ML19323D357
ML19323D357 | |
Person / Time | |
---|---|
Site: | Midland |
Issue date: | 05/15/1980 |
From: | TELEDYNE ENGINEERING SERVICES |
To: | |
Shared Package | |
ML19323D353 | List: |
References | |
TR-3887-1, TR-3887-1-R1, NUDOCS 8005210476 | |
Download: ML19323D357 (200) | |
Text
{{#Wiki_filter:_ _ O .
','TELEDYNE ENGINEERING SERVICES 303 BE AA HiLLROAD WALTHAV. MASSACHUSETTS C2154 (617) 890-3350 TWA (710) 324-7506 May 15, 1980 ,
3887-22 Bechtel Professional Associates Corp. 777 Eisenhower Parkway Ann Arbor, MI 48106 i Attn: Mr. L. H. Curtis Project Engineer
Subject:
Consumers Power Co. Midland Plant - Job. 7220 Failure Analysis of Broken Reactor Vessel Support Studs - Unit 1 Gentlemen: Enclosed are 80 copies of our report TR-3887-1, Rev. I concerning the investigation of the subject studs. Sincerely, TELEDYNE ENGINEERING SERVICES [ I. Wilson G. Dobson -
.j Project Engineer William E. Cooper - Consulting Engineer WGD:WEC:dem 6
I. e g005210474 l s:
BECHTEL ASSOCIATES PROFESSIONAL CORPORATION 7/7 EAST EISENil0WlR PARKWAY ANN ARBOR, MICitiGAN TR-3887-1, Rev. 1 I INVESTIGATION OF PRESERVICE FAILURE OF MIOLAND RPV ANCl10R STUDS MAY 15, 1980 l 1eTELEDYNE ENGNEERNG SERVICES 303 BEAR HILL ROAD WALTH AM, MASSACHUSETTS 02154 617 890 3350
TE NE Technical Report FJN SERVICES TR-3887-1 TABLE OF CONTENTS Page
1.0 INTRODUCTION
1
2.0 BACKGROUND
1 2.1 Anchor Stud Description 1 2.2 History of Stud Failure 2 3.0 TEST PROGRAM 2 3.1 Visual and Non-Destructive Examination 3 3.2 Stud Dissection 3 3.3 Tensile Tests 4 3.4 Charpy V-Notch Specimens 4 3.5 Plane Strain Fracture Toughness Specimens 4 3.6 Hardness Tests 5 3.7 Chemical Composition 6 3.8 Microstructure Analysis 6 3.9 Fractography 4.0 RESULTS 7 4.1 Visual Examination 7 4.2 Non-Destructive Exanination 7 4.3 Tensile Tests 8 4.4 Charpy V-Notch Impact Tests 8 4.5 K IC Plane Strain Fracture Toughness Tests 8 4.6 Hardness 8 4.7 Chemical Composition 9 4.8 Microstructure Analysis 9 4.9 Fractography 10 4.10 Calculated K IC II
W F W NE ENGNEERING SERVICES Technical Report IR-3887-1
1.0 INTRODUCTION
Teledyne Engineering Services (TES), under contract with Bechtel Pro-fessional Associates Corp. has conducted an investigation of the preservice f ailure of two reactor vessel anchor studs at the Consumers Power Co. , Midland Plant, Unit 1. This report describes the f ailure analysis program conducted by TES, and results obtained.
2.0 BACKGROUND
2.1 Anchor Stud Description The anchor studs under consideration are each 2 1/2" dia. 7'-4" long, threaded for approximately 141/2" on one end and 51/2" on the other end. There are a total of 96 studs in each unit, arranged in a double circular pattern with the studs spaced every 7.5 , 48 studs in the inner circle and 48 studs in the outer circle, as shown in figure 1. All studs were purchased to ASTM-A354-BD standards. The studs in unit 1 are nominally AISI 4140 and 4145 while the studs in unit 2 are nominally AISI 4340. Each stud has a nominal pre-load of 75ksi in the unthreaded section. In the reduced section of threads the nominal stress is 92ksi. These numbers do not consider relaxation of the preload, which could be as high as 20ksi according to information supplied by Bechtel. l All studs are embedded vertically in concrete, with approximately ) 15 inches of one end remaining above the upper surf ace of the concrete I (figure 2); it is to this exposed end of the stud that the reactor vessel skirt is bolted. l
YM Technical Report ENGSEERNG SERVICES TR-3887-1 2.2 History of Stud Failure The anchor studs in unit I were embedded in concrete in April 1977. In the last week in July, 1979 the studs were tensioned. Sometime af ter tensioning, anchor stud 3 (see figure 1) f ailed at about the level of the concrete (figure 2). The precise date of failure is not known but is estimated to have been in the week prior to discovery of the missing stud, which was September 14, 1979. On September 18,1979, the failed end of the stud was recovered. TES was first contacted regarding the possibility of conducting an investigation of this failure Oct. 1, 1979. TES took delivery of the failed end of the stud Oct. 19, 1979, and a f ailure analysis investigation was initiated Nov. 9, 1979. During the course of this investigation, a second stud (36 outside, unit 1) failed, apparently during the night of Dec. 19-20. TES took delivery of the failed end of the second stud Dec. 21, 1979 and included results of tests on the second stud as part of this investigation. This second stud failed at the first engaged thread of the anchor stud nut (figure 2). 3.0 TEST PROGRAM The TES failure analysis was concerned with the following questions:
- 1) What were characteristics of the fractures?
- 2) What are the material properties in the f ailed studs and how do they compare with:a) the material specified; b) the material described in the material certification documents?
- 3) What are the properties of the remaining studs in Units 1 and 2 relative to those that failed?
TE WE ENGNEERNG SERVICES Technical Report TR-3887-1 The tests and inspections conducted by TES on the first failed stud were:
- 1) Visual and non-destructive examination, including dye pene-trant, magnetic particle, and ultrasonic techniques
- 2) Tensile tests for ultimate and yield strength, reduction in area, elongation, modulus of elasticity
- 3) Charpy V Notch impact energy & lateral expansion
- 4) Plane strain fracture toughness (KIC)
- 5) Hardness
- 6) Chemical composition
- 7) Microstructure analysis
- 8) Fractography The tests from the above list conducted on the second failed stud were 1, 5, 7 and 8.
3.1 Visual and Non-Destructive Examination Visual and non-destructive examination were made on both f ailed stud ends. The non-destructive techniques used for Stud 3 were dye pene-trant, ultrasonic, and magnetic particle (dry powder). On stud 36 only magnetic particle techniques were used: both dry powder and wet fluorescent. 3.2 Stud Dissection The broken end of Stud 3 was about 14 1/4" long and, therefore, provided sufficient material to carry out the above test program. Charpy, compact tension, and tensile specimens were sectioned from the stud as shown in TES drawing D-5120 in appendix A. The fracture surface was cut from the end of the stud for detailed examination. A section of the stud from behind the fracture was also cut from the stud for chemical analysis, hardness and metallography, thus providing material as close to the frac-ture as practical in order to characterize the material in the vicinity of the fracture.
