 300-foot tower and the two 10-meter tower stations. It is planned that a full-time technologist will be on site during the. tower operation to perform the maintenance services. i l During the maintenance services, inkwells and pens are filled, chart (3 paper changed and recorder drives wound, if *1ecessary. A visual inspec- _( Q tion of.the sensors, signal conditioning equipment and recorders is made. L Any necessary adjustments are made on site. Any malfunctions are either corrected on site or removed for repair. An inventory of spare parts, '000p'.+ 2A-42f ' A=endment 27 8/7h
l including vind speed and direction sensors, various signal conditioning cards, analog r ecorder, and so forth, vill be stored on or adjaccnt to the site fo mediate replacement. After adjustments or repairs, a calibration is performed if required. Routine cross-checks between the strip chart records and the digital system printouts are also made to minimize any potential period of invalid sampling. Routine maintenance on individual instruments is performed in accordance with manufacturer's operation and maintenance procedures. Every six months, all sensors, electronics and recording equipment for both the 300-foot tower and the two 10-meter tower stations are cali-brated. Hygrothermographs are compared and adjusted to an Assman psychrometer. The temperature sensor is calibrated by immersing the sensor in a laboratory temperature bath and reading the resistance of the sensor. The calibration data are plotted and checked for linearity and drift. The dev point sensor is calibrated using precision analog test equipnent. The-dev Toint ' temperature resistance output is measured, converted to temperature, and compared to dev point temperature as cal-culated frcm relative humidity measurements taken with an Assman psychrometer. The wind speed transmitter with cup is calibrated at several given speeds starting from the sensor threshold. The pulse output of the sensor is 27 counted for each given speed. l'he calibration data are plotted and checked for linearity and drift, anc the bearings are replaced. ,t(' J The vind direction transmitter with vane is placed in the center of a polar. coordinate jlg.and lesistance readings are taken every 10. The data are plotted and checked for linearity, and the bearings are
- eplaced.
The total resistance.of the _ sensor is measured and compared to the pre-vious measurement to detect wear of. the potentiometer. If necessary, the potentiometer is replaced. After obtaining satisfactory rer,ults from linearity and torque tests, the balance of the vane is checked. The electronics and recording' systems are calibrated in accordance with manufacturer's procedures using precision test equipment, laboratory potentiometer or other measurement devices. DATA ANALYSIS PLAN The meteorological data obtained from the 300-foot tower with the sup-plemental data measured :from the two 10-meter towers vill be used primarily to develop the diffusion models applicable to the site. Monthly and annual frequencies of wind speed and direction -by atmospheric stability as well as the long-term (annual) X/Q estimates as a function of vind direction and downwind distance vill be obtained using hourly data for each of the .following stations: J s Qy/ *.- 2A-42g Amendment 27 8/Th
%/ i) 300-Foot Tower
- 11) Each 10-Meter Tower The hourly data are cocposed of at least one 15-minute average per hour.
The frequencies and the long-term X/Q for the 300-foot tower vill be cbtained with at=ospheric stabilities determined separately by vertical temperature gradient and by standard deviation of the hori:: ental vind direction fluctuations. Wind speed and direction =easured at the 10-meter level, and temperature difference data between the 60- and 10-meter levels will be used. The temperature difference data are converted to vertical temperature gradient and used in determining atmospheric stability. The classification of atmospheric stability in terms of vertical temperature gradient will be in accordance with Regulatory Guide 1.23 The frequencies and the long-term X/Q for each 10-meter tower vill be ob-tained with atmospheric stability <detemined by standard deviation.. Wind speed and direction =easured from the 10-meter tower will be used. The standard deviations used in detemining atmospheric stability for the 300-foot tower and for the 10-ceter towers are, respectively, obtained by dividing the corresponding vind direction range by a constant of 6.0. The ranges vill be extracted from vind direction traces recorded on the strip charts. The atmospheric stability will be classified in terms of standard deviation (c)_as follows: f U 2I Pasquill Category Range of Standard Deviation, Degrees .A o y 22.5 B 22.5 > c > 17 5 C 17.5 > o 3 12.5 D 12.5 > c> T.5 E 75> c) 3.8 F 3.8 > c3 2.1 G o< 2.1 Air arriving at the 300-foot tower from northeast through east to southwest will have traveled over buildings, dikes and construction facilities. The long-term X/Q obtained from the 300-foot tower data with stability deter-mined by vertical temperature gradient and by atandard deviation of the 10-meter vind direction fluctuations vill be ecmpared to the long-term X/Q obtained frcm the No 1 10-meter tower data for each of the vind direc-tion sectors lying from northeast to east; and co= pared to the long-term X/Q obtained from the No 210-ceter tower data for each of the sectors lying from east southeast to southwest. The highest X/Q found through the comparison for a given sector vill be used as the long-tem X/Q ap-711 cable to the rite for that7ector. For any wind direction sector out-i side the range from northeast through east to southwest, the long-term X/Q obtained from the 300-foot tower data with stability determined by vertical temperature gradient vill be considered as applicable to the O site. {'} O M ; a=end=ent 27 2A-42h 8/7h
-O Cumulative frequency distributions of X/Q will be calculated for the 0-8 hour time period assuming invarient vinds and for 16-hour, 3-day and 26-day time periods assuming variant vinds. These distributions vill be obtained separately for the 300-foot tower and for the two 10-meter towers. Hourly data of wind speed, vind direction and stability will be used in this calculation. Again for the 300-foot tower, the calcu-lation vill be performed with stability determined by vertical tempera-ture gradient and by standard deviation. The 5% and 50% probability level X/Q will be calculated for each time period and for each of the three tower stations. The meteorological conditions for the short-term 2I (accident) diffusion estimates for the site vill be the conditions which yield the highest (conservative) value of the 5% probability level X/Q calculated for the three tower stations. In addition, monthly and annual frequencies of vind speed and direction by atmospheric stability with stability determined by vertical tempera-ture gradient will be obtained using the 60-meter vind speed and direc-tion, and the temperature difference between the 60- and 10-meter levels. Data from the 300-foot tower and from the 10-meter towers will be used for the analysis of cooling pond fog potential. O tL) I l r l l by 009 7#' 2A-421 Amendment 27 8/Th
- ~. O O O TABLE 2A-19 Sensors Used on 300-Foot Meteorological Tower 7 Sensor Quantity Manufacturer Model Number Specifications Wind Speed 4 C11 met Model WS-Oll-1 Threshold Level: 0.6 MPil Calibrated Range: 0.6 to 90 MPil Accuraby: 1% or 0.15 MPH, 1 Whichever Is Greater Distance Constant: 5 Ft y Wind Direction 2 Climet Model WD-012-30 Threshold: 0.75 MPli Ld Range: Electrical, 0-356 Mechanical, 360 C m-tinuous Accuracy: 1 3 Linearity- + 0.5% of Full Scale Qy Delay Distance: < 1 Meter CD Damping Ratio: 0.4 Standard Temperatare 14 Rosemount Eng Model 171 Series Platinum Stability: Better Than 0.01 C for g Co Resistance Temperature One Year g Sensor R g Accuracy: 1 0.02 C Including the RSS pt Errors or Calibration, y Repeatability, Stability and Pressure
s ,w K~ Q a j [
- TABLE 2A-19
] Sensors Used on 300-Foot Meteorological Tower (Contd) l l27 Sensor. . Quantity' Manufacturer Model Numbhr Speci fications i' j. Temperature R. M. Young Co Model 43404 Giil Aspir-Accuracy: Better Than't 0.05 C l (Contd). ated Temperature i Radiation Shield Aspirated Rate: 10-30 FPS Air-Wash Over l Sensor, Air Drawn From j not More Than 3 in From j Shield Intake in 1 MPli Wind Dew Point 4 EG&G, Inc Model 110S-M Range: -80 F to 120 F l=g j Accuracy: 1 0.5 P (0.28 C) 2 p;- ) i; O l c l 9 i
- ].
