ML19318D060

From kanterella
Jump to navigation Jump to search

Submits Revised Criteria to Be Used in Analysis of out-of- Plane Behavior of Heavyweight Double Wythe Masonry Walls. Includes All Masonry Walls Having Safety Significance.All Masonry Walls Will Comply W/Revised Criteria by 801031
ML19318D060
Person / Time
Site: Trojan File:Portland General Electric icon.png
Issue date: 06/28/1980
From: Broehl D
PORTLAND GENERAL ELECTRIC CO.
To: Engelken R
NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION V)
References
TAC-11299, TAC-12369, TAC-13152, NUDOCS 8007070273
Download: ML19318D060 (22)


Text

{{#Wiki_filter:__ .a h .d Feniera Grerei Emmc Cerreeny June 28, 1980 J M rojan Nuclear Plant , C aEice'nse NPF-1 A pock'eti50-344 /- n-i ..k&Il l.' d .) J , )\\ ( 5 Mr. R. H. Engelken, Director U. S. Nuclear Regulatory Commission W .ey Region V Suite 202, Walnut Creek Plaza 1990 N. California Blvd. Walnut Creek, CA 94596

Dear Mr. Engelken:

Supplement No. 4 to LER 79-15, which contained the pro-posed criteria to be used in the analysis of the out-of-plane behavior of heavyweight double wythe masonry walls, was submitted to you by my letter dated June 10, 1980. In meetings held on June 19-20 and June 25-28 with the NRC Staff agreement was reached on revised criteria, which have been expanded in scope to include all masonry walls having safety significance. The enclosed attachments and tables reflect the agreed-upon revisions to the criteria. As alco agreed to at the meetings, all masonry walls in the Plant will be evaluated in accordance with the revised criteria, except that the allowable collar joint shear stress for standard weight and heavyweight double wythe walls in areas which are accessible during Plant operation shall be 24 psi and 12 psi, respectively. Based on the results of these evaluations the following actions will be taken prior to resumption of power operation for walls having safety significance which do not satisfy the criteria: 1) For multiple wythe walls for which the interface stress criteria are exceeded, wall delamination will be assumed and a determination will be made as to whether the assumed delamination would adversely impact the function of safety-related systems, ettached to the wall or in its area of influence (2 feet) in accordance with "3)" below. If the safety-related systems would be adversely impacted the wall will be modified. \\ 8007070 ;{.7,3 , = - 4g

. OrtCi'd GdC3td ECCIC C'iT~JIf 2 2) Cantilevered walls will be modified. 3) Where the bending due to out-of-plane inertial loading causes flexural stresses in the wall to exceed the criteria, the wall will be evaluated to determine if the midspan reinfarcement strains are within three times the yield strain. If the rein-forcing steel strain exceeds this limit, the wall displacement will be evaluated by applying the energy balance technique. The displacements ob-tained by application of the energy balance technique will be multiplied by a factor of 2 and a determina-tio^n will be made as to whether such factored dis-placements would adversely impact the function of safety-related systems attached to the wall or in its area of influence. If the safety-related systems would be adversely impacted the wall will be modified. 4) With three exceptions, all panels of shear walls included in the finite element model will be modified. Two minor shear walls in the Fuel Building which did not provide a significant contribution to the structural capacity of the Complex will not be modified and will be removed from consideration in the model. The shear wall on column line 46 in the Auxiliary Building consists of twelve panels, four of which may not meet the revised criteria. When the contribution of these four panels is ne-glected, the SSE in-plane capacity-to-force ratio for this wall remains greater than 1.5 (based on the capacity and force values reported in Phase I of the Control Building Proceeding). Therefore, in the interim, until the walls are either qualified or modified, the panels will not be considered as shear walls. 5) The north wall of the mechanical room (wall 46-1) at el. 77' in the Control Building will be modified. In addition to the above, an evaluation will be perforued of the potential impact of wall flexibility on safety-related systems attached to walls having a structural frequency of less than 20 Hz. The portions of the walls to be considered are the upper two-thirds of cantilevered walls and the middle one-third of all other walls. Safety-related systems to be evaluated will include valve operator connections, electrical equipment such as transformers and motors, pump nozzles, in-strumentation and'such items as batteries and coolers. If the function of safety-related systems would be adversely

  • o c

Rr.!crd GErerd Eecric Ccrectny 3 impacted appropriate corrective action will be taken prior to resumption of power operation. Modifications will be based on Alternatives 3 and 4 of Supp. 4 to LER 79-15. The above-described program results in compliance with your immediate action letter addressed to me dated April 17, 1980. A report describing the results of our evaluations will be furnished to the NRC within 10 days after the re-sumption of power operation. All masonry walls having safety significance will be brought into compliance with the revised criteria by October 31, 1980. Sincerely, /,/ p? esmr' / Enclosures c: Mr. Robert A. Clark, Chief Operating Reactors Branch No. 3 Civision of Licensing Mr. Lynn Frank, Director State of Oregon Department of Energy