TE WE ENGNEERING SERVICES Technica1 Report TR-3887-1 Stud 36 was only 41/4" long, and thus did not provide enough material for a test program as extensive as for stud 3. Stud 36 was disected as shown in TES drawing A-5209 also in appendix A. 3.3 Tensile Tests Six tensile specimens were taken from the mid-radius of stud 3. The tensile specimens were machined to dimensions specified in ASTM A370. 3.4 Charpy V-Notch Specimens A total of 14 standard Charpy specimens were cut from Stud 3. Two specimens were taken from the center of the stud, since specimens for material certification were also taken from the center. This provided a comparison between the Charpy impact values in the material certification documents and this stud. Six additional specimens were cut from the mid-radius position, and six from outside the mid-radius. ASTM specifications for this material require the Charpy specimens be cut from the center or mid-radius; thus , the latter six specimens cannot be strictly used to compare properties of this stud with previous material certification tests. 3.5 Plane Strain Fracture Toughness Specimens Three 0.8 compact tension plane strain fracture toughness speci-mens were cut from stud 3. The specimens were dimensioned in accordance with ASTM E-399. The thickness of the specimens (0.8") was selected on the basis of the following ASTM relation provided in E-399 in order to assure that a valid value of K IC would be obtained:
YE WE ENGNEERNG SERVCES Technical Report TR-3887-1 Stud 2F was only 41/4" long, and thus did not provide enough material for a test program as extensive as for stud 3. Stud 36 was disected as shown in TES drawing A-5209 also in appendix A. 3.3 Tensile Tests Six tensile specimens were taken from the mid-radius of stud 3. The tensile specimens were machined to dimensions specified in ASTM A370. 3.4 Charpy V-Notch Specimens A total of 14 standard Charpy specimens were cut from Stud 3. Two specimens were taken from the center of the stud, since specimens for material certification were also taken from the center. This provided a comparison between the Charpy impact values in the material certification documents and this stud. Six additional specimens were cut from the mid-radius position, and six from outside the mid-radius. ASTM specifications for this matorial require the Charpy specimens be cut from the center or mid-radiu ; thus , the latter six specimens cannot be strictly used to compare properties of this stud with previous material certification tests. 1 1 3.5 Plane Strain Fracture Toughness Specimens Three 0.8 compact tension plane strain fracture toughness speci-mens were cut from stud 3. The specimens were dimensioned in accordance with ASTM E-399. The thickness of the specimens (0.8") was selected on the basis of the following ASTM relation provided in E-399 in order to atsure that a valid value of K IC would be obtained: l I l l
Y ENGSEERING SERVCES Technical Report TR-3887-1 Bh2.5 (KIc/ Iy.s) where B = thickness Cy.s. = yield strength KIC = Plane strain fracture toughness K IC was estimated to be at least 62 Ksi [III based on maximum Charpy values reported in the material certification. The yield strength was estimated at 130 ksi, based on minimum values specified for this material. Solving the above equation gives a value of B of about 0.6". The dimension for B was arbitrarily increased to 0.8", the largest specimen which could be cut from the stud to assure a valid test in the event the mechanical properties of the stud differed substantially from those expected. 3.6 Hardness Tests Rockwell hardness tests (HRC) were performed on material immed-iately behind the fracture surface and an the ends of both studs, a well as along the length of stud 3. Vickers Microhardness tests were performed on metallographic specimens from stud 3. Field hardness tests were performed on the ends of studs remain-ing in Unit 1 and 2 using a portable hardness tester
- with hardness results on the "Leeb" scale, which were then converted to HRC. l i
i Portable hardness test results are repeatable within i 2 HRC according to the manuf acturer. In fact, TES's trials with this particular j tester found the repeatability to be within i 1 HRC over the range of CEquo-Tip Portable Tester, made by Proceq of Switzerland, with a type l l D indenter. i
T ENGNEERNG SERVICES Technical Report TR-3887-1 hardness fron. 30-50 HRC, when testing Rockwell calibration blocks. This repeatability is as good as can be produced with a conventional Rockwell tester. Figure 10 plots a hardness gradient, using both the Rockwell and portable testers and illustrates the agreement between the two types of tests. 3.7 Chemical Composition Samples for chemical composition were removed from both studs. In addition to quantitative analysis for elements required to meet specif-ications, a qualitative analysis was performed to determine the presence and quantity of any trace elements. 3.8 Microstructure analysis Samples for metallography were taken from stud 3 at the surf ace and mid-radius in longitudinal transverse and radial orientations. In addition to normal etchants for microstructure, at the specific request of Consumers Power Co., TES used a special etchant to reveal temper embrittle-ment.* An extraction replica was prepared of the microstructure and examined by Transmission Electron Microscopy. 3.9 Fractography The fracture surfaces from both studs were examined in the scann-ing electron microscope to determine the fracture surf ace characteristics. Due to the deteriorated condition of the fractur.: surf ace of Stud 3, replicas taken from the fracture surface of the embedded end were also l l 0"A Metallographic Etchant to Reveal Temper Brittleness in Steel" J. B. l Cohen, A. Hurlich, M. Jacobsen Trans. of the A.S.M. Vol 39, 1947 page ! 109-138. 1
W F W NE Technical Report ENGNEERING SERVICES _7_ TR-3887-1 examined. Calibration of magnification of the scanning electron microscope was accomplished by distributing small latex spheres (5.7 um diameter) on the fracture surf ace. The spheres provide a convenient refer-ence dimension from which magnification can be calculated. 4.0 PESULTS 4.1 Visual Examination Stud 3 is shown before dissection in figures 3 through 6. The fracture surface was essentially flat, with the fracture apparently orig-inating from a single point at a thread root. There was no visible indication of a pre-existing crack or defect at the origin. No visible evidence could be found for additonal cracking anywhere else on the stud. Grout was present in the threads as can be seen in figure 3 and 4 and also apparently on the fracture surface (Figure 5). Stud 36 is shown in figures 7, 8 and 9. Note that while stud 3 broke at or in the concrete, stud 36 broke at the first engaged thread of the nut. Stud 36 also apparently had a single origin but unlike stud 3, stud 36 had a thumbnail shaped region about Smm on a side and 2mm deep of different texture at the origin. This region did not show up in any photographs. 4.2 Non-Destructive Examination None of the non-destructive examination methods used revealed any additional crack indications in either stud. L
Y Technical Report SEWICES TR-3887-1 4.3 Tensile Tests Tensile test results for three tensile tests on stud 3 are shown in Table I, along with values reported both in material certification documents a~1 from literature for this material and specified heat treat-ment. 4.4 Charpy V-Notch Impact Tests Charpy V-Notch impact test results are shown in Table II, along with values reported in material certification documents. Only eight tests were conducted: five at 40 F and three at 70 F. It was decided, based on these results, that additional tests at other temperatures would not provide useful information. 4.5 K Plane Strain Fracture Toughness Tests IC Values of K IC determined from testing are shown in Table III. These results are valid according to requirements of E-399. 4.6 Hardness Rockwell hardness tests on stud 3 revealed no hardness gradient across the diameter, or along the length of the stud. Average hardness was between 46 and 47 HRC. Stud 36 had a clearly defined hardness gradient across the diameter when tested by both the Rockwell and Proceq testers. The surface hardness was between 46 and 47 HRC with a core hardness of 37 HRC, shown graphically in figure 10. The hardness traverse results for both studs are tabulated in Tables IV and V.
Technicc1 Report TE WE TR-3887-1 SBMCES Microhardness traverse results for stud 3 are tabulated in Table VI, from the bottom of a thread root through mid-radius. The converted micro-hardness results average about 1 HRC higher than the conventional Rockwell tests, probably as a result of errors inherent in conversion. The micro-hardness test also did not show any gradient ia stud 3. Field hardness testing results of the anchor studs in units I and 2 are summarized in tables VII and VIII. Figures 11 through 17 plot the distribution of the outer diameter end hardness for the five heats of material involved. Note that some studs did not exhibit a hardness gradient, similar to stud 3, while the remaining studs did have a gradient. No correlation was observed between heat number and the presence of a gradient. Only in studs in unit I was a gradient observed. 4.7 Chemical Composition Results of the chemical composition analysis for both ste:s are presented in table IX along with specified limits for this material, and results reported in the material certification documents. 4.8 Microstructura Analysis Examples of the microstructure of stud 3 are shown in figures 18 through 23. TEM Micrographs are shown in Figures 24, 25 and 26. The microstructure consists primarily of tempered martensite and some free ferrite and bainite. The exact quantity of bainite and ferrite can only be estimated, and is less than 20%. There were no apparent defects or unusual features in the microstructure.
TE NE Technical Report SENICES TR-3887-1 There was no indication of decarburization of surfaces or microcrack-ing at the surf ace. The structure at the surface was the same at the mid-radius. Note that while the microstructure for stud 36 was not examined, the presence of a hardness gradient suggests the microstructure would be different at mid-radius compared to the surface. The etchant referred to in section 3.8 did not give any indication of temper embrittlement. 4.9 Fractography Because of the deteriorated condition of the fracture most of the fracture surface detail and especially the size of the origin for stud 3 was determined by examination of the replicas from the embedded end of the stud. Because stud 36 was recovered and preserved immediately after f ailure, it was possible to conduct the examination on the actual fracture. Fractographs of studs 3 and 36 are shown in figures 27 through 39. The characteristics of both fractures are the same: a thumbnail shaped region of intergranular fracture at the origin with a clearly defined transition tt transgranular cleavage. Outside the origin the entire frac-ture surface consists of transgranular cleavage. There was no evidence of other potential origins. The intergranular fracture region was continuous over its entire area. No features were seen in the thread root that might have acted as initiation sites for the fracture. While the fracture surf ace of stud 36 was in the Scanning Electron Microscope an x-ray fluorescence analysis of fracture surface composition was performed, using the electron beam microprobe. The results are presented in figures 40 and 41, comparing the intergranular fracture with the transgranular cleavage fracture. No differences were observed.
. W TELEDYNE IN'"$Nl "*"'"' _ii. ENGNEERING SERVCES The dimensions of the origins are shown in Figure 42.
4.10 Calculated K IC While the plane strain fracture toughness was determined experim-entally, it is also possible to calculate K based on the flaw size IC observed on the fracture and known loading conditions. This serves as a check on the experimental techniques used. Here the flaw was assumed to be the region of intergranular fracture. Note that stud 36 had a much smaller flaw size than stud 3. Assuming both studs had the same preload, one would assume that stud 36 had a lower toughness. However, in order to make the calculations, the stress distribution across the diameter must be uniform. Stud 36 f ailed at the first engaged thread of the nut,a region where the stress state is not uniform ,and thus it is not possible to accurately determine the stress intensity factor for this case. Stud 3 f ailed remote from the nuts and probably saw a more uniform stress distribution. TES was unable to find or derive a specific stress intensity factor correlation for this flaw and part geometry. However,if we assume the flaw size to be small relative to the stud dimensions, the stud outside diameter curvature has a negligible effect and the presence of a thread root does not change the stress distribution, then the correlation shown in figure 43 can be applied. The correlation is for a thumbnail shaped crack in a semi-infinite material subjected to a uniform stress distribution. l l The calculated value of K IC is 42 Ksi (iii. This compares f avorably with a K of 43 Ksi /ili determined experimentally. Of course it l IC must be recognized that errors are introduced in the original assumptions l but that the errors so introduced are competitive. In other words, errors ' introduced by presence of a thread root, surface curvature and stress dis-
TE WE Technical Report SERVCES TR-3887-1 tribution would increase K IC while errors resulting from relaxatinn of preload would reduce K The excellent agreement between the calc. lated IC. and experimental determinations of K is probably fortuitous, but does IC serve to indicate plane strain conditions existed at the time of failure. N
N g
- m m w e a m r assmoces
- h. @ @ g @OUTSIDE g @gge@ @ @ ~3 @
FAI L E D h/h ( g INSIDE g h , (38 ( REACTOR SKlhT Qg FAILED Q;@
@ @@g @b)@ @
h 'l
@h@INSIDE @@@[@@gg@@@'g@@@
OUTSIDE hg ~ gh FIGURE 1. POSITION AND NUMBERING OF STUDS IN UNITS IAND 2.