l 1 N i B i l. U iR"-
- a to
' 4: 4 l i i 3 i I o a
,g -). b. s. TABLE 2A-20 Sensors Used on Each 10-Meter Tower Station t7 Sensor Quantity Manufac turer Model Number Speci fi cations Wind Speed 1 Climet Model WS d11-1 Threshold Level: 0.6 MPil Calibrated Range: 0.6 to 90 MPlf Accuracy: i 1% or 0.15.MPil, Whichever Is Greater Distance Constant: 5 Feet y Wind Direction 1 Climet Model WD-012-30 Threshold: 0 75 MPil Ly Rangei Electrical, 0-356 Mechanical, 360 Con-tinuous Accuracy: i3 C Linearity: 1 0.5% of Full Scale .3 Q: q) Delay Distance: 1 Meter Damping Ratio: 0.14 Standard i Air Temperature 1 Science As-Model No 255 Accuracy: J 1"F on Temperature and Relative sociates Inc !!ygrothermograph t 3% on Relative ilumidity llumidity D' 8 F#a
,y l,_,q Rt.n.xiliCES dV (1) Climatological Data, National Su=ary, Annual 1967, Vol 18, No. 13, USCOM, ESSA, EDS. (2) Tornado Occurrences in the United States, Technical Paper No. 20, USCOM, W3, Rev 1960. (3) Monthly and Annual Windrose Tabulations, Station No. 1h845, Saginaw, Michigan, January 19h9 Through December 1953; Job No. 9356, U.S. Department of Co= erce, Weather Bureau, National Weather Records Center, Ashville, North Carolina, August 26, 1954 l (4) Slade, David H., Esti= ate of Dispersion Fro: Pollutant Releases of a Few Seconds to 8 Hours in Duration, Technical Note 39-ARL-3, Institute for Atmospheric Science, USCOM, ESSA. (5) Sutton, O. G., Micrometeorology, Meoraw-Hill Book Company, 1953 (6) Pasquill, J., Atmospheric Diffusion, D. Van Nostrand Co., Ltd, . London, 1962. -(7) Culkowski, W. M.,. Nuclear. Safety, Vol 8, No.13, Spring, 1967, p 257 (M (8) Pasqui W,~F.,~~The Estimation of the' Dispersion of Windborne i Material, The Meteorological Magazine, Vol 90, No.1,063, i~ February 1951, p 33, Meteorological Office, Air Ministry, England. (9) d'urner,.D. Bruce, A Diffusion Model_for.an. Urban Area, J. -Applied Meteorology, Vol 3, No. 1, February 1964, p 83 (10) Holzworth, George C., Estimates of Mean Max 1=um Mixing Depths .in the Contiguous United States, Monthly Weather Review, Vol 92, No. 5, May 1964, pp 235-242. l (.11) Dickson, C. R., Start, G. E., and Markee, E. H., Jr., "Aerodyna=ic Effects of the EER II. Reactor Complex on Iffluent Concentrations," a manuscript prepared by the Air Resources Laboratory,' Environ-mental Sciences Services Administration, Idaho Falls, Idaho. Parts of this paper were also I. resented at the 1967 AEC Micro-meteorology Meeting at Chalk River, Ontario, Canada, Sept 1968. i. (12) .Islitzer, Norman T., " Aerodynamic Iffects of large Beactor Complexes Upon. Atmospheric, Turbulence.and.D1ffusion,",a_.manu-script prepared by the United States Weather Bureau, National Reactor Testing Station, Idaho Falls, Idaho,-1965 i < (A} OJ 7 - Q(-)%,* ~s. 2A-43 ~,.. _.. _, _.., _ _ _ _. _ _ _ _ _. _, _,
1 1
- r i
a 1 1 f (~ (13) Munn, R. E. and Cole, A. F. W., " Turbulence and Diffusion in l\\ the Wake of a Building," Atmospheric Environment, Pergamon l Press, 1967, Vol 1, pp 33-43 t (14) Martin, James E., "The Correlation of Wind Tunnel and Field Measurements of Gas Diffusion Using Krypton-e5 as a Tracer," PhD Thesis, The University of Michigan, 1965 I i (15) Hosler, C. R., " Icv Level Inversion, Frequency in Contiguous j United States," Monthly Weather Review 69, September 1961, PP 319-339 l k i j l i e l, ij l ( l i t I t w 2A-kh {}{}O V Anendment No. 2 5/28/69
p.~.p,qu. i -tar o e-- - - - awarr - 7.y w.m mem. ..c-r,=. =, { ~ t SITE L0CATlON s-z.:, x ~ w - { s 1 a. - . f* % C5?g
- p n.7 n ud T
~;** lNAW ~- j e.g I -, u . :,-p ' x a: ' ~* 3 n
- g..
.+ m I i 'k _ l 1 q[;/ .~.. j Fig 2 A1 k. h^ f 3 y [. , k.. [ h,i - ,,v_.- ! l O' Q-n.s ..O: WHX4 4 ap g Q= : : l O 20 30,< 5 """""" l 1.- b --, q,.,4 4-sa. s - q i S .f f;. A i,R, N 3.. m-~ { SCALE mi!es 3.. ;, g
- ---.=,
2.~. y L ~; 5,. -- w~ 4 A _,, i. M l > p'T ~~- r-- -- A (~'N-M ., i / - u}L '.g E N IDCSD *"
- t
. n_ _. A.... Ngl v L ;. f. BA Y ~ 1 { ;-. L. ,7. <- p\\ 1 =Q 4, {_,.,g', -__.a.,m s -] fy,y p' \\. e-- Q gy ( ~{ T v c i i i c t, .s ,= , y y SITE f.M cP 'Pk ZX ='1'F^'hP'9.,. 1s.- ^' M-d. '~b ~ - { {c- .a,, y --~j y " W ~e.M L ,I j.f 'd J - n ~ j gjg7;; ; y y _yu-W _./ 7=Q.s ..te,. L!W n %J ,..-.\\ %+ !N_ A'an-r:q e -c - a w p. y-~ ,L. q. .. _ nq .: q u es , um T"w < *~~~ / - o_p;.,,4n v c. y .3 a h.! [Q f --.
.
J* l 4 _g mr 7 -= 7, l - r. .f ' 9 _m., 3 i 7i i ._.,. L %. .:. 7 1 ~ ~ ' j__m 5 y; ' ~.. "
- A.
. ' we,cM = xy,.,1{,g,,,.fG ' " LJ,*, (,,,, t r ~ y - [,, 3. p - s '~ ,.., (, j g j %.y r '...1--'-,-. i-
- m.,
.q..., k_ c la r r~ !g .a. t i t i !~ 4+ .--s .".".-.s ,,U, '..
- g c.
y 9, .,,J, :tr: 7 .L. 't r s.; e, -ed /: c Y \\r=-- l, h 1 1 7-.' n 83 H (( '. e $ 4 p) >, I p -_ ;g- - >j>];3 >,-, },2,f .cs,, r;(*= j ,..e ount Q M. P1 p / ".)% .1y ~~ 7 N M a I s [m. so.
- :r.
- 4.a . _ _f. ius.yg I r l.. .z ( -.)m .y
- t. wx n
f
- k..
so (".3 i Os"we A 5 i E,. _,Q.- @ 3: -S.j,o,. y cT. ~u W,j \\ { ,,,4 1.y m ifn. r /- x: s-;an ,7 f A y l. T ,,g,.
- _. y s-.mm.
.... u owassw,, . ~. r w \\ c- - -- cu -.cyw. ~,m,... t%y~. Y cl. 4, : ' w -FUNT ~4 7 Sa,nt, .,w 9, re..,3,-[ s1.. t r ,.n a - r=o. m...- l e-(,.(. r
- .7.
~/ t,,,g(c. g 5 g,;-m c., i-w s 3 / u
- v..
r 7,g. 1-k eem,fy -- ] -l -- p i,*e...c - L f b. : Q J,.,, 3 't ~ s
- 1.,. n o _. [ __
t-+. _.7 ?" P . r~ '1'- _x .v e u,,,s.o., o )c; Lu,,q. i ' m m s c.xsb. Q. rg'>}*"~ I..,. 3 v~ G.f W%aq. w Ma m ~ 4 .c 4 u. ..-. m., p y';h nd,,, 7i l*I~Q I '~ h C.. M M.,:. Q, 6 0 3 W h 7 ~ .n d wa:s+m J . p.=.
- w. n w i ".
x.rw> -! . a. m a, c zg a.m., w w p n f ;- ,., ~, m.s., - ;, L~~_w y. ,0 fh bf ?,** t.m. c?',N O 5 $.h, q ~k, # N (y- f ,,. h G lpm. n....".-me p% Q , s,(' b g,.- 4 "T '4,;,),.r.'"A'.
as
w. [T.' q--*yi =rM,,,, t, 'yM; U A..' s.wr0 [W[",hshg: sop [13 [hgffdi$F o, -s we 9 y .r,+ 6 -b_.~-C. m$ D ;' M, y; r a m. w.w m 4f TW t y k,W
- .. -n,
. p,- & s r.~. g - v.1 M p%::.r,G.-Q
- -?
