ML20094P565

From kanterella
Jump to navigation Jump to search
Structural Stresses Induced by Differential Settlement of Diesel Generator Bldg
ML20094P565
Person / Time
Site: Midland
Issue date: 07/18/1984
From:
CONSUMERS ENERGY CO. (FORMERLY CONSUMERS POWER CO.)
To:
Shared Package
ML19258A087 List: ... further results
References
CON-BX19-037, CON-BX19-37, FOIA-84-96 NUDOCS 8408170279
Download: ML20094P565 (51)


Text

{{#Wiki_filter:0 TECHNICAL REPORT STRUCTURAL STRESSES INDUCED BY DIFFERENTIAL SETTLEMENT OF THE DIESEL GENERATOR BUILDING CONSUMERS POWER COMPANY MIDLAND PLANT UNITS 1 AND 2 8408170279 840718 PDR FOIA RICE 84-96 PDR

~ MIDLAND PLANT UNITS 1 AND 2 TECHNICAL REPORT STRUCTURAL STRESSES INDUCED BY DIFFERENTIAL SETTLEMENT OF THE DIE 3EL GENERATOR BUILDING TABLE OF CONTENTS Page 1.0 STRUCTURAL REANALYSIS 1 1.1 STRUCTURAL ACCEPTANCE CRITERIA 1 1.1.1 Load Cases 2 i 1.1.2 Load Combinations 2 i 1.1.3 Allowable Material Limits 4 2.0 DIESEL GENERATOR BUILDING ANALYTICAL MODEL 4 2.1 APPLICATION OF LOADS TO THE BUILDING MODEL 4 4 2.1.1 Dead Loads 5 2.1.2 Settlement Loads 5 2.1.3 Live Loads 6 2.1.4 Wind Loads 7 2.1.5 Tornado Loads 7 2.1.6 Seismic Loads 8 2.1.7 Thermal Loads 9 3.0 STRUCTURAL ADEQUACY COMPUTATIONS 10

4.0 CONCLUSION

S 11 REFERENCES 12 i APPENDIX A OPTCON TABLES I-1 Loads and Ioad Combinations for Concrete Structures i l Other than the Containment Building From the FSAR and Question 15 of Responses to NRC Requests Regarding Plant Fill {. 11 l

Midland Plant Units 1 and 2 Structural Stronzen Inducsd by Differential Settlement in the Diesel Generator Building e Table of Contents (Continued) I-2 Loads and Load Combinations for Comparison Analysis Requested in Question 26 of NRC Requests R.egarding Plant Fill I-3 Soil Properties Used in the Seismic Analysis I-4 Steel and Concrete Stresses for Diesel Generator Building 4 Structural Members (According to FSAR and the Responses to NRC Requests Regarding Plant Fill, Question 15) FIGURES I-l Diesel Generator Building Dynamic Lumped Mass Model for Seismic Analysis I-2 Diesel Generator Building Finite Element Model I-3 Estimated Secondary Compression Settlements from August 15, 1979, to December 31, 2005, Assuming Sur-charge Remains I-4 Comparison of Estimated Secondary Compression Values with Settlement Values Resulting from a Finite Element Analysis of the Diesel Generator Building I-5 Basis for Calculation of Equivalent Shear Wave Velocity l i l iii . ~ - - - - - -. - - -- - -- - -------