ATTACHMENT 1 INTERSTORY DISPLACEMENT To determine the forces associated with interstory displace-ments, the following shall be considered: 1. Moment of inertia of the wall section shall be determined based on a full transformed section consisting of all cementitious components in the wall, and a transformed section as described in section 6.1.1.2, Step 1, Supple-ment 4. 2. The capacities at the boundaries, prior to cracking, shall consider the upper and lower bound values specified in Table 3-3. Following cracking, the moment capacity at the boundaries shall be determined consistent with the displacement profile for the structures and based on the yield strength of the reinforcing steel of 50 ksi. 3. The displacement amplification factors over the linear elastic analysis of the.undegraded structure to account for possible non-linearities and structural degradation in the north-south'and the east-west directions in the Complex are shown in the attached Figure 1. The out-of-plane shear forces in the walls shall be derived from the STARDYNE linear elastic displacements multiplied by the appropriate amplification factor. .EI-6 g

ATTACHMENT 2 Definition: " Walls Having Safety Significance" l. Shear wall 2. a. Safety-related equipment attached. -b. Safety-related equipment within 2 feet 3. ' Train separation for common mode failure considerations '4. Design Basis Equipment Protections (e.g., Tornado, Flood, Turbine Missile, Control Room Habitability) 1 ) W rs/s-s

ATTACHMENT 3 DISPLACEMENT AMPLIFICATION FACTOR In order to arrive at the amplification factor of 7 in the Control Building end of the Complex, the following conside-rations were made: (1) The modified displacement was calculated using the methodology of the September 19, 1978 report by deter-mining the stiffness degradation factor as a function of stress in the most highly stressed wall. This resulted in a displacement of 0.19 inch. (2) Following the procedures used in the evaluations of the proposed Control Building modifications, the edditional amplification in displacements resulted in the following increases: a) 10 cycles SSE 27% = b) Gross bending 26% = c) 3-D earthquake (SRSS) = 2% (3) The resulting deflection obtained in steps (1) and (2) was increased by an additiona?. deflection result-ing from the vertical slip of.01 inch along the column lines and amplified further by a factor of 27% for 10 stress cycles. l l The final deflection as obtained above was found to be ] approximately 7 times the deflection as given by the linear finite element model of the undegraded structure. ] AN-12 -

The deflections in the Fuel Building are controlled by the massive reinforced concrete walls of the spent fuel pool and the hold-up tank enclosure structure. The capacity to force ratios obtained from the it. form-ation given in Clarification No. 13 submitted to the NRC Staff on October 10, 3978 indicates the stresses are low enough so stiffness reduction will not occur with earth-quake cycles or with the gross bending effect. Since the re are no embedded steel columns in these walls, the vertical slip effect at embedded steel columns is not present. If the walls in the Control Building degrade, some additional load will be shifted to the Fuel Building resulting in a corresponding increase in deflection. An estimate of the maximum possible load shift to the Fuel Building was reported in response to Question No. 7 dated August 30, 1978. In this analysis, it was determined that the load transfer was limited by the in-plane flexural capacity of the floor slabs and that the increase in loads was approximately 60%. With consideration of a 10 to 15% increase in deflections from three components of the earthquake acting simultaneously the resulting ampli-fication factor is less than 2, the value which is being used. AN-14 ) i l

The' dynamic response of the Complex in the east-west direct-ion is approximately the same for either the existing struc-tural configuration or the proposed modified Complex. There-fore, an estimate of a displacement amplification factor can be obtained from the floor response spectra curve broadening values developed for the modified Complex. The floor response spectra curves for the modified Complex, the curves were broadened by 41% on the low frequency side of the peaks. The effects of earthquake cycles cont'ributed 16.6% considering 50 full stress cyles. For one SSE or 10 full stress cycles, the reduction will be approximately one half of this value. This would correspond to a 34% reduction in frequency which corresponds to a displacement amplification factor of 2.3. For purposes of the wall evaluations a factor of 2.5 is used. AN-14 l l l

l e 9 i

  • i - -!

8 t- * ' 'W* 'S 1 E E-t' e t t t ' iJ i

  • '1 i

't - f d -- [ l'.i 3

  • i-Lj

-f' 8 ,-$:g

-}

. a-7 j. s> 1-1 'l - 4 ' 4:f I 6 I b t-S t 1 1-4 7f a 1. r -ici -4 4 l bI I i$I l I i a a r 1 1 I f i jl l l l ' t l'4 Ik l $ l'8 l-f i'l. - l '; 3 ' 6 .1 i t - f. g r rt i rid -w 7 !i'i i i i i i NL 1 i t i-i.4 A t M-t2t u J-i 4 tL-l i I-P s I'! N T. .I k

  • h.