WTELEDYNE ENGWNEERING SEMACES
" R 7 '- 4 4E" SEMI FIN HEAVY HEX JAM NUT CL REMTOR HEAVY HEX NUT SKI RT PLAIN WASHE R CHARDENED) d d 10 " --
I r I
- 2/( 8I D X 5<' OD b: yh y - --
N N =5-fT "j l
- r,.. = + ,
x, 5
==
g 1 , -n 3 g u e o 7 -
% i ~
- N - '
, li i 3"!_'st % 'NN 't : : L ll ll i 9'o 7-i 1
1 a _ _ . / .- . l. _ _ . . . . _ _ _ _ _ . . . 1 bl l _ _ - y - so / 1
'5 ! - STUD 3 INSID,E '- STUD 36 OUTSIDE t!t FAILED HERE FAILED HERE z z -6 - e 0 0 y +
g s r< [ . /
,T3 R. 3 l/2X l 7
[\k' kN ll I' / I X sc 4 e d / 3 \ t .. E { ~s I 1
\ H EAVY HEX NUT SEMI FIN HEAVY HEX JAM NUT FIGURE 2. ANCHOR STUD INSTALLATION
WTELEDYFE ENGtEERNG SEFMCES i t
^
I : gi
.a.s ,j- ' ~p j
_ = .. .l-Figure 3 Broken end of Stud 3 Inside as received by TES. Fracture surface is at the top. j l w
\
l \ \ i
~
i Figurc 4 End of Stud 3 opposite tracture surface showing heat number ! indicating this stud belonged to heat O. _ J_ o o Ju o Juu S. .\ a
'MTEL CDYNE ENGNEERNG SERVICES l
l Y L l I- 1 1:. l l l l l l I
! r ;.. ; l t 'A . l .,, .I i = , .ML Figure 5 Overall view of the fracture surface on Stud 3. The origin is near the six o' clock position. A spot of grout can be ,
seen on the edge at the two o' clock position. l l l l
\ ,k , g < 'e'g, f,' lNl q ' . 9, e' I *l ,
l l
' ',t
(' .
- QfQ*t.*{<lv.l.'fr*'!.t's
?i) t y, .
i ?.h.& i-
, , \ u.W 't.'(y?{ ' } 'ya. .- .':.
(';
?, , < r . \
- e
\ ' ; _ . f ' !g;i ~.)~ .*. . , .i , ' f, < , ld,'.
i
' , ,,: i,.. ,-
R:.s O', .y e.g , J .- -
~
_ yQ , 'f /-
.:3 . - , W.
An.
' e c . ,,
6-
,g .,
(o~., , y' 39 -g' p '1t . -
.v. - , . .A ..
x . Ffqure 6 A closer view of the origin on Stud 3. Note there is no discernable nucleating defect or flaw. The origin l appears to start at a single point. D* 10 ]O 030 Y M
. M MU EU. VAL 4 . _,w.sm--m,-wwwm_
- w w,
SeTELEDYNE ENGNEERING SERVCES l i l i l
'AJ tj ~
i _
'. l I ; .~
4
- 3. .,
gl
.J ,y ,
p?R [ ' h ,
. h - y., . .:.
s'_ :s f Figure 7 Stud 36 Outside as received by TES. Fracture surface is at the top. yn- ; I N i l l l l l l 1 Figure 8 End of stud 36 opposite the fracture show heat number 0 as well as letters S BD lD " l0 7 O Df*M
. w M J[]X}
U Lf
SeTELEDYNE ENGNEERNG SERVCES t J r-f:.t r e m hl 4 [
},. . L \
f ;.: f. [ l i= l - i
!i, R.
it g~ - V .,,.
;m.-
y >
~
a l , F; s - 9_. . .
,w,..,a -
e, I s n .
- M
- .n L ,
.x.::=.,_ x , . .n..
Figure 9 Closer view of fracture surface on stud 36. While there is in this picture no visible indication of a flow or defect, the unaided eye under proper lighting can detect a small thumbnail shaped region at the origin. D mrad 'O
'[
we Wjk ..A :
i
^l, WTELED(NE ENGNEERNG SERVICES 50 -
n - y - O X I X v - go O O 45 O X g O u - y XX 40 - O[ O XX g d X O X O O
~
X OOO X
$ 35 z -
o - Q ( ST U D r - 30 l''I'l ' ' ' I'I
' ' l.O O.5 O O.5 1.0 INCHES O- ROCKWELL TESTER X- EQUO-TIP TESTER (LEEB SCALE CONVERTE D TO HRC)
FIGURE 10, HARDNESS TRAVERSE, STUD 36
Na
+4 ^ ,h /////
Qx bl+$* s IMAGE EVALUATION
%S$ ///
N TEST TARGET (MT-3) 1.0 '" "* s3A I'! !Lu l.l [ LAS M I 1.25 1.4 l.6 I l
< 6.. ,
MICROCOPY RESOLUTION TEST CHART
$:\y,, ' / 4% *Rh//// ,
xl46o(@f Q an/ , , i, :: rp
.L . .
_ w_ _ . s
- (;
_s - .
Figtsre 11 Un V An S d t 15-- M@ WG eue a
@10-s Y
s p 4 v p
# $ /
a5 - g # y
#p#
(/
~
s7 F / /
/ / / E o ~ ??.4h.kkhb5; 40 45 50 32 35 SU RFAC E HA RD NESS RC WTaBNNE ENGRENNG SOMCES
20-- Figure 12 Distribution of Measured Hardnesses in
~
Unit 1 RPV Anchor Studs, Heat 00 15-- m F-- -
@ lO -
u.
~~
h' O _ . cc .- u; - CD __ E a ,._ f
'I l2 8 ' ! ! l 0 '
l l l 45 32 35 40 50 SU RFAC E HA RD NESS RC w TaswNE ENGREERNGSGMCES
2 0 -- Figure 13
~~
Distribution of Measured Hardnesses in Unit 1 RPV Anchor Studs, Heat 000 i5-- WW 6 a Q 10 -- m r o _. g _. uJ 03 E [
//
a 5-- 7 f/ f hJv # e .
#zzaF#s.,
d z d 50 32 35 40 45 SU RFAC E HA RD NESS RC wTB.EDfNE ENCBEBMGSGMCES
2 0 --
~ ~
Figure 14 Distribution of Measured Hardnesses in Unit 1 RPV Anchor Studs, All Heats t em i 15- -
- m. F
/
m r_ ,_
.//7 . / //
L,' . I .jr r.
~i / <; /s ~ ,, '- . , .
{ g f, ,' - i * ' o . . 7 rf,
/ ; y J
g - - l ,, . {j, { A k w t',,b r ,// ,. ,h ;
- r i
2 0 ~ '
'/ ,
i ,' 2 Ll. - '
; : : /: -
i a 5-- !,0 q,. ! ; ,,' j.- ./>,- z .
~~ /
l ' ,.
; -- %l
(/ p ,i / 2 t/ I
. .i ) ./
j] .
.s , . ,,', ',- : '/ .s ,/
v
',/
t e s /s s. ,
,.* 7- .
f ,- # "
- f ,,
6 /'- /, 6: ;'- - - y y: 4
/. . . ,/ . .,' ~ .1 ;o- .I . ,/, /
u- / ,
- /. ,
./. b. *n /
vO <,
.'N.' V', ! l$. '/.:.i O.'i Y.N It.) .
o , G., 0 . . 32 35 40 45 50 SU R FAC E HA RD NESS R C WTELED(NE
... FiWN5ZStSEFMCES___ __
20-
-- F'qure15 Distribution of Measured Hardnesses in Unit 2 RPV Anchor Studs Heat X 15-W>
I @ 10 -- 8
~
v m :: y N .. h 7
- 6 /
z
~ / / ~
h/ 9/ $ 7
/
72 W / / Y h h h h O . . . . 32 35 i40 45 5C. SU RFAC E HA RDNESS RC WTELENNE ENGSEERNGSERVICES
Mr Figure 16
+ U RPV An 5 d t XX 15 0~~ b 7 8'o ~ h h f ,
5 8 ::
$ $ s K ~
k u- F +h / +
#p # = # 'II F# # # h $ $ h' h .. / / / l /
hhhh 5 h O [ : ; , , , ; , , , 32 35 40 45 50 SU RFAC E HA RD NESS RC
,e ENQNEERNG SOMNS
20- n/ - Figure 17
'/
7 Distribution of Measured Hardnesses in
. '/.' / Unit 2 RPV Anchor Studs, Both Heats /, -l 15-ll /
7
/ /
y/ /,, ,
. // ./ . , / //
- / & :
w w --
/.,/
- 7 i.,
7/, o
- 10 - //
4'/ ' f h g 4[/.y-y 9/ ~ O -
, g ,i .,/ f'. ',
T 7U
~~ / /,/ /,
w '. to - // //
// / ,i /, / /f// 't / /. i / .<
is b 5- / kb b /-
' $ .*' .h) z }h '/' }/, / 'Ik)/ / / / / // y/b '/
L '. ! 7
/ '- /f .// gi , ./,1 {
O :
! : : : : : l 32 35 40 45 50 SU R FAC E HA RD N ESS RC WTEEDGE ENGNEERNG SEMCES
1PTELEDGE = e ms- 's- *1
, up,ma w a in. yk V @:.c. b,,..w- M. sA ) .
