ML19242B437: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
 
Line 20: Line 20:
=Text=
=Text=
{{#Wiki_filter:_                                            _ _ _ _            . _ . _ . . .      .
{{#Wiki_filter:_                                            _ _ _ _            . _ . _ . . .      .
                                                                                              . _ _ . _ . _ _ _ _ _ _ .
    -
TENNESSEE VALLEY AUTHORITY
TENNESSEE VALLEY AUTHORITY
   ~
   ~
Line 35: Line 33:
         $4000 is being wired to the NRC, Attention: Licensing F w Management Branch.
         $4000 is being wired to the NRC, Attention: Licensing F w Management Branch.
Very truly yours, TENNESSEE VALLEY AUTHORITY h'\ .
Very truly yours, TENNESSEE VALLEY AUTHORITY h'\ .
                                                               . M. Mills, Manager
                                                               . M. Mills, Manager Nuclear Regulation and Safety Subscribed and sworn to,before            ,
                                                                                        #
Nuclear Regulation and Safety Subscribed and sworn to,before            ,
me thiu      -
me thiu      -
day of [/ / /< // / i ff 1979.
day of [/ / /< // / i ff 1979.
Line 43: Line 39:
Notary Public                            ;
Notary Public                            ;
7    .
7    .
                                                            '
My Cornission Expires A /' /-          /'// '[/                              7008080 Enclosures                                                                                                            /m cc: See page 2 An t %o onnonumtv nnmover M
My Cornission Expires A /' /-          /'// '[/                              7008080
                                                                                                                    '
                                                                                                                        ' ' '
                                                                                                                                  '
Enclosures                                                                                                            /m cc: See page 2 An t %o onnonumtv nnmover M


<
N 2_
N 2_
Mr. Harold R. Denton                              August 6, 1979 cc (EncIcsures)
Mr. Harold R. Denton                              August 6, 1979 cc (EncIcsures)
Line 57: Line 47:
                                                       }kb
                                                       }kb


  .
1 ENCI.OSURE I r  ;  5 <
1 ENCI.OSURE I r  ;  5 <
(J U 'l . 'i l
(J U 'l . 'i l


.
GUIDE TO PROPOSED CllANGES TO BROWNS FERRY UNIT 3 TECHNICAL SPECIFICATIONS Page 11  -
GUIDE TO PROPOSED CllANGES TO BROWNS FERRY UNIT 3 TECHNICAL SPECIFICATIONS Page 11  -
Claritication                Page 178 -    Reload Page 11  -
Claritication                Page 178 -    Reload Page 11  -
Line 81: Line 69:
                                                           /      ' /r t' 1
                                                           /      ' /r t' 1


                        -
_
  .
:; Al'i.TY f. I f
:; Al'i.TY f. I f
* I T LI".ITING SAFETY SY STE!1 SETTING
* I T LI".ITING SAFETY SY STE!1 SETTING 1.1    FUEL CLADDING INTEGRITY If it is determined that either of these design criteria is being violated during operation, action shall be initiated within 15 minutes to restore operation within the prescribed limits.
                                                                '
* 1.1    FUEL CLADDING INTEGRITY If it is determined that either of these design criteria is being violated during operation, action shall be initiated within 15 minutes to restore operation within the prescribed limits.
Surveillance requirements for APRt scran set-      .
Surveillance requirements for APRt scran set-      .
points are given in Specif ication 4.1. B) .
points are given in Specif ication 4.1. B) .
Line 94: Line 77:
11 509      i43
11 509      i43


_ _ _ . _ . _
      .
SAFETY LIMIT                            LIMITING SAFETY SYSTEtt SETTING 1.1  PUEL CLADDING INTEGRITY          2.1    FUEL CLADDING INTEGRITY C. Whenever the reactor is in        C. Scram and isola-      2 538 in.
SAFETY LIMIT                            LIMITING SAFETY SYSTEtt SETTING 1.1  PUEL CLADDING INTEGRITY          2.1    FUEL CLADDING INTEGRITY C. Whenever the reactor is in        C. Scram and isola-      2 538 in.
the shutdown condition                  tion reactor            above with i rra dia te<3 fuel in              low water                vessel the reactor vessel, the                  level                    zero water level shall not be less than 17.7 in. above          D. Sc ra m--t u r bine  5 10 per-the top of the normal                    stop valve              cent valve active fuel zone.                        closure                  closure E. Scram--turbine control valve
the shutdown condition                  tion reactor            above with i rra dia te<3 fuel in              low water                vessel the reactor vessel, the                  level                    zero water level shall not be less than 17.7 in. above          D. Sc ra m--t u r bine  5 10 per-the top of the normal                    stop valve              cent valve active fuel zone.                        closure                  closure E. Scram--turbine control valve
Line 103: Line 84:
                                                                 --nuclear system low pressure I. Core spray and        2 378 in.
                                                                 --nuclear system low pressure I. Core spray and        2 378 in.
LPCI actuation--          above reactor low water          vessel level                      zero J. IIPCI and RCIC        2 470 in.
LPCI actuation--          above reactor low water          vessel level                      zero J. IIPCI and RCIC        2 470 in.
ac tua tion-- reac-      above tor low water            vessel level                    zero K. Main steam isola-      2 470 in, tion valve              above closure--reactor        vessel low water level          zero
ac tua tion-- reac-      above tor low water            vessel level                    zero K. Main steam isola-      2 470 in, tion valve              above closure--reactor        vessel low water level          zero 13 509        144
                                                                                          .
13 509        144


  .
                                                                                              -
                                                                                               ~
                                                                                               ~
should drop te! - *he top of the fuel during this time, the                            -
should drop te! - *he top of the fuel during this time, the                            -
Line 118: Line 95:
       .    ,. E.e r a :  ectriu  *
       .    ,. E.e r a :  ectriu  *
* nt'. u u . r er - . ,*  :t-it+  or FF:.t mit 7.12, NEDO-2 4199.
* nt'. u u . r er - . ,*  :t-it+  or FF:.t mit 7.12, NEDO-2 4199.
_
m 17 509      145
m
                                                                                          -
-                                                                                          -
                                                                                            -
17 509      145


O      posteion, where protectton o '. the fuel cladding integrity sa f ot y limit tu provi' led by the IRM and APRM high neutron tlux scrams. Thus, the combination of main steam line low
O      posteion, where protectton o '. the fuel cladding integrity sa f ot y limit tu provi' led by the IRM and APRM high neutron tlux scrams. Thus, the combination of main steam line low
Line 129: Line 101:
I. J. 6  K. R ea ct or low water lovel not point for init iation of II PC I arul i<CIL closinq main steam isolation valves, and starting LPCI and core spray pumps Trese systems maintain adequate coolant inventory and provide cor e cooling wit h the objective of preventing excessive clad temperatures.          Tho design of these systems to adequately perform tbo intended f un ct ion is baued on the specified low level scram not point and initiation set points. '"r an s i en t analyss reported in Section N14 or the FSAR demonstrate that these conditions result in adequate safety margins for both the fuel and the system pressure.
I. J. 6  K. R ea ct or low water lovel not point for init iation of II PC I arul i<CIL closinq main steam isolation valves, and starting LPCI and core spray pumps Trese systems maintain adequate coolant inventory and provide cor e cooling wit h the objective of preventing excessive clad temperatures.          Tho design of these systems to adequately perform tbo intended f un ct ion is baued on the specified low level scram not point and initiation set points. '"r an s i en t analyss reported in Section N14 or the FSAR demonstrate that these conditions result in adequate safety margins for both the fuel and the system pressure.
L. References p        1.      Lintord, ".      H., " Analytical Methods of Plant Transient Evaluations tor the General Electric loiling Water Reactor," NEDO-10802, Feb., 1973.
L. References p        1.      Lintord, ".      H., " Analytical Methods of Plant Transient Evaluations tor the General Electric loiling Water Reactor," NEDO-10802, Feb., 1973.
          '
General '. l e c t r i c Supp li nen t a l Reload 1.icensing Submittal for in NI' 1:n i t 1 Re 1oad 2, NEDO-24199.
General '. l e c t r i c Supp li nen t a l Reload 1.icensing Submittal for in NI' 1:n i t 1 Re 1oad 2, NEDO-24199.
n 24 509        146
n 24 509        146


_
i i
i i
The saf et y limit of 1,375 poig actually applies to any point in the reactor vessel; however, because of the static water head,  the highest pressure point will occur at the bottom of the vessel.
The saf et y limit of 1,375 poig actually applies to any point in the reactor vessel; however, because of the static water head,  the highest pressure point will occur at the bottom of the vessel.
i                            Because the pressure is not monitored at this point, it cannot be directly determined if this safety limit j
i                            Because the pressure is not monitored at this point, it cannot be directly determined if this safety limit j
'        han been violated. Also, becaute of the potentially varying head level cannot    be aand    flowcietermined priori  pressure dzapo, for a an  equivalent pressure in the vennel. Therefore, following any transient pressure  monitor higher that is
'        han been violated. Also, becaute of the potentially varying head level cannot    be aand    flowcietermined priori  pressure dzapo, for a an  equivalent pressure in the vennel. Therefore, following any transient pressure  monitor higher that is uevere violated, aenough      to cause  concern  that this safety limit was information to determinecalculation will be perf ormed using all available if the safety limit was violated.
!
uevere violated, aenough      to cause  concern  that this safety limit was information to determinecalculation will be perf ormed using all available if the safety limit was violated.
REF ER ENC ES 1.
REF ER ENC ES 1.
Plant Saf ety Analysis (BFNP FSAR Section N14.0)
Plant Saf ety Analysis (BFNP FSAR Section N14.0)
Line 146: Line 114:
Peactor Vessel and Appurtenances Mechanical Design (BFNP FSAR Subsection      4. 2)
Peactor Vessel and Appurtenances Mechanical Design (BFNP FSAR Subsection      4. 2)
   ! 5 General !:l ec t r i c Supplemental PENP Unit 3 Re1oad 2, FEDO-24199. Reload Licensing Submittal for            ''
   ! 5 General !:l ec t r i c Supplemental PENP Unit 3 Re1oad 2, FEDO-24199. Reload Licensing Submittal for            ''
                                                                                      -
509      1M                                    .
509      1M                                    .


Line 154: Line 121:
To meet the operational design basis, the tc;al safety-relief capacity of 84.2 of nuclear boiler rated has been <ivided into 70% relief (11 valves) and 14.27 safety (2 valvo''. The analysis of the plant isolation transient (turbine trip with bypass valve failure to open) assuming a turbine trip scram is presented in Reference 5 on page 29.
To meet the operational design basis, the tc;al safety-relief capacity of 84.2 of nuclear boiler rated has been <ivided into 70% relief (11 valves) and 14.27 safety (2 valvo''. The analysis of the plant isolation transient (turbine trip with bypass valve failure to open) assuming a turbine trip scram is presented in Reference 5 on page 29.
This analysis shows that the 11 relief valves limit pressure at the safety valves to 1206psig, well below the setting of the safety Valves. Therefore, the safety valves will not open. This analysis shows that peak systen pressure is limited to 1232 psig which is 143 psig below the allowed vessel overpressure of 1375 psig.
This analysis shows that the 11 relief valves limit pressure at the safety valves to 1206psig, well below the setting of the safety Valves. Therefore, the safety valves will not open. This analysis shows that peak systen pressure is limited to 1232 psig which is 143 psig below the allowed vessel overpressure of 1375 psig.
                                                                    .
30 509      in:
30 509      in:


t Table 3.2.8 INITIATES OR COffrROLS TnE CORI AND CONTAINMUTT COOLItr, SYSTDti INSTFLMENTATION TalAT
t Table 3.2.8 INITIATES OR COffrROLS TnE CORI AND CONTAINMUTT COOLItr, SYSTDti INSTFLMENTATION TalAT Minimun No.
                                                                                                                                                  .
Minimun No.
Orcrable Per                                    TI lo level S et t in g        m inn              Pemirks                    .
Orcrable Per                                    TI lo level S et t in g        m inn              Pemirks                    .
IIlP Eys (Il        ru nctj en 2 fuyo*above vessel zero.              A    1. Delow trip settina initisted 2        In s tr u men t Channel -                                                      H IC 1.
IIlP Eys (Il        ru nctj en 2 fuyo*above vessel zero.              A    1. Delow trip settina initisted 2        In s tr u men t Channel -                                                      H IC 1.
Line 174: Line 138:
f
f
   \d?II  J'h)'
   \d?II  J'h)'
Reactor Low Water Level Permissive (LIS-3-189 G
Reactor Low Water Level Permissive (LIS-3-189 G f - ~ ,g i.'          +              185, SW f t) su          /
              .
f - ~ ,g i.'          +              185, SW f t) su          /
A    1. Deinw trip setting prevents 7"        ';        1        Instrument Channel -          2 312 5/16= above vessel sero.                  inalvertent og< ration of r            /                Re a ct or I.ow Water Level (2/3 core height)                                  of conteinment spray during (LITS-3-52 C 62, SW II)                                                      accident condition.
A    1. Deinw trip setting prevents 7"        ';        1        Instrument Channel -          2 312 5/16= above vessel sero.                  inalvertent og< ration of r            /                Re a ct or I.ow Water Level (2/3 core height)                                  of conteinment spray during (LITS-3-52 C 62, SW II)                                                      accident condition.
f        -
f        -
Line 184: Line 146:
C        ::1            Lyn
C        ::1            Lyn
(
(
*--
h            C:3
h            C:3
         .J/            sec)
         .J/            sec)
Line 190: Line 151:
T1              42" E,      "'              s;)
T1              42" E,      "'              s;)
h43 a
h43 a
                                                                                                                                                .