-4 H +4 e 1

  • 4 i ig a f

g-i: 3n

j
  • 4-

- l _p e L

6. se 3

~" ^ ~ '. 4 ? }' -f'- d;-F-[A.f C M-U-F Ih-T j q ' i*1 i 4 - .ee 4 i

  • 1

} s. g (~ 2. :Y M. 4.. 2. h I i....L +

  • u 1,2.1

'.I ; I -i.-j d-M..-. _I * - * ' ' -*-i *II :- k. t.d. -.lL ~- ~- $ Z$- $ - 7 ]'- al$ !J ~ ' - ~ ' - " -*7k- .,7 .j.,. 3._.w = g .4 .-.-<e [ 2 -+*.'e i1 4 ++ ^ ,.-6 4. ~; ..e-,,. ,.4 4 J-p.e 6. --t- - +. 14 --+ t 2..- -6 j j f{i ga I

  • f"
  • M *'t*

a E* e, A. ' ., 4 , k + 4 { _k 4 4 -.... p d_,. ' i. !' l I ' L."*Q ' I i!w k e . s . l l' I I .s!.! U.= i b-i ( -H-b -t- ~ ' l' i 3 - f-W.-. ui -C..h.'?-.E.f d t -14 :-Q " n i. i-. -- : - -i a 3 4-* d '.1 j-t_.p.y. 2.i 4 b ; 4-F j -I y : { - l-P i-rr p } i -i3 ) 2:

i s ind:

1q1 ur. - i 'O j - rug...a g:1-p Q-N N.i'J_f J- -4 Q. frh 1 9 tifI'-i-' -@-I;i ti t-b'irItJ4;EF: - ~~ M h2 -f - g M T3 d L M f. ( { ~t;-d'-% ~ -Ni l- @*.: bh#. MM =Wt ^ =r+-% - $4=vE -t=E!=V Mt!& %kk=- -t=W? 4-%=- 7 M-W n= W =iM-i' ' w-- t- ^1 -~ m -


~f..-

- - _. -::*I. p :~* r f.y -t,

~* - - - -;qk. -

s L:z ;_ i.. , yn _ --~-~

M

-~ ~^ - ~ .-6 .i... -~ -t :"_* i e 4 4 -r. { - 4,-j L + - + - - * - + - - g -4 t.G 9 i ! , e ,.j =s-p -# l -s t-t t, iiii [(J ( '-i t 9--,/ sq -b -m et--

  • -i-

.13.ad -tqg i 4 -1;6 } e I t -f-L p-i-~ i - b ji1 t ' s. i -s s-Q@ y3_p r{114 - f. i4M-j; g. @. bj_hy i s i 4 .I { ;:bt - v rt i-ItO -gt-py hi j t-t; M r J -i-- P4-i-tFM 4 T.e i j -f=- 4 -p g h3 @6 !iJ J. 1Ti-b - 4 E!;f- -LFif.+=f-pet-iE D/i-. M, + 4,n g p=a...g- :- -M, :3_a ht_ ;- p , g:. _yL_- { --* j a _ La p 3@: ~ 1 :.; 1'...h;. =-F".4 ;. .J{ % r1-:- : - j i

1.,
b. :... 3 1

rm r 2- - r :: = --m -q::=: ..r:.. ,,,p = :=- ,ro ggg. g d, rrsL -.:y-2.:q- =t-o r m n y w _._ _

. :- _n =.. u

. = - - g '!<Qe-4s, i --d ^ g ~ ,I .+ j,; ) .e-.e_.<-+- '-d _Qri+/ 7 7 : i ^ ^ .Q 1 i 1. i . i i I i a.,. ./. _Q.. d b. ll h Jp i I u b 1 L i i<1 a. iwp q _?Waf* I J/: 3 I ii~7 a

y..,,, T

. ie,wy i i. -f-h E 3 ' _.' Gp I i ijA j 1 i,, i M 4 I ' ' u_ ;. ~ d/ N/I[ i i -M i N-f-M N--h-M fi/ :/ /./ / tfi i:t

t -i (

1 h .e t ag! -j s q-4.c b i e i i iet i

i 6.,, e %)-r i l 6; t

i e liiii - f / (/ / /;,r + .i i i i ei n 4 i,. 8 i l4 I I i ! I i LJ' ti M! 3 t / //// //d i I i 8 f i !'8 ll N ! i l __-s-E_r) a : - __--. J_ -h s.grt.=, -i i i i t t t-1 4t+ _F i irF 7 d. 1Iii i i !I 11l1 l '. ri!i /'/#M,d -Et ... _ _ [w* 1 3:- b ~ !' h! fh I ^! I ' it_,M kt ' 5-b-l $ +- -k.t-7 1-* _; t-d7 ( 9.;;t ;-j r [d Ii. 1i i I J///// /i i! 8 f f f' I i IM III 4 II8 t-t- P tyae"( i.4 i