yA. @.iq.W 1WM pA(W. d a.,s ;;,:.#ehnyMNg ee s.ymp.,e .bim.aW4g?g}J s <
'W- @9p;%*b%Ce#y 4;;
f"N,m,f $..%h W,,+p:w& r . F9&en* $;&.?h a hl[&. m&$. .i
%$~. N'w. y"_ x ~.
v....y.v . n ,,n,. , s, .. e,n . p ipr.% /. x',p ..,, .x; 4 E.5vw
.u .sle.ua;.; . . . . *.@,< >y.,m(,v, ,4 ; .m% a.ce., .,4 ip ,j>;en.,/ m ..9 ~; ;y ,,' c ., .p + . .. .n:..+ w. p .
z.9f@hiibhy$ff;,%y$&,:p$w,U?e y.t . ,.m ,. . . n e + .% <w" Tu& _fm.' 4 y$$,,$e ;h:y?n w ..t, ; . . 59fhjFt.L .ri A @u .~.-
% WM,% m.:
W @@WS '9"M'W l p;. w w y m /.; u -m., . 4 gw.f '.M a [4 hi $ ,
$c.dik 'M.3 Mi,9 A U Nh*dphkJ hN h[?WM %['h,Ch'.k.f*), rd . SMy~@ &$. $.#d v.; 9N.F.t ,$@DN.NWh.pp.yWI{ipik.Os%p y a fa'W Qf'iy %n. m.y if $ pl.3 M M S D '. W N si% ?.D ,. .. ~ ; wag m. .p :1 p p.m;nry g#
v.v swW d .X .x1 -8 .w C.rf-b ? D* D, . a.a N si.' ','M, s. N +J flszaF 4 M a. ' >. Picral Etch 100X F ig.18 Microstructure of Stud 3 at the mid-radius.
...w.g _m, m m.- . y_ .. .-. . y 7. , v.- ~ ,. n,m ,
g -- ; +
, j.s.,7.., m . , ny. . <.
4y, . / ,., . - -.
.. . a .;m. ,. ,q ; t -
m ... . . ~p; 1y
. : 7 ;, w ;.
v n :,;;* g, . v m..' w Q ;v q; c > ,' ,c ylg - s e '- s, ,
'Y .
o
._m#p,s ;. _ . . .,c. 4 .- ~ , .v. -
s- L., e 4t.' ,a
- F ~ i.
s
.g , .-vi*
t s m..;. ., e ,n ... a. .g
.. c . - ...n
- 4. c ~-o , .
.mo.r.:e ~ r.,,v, n. ~;au. .s. m z..e_ . r_ ~
a : 4 t(.. y . . v. . . . _ , s .. .
-s.. .,-w .
- y, :, > y y e r y .
- ';,ie 0 ,,,,. ,.g' .,.,7 ,
C ,'- ..;. I
- e. ,
< m -
- . , w s , . .s e
s ., - s
. x3 .. ,_. .+ . ., -- c s. . ,. ...s n. c;e ~,4 ;a..yaA . s.
g sf . .,,. , u - #. _ -q .
,-#yc.., .
y m..:. - . .. .
- m. , , p ,. r. a. . y .m, pv.r,. a er . .a -
-oc - .n. s .,R ^ . *. * ,g , (e g . .e g,' .1, i < 1, e '
e - 4 4_ ~,.4
.)
g i
- n. ; : . -,n . - .
.. r. x m a..a, s?, u,u, . u, u. 3. ,v t ,('.,7
- 6,'
- 1. e < , * +
% m;
- f;e; 4.; ., * *J 1
&'v-.a. A ,+ ..m .yy. y.g > ;;,, yy',> . .e y, g,.v_;.;u a ,. s . w. _ - . + . - m ~ ~
a
, .W4 f,
n W "?i'&}Wp?S
. ~ ' 'd E' YJ -5 . Ab uf a ?.:G_.j ,L %' l J I ~ , % e F w :, w $w.ne[ 3 y ; y m ; m p~ . p:y ,,w".;< .,- ~ , ,. .-
- s>. . . < c . ,,w > .~ .
&?3 3 ,;R l' 1.g 1
1 Vilellas Etch ! 100X i l I Fig.19 Microstructure of Stud 3 at mid-radius, i i using a different etchant. I D**D ]D f M
/]
wo o Juu Sdfrd.,
WTELEDYNE ENGNEERNG SERVICES 1 [ sq:nEqnv;?w?*pnT3 h OA:K hk?j$0:lMkQbNi stA i 6 &-~ W e... pw al@W~c A, q
% g.\ L &;n, d . k. n...# ,t ; u n.nv ^:u.#
a, . : 9
-* Xf6. > *s5n ,M cf ,5 W;Dh, fav'fi yp.;m@.1x,@;m w?-3 4/$Wl*4 r, w:
g m -,- ;n
..f gy. s: <' ' ~f . h '% ki%g y.p] , a4 R-'- tWlpe T.^Y %
A*;$ A,W i j; *,*G,
! ;q 1 ' g.#4% Q @ @M T fL, s b u,3N W:cW + 7 98 c,-
V dik 'L '}L Q ll,l) . SW ' '. ' E V - ""' ' O @!% N MPd S @k &@j .Cji %"' & ",'"'.%d ll^. S gu.p' w gg r4ww[: .:o m. n.: b . N
~- , 1 e. .,.- a.-g, ' n< :, ,. a Y $.N' $ * " ...N:nN}Y
- t. ..
y; e; nWRh @n
' . ~ ,..y g cq,gv , < ,s : .
Picral Etchant 100X Fig. 20. Microstructure of Stud 3 at a thread root. White outer layer is chromium plate added for edge retention. Note: Slight pitting and oxidation of stud surface.
> i . :
[., jf
%s wwwg 1b. 47hkU.+k m m a; . . , N l h' f * .1.~ 8, .m.
1' =- myvg, gw%h
#;i$QEftg4w.cx/~$, p - y: - .
at O<W. % S y-
. * , L-/ -
4 t 4R .eafghthu3 Picral Etchant 500X l l Fig. 21. Microstructure at mid-radius, Stud 3, l higher magnification. , d sJu o Ju ja ; _, 1
l WTELED/fE ENGNEERNG SEFMCES 4,. l
}
g f w ~ . ' v; :
. . ;3 &. ,g, . , ,:2' LAY ..w- u Figure 22 Vilellas Ettnanz 500X l Same region and magnification as figure 21, with a different etchant.
At this magnification the microstructure appears to consist primarily of martensite and although some b3inite and free ferrite may be present, they are not resolvable. w, _ - - _m i- --
, n.., n . .g I i ,$$ $. 1 7 2 k .e , ^?
Q : - Y $ ri 7"2. 4 ~4 y ;Zh i 5
, 3 l
l
. . b Figure 23 Vi lell,as Etchant 3000X A scar ..g electron! micrograph of a region similar to figure 22 Note that regions oj- bainite can be resolved.
D**]D *]D]30}@
, o o J4 ojuuSU.Unl.m
WTELEDYE ENG2EERNG SEFMCES 7
;;:3 .' f f..~*C3'L v i f- ,
1 f v . gJ.
-q %e. ~',g y41:.Y 2 . % ,,9oeg : . -+. . r. ,.m. . .~: .;w v, .
i .. ;-[4. .. ..;..; u - *;.
,~ x. p -=,;;;., ;:.i.y. . . . .: , ;
t
. +a ..
c, %r.
.. -. 2 .. x ;w~. .-.:,:o>. m. ~ , ,; .,;.. ..t n,:,.:.
V, .;a.,,. a
,:. ,.<..r .~t ?.r. . . ; . ;, Y a .+ . .v, . ;..n,.e ;..q'1 . . ~. :. .y. .v. *ge ,
p.p*,g. .; r; 3;i ,'.r.. . .q. . y.
;;: ' t.f ;y : .c .;ill: . '.,;;;C.: - :,;. .. t . -
s':ud..' . fx . '- -. v :3;F,r s..' w. ai '- . . ,.y W,(*:i.g).Q'.....:~-r~: . ...' ,,; ,;. ,,i &.e e :. 4 .T . >
. .o ,,9 ; j .,a .. r.. - . . , ;.
- s. .s; r.- ,
.. ; ,r, : m ,,.,m: . wa .. . ,. :
- r. c. . :.y
. . + . ,
v.