1' u#'mg% 3:- 82 ? Am 3 l ,.li'f &,,.yj %,m,c ., %? ,,5 l&? N, hh]R0j,[ n y.\\ ., D -- h ' gy:M' og 0,%pim.., UfD%W . a, '4.c.. y W..ACKSOf LL&Y+=p?r'~x7 1 fA e4 ( 4 $ 1' f .. UC ~f m, 5 _85f ~5l W. .a s 1 .,s
r
hiF hf'~~'Y~~ k. ]N ~ '. 'Gf'"2-LVY$ L1 tY h N N"uO u- ' A dm l p --..-c e m. ~
~f G s ...y a g y ,Larkin, " Il, K ! j!! SITE LOCALITY Due. S 4 mg sr 4rr men . no i. ) T.' " ' i(' lG V .= st;stRr N f/o\\e!.esri: 7 i'
- ~
Fig 2A2 x y,2,c"i L A R K I N 2 i 3 i s B rsa eo :\\ g
- s i
im c :s 'fc'Joco Il, 0 1 2 3 4 o . },- e 'erk uca.not eo sreue s i gi j , Qr.j 5 y l SCALE miles ace ao ....g... p/m,y,,,,, = g l ie A.1. Willcrd l N' .: '1 il ur s m u. - o-o arrs .o + .s .e,u 9 ,3 m.. 3 d, ~; c,x,,x, g i c 3 l 3 ... ;l.. 4 :.. g _ y 3 e z T v i tcw s u s K.,4 ctyn-me, wow.es m-l- 1 TCw:- I,,. ( lo i I 4 g, p " % N..p "i: Il w g" s .D wwEftfe WHEELER t b ' L 2
- Nf580 0
4
- q
,7 e5 t S, ',1 a e *z ib.. ;, 5 + RD s . i! ' MIDLAND y"wd wies. I a 2 < o 75 v b'
- h*# '\\,
f g 'EbR";gs m>/ 'Q.C W I L L I A M S j ^ 8 I Auburn <,%,.y.,,,'n - i ~ m zo ~ ~ - 1, m .,s e.o I f wotAko.,. m v-hWi i g-c;,fy[.M_, \\gy +N" D..a'*,.j] % v7.yi. ~, d M f Fishervillek_ st ro m}e 7 i b [f s. %' A. DOW CHEMICAL Co - " g e: ~ .s..o E E l 4 lc l' ) g 3*0 "' ' ' 'i =! 5^'2'uac 1
- coe, 0
'o Pf.. 2 g}TE ^ 1.. - -v y / \\. Q,"[ -Wl..o Bo C 2 TEWA2r f i 0 6
- ~
I ocecbwne I no \\ k [gapleton 5 [l swrws cross. iso j- - 8 ci - -- r ,o, r, (a J .J~t 5 o ~ o na e -n e C 01 J [ \\ ~ A,,, -f., = y 2 wise 3 4 I IUCK C RD ' O!, 3 "./ 3 gi s o 4 . y e t t e Poseyvi le..' A x g a g s r = e 5 g;e 5 N ~,A l .1 v RD o SROOKS 3 /\\ \\ l An*E g E u =co[\\ { c 7; U N T ,)! \\ Freeland7 g N ,,,,,,,s3 v g/ pass _._ o L E Y j .c A G\\ N A *, p' g A. c,T AT 1.08 o! I N G E R S Os8 / j-~ ,AA C SEE o WEATHE i S 'o E 9 j ~ E 3 aucerr! 5 toportg %,l,,,t, y \\ ~ ,,s so ,o -l _.. f }. sf ,k O,'1 0. 4 j. 5 lt j/ j r,.." ....)./ ;Q ,2 e s l g r,rr,,,,,33,, g wctuo-Ic m tr - no 6 - - - - -, $4@NA.J e,( M II . - + _. e g +,. .O l 8 O e a m ./ ar g o A.. ?. f +0, 4 2 5 n I r -~ 'f ;2 -. u.1,/ 22 $= Di,ce(dC,' ,5 y S A G F I Ei tD 5 Ivo ,3 22 3 V ? oice e = x__a
3 y , - m.. _.r. 3; m.w ,' e ..ou =o i p i s'I 48b'I'C ML ~ ,J A. a 9. E. I .. SI E ENVIRONS ! e y p
- - H__m,JB,
% i i ici i /3 3l s')a r. r li w* 1 s. I sJ 3 y w x-_ _ _;d_ r%.m\\. mql n ~ .__ls m l M % :s -j [.,...._ d ""' 2' 3" ( b.=4. 8 '~5 w ;m > e=. i==* & l m., ;. a,; d - m,#
- --l
. w.,_. nn' )# %g, a w.= - n. '**f W,. .. ) / .i ti., ee. {l 3 ? _, - -. = = - - -~ ~ - - SCALE CF FEET 4 t ,r p.m.g w- _m. . r, w.,s,. -. m, m...a2 %=ua., =,- e w i. -.-. -w > -. t_ L_. m m_ s m.
- v-a,=
s~ L l 1:e~-?;A t<a -,n if
- 3 wp
~. + r s. t t i e-n _ ; =- .~ p-ah.% _ (;=ggny.ygg y 7 1 ._.;+ fe c y .), = 7.. ,, r- .= ~ n u v/C P 6< m = J w ! ; !, a~ :- i i i u .= ,wa q q_.,,.w i < e - -=v -e*A ; -,3i s .p .h \\ ly :# w:
- M
~ s ...m e ~k
- C
~ a g#/
- / w N$ T 2 2**"k 5 j. [ [=}; is:'*.b.Fh a,
., w, %< 1, g g ... g S \\ / 65'""* U ---I*,~> .g. 4. ~ _,/. I I/ u ma, _.s. t !),
- 3. 1
,: os cW [m,: a l w%ANy 3-c ..ym,pm s' ..w w m NP8'2+ h 1V .i i,afl UI: ! l ! 3 UD ' ' 6,,,.sw hpl=1 l 8 .h ? { p....., cp=g=, w.. r Lif=t 9:. g
- gu==n l
,$ ;s._. 4 -p 3 -,, p.J:g~ q3 g.p jg 7;9 =ggg.,.A,.. .4 quem u e ._.,1 iJJWbW rfL aA m re,e;g,D. + y ac. uyp..:x= % H p..., ~,,,I.Q2,,l_t.D > m@ m[*'m,-+. n, w n p. %n ~ =- n = '- x b.2 C ~..,. '..,[l'!= f Pr;" N-~ ( ;"M. 7 y y,3see + m uw a L.-T-xA; %:whc.?i.%,,.f .,= M = m W M m.u. L.eC2/' Y ..e 4, &c: r m m a Qa-w-j;- v' % r. =%n.*p,ue = ?:-- G.
- 1. 'ea Ni 3 >- [
t n. mw~ s re .,y#[f,y%g.x>y w. m w m.( g ~,,'g: p.p
- }e> q q g
m u._ ~ i n .r. ,-.,A'," . e Q ,-:a",'- f*' h-g.+gMy .I h s g.g -n v: - 1 e
- =_e.g s t-h pr.
--m ,y e L. W .m A. .. 6 4 n. y. ,7--~,,. t 3'. mLe M.4t. 3. .m _ _,.__. _m,- . mm;.3p, t.n 4, s /.g4,. T, ' u g ay ecw m< W~ /., s,. . s, e h& ut.Jo, -=Y $1"% e.M,f". ','cW bWS ~ y . g.; h
- 9 h Yh ?'
? - Av 7== A ~ q q q f, } g? g y 3..=- 9. - Q ' T [ g_ y =
- x
~ n.. - - + p t -,wr c cc px-n.,;p. G.7. A' h - : H, s- - + p >jp<b, - y e s c. .O s. / g! il w. w L _. A@.l n.s.wtJ.~, e wa..e s ee. e sl %y ^~'fi, s-r r f BLDG -47 ' WIND STATION-P il mum u i %#&*d.;h 4 Ai e ,,p=' BLDG 417 WIND STATION--+6'g,g,7pgyr 4 Q-sa 7 h n .c. n "r'{ DOW CHEMICAL.Co.
- 4.
3< r a y a s ' g' I". N, ! 'e I a r- ....!. -..i i si. v CLIMATOLOGICAL STATION------D. 1 O p C, s f, k **. O 6% J l %s g- / >j /
- p e._.c.
- m xN', %w s e r ',._ A .= 'x N [ i i s c s. s %'). _[,g e p N. 5' s %a' I i g _-J t-APLANT, SITES S %\\ N q
- p _ Q,]a.
7-- - - -.. _ _ _ e 1 ua m -- s", a g'N i l g ow,./ 1 a " f'- je s i c / a N ../D.t - ~
- fje N
i! ( s c,. .,, / i,r / / / r a z \\ \\, R.o.s.e, ,m { h WM l e y/ yr \\, g i ', a c-= L (,x / 1 l AP.OROV . ( \\ 's me i --f - 3 ( ,w i -~ t,.... g [
- 00.,, -, h c o ct.N c, Poe N
A \\- '4 a L +' w a u, +.u 3 -m.s q b l a a n x
- )
N' [. (" y u.- (
O O O i } 1 e 4 q. 1 / g% 'f-.g'*-,., N / 3 M N 4....._. 3(,Q{.p A s,p\\ j ,C, ; g m ,/7ze ,..m- / \\ / / / \\ / SPRING (MARCH. APRIL.MAY.) SUMMER (J JNE, JULY, AUGUST ) (SHOWS WINO DIRECTION FREQUENCY %. / PERCENT CALM IN CIRCLE $ TYPICAL ,. y, ' /. i /s [', ,. ; - f, < PERCE {, g 9, f 3. _ 2, C 2 4 6 0h {2 (PE RCENT 4 6-8 KNOTS l KNOTSN. 8'6 4, 2 \\ x './ ~ / '2 / N j i / AVERAGE WIND SPEED, R KNOTS s~..# y / / \\. j 5j C 7 j -+-,-, + + +.+-+ s +, n., ~+ C",. - ,<e; 4@,, / \\ N s ., ;+ h ) 33%3,-.. ' 3,/ FREQUENCY, PERCENT. { / WIND DIRECTION / { 1 ANNUAL w y I / WIND NOSES, MIDLAND 4 i NICHIGAN l, IALL (SEPT. OCT. NOV) WINTER ( DEC. JAN FEB) 3 Figure 2A4 i a i a i
A, 5 a i i ? 4 i ) i \\ v' N A j e v., % e n ',, / i i ka -* C j R .+-e-e-e-,-+- '"*+ 28 g\\ l <^'\\ Y% f. \\ j p /,( ' \\ ~ / j n N / / Ap%/', - c' i,6 -' , $,bi., ',, '., - ./ / i. 's J ,/ ' '[('/."- /, SUMMER (JUNE, JULY, AUGUST ) /9';,,(- '.h /: 'y i 's. ;., ,/,<<,', a SPRING (MARCH, APHIL.MAY ) PERCENT y7 y'. 4, C (-2 '4 p PERCENT f (SHOWS WIND DIRECilON FHEQUENCY %. N'MNdTS' ['k, ' 2' 4 ' l ' 10 ' KHOiS /,'.' I i PERCENT CALM IN ORCLE ) TYPICAL ,fif., 's s' ?* b l fj/ j,.j. N AVERAGE WIND SPEED. KNOTS K/?fM',y ? / '%} p.<l' Nj 1 / / S / \\ .? i. ,/ N*.*, s s -,,, w,* g y
- r. r c y,%, \\
v te-*+-+-.-, 00 X / WIND DIRECil0N g ^....,. '" $v'.,77r,,**,, O D FRLOVENCY,PEHCENT f i n -,_..s.._'.- C ,y g I N yt 3I 9f" / \\, w g>Q l y "g.' s .;j ,./~,y \\ i 8 WIND ROSESi SAGINAW ~ 8 MICHIGAN { 4 WINTER (DEC JAN 7ED) j FALL (SE PT. OCT. NOV ) Figu$re 2' A 5 i l i 1 i 1
-s /\\ k (Y / '/ N' ) ,w_ / j _ s y s K ;,>, y
- e.. \\
x;.g,sn'- ',- g c, ,v 4,Nj j y,=,,s / p,.y ?\\" /, y. v ./s X /, ny y Af e f X Ay .N ;, ep y -g/ i a j s. Yy,y4< ', f, r' ^E h., N 'l/. }- % / *,p %pg/7.Q/.. Q' ',',yN,..<j.X J,{ /;Q. / /,/ '/ ", ' i A g' x % *1, j,,, m m .,o m.m. _ m \\l / ',%,h. l,t- /. Y- '/. f '/_' ) J7,', }/ % q ~nI '/\\ '. </ i A a s . 'l.{. ',' .N'
- /. N-l
[M .6 v.#...'n__ d._ fx. N. #c y s ' rA. 4 3,^ <', f., J, A./, - N w - =, N '/ N \\ \\g<'l,. N,fv- '.' f M. I-n.. n. + m> e, ,/ .4 /,. *
- - N
. - Nq y/ f y,,, 'y s . _ Xj x, , s x y,,,,43 j-jy. j 3, < / '4 4 f /,T Y. K 'y , a j\\ = " y y ~ s' Y< f( ' / X _ N/\\ ( (<l / N j[_ /,, A 3. j f,, ~ \\ Q,., y ) y. ^. g i-QC N = i s ' /A G <f {<j' < f/x =,\\ E/ ^ f( ; X,q n A fy_ , x - -- -f. g 's, .] /g).','g_s 4,g,.= 4a,. / "@ ;/ ' - /,3 ; x ; t. <h. x, y a y,-_ s, -f. ~\\ - / t._.- [, K .N/ a _,. y / 'a g' ~ J 'jr O-X[ x ~ \\ A a.