  • d ii[M 2 *-N-I'" i U

~ .' d it-I 75JEh -I i

  • 1-4-i:M ~4 % t i 8

8 8 l t d4 8- ! ~ 3 -l I M-1 I J I r- % CE5~'l i "'D -i-N i f -~-- I-i } f -i 1.c. 'MAV V. I t-k{I g 'Nla -b-F I-N f" f if -I - +f/[M:; d NI =t:4+it -t-Fs+ lmb =tqPA#t =i= M.S: "= 5s J-+H=P 1-M-t-Eit 4:bFk

#=1: athd
Lg ;;d n;g q%

~*-*g.-' _4_.

n y _.~.4-r - : u

.L_1_. 3 ' 3.A-+ u t_

  1. .W m*

1 - UM/[' 'in- ' -*t-g r:-t r !.1 ; .-+-.i'..-

  • !! /t-* *

^ "' 9{e _}.}.g- -11'T T 'e 0 - tO .- !! -*.. '7 ,,y,

  • y 1 -t._.; h, 7 4

g+ + - ,__;.. p.? -+ r-J -;g-f,d,,,- J 3'-- + -+ 2;{ -:rt_E _2r ra-c y E E C p-r a-:- e 1 a n. +.s. .., 4 ,.l.d. .yo.< -Wf. J ' ' -9 g_..4 I,12 * -e a-+-<- -.4 1 -+:. 1 1 g J 4 .~4---- I ^ i i I ~' di

  • j ' -
s. E

-.~ -aw -4.. -A

  • I I

t a2g ..n _4 c4 -y-4 l "; y a ---~-p M+. 3 UW -e l-f -l i 3 a ! ! 8 e uo u 9 e r 6 e i ici e 4 ( 1 sq-- i. to ti i c j. 3 l i' T. IV I: : i i-t -l l 4 l.f i I: i 14 1 t J.( t pj i t iM l8 i' W *

  • F 1- !

'f : 2 eb g =-C .. 4 -M "Mta <* i-i.h :t-4 46 -t r t t ihO

-ti r i d-f
-

+ l

1. !

L-- 4 -1 i id i -H.t d M-~ .:N \\ l- - d-' ~ fi:14 NIM MM- -@f.' MhD$- -IYN Aii$_I--II581l N $ i;I; -1M.4-ic hj-Li-E 7 n, -.; _ _,,. - =i-- a - -_ .-,_._a g _.n _

t_1 -::bgd. :t%t+m_ -t n- _.A. e r

- e rh -4 p4.i J (h 24 u _v FQ.- 1.) -t-t t t i 4._~ g.j _--

4. j p.-,.

jie 6_1 r '-

_qi g p. j i

. t. j. ie.e J. 4 -- qihty y ;-j Qi -[ i?._s: E*pt 4.. ( ~b aL i j ) 6 ) i 4.4 -i-r _.. -j y-:(..M.fi.- - q =y 4- -g g L.j. 4l$ 4; .gbj- =j: _M. p}- _j _ ;ip.M. -j Q _i F+-l -- -j - .4 W.-.._Q Q...Q_[... _h._ _ _tih_ 2_. - _. l-j-j_. _.f.:s #2-1 i r._i-E_- p_._.2,_ t [-t sS ._}.k.8.9.k h.. p.: f.._ 9_./ 4.. _[ - d,:::

) _:

f .{:};t. : 2 -e-< 7 p.-}.,g:,4.;I 4:.mrart y " W-3i. g v*-- :. ? M.2 ** P'-

  • --"-*-'t: ::21 72.+_,_-y-m -- +;

3 _ ___1-.. g im -~ .+.,,.[,f y -.D+-* 4- -e 1 1 [ i i 1 1 i 1 i i 1 . 1 i .ii i i - +--t +l, i i i i, ai I ' ! ! Q i i 1 44! 1 i ai 44 j-. ll I -y i e, i l. ~ = *= 1 i ei . a [. I I i 1 i 1 1

$p!g / ( CALCULATION SHEET i CA LC. NO. REV.NO. ORIGIN ATOR P+ T3 CHECKED DATE - PROJECT JOB NO. SUBJECT SHEET NO auua wm u wa Lh. 2 4% s pm, c#6 4 5 Q{ g 0,83 6 kL 4 0, $O 7 A3 4 0.3o 8 A4 3 o,84 s EI 4* o.94 10 62. .3

  • o, 3 o is 22 Fl 3

o,83 Gl 3

o. 9 i 13
k. I 3

0,9 i it. 16 4 O ru. was Loadi 18 k bY \\% fC. \\o \\t C A4 o Of Pt te ^ o.ch wal IO a d Im\\w 4k Q. we 2 21 s EE 23 24 25 26 27 28 29 I 30 31 l 32 33 'd-AM webd 3 - Tdl i 3G 36 57P 20768 Rev. (6/76) E D-60 (S/76)

O e , i ,,aa. ..qi w-w w 3,, c. ,m, ix-- s n . L M-: b d 4-t:+ 4t-H 4. - [ -f=r d ? i: 14 -.:t t M-t