T s t> 1 " 3.2.6
T s t> 1 " 3.2.6 INSTPUMENTATION T EA! INITIATED 0F CO!?T F C LS THE O M E AND CONTAINMENT COOLI93 SYSTEMS Mintrun NO.
                                                                                                                                                        ,
Ope r abl e Per                                                                                        Pemarks Function                Trip Level Settina                Act1 n 1 rip Sys (1)
INSTPUMENTATION T EA! INITIATED 0F CO!?T F C LS THE O M E AND CONTAINMENT COOLI93 SYSTEMS Mintrun NO.
Ope r abl e Per                                                                                        Pemarks Function                Trip Level Settina                Act1 n
* 1 rip Sys (1)
A      1. Below trip Setting pe rmis s i ve 2          Instrument Channel -      450 PS14 1 15                                          f or opening CSS and LPCI admission He act or I/w Pressure                                                          valves.
A      1. Below trip Setting pe rmis s i ve 2          Instrument Channel -      450 PS14 1 15                                          f or opening CSS and LPCI admission He act or I/w Pressure                                                          valves.
(PS-3-74 A & B, SW 82)
(PS-3-74 A & B, SW 82)
Line 206: Line 163:
C'2          '
C'2          '
(PS-68-95, SW 81)
(PS-68-95, SW 81)
(FS-68-96, SW $ 1)
(FS-68-96, SW $ 1) b'                                                                                                      A    1. Below trip setting in Instrument Ch a nn e l -  100 psig i 15 1                                                                                            conjunction with contain. ment E-                                Re act or Low Pressur e                                                          i sola t ion signal and both (PS-68-93 6 94, SW 81)                                                          suction valves open will close R HF (L PCI) admission valves.
  --
b'                                                                                                      A    1. Below trip setting in Instrument Ch a nn e l -  100 psig i 15 1                                                                                            conjunction with contain. ment E-                                Re act or Low Pressur e                                                          i sola t ion signal and both
, . .
(PS-68-93 6 94, SW 81)                                                          suction valves open will close R HF (L PCI) admission valves.
f
f
   \
   \
                '$
L    1. With diesel power 2          Core Spray Auto            65tS8 secs.                                        . One per motor
L    1. With diesel power
  -
2          Core Spray Auto            65tS8 secs.                                        . One per motor
   /
   /
Sequencing Timers (5) 8    1. With diesel power 2          LPCI Auto Sequencing      Os ts 1 sec.                                          One per motor k                                Timers (5) 2.
Sequencing Timers (5) 8    1. With diesel power 2          LPCI Auto Sequencing      Os ts 1 sec.                                          One per motor k                                Timers (5) 2.
g A    1. With diesel power L.                    1          RH RSW A1, 23, C1, and    135t515 sec.
g A    1. With diesel power L.                    1          RH RSW A1, 23, C1, and    135t515 sec.
: 2. One per pump 1                                D3 Timers
: 2. One per pump 1                                D3 Timers C.
          - '
C.
_ c. . m u,
_ c. . m u,
CD G
CD G
m
m CD
                      ...
CD


Table 3.2.B IN3Ti<UMENTATION THAT INITIATES OR ComOLS THE COF E AND CONTAINMENT COCLIN's SY M EMS            -
Table 3.2.B IN3Ti<UMENTATION THAT INITIATES OR ComOLS THE COF E AND CONTAINMENT COCLIN's SY M EMS            -
Minimun No.
Minimun No.
Operable Per Trip Sys (1)      r'u nct ion                Trip Level Settina            Act2on              Femarks 2        Core Spray and LPCI          05ts1 sec.                          B      1. With normsl power Auto Sequencing              65tsB sec.                                  2. One por CSS Oct3r Timers (6)                  125ts16 sec.
Operable Per Trip Sys (1)      r'u nct ion                Trip Level Settina            Act2on              Femarks 2        Core Spray and LPCI          05ts1 sec.                          B      1. With normsl power Auto Sequencing              65tsB sec.                                  2. One por CSS Oct3r Timers (6)                  125ts16 sec.
185ts24 sec.                                3. Two p er RIIR mo t o r
185ts24 sec.                                3. Two p er RIIR mo t o r 1      RHRSW A1, B3, C1, and      275ts29 sec.                          A      1. With noratal power D3 Timers                                                                2. One ter pump L_          -)
                    <,
1      RHRSW A1, B3, C1, and      275ts29 sec.                          A      1. With noratal power D3 Timers                                                                2. One ter pump L_          -)
      '
             .i
             .i
          '
  ,c-
  ,c-
  \          ]        '
  \          ]        '
  - -        ,
  ,            .i u
  ,            .i
                  .
u
  .                      1(16)    ADS Timer                  120 sec + 5                          A      1. Above trip s et t i ni in conjunction with low reactor g                                                                                                          water level, high drywell j
  .                      1(16)    ADS Timer                  120 sec + 5                          A      1. Above trip s et t i ni in conjunction with low reactor g                                                                                                          water level, high drywell j
pressure and LPCI or CSS pumps running initiates ADS.
pressure and LPCI or CSS pumps running initiates ADS.
1
1
               <        2        Instrument Channel -      100 + 10 psig                        A      1. Below trip setting def ers ADS
               <        2        Instrument Channel -      100 + 10 psig                        A      1. Below trip setting def ers ADS RHR Discharge Pressure                                                      act uat ion.
              ,
RHR Discharge Pressure                                                      act uat ion.
        .
             -)
             -)
:.          -]
:.          -]
Line 261: Line 197:
* i nq            Acelon                  P_m;3ay ks Tr i p Sys ( 1).        Punct ion                                                              _
* i nq            Acelon                  P_m;3ay ks Tr i p Sys ( 1).        Punct ion                                                              _
165 + 10 psig                            A        1. Pelow t rip setti ng defers ADS 2            In st r um en t Channel CSS Pump Cischarge                                                                  a ct ua t ion.
165 + 10 psig                            A        1. Pelow t rip setti ng defers ADS 2            In st r um en t Channel CSS Pump Cischarge                                                                  a ct ua t ion.
Pr es s ur e
Pr es s ur e 2 psid + 0.4                              A        1. Alarm to detect core spray 1 ( 3)      Core Spray Sparger to Peactor Pressure                                                                    sparger pipe break.
$
2 psid + 0.4                              A        1. Alarm to detect core spray 1 ( 3)      Core Spray Sparger to Peactor Pressure                                                                    sparger pipe break.
Vessel ,3/p RER (LPCI) Trip System              N/A                                C        1. Monitors availability of power 1
Vessel ,3/p RER (LPCI) Trip System              N/A                                C        1. Monitors availability of power 1
bus power monitor                                                                  to logic systems.
bus power monitor                                                                  to logic systems.
Q C
Q C
C
C N
_.
* N


Ta D l t' 3.2.b
Ta D l t' 3.2.b
Line 284: Line 216:
N/A                                A 1(16)      ADS Logic N/ A                                B 1          988 (LPCI) System (Initiation)
N/A                                A 1(16)      ADS Logic N/ A                                B 1          988 (LPCI) System (Initiation)
L.Tl o
L.Tl o
o
o U
-.
U


    .
10    Only r an"    trip sy9t em for each cooler tan.
10    Only r an"    trip sy9t em for each cooler tan.
11    In only two of the tour 4160 V shutdown boards.              See note 13.
11    In only two of the tour 4160 V shutdown boards.              See note 13.
Line 300: Line 229:
:f the test period for one RPT system erceeds 2 consecut ive hours ,
:f the test period for one RPT system erceeds 2 consecut ive hours ,
the ,ystem will be declared inoperable. If both RPT systems are inoperable or i f 1 RPT systen is inoperable for more than 72 consecutive hours, an orderly power reduction shall be initiated and the reactor power shall be less than 85% within 4 hours.
the ,ystem will be declared inoperable. If both RPT systems are inoperable or i f 1 RPT systen is inoperable for more than 72 consecutive hours, an orderly power reduction shall be initiated and the reactor power shall be less than 85% within 4 hours.
                                              "
509      154
509      154


                                                                                                                                                        ,
T AB LE 4.2.8 CURVEILLANCE R E QU I f< EM EWS FOR I N3TB UM ENTAT ION TilAT INITI AT E L'R C ON'T ROL T H E C ECS F un ct ion i l Test                  Ca llt r a t ion              I n s t ru m en t CP-ck Function once/3 months                                none Instru. ment Ch annel                                      (1) fleactor Low Dressure (PS- 3-7 4A 6 B)
T AB LE 4.2.8 CURVEILLANCE R E QU I f< EM EWS FOR I N3TB UM ENTAT ION TilAT INITI AT E L'R C ON'T ROL T H E C ECS F un ct ion i l Test                  Ca llt r a t ion              I n s t ru m en t CP-ck Function once/3 months                                none Instru. ment Ch annel                                      (1) fleactor Low Dressure (PS- 3-7 4A 6 B)
( PS - 6 8 - 9 5)
( PS - 6 8 - 9 5)
Line 318: Line 245:
(37
(37


TABLE 4. 2. is S UP V E I LLA NC r. REQUIREMENTS FCh I NST P tN ENT AT ION THAT INITI AT E C P CONTROL ' lie CSC Punction                              Fisict ion :11 Test                  C a li t r .st i an        Inst ru nent Cr Nk ADS Timer                                                (4)                    once/ operating cycle                      none Instru.v nt Ch an n el                                    (1)                        once/3 months                          none RHR Pump Discharge Pressuro Instrument Channel                                        (1)                        once/3 nonths                          none Core Spray Pump Discharge Pre s s ur e
TABLE 4. 2. is S UP V E I LLA NC r. REQUIREMENTS FCh I NST P tN ENT AT ION THAT INITI AT E C P CONTROL ' lie CSC Punction                              Fisict ion :11 Test                  C a li t r .st i an        Inst ru nent Cr Nk ADS Timer                                                (4)                    once/ operating cycle                      none Instru.v nt Ch an n el                                    (1)                        once/3 months                          none RHR Pump Discharge Pressuro Instrument Channel                                        (1)                        once/3 nonths                          none Core Spray Pump Discharge Pre s s ur e Core Spray Sparger to RPV d/p                            (1)                        once/3 months                        once/ day Irip System Bus Power Monitor                      Once/op(? rating cycle                N/A                              ncne Instrument Ch an nel Cond(nsate Storage Tank Low Level                                                    (1)                        once/ 3 months                        none LIl CD
    $
Core Spray Sparger to RPV d/p                            (1)                        once/3 months                        once/ day Irip System Bus Power Monitor                      Once/op(? rating cycle                N/A                              ncne Instrument Ch an nel Cond(nsate Storage Tank Low Level                                                    (1)                        once/ 3 months                        none LIl CD
@
_.
&


TABLE 4.2.9 SUF/EILLANCE BE JOIPEMENT3 FOR IN3TF UMENTATION THAT INITIATE OF CONTh0L THE CSCS Pinct ton                      Fund iona 1 Test              Cal l t r .st a an      In st r 2:nont Chock LPCI (Con t a in me n t Spray) Lojic      once/6 months                      (6)                          N/ A Core Spray Loop A Discharge                      N/A                    once/6 months                  once/ day P re s s ure (PI-75-20)
TABLE 4.2.9 SUF/EILLANCE BE JOIPEMENT3 FOR IN3TF UMENTATION THAT INITIATE OF CONTh0L THE CSCS Pinct ton                      Fund iona 1 Test              Cal l t r .st a an      In st r 2:nont Chock LPCI (Con t a in me n t Spray) Lojic      once/6 months                      (6)                          N/ A Core Spray Loop A Discharge                      N/A                    once/6 months                  once/ day P re s s ure (PI-75-20)
Line 334: Line 256:
Instrument Channel -                      Tested during                    "/A                              N/A core Spray B or D start                    f unct ional test of core spray (refer W
Instrument Channel -                      Tested during                    "/A                              N/A core Spray B or D start                    f unct ional test of core spray (refer W
CD W
CD W
-
N
N


Line 346: Line 267:
(ref er to section Tested durini f u nct ional                N/A                                N/A In s t run.en t Channel -                                                      ; r ay pump Core Spray Motors B or C start                            test of core (refer to sect ion 4. 5. A) .
(ref er to section Tested durini f u nct ional                N/A                                N/A In s t run.en t Channel -                                                      ; r ay pump Core Spray Motors B or C start                            test of core (refer to sect ion 4. 5. A) .
                     .iat.        g~                                .ct  -- t 7 a LD                                                                once/ operating cycle                    N/A                            N/A I
                     .iat.        g~                                .ct  -- t 7 a LD                                                                once/ operating cycle                    N/A                            N/A I
C
C C    l RPT breaker U
,
CD
C    l RPT breaker
-
U CD