- 7. ']' [#,,
w = N[ j Q( _ /,,\\/ / _ N f_<,Q. / e'x - gA.* x yf, 4 ' c / \\ Q // \\\\". j.j 3 g g[#. 'V \\[^/X s' / _ \\_/fy,'Vf e's _ X/'N N ',' f c y 4 /_, y _.,sf 4 =(,'. = N f __'s % _/ v', T )f_.. e h C N 'N/_ f,'., s' / y lWV 4*, = /% := '. / ..y 7, x, ym3 ft x n &?? n. \\.-g/R -Q xj g_
- te;,,
Q Z_ F_ y_ ~e y ' j, - J,. <v x-j ,- a - y g +/ g n. /A. a' X _ ',9
- _\\ J. /b _
' j,,_ /j, _.},f=j 3 l_,Q,\\-
- N'
- j
^ / N. _O / ,' N-QT s = - l,- - j ;- a \\j ' f / / %,' a 9,< s,>$ 'C \\ /_ - e/L y x '. .y - g. _/ s x - _ n A,. ;c A f. s _Y 4.' . %_ f, y-y,y 5 ':. ! A y > y / i d,\\_, N< L/ [% 9 'la '._ ? s ' M. . fu A ,_y,y;;450gj/ c m (f, c, - ,,, y .- n y a < m _ r m _- ~_ y _ \\f _,y,.j, y g,y f. v _ q.vy i ie _. /x- ,/,.9 -v 4 /. ' X,; ,y f -( 4 O' 4 E N _'<< v/_ Xi d 's. N ( N'/ A ' x\\ ", 'x. -/ a. f y i' _ 4-MX .N ' /W = W i Y.A / .'e y .,s f. ,N \\ e. %..,y _9 y f, _a,y ,,y_,, . 'O'*X='i & Nx h / 's b ' ', ', I', ~ 1(~ V ^,, x.. = i,,, Y N(' { ) + N~A. ' L -. A .x-u 500 x n f y y,- /6 - N. y
- __f, s_
1 7,, _s s _N/ w, x 1/ x, .f_- q g,,,, \\/.*A e ( -,>s.-,4 f. ._ N_ ' y /\\ _N, ._,A g -y
- .d
'C\\ %M[ h, h k,"j. .x -^ j, _,. , ~, ^ ^ j- / - y Y _g. ~
- At -
E /y y
- ^ N\\
4 -\\ ^ [(, X - ((- ' 'N/' w, _.. _7 \\, =, _,,a
- r.,, x x
i / / x - (- ) .. 37 s, A _ A w. E/_ T_ Af ( '0 A i y x 3 7 ,w,,, ,f\\ y -_j. m
- ['_i ['g'-
g' - c , _fh', <\\h a' -ria - m / w g3/ -c. ...~1.. n m v. ~ .- ~ c- /g a .x x_ t . re _ % s's 1 /s y x/A .. / A y 3., E/ s x <s A_ c / t. V A < r _- r. \\ s.1 V i.. - < v - 'J r % r n _ /\\ 1 s. y _ 's ' t A s 5 7 / fA. N-s= g __'_T x-x- . '_/ t. , N' jm f - ~ ._i. .y x = .'I %'t V _s i_ _i /_ .. _. = _. _ _ ' ~ A .1 w. ' _yf- -T_ / 1 A s. I /\\ / A.. 1 _X 1 X s '.*A'. mX .X- - - - u f. 7 / _X ,a_ N ' /. ~ ..,./_ a'._ N_'c *._ s .f . _ x m 7. 1 _ i 'N / Y _s 1 L. <r e s v a s .v. sy m_ .m g -*4-', r -- m..f ;- x r,c_
- -%/'.~~ +'y'& +cM-b f,&y --}WRwey,A: ~mv.?pfvw=ww'M i
r_ e s.- s' v_--f x-' r' z' r ~ t' _ _ " -'i. s_ _c. sf s-c x. .-m en 3 1 .O _ x - - x g. .._ s .t x x i g, y' _, w. ~ ?. -. '., -y 'j y 3/_ \\ Mg: % -j _ _ y 7N; Qq;-, y 1 x x- _u- _x ~.- g yx, g,p - -yc 1 ~ -r ~ -+ <800 - w _1,- t x x .O_ y _x x .~y 1-x ~- Q 6SW.'. :: sk_'Q _0pheMy&br v=^Q JuybW h. & nN 4 As % l.: f & h, b -- - 8 50,;, - x m o-m / s 1 _,z -_s t .x_ + g _.:~ g_ s u,- m ~, l s _x r. \\ g*,x-1 v r i t ~ _j 7 _x_ - u - + %- t _gj -/ '. .-r.- A _- ,__"} fm_x -s f_ x 1 i s e f i f;;'*7* .e f J & d#Wyti;CMoD;fa - 1 x a ( o 1r - f d42 s -,? - ~,1 ,_,n. '4 - x -.?_ 36 . ; ;hg- - ' ( ',, % l-J _O_- ?_ u t g-- se-is se se,. se s. 4. so se so es to ve se e e FAHRENHEIT TEMPERATURE SCALE i .m / s lf k FLINT MICHIGAN MEAN SOUNDING 1200 GCT SPRING FIG 2 A.O @%8
MyN4%X#xW/W./.pW?M;Wy. V@VJW m W,M/AP,.//xW,Ws>*<@%//. Mss /G X / i:. ,~.. w v.. x. w / /. i g y,; w e y..r y / / y m < w / s. //,Q,^/:</, p'lh(i///>j/.[.Ky'Q. '//Q. Vf.. K,V.:','p x .~.. / s~ n w,. ., -. + n v, +.. '. - / ' a 17. ' 4 _..y.." y.. :
- _.. /...' t
_ 'f 4 e /.2 T '/ , i. / w... A y. <.y /. m's 3 6./ /, .... /. ./. &w. vn :. g.. xq.. yv.r. /..y,;. y y.. 4 0 s.:. w. m),e.. w e, n y y.. /W g sf. ,N.; :f q.. , q, ja,.,m,. p.. sy.g. s,cx. . y,. s.w. .p. v..s /,,ci i.m. p ./..,< v. ,. m [.... a t.: s ./ :y Vf. h a _ y'. - [0. _ /s. yy Y, 'y X G /j '/ / ^/v
- g. m / y v,s,/.s y p /.,yx. 3 /,
y /.., y_: e. p, yy <sxvx,s/;w /, a. v,f.v. y sf, y m.o y es/. - ,y J,. x x - c _. ~ ~ s n.. ., +.. ..- 2 osnww < x/ v,v.mg,y.f.s:x., c ;. ;v < x u,cs. 30 w x/v (,xn, y s /v xA '< - / w e M..s.y vyx/.,w f.N y.e_ / / x v x ('y _ m x Mf. O <f / f s; s p:. m a~< .w, xs,w..v,en.. y,vx /f.</v,, A: 7,9 v_/f 4 y y.x g vxy m,x - a + . -m. vy - - -. i,.. -~. +. x- .p, /su s.. < / si v / /~.,,y. y,-,i s. r / w w:.m, + _ ..n. x N /_ t / Af. s/ ) ' s A-A O /. (, >, A f A. ,/ v xw- / -.m y.xs u. ef s w u s w yv _s,. ~ /c N_ A.4X .li__'X
- /*
' Y V / v IV .'/_*< _*,)(v_/ T /,f.^1/._k */ if_ N _t p,3 _ v,j. . x /,.. - / ?J. ;,/ x,/ ; y s t. m ~ r / v.y. w,y y /./ f. q ;s .f. N,-s,y i../ , x v.x 45d,f,,,_ _
- ,n m 1
sf 4 cy--( fx ,. f, s _, j fv yj A# N_ 7 v.6 /_ N_ _ i Nm v 29 ,. - / j s e, < < ci A_ sx,. j. '7 A J i /,/
- f y
( .s/ x+ x, , f y x, e/ ~4. o.':g A,x,/s, vi m n n + c ~/ n _ . ~.