"~.u , :,: e-. ,,,s. = *r 'i Ya ?' * ' ) a~ I f . ?Nilf,-%?,].,-t! / :.L > ' . Q ..i. . '.. : S. .;.j/I.;.
je@
't ;;i jfM-h!.%?N* >~: . y .:.
W,$?dl0,EhlWi t
.?..;. Y,.s 3. .. .su. +.~. ; .V,y,&. c: , -+~cyrw. .:4 *y. . . ..4 , s.:..- . - . 3:'(3= , . . .t.., .. ,q ,L,, ,. 5. ,i .: :. a ,: . , . ~
- 8 .M ,.g n ,2 y ).,.
< E'Wti;.l t: . . tQ *N,'*q:;V '*n k.'-p. S. .. &Q 7 :y?&Q;.p.f71 a +;.N , :?. Q**:::.%j'J*H;aeaWQfl;g' f
- y ,. c . ..~ . v: .. p . ia?!~4 c:-c ; '.: ..u .c ry .p.
Y;flWJ;f.:s G.N n .
.R.t[.,qacr 4.p .i*:'.. <W=>..:,. .'y*
re g.cf W .c!.;:tyL*;%g:TV c .3%w&; ,Ji(e;. .,-w ; e q:.ih W w r, w +S g.v{d, e L 1. .. c Figure 24 Vilellas Etchant 2500X Transmission electron micrograph of stud 3 microstructure. Figures 24, 25 and 26 were made from a two stage carbon extraction replica. ( h m% e:. n s ndp.,~m.4
- mp A p:m @d &o -
*fe c -e - / sa .s -
s4
..u- M e N
Vf,%y.sef W* ad.% i ve*. i s%'s&QU v .$g:.) Nf,4W;.A%y N_
%%,6.,y i 8 &%W )S & $ $.. %ap~ 8y5g~if &Rh kts .s; .,;. ,:.,v.v"#..:
os-c.pc
;g.g:3 s :s- x 2 . ;;~ 1 .f. ..
6,%OM-% ' ,/i.h;Q,% r. If
- i?-Y,f ?. W ' 9 % ~--
.y- ,.' g. ~'VA?OW'$.OWW[m' .; V er 1;Q O.
e.1.,y y ?.E h..y. p ,,
,e iy- f*~.:. s.. -
y.
% iw.f.hgu,.
3 ,,J. c&&.y ::;v:.p:: py,4;. ~.
.s R % . y. .. M:o ~-
i j: g.h.av.* .W4'yfr5
.+[4.iTQ+s%; -T.i .g shx ;.f' ' ,f.q+\ff.w h. Cp .c w
V:;k
%gfr;h h'Y ? .. Y5 . # W W Wi<.Q:d "
MEMMMi[s,1 Figure 25 5000X Same region as figure 24, higher magnification.
.a
WTELEDYNE ENGNEERNG SERVICES
~
A &*& f g .?,* & ^* l9 p ~-
,W/) >. . .*-p; <a.w.
5 is . . .%
.h*f ~;. y f* , ~
J.n.e ,f-
,~ .
o ws a
. vf.jg o,b: ,oo ps . . e 1 % .y r y. .w v... }. : ...~.3.sv & n' W ' W p' g.,.
9 d:C; .s .
?? . k>;'A -
Ij ] A $y$$dk.1&j. c F/ #,', 2 .d.r w p.:e{.y$?, VJ
- -Qg % p.
y . " ;te*e
- _..- q.y Ng,. A. d> c
*f . $k' 3 t, / ' ', , er) f, . , j b
k s
- t ? NP.V # @g i 79;4 g.
w.- . - Q Figure 26 10.000X Same region as figure 24. Rounded carbides typical for a tempered martensite structure as well as elongated carbides typical of a bainitic structure are apparent. m l n ; y 1
.~
x [w e.y . _ yC , .%y;j. m ~ Q4q
. ;. [N +
f' ',dV * - p) J.
;,,. : ' , ,y. -- . .yg
( # - 9 e "" ~"
.m s 4
9
'.}-
ip-y y. , m.; 3 p ,, t '
* <~ et s
o
-igurc 27 600X Typical fracture surface appearance for Stud 3. This micro-graph was taken in the vicinity of the origin. While l oxidation obscures the fracture details there is some evidence l of intergrahular fracture near the center of the picture. ~
D"*]D *]D 6 wwN wN b.$ =
. __ _ __-____a
TTELEDYNE ENGINEERING SERVICES l l 1 l i { Figure 28 600X Fracture surface of Stud 3, at about mid-radius. As in figure 27, oxidation obscures much of the fracture detail. Nonetheless the fracture surface near the center of the picture appears to be cleevage. Jgy
-3 1 +7 J . .. <}r ,
p/. v
! j .I,4 ,, ,,
ns _
\ ~ '4 _
d f [, * -
. 'Q f W L c '*
W
< , y )y ,j i : ]^
a g. . :
.
- l, <
y m e. -gg v. .
. . cfj$~fL-T;%gg/ )%, ~. . ~' .. ?
l Figure 29 Replica from field fracture surface of stud 3, in a region near the mid-radius, showing cleavage type fracture. D**D *gT} ' _We a Ju. AA a
WTELED(E ENGrEERNG SERVICES Es -qg j% l
^j? ~ , - J i'.r. ! a f'4 - ~,, .
- i fr.y, l
Q. N J , pye , 1000X Figure 30 Micrograph of region near origin, stud 3, showing intergranular type fracture.
' ~"
[ . 9} ,~ f N f(! & h _ 's s j f.'
\ - 'Og /
q' . , _' s s
, p-y"HA ,'
s if '
).
1 g ,
-) -
s s ,
.. k ' . 's . c 3 p f -'
4 1000X Figure 31 Region at origin in replica of field fracture surface, stud 3, showing intergranular fracture. I ge m g qg 3 \r f o a A\ J J\L 2 ..\ e
@J g % <e u sc" Larae composito view of trans'tlon z ;r r r o.r 'nteraranular to t<4rm ,m.<m ,m ~ o n c, 1. < neie s actc<-
h) S . -.. e . I. ', ,.
- .f., ,i'. . , . . ..p,e:f'.*A. . .c f./Q*1G;/yy bp g , & ,. h,,, h h Ib g
n# ye i . w.:, 4nW
. Ay > ,w . .?. . .. ,. .'~.. utj ; . , 4g / it g - ,; g;.g . , ji . , 0$diddy[W96@k!??PE *-- 'A* hMi pg T [9 .: g;;;y .w, y: g _ -
m, p . w rm,. g.
- m. 4y(g,4' *:.%y _.
; o. .= .( A[
gm.. ,y.h" : . . .. W. s&
^
ii' Y ' . , _ ~ - W g? ' i - ..$n . * . . . A . ej. g & '. .,k., .'
~ .? ~
- d. ,
n m. r w;, r y h ~P . egg; ,4. ,,e . .
+ ,,
y, , p. v J '/ c
.4
- 4. g ;: ; .
fg. 4_ 'y __ ;
&,ltr. ~., 4 :;;~.y : a y , m,x_yp wp _ ., _ / : } [
u. .r... . m, .y,.. c , . ( w .. . ..,. w .
+ s. a . a ... a .-7 Q, ' .;<*N. .'l v %em r, 3 ; y.';vL y' .:. .f. * ..s. -
f ; ,." ; ; - Y,, ' (.[ % p, k : ORIGIN
'$r ]*iy. M. ;; I NTE RGRANULA R CL E AVAG E waam emmemsauces l
SPTELEDVNE ENGINEERNG SEFMCES 1 Y. 7 ,
.4;Y 't ' q .
h e . ~J _
-s k
wj'. .
' , ll. . ,
j .
'=. >e h . , g 2000X Figure 33 Origin of fracture on Stud 36 showing intergranular fracture. Spheres in picture are 5.7 ym in diameter. ,,, 4 <1 . / - s' - ,. A s o . 'N ' -yp m w. . ,. _. , /: ' < ' ' .' - 9 '- +P
- e '; v -$ ' ,
'.8 ;:i 7 9 '< p- 4 - / ~
(i f \ ,,. i 4
\\ 1, ~
R w -
. ,i . .
f
- b. ' f' , fR, g;Q ~~.w 1000X Figure 34 Same region as Figure 33 at lower magnification.
" ~T D* D D 3 oc w .S :'
'n'TELEDYNE ENGNEERING SEFNICES .,_ .-. -s,m , .. . ,, s o k'
i
.?
kY
- f. ,
?
O Figure 35 200X Same region as figure 33 showing intergranular fracture characteristic of origin right out to bottom of thread root (across top of picture).
'r -
I sc jt 2p I J
\h C+ L s.L$ ,
l l Figure 36 Region at mid-radius showing cleavage type fracture. Sphere in lower left is 5.7 ym in diameter. j
SeTELEDYNE ENG2EERNG SERVICES
'i l
f i. TN s 9 4 i ,;;
,, m.
pm w ew i'k - 1000x Figure 37 Same region as figure 36, lower magnification.