in  di" I,
in  di" I,
Line 381: Line 299:
In t h-              a n i t y t. i ca l t r ea t n."a t 01 the transients, 390
In t h-              a n i t y t. i ca l t r ea t n."a t 01 the transients, 390
: r. t l l i .; ec u nd ',            at+          allowei f.etween a neutron sensor reachin; the scram point and the st art of negat Ive reactivity insert to n.                                            This in ade< plat e and conservative
: r. t l l i .; ec u nd ',            at+          allowei f.etween a neutron sensor reachin; the scram point and the st art of negat Ive reactivity insert to n.                                            This in ade< plat e and conservative
"                  wnen comp a r s") to the typically olmerved t ime delay of
"                  wnen comp a r s") to the typically olmerved t ime delay of about DO m t I li m conds.                                            Approximately 70 mil 1iseconds af'"I              no    at r  on      I'uv          reaches          t tie trip point, the pilot
-
about DO m t I li m conds.                                            Approximately 70 mil 1iseconds af'"I              no    at r  on      I'uv          reaches          t tie trip point, the pilot
                       .eran va lvi- iol.no.d power lopply volt age g oe s t o zero an appr eix tmatel y /09 milliuecondo later, cont r ol rod mot i on b"qton.                                Th.- 200 mi l l i accond u are i nclu led in the allowable r>c r a m insertion times specified in
                       .eran va lvi- iol.no.d power lopply volt age g oe s t o zero an appr eix tmatel y /09 milliuecondo later, cont r ol rod mot i on b"qton.                                Th.- 200 mi l l i accond u are i nclu led in the allowable r>c r a m insertion times specified in
:p"etfIcarion                        1.J.C.
:p"etfIcarion                        1.J.C.
                                   ,      t,    -:                        u t                    +
                                   ,      t,    -:                        u t                    +
                                                                                                         .            ..pi  re          ..j.
                                                                                                         .            ..pi  re          ..j.
                                                                                                                                                  *
                                                                                                                                                     . ; n t i c t:
                                                                                                                                                     . ; n t i c t:
                    ,
                                     ,    tb        .!.s        *
                                     ,    tb        .!.s        *
                                                                                 .        in'          +
                                                                                 .        in'          +
* aiot.            1:            ce qa r.a e :A: _ , :t e: .                          r+ p.i re ! .
aiot.            1:            ce qa r.a e :A: _ , :t e: .                          r+ p.i re ! .
* i c1 :            '
* i c1 :            '
1 y; 4          itches my 1" aw          r.      n::w L V ew                    : 5. c i '        .. n ~.'              .1.
1 y; 4          itches my 1" aw          r.      n::w L V ew                    : 5. c i '        .. n ~.'              .1.
Line 399: Line 313:
                                     .+    .m<          ii r '.    '>4      1 y; nc x
                                     .+    .m<          ii r '.    '>4      1 y; nc x
* cu/ 1e M Nr. u 1e                            . nccoraance with'                  w: L rew: '                  . p;        e      ; j; :
* cu/ 1e M Nr. u 1e                            . nccoraance with'                  w: L rew: '                  . p;        e      ; j; :
                                                                                                        '
                                                                                                               ,                  i: tb      .        r 1r cril.
                                                                                                               ,                  i: tb      .        r 1r cril.
                                                                                               '                    d:
                                                                                               '                    d:
Line 406: Line 319:
ort      +  c
ort      +  c
                                                                                                   ;..y,.:
                                                                                                   ;..y,.:
* r 1      .' -ity e        o.;.,    L t w."z e r ,
r 1      .' -ity e        o.;.,    L t w."z e r ,
                                                                                                                              '
                           -            m i r Actin rr n;                  '    td        ot r 1
                           -            m i r Actin rr n;                  '    td        ot r 1
                                                                                                 -                    111            i:  'Le 50 ;t              t ut to o percent rod dennits croum                                                  In additlon, RSLS will nrevent move ~ nt et      rod.,        in the 50 ;'e r c en t d e n s i t :. to a preset power level range until the cran rd rod has been withdrawn.
                                                                                                 -                    111            i:  'Le 50 ;t              t ut to o percent rod dennits croum                                                  In additlon, RSLS will nrevent move ~ nt et      rod.,        in the 50 ;'e r c en t d e n s i t :. to a preset power level range until the cran rd rod has been withdrawn.
D. le a p t t v i t_y_Anomatioa Durino ' irh t u *1 cycle exceis oper at ive r eact iv ity varies a s tu"1 <le p l < t "s an<i an any burnable poison in supplementary
D. le a p t t v i t_y_Anomatioa Durino ' irh t u *1 cycle exceis oper at ive r eact iv ity varies a s tu"1 <le p l < t "s an<i an any burnable poison in supplementary c r in t r < >l          1 :, Lorno 1                    Tho magnitule of this excess Ieactivity may in interrel fro 7 t rie critical rod contiquration.                                                                                    As tuel burnup              ",r og r e nn 2 5,              anonalous tehavior in the excess r eact t vi t y may                      b+    detected by comparison of the cr it ica l rod lia t t e r n at Selec' ed f.19e !st a t es to the predicted 10:1 invent or y at tha*                              ;t a t".                Power operating ba! " conditions pr ovi .t.              the most <"nsitive and directly interpretable data relattv" to cote reactivity.                                                      Furthermore, using power ororatinq hase conditions permits frequent reactivity compari90ns.
-
c r in t r < >l          1 :, Lorno 1                    Tho magnitule of this excess Ieactivity may in interrel fro 7 t rie critical rod contiquration.                                                                                    As tuel burnup              ",r og r e nn 2 5,              anonalous tehavior in the excess r eact t vi t y may                      b+    detected by comparison of the cr it ica l rod lia t t e r n at Selec' ed f.19e !st a t es to the predicted 10:1 invent or y at tha*                              ;t a t".                Power operating ba! " conditions pr ovi .t.              the most <"nsitive and directly interpretable data
                                                      ,
relattv" to cote reactivity.                                                      Furthermore, using power ororatinq hase conditions permits frequent reactivity compari90ns.
Imquiring a reactivity comparican at the specified frequency assuro,                  t- b a t a conparison will be made before the core reactivtty chanje excee is 1% . K.                                                            Deviations in core r "a c t i v t + y qreator than 11 .K are not expected and require t hor o u-lh " valuation.                                      ()ne percent retctivity limit is ci >n si lo t mi la t e 11 rtce an insertion of the r eacti v it y into the core would not Irad to transients exceedinq design conditions or t,                r actoz systom.
Imquiring a reactivity comparican at the specified frequency assuro,                  t- b a t a conparison will be made before the core reactivtty chanje excee is 1% . K.                                                            Deviations in core r "a c t i v t + y qreator than 11 .K are not expected and require t hor o u-lh " valuation.                                      ()ne percent retctivity limit is ci >n si lo t mi la t e 11 rtce an insertion of the r eacti v it y into the core would not Irad to transients exceedinq design conditions or t,                r actoz systom.
                ,
r
r
: 1.      ,
: 1.      ,
* e
* e
                                                  -
                                                           .a :      <
                                                           .a :      <
                                                                               +                            ,
                                                                               +                            ,
Line 442: Line 348:


LIMITING CONDITIONS FOR OPEPATION            SL'RVEI LLANCE REQUIREMENTS
LIMITING CONDITIONS FOR OPEPATION            SL'RVEI LLANCE REQUIREMENTS
                              .
: 3. ('O R E ts N D W NTliINMENT                    4'S CORE AND CONTAINMEtE_C@ KING coo LI NG :i YSTE M.-                              SYSTEL4S supprossion chamber quality water and tilled with p r i n.a r y coolant quality water provide 1 that during coo ldown two loops with one pump po r loop or one loop with two pumps, and ausociate.1 diesel generators, in the core spray system are opernble.
: 3. ('O R E ts N D W NTliINMENT                    4'S CORE AND CONTAINMEtE_C@ KING coo LI NG :i YSTE M.-                              SYSTEL4S supprossion chamber quality water and tilled with p r i n.a r y coolant quality water provide 1 that during coo ldown two loops with one pump po r loop or one loop with two pumps, and ausociate.1 diesel generators, in the core spray system are opernble.
: 3. It one RHH pump ' L PC I                3. When it is determined mode) is inoperable,                            that one RHR pump the reactor may                                (LPCI mode) is remain in operation                            inoperable at a time for a period not to                            when operability is e xceed ee zen d.: '                          required, the provided the                                  reotaining RiiR pum ps remaining RilR pum ps                          (LPCI mode) and (LPCI mode) and both                          active components in access paths of the                            both access paths of RHRS (LPCI mode) and                          the RHRS (LPCI mode) the CSS and the                                and the CSS and the diesel generato-s                              diesel generators remain operable.                              shall be demonstrated to be operable 4    I f any 2 KliR pumps (LPCI                      immediately and daily
: 3. It one RHH pump ' L PC I                3. When it is determined mode) is inoperable,                            that one RHR pump the reactor may                                (LPCI mode) is remain in operation                            inoperable at a time for a period not to                            when operability is e xceed ee zen d.: '                          required, the provided the                                  reotaining RiiR pum ps remaining RilR pum ps                          (LPCI mode) and (LPCI mode) and both                          active components in access paths of the                            both access paths of RHRS (LPCI mode) and                          the RHRS (LPCI mode) the CSS and the                                and the CSS and the diesel generato-s                              diesel generators remain operable.                              shall be demonstrated to be operable 4    I f any 2 KliR pumps (LPCI                      immediately and daily mode) beco e inoperable,                        thereafter.
                                                                '
mode) beco e inoperable,                        thereafter.
the reactor shall be placed in the cold shutdown condi-tion within 24 hours.
the reactor shall be placed in the cold shutdown condi-tion within 24 hours.
                                              ''
50%      162
50%      162


Line 459: Line 361:
I. I t11 T I t3G CONDITIONS FOR OPEP1. TION        SURVEILLANCE REQUIRE? TENTS 4.5 CORE AND CONTAINMENT COOLING 3 . . t'O R E A N D Cottl' AI N 4E NT                          SYSTEMS
I. I t11 T I t3G CONDITIONS FOR OPEP1. TION        SURVEILLANCE REQUIRE? TENTS 4.5 CORE AND CONTAINMENT COOLING 3 . . t'O R E A N D Cottl' AI N 4E NT                          SYSTEMS
(?_O.O_ L L JG .S Y ST E.Mg
(?_O.O_ L L JG .S Y ST E.Mg
_
                        .    - .
( No t o :  Beca ni; e adjacent unit is c r on i- connect inoperable at a time capant i tt y in not a                        when operability is a r t. tm                                    r eq u i r ed , the requir"mont, a                                remaining BliR pu. p component la not                              and associated heat conslocred inoper able                        exchanger on the unit it cron;-connect                            cross-connection and  '
( No t o :  Beca ni; e adjacent unit is c r on i- connect inoperable at a time capant i tt y in not a                        when operability is a r t. tm                                    r eq u i r ed , the requir"mont, a                                remaining BliR pu. p component la not                              and associated heat conslocred inoper able                        exchanger on the unit it cron;-connect                            cross-connection and  '
capabilit.y can be                            the associated diesel rentored to service                          generator shall be wit hin ; hou rn.)
capabilit.y can be                            the associated diesel rentored to service                          generator shall be wit hin ; hou rn.)
                                      '
demonstratei to be operable immediately
demonstratei to be operable immediately
: 12.      It one hilk pump or                          and every 15 days aruociated heat exchanger located on thereafter until the inoperable pump and the un it cross-                              'ssociated heat connection in u ni t 2                        exchanger are in inoperable for any                        returned to normal r"ason (including                            service.
: 12.      It one hilk pump or                          and every 15 days aruociated heat exchanger located on thereafter until the inoperable pump and the un it cross-                              'ssociated heat connection in u ni t 2                        exchanger are in inoperable for any                        returned to normal r"ason (including                            service.
Line 470: Line 369:
provide 1 t h'-
provide 1 t h'-
remaintnq HiiR pump anl af .iociatod diesel
remaintnq HiiR pump anl af .iociatod diesel
                                                                  '
: 13. No additional generator are                                surveillance operable.                                    required.
: 13. No additional generator are                                surveillance operable.                                    required.
: 13.      It HliR crosu-connectton flow or h'at renoval capahtlity is lost, the unit a ty remain in operation for a per1011 not to exceed 10 days unle ,s such capability is restore 1.
: 13.      It HliR crosu-connectton flow or h'at renoval capahtlity is lost, the unit a ty remain in operation for a per1011 not to exceed 10 days unle ,s such capability is restore 1.
Line 513: Line 411:
         .A: E v
         .A: E v
         >: e ! and r eportml jua r terly.          It must be recognized that i' aIwtys a :) action which would return any of the ir i,teIh        (MAPLW;R, LHG l< , or MC P H) to wittun prescribed i i  'at'.,    rim"ly power reduction.        Under most c irc umta nc e s, ti. i will not be the only alternative.
         >: e ! and r eportml jua r terly.          It must be recognized that i' aIwtys a :) action which would return any of the ir i,teIh        (MAPLW;R, LHG l< , or MC P H) to wittun prescribed i i  'at'.,    rim"ly power reduction.        Under most c irc umta nc e s, ti. i will not be the only alternative.
  '
v :"r'ncou 1        "tu"1 Densitication Effects on General Electric Doiling W at et aeactor Fuel," Supplemento 6, 7, and 8, NEDM-1 0 ~/ 15, August 1973.
v :"r'ncou 1        "tu"1 Densitication Effects on General Electric Doiling W at et aeactor Fuel," Supplemento 6, 7, and 8, NEDM-1 0 ~/ 15, August 1973.
                 'upplemont 1 to Technical Report on Densifications of
                 'upplemont 1 to Technical Report on Densifications of
Line 524: Line 421:
TABLE 3.5.I-1 MAPLHGR VERSUS AVERAGE PLANAR EXPOSURE Plant: BF-3                            Fuel Type:  Inital Core - Type 2 Average Planar Exposure          MAPLHCR (Mwd /t)          (kW/ft) 200            11.4 1,000            11.6 5,000            12.0 10,000            12.2 15,000              12.3 20,000              12.1 25,000              11.3 30,0C0              10.2 TABLE 3.5.1-2 MAPLHGR VERSUS AVERAGE PLANAR EXPOSURE Plant: BF-3                          Fuel Type: Initial Core - Type 1 Average Planar Exposure            MAPLHGR (Mwd /t)            (kW/ft) 200              11.2 1,000              11.3 5,000              11.8 10,000                12.1 15,000              12.3 20,000                12.1 25,000                11.3 30,C00              10.2 181
TABLE 3.5.I-1 MAPLHGR VERSUS AVERAGE PLANAR EXPOSURE Plant: BF-3                            Fuel Type:  Inital Core - Type 2 Average Planar Exposure          MAPLHCR (Mwd /t)          (kW/ft) 200            11.4 1,000            11.6 5,000            12.0 10,000            12.2 15,000              12.3 20,000              12.1 25,000              11.3 30,0C0              10.2 TABLE 3.5.1-2 MAPLHGR VERSUS AVERAGE PLANAR EXPOSURE Plant: BF-3                          Fuel Type: Initial Core - Type 1 Average Planar Exposure            MAPLHGR (Mwd /t)            (kW/ft) 200              11.2 1,000              11.3 5,000              11.8 10,000                12.1 15,000              12.3 20,000                12.1 25,000                11.3 30,C00              10.2 181


.
TABLE 3.5.I-3 hPLHGR VERSUS AVERAGE PLANAR EXPOSURE Plant: BF-3                                FUEL TYPES: 8DRB265L and P8DRB265L Average Planar Exposure                  MAPLHGR (Mwd /t)                  (kW/ft) 200                    11.6 1,000                    11.6 5,000                    12.1 10,000                    12.1 15,000                      12.1 20,000                      11.9 25,000                      11.3 30,000                      10.7 The values in this table are cor.servative fcr both prepressurized and non-pressurized fuel.
TABLE 3.5.I-3 hPLHGR VERSUS AVERAGE PLANAR EXPOSURE Plant: BF-3                                FUEL TYPES: 8DRB265L and P8DRB265L Average Planar Exposure                  MAPLHGR (Mwd /t)                  (kW/ft) 200                    11.6 1,000                    11.6 5,000                    12.1 10,000                    12.1 15,000                      12.1 20,000                      11.9 25,000                      11.3 30,000                      10.7 The values in this table are cor.servative fcr both prepressurized and non-pressurized fuel.
182
182
                                                                           .f0
                                                                           .f0 509      il
                                                                            -
509      il


LIMITING CONDITIONS FOR OPSRATION          SURVEILLANCE REQUIREMENTS
LIMITING CONDITIONS FOR OPSRATION          SURVEILLANCE REQUIREMENTS
  -
: 1. 6  PigfMA RY SYSTEM I4OUNDARY              4.6  PRIMARY SYSTEM BOUN DARY F. J et P tim p Flow Mis ma tch            F. J et Pump Flow Mismatch
: 1. 6  PigfMA RY SYSTEM I4OUNDARY              4.6  PRIMARY SYSTEM BOUN DARY F. J et P tim p Flow Mis ma tch            F. J et Pump Flow Mismatch
: 1. Recirculation pump speeds shall be checked and loqqed at least once per day.
: 1. Recirculation pump speeds shall be checked and loqqed at least once per day.
Line 543: Line 436:


LIMI"'ING CONDITIONS FOR OPEMTION                SURVEILLANCE REQUIREMENTS
LIMI"'ING CONDITIONS FOR OPEMTION                SURVEILLANCE REQUIREMENTS
_  3.6    PhitiA_PJ SYT"!M FOUN O T                  '4 . 6  QIMABY SYSTFM POUNDARY
_  3.6    PhitiA_PJ SYT"!M FOUN O T                  '4 . 6  QIMABY SYSTFM POUNDARY G. Structural Integrity l    3. Stoddy state operalien with both recirculation pr.:~ps out of ser-Vice for up to 12 hrs is per-                      1. Tabl e 4. 6. A tog ether mi t ted . During sm.h interval                        with suppl emen t a ry restart of the recirculation                            notes, specifies the pumps is permitted, provided the                        inservice inspection 8
                                                              .
loop discharge ter?erature is                          re u e _n ts o f the nIlthin 750r of the saturation reactor coolant temperature of the reactor                              system as f ollows:
G. Structural Integrity l    3. Stoddy state operalien with both recirculation pr.:~ps out of ser-Vice for up to 12 hrs is per-                      1. Tabl e 4. 6. A tog ether mi t ted . During sm.h interval                        with suppl emen t a ry restart of the recirculation                            notes, specifies the pumps is permitted, provided the                        inservice inspection 8
loop discharge ter?erature is                          re u e _n ts o f the nIlthin 750r of the saturation
                      ,                        ,
reactor coolant temperature of the reactor                              system as f ollows:
vessel uater as determined by dome pressure. The total                                a. areas to be elapsed time in natural circula-                              ircpected tion 3rd cr.e purp c;ieration mus t be no grcater than 24 hrs,                              b. percent of areas to be inspected during the inspection G. S t ritetural Intwrity                                          in te rval
vessel uater as determined by dome pressure. The total                                a. areas to be elapsed time in natural circula-                              ircpected tion 3rd cr.e purp c;ieration mus t be no grcater than 24 hrs,                              b. percent of areas to be inspected during the inspection G. S t ritetural Intwrity                                          in te rval
: 1.      The structural                                  c. inspection integrity of the                                      frequency priciary s ystem shall be maintainad at the                            d. methods used for level required by the                                  in epection original acceptance standards throughout                      2. Evaluation of the lif e of the                                inservice :sspections pl an t. The reactor                            will be made to the shall be mais.ta!ned                            acceptance stan da rds in a cold shutdcen                              epecified for the condition until each                            original equipment.
: 1.      The structural                                  c. inspection integrity of the                                      frequency priciary s ystem shall be maintainad at the                            d. methods used for level required by the                                  in epection original acceptance standards throughout                      2. Evaluation of the lif e of the                                inservice :sspections pl an t. The reactor                            will be made to the shall be mais.ta!ned                            acceptance stan da rds in a cold shutdcen                              epecified for the condition until each                            original equipment.
Indication of a defect has been                            3. The inspection
Indication of a defect has been                            3. The inspection investigated and                                interval shall be 10 evaluated.                                      years.
              '
investigated and                                interval shall be 10 evaluated.                                      years.
4    Addit iona l inspactions shall be perf ormed on ce rtain circumferential pipe welds as listed to provide additional protection against pipe uhlp, which could damage auxiliary and control systems.
4    Addit iona l inspactions shall be perf ormed on ce rtain circumferential pipe welds as listed to provide additional protection against pipe uhlp, which could damage auxiliary and control systems.
Feedwater- G W-9, K W-13, GW- 12, G W- 26
Feedwater- G W-9, K W-13, GW- 12, G W- 26 509      172                                      x m->> c - 29 y                                KW-39, C W- 15,
  .
509      172                                      x m->> c - 29 y                                KW-39, C W- 15,
  .                                                                                    KW - 3 0, and GI 4-3 2
  .                                                                                    KW - 3 0, and GI 4-3 2


m 3.6/4.6      BASES
m 3.6/4.6      BASES To meet the safety design basis, thirteen safety-relief valves have been installed on unit 2 with a total capacity of 84.2% of nuclear boiler rated steam flow. The analysis of the worst (3-second clo" r"                                    overpressure transient, of  all main  steam  line isolation direct scran (valve position scran) results in a maximum  valves) neglecting the vessel pressure of 1280 poig it a neutron f l ux scram is assured Thi< reults in an 95 psig margin of the code allowable over-pre- ure 1imit of 117") psir To meet the operational design basis, the total safety-relief capacity of  84.27 (11 valves)  of nuclear bo'ler and 14.2%      rated safety    has been divided into 70% relief (2 valves). The analysis of the plant iso-lation transient (turbine trip with bypass valve failure to open) assuming a turbine trip scram is presented in Reference 5 on page 29. This analysis shows that the 11 relief valves limit pressure at the safety valves to 1206 psig, well below the setting of the safety valves. Therefore, the uafety valves will not open.
,
To meet the safety design basis, thirteen safety-relief valves have been installed on unit 2 with a total capacity of 84.2% of nuclear boiler rated steam flow. The analysis of the worst (3-second clo" r"                                    overpressure transient, of  all main  steam  line isolation direct scran (valve position scran) results in a maximum  valves) neglecting the vessel pressure of 1280 poig it a neutron f l ux scram is assured Thi< reults in an 95 psig margin of the code allowable over-pre- ure 1imit of 117") psir To meet the operational design basis, the total safety-relief capacity of  84.27 (11 valves)  of nuclear bo'ler and 14.2%      rated safety    has been divided into 70% relief (2 valves). The analysis of the plant iso-lation transient (turbine trip with bypass valve failure to open) assuming a turbine trip scram is presented in Reference 5 on page 29. This analysis shows that the 11 relief valves limit pressure at the safety valves to 1206 psig, well below the setting of the safety valves. Therefore, the uafety valves will not open.
This analysis shows that peak system pressure is limited to 1232 psig which is 143 psig below the allowed vessel overpressure of 1375 ps!g.
This analysis shows that peak system pressure is limited to 1232 psig which is 143 psig below the allowed vessel overpressure of 1375 ps!g.
                                                                                        -
Experience in relief and safety valve operation shows that a testing of d et ect failures50 percent of the valves per year is adequate to or deteriorations. The relief and safety valves are benchtested every second operating              cycle to ensure that thei r set points are within the +1 percent tolerance.
Experience in relief and safety valve operation shows that a testing of d et ect failures50 percent of the valves per year is adequate to or deteriorations. The relief and safety valves are benchtested every second operating              cycle to ensure that thei r set points are within the +1 percent tolerance.
The relief valves are tested in place once per operating cycle to establish that they will open and pass steam.
The relief valves are tested in place once per operating cycle to establish that they will open and pass steam.
Line 582: Line 464:
n 509      I/4 227
n 509      I/4 227


    .
NOTES FOR TABLE 3.7.A Key:    0 =  Open C = Closed 3C  =  Stays Closed GC = Goes Closed Note:  Isolation qroupinqs are as follows:
NOTES FOR TABLE 3.7.A Key:    0 =  Open C = Closed 3C  =  Stays Closed GC = Goes Closed Note:  Isolation qroupinqs are as follows:
Group 1:    The valves in Group 1 a > actuated by any of the following conditions:
Group 1:    The valves in Group 1 a > actuated by any of the following conditions:
Line 621: Line 502:
G rouc 6 - lines ere connected to the primary containment but not directly to the reactor vessel.        These valves are isolated on reactor low water level (538") , high drywell pressure, or reactor building ventilaticn high radiation which would indicate a possible accident and necessitate primary containment isolation.
G rouc 6 - lines ere connected to the primary containment but not directly to the reactor vessel.        These valves are isolated on reactor low water level (538") , high drywell pressure, or reactor building ventilaticn high radiation which would indicate a possible accident and necessitate primary containment isolation.
G roup 7 - process lines are closed cnly on reactor low water          i j
G roup 7 - process lines are closed cnly on reactor low water          i j
'
level ( 470") . These close on the same signal that initiates HPCIS and ECICS to ensure that the valves are not open when EPCIS or RCICS action is required.
level ( 470") . These close on the same signal that initiates HPCIS and ECICS to ensure that the valves are not open when EPCIS or RCICS action is required.
G rcu p 8 - line (traveling in-core probe) is isolated on hich d rywel l pressure. This is to assure that this line does not provid e      leakage path when containment pressure indicates a possible accident condi t'. :n.
G rcu p 8 - line (traveling in-core probe) is isolated on hich d rywel l pressure. This is to assure that this line does not provid e      leakage path when containment pressure indicates a possible accident condi t'. :n.
                                                                      ,
n          /
n          /
294
294
Line 646: Line 525:
321
321


_
_
LIhITIhG ''ONDITIONS FOR OPERATION            SURVEILLANCE RFOUIREMENTS 1.9  AUXILI ARY ELECTRICAL SYSTDI                  4.9 AUXI LI ARY ELECTRICAL SYSTEM
LIhITIhG ''ONDITIONS FOR OPERATION            SURVEILLANCE RFOUIREMENTS 1.9  AUXILI ARY ELECTRICAL SYSTDI                  4.9 AUXI LI ARY ELECTRICAL SYSTEM
: 4. From and after the date that the 250-Volt Ehutdown board batterie- or one of the three 250-Volt un't batteries and/or its associat' 4 battery board        . found to be inope.able for any reason, continued reactor operation is permissible during the *;ucceedinq seven days.        Except for routine surveillance t e . c in g, the NRC shall be notified within 24 hours of the situation, th e precautions to be taken during this period and the plans to return the f ailed component to an operable state.
: 4. From and after the date that the 250-Volt Ehutdown board batterie- or one of the three 250-Volt un't batteries and/or its associat' 4 battery board        . found to be inope.able for any reason, continued reactor operation is permissible during the *;ucceedinq seven days.        Except for routine surveillance t e . c in g, the NRC shall be notified within 24 hours of the situation, th e precautions to be taken during this period and the plans to return the f ailed component to an operable state.
Line 653: Line 530:
32s                509      180
32s                509      180


_
3.9      BASES Tim objective of this speci.fication is to assure an adequate sourco ot electrical power to operate facilities to cool the unit
3.9      BASES Tim objective of this speci.fication is to assure an adequate sourco ot electrical power to operate facilities to cool the unit
   <turinq shut lown and to operate the engineered safeguards fo11oving an accident. There are three sources of alternating current electri"nl anergy available, n uely, the 161-kV transmission system, the nuc lear gar.arati ng units, and the diesel generators.
   <turinq shut lown and to operate the engineered safeguards fo11oving an accident. There are three sources of alternating current electri"nl anergy available, n uely, the 161-kV transmission system, the nuc lear gar.arati ng units, and the diesel generators.
Line 662: Line 538:
     +ransning'on i vate a through t ha cooling tower trancformers.      If a cooling tower
     +ransning'on i vate a through t ha cooling tower trancformers.      If a cooling tower
     ' r nn s fe m." is 'ont, the unit can
     ' r nn s fe m." is 'ont, the unit can
                      ,
                                             'ntinue to operate since the station t r ans fo r~ r it in arrvice, t he other cooling tower transfcrmer is available, and four diecel generators are operational.
                                             'ntinue to operate since the station t r ans fo r~ r it in arrvice, t he other cooling tower transfcrmer is available, and four diecel generators are operational.
A 4-kV shutdown board is allowed to be out of operation for a brief poriod to allow for maintenance and testing, providing all rema in ing 4-kV shutdown boards and associated diesel generators CS, RilR , (LPCI and Containment Cooling) Systems supplied by the remaining 4-kV shutdown boards, and all emergency 480 V power boards are operable.
A 4-kV shutdown board is allowed to be out of operation for a brief poriod to allow for maintenance and testing, providing all rema in ing 4-kV shutdown boards and associated diesel generators CS, RilR , (LPCI and Containment Cooling) Systems supplied by the remaining 4-kV shutdown boards, and all emergency 480 V power boards are operable.
Line 668: Line 543:
The 250-Vo't de system is so arranged, and the batteries sized such, that the los, of any one unit battery will not prevent the safe shutdown and cooldown of all three units in the event of the loss of offsite power and a desien basis accident in ,ny one unit.        Loss of contrm1 powor to any engineered safeguard control 327 509      181
The 250-Vo't de system is so arranged, and the batteries sized such, that the los, of any one unit battery will not prevent the safe shutdown and cooldown of all three units in the event of the loss of offsite power and a desien basis accident in ,ny one unit.        Loss of contrm1 powor to any engineered safeguard control 327 509      181


        .
f ', 9      M A.JO P DE S I G!J FEATO.2'i S.1    LITE F E AT U I4 E S ll r own s Ferry units 1, 2, and 3 are located at Browns Ferry fluclear Plant site on property owned by the United States a'.-l in custo<ly of the TVA.          The site shall consist cf approximately 840 acres on the north shore of Wheeler Lake at Tennessee River Mile 294 in Limestone County, Alabama. The minimum distance from the outside of the secondary co n t a i nme nt building to the boundary of the exclusion area as defined in 10 CFR 100.3 shall be 4,000 feet.
f ', 9      M A.JO P DE S I G!J FEATO.2'i S.1    LITE F E AT U I4 E S ll r own s Ferry units 1, 2, and 3 are located at Browns Ferry fluclear Plant site on property owned by the United States a'.-l in custo<ly of the TVA.          The site shall consist cf approximately 840 acres on the north shore of Wheeler Lake at Tennessee River Mile 294 in Limestone County, Alabama. The minimum distance from the outside of the secondary co n t a i nme nt building to the boundary of the exclusion area as defined in 10 CFR 100.3 shall be 4,000 feet.
5.2      REACTOR A. The reactor core raa y    ciatain 764 fuel assemblies consisting of 8x8 assemblies having 63 fuel reds each, and 8x8 R (and P8x8R) assemblies having 62 fuel rods each. The number of each type in the core is given i n t he in s t recent reload amendment topical report.
5.2      REACTOR A. The reactor core raa y    ciatain 764 fuel assemblies consisting of 8x8 assemblies having 63 fuel reds each, and 8x8 R (and P8x8R) assemblies having 62 fuel rods each. The number of each type in the core is given i n t he in s t recent reload amendment topical report.

Latest revision as of 02:43, 2 February 2020

Forwards Amend to License DPR-68 Changing Tech Specs to Accommodate Reload 2 Cycle 3 Operation & to Eliminate LPCI Loop Selection Logic Per Amend 23 of License DPR-68.Fuel Cycle Reload Rept Justifying Changes Encl
ML19242B437
Person / Time
Site: Browns Ferry Tennessee Valley Authority icon.png
Issue date: 08/06/1979
From: Mills L
TENNESSEE VALLEY AUTHORITY
To: Harold Denton
Office of Nuclear Reactor Regulation
Shared Package
ML19242B438 List:
References
NUDOCS 7908080519
Download: ML19242B437 (44)


Text

_ _ _ _ _ . _ . _ . . . .

TENNESSEE VALLEY AUTHORITY

~

CH ATTANOOG A. TEN;4 ESSEE 37401 400 Chestnut Street Tower II August 6, 1979 TVA BFNP TS 127 Mr. Harold R. Dentou, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555

Dear Mr. Denton:

In the Matter of the ) Docket No.30-296 Tennessee Valley Authority )

In accordance with the provisions of 10 CFR Part 50.59, we are enclosing 40 copies of a requested amendment to license DPR-68 to change the technical specifications of Browns Ferry Nuclear Plant unit 3 (Enclosure 1). The proposed amendment requests changes in the technical specifications to accoccodate reload 2 cycle 3 operation of unit 3 and as a resu]t of

<'ininating the LPCI loop selection logic approved by Amendment 23 to use DPR-68. Also enclosed are 40 copics of the justification for the .oposed changes as addressed in NIDO--24199 (Enclosure 2). The LOCA analysis as referenced in NEDO-24199 will be submitted to you in the near future under separate cover.