- - ~,
() J,'J. i Y %.'v v o' % .'n. . /~2 A< 9/A"% N n./': N 8_ _ '.. '- / < A' x f. ' - x a _rvj g j A-s, . 3.- .x A, . ~,; m. _ - - .s / '- 'n-n 4. y.^ c. -,s, k./ s/ v .. t ._./. - / v' i . T / q00 (,- _1 tf, =s. s .,..- f\\ ~% ?. y n /~ 4 % /- i L ~ /l M A f/ Y ?. /\\ .'N . A. = V N i ?Y. ,m ,' - 6i A 26V / te,h x.. s,Ty &. s'2 -,o /@ '. - j' % Q / /g<_ ' ' g L, h -A 4_,/,,,;_tg (. \\. ~ x. m, -. x.m. r,. m m. .m v,,y..z,.. m. .., x.. - . ~, + +, ~ ._,/ n m y s. S. 4 - c. v m. 3 /% / s .*Uy z' S= /\\ 's 1 _/ X < 'N /_'_ = ' _. t g.s
- N. \\ '
s / X' .a. /. A .s i% '.*/* / \\.T. m /_ 'N'"+_ .a > I-4 /L' s i ~ Y _ ~ s. 'N N. A.
- =
N _.1 .L _.,1/ s V N. 3_ _ I _ A 1. -X 1 '.' ' 1 ./ ?. 7 s_ _a ,_'u ~ s y 3. ./ r. g ,-x ~ z,s p .w .t m,s , re-s n c. xx < m, x,i ,sx i s x . z . f s v f A /i A _' y = N / _X ' Y ,'r V f. 'N /.r.. s.. s I ~ .N' . / 7. X =-/ i. V _'s M /s. A A7 . /\\ x. A. =. / 2 X/ e r. f1'. A-s. .y x- /.X X / 4 / i.. _/s. 'm't. 3, 3 .I '_\\' 2 .V \\ / N t' . / 1 a'% '.'s / '.' X.* 1A s / .A .4 .'.'w" _'I.'. t _sf _Yt _'/ / _. /1 _ ? Y.a g.. .Y..*,8 t_" . p . (s f \\. / 8 ali 1/ m _'Nv'I ._.Y. /.'. - a ./ m. w., w, w w ;-? % m. -. ,f. e .'._b / ,I X
- c
- - -mw ws
? .A -7 ~ " / F -.' Zu 7. ~ x e -- 1 r-n. . 4 x ... v - x, ...s . / . - ~ ~... t l- .F. K aso' 1 J. f. J. .'.1, C, I ' s ~ t .X m21 ~- 1 ', E. r' A _ F X tf t T -msT I_ i A -.. X X '/t _A a s* T T/ C X.- 1 1-a K 1' ',.I ~_- e =i ./Yd-1 '. 'i 4-Ah. 1-T F _N A O. ~r -- i s I A /'_ 4 I . x .,Y 4, 1 .. w m 1. x, w. w r_ i .- ~ x. x mm= ~p m,.,. w_ _^ ^ - w_
- s. s y 3 _ +?-an~~8501 o- -
.y - j y y-_n. --. a '..:~S, e\\. -7 j;v.. x' x -/ 1-p q,-. v. - - ~ ~, m = ...o .f .y 4W _ y x.- jx f - - - ~ ._ ~ L.'.,n,*. 'n t C- .,s 9J0, ' p p c;fe~ % m s - l t ;;-, 7 y>y ~., 74 j N.' 'yg p N; f '. - 1vw - - ,'O-x .,m.. .,, a ~. ;n l ,r . ~. ,.N' " ^ ?-. ~ '. _Q-l l Jn m*" ' FAMRENHElf TEMPERATURE SCAL.E o I ! U FLINT MICHIGAN MEAN SOUNDING 12On GCT SUMMER FIG 2 A.7 %.nnm
v u g / m y i m :_x, w y ; M. ^.c ;yx,m y ;~ g y, q ms p . d
- <>MM.%z.Nyy, X.% 9x/
X%%NQM'W m m .-.m _ m . Cip }.=,A, f '. -N _ (;ff, gp f A' Y d'( _ "/,X. 7 '/[/jY/((f '. (s[g/' ~ V a .pg/ ~ ,:g i.,/;q yqy9 .p;y.y..g g,3,; p,;e;y y c,x. c.n v.w y m. .x x _ _ t., r - z. m-w. y. o. x. m y..y s, _4..;g., 3.;. / W. k. ;. W.. S w. w i/. y f_..,< x...,/.. y y.., ,.m 7 v\\ n/A ;;,7 a,. ,3~.y.7. y,.y.yL /,g/,.y-y. 's V,'N ' X '4 _,,/ r .. y+. '. .= ~
- /,
. n> ' . + %u , y,c y. 3. /s. -.,., y,f' _ y. <',-.^.N n. m - 'f',
- /x? y,< _ ')Q. 5. - [ ';( - [ ^ 9 m
<, l,L,;i %/ l ' i /_}._ qo'. (X< X // / O '/..% M< A /. /. X V. A X Y. I VG .; y x csy<y/x.:. s y,'.1 /;< s,y g 3. y v. v, g f, sr. w m.,7, _~ ~, - m. v y m m m' ' -' ' -- i ../__ i _ s. _ / s x < r - / y' A L.'O./- Y r... i / 1._ a 350
- ,a mo. a ym y,w. n/
ex/ /w h N, s/, is'wx. py ; a v, x,; / b ; O + _p x h, A k Nf,N,9_ A/XX< ;q (gh b'Qff / \\l / /_X V:< _ (7x'Y Ny _. ( A/Y f.y'fx v
- f. x 3,, y fx v-A f f ;s, w m, w w y y 4 3 n ; A,sj 9 cwy,yggfj.
n xx _, - : :,. w: 1~ n w w.c _ x/ ~. v.y w>.. m /.. g p w x g/.:.p yn.y.y. et s w f_ (/ sq m. a,p. . x . s ,Ng xj y,xy ,' / y,y< , f. ' x _,'g 4 y > A - \\ /, g,N =y _._,. y ' ', nv. x,o - sc .x u v n.. v. u e x.: 7 a :,. w. m ! / i M, t 'v _a; _ nf_ x N y 4' / '4 '; A,- y ;x,x; ~ j.
- < f.- y-
. x, '_o.sg f -/ q v M.: /'- N : iy? i!A-yA9s,j y a jc e .: A s ( A / gN f4N A45d, f ;., y y,.3, y 7 f. 4, .; f., _p ,j g,, '_ _t Nn iva9. - ,, ;,x.s/ x n. wv.,x in m i m, ., m, 1 x _,.:/ m,~/ x x v.n. g,..,v ,, n , n v /.. v u /x. x. n\\ (J 9 9 >-: ; ~ .gw. m y m s. qo*m : g n s y g : y y ; m . ~. + +,, , ~ u ~. - si. =... ~fN ' S /s X Y Af >f .I /_ O_ - ' t /, _ ~_ s' f .5 N A f.'.A_/_ /\\ N.
- e. A.
ga m i .m<a u.,:w~.. n ;, p. x X / <V'ggq/ :.w. m2g.. V ;x _ _a x s o x ze x.x xz s A A /V X 'l N, / X. / Zv
- '/.