  • F Fi d d: 8 ' ' N I; k ' 4 ! U 8" l45 I i

, i b i-1

  • ii4

.t t ! 8 ' I t l' 4 4 +t rT 4-t 8 * -:- :b l _ i. -t - -r < H o: 1 1-Mii g 3 ,t ed k-tiii atri > i M: 1 m-t-st M-M mPi t-e +M-b -l # M:4 b '-f* M=rA.1 + 7 d-ME 4N i45:L 4 -d " 7 . " ~2 iEM t-M SM f5EMN !EM a ie-4 -; + i-I a mi i-4 i4+ rh .m, i m. 2.-% -d -- #w- <= _ " -'i i r s.

z. i.
H i A.:J=E
= - M -:

a+ i - 1-4" ~ '

d. g_j i.. -L. g t

j. .,_ m, e M.. _ u.-.:[th.- 2- .s _.i. _n._- :=_-rep _ L.._ r-12 %..

r. i q
i. t. i r y ;.t 3.n f a
d. 4.-t. {

.1. :._i r.

_i.g p-+ --

fA 'f'*-*~*-*-

  • ^ *
  • 4 j

_y-. Cf 4. L >'_ ]_+.* ?. T _,g .~2, L4;*.: J* - t

  • _T'I T

-+- -~ a M de-I- h-.5 .--e m . q - * - + - * '"C I i 3 f k r i.,, g [ i 1 i il ! I j -- jFai j 4 I i g l g T'" i.i e i i e ii a

  • ~ 5

" ~i i ~ i i! i ,i i -t m t i i g t ',, i, T"T"***- i 4 i. I i LM F sa aru a-E. +- _v ari-;.u 4:i =.i f- =Li m - + W- -m t n Id y i-H F " M i

-F;;f-J. :I t @f 1 2 3 ia.-i

'^ i -j }-i. 4-jrp -M-t _y:-h-C_ 5-L -p p r-p --* 4::: :i r gt aF r= F p g

9-

-j }-H t:Ep):==i:4.h tt:i Eti:4.f yf ' g .: p. L:( -j .4 (1: ~-' r- ~ *'I ~-' ' E' ~h-I=I f -* E ~J w_, I -n._.-._ =#. M:" 3. - ;*a- -~ w d 7 .u zu - r m _.-t. .EWh mt r;:- - 1 ;_ l-ra

_.=_t-
-t y:.- -.= mu

-t .t 2-- --r-t -t-r- '. =r-

r. m-r---:

c-r r,.:r: ____ a _ -iu-r.t T3 _6 r

m.

4_ v.c t - .v trr .r _nl1 i .-:_; t: -n_._u i i t i ( -4 t - -i' U t h ht 3-i %i:4 4 4 -*: i-f m i l--+ iit ! i t-74 tf W. -l 44-f' J 4 -! I lf I, - + - - - - MM i: M. r L -e N !--nd g-WGiW _W.M )

  • i

, "i i M-Wp e

p

= rJ i -4 =t :-thi { r:{

--t 4 1[_p-t -r.s t ep_

q 4..t_.4. Fy% 4_h M: - h t--/5):: 4 r'.m-c !- 5:Pd. k_ r i-.h9 $="NTNS-.TM 5?~^ -Y'Y5-4;E9:V*?;E W S EE. i.$ f N+=f-l +} 4 - Lld=N "i $ "I&E- =' .g1u:-r. q m. c. 14 c.F -.t g 3 - 2 -c.t - r -r7-- . : r_t ni bre=.- ::~r = r %.. _ _L._. uerw u c g1 - J -is..J. d: =-. :!.1 h:::_-:. E: _=en.=r. --- 2-' 1-.r_ _._._ e et e , - - ~ - ~ ~ _r N. 2_ I cc " eI:t

g.. _

. :. r:T. t- - d+ ~+ (e I 1 1. I I I I ! ] 2 1 1 1 1 1 [ i i .LM i g ~"" F L L _i_ ~ f ,i g'Q.gp,g

p

__g. _ _Lp pi $ H _ _7 i 4 I.$ % k 2,' (_h jy {.E

  • H
  • .O
  • } {-'f: h

/ 8 $,f h/ fC -f

  • 1 Y t (.

h;j a f ( l 3 f 5 5 f t } eiil l l t : ij j } } };j r; - s t-i f:( g ji't eii / i i /1 / / i I t ' t i e i 6 t 4 t i I 1 iiii i i } I ! L t/i ii f I i l!b ! '.-

  • I i

i I l !/ i/ // i ! [ i III II p g.p.i:._f_j_ _p !_~ "E j t p f ;- / //j j.g% 1 j l [ .p # p-J. g.h jtj: _jp p j._p J.4-U{_ y - t_ { [ j i-l }- } l{ = r_.t:r --_;_t-r._._r fenm f 6 ,t r 7b?... _ 5. :.:.u =;_w. ,(iI

m..$.+ cM: i.F w _.

., j. i.h..r I.I I -r i_ -t n r.