TVA now plana to shut dovn unit 3 on August 26, 1979, to begin the refueling outage and to restart on November 24, 1979. In order to avoid impacting the scheduled startup we need your approval of thin proposed change by November 9, 1979.

In accordance with the requirements of 10 CFR Part 170.22, we have determined the proposed amendment to be Class III. Tl'is classification is besed on the fact that the proposed amendment involves a single safety issue which does not involve a significant hazard consideration. The remittance of

$4000 is being wired to the NRC, Attention: Licensing F w Management Branch.

Very truly yours, TENNESSEE VALLEY AUTHORITY h'\ .

. M. Mills, Manager Nuclear Regulation and Safety Subscribed and sworn to,before ,

me thiu -

day of [/ / /< // / i ff 1979.

l ,  ; 3, jft i, ;g 5G] }b}

Notary Public  ;

7 .

My Cornission Expires A /' /- /'// '[/ 7008080 Enclosures /m cc: See page 2 An t %o onnonumtv nnmover M

N 2_

Mr. Harold R. Denton August 6, 1979 cc (EncIcsures)

Mr. Charles R. Christopher Chairman, Limestone Ccunty Comission P.O. Box 188 Athens, Alabama 35611 Dr. Ira L. Myers State Health Officer State Department of Public Health State Of fice Building Montgomery, Alabama 36104 G

a (J FIG

}kb

1 ENCI.OSURE I r  ; 5 <

(J U 'l . 'i l

GUIDE TO PROPOSED CllANGES TO BROWNS FERRY UNIT 3 TECHNICAL SPECIFICATIONS Page 11 -

Claritication Page 178 - Reload Page 11 -

C1arification Page 181 - Reload Page 17 -

Reload Page 162 - Reload Page 18 -

Reload Page 195 - Clarification Page 29 -

Reload Page 196 - Clarification Page 30 -

Reload Page 225 - Reload Page 64 -

LPCI Mod Page 227 - Clarification Page 66 -

LPCI Mod Page 266 - Clarification Page 67 -

LPCI !!od Page 267 - Clarification Page 68 -

LPCI Mod Page 294 - C1irifIcation Page 70 -

LPCI Mod Page 318 - LPCI Mod Page 75 -

Reload Page 321 - LPCI Mod Page 93 -

LPCI Mod Page 325 - LPCI Mod Page 94 -

LPCI Mod Page 327 - LPCI Mod Page 96 -

LPCI Mod Page 360 - Reload Page 97 -

Reload Page 109 - LPCI Mod Page 136 - LPCI Mod Page 149 - LPCI Mod Page 150 - LPCI Mod Page 15l - LPCI Mod Page 154 - Clarification Page 167 - Reload Page 169 - LPC: Mod Page 176 - Reload 50o

/ ' /r t' 1

Al'i.TY f. I f
  • I T LI".ITING SAFETY SY STE!1 SETTING 1.1 FUEL CLADDING INTEGRITY If it is determined that either of these design criteria is being violated during operation, action shall be initiated within 15 minutes to restore operation within the prescribed limits.

Surveillance requirements for APRt scran set- .

points are given in Specif ication 4.1. B) .

2. APRM--When the reactor mode switch is in the STARTUP position, the APRM scram shall be set at less than or equal to 15% of rated power.
3. IRM--The IRM scram shall be set at less than or equal to 120/125 of full scale.

11 509 i43

SAFETY LIMIT LIMITING SAFETY SYSTEtt SETTING 1.1 PUEL CLADDING INTEGRITY 2.1 FUEL CLADDING INTEGRITY C. Whenever the reactor is in C. Scram and isola- 2 538 in.

the shutdown condition tion reactor above with i rra dia te<3 fuel in low water vessel the reactor vessel, the level zero water level shall not be less than 17.7 in. above D. Sc ra m--t u r bine 5 10 per-the top of the normal stop valve cent valve active fuel zone. closure closure E. Scram--turbine control valve

1. Fa st closure--Upon trip of the f ast acting solenoid valves
2. Loss of con- 2 1,100 psig trol oil pressure F. Scram--low con- 2 23 inches denser vacuum Hg vacuun G. Scram--main 5 10 per-steam line cent valv(

isolation closure H. Main steam isola- 5 850 psig tion valve closure

--nuclear system low pressure I. Core spray and 2 378 in.

LPCI actuation-- above reactor low water vessel level zero J. IIPCI and RCIC 2 470 in.

ac tua tion-- reac- above tor low water vessel level zero K. Main steam isola- 2 470 in, tion valve above closure--reactor vessel low water level zero 13 509 144

~

should drop te! - *he top of the fuel during this time, the -

e ability to r' . .mca y heat is reduced. This reduction in coo!'nq - -111ty could lead to elevated cladding temperatures a n'. rforation. As long as the fuel remains covered with water, sufficient cooling is available to prevent feel clad perforation.

The n.i t et y limit has been established at 17.7 in. above the top of the arradiated fuel to provide a point which can be monitored and also provide adequat e mroin. This point corr es pond s approximately to the top of the actual fuel assemblies and also to the lower reactor low water level trip (378" above vessel zero).

REFEFEtjCE

1. General Elect ric DWR Thermal Analysi s Basis (GETAB) Da t a ,

cor re la ti on and Design Application, NEDO 10958, and NEDE 10950.

. ,. E.e r a : ectriu *

  • nt'. u u . r er - . ,* :t-it+ or FF:.t mit 7.12, NEDO-2 4199.

m 17 509 145

O posteion, where protectton o '. the fuel cladding integrity sa f ot y limit tu provi' led by the IRM and APRM high neutron tlux scrams. Thus, the combination of main steam line low

- pressure isolation and isolation valve closure scram assures the availability of neutron f lux scram prot c;ction over the entire range of applicability o. the fuel clariding integrity saf et y limit. In addition, the i sol ation valve closure scram anticipates the pressure and flux transients that occur durtnq no r rna l or inadvertent isolation valve closure. With the scrams set at 10 percent of valve closure, neutron flux does not increase.

I. J. 6 K. R ea ct or low water lovel not point for init iation of II PC I arul i<CIL closinq main steam isolation valves, and starting LPCI and core spray pumps Trese systems maintain adequate coolant inventory and provide cor e cooling wit h the objective of preventing excessive clad temperatures. Tho design of these systems to adequately perform tbo intended f un ct ion is baued on the specified low level scram not point and initiation set points. '"r an s i en t analyss reported in Section N14 or the FSAR demonstrate that these conditions result in adequate safety margins for both the fuel and the system pressure.

L. References p 1. Lintord, ". H., " Analytical Methods of Plant Transient Evaluations tor the General Electric loiling Water Reactor," NEDO-10802, Feb., 1973.

General '. l e c t r i c Supp li nen t a l Reload 1.icensing Submittal for in NI' 1:n i t 1 Re 1oad 2, NEDO-24199.

n 24 509 146

i i

The saf et y limit of 1,375 poig actually applies to any point in the reactor vessel; however, because of the static water head, the highest pressure point will occur at the bottom of the vessel.

i Because the pressure is not monitored at this point, it cannot be directly determined if this safety limit j

' han been violated. Also, becaute of the potentially varying head level cannot be aand flowcietermined priori pressure dzapo, for a an equivalent pressure in the vennel. Therefore, following any transient pressure monitor higher that is uevere violated, aenough to cause concern that this safety limit was information to determinecalculation will be perf ormed using all available if the safety limit was violated.

REF ER ENC ES 1.

Plant Saf ety Analysis (BFNP FSAR Section N14.0)

2. ASME Doiler and Pressure Vessel Code Section III
3. USAS Piping Code, Section B31.1 4

Peactor Vessel and Appurtenances Mechanical Design (BFNP FSAR Subsection 4. 2)

! 5 General !:l ec t r i c Supplemental PENP Unit 3 Re1oad 2, FEDO-24199. Reload Licensing Submittal for

509 1M .

2.2 BASES REACTOR COOLANT SYSTEM INTEGRITY The pressure relief system for each unit at the Browns Ferry Nuclear Plant has tieen sized to meet two design bases. First, the total safety / relief valve capacity has been established to meet the over-pressure protection criteria of the ASME Code. Second, the distribution of this required capacity between safety valves and relief valves has been set to meet design basis 4.4.4-1 of sub-section 4.4 which states that the nuclear system relief valves shall prevent opening of the safety valves during normal plant isolations and load rejections.

The details of the analysis which shows compliance with the ASME Code requirements is presented in subsection 4.4 of the FSAR and the Reactor Vessel Overpressure Protection Sumary Technical Report submitted in response to question 4.1 da ted December 1,1971.

To meet the safety design basis, thirteen safety-relief valves have been installed on each unit with a total capacity of 84.2; of nuclear boiler rated stean flow. The analysis of the worst overpressure transient, (3-second closure of all nain steam line isolation valves) neglecting the direct scram (valve position screm) results in a maximum vessel pressure of 1280 psig if a neutron flux scram is assumed. This results in a 95 f psig margin to the code allowable overpressure limit of 1375 psig.

To meet the operational design basis, the tc;al safety-relief capacity of 84.2 of nuclear boiler rated has been <ivided into 70% relief (11 valves) and 14.27 safety (2 valvo. The analysis of the plant isolation transient (turbine trip with bypass valve failure to open) assuming a turbine trip scram is presented in Reference 5 on page 29.

This analysis shows that the 11 relief valves limit pressure at the safety valves to 1206psig, well below the setting of the safety Valves. Therefore, the safety valves will not open. This analysis shows that peak systen pressure is limited to 1232 psig which is 143 psig below the allowed vessel overpressure of 1375 psig.

30 509 in:

t Table 3.2.8 INITIATES OR COffrROLS TnE CORI AND CONTAINMUTT COOLItr, SYSTDti INSTFLMENTATION TalAT Minimun No.

Orcrable Per TI lo level S et t in g m inn Pemirks .

IIlP Eys (Il ru nctj en 2 fuyo*above vessel zero. A 1. Delow trip settina initisted 2 In s tr u men t Channel - H IC 1.

Reactor bow water Level A 1.

2 Instrument ch annel - 2 $70*above vessel zero.

Reactor Lcw Water Level Multiplier relays initiate FCIC.

A 1. Below trip setting initiates 2 Instrument Channel - 2 378= atore vessel sero. Css, hultiplier relays Peactor Low Water Level initiate LPCI.

(LIS-3-58A-D, SW 81)

2. Multiplier relay tron Css initiates accident signal (15).

A 1. Delow trip settings in .

2(16) Instrument cha nne l - 2 370= alnve vessel aero. conjunction with drywell high Reactor Low Water Level pressure, low water level (LIS-3-5 6 A-D, cw # 2) permissive, 120 sec. del tirer and CSi. or PnB pump running ,

7:3- - R initiates ADS.

( ,}J A 1. Delow trip setting permissive 1(16) In s tr eme nt Ch an n e l - 2 54 e = a bove ves sel v ero. for initiating signals on ADS.

f

\d?II J'h)'

Reactor Low Water Level Permissive (LIS-3-189 G f - ~ ,g i.' + 185, SW f t) su /

A 1. Deinw trip setting prevents 7" '; 1 Instrument Channel - 2 312 5/16= above vessel sero. inalvertent og< ration of r / Re a ct or I.ow Water Level (2/3 core height) of conteinment spray during (LITS-3-52 C 62, SW II) accident condition.

f -

)

5- ]

t' ]

C  ::1 Lyn

(

h C:3

.J/ sec)

L J7 E-fi L.. :2 --a L

T1 42" E, "' s;)

h43 a

T s t> 1 " 3.2.6 INSTPUMENTATION T EA! INITIATED 0F CO!?T F C LS THE O M E AND CONTAINMENT COOLI93 SYSTEMS Mintrun NO.

Ope r abl e Per Pemarks Function Trip Level Settina Act1 n 1 rip Sys (1)

A 1. Below trip Setting pe rmis s i ve 2 Instrument Channel - 450 PS14 1 15 f or opening CSS and LPCI admission He act or I/w Pressure valves.

(PS-3-74 A & B, SW 82)

(PS-6 8 '3 5, SW 82)

(PS-68-96, SW 02)

C;' 230 psig i 15 A 1. Recirculation discharge 2 Instrument Channel - ,

Reactor Low Pressure valve actuation.

(PS-3-74A 6 D, SW # 1)

C'2 '

(PS-68-95, SW 81)

(FS-68-96, SW $ 1) b' A 1. Below trip setting in Instrument Ch a nn e l - 100 psig i 15 1 conjunction with contain. ment E- Re act or Low Pressur e i sola t ion signal and both (PS-68-93 6 94, SW 81) suction valves open will close R HF (L PCI) admission valves.

f

\

L 1. With diesel power 2 Core Spray Auto 65tS8 secs. . One per motor

/

Sequencing Timers (5) 8 1. With diesel power 2 LPCI Auto Sequencing Os ts 1 sec. One per motor k Timers (5) 2.

g A 1. With diesel power L. 1 RH RSW A1, 23, C1, and 135t515 sec.

2. One per pump 1 D3 Timers C.

_ c. . m u,

CD G

m CD

Table 3.2.B IN3Ti<UMENTATION THAT INITIATES OR ComOLS THE COF E AND CONTAINMENT COCLIN's SY M EMS -

Minimun No.

Operable Per Trip Sys (1) r'u nct ion Trip Level Settina Act2on Femarks 2 Core Spray and LPCI 05ts1 sec. B 1. With normsl power Auto Sequencing 65tsB sec. 2. One por CSS Oct3r Timers (6) 125ts16 sec.

185ts24 sec. 3. Two p er RIIR mo t o r 1 RHRSW A1, B3, C1, and 275ts29 sec. A 1. With noratal power D3 Timers 2. One ter pump L_ -)

.i

,c-

\ ] '

, .i u

. 1(16) ADS Timer 120 sec + 5 A 1. Above trip s et t i ni in conjunction with low reactor g water level, high drywell j

pressure and LPCI or CSS pumps running initiates ADS.

1

< 2 Instrument Channel - 100 + 10 psig A 1. Below trip setting def ers ADS RHR Discharge Pressure act uat ion.

-)

. -]

. 1 LD L , C'D LJ G

[.. _; f a

u m

T 1Di o 3.i.B INSTFUMENTATION T HAT INITIATts JR OJ PITT O LS THE CORE A NL CGNTAINMENT C00 LING JY K EFE Minimun No.