-,/ 3_ ,_.f q. . _ _ y, _ g. \\'N X /g 7 f /.._-'_N_ = f A.= _ v3. rf x - y x.: n-sfs - .s., x n s.,s x / , c. ',k :=_ s _r <A .' V. A A/Y.N .* _/, F.< ? / '._ 4 y . ' XX \\ ._N T 's. '_ t _./% _N_ e N f' = ' - A ?l - _9_i / _ =_ /.O' I _ A. / _ 4. t'._ X". /. 1 . . _ x ~ '_ N/ ~. N T / L'/ .._. vwm' _1_ __XZ x= / X. L ( m' .y 7
- r. y
-4 = . '/. .T .N / ( _ g ~.,ga. v.x n:
- i ~-
~ v/w. j - x/w ..-/ .,r~.- x. m. <,,ix x . -. ~ ~ w' '._e. xx. .._' Y / V t ( /s.T' 'J f A / r s v f_ =.'i t I. X.'". .-_/1 ./_~ # A..( L' . A X. ', \\ ._ 'I ,.i _'/.. v_ -f .y s. 'Y Yt /~ w A- ,a. r- '_f w_- ./ y _g - L: 1 -.[_'_ .I T 8 /t 'A './ _ 4_ ./ \\ / N' a A /\\ _\\'_. /_ 7_ i i/.. T._' /A -.. ' 's / ' ~/ !"h X '_( A '/ ' ;. ' ' u. '. % .f_-< ./ \\ A .i A. /. ( X 1/ ' m. m _A 'w ' af. vr -.x c-c / ( _x / x '.x i. .'I_ .'/ xx. x- /',__.. e Cuj f' d, A ~r ./.*>_/1 / _ Y =.T.. / ~ ( s / '890 *
- 1
- T t
af'. " krzsc 4 %-f %.;-i,A f y % f W = f +-j 4 [-, &
- R %yy h.k*y,i-W sr,n9Lr;sur,therfrei 5
z. t .--t c a e m- _r ( t
- ,e
,< x _. _,/ x. . _. i y _ _ _- +.,. wi ~. ~7 4 /,- = c + y -750 y e,._ ..~1 x,- x,1 :--. - -,?,.,,1, =- _~ -s - <x c - - i -<s .c. ~ - 1 w x. -.m ( m m I. 'L A t .I . / _T _/ Y %, %.v ' M.z h 4, @850 sWM 4 M, W p u d 5 M ai t . 0 s.v 4,- x_ ,.s,. g_- 3 . _y, w l --l l M - /._ __n-W ~- - - 4 4 j_ _-,- i /_ - _,/ s x; 4. .-;p _ ' qjp _._j ,j,. s _y s o- _ - m
- _f.
t . -.~ 5-.s-f ~ l' 0 y {a l ~_ a ,mz s,.-* . ';y .g- = 1990-- _=,3Q'x _g. --_m-, .m /t, 'sO -+-< l_ ~_Q l.w - + - - 1, , ~ - 1 i l FANRENHEIT TEMPERATURE SCALE l e% I ,/ \\ 'o) FLINT MICHIGAN MEAN SOUNDING \\ 1200 GCT FALL m, m. FIG. 2 A.8
'/ -('W., ', , l/^-{l/s / (%Y//, /,Nx',[ *) hc - - '7;Q ' Y> J d,- lq/_ (
- c-x
- rf y, - . rp -, - ,m ' '/, h /,- = a e M M g~cw M / f. @, V,. M.. N / M_ N. w x x q. =.. z. s- .sx., c x g-- W.* / 'jiY //f / ' *,,,(<[/.W k ', ( ' A '
- * / /. \\
p (,' / j 3. A. '/, N ., 4 V y /. x, /,. ' A /.. f. (, p W '. f. % f..,W':. ~ y ', W,.. 'fy' r, _ gg /g / 4;p/ ~ - ../ m .\\ v ? ' ... / _ ~.( L - s n: 3 _ i . r - a r yw r i O ^ ,=, . f [. N - \\'p' ',d./,\\\\^ ^/. , /. ', ' /., ', /,.,' N / ^ . o '~,j " .- [. / ' z _ ' / % '\\, ~ b,, f, ' _ '/ s l =, a /, ', 3,_ ~h' ^Q ~ ^' -,.* = a , /N\\,. /f", \\ \\ /, n ' N '/$ /, * [. f. , N '/ - ',. [..,4* /,, z w ~f. g, e my, Y.. V \\ ' (, /. /, \\. ' /,- K 4 .) x '/- / N)> ,,f,
- /< %. \\; /
,i.5' '/ s'l. 's ' v a h_X ' [,b f,f,. qx', ' M j f_ \\,, f, f g y f _.-. ~ / _ \\._. g'. J'(soo
- _ /
y,< _, ^c h1 _ Q / A,1 _ /_, e_ N/'.- ,. fg. / / _ A
- .7 f,,
' \\ ( f, \\ a j j(j j '(, ~,/ A,= f # /( i,'/ ' ,l,/V .' > 4f' " [\\ "f. ' A N '.* < } / i, t. i. .-s .ax - i.- .;sf f,=,y 4, X / sN
- _.,.s w..
/ v-
- 2
~ 1._ : A ~ /8 / i . < s- -r x,f, -' .f, y _ .V ': "'. s / _.Q j, ', g-/ _ /y n' ; s . ~ ; fy, < s_ / / v K r _t f. & ~/ x. </- _\\'_ / f y ? af S
- g x/ ~, o,' ; / i y a, sq
~ \\ /_ = /__.' / ? //f.';,.g,_ 'pf ' %;. ' / y. " _K/2 [s V y _", .a A s X / ;'.< f,,f i A : ;f, / e, % Ll i *3 v,Q > ,'l ' fxb'A._ N,f;. <',;+% Q,X s/_y__,", i N _ ~ v?. - vx ./=. i - e-n i vi n. _ x/rs. .Q ' j n,'y _-/.,g h'. , yW/ ;K -g: y / h,.,. .- j. b~ Ri a n /V f ' < ^ - . A\\ / _ ./ A _ d.- '. yg N. = /n. -. ' L/ j _ y,5 - A f = _. /. t.- ' ' ' ;. % _ _A '\\ - 7D y/, q.__j_,, _g q,' y 7 O ,y/ / 3,. ;; w, f, fy c .-\\ /_ ,,/- gy / v.?/ (_c y;_s t f . -'K / 7, _ y /7 .<jy f,'p s A.- ^ s -.- y.
- r. /,.
, ;/ f. W ',/ \\, /,< x=M. y / q _. /.% n_ f. A.y ~/.- 9 e. / N = _ \\ / _. N. f/- 'v. / v _ *'t -
- / < A/
'." /,_TA/< _.A N (O. ;x _W A >: N / / ~_i._^/ AL/ y,> pc n.,y /. _(.N. x ._n /A. i - . /s X a / / F_' xL . /. c s p., 9/ _ g. i A/ c ,, Q /., .,N.
- y - -/ -__ _.
y _/ -/ y . ;g < xy' ' - A - -r. . ;q,7 y _ _../ [ . y,_t/Nm n,7 ~. / \\ sh - _2 - /N ^ 's r / x /' J f m,. v/< 1 A/ w/ _. /. 1s. x ._v.. <<n g /s- _. A x,A_
- ,r, y,.< /.,, y /u w.
h. y.-u[ 14 % d2[ _ f ,/,4 = [,5( *, R,4k_.% i[2 \\,]4[4-,18 J g ^ 'A P < A s-/ y - ./ - ', _ -/ r._ w s - -V N' 550' - "/N ^ ' / ' 't / t .T '0 E s .</\\ .V ./1 ., ". 'kx a V / ^/ ';V. -..V/V .' w A.. 14 A -. /u i p%. /\\~/.t -\\ '45 x /- / w r/ -: n x _x __1 e. m'- L,_M x. 1 v x. ' '/ -_ <~ - x er A .x v. A A / - ~.,-- / / ,- / b60'O? x f-p _ x/s f -,;- \\
- f., '
. f. I ,'x i iA v. ./ - . /..
- v,
.v- .3 n 'A-1 -/ t -g tt. /.N ^ , /_ N . 7 /A. _=_ i V f ~- x ' . r _- - n e x x v -r a v I f . / 1 - ggg4 A i n ._x. .x f ._,s _.e x .t p\\ ' f .( .f .A _./ r .,'I, a .,I 1 - ~ .'I _'3' !A \\ ~., _ I r nc x 1 1 .i .x _..'r-y,.__ x-A 1.1 .m1. .w 1 - ., a. th
- 9 1
-.v + - - - ap 3"w.1~jL+.~My"~M& 4 =_+l-+iy,_ p e _ -,- 3,,, ~;'-~%f3 i e_ f / L.. s.- - e - M_- x if s,' /- - Q-n.\\v,0 't 'x-1 - E 4 f. A --s' W- ,/ u, Ai A, 1 _-'n r_ n t x.. ~ =\\ / - ~ - ~ 7. r x 1, x- ~ ' k, 1. .n. 'a-~ , / 4 J - 1 e 'f. ,u_4s .. <q_ a x. -1 -z m r, n i v, x, - a, .x 7 .M< - *i. ,SOO- ~. n .,x r. - m <..,m sz <2 t x r- .z x _1,- 1 -,r-- _ n 1 1. t .x,_ ,MAVp:a.:. y, w Zr =a ?_yx pw.c --=.; + -; y mvena=m r
- _850,
.. v, -s_ .o: -.d. ..~,,,x t m ,F r., .~l 7 A 1 m_ 2 ' ,r- . u m m 'c ,X.
- E 900'x w
a 1 ~ ,1 _j_. - ,_956, 3_ -_._ ,.m s., _,%q. r 9,,. , ' >, -_ ; y -~~+*g s
- __e, J --f-p V; /
~h 4,-(..' Q g Q'c::-ffrt: -y q_ m s _ g g _- , 5 ,q.. ,,,Q- ,,, yJo-- *- y _ ~ _ ,9 s .s, e .e is se as so ss se es se es se es FANRENMEIT TEMPERATURE SCALE ,f S ( n I i \\) FLINT MICHIGAN MEAbj SOUNDING i 1200 GCT WINTER OF-FIG 2 A.9 j
p 'Ny5tlD'.F/7';WM%X'WW7MW/W; % M/ , O .YM/;,&/ >:'V_ _M_? /. '<x;WWM7..M F.WM m ma ..=._-x m ..>// s,z.< : mx.. m. // mgow:;s.w syp,~ ~.yi.y, QO,. ;',y /.1.j,W,t,%% Q iXy'y,'y < Y K,ri g > N. g,.' ' w.: /, n.u v. ~ i m,,~ f,1 h '/\\ , i_, i ' -f_ y.