..g 3
l j l l l 200X ! Figure 38 Same region as figure 36 lower magnification. mo o - 9 9-
- J o o Ju o Ju. 2. .km
i ; ! : j I l l
~ ~
g r
- e sn 'c_ 3, e a : ~.
ra
- ti 5:
d o t n i r am l u E N u n7 a . V r5 g R m re er A m t a T n L i s mr oe e U N rh f p A S R _ n G o i . t6 R i3 E s T nd au rt N i tS e f n oi 4 e'. . ee rg ua t v ca , ie pl c e E t r ia G , sl ou A X pn V $ f-0ma A ; 0or 5C g E L . C ~ 9 3 e r u g i f c P . E 5
$. @9=M_52P E
a
! l . . . . . .,. .: = x . _ n v. . _ , ..e
- g u;; . *.. .
;. g_ + 7. - : ,.~... _ c; u . mp .. ~f. _y.. l .. ,_ .. < : . ; . 3 , . y.%gg,, } _' ,..
4 7 ,
; _p , . .
_ A. L .&*.&l f&k',l-Q-h
'~ ;: l
, ?> 5.:k ' h, .
~. ; % > * : j L . ALM lk .
l
. :.f #3;is: e igEi,3M Mist i;f ,
i ' l:. .1;&. seliaBip quWird L j $ ?;
. s B gl} O ij$ $ fC U E g glUl f ~J77;3; g gg 2?ggggt";? 'I.4 W W 'O. c #MMEREBEl[ J ' ;-{Q ..f.9l ,/ .: S .NM Q,.:[ ., - ' 'i?Y &(p! ,h_ ; .' ys. [.), c..'. f t % %,y_'j l .]llf :.: < . (.< [ .__
L ? :'.. . =y
' f.e , ? @ Sc- gipgs t u Q;4J 'j-.d.4/%lt . 24t E U ..
i Figure 40 Electron beam microprobe, x-ray fluorescence pattern for Stu) 36 at mid-radius showing only Al, Si, Cr, Mn, and Fe to be present in detectable saantities.
? - .;Q . .;pG. e gg Nff.f[_E% 4 ne ;t,u.:iG3,fffjff.r.; :--_ . . ., . : .. :.y = ; .4 g, ..) ,
e ,
. * -y qm ,..c,...- . " _ _ .:.y r. : . : a# y . ' ' r' . ($ 'I! ' ' (_' .j .: ;p (gjgg4e egg, pggegreggey ,
y; j
~~' .~.h 5.4 M z_ .1,3!:.1.. + ~
i* l dMMkMiMdd MNh.. g .. : J: ;
.Mi!GB I4)!Wiii0fGici
_ , ~ .] $. y g 1 ' f Hggg[ .{ );,3 3.;; a
#^ .j $3 -]tj@ '+ ( , $!ijidi$ w"ty).) ,. .~' ,
5
-~
i
- .X ; -
..:g. .. . i. ,', . ,'. .QQg j.c f ) .:.t.
9 ;. ..:.z
.e . 4 .. .t >..-
l
;, ; . y . . : - i.,y,ic; -..
9 M$ypg,i . . . g- gu r ' ~. . + y
, v. ..i. - . -: -. - . . , - .. .;, . .., ..,c . ?. g pmg g y ,A -.0.T'[.34448f."'NN'.MNAlt.,IO.tTll,"4.~'$
i . .
- b. M.,...
Figure 41 Electron beam microprobe results at origin showing same results as in Figure 10 1
WTELEDYNE ETEDEERNG SERVICES
-C- ;
t A STUD AMM (IN) C-M M (IN) 3 3 ( O.118) 9 (O,354) 36 1.5 ( O.059) 4.8 (O.1B9) FIGURE 42 OBSERVED SIZE OF INTERGRANULAR FRACTURE ZONES ON FAILED STUDS 2C + 4 A ) VF 2 l [d f p _.- 1 p 2 [ K= 0 g TTA A = C RACK DE PTH g 2C = C RACK WI DTH P = LOAD C *f(A/2C , fe.s.) r FIGURE 43 ASSUMED PART/ FLAW GEOMET RY FOR CALCULATION OF K : SEMI INFINITE SOLID WITH THUMBNAll SHAPED SURFACE CRACK, SUBJECTED TO UNIFORMLY DISTRIBUTED LOAD
clatin Tensile Properties Stud 3 Specimen Material Certification AISI 4140 Report Heat 0 Nominal Property TEl TE2 TE3 Average
- Averages ** 850 F Temper, Ultimate Strength (psi) 228000 224550 220000 224183 168500 170000 Yield Strength (psi)' 194000 191616 183873 189830 134400 155000 Modulus of 6 6 6 0 Elasticity (psi) 30.3X10 29.9X10 29.2X10 29.8X10 - -
Reduction in Area (%) 45.7% 42.8% 48.5% 45.7% 56.2% 53% Elongation (%) 12.3% 12.2% 12.1% 12.2% 16% 15%
- 0.251" Dia Specimens
** 0.505" Dia Specimens + Source Book on Industrial Alloy and Engineering Data page 36 ASM Bookshelf Series
.WTELEDGE ENGREERNGSEMCES
TE WE ENGNEERING SERVICES TABLE II Charpy V Notch Impact Test Results Temperature Energy Absorbed Lateral Percent (F) , Specimen (Ft-lbs) Expansion Shear 40 F CD5 6.5 0 0 CD1 5.5 0 0 CE2 6.5 0 0 CD3 7.0 0 0 CD4 6.0 0 0 Average 6.3 0 0 70 F CEl 8.0 0 0 CD2 7.0 0 0 CE3 8.0 0 0 Average '.7
/ 0 0 Material Certification Test Results Heat 0 40 F 1 11.5 0.0055 100 2 10.0 0.0045 100 3 16.0 0.0085 100 4 15.0 0.0075 100 5 15.0 0.0055 100 6 14.5 0.0060 100 Average 13.7 0.0063 100 l
l
TM ENGNEERNG SERVICES i l TABLE III Plane Strain Fracture Toughness (KIC} for Stud 3 Specimen K IC ( si / in) FCI 43.20 FBI 42.85 U Test Temperature: 70 F Tests valid in accordance with criteria of ASTM E - 399 l 1 l l
TN ENGWEERING SERVICES l TABLE IV HARDNESS TRAVERSE, STUD 3 AND 36 HRC Location From Edge *** Stud 3* Stud 36** 1/8 46.0 45.5 1/4 45.5 46.0 3/8 45.0 44.5 1/2 45.0 44.0 5/8 45.5 40.0 3/4 46.5 40.0 7/8 45.5 39.0 1 47.0 37.0 1 1/8 47.0 37.0 1 1/4 46.5 37.0 1 3/8 46.0 38.5 1 1/2 49.5 39.5 1 5/8 50.0 39.0 1 3/4 46.0 46.0 1 7/8 46.5 45.0 2 45.0 46.0 21/8 46.5 48.0
- Calibration Block: 45.5, 45.0 (should be 45.0 + 1.0)
** Calibration Block: 44.5, 45.5 (should be 45.0 + 1.0) *** (inches)
TM ENGSEERING SERVCES TABLE V SURFACE HARDNESS TRAVERSE LENGTH OF STUD 3* HRC Specimen ** Location *** 4AA 4BB 4CC 4DD 1/8 50.3 46.2 47.5 47.9 1/4 49.0 49.5 51.9 48.8 3/8 48.4 44.9 48.3 48.1 1/2 46.8 46.2 47.5 48.0 5/8 47.3 46.2 49.2 48.0 3/4 46.8 46.8 52.5 47.7 7/8 50.9 46.2 49.0 49.2 1 47.9 48.8 49.3 48.2 1 1/8 49.5 47.0 49.1 48.5 1 1/4 47.3 47.5 49.1 50.9 1 3/8 47.2 47.2 47.5 48.7 1 1/2 47.2 46.5 50.0 47.8 1 1/8 49.2 46.5 48.1 48.0 1 3/4 48.4 47.2 48.8 50.9 1 7/8 46.5 48.0 49.0 44.1 2 48.1 47.5 50.4 21/8 48.1 46.7 50.1 2 1/4 46.9 49.0 47.8
- Hardness measurements 1/16" below thread root Calibration Block, 1st 45.5, 46.0 (should be 45.0 i 1.0) 2nd 63.5 63.4 (should be 63.0 1 0.5) o* Refer to Drawing D-5120, Appendix A showing location on stud from which specimens were taken.