Ope r abl e Per Trip level Set

  • i nq Acelon P_m;3ay ks Tr i p Sys ( 1). Punct ion _

165 + 10 psig A 1. Pelow t rip setti ng defers ADS 2 In st r um en t Channel CSS Pump Cischarge a ct ua t ion.

Pr es s ur e 2 psid + 0.4 A 1. Alarm to detect core spray 1 ( 3) Core Spray Sparger to Peactor Pressure sparger pipe break.

Vessel ,3/p RER (LPCI) Trip System N/A C 1. Monitors availability of power 1

bus power monitor to logic systems.

Q C

C N

Ta D l t' 3.2.b

'JNTAINMENT COOLI'si SY ST EMS IS3TRUMENTATION TilAT INITIATES % CO W B O LS T HE COF E AN Minimun No.

Ope r abl e Per Trip Level S +4 t inq A ct ior. Femaria Trip Sys (1) Pu nct ion 5583" a bov e vessel zero. A 1. Above trip sett ing t ri ps HPCI 2 (2) In s t r umen t Channel - t ur bi r.e .

Fe a ct or High Water Level 5 30 psi (7) A 1. A bove trip settirN isolates KN?I 1 Instrument Cha nne l - system and trips HPCI tutt ine.

HPCI Turbine Steam Lir.e High Flow 52000F. A 1. Above t rip setting i sola t e s 4 (4) Instrument Cha nn e l - H PCI system and trips HP..

H PCI Steam Line Space turbine.

High Temperatura B 1. Includes testing auto 1 Core Spray System Logic R/A initiation inhibit to Core Spray Syutems in ot her unit s.

B 1. Includes Group 7 valves.

1 BCIC System ' Ini ti ati ng) N/A Refer to Table 3.7.A for Logic list of valves.

B 1. Includes Group 5 valves.

o 1 FCIC System (Isolation) N/A Pefer to Table 3.7.A for Logic list of valves.

N/A A 1(16) ADS Logic N/ A B 1 988 (LPCI) System (Initiation)

L.Tl o

o U

10 Only r an" trip sy9t em for each cooler tan.

11 In only two of the tour 4160 V shutdown boards. See note 13.

1/, In only oru. of the tour 41t 0 V unutdown boa r ds . See note 13.

I1 An "m"ryoney 4160 V shutdown board is considered a trip s yst em.

14 Rilksw pump would be inoperable. Refer to section 4.5.C for the requirements of a RIIRSW pump being inoperable.

I'> Th" accident signal i: the satisfactory completion of a one-out-o r -two t a ken twic" logic of the drywell high pressure plus low reactor pressure or the vessel low water level (2 178" a t,ov e vessel zero) originating in the core spray system t rip system.

16 The ADS circuitry is capable of accomplishing its protective action with one operable tri p system. Therefore one trip

ystem may be taken out of service for functional testing and ca l i br at i on for a periol not to exceed 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />.

Iwo RPT systems exist, either of which will trip both recirculation punp, The s ys tens will be individully +unctionally tested monthly.

f the test period for one RPT system erceeds 2 consecut ive hours ,

the ,ystem will be declared inoperable. If both RPT systems are inoperable or i f 1 RPT systen is inoperable for more than 72 consecutive hours, an orderly power reduction shall be initiated and the reactor power shall be less than 85% within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

509 154

T AB LE 4.2.8 CURVEILLANCE R E QU I f< EM EWS FOR I N3TB UM ENTAT ION TilAT INITI AT E L'R C ON'T ROL T H E C ECS F un ct ion i l Test Ca llt r a t ion I n s t ru m en t CP-ck Function once/3 months none Instru. ment Ch annel (1) fleactor Low Dressure (PS- 3-7 4A 6 B)

( PS - 6 8 - 9 5)

(PS- 6 8- 9 6 )

once/3 months none In st r umen t Ch an nel (1)

Reactor Low Pressure (PS-68-93 6 94) once/ operating c ycle none Core Spray Auto Sequencing Timers (4)

(Normal Power) once/ operating c ycle none Core Spray Auto Sequencing Timers (4)

(Diesel Power) once/ operating cycle none LPCI Auto Saguencing Timer s (4)

. (Normal Power) w once/ operating cycle none LPCI Auto Sequencing Timers (4)

(Diesel Power) once/ operating cycle none RER SW Al, B3, C1, D3 Timers (4)

(Normal Power) once/ operating cycle none R1IR SW A1, B 3, C1, D3 Timers (4)

(Diesel Power)

W CD w

(37

TABLE 4. 2. is S UP V E I LLA NC r. REQUIREMENTS FCh I NST P tN ENT AT ION THAT INITI AT E C P CONTROL ' lie CSC Punction Fisict ion :11 Test C a li t r .st i an Inst ru nent Cr Nk ADS Timer (4) once/ operating cycle none Instru.v nt Ch an n el (1) once/3 months none RHR Pump Discharge Pressuro Instrument Channel (1) once/3 nonths none Core Spray Pump Discharge Pre s s ur e Core Spray Sparger to RPV d/p (1) once/3 months once/ day Irip System Bus Power Monitor Once/op(? rating cycle N/A ncne Instrument Ch an nel Cond(nsate Storage Tank Low Level (1) once/ 3 months none LIl CD

TABLE 4.2.9 SUF/EILLANCE BE JOIPEMENT3 FOR IN3TF UMENTATION THAT INITIATE OF CONTh0L THE CSCS Pinct ton Fund iona 1 Test Cal l t r .st a an In st r 2:nont Chock LPCI (Con t a in me n t Spray) Lojic once/6 months (6) N/ A Core Spray Loop A Discharge N/A once/6 months once/ day P re s s ure (PI-75-20)

Core Spray Loop D Discharge N/A once/6 months once/ day Pres s ur e (PI- 75-4 8)

RHR Loop A Discharge P r es s ur e N/A once/6 mur.ths once/ day (PI-74-51)

R HR Loop B Discharle Pressure N/A once/6 months once/ day (PI-74-65)

Instrumant Channel - Tested during N/A N/A B liR Start f unctional test of RHR gmmo (refer to section 4. 5. 8) .

Inst rum + nt Channel - onc e/ mont h once/6 months N/A m The r mo s ta t (RHP Area Cooler Fan)

Instrument Ch annel - Tested during N/A N/A Core Spray A or C Start f unct ion a l test of cote spray (refer to section 4.5.A).

Instrument Channel - Tested during "/A N/A core Spray B or D start f unct ional test of core spray (refer W

CD W

N

TAB LE 4.2 a S U F V E I L'.A NC : h t /II e EM ENT S FOh IS m UM FSTA T ICN !!GT INITIAT'. CR CC N T FOL T d E C K U.

F unct 1 )na l Tes; c ali t r ation I n s t ruz+nt Check Pa n c t 1 <>n to section 4. 5. A ) .

once/f mor.ths N'/ A Instrument Channel - once/ amonth Thermostat (Core Spray Area Coole r 5'an)

Tested during N/A N/A RiiR Area Cooler Fan Loq1c functional test of ins t rum en t channels, B 101 motor start and t he r"to s t a t (RIIR area cooler f a n) . No cther test r eq u ir ed .

Tested daring I c>T ic N/A N/A Core Spray Area Cooler Fan Loq1c system functionsl test of instrumnt ch ann el s , core spray inot or start and t ter:no-s ta t (core spray area cooler f an) , No other test r eq u ir e d .

$ Tested during functional N/A N/A Instrument Ch annel - test of core spray pump Core Spray Motors A or 0 Start

4. 5. A) ,

(ref er to section Tested durini f u nct ional N/A N/A In s t run.en t Channel -  ; r ay pump Core Spray Motors B or C start test of core (refer to sect ion 4. 5. A) .

.iat. g~ .ct -- t 7 a LD once/ operating cycle N/A N/A I

C C l RPT breaker U

CD

in di" I,

+ripu t he- r"ci r cu la t ion pumps.

and The low reactor water level i11, n u7"t r umen + a t s on t hat in not to t il p when teactor water level is (F18" atuve vessel zero) above the top of the active tuel

+("able t . ? . li) i ni tiat es the LPCI, Core Spray Pumps, contributes

> Aub in it i a t i on and starts the diesel generators. These trip s +tinq levels wero chosen to be high enough to prevent spurious actuation cooling accident Lut low cmenough be to initiate CSCS operation so that post accomplished and the guidelines of 10 CPR 100 will not tm violated. For large breaks up to the complete trcumterential break 01 a tho trip sett ing given above, 28-inch C3CS recirculation initiation isline and with initiated in

+ime to moot the above criteria.

Ph" high drywell preisure instrumentation is a diverse signal to the water level inntrumentation and in addition to initiating

( v 's , tt causes isolation at Groups 2 and 8 isolation valves.

For the breann discussed above, this instr umentation will initiate C ',C ? i operation at about tn e same time as the low water 1ovol innt I umenta tion ; thun the results given above are ipplicalbe here also.

/on+urit are provided in the main steam lines as a means of m

I rtw o<nrina the steam tlow and also limiting the loss of mass inventory ve,1el during a steam line treak accident. The prima ry

'anction

toam line. of the For instrumentation tho worst case is to detect a;cident, main a break steam inline thebreak main outuide the drywell, a trip uetting of 140f. of rated steam flow in con junct ion with the tiow limiters and main steam line valve closure, limits the mass inventory loss such that fuel is not uncovered, tuel cladding temperatures remain below 10000F and rpilde el +'ase l i nes of

. radioactivity to the environs is well below 10 CFR 100 Peterence Section 14.6.5 FSAR.

'omp"rature mon i t o r i n g instrumentation is provided in the main

,e'am line tunnel to detect leaks in these areas. Trips are pr<isolat

<n > v ulml ionon this instrumentation and when exceeded, cause closure valvos.

I in. The setting of 2000F for the main steam

<>t 15 unn; thus, it is low enough to detect leaks of the order tunn"1 detector is htoakn. capable of covering the entire spectrum of For large breaks, the high steam flow instrumentation is a

hackup to the temperature instrumentation.

Htqh t a liat ion monitors in the main steam line t unnel have been

,uovided to detect gron> tuol wrt<lont. tallure as in the control rod drop With th" estaolished setting of 3 times normal hickground, and main steam line isolation valve closure, fission u . m uc t rol ane is limited so that 10 CFR 100 quidelines are not

,,c".-led for this accident.

Reterence Section 14.6.2 FSAR.

iiarm, wt t h a nominal set point of 1.5 x normal full power An hackground, is provided alse.

109 509 15^

In t h- a n i t y t. i ca l t r ea t n."a t 01 the transients, 390

r. t l l i .; ec u nd ', at+ allowei f.etween a neutron sensor reachin; the scram point and the st art of negat Ive reactivity insert to n. This in ade< plat e and conservative

" wnen comp a r s") to the typically olmerved t ime delay of about DO m t I li m conds. Approximately 70 mil 1iseconds af'"I no at r on I'uv reaches t tie trip point, the pilot

.eran va lvi- iol.no.d power lopply volt age g oe s t o zero an appr eix tmatel y /09 milliuecondo later, cont r ol rod mot i on b"qton. Th.- 200 mi l l i accond u are i nclu led in the allowable r>c r a m insertion times specified in

p"etfIcarion 1.J.C.

, t, -: u t +

. ..pi re ..j.

. ; n t i c t:

, tb .!.s *

. in' +

aiot. 1: ce qa r.a e :A: _ , :t e: . r+ p.i re ! .

  • i c1 : '

1 y; 4 itches my 1" aw r. n::w L V ew  : 5. c i ' .. n ~.' .1.

1 1. > '

.+ .m< ii r '. '>4 1 y; nc x

  • cu/ 1e M Nr. u 1e . nccoraance with' w: L rew: ' . p; e  ; j; :

, i: tb . r 1r cril.

' d:

.ci ! cn'i - ! .1 w; < ,w w . 7, :.t 1:i t i i rww o f 3 r l, ri !

r a ir +L, '. ; .,

ort + c

..y,.

r 1 .' -ity e o.;., L t w."z e r ,

- m i r Actin rr n; ' td ot r 1

- 111 i: 'Le 50 ;t t ut to o percent rod dennits croum In additlon, RSLS will nrevent move ~ nt et rod., in the 50 ;'e r c en t d e n s i t :. to a preset power level range until the cran rd rod has been withdrawn.

D. le a p t t v i t_y_Anomatioa Durino ' irh t u *1 cycle exceis oper at ive r eact iv ity varies a s tu"1 <le p l < t "s an<i an any burnable poison in supplementary c r in t r < >l 1 :, Lorno 1 Tho magnitule of this excess Ieactivity may in interrel fro 7 t rie critical rod contiquration. As tuel burnup ",r og r e nn 2 5, anonalous tehavior in the excess r eact t vi t y may b+ detected by comparison of the cr it ica l rod lia t t e r n at Selec' ed f.19e !st a t es to the predicted 10:1 invent or y at tha* ;t a t". Power operating ba! " conditions pr ovi .t. the most <"nsitive and directly interpretable data relattv" to cote reactivity. Furthermore, using power ororatinq hase conditions permits frequent reactivity compari90ns.

Imquiring a reactivity comparican at the specified frequency assuro, t- b a t a conparison will be made before the core reactivtty chanje excee is 1% . K. Deviations in core r "a c t i v t + y qreator than 11 .K are not expected and require t hor o u-lh " valuation. ()ne percent retctivity limit is ci >n si lo t mi la t e 11 rtce an insertion of the r eacti v it y into the core would not Irad to transients exceedinq design conditions or t, r actoz systom.

r

1. ,
  • e

.a : <

+ ,

iv m..t+ u a nt 2, NEDO-241,9, J uly 197 9.