- 7. ' y
'{ 4 L _ wc ..,/ a. / :. 4.,. \\.',/,n'=.,n k i/ .- / , _ ~-,/.. . x. _ /.. a,_.
- w.. ys s _.w.v. s x<.
y.;se f. ,c. x w, sa . f~y,. = y ~ . L. f. }r / /, J<.; Q.,._x',\\. /, ." A.' f. ',- m.
- , y?.
y. ~. _y> / -, ' ; / XK.q.. _ f. 8 K /;, \\s\\ a v . v ,y c. m .j. x 3,. v. >.a . : /.. s v :...m. .x. m m'A_300', .i _ _.if ;.. 'v / ^;., ; ' Y 'j. q '_ _Y< o'. <.//,, _ i]%_ ., / _.; w..y y..'y.. 8p.n.a (. = n? s m. _y
- p. v,,.. x.p/f.x;.,. m s y?/ < y y a :. bN m
( R.< m. N,. W.. @..L. g, n =.=~ ~ 4.. < / I'- "a. . _ I _. I '/. /2 3 '/ \\ ..~~ : .i_ y .. _ / 'P _ _tb m 's / _h m'~ jy. -. y. Q, f. V. % ~ cf M /.. j;r; f f ; A./< f;'v_ny;o /\\ o 4 <_ % ;y / [. /;._ / r.: x 7[ < ;-t v, : s ZRo/.. w / /,y / 5 f. i y i m y$ ^ W K 'f / /, K h s:f.W_^f v [ %;;
- a N W y Y r / N G y m 'x' D /wyy,vvRf/;Wy,y s/1;f c,% x_,yfy
- s b
- -. 9 <_ 7 4.
x:m n v x e ,x. -- x/rxi. - ~ x. 1.=
- u v n
~ ..p: w,:/ < x,y </s gy. n v/w/ rn/c .y,;
- , m- - ~. n. x.. : n. -,,v..
, w a. < wsx 3, n n. _ skt w u,.,N ,,x. x/.
- w. w + 0 A m.n.
=,\\/- Y A./_ v_' ~ m.* / A ./. s. ':>. / /, n,.,'/ / 1 N/ / *_w < / w" m m/ f ' / \\ /k ^ r\\/ ./U _/ A /, y x /w. : /,,a' ', i / _, x,/,: / , a ,x-m- ~,. x m.; w </- _..N= 2 3.. w M / N ' A f ^!5 ~/ F/ \\ N A i, Jr X As /u Nf'i k i 'x ' f f _/ y N N Ai ?On/ 's /s ? r i /2 % Y ^/ T'. NJ _ "' / X fN V' >g ' ' A. Le_/ 1 /. D. '" s i.' M.' N. M ?' ' / K /s A.? N ,1/N =. '.?/ % NX , _N/ /\\\\
- _.'/__=
( (<, .. n /,1,/,~ n .../ w,/:.n m, y_ 4; w,yy/, n /: e . _ _/y y -. /, 3 _ y 7, x, v, 3 ;a _L_ y.3_s y ?.,, m i,~. + c 1. x.. / . ~a,, .si -.~. +,/ s,.,m w.. xxx. u /,,u r i. .c w+ w./. w
- x
- #<
.,o , wn% a)r a .o s p. x s %..< y y no A. ,,' - / + ix
- = :gY.' e,,K;.
..~ - i x,x, a x ~ - x:. . xx s / x/ ~ u / ~ / .w ~., s. n ,/~. v. ..i / \\\\,. i /-- i s' ^* ? _ = "k'x _ n. N V' A s 5 / 's '. / ".: 'i. ' / :.iV . Sm / < ' X a \\ / !'# A M' i 't / =./\\ / .T. I' 1 '.1 -. / 's _N Y - 's ". /. 1/ X.. X '- / '., < " *m_' =_ I. A T. /_ _ - X"v_ .v _ T /' ".'"/... '.i ' ' _
- 28..
d .. 1 1 ?. 1 w. .s \\ . v/ 3 t L' -. v: i. ?
- 1x-- x
<w. g..mtc r, a x: 1 x 'i.c ~g Ni X/W '. / A - Y b/ ./ w Y F _ ~ V. 'x / .'T. .1 A. 'i . /'Y V\\T. ' '. _ ~~ ** / .s T., A T' 'f e.
- A/ i
.D If __ 7 ./ A. ' 's' s . L'. O'^U l v"' r .A ' ' - ~ ' - / ~ -65.0,'A - x 'g y' ' .I ~ ' "x / '' ' ' -* ' X,(. - i s I'_ E / N' <~ sf x ~ / y / ..7. ( /' X /A il / ? ._/ ' 1 s1 A '1' ../~
- . /-
_../ _. A -. ' s .V 's - ..X X .__A', 's ' ,( L' .X_* V .Y ..'r -,V-nv/. +- '_ .? t Ug ,'N .,f- ..,N' L. A.' .'t, ._/ -' ',.. ' _. / 't j '/. . K A 'r.,I,' n / n ~ = c. ~ ww.wwmew,wh,.e,% we,em . ~. - ,x 1- ._g. - .r ,x . z...- 1 x x,_. , - r x.. .3 x... ._1 x 7 ~... 1 x-.. ?. ..-l .\\. '....K zz x. x ., ger x c .X _.I N 2 ~l/ m. ' i / " '. s ._'t-_ '.t s' E. w [,_ _7 [ f.. _ Y 's / lt t .. -...-^.-.~..f. ~~( a. f- _T I iu L K /_ if Y 'N-' 1 4% 1 -_'a J I. X ._ ~= f - -~ _ EM [, _x: .[800 -r_- w _7. .. i. 1.- _ ~ n x ww m k-4w ~z w 4n~ mm. =. M 4. + w m n a n eso . e s- .- n_t 1. m m *-w -~,?*."... _,s .,1 ~ n,,. , a n ,'~7 _ ~- ,.x. , r 1-1 .w c a ,r a, x . 900 '. i. h; _ ~
,y
_ L. _.__ c._,.. .w5 w ,a _ a yh
- - es1 s
4 - . +, x n a
- - f ' ' Q, 4t='
- +.,'p.'C,. i wy, -tMi p-x -.
.9 m_ s _,v
- .L;%,
i n=r> g -p_ , - -- g I,'-.yp. 3 w
- .[EO
" i' FAHRENHEIT TEMPERATURE SCALE o (V \\ FLINT MICHIGAN MEAN SOUNDING 1200 GCT ANNUAL e~". w-.,> FIG 2A.lO
O sc FIGURE 2 A.ll DfLUTION FACTORS VS. 4c DOWNWIND DISTANCE ac n E. 20 k \\ t.= \\ \\ 2 HCUR AND l 24FOUR DlLUTION g O C D f1 \\ l i \\ .z _ l2,7 i \\ 3' (1NONTH \\ -5 j vK '~" R \\ i N o B B ~ 8 K C s\\s E N s l 2 B 6 Ng t5 C l x 10 0 1.5 200 2.5 TO 400 500 6 7 8 91000 1500 {b) DISTANCE DOWNWIND-METERS Of)O9,3
t 1 t r--__._-. l Y I? ". wr - t -~F - '0h &%}.yde,NgC - .+ 1 i \\'(':' _f j -Q 4 E,E' C 6 /. '. l \\, I .K e ni . ;.'.tyl... L s: / ,h
- ; i,,
'i e ) ,,7..' p u ,'/j[(yit %.h{2,.T-*% 1 u\\, r. -[ 7' {) I r i f i n-q't Q ,m., - i i \\ t \\,N y A h; !i N w v '-t/.;;;& '(pT, l ,1 w. i i o :. s 1 .s s e \\j ,"{ = rN', i r-e C e y i $Lasest e Q i cartto lI l l l j f l m i ( ] ys I I ~ w a.. cv.y A.. %( u n' %# w I ^D! $) ,O,] ~l. j V R g, ~ %DH &I a { ru i i i P I.) f'v% , \\ ~'.% -&- H -t {.,g p', [r C --- I ' ", r BASED'ON U.S. MONTHLY rU, y .' I, - '.. - b. '. I. WEATHER REVIEW SEPT.,1961 .. y a i M, 0%. m F I ",U R E 2 A-113 -- In s cr. ion frequency fpeerent of wat hmir.h W 4 Winter, (B) Sprira. (C) Summer, t D} NI, (O AMd k D \\ 000M
]1 b } s % ' D %,e i f "' d .\\ i 1 ( a ' h,, [ .) 3 .n j'f %.l; f* _ s }
- *p. \\,,
~ j f , /. bg-I g,,i' g 'iM. ,/ i j ,K';\\ A i (.S N sh ,l .F. jN a g (( NJ c
== rte N.) j w, b,5 i l A j )' ll-i e a ~m% _fr i p' %qc.--= +Im' es. _u J;i 1 .e \\ (k-l 9 -4 s '~~' ~ ' g. I s. ~< w ) w,, o + o . ~. ~- ~ s 1 .y@,,'.s l.- N \\d i .r e = b d 'Q (y \\) Ny = =e sau. i 4 i Nr J BASED ON U.S. MONTHLY l -- _\\ WEATHER REVIEW' SEPT.,1961 t ( ' ;, e -..,1 Mqv} i ' +- d. .?
- ! '4q.