M *" Location" is distance from marked end of specimen (inches), see Drawina 0-5120
l l l YM ENG2EERING SERVICES l TABLE VI Microhardness Traverse - Surface to Mid-radius Stud 3 500 gram mass Location
- Hardness ** Location
- Hardness **
0.025 51 0.400 49 0.050 49 0.425 46.5 0.075 50.5 0.450 46 0.100 46 0.475 51.5 0.125 47 0.500 49 0.150 46 0.525 51.5 0.175 49 0.550 48 0.200 50.5 0.575 45 0.225 52 0.600 49 0.250 44.5 0.625 41 0.275 44 0.650 46.5 0.300 48 0.675 46 0.325 47 0.700 51 0.350 46.5 0.725 43 0.375 46.5 0.750 46 Calibration Block = 920, 930 (should be 933 1 33) ODepth below Surface from Root of Thread ooConverted to Rc from Vickers
-. .= - . . _. . - . . _~
TABLE VII Field Hardness Survey Results Unit 1 Hardness Readings Unit I Inside Stud Avg. Surface Location Heat Lj L " " 5 Number Number Edge + L L Center L Ave Converted Converted 2 3 '4 1 0 704 705 683 657 656 681 43.9 46.8 2 0 687 690 684 674 668 681 43.9 44.7 , O Failed 46.4 4 000 677 682 675 663 644 668 42.4 43.4 5 7 681 654 651 641 C.D.* 657 40.9 43.9 6 0 677 675 664 659 650 665 42.0 43.4 7 00 625 636 648 636 633 636 38.2 36.9 8 000 707 704 702 686 692 CD 698 46.1 47.1 9 0 717 703 694 671 654 688 44.8 48.3 10 00 640 626 604 587 CD 614 35.5 38.8 11 0 644 642 640 641 CD 642 39.0 39.3 12 000 675 673 673 672 678 674 43.1 43.2 13 000 705 694 682 681 685 689 45.0 46.9 14 0 686 696 694 695 689 692 45.3 44.5
*C.D. neans Center Drill on end of stud making hardness measurements impossible
+1/8" from edge WTELEDGE ENCBEERNGSGMCES
Stud Avg. Surface Location Heat Lj L " " 5 Number Number Edge L Center L Ave Converted Converted 2 '3 '4 15' 00 640, 619 641 636 637 628, 624 632 37.7 37.4 16 0 709 711 706 688 675 698 46.1 47.4 17 0 705 697 087 676 670 687 44.7 46.9 18 0 713 706 700 689 692 700 46.3 47.9
.19 00 643 639 634 635 631 636 38.2 39.2 20 00 638 624 624 622 627 627 37.1 38.5 21 0 687 672 634 634 616 649 40.0 44.7 ,
22 0 683 676 674 664 CD 668 42.4 44.1 23 00 639 637 631 629 CD 634 38.0 38.7 24 000 674 669 659 660 651 663 41.7 43.1 25 0 665 657 647 659 CD 657 40.9 42.0 26 0 723 /16 714 712 703 714 48.0 49.1 27 000 683 679 658 650 645 663 41.7 44.2 28 0 668 669 667 670 644 664 41.9 42.4 29 0 675 676 668 692 651 672 42.8 43.2 30 0 689 691 683 676 670 682 44.0 45.0 31 0 680, 672 686 683 679 672 679 43.7 43.3 32 000 708 707 695 660 643 683 44.2 47.3 33- 0 703, 701 698, 698 672, 679 645, 656 627, 632 669, 673 42.5, 43.0 46.5 34 00 640 637 629 619 612 627 37.1 38.8 35 00 645 633 640 640 651 642 39.0 39.4
'36 0 701 686 671 651 646 671 42.7 46.4 WM ENGMERNGSGMCES
Stud Avg. Surface j Location Heat Lj L MC MC 5 Number' Number Edge L Center L Ave Converted Converted 2 '3 '4 37 00 624 627 624 610 604 618 36.0 36.8 38- 000 688 698 691 687 690 691 45.2 42.4 ,
'39 0 692 693 678 669 663 679 43.7 45.3 40 0 646 641 638 640 CD 641 38.9 39.5 41 00 638 635 630 624 615 628- 37.3 38.5 42 0 697 696 684 680 CD 689 45.0 45.9 43 0 696 679 661 649 647 666 42.1 45.8 44 ? 675 679 656 640 636 657 40.9 43.2 1 .45 00 644 642 642 641 646 643 39.2 39.3 46 0 689 685 684 675 654 677 43.4 45.0 47 0 682 688 690 688 CD 687 44.7 44.0 48 00 635 638 640, 698 642 638 639 38.7 38.1
( a
Unit 1 Outside Stud Avg. Surface Location Heat L) L HRC HRC 5 Number Number. Edge L
'4 Center L Ave Converted Converted 2 '3 1 0 691, 690 682 668, 672, 652, 657 645, 651 668, 668 42.4, 42.4 45.1 2 0 683 693 691 687 682 687 44.7 44.2 3 00 622 629 616 611 602 616 35.7 36.4 4 000 691, 697 698, 702 686, 691 675, 680 669, 663 684, 687 44.3, 44.7 45.6 5 ? 712 709 699 704 CD 706 47.0 47.7 6 0 677 666 663 666 641 663 41.7 43.4 7 0 667, 649 677, 678 679, 691 675, 668 671, 666 674, 670 43.1, 42.6 41.1 8 000 683, 677 667, 671 645, 653 633, 636 645, 656 655, 659 40.7, 41.2 43.8 9 000 715, 710 710, 711 703, 699 679, 687 652, 645 692, 690 45.3, 45.1 47.7 10 0 677, 681 678, 677 663, 661 649, 648 641, 645 662, 662 41.6 43.7 11 0 712 696 671 658 CD 684 44.3 47.7 12 000 697 695 696 676 671 687 44.7 45.9 13 000 671 673 673 681 673 674 43.1 42.7 14 7 714 724 716 698 CD 713 47.9 48.0 -15 00 648 649 649 668, 670 CD 654 40.6 39.8 16 0 715 717 714 696 CD 711 47.6 48.1 17 0 668 673 670 672 680 673 43.0 42.3 18 0 657 655 623 627 625 637 38.4 40.9 19 000 703 699 698 691 692 697 45.9 46.7 20 0 706 707 699 699 685 699 46.2 47.0 WTELEDGENSERVICES
Stud Avg. Surface Location Heat Lj L 5 Number Number Edge L l Center L Ave Converted Converted 2 '3 4 21 0 712 714 696 673 CD 699 46.2 47.7 22 0 668 677 675 668 CD 677 43.4 42.4 , 23 0 690 683 674 672 CD 680 43.8 45.1 24 000 702 690 666 669 CD 682 44.0 46.5 25 0 699 704 699 697 693 698 46.1 46.2 26 0 713 712 703 701 695 705 46.9 47.9 27 0 701 646 681 672 659 672 42.8 46.4 28 ? 720, 695 709 706 705 694 704 46.8 47.2 29 000 689 683 678 672 679 680 43.8 45.0 30 000 671 673 664, 690 657 645 665 42.0 42.7 31 0 696 699 696 682 676 690 45.1 45.8
.32 0 660 670 666 657 648 660 41.3 41.3 33 0 670 694 694 704 691 691 45.2 42.6 34 0 668 671 659 647 644 658 41.1 42.4 35 000 686 680 670 680 662 676 43.3 44.6 36 Failed 690 681 678 672 660 676 43.3 45.1 ;
37 0 695 693 694 699 694 695 45.7 45.7
- 38 0 661 680 681 673 684 676 43.3 41.5 39 00 623, 645 640 616 610 597 619 36.1 38.0 40 0 716 701 695 665 655 686 44.5 48.2
[
--r
Stud Avg. Surface Location Heat Lj L " " 5 Number Number Edge L Center L Ave Converted Converted 2 '3 '4 41 000 682 683 684 713, 713 690 690 45.1 44.0 42 000 702 709 712 709 710 708 47.3 46.5 43 0 661 675 685 634, 623 CD 663 4!.7 41.5 44 0 692 692 681 653 657 675 43.2 45.3 45 0 698 694 694 692 681 692 45.3 46.1 46 000 684 678 671 665 CD 675 43.2 44.3 47 0 699 696 692, 709 694 683 695 45.7 46.2 48 0 695 696 676 671 656 679 43.7 45.7 s
TAplE V!II Field Hardness Survey Results Unit 2 Hardness Results Unit 2 Inside , Stud Avg. Surface Location Heat Lj L 5 Number Number Edge L Center L Ave Converted Converted 2 '3 '4 1 X 631 625 629 636 633 631 37.6 37.6 2 X 627 627 637 642 659, 668 639 38.7 37.1 3 X 638 632 626 631 CD 632 37.7 38.5 4 XX 629 634 627 638 634 632 37.7 37.4 5 XX 628 635 643 640 CD 637 38.4 37.2 6 X 633 632 626 637 CD 632 37.7 37.9 7 XX 629, 612 635 648 638 641 637 38.4 36.3 8 XX 625 635 642 638 CD 635 38.1 36.8 9 XX 626 630 633 651 672, 662 641 38.9 37.0 10 XX 641 640 633 646 CD 640 38.8 38.9 11 XX 634 629 634 638 635 634 38.0 38.0 12 XX 632 642 655 653 654 647 39.7 37.7 13 XX 627 641 640 644 633 637 38.4 37.1 14 X 596 596 601 606 602 600 33.6 33.0 15 X 630 634 637 653 CD 639 38.7 37.5 16 'X ~6?; 629 628 629 CD 629 37.4 37.2 1