-t-t r : rt r:-

u. t t- ,, ei iAij <r. y i =- e .r +r> i-. 1c i 66 rf c r- =c - u i i i , i o-Q t 1)- p - -t-t7 13_r_ , _q _g4 sg 3+ ;. =4 =_.-)-

i. T.

2:-@ 9 I .t_J-[t 4 -i 14 !iil g

  • J /t/IJ: =

9%4 N:b-1;I-i. I i~INM- -[-i dM f}-/' FI: ME -l:4 -S iri -N h = Psi Srt-Q)52 N }-i-b 4r*C ':F1E 4 r 4 .=t .7 g-p-. -s 1. y-t.Eh.~. p. =-. =v

r=

. ; - *a.e;__. 451. = =-._-.=. w_ a=. 4 b -+ -e M-tp= f-9. =- = =w= r- .:-4;.u: =i=i=u. - H-t-L.-; 1 1 m-w;r . n,. -t i 1 g-rt::t-- - L L, _L.-f - : 2: L L: 4.:r42_. r- - t-U --I-W 3_,[ t- *-~* au.4:t.-t:t_T t - r H-f u.4 a J-g.

  • 1 - 1:

g 9-e r 4 g,___ _ 7-._;; 7 7,. - g g _,g_ _ - E #N A u-rg* 2 0* o-2 I I I y 3 _4 b +* ' 7% A 1 y ].,@' 1 1 I 1 2 I I I I & I I. ~ I I f d I I I I ~ I I A I d. - _.ej e f =$ p h hl y i _j,g,,, i cm 4..;___ _._ i i 1, 23 _4, e i i _ L, -o" t i [, -H l l lp F.. j U. - -{- L ,.,7 e + r., , sa 3, t,i, g m n'p g } e l-4 l6 4 i.4 } ' tt ahl 4 t- -. 4.p$ li[i) F _f.g. j 4 j.g j i i p g 1 9..-j r I-f ' i i ~'ifd .@ -O : ' h:M:#:- - M d !.. l 1-I: W@ *i- ?. N=7

  • h I h-

'k 'N-?'. -i"'lJ5 -ML Z 7 f .I6 ! } Hil

  1. W TL

-P tif# ME9 '.~iii-t= S h i-1i f l'-,- ,-t- "PtiI -l-i+ EM4 4:#45-MiEOE #i?M s=ht* 'f"---_.-m 4 e t -6.-+ - - = ~*-r-e-e 4 g -g-.~.- ._t-t i _i -._ T-t--'Ti.J 5-.-a . i .p t-i : d. N'- .LU P t st: st [ { t ,e s4 p 1-b' 1., i:4s r.(.; } i !--b dik i_1 L.r r-i-

  • - + - a i At g

-i l-4. 1. .}} } i. 4

  • p' I :}9'.

} -4 1 4- - M=1-h- -fli ji 'j -f" - ~ il(--T j ib' -*- S L ~~ r. ' k-M.-Pn Ed2 -]~-f h.$ 3-

k. N-I N d'Ef -.NU MN N[

'iN-N - T -S-N {-f_' T b ~ = -M' NI t'I T s--6E= --i%:i 3:1-t~.; F = l1:Pk):.E =Hii~4 #:M WT-M ?= W EY-W i $ # ---*~*-T- =' 3

  • (-" ; - -
{

T-~ -t -*--*-t-*' 7 ? -f tt-*-+-' - __ _Q 4.{, -+ ~'+-4-t--t - i r 1 I i ] I I I [ g 5 l I I I I I I i i l i ( m.$ fh h .6 -.p- - r+ i i < i i e > g 6 i i i i i i i

ATTACHMENT 4 BASIS FOR DISPLACEMENT PROFILES Analysis has predicted that the consideration of possible non-linearities and structural degradation could amplify the displacements of the existing Complex as given by the linear elastic analysis of the finite element model (the properties of which were based on uncracked concrete stiffness) by factors of 7 and 2 for the Control Building and the Fuel Building, respectively. The variation of the increased north-south deflections along.the length of the Complex, east to west, is expected to be a smooth. transition with no abrupt changes in either the ordinate or the slope. This variation over the Control Building is expected to be small and, therefore, will be approximately 7. This same type of variation is expected in the Fuel Building with the ordinate being approximately 2. It is further expected that the variation will be approximated by the dominant north-south mode shape. The variation in amplification factor, shown in-Figure 1, has these characteristics and was obtained by first scaling the dominant north-south mode shape to 7 at the west side of the Control Building. This resulted in the ordinate at the east side of the Fuel Building being less than 2. The mode shape was then rotated about the western end until the ordinate at the east side of the Fuel Building equaled 2. This curve has the expected variation of (a) smooth transi-tion from west to east, (b) small variation over the Control Building, and (c) small variation over the Fuel Building. l EY-2 L

i ~


-~~..-

{ CI .s C2 Displacement flultiplication Factor for i-North-South Direction, All Elevations. 1 C3 Displacement Multiplication Factor for East-West Direction, All Elevations. Multiplication Factor I/O Prior I/O After Fixed to F/E Anal. F/E Anal. Condition Cl 7.0 Later Later C2 2.0 Later Later C3 2.5 Later Later Figure 1