MIDLAND PLANT UNITS 1 AND 2 TECHNICAL REPORT STRUCTURAL STRESSES INDUCED BY DIFFERENTIAL SETTLEMENT OF THE DIESEL GENERATOR BUILDING l 1.0 STRUCTURAL REANALYSIS To account for the effect of the observed and predicted settlement on the diesel generator building, a structural reanalysis was performed. This reanalysis proceeded by defining the acceptance criteria for the structure (see Subsection 1.1). These acceptance criteria differ from the acceptance criteria used in the original design and analysis of the structure and set forth in the Final Safety Analysis Report (FSAR) only in the addition of four load combinations that include the effect of settlement. These additional load combinations are described in Subsection 1.1.2. To investigate the effects of the load combinations on the structure, the structural reanalysis uses two different mathematical models of the diesel generator building: a dynamic, lumped mass model and a static, finite element model. The j dynamic, lumped mass model (described in Subsection 2.1.6 and i illustrated in Figure I-1) is used to generate seismic forces in the building, given the input ground motion from the operating Ibasis earthquake and safe shutdown earthquake (SSE) s.pecified in the FSAR. The finite element model illustrated in Figure I-2 is a more complex mathematical model' that reduces the diesel generator building to an interrelated system of plate, beam, and boundary elements representing the walls, slabs, foundation, and soil. The finite element model is used to assess the effect on individual elements of various load combinations applied to the structure as a whole. (These load combinations include seismic forces generated with the dynamic, lumped mass model.) The finite element model thereby allows the identification of those sections of the diesel generator building that will experience the greatest forces due to the postulated load combinations. The allowable stress is then calculated and compared to the actual stress level in these sections based on the forces derived from the finite element model. This comparison shows that even those sections of the building experiencing the highest forces meat the acceptance criteria. 1.1 STRUCTURAL ACCEPTANCE CRITERIA l Because of the settlement problem, a structural reanalysis of the diesel generator building was performed in accordance with the structural acceptance criteria which are consistent with FSAR Subsection 3.8.6.3, with settlement effects included as outlined in the response to NRC Requests Regarding Plant Fill, Question 15 (Revision 3, September 1979). 1 i ..~,,,n

Midland Pltnt Units 1 and 2 Structural Stronses Inducsd by Differential Settisment in the Diesel Generator Building

  • i 1.1.1 Load Cases

\\ The following loads are considered in the reanalysis: a. ' Dead loads (D)' b. Effects of settlement combined with creep, shrinkage, and temperature (T) c. Live loads (L) d. Wind loads (W) e. Tornado loads (W') f. OBE loads (E) g. SSE loads (E') h. Thermal effects (To) Thermal effects appear twice in this list (Items b and h). For load combinations committed to in the response to Question 15 of the NRC Requests Regarding Plant Fill, thermal effects are contained within the settlement effects term, T. For load combinations committed to in FSAR Subsection 3.8.6.3, thermal effects are contained in the thermal term, To (Refer to Table I-1). All other load cases appearing in the load combinations for Seismic Category I structures listed in FSAR Subsection 3.8.6.3 (e.g., rupture of pipe lines) do not occur in the diesel generator building and are not addressed. 1.1.2 Load Combinations The load combinations employed for the original analysis and i design of the diesel generator building are provided in FSAR Subsection 3.8.6.3. The original FSAR load combinations did not contain a settlement effects term (T). For the structural reanalysis performed in response to Question 15 of the NRC Requests Regarding Plant Fill (September 1979), four additional load combinations were established and committed to be considered. These additional combinations consider the effects of differential settlement in combination with long-term operating conditions and with either wind load or OBE. Table I-l Provides the load combinations listed in FSAR Subsection 3.8.6.3 and the four additional load combinations. These load combinations comprise the acceptance criteria for the diesel generator building and are hereinafter referred to as the Midland acceptance criteria. 2

MidlEnd Plant Units 1 and 2 4. Structural Stransas Inducsd by Differential Settlement in the Diesel Generator Building By requiring combination of differential settlement with wind loads and OBE, the Midland acceptance criteria are more s'ringent then the requirements of.American Concrete Institute (ACI) 318. ACI 318 only requires combining the effects of differential settlement with the dead loads and live loads. The Midland acceptance criteria are less stringent than ACI 349, because ACI 349 (as supplemented by Regulatory Guide 1.142) includes load combinations that combine the effects of differential settlement I with extreme loads such as tornados and SSEs. In the response to l Question 26 of NRC Requests Regarding Plant Fill, a commitment was made to do a separate structural reanalysis of the diesel generator building in accordance with ACI 349, as supplemented by Regulatory Guide 1.142, for comparative purposes only. Table I-2 provides the load combinations of ACI 349 as supplemented by Regulatory Guide 1.142. It.is unnecessary to use all Table I-1 load combinations in the structural reanalysis. A number of combinations can be eliminated from the analysis after comparison with more severe loads or load equations. For example, Equations 6 and 10 from Table I-1 are: a. U = 1.25 (D + L + H + E) + 1.0T (6) o b. U = 1.4 (D + L + E) + 1.0To + 1.25H (10). Because there are no significant forces on the structure due to thermal expansion of pipes (Hg), these two expressions can be rewritten in simpler forms: a. U = 1,.25 (D + L + E) + 1.0To (6) b. U = 1.4 (D + L + E) + 1.OT, (10) The second expression is more critical than the first. Therefore, Equation 10 is used in the analysis and is considered to envelop the lower force components resulting from an analysis using Equation 6. Utilizing this approach with the entire set of load combinations eliminates the less critical equations and condenses the list to nine load combinations. Table I-1 Load Combinations Equation No. a. 1.05D + 1.28L + 1.05T (1) b. 1.4D + 1.4T (2) c. 1.0D + 1.0L + 1.0W + 1.0To (3) d. 1.0D + 1.0L + 1.0E + 1.0T, (4) 3