136 . <nh iud

LIMITING CONDITIONS FOR OPEl% TION SURVEILLANCE REQUIREMENTS l Cogg_A1D_Cg[q l MtLMELrr 4. 5 CORE AND CONTAINMENT COOLING CgoLI NG_;}X STEMS SISTEMS

b. ' . ii dual llea1 Remova1 B. Residual lleat Removal
       ') y_s tpm ( EllR S) (LPCI an 1              S_ys t em (RIIRS) (LPCI and Containment Cooling)                         Containment Cooling)
1. The RilHS shall be 1. a. Simulated Once/

operable: Automatic Operating Actuation Cycle (1) prior to a Test reactor startup from a Cold b. Pump Opera- Once/ Condition; or bility month (2) when there is c. Mator Opera- Once/ irradiated tuel ted valve month in the reactor operability vessel and when the reactor d. Pump Flow Once/ 3 vessel pressure Pate Mon th s is greater than atmospheric, e. Testable Once/ except as check valve operating specified in cycle specifications , 3.5.B.2, through Each LPCI pump shall deliver 1.5.B.7 and 9,000 gpm against an indicated 3.9.B.3. system pressure of 125 psig- Two

2. With th! reactor LPCI pumps in the same loep shall vessel pressure less deliver 15,000 gpm against an than 105 psig, the indicated system pressure of Rif fa may be removed 200 psig.

from service (except that two RilR pumps- 2. An air test on the drywell and torus containment cooling headers and nozzles shall be mode and associated conducted once/5' years. A heat exchangers must water test =ay be performed on remain operable) for the torus header in lieu of the a per ioci not to air test. exceed 24 hours while being drained of 149 509 161

LIMITING CONDITIONS FOR OPEPATION SL'RVEI LLANCE REQUIREMENTS

3. ('O R E ts N D W NTliINMENT 4'S CORE AND CONTAINMEtE_C@ KING coo LI NG :i YSTE M.- SYSTEL4S supprossion chamber quality water and tilled with p r i n.a r y coolant quality water provide 1 that during coo ldown two loops with one pump po r loop or one loop with two pumps, and ausociate.1 diesel generators, in the core spray system are opernble.
3. It one RHH pump ' L PC I 3. When it is determined mode) is inoperable, that one RHR pump the reactor may (LPCI mode) is remain in operation inoperable at a time for a period not to when operability is e xceed ee zen d.: ' required, the provided the reotaining RiiR pum ps remaining RilR pum ps (LPCI mode) and (LPCI mode) and both active components in access paths of the both access paths of RHRS (LPCI mode) and the RHRS (LPCI mode) the CSS and the and the CSS and the diesel generato-s diesel generators remain operable. shall be demonstrated to be operable 4 I f any 2 KliR pumps (LPCI immediately and daily mode) beco e inoperable, thereafter.

the reactor shall be placed in the cold shutdown condi-tion within 24 hours. 50% 162

lit 1ITIr3G CONDITIONS FOR OPERATION SURVEILLANCE RFQUIREMENTS 1.5 CORE AND C0!TTAINMENT 4.5 CORE AND CONTAINMENT COOLING COO L I_NG _ S YST EMS SYSTEMS 5 It ona RHP pump 4 No additional surveillance (containment coolin7 required. Mode) or associa;.ed heat exchanger is i.. operable, the reactor may remain in operation for a period not ta exceed 10 days provided the remaining RHR pumps (cont a in me nt cooling mod e) and associated heat exchangers and diesel generators and all access paths of the RilRS (containment cooling mode) are operable.

6. If two RHR pu.n p s (containment cooling mode) or anuociated hoat exchangers a re inoperable, the reactor may remin in 5. When it is determined operation for a that one RHR pump period not to exceed (containment cooling 7 days provided the mode) or associated runaining RHR pumps heat exchanger is (containnent cooling inoperable at a time mod e) an1 associated whei operability is heat exchangers and required, the all access p at hs of remaining RHR pumps th" RHRS (containment (containment cooling cooling mole) are mode) , the associated operable. heat exchangers and diesel generators, and all active components in the access paths of the RHRS (containment cooling mode) shall be demonstrated to be operable immediately and waekly thereafter until the inoperable RHR pump (containment 151 cooling Mode) and associated heat
                                  /*

509 iM

I. I t11 T I t3G CONDITIONS FOR OPEP1. TION SURVEILLANCE REQUIRE? TENTS 4.5 CORE AND CONTAINMENT COOLING 3 . . t'O R E A N D Cottl' AI N 4E NT SYSTEMS (?_O.O_ L L JG .S Y ST E.Mg ( No t o : Beca ni; e adjacent unit is c r on i- connect inoperable at a time capant i tt y in not a when operability is a r t. tm r eq u i r ed , the requir"mont, a remaining BliR pu. p component la not and associated heat conslocred inoper able exchanger on the unit it cron;-connect cross-connection and ' capabilit.y can be the associated diesel rentored to service generator shall be wit hin ; hou rn.) demonstratei to be operable immediately

12. It one hilk pump or and every 15 days aruociated heat exchanger located on thereafter until the inoperable pump and the un it cross- 'ssociated heat connection in u ni t 2 exchanger are in inoperable for any returned to normal r"ason (including service.

valvo inoperability, pip" break, etc.) , the reactor may romain in operation 12. No additional for a peria l not to surveillance exceed 30 days f*9"If*d* provide 1 t h'- remaintnq HiiR pump anl af .iociatod diesel

13. No additional generator are surveillance operable. required.
13. It HliR crosu-connectton flow or h'at renoval capahtlity is lost, the unit a ty remain in operation for a per1011 not to exceed 10 days unle ,s such capability is restore 1.

154 509 164

I.IMITING CONDITIONS FOR OPERATION SURVEILLANCE RFOUIREMENTS m

1. 5 CORI. AND CONTAISMU;T 4. 5 CORE ? ND_GQlffM!idElf_f _'IOL 'E COOLING SYSTEMS HElfdE and corresponding, action shall contiaue until reactor operation is within the prescribed limits.

K. Minimum Critical Power Ratto (MCPR) The MCPR operat'ng limit is 1.28 for 8x8 fuel, and 1.22 K. Minimum Critical Power for 8x8R fuel, and 1.23 Fo (MCPR) for P8x8R fuel. These limits MCPP shall be determined apply to steady state power daily during reactor power operation at rated power ar.d operation at 2 25% rated tlow For core flows other t her ma l powe r and than rated, the MCPR shall f ollowing any change in b- greater than the above power level or limits times K., Kr is the distribution that would value shown in Figure 3.5.2. caupe operation with a If at any tir.e during limi ti ng c3ntrol rod patte . as described in operation, it is detar- the bases for mined by nornal surveillanc Specification 3.3.

                                                                                            ~

e that the 1in1*.ing value for MCPR is being exceeded, action shall be initiated within 15 minutes to restore operation to within the prescribed limits. If the steady state MCPR is not returned to within the prescribed limits within two (2) hours, the reactor shall be brought to the Cold Shutdown condition within 36 hours. Surveillance and corresponding actio's shall continue until reactor operation is within the prescribed limits. I. Reporting Requirements If any of the limiting values identified in Specifications 3.5.I, J, or K are exceeded and the

 ^

spectiled recedial action e is taken, the event shall be logged and reported in a '30-day wri t ten report. 167 509 i65

1,', Iw.m

    .e te y ua te core cooling.        With due regard for this margin, the allowable rep a ir time of 7 days was chosen.

Should one MR pu. p (LPCI mode ) tecome incrernole, caly ; Fl9 purps (LFCI ode; and the core sprily system ar+' sv111abla Since this .eavas only cr.e fig pw p (LPCI mode ) in reserve , wh;_. al cn.c with +3e re .atning 2 Fyy pu.3 3 (LPCI node) and core spray Oystem . , demonst rated to be Opersola 1.mediste;y

    'i n d ir. i l y *heraafter, 1 7 by r po .r    p-ted     ,_  nc ifted.

Jhcull two ?H3 p e p (LICI trJe) n ' '.e Lopern . , tr ' e re-lins r. 0 reserve ( r etm bnt ) :Tracit/ w I t' . the i. i?3 iLPCI "c 1C 1 - "herefere, the affecte:1 ' Int anall be placed in col: snutdrwn w ; thin 24 hours. Should one RHR pump (containment cooling mod e) become inoperable, a complerr nt of three full capacity containment heat r emov a l systems - still available. Any two of the re ma in ing pumps / heat e enanger combinations would provide more than adequate conta .nment cooling for any abnormal or t pont accident situation. Because of the availability of equipment in access of normal redundance requirements, which is demonstrated to be operable immediately and with specified subsequent performance, a 30-day repair period is justified. Should two RHR pumps (co n ta i nment cooling mode) become inoporable, a tull heat removal systom is still available. The remaining pump / heat exchanger combinations would provide adoquite containment cooling for any abnormal post accident situation. Because of the availability of a f ull complet.ent of heat removal equipment, which is demonstrated to be opocable immediately and with specified performance, a 7-day repair period is iustified. Observat ion of the stated requirements for the containment cooling mode tscures that the suppression pool and the drywell will be sufficiently cooled, following a los s-o f-coolant accident, to prevent primary containment overpressuri7ation. The containment cool in g function of the Hito s 1 o perm'itted only after the core has refloo' led to the two-thirds corc height level. This prevents inadvertently divertiny wat er needed for core 11ooding to the less urgent task of containment cooling. The two-thirds core height le ve l Enterlock may be manually bypassed by a keylock switch. Sinco the hHRS is filled with low quality water during power oporation, it is planned that the system be filled with do mine ra li zed (condensate) water before using the shutdown cooling function of the RHR system. Since it is desirable to 169

                                                                                     ,  / /

1.', HA ;Eb v teutinq to usepa ro that the lines ar e fille l. The visual - chm ktnq will avoid starting the c're Spray or RHR system with a discharo" line not 1illed. In addition to the visual obrorvation an1 to ensure a tilled discharge line other thin prtor t o t est inq, a pressure suppression chamber head tank is loca t ed approxima tely 20 feet above the discharge line highpoint to supply makeup water for these systems. The contene.ite head tank located approximately 100 feet above the discharge htqh point serves as a backup charging system when the preauute suppreasion chamber head tank is not in service. Syste- d scharoe pressare indicators are used to determine the water leve l above the discharge line high point. .The indicat ors will reflect approximately 30 psig f or a water level at the high point and 45 psig for a water level in the pr es su re suppression chamber head tank and are monitored daily to ensure tnat the di sch a rg e lines are filled. Whon .a their normal utandby condition, the suction for the ll PC I and 1CIC pumps are aligned to t he cor lensa te storage tank, wh ic h is physically at a higher el e, , ion than the HiUIS .uul Rm ICS pipinq. This assures that toe llPCI and RCIC discharge piping remains tilled. Further assurance is providea by observing water flow from these systems high poi n t u monthly. I. Maximum Average ?lanar Linear !!e a t Generation Rate (MAPLilGRJ Th i s apociftaition assures t ha t the peak cladding temperature tollowing the postulated design basis loss-of-coolant accident will not exceed the limit specified in the 10 CFR 50, A p per.d i x K. Tho pe ak clad ling temperature following a postulated loss-of-coolant accident is primarily a function of the average heat qeneration rate of all tne reds of a f uel assembly at any axial location and is only deperident secondarily on the rod to rol power distr tbotion within an assembly. Since expected lacci variations in power distribution within a fuel assembly attect the calculated peak clad temperature by less than i 20or relative to the peak tempe ra ture for a typical fuel dosign, the limit on th e average lin ea r hea t generation rate is uutficient to assure that calculated temperatures are within the 10 CFR 50 Appendix K limit. The limiting value for MA FLilG R is shown in Tables 3.5.I-1, -2, -3. The anstlyaec o n ortir then liri'< values 10 Presented in ';EDO-2M 27 and NEDO-24194

  .7    Linear lio a t Generation Rate (Lil_GM Th i s specification assures that the linear heat generation rate in any rod is less tnan the design linear heat 176 509        167
        .A: E v
        >: e ! and r eportml jua r terly.          It must be recognized that i' aIwtys a :) action which would return any of the ir i,teIh        (MAPLW;R, LHG l< , or MC P H) to wittun prescribed i i  'at'.,     rim"ly power reduction.        Under most c irc umta nc e s, ti. i will not be the only alternative.

v :"r'ncou 1 "tu"1 Densitication Effects on General Electric Doiling W at et aeactor Fuel," Supplemento 6, 7, and 8, NEDM-1 0 ~/ 15, August 1973.

                'upplemont 1 to Technical Report on Densifications of
                ."neral Electric Reactor Fuels, Decernber 14, 1974 (USA 14m ul a to ry S taf f) .
                ' om:ru n ica ti on : V. A. Moore to I. S. Mitchell, " Modified it ro del for Fuel Densification," Docket 50-321, March i 1,    19184, i           .:1   c.' l.l ect r ic Supplemental Reload Licensing Submittal for
                  .e   oit i Re1oad 2, SEDO-24199.

178 i 5<7 0m 168

TABLE 3.5.I-1 MAPLHGR VERSUS AVERAGE PLANAR EXPOSURE Plant: BF-3 Fuel Type: Inital Core - Type 2 Average Planar Exposure MAPLHCR (Mwd /t) (kW/ft) 200 11.4 1,000 11.6 5,000 12.0 10,000 12.2 15,000 12.3 20,000 12.1 25,000 11.3 30,0C0 10.2 TABLE 3.5.1-2 MAPLHGR VERSUS AVERAGE PLANAR EXPOSURE Plant: BF-3 Fuel Type: Initial Core - Type 1 Average Planar Exposure MAPLHGR (Mwd /t) (kW/ft) 200 11.2 1,000 11.3 5,000 11.8 10,000 12.1 15,000 12.3 20,000 12.1 25,000 11.3 30,C00 10.2 181

TABLE 3.5.I-3 hPLHGR VERSUS AVERAGE PLANAR EXPOSURE Plant: BF-3 FUEL TYPES: 8DRB265L and P8DRB265L Average Planar Exposure MAPLHGR (Mwd /t) (kW/ft) 200 11.6 1,000 11.6 5,000 12.1 10,000 12.1 15,000 12.1 20,000 11.9 25,000 11.3 30,000 10.7 The values in this table are cor.servative fcr both prepressurized and non-pressurized fuel. 182

                                                                         .f0 509       il

LIMITING CONDITIONS FOR OPSRATION SURVEILLANCE REQUIREMENTS

1. 6 PigfMA RY SYSTEM I4OUNDARY 4.6 PRIMARY SYSTEM BOUN DARY F. J et P tim p Flow Mis ma tch F. J et Pump Flow Mismatch
1. Recirculation pump speeds shall be checked and loqqed at least once per day.

<~ j

1. The reactor shall not be operated with one recirculation loop out of service for more than 24 hours.

With the reactor operating, if one rec ircu lttion loai is out of cervice, the plant shall be placed in a hot shutd own condition withi a 24 hours unless t ae loop is sooner returned to service. 3, Following one- pump operation, tl_e discharge valve cf the low speed pump

^                    mTy not he opened unless the speed of the f aster pump is less than 50% of its rated speed.             195

LIMI"'ING CONDITIONS FOR OPEMTION SURVEILLANCE REQUIREMENTS _ 3.6 PhitiA_PJ SYT"!M FOUN O T '4 . 6 QIMABY SYSTFM POUNDARY G. Structural Integrity l 3. Stoddy state operalien with both recirculation pr.:~ps out of ser-Vice for up to 12 hrs is per- 1. Tabl e 4. 6. A tog ether mi t ted . During sm.h interval with suppl emen t a ry restart of the recirculation notes, specifies the pumps is permitted, provided the inservice inspection 8 loop discharge ter?erature is re u e _n ts o f the nIlthin 750r of the saturation reactor coolant temperature of the reactor system as f ollows: vessel uater as determined by dome pressure. The total a. areas to be elapsed time in natural circula- ircpected tion 3rd cr.e purp c;ieration mus t be no grcater than 24 hrs, b. percent of areas to be inspected during the inspection G. S t ritetural Intwrity in te rval

1. The structural c. inspection integrity of the frequency priciary s ystem shall be maintainad at the d. methods used for level required by the in epection original acceptance standards throughout 2. Evaluation of the lif e of the inservice :sspections pl an t. The reactor will be made to the shall be mais.ta!ned acceptance stan da rds in a cold shutdcen epecified for the condition until each original equipment.