ATTACHMENT 5 Where plate action is utilized, the values of un-cracked tensile capacity for masonry horizontal spans shall be. based on the values specified in Tables 3-2 and 3-3. When the lowest frequency of a vertical strip model is on the high frequency side of the response spectrum peak, the lower bound rupture modulus values for the horizontal span shall be used. When the lowest frequency of a ver-tical strip model is on the low frequency side of the response spectrum peak, the higher bound rupture modulus values for the horizontal span shall be used. AN-13 ~ w wnm 4 'T ""Y

ATTACIIMENT 6 Stiffness Consideratio1s-For Energy Balance Technique To obtain the displactment in a wall at mid span following the yielding of the r einforcement, the energy balance tech-nique is used. The following two cases are considered. a) Mer

  • My, where M is the cracking moment and M is er y

the yield moment b) Mer<My In the first case, the stiffness in the linear range is cal-culated by dividing the load corresponding to M by the dis-y -placement corresponding to M obtaiaed based on lower bound er modulus of rupture. In the second case, the stiffness is calculated based on I,, the effective moment of inertia as indicated in Section 6 of Supplement 4. These same stiffnesses are used to determine frequencies and corresponding acceleration. FB-12 -1 1

TABLE 3-1 TEST RESULTS FOR MASONRY WALL COMPONENTS ff f E E PE f t d s MATERIALS (psi) (psi) (psi) (psi) _(psi) (pEi) IIEAVY WT BLOCK 4,100 STANDARD WT. BLOCK 2,700 MORTAR 3,700 6 6 CELL CONCRETE >5,000 643 4.26x10 3.71x10 BLOCK / CONCRETE INTERFACE 158 PRISM TEST (HEAVY WT) 4,400* PRISM TEST (STD. WT.) 2,400* REINFORCING STEEL 50,000 Where: Average compressive strength of applicable material ff = Average splitting tensile strength or tensile bond strength at material interface f = t Average dynamic modulus of elasticity E = d Av rage static modulus of elasticity E = s Average compressive strength of prisms (consisting of cell concrete, block and mortar) Py = Average yield strength of reinforcing steel f = y Compressive strength of masonry prisms saw cut from two standard weight and heavy weight walls (running bond) and tested by methods specified in UBC Standard No. 26-13. EY-1

TABLE 3-2 MATERIAL PROPERTIES FOR STIFFNESS EVALUATION 1 f E y r MATERIALS (psi) (psi) (pcf) v 6 HEAVY BLOCK 215-500 1.75xlO 130 0.20 6 STD BLOCK 175-400 1.0 x 10 100 0.20 6 CELL CONCRETE (CONTINUOUS) 450-1000 4.0x10 145 0.20 (COLD'JOINJ) 200-450 CELL CONCRETE CELL CONCRETE (HEA" JT. ) 60-250 DRY PACK 10-50 0.20 BED JOINT-MORTAR 50-125 0.20 HEAD JOINT MORTAR 0-40 6 REINFORCING STEEL 30.Ox10 Where: f = Modulus of rupture or tensile bond strength at material interface r E = Modulus of elasticity y = Unit Weight v = Poisson's Ratio NOTES 1. The modulus of rupture for cell concrete head joint is baned on test data obtained from the composite wall block / concrete tensile bond test (LER 79-15 Supplement 2 and letter from Broehl to Schwencer, dated April 1, 1980). 2. For evaluations to be performed prior to resumption of power opera-tion a lower bound value of 80 psi may be applied based on one-half of the mean value obtained from the composite wall tensile test data. ~ -.

TABLE 3-3 MATERIAL PROPERTIES FOR CAPACITY EVALUATION fy f fd f E 7 MATERIALS (psi) (psi) (psi) (pbi) (psi) 6 HEAVY BLOCK 4,100 215-500 1.75X10.. 6 STD. BLOCK 2,700 175-400 1.0 x 10.. MORTAR (BED JOINT) 3,700 50-125 MORTAR (HEAD JOINT) 0-40 6 CELL CONCRETE-(CONT.) 5,000 450-1000 4.Ox10 CELL CONCRETE (COLD JT.) 200-450 CELL CONCRETE ( HEAD JT. ) * * * -- - 60-250 DRY PACK-10-50 PRISM (IIEAVY BLOCK) 9,000 PRISM (STD. BLOCK) 2,000 6 REINFORCING STEEL 40,000(Min) 30.Ox10 50,000(Max) Where: ff Design compressive strength of applicable material = Design modulus of rupture or tensile bond strength; For blocks, f = r this value is computed based on 6.7 [f}* with a factor of safety 3 of 2.0 applied fy Design compressive strength of masonry = Design yield strength of reinforcing steel f = y Design modulus of elasticity E = " Structural Properties of Block Concrete", by llolm. Composite modulus consisting of block and mortar.