Midland Plcnt Unita 1 cnd 2 Structural Strasses Inducud by Difforcntial Settlemnnt in the Diesel Generater Building e. 1.4D + 1.7L (5) f. 1.25 (D + L + W) + 1.0To (7) g. 1.4 (D + L + E) + 1.0T (10) o h. 1.0 (D + L + E') + 1.0To (15) 1. 1.0 (D + L + W') + 1.0To (18) 1.1.3 Allowable Material Limits In accordance with regulatory requirements and the recommendations of the American Concrete Institute.(ACI 318 and ACI 349), the maximum rebar tensile stress allowed in the diesel generator building rebar equals 0.90 f (where f equals yield y y stress) for computation of section capacities. Because the diesel generator building rebar has an fy value of 60 ksi, the maximum allowable tensile rebar stress due to flexural and axial loads is 54.0 ksi. In similar fashion, the ultimate compressive strength of concrete is based on a strain of 0.003 in./in. Rebar stress values subsequently calculated for critical, reinforced concrete sections of the diesel generator building were based on this maximum allowable rebar stress value (54 ksi) and a maximum allowable concrete strain level of 0.003. 2.0 DIESEL GENERATOR BUILDING ANALYTICAL MODEL The structural reanalysis of the diesel generator building uses a finite element model. The required load combinations were applied to this model and the resulting forces were investigated for compliance with the structural acceptance criteria. The diesel generator building was modeled as an assemblage of plate, beam, and boundary elements. The structure is defined by a set of 853 nodal points and 1,294 elements. Of these elements, 901 are plate elements representing walls and slabs, 141 are beam elements, and 252 are boundary elements (translational springs, in both the vertical and horizontal directions) representing varying soil pressures. Certain items, such as steel platforms and lightly reinforced interior secondary structural walls, have not been included in the model for the reasons listed in subsequent sections. Figure I-2 illustrates an isometric view of the finite element model. 2.1 APPLICATION OF LOADS TO THE BUILDING MODEL The following loads have been applied to the model in the manner noted. i 4

Midlcnd Plant Units 1 and 2 Structural Stresses Induced by Differential Settlement in the Diesel Generator Building 2.1.1 Dead Loads The dead load of the structure was simulated by specifying a mass acceleration value equaling that of gravity (32.2 ft/s2), Secondary structural walls and platforms were not included in the model because their contribution to the gross weight of the structure is minimal (less than an estimated 5 percent) relative to the sum of the other loads considered. Their exclusion does not significantly affect the magnitude or distribution of stresses. The louvers on both the north wall and south wall, along with the doors on the north and south walls of the building, were modeled simply as penetrations, with dimensions equivalent to those of the doors and louvers. This is acceptable because the doors and louvers contribute insignificantly to the building stiffness and total building weight. The diesel generator pedestals and the ground floor slabs were omitted from the finite element model because they were not constructed monolithically with the remainder of the structure. Consequently, they do not add stiffness to the structure. 2.1.2 Settlement Loads The civil engineering group modeled settlement effects into the structure by representing varying soil conditions as boundary elements comprised of translational (vertical and horizontal) springs. At 84 locations along the building footing, a set of various spring values (one vertical spring and at least one horizontal spring) was applied to represent the nonhomogenous nature of soil conditions existing beneath the diesel generator building. Spring values were developed for two general cases: those springs calculated for long-term loading and those springs calculated for short-term loading, e.g., tornados and earthquakes. For long-term loading, a set of springs was calculated for the determination of structural stresses caused by the settlement of the diesel generator building after 40 years. These springs were calculated at each nodal point along the foundation by dividing the total load represented at the selected point by the predicted settlement at that point, so that the spring constant was expressed in terms of force / unit displacement. The estimated secondary compression settlement values from August 15, 1979, to December 31, 2025, are shown in Figure I-3 and are explained in Dr. Peck's testimony (Figure I-3 is the sum of settlement from August 15, 1979, to December 31, 1981, and from December 31, 1981, to December 31, 2025, as shown in Figures 27-12 and Figure 27-13, respectively, of the Responses to NRC Requests Regarding Plant Fill. ) These estimates are based on the conservative assumption that the surcharge remains in place 5