Indication of a defect has been 3. The inspection investigated and interval shall be 10 evaluated. years. 4 Addit iona l inspactions shall be perf ormed on ce rtain circumferential pipe welds as listed to provide additional protection against pipe uhlp, which could damage auxiliary and control systems. Feedwater- G W-9, K W-13, GW- 12, G W- 26 509 172 x m->> c - 29 y KW-39, C W- 15,

.                                                                                     KW - 3 0, and GI 4-3 2

m 3.6/4.6 BASES To meet the safety design basis, thirteen safety-relief valves have been installed on unit 2 with a total capacity of 84.2% of nuclear boiler rated steam flow. The analysis of the worst (3-second clo" r" overpressure transient, of all main steam line isolation direct scran (valve position scran) results in a maximum valves) neglecting the vessel pressure of 1280 poig it a neutron f l ux scram is assured Thi< reults in an 95 psig margin of the code allowable over-pre- ure 1imit of 117") psir To meet the operational design basis, the total safety-relief capacity of 84.27 (11 valves) of nuclear bo'ler and 14.2% rated safety has been divided into 70% relief (2 valves). The analysis of the plant iso-lation transient (turbine trip with bypass valve failure to open) assuming a turbine trip scram is presented in Reference 5 on page 29. This analysis shows that the 11 relief valves limit pressure at the safety valves to 1206 psig, well below the setting of the safety valves. Therefore, the uafety valves will not open. This analysis shows that peak system pressure is limited to 1232 psig which is 143 psig below the allowed vessel overpressure of 1375 ps!g. Experience in relief and safety valve operation shows that a testing of d et ect failures50 percent of the valves per year is adequate to or deteriorations. The relief and safety valves are benchtested every second operating cycle to ensure that thei r set points are within the +1 percent tolerance. The relief valves are tested in place once per operating cycle to establish that they will open and pass steam. The can berequirements established above apply when the nuclear system pressurized above ambient conditions. These requirements are applicable at pres su r es because nuclear system pressures below normal operating start at these conditionsabnormal operational transients could possibly would be n eeded, such that eventual overpressure relief lioweve r, these transients are much les s se ve re , in terms of pressure, than those starting at rated conditions. The valves need not be f unctional when the vessel head is removed, since the nuclear system cannot be pressurized. R EF ERENC ES

1. Nuclea r System Pressure Relief System (BFNP FSAR Sub sec tion
4. 4) n O

225 509 173

3.6/4.6 B AS ES A nozzle-riser ayutem t a ilur e could also generate the coincident tailure of a jet pump diffuser body; however, the converse is not true. The lack of any substantial stress in the jet pump diffuser body makes failure impossible without an initial nozzle-rise r system f ailure.

3. 6. F/ 4. 6. F J et Pump Flow Mismatch Requiring the discharge valve of the lower speed loop to remain closed until the speed of the faster pump is below 50% of its rated speed provides assurance when going from one to two pump ope r ation that excessive vibration of the jet pump risers will not occur.

ECCS perf ormance during reactor operation with one recirculation loop out of service has not been analyzed. Therefore, sustained reactor operation under such conditionais not permitted. 3.6.G/4.6.G Structural Integrity The requi r en en ts for the reactor coolant systems inservice inspection program have been identified by evaluating the need for a sampling examination of areas of high stress and highest probability of f ailure in the system and the need to meet as closely as possible the retiuirements of Section XI, of the ASME Boiler and Pressure Vessel Code. The prog ram reflects the built-in limitations of access to the reactor coolant systems. n 509 I/4 227

NOTES FOR TABLE 3.7.A Key: 0 = Open C = Closed 3C = Stays Closed GC = Goes Closed Note: Isolation qroupinqs are as follows: Group 1: The valves in Group 1 a > actuated by any of the following conditions:

1. Reactor Vessel Low Water Level (4708)
2. Main Steamline liigh Radiation
3. Main Steamline High Flow 4 Main Steamline Space liigh Temperature
5. Main Steamline Low Pressure Group 2: The valves in Group 2 are actuated by any of the tollowing conditions:

1. 2. Reactor Vessel Low Water Level (5 3 8") liigh Drywell Pressure Group 1: The valves in Group 3 are actuated by anv of the f ollowing conditions:

1. Roacto r Low Water Level ( 5 3 8")
2. .loactor Water Cleanup System liigh Temperature
3. iteactor Water Cleanup System liigh Drain
                 ' .' em p e r a t u r e Group 4:     The /alves in Group 4 are actuated by any of the f ol'.owing conditions:
1. IIPCI Steamline Space liigh Temperature
2. IIPCI Steamline liigh Flow
3. IIPCI Steamline Low Pressure Group 5: The valves in Group 5 are actuated by any of the following conditions:
1. RCIC Steamline Space liigh Temperature
2. RCIC Steamline liigh Flow
3. RCIC Steamline Low Pressurt Group 6: The valves in Group 6 are actuated by any of the f ollowing conditions:
1. Reactor Vessel Low Water Level ( 5 3 8")
2. Illgh Drywell Pressure
3. Reactor Building Ventilation Ifigh Radiation Group 7: The valves in Group 7 are automatically actuated by
                                                                 .n 266              509   i!

only the following condition:

1. Reactor Vessel Low Water Level (470")

Group H: Ttle valves in Group 8 are automatically actuated by only the f ollowing condition:

1. Iligh Drywell Pressure E10 JIJ/ f 267 1i 'IfC

3.7.0/4.7.D Primary con ta inment Isolation valves Double isolation valves are provided on lines penetrating the primary co n ta inme nt and open to the f ree space of the containment. Closure of one of the valves in each line would be cufficient to maintain the intaqrity of the pressure suppression system. Automatic initiatier. required to minimi2.e the potential leakage paths frcm a containment in the event of a loss of ccolant accident. Group 1 - process lines are isolated by reactor 'essel low water } 1evel ( 470 ") in order to allow for removal of decay heat subsequent to a scram, yet isolate in time f or proper operation of the core standby cooling systems. The valves in group 1 are also closed when process instrumentation detects excessive main steam line flow, high radiatica, low pressure, or main steam space high temperature. Group 2 - isolation valves are closed by reactor vessel low water level ( 5 3 8 ") or high drywell pressure. The group 2 isolation signal also " isolates" the reactor building and starts the standby ga s treatment sy s tem. It is not desirable to actuate the group 2 isolation signal by a transient or spurious signal. Group 3 - prccess lines are normally in use and it is theref ore not desirable to cause spurious isolation due to high drywell pressure resulting frca non-saf ety related causes. To protect the reactor frcm a possible pipe break in the system, isolation is provided by high temperature in the cleanup system area or high ficw through the inlet to the cleanup system. Also, since tne vessel could potentially be drained through the cleanup system, a low level isolation is provided. Group 4 and 5 - process lines are designed to remain operable and mitigate the censequences of an accident which results in the isolation of other process lines. The signals which initiate isolation of Group 4 and 5 process lines are therefore indicative of a condition which would render them inoperable. G rouc 6 - lines ere connected to the primary containment but not directly to the reactor vessel. These valves are isolated on reactor low water level (538") , high drywell pressure, or reactor building ventilaticn high radiation which would indicate a possible accident and necessitate primary containment isolation. G roup 7 - process lines are closed cnly on reactor low water i j level ( 470") . These close on the same signal that initiates HPCIS and ECICS to ensure that the valves are not open when EPCIS or RCICS action is required. G rcu p 8 - line (traveling in-core probe) is isolated on hich d rywel l pressure. This is to assure that this line does not provid e leakage path when containment pressure indicates a possible accident condi t'. :n. n / 294

LIMITING CONDITIONS FOR OPERATION SURVEILLANCE RFQUIREMENTS I 3.9 AUXI LI AR Y ELECTRICAL SYSTEM 4.9 AUXILIARY ELECTRICAL SYSTE_M

d. Each diesel generator shall be given an annual inspection in dCCordance with instructions based on the manufacturer's r econimendations .
e. Once a month a sample of diesel fuel shall be checked for quality. The quality shall be within the acceptable limits specified in Table 1 of the latest revision to ASTM D975 and logged.
2. Three unit 3 diesel 2 D.C. Power System -

generators shall be Unit Batteries (250-operable. Volt) and Diesel Generator Batteries (12 5-Volt) and Shutdown Board Battery (250-Volt)

a. Every week the specific gravity and the voltage of the pilot cell, and temperature of an adiacent cell and overall battery voltage shall be measured and logged.

509 178 318

LIMITING CONDITIONS FOR OPERATION SURVEILLANCE REQUIREMENI'S

3. 9 4.9 AUXILI ARY EL ECTRICAL SYSTEM LUXI LI AR Y ELECTRICAL SYSTEM
c. The undervoltage relays which start the diesel generators f rom start buses 1A dnd 1B and the 4-kV shutdown boards, shall be calibrated annually for trip and reset and the measurements logged.

S. 'l h e 250-Valt Shutdown Board battery and unit batteries and a battery charger for each battery and associated battery boards are operable.

6. Logic Systems
           ,1 . Accident signal logic system is opetable.

7 There shall be a minimuin of 103,300 gallons of diesel fuel in the unit 3 standby diesel generator fuel tanks. 321

LIhITIhG ONDITIONS FOR OPERATION SURVEILLANCE RFOUIREMENTS 1.9 AUXILI ARY ELECTRICAL SYSTDI 4.9 AUXI LI ARY ELECTRICAL SYSTEM

4. From and after the date that the 250-Volt Ehutdown board batterie- or one of the three 250-Volt un't batteries and/or its associat' 4 battery board . found to be inope.able for any reason, continued reactor operation is permissible during the *;ucceedinq seven days. Except for routine surveillance t e . c in g, the NRC shall be notified within 24 hours of the situation, th e precautions to be taken during this period and the plans to return the f ailed component to an operable state.
5. When one division of the Logic System is inoperable, continued reactor operation is permissible under this condition for seven days, provided the CSCS requirements listed in Specif ication 3.9.B. 2 are satisfied. The NRC shall be notified withia 24 hours of the situation, the precautions to be taken during this period and the plans to return the failed component to an operable state.

32s 509 180

3.9 BASES Tim objective of this speci.fication is to assure an adequate sourco ot electrical power to operate facilities to cool the unit

 <turinq shut lown and to operate the engineered safeguards fo11oving an accident. There are three sources of alternating current electri"nl anergy available, n uely, the 161-kV transmission system, the nuc lear gar.arati ng units, and the diesel generators.

The 161-kV of f site power supply consists of two lines which are red f rom dit f erent sect'ons of the TVA 161-kV grid. In the normal mode of operatiu , the 161-kV system is operating and four liesel generators are operational. If one diesel generator is out of se rvic e , there normally remain the 161-kV sources, and the other three diesel generators. For a diesel generator to be considered operable its associated 125 V battery must be operable. The mininum t uel oil requirement of 103,300 gallons is srfficient for 7 days of full load operation of 3 diesels and is conservatively based on availability of a replenishment supply. (1fstta auxilinry povar for Frewns Ferry Nuclaar Plant Unit 3 is supplied from two n ur .m 'hn unit station transformers frcm the rain generator or the 161-kV

   +ransning'on i vate a through t ha cooling tower trancformers.      If a cooling tower
   ' r nn s fe m." is 'ont, the unit can
                                            'ntinue to operate since the station t r ans fo r~ r it in arrvice, t he other cooling tower transfcrmer is available, and four diecel generators are operational.

A 4-kV shutdown board is allowed to be out of operation for a brief poriod to allow for maintenance and testing, providing all rema in ing 4-kV shutdown boards and associated diesel generators CS, RilR , (LPCI and Containment Cooling) Systems supplied by the remaining 4-kV shutdown boards, and all emergency 480 V power boards are operable. There are five 250-volt d-c battery systeme each of which consists of a battery, battery charger, and distrioution equipment. Three of these systems provide power f or unit control functions, operative power f or unit motor loads, and alternative drive power f or a 115-volt a-c unit preferred motor-generator set. One 250-volt d-c system provides power for common plant and transmission system control functions, drive power for a 115-volt a-c plant preferred motor-generator set, and emergency drive powe r f or certain unit large motor loads. The fifth battery system delivers control power to a 4-kV shutdown board. The 250-Vo't de system is so arranged, and the batteries sized such, that the los, of any one unit battery will not prevent the safe shutdown and cooldown of all three units in the event of the loss of offsite power and a desien basis accident in ,ny one unit. Loss of contrm1 powor to any engineered safeguard control 327 509 181

f ', 9 M A.JO P DE S I G!J FEATO.2'i S.1 LITE F E AT U I4 E S ll r own s Ferry units 1, 2, and 3 are located at Browns Ferry fluclear Plant site on property owned by the United States a'.-l in custo<ly of the TVA. The site shall consist cf approximately 840 acres on the north shore of Wheeler Lake at Tennessee River Mile 294 in Limestone County, Alabama. The minimum distance from the outside of the secondary co n t a i nme nt building to the boundary of the exclusion area as defined in 10 CFR 100.3 shall be 4,000 feet. 5.2 REACTOR A. The reactor core raa y ciatain 764 fuel assemblies consisting of 8x8 assemblies having 63 fuel reds each, and 8x8 R (and P8x8R) assemblies having 62 fuel rods each. The number of each type in the core is given i n t he in s t recent reload amendment topical report. B. The reactor core shall contain 185 cruciform-shaped control rods. The control material shall be boron carbide powder (n C). compacted to approximately 70 percent of theoretical 4 density. 5.3 R EACTO R VESSEL The r" actor vessel shal' be as described in Table 4.2-2 of the FSAR. The applicable design codes shall be as described in Table 4.2-1 of the FSAR. 5.4 Co tiTA I tim EtiT A. The principal design parameters for the primary containment shall be given in Table 5.2-1 of the FSAR. The applicable design codes shall be as described in Section 5.2 of the FSAR. B. The secondary containment shall be as described in Section 5.3 of the FSAR. C. Penetrations to the primary containment and piping passing through such penetrations shall b.. designed in accordance with the standards set forth in Section

5. 2. 3. 4 of the FSAR.

5.5 FUEL STO RAG E A. Th" arrangement of the fuel in the new-fuel storage tacilitity shall be such that k eff, for dry conditions, b 360 509 18 1

6 ENCLOSURE 2 1 O' 500/ IJ.}}