FIGURE 2 A-lid -Implethe of n0thttim- {fpercent ekniet cover $3/10)A (percent =md *pead f 7 m p.h )L*2: (A) Winter, (B) Sprina, (C) Summer, (D) Fall. (E) Annual. /~ ( 1 ~. 4 000n5
10-3 : O "F" AND 1 MPS SUM 0F ALL DIRECTIONS ~ I ~ PSAR 2-HR MODEL WITHOUT CAVITY DIFFUSION 10 4 C 2 i b EE I w 9x O i 105 i ASYMPTOTE LOCATED AT 100% - % 0F CALMS r 1 1 10-8 0 5 10 20 30 40 50 60 70 80 90 95 98 PERCENTAGE fp FIERE 2A-11c CUMULATIVE PERCENTAGE PROBABillTY OF THE RELATIVE l kJ DIFFUSION, X10, BEING LESS THAN A SPECIFIED VALUE. 000"6
Oi i i T ~ W M - + - - "F" AND I MPS ~ T . \\ 1 k PSAR 2 - HR MODEL / N \\/ CONTINUOUS POINT SOURCE (CPS) 10' N s m N w lE
- %.%* % s 8
~ "f CPS WITH CAVITY DILUTION ADDED' ' - '-M, / ~ / 9 f5 / / 7 Q ,/ ~? S 10-5 p ~. s' b
- ,s p
-R / = / -Q /
- THE NUMBER IN () IS THE CAVIT / DILUTION l
FACTOR FOR THE PASQUILL CATAGORY CITED AT ll70 METERS. jo Y ~ 10-' 10 20 30 40 50 60 70 80 90 PERCENTAGE FREQUENCY I l FIGURE 2A-11d PERCENTAGE FREQUENCY OF X!Q AND THE RELATED PASQUILL CATEGORY, WITH AND WITHOUT THE EFFECT OF CAVITY DIFFUSION. s ... - - - ~..
1 1 A a sa a m 2 a-_- -s- -_-.a l l Ol l i l l l r l l I I I I 1 I I l O I l l 1 1 0
c' I &a.s.@=5%.0f$?W..QdMWcWW'. % m m,.- m n. g ' N ' % 3 %.%= w wpa..... m dkN[ g _0 h C E N m g_, a. -., W.?.. ;,, f,y y @ @~ &,.. Q M.s YD M i %; 9 y n J ,3 y . y ym,v. s 4., .2 l O ,..i;1 s? m a g x w.mn: rys %u m w.,. 7 '2 c N.4.m % g.6,$s,. F uf rd;% W-s%n ESWI%@.. : .Y%1%,yM4"c?.. MMS 9h. ' { #ei. F 4 d ' N ' S S,Q ' Q~f
- 6
- :M ;m y :
w m '? O
- /
ph f ~ 5.wp.Nb.% O k b.I h$ $$h DbiM42 - .)
- p[5gb..Y,j y gsw@u. 4 -..
J. %m ...- t.$ :.y3 VM f a s$0i.O.d:El'd h M 9 = %g(... w : ^h ~~ - [g ilhj9 =hW rpA.y4ANf.qw q~~M.x=.;c;p%q
- m..
Mi4 3 p[D q ,g er, v %~1, W'u yc
- x qqa St% w%@-qpkDirw-) fp!6sawp%
u d t -- o' 4,. . ',W .J 44 6, W a n = % p d % %.
- G % )e c W G { e% M W &,U 9
f B$9 %9% V Gl % % M M $ w%. n i k'T i f:ME4E WW.ba%n&oyhM#ye;d34 % m m m m =wn p.; z b i dtgMy ~WL TM& fs.UYV. R-~mEs!.@g"%e,@YN$,~$lVM.'9.n. : r a%s,,;u&..,.:.l,w '0 5 WQ 6 r. c-f ~$w,*h,w.il-Yp},, ^ ^ L.&+jQ'O i i .?'-;$.. vg?nf.t$) - f s 'u &m-% wf. j.y/L n
- ,4.4 p. w w a-e 1,;w.: - > w ' - -
o.} r n w .LAww v. i.'ih+sw>- 0,x:w.nc.rw$$;? '. : f./* i ,g *\\ - j
- s. L
.si A r h'. f W.5',%, G ?r k;. f n','h.e..jlf. A f': n; - .w. ;d M ii 2 14 a .f f???? 'A ?!b $ $ I.v-lO'W.- !5&~$lS5.U,~ 4f. Y hhpD$&. $L$$$i?pi$fW>5 ' D kCNA l5
- M O 2 NZ,6[E $ i
?.? $m%yWEN?c W E $20,%: 3 ow g w~w. ~ 9 n %.s p W B &. y S % r.,q : n :' i ? n%,,,. c. 1, 1 - k. Ww=g -i; s .w ,e,. p-- c.4 y.. E,,N...: L,e .c n,;> y.%,a,.;,..,, M...,f,'s s4,. I N. s-. g.t Q4g 4. # -< - - h. >p.g .,,4., w y. ;p.p.., , v.,, s- ,y 2 m .s is <r- ? b >i ,L ' y* y M 'N E., w$ $ ik. x -: n - a;. ~ ~...w., .m i'i
- M,,,5& *:.u, N,\\.k:>.l.$.bs'-h*,.Q.5%
f. . y, %s Mnm$y$ki$UkIh.3: ?' '.N TEN INWh?d wqw w M % M W % M@@ W 1BlRMT & ? # s y h K W h : 4 2 % w< w s. m, - *)'#* q<b.,r, y. e n w w e a m m...: n :g. w:ys.e ~w w v.. x.s **'r.u. - %.v a 8.6LQ -- G. $'..--. -s 'r..,2m:1& n. f; " f.;j l(f. r,dV. 7 m'i> ; - 1 u,._ ..ie f ?-- s ?. '.Y ' * * # + '. I ' k' rya _,;. ' !? g h/ d ? 4 .) e.-nf;ft '. .. ~ ~% 3 f.iW ~. , j
- 5* n.w
- g f.Q,w;,; y,
'ru %
- E 4
4;-an,% O G,r ;.-} % e -~ .s s7 W. [ i
MgA. QF L g-(('r.<y.(ca L '$ s '. 6t-a ,4 e &.kc. aI r$ h. ! k e 7p mm E4 a l, il g,7 s h,..$ ,%.b4gg g,7 El1Q tqI g n s..,_..g e gMu!-? %. rf . f ' N b Y; d vy j% kf3-ff N 4' d[Q&*bO f.11,.d n tu.a s pig ~? I 5 s .j y hl'?.h [Nl h ' c* . j' ~ ,,$ c (' I,Yfk I'k 'aii.h h l,'y}. %';' N.J;f~' 'n0Ah .5P ' Q. q i jgb %fp. s?N-Y:$h{@TiiW.lE.9 )-s G = % ,W f;" Q.s s: g &5 4 v ~m' k h k,h k hk b N k i$ MShhw s:;; b, I ) ff
- N.ky%g/jrL M r ni 2
, - ).,4, Q"..i., Q g y: l ? hii W r' y, ,yy tew-+.M f3 : w m.{. jy., i f f"';. _ % - p.. -. W ' $ ); $, 7. 0 %, g,,/, f. -e 4 s. m We FA A p -." w gg:. c/y .;p[Q.172,E W 5-A, E* T' ' =.zb v.. E~ 8ECHTEL g '_ :., p. % ' @, 7 g,,g .3 gg .... ini n.c. d_# V [,,,[y ~ - WIDLAND PLANT UNITS 1 & 2 4 CONSUMERS POWER COMPANY ENDMENT NO 27 AERIAL PHOTO - NOV.1972 AM 'E' w.' f Ti w $ . gh;_. g.cg (d AUGUST 1974 METEOROLOGY TOWER LOCATION g, w g,N"~_; :-.~. t,, -j 7220 nGURE 2A13 A 00099
a O i i I i ..., * * -. =, I I I ,/ .t
- /
I/ \\; DN 1 i .-. A 1 fIY$' . _m. ;,e ~/ m f (,e6sv so-g/, \\ ~* s i ,J,, /.". ] g $a..~.! l I ~'" j l ~ w.. O< I 5,,,..-
===. 41P ff Me
=
T.O P ,m, .a. ) l' s.= k ,* men tessa I l
- =
t/ i 2-- ! i2 { l }ll l *,a ) al [*f J: il .*a / i~ ~ ~- be::=k i l I _ i lW l l "1 2-1 / me. f n: l ~~ l l / !y7 rys!!B.E sL A e i: i - l 1 => r n
== =- i e = y / = E = ~: F ~- g/ I ___ M
- .t
-- { %i_.! ! _a_ = **a! E-E gi ftgtr 7 's,N' /i/ /.1 -m i_, l O.,;E
- 3 1
1 Ei i .,./_' N, t
- ire, I LTJ sa.
.o f I i i I (] ~ '00?c20 Figure 2A14 300 FT TOWER LOCAT!0N MIDLAND PLANT UNITS 1 & 2 Amendment 27
= y! h, 7. N / \\' \\,, ' l,ll N s'%/' / ,y N ~ x f 1llllTTh A ./,. N g h t s 8, "N, s \\ \\ s e l \\ e. \\ + E ,,, o"8 + r / 5 ~ ~ 'O ( \\ \\ s, 3 \\ / __= N g' a/ 5 j \\, VffffffM y t ! s \\ s k $lM s [ ^ \\LLU3 e, ~- \\ '-~ % ~ s o 3 j i 0 4!.04
- }}