      • .For evaluations to be performed prior to resumption of power operation a lower bound value of 80. psi may be applied based on.one-half of the mean value obtained from the composite wall tensile test data.

EY-1

TABLE 5-1-a ALLOWALE STRESSES FOR IIEAVY WEIGIIT DOUBLE WYTIIE MASONRY WALLS l-i I l TYPE OF STRESS I LOAD' COMBINATIONS I I 1 (1), ( 2-STEP 2 )*, (3)l(2-STEP 1)* 1 1 l .(4) & (5) l l ~l l I I l A. Masonry I I I I I I I I

1. Membrane Compression i

1.50S l 1.50s i I

2. Flexural Compression i

1,200 psi *

  • 1 1200 psi **

l .I I I I l

3. Flexural Shear i

1.50S I 1.50S I I

4. Collar Joint Shear l

10 psi l 10 pai l I

5. Bearing i

1,100 psi * *

  • 1 1,100 psi *** i i

l i I I B. Reinforcing Steel i I I I I I I i

1. Tension / Compression 1

0.9f 1 1 y I I I I I I I I I I I I 1 I I I I I I I S = Allowable working stress based on Table No. 2411 of UBC-1967 f = Design yield strength of reinforcing steel (40,000 psi) y 1 Steps 1 and 2 are defined in Sect. 6.1.1.2 Flexural compression stress is derived from the lesser of the block and mortar strength divided by a factor of 3.0 Based on 0.3 times the compressive strength of the weakest material in the wall. EY-1 4 4

d ~ TABLE 5-1-b ALLOWABLE STRE3SES FOR STANDARD WEIGHT DOUBLE WYTIIE MASONRY WALI 3 I l l l TYPE OF STRESS I LOAD COMBINATIONS I' l l(1),(2-STEP 2)*, (3)l(2-STEP 1)* I l l (4) & (5) I ~ l l I I I I I, Masonry i I l 1 I I i l

1. Membrane Compression l

1.5S l 1.5S l l 1 I I I 2. Flexural Compression l 900 psi l 900 psi l l 1 1 I l 3. Flexural Shear l 1.5S l 1.SS I I I I I l

4. Collar Joint Shear l

20 psi l 20 psi l l l 1 I l

5. Bearing l

800 psi l 800 psi-l l l l l l B. Reinforcing Steel l l l l l l 1 l

1. Tension / Compression 1

0.9f l l y l l l l l 1 l l I For Definition of terms ?ee Table 5-1-a. EY-1 4

TABLE 5-1-c ALLOWABLE STRESSES FOR SINGLE WYTHE MASONRY WALLS I l LOAD COMBINATIONS l .l TYPE OF STRESS I HEAVY WZIGHT l STANDARD WEIGHT I l l (1),(2-STEP 2)*,l(2-STEP 1)* l (1) (2-STEP 2), I (2-STEP 1).l l l (3,4,5) l l (3,4,5) l l 1 1 I I I I l A. Masonry i I I I l l l l l l 1 l

1. Membrane Compression i

1.5S l 1.SS l 1.5S I 1.5S l 1 1 I I I I l

2. Flexural Compression i

1200 psi i 1200 psi I 900 1 900 psi l i I l l l l l 3. Flexural Shear l 1.5S l 1.SS l 1.SS l 1.5S l 1 l l l l l l 4. Bearing i 1,100 psi l 1,100 psi l 800 psi' l 800 psi l i l I l l 1 I l l l l l l B. Reinforcing Steel l l l l l 1 1 I I I I i

1. Tension / Compression 1

0.9f 1 l 0.9f 1 l y y l l l l l 1 1 I I I I I For Definition of terms see Table 5-1-a. EY-1 4 I i

e TABLE 5-1-d ALLOWABLE STRESSES FOR COMPOSITE WALLS I l LOAD COMBINATIONS l l TYPE OF STRESS l IIEAVY WT BLOCK l STD. WT. BLOCK T-. l l (1 ), ( 2-STEP 2 )*, l ( 2-STEP 1)* l (1) (2-STEP 2), I (2-STEP 1) l I l (3,4,5) l l (3,4,5) l 1 l i I I I I I A. Masonry l I l l l l l i l i I i

1. Membrane Compression 1

3200 psi l 1200 psi I 900 psi 900 psi l i I I I I l i

2. Flexural Compression i

1200 psi l 1200 psi l 900 psi l 900 psi i I i l I 1 l I

3. Interface Principle Tensile 1 60 psi I

60 psi l 60 psi l 60 psi I l Stress l I l l l l l l l 1 I .I 4. Bearing i 1,100 psi l 1,100 psi I 800 psi I 800 psi l I I I I I I I I I I I I I B. Reinforcing Steel l* l l l l 1 1 I I I I i 1. Tension / Compression 1 0.9f I l 0.9f I 1 Y Y I I I I I I i I I I I For Definition of terms see Table 5-1-a. EY-4 -.}}