Avg. Surface Stud Location Heat Lj L " " 5 Number Edge L L L Center L Ave Converted Converted Number 2 3 4 17 X 647 640 634 640 CD 640 38.8 39.6 18 X 623 639 633 641 CD 634 38.0 36.6 19 X 643 629 620 633 CD 631 37.6 39.2 20 X 608 638 633 630 CD 629 37.4 34.6 21 X 649 637 636 637 CD 640 38.8 40.0 22 XX 611 607 613 614 611 611 35.0 35.0 23 XX 612 608 608 607 597 606 34.3 35.2 24 XX 610 613 629 628 631 622 36.5 .34.9 25 XX 608, 616 604, 604 613, 611 620, 622 623, 648 614, 620 35.5, 36.2 35.2 26 X 639, 624 645 648 652 CD 644 39.3 38.0 27 X 646 635 639 635 CH 639 38.7 39.5 28 X 659 647 640 646, 629 CD 646 39.5 41.2 29 X 632 648 648 651 CD 645 39.4 37.7 30 X 643, 627 645 637 645 CD 641 38.9 38.1 31 XX 625 627 632 631 630 629 37.4 36.8-32 XX 619 626 630 635 633 629 37.4 36.I " 33 XX 631 634 639 641 658 641 38.9 37.6 34 XX 627 632 631 635 637 632 37.7 37.1 35 X 639 633 627 632 CD 633 37.9 38.7 36 XX 608 605 602 605 601 604 34.1 34.6 37 XX 614 610 606 607 618 611 35.0 35.5 38 X 614, 607 635 635 646 CD 632 37.7 35.0
- 39. XX 608 610 605 610 625 612 35.2 34.6 40 XX 608 597 608 605 600, 595 603 34.0 34.6 WTELEDGE ENCBEERNGSEIMCES T
_ _ . . _ . . , . . . _ . ~ . . _ . _ . . _ . . . _ _ . _ - . _ . _ _ _ Location. ' Heat- Lj L HRC HRC 5 Number Edge L . Center L Ave Converted Converted Numb'er 2 '3 '4
- 41 XX 602 601 608 617 635 613 35.3 33.8 l' . 42- .XX 593 597 603 597 636, 617 603 34.0 32.7 43 XX 596 599 616 609 601, 622 606 34.3 33.0
- 44. XX 610 606 623 638 632 622 36.5 34.9 45- XX 625 635 630 650,.651 641, 658 638 38.5 36.9
. - 46 XX 604 593 597 614 616 605 34.2 34.I 1 47 XX 618 600 604 610 615 609 34.8 36.0 j 48 XX 608 615' 607 605 611 609 34.8 34.6 , [ t I i 1
' t 4
i ' i ._ - - . - . . .- - - _ _ . -~_
Stud Avg. Surface Location Heat L HRC HRC L) 5 Number Number Edge L L Center L Ave Converted Converted 2 '3 4 1 X 638 642 640 640 CD 640 38.8 38.5 2 X 659 642 642 644 CD 647 39.7 41.2 3 X 647, 674 632, 634 636, 636 677, 653 CD 648, 649 39.8, 40.0 41.4 4 XX 604 602 609 620 642, 660 617 35.8 34.1 5 XX 634 626 636 638 632 633 37.9 38.0 6 X 637 647 649 655 CD 647 39.7 38.4 7 XX 623 632 646 650 674 645 39.4 36.7 8 XX 637 #": 643 644 651 643 39.2 38.4 9 XX 637 637 638 649 650 642 39.0 38.4 10 XX 628 633 645 659, 677 671 649 40.0 37.3 11 XX 630 635 642 640 648 639 38./ 37.5 12 XX 635 631 637 642, 636 656, 649 639 38.7 38.1 13 XX 611, 609 600 606 618 607 608 34.6 34.9 14 X 642 646 643 641 CD 643 39.2 39.0 15 X 652 648 640 642 CD 646 39.5 40.3 16 X 629 633 635 632 CD 632 37.7 37.4 17 X 641 633 634 649 CD 639 38.7 38.9 18 X 645 640 645 655 CD 646 39.5 39.4 19 X 639 637 642 647 CD 641 38.9 38.7 20 X 649 631 621 627 CD 632 37.7 40.0 N M J
Avg. Surface Stud L " " Location Heat Lj 5 L Center L Ave Converted Converted Edge L Number Number 2 '3 4 633 CD 642 39.0 40.4 21 X 653 641 639 618 621 618 36.0 35.2 22 XX 612 619 622 613 617, 622 608 34.6 32.5 23 XX 587, 597 597 619 633 616 616 35.7 35.3 24 XX 613 606 610 641 649, 642 625 3F.9 36.1 25 XX 619 611 610 626 647, 641 619 36.1 34.1 26 XX 604 601 618 638 640 648 639 38.7 37.6 27 XX 631 636 606 604 607 603 34.0 33.3 28 XX 598 601 630 610 628 620 36.c 36.0 ~ 29 XX 618 615 595 604 612 633 643 617 3. 8 32.9 30 XX 596 619 605, 616 604 34.1 33.8 31 XX 602 591 611 611 616 612 35.2 35.8 32 XX 617 604 642 654 638 30 .5 35.7 33 XX 616, 616 640 637 612 624 636 619 36.1 34.9 34 XX 610 611 624 624 610 34.9 32.3 35 XX 591, 670 602 609 607 624 634 614 35.5 34.6 36 XX 608 599 602 608 617, 611 607 34.5 34.8 37 XX 609 600 673 653 CD 660 41.3 41.2 38 X 659 653 616 616 628 616 35.7 34.9 39 XX 610 612 610 598 608 613 608 34.6 34.9 40 XX 610 WM ENCWEEMdGSBMCES
Stud- Avge Surface Location ' Heat Lj L 5 Number Number Edge L Center L Ave Converted Converted 2 '3 '4 41 XX 626 633 645 656 663 645 39.4 37.0 42 XX 597 597 606 614 611 605 34.2 33.2 43- XX 629 631 631 638 639 634 38.0 37.4 44 XX 634 637 638 643 655, 656 642 39.0 38.0 45 XX 600 608 618 619 619 613 35.3 33.6 46 XX 630 632 634 661 670 645 39.4 37.5 i' 47 XX 606 599 599 612 623 608 34.6 34.3 48 XX 610 604 612 616 610 610 34.9 34.9 J
nna ENGNEERNG SERVCES l TABLE IX Composition of Failed 7.nchor Studs Compared with Specification and Material Certification AlS1 Material 4140 Certification Element Stud 2 Stud 36 Nominal
- Report, Heat 0 C 0.434 0.420, 0.418 0.38 - 0.43 0.40 Mn 0.969 0.930 0.75 - 1.00 0.90 P 0.012 0.014 0.035 Max. .010 S 0.015 0.015 0.040 Max. .018 Si 0.240 0.240 0.15 - 0.30 0.25 Cr 0.970 0.990 0.80 - 1.10 0.94 Ni 0.027 0.022 - -
Mo 0.184 0.180 0.15 - 0.25 0.18 Cu 0.021 0.023 - - Al 0.027 0.037 - - Ca 0.005 0.011 - - B 0.001 0.001 - - l l l OFrom Metals Handbook Vol .1, 9th Edition, page 127 I i i i
YM ENGNEERNG SERVCES l I l l i l i I l APPENDIX A i i i I s i i l l i L_- . _ - . , _ _ _ _ _ _ _ , , . _ _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ . _ . . . _ _ . _ _ __ _ _.. _ _.
a
. s N
MMMd//ESS ,/\/\/\/\/\/\/\/\/\/\/ s/\/\/\/ \, TES T BR Fil
+ n'\/\ v\/ / /'i' N AL ONCr. D/M ,
3 l [4 . _ _ __.- - _ _ - _.. - _ .- - - -- - - (\ ) c3
\ // c h "
y
- -// -
Z O/' C C/- G OF C# p'r----, h---
\/\.s ,, s l /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/ +-M N/\) @_3 M ,,.pj/;, SEC T/OiV FOR C//EM/C RL.
n 2.19 + nNnt rsis - ain.
* - 9- = 2. 5 >- m S.8 > -> .44 + -> .47 V/E W R - A . . 2 Y2 -4 0NC-2 A IfrM 2 FA A C T U R E $LUD~L888 N O TE S u n FA CE on oou g L PR 0 JEC Y ~ NUMBER TO Bf PO 7' ON f/? CN P/Cc'E .
r g ws REV DATE D.C.O. ZONE DESCRIPTION DRAWN CHKD ANAL ENGR DWG. CON.
}Z 73 Cm REVISIONS ru ; gO g
usecss Oracewiec seccirico DIMcNsIONs arc IN INCHcs c<p~,'1 3 'A'TEEYNE cm a 2g reacr 2~s"o"^c",c"$a" ~otes Mt e/2va MGNEENG SEMCE. p oj t i i hp i
- j"yj'$e //41/8() WALTHAM, MASS.
4 >- @ " s y gli yy m+ FINISH
**" p uu.
kn. DErn n. s roa rae - ! cc: si2s MNM YS/S : OF SECOND l E z sy m g us__ m
$1 g,f,jg,;d -mm 3 7ue
- o. - ~m
~ .m l
B= . 3887 M-52 0 9 O
[ I
~ = = === ,W W 6 j
3AG: - l Y A O. uogwc-
/
NO. OF PAGES REASON-O PAGE ILLEGIBLE: PDR CF C HARD COPY FILED AT: OTHER
/ /
O BETTER COFY REQUESTED ON i MAGE TOO LARGE TO F!LM. _ CF O HARD COFY FILED AT(PDR) OTHER blLMED ON APERTURE CARD NO. TM 62/0 - _ _ _ _ _ ___-_._- - - _ - - - . _..- - _ _- _ .... _ ..-- - _. - . - .. - - - ..}}