Midland Plant Unita 1 and 2 Structural Straccas Induced by Differential Settlement in y the Diesel Generator Building over the 40-year life of the plant, thus exceeding actual settlement predictions. Figure I-4 compares these settlement values with those settlement values resulting from the finite element analysis of the diesel generator building model. The comparison shows a close correlation between values resulting ~ 'i from the finite element model and estimated settlement values generated by Dr. Peck and Bechtel soil engineers. Because the estimates of the soils engineers are based on the conservative assumption of the surcharge remaining in place over the 40-year life of the plant, the model overestimates.the settlement loads on the structure considered in the structural reanalysis and is therefore conservative. Figure I-4 also indicates the settlement and differential settlement occurring in the building subsequent to August 1979 (when the surcharge material was removed). As Figure I-4 shows, the settlement and differential settlement which has occurred since the removal of the surcharge are very small compared with the settlement and differential settlement conservatively estimated for the purpose of the structural reanalysis. The other set of springs was developed for short-term loading, in which it was assumed that the structural movement was small enough to assume the soil was linearly elastic. The modulus of elasticity was estimated using the results of laboratory and field investigations. Springs were developed for the vertical and horizontal modes. These springs were calculated by determining the amount of force required to produce a unit displacement in the direction indicated by the particular mode. The footings of the diesel generator building were assumed to be resting on a large mass of elastic soil for the vertical mode and embedded within the mass of soil for the horizontal mode. The settlement due to seismic shakedown was also identified as a possible occurrence during a seismic event. The maximum differential settlement due to seismic shakedown, as stated in Question 15 of the NRC Requests Regarding Plant Fill is approximately one-half inch. The effects of seismic shakedown settlement will act to reduce the effects of differential settlement and for this reason was not the governing case in the structural reanalysis of the diesel generator building. 2.1.3 Live Loads Live loads were applied to the modeled structure by applying pressure loads on the plate elements which represent the floor slab at el 664'-0" and the roof at el 680'-0". During the plant life, a maximum live load of 100 psf is predicted to occur on the roof slab, whereas for the floor at el 664'-0", a maximum live load of 250 psf is postulated. One hundred percent of the live load was used in the design of individual structural members, 6

- ~ Midland Plant Units 1 and 2 Structural Streccae Induced by Differential SettiCm:nt in the Diesel Generator Building such as floor slab at el 664'-0" and roof slab at el 680'-0". For overall building response, however, the live loads considered were limited to 25 percent of the above maximum loads. This 25 percent value represents the live load expected to be present when the plant is in operation, i.e., 100 percent of the live load will not act simultaneously on every square foot of the floor space. 2.1.4 Wind Loads Loads resulting from the design wind (100-year recurrence with a velocity of 85 mph) were applied to the modeled structure as a pressure load on the plate elements that represent the exposed walls. Wind loads on the roof and south wall hatch covers were determined assuming the hatch covers were in place. These loads were then distributed to the nodal points which define the perimeter of the respective hatches. 2.1.5 Tornado Loads As specified in BC-TOP-3-A (Reference 1), various combinations of velocity wind pressure, differential pressure, and local pressures were applied to the modeled structure. The maximum wind velocity of the tornado was 360 mph. . The original structural analysis performed in accordance with the FSAR considered various tornado-generated missiles. The analysis considered missiles equivalent to a 4" by 12" by 12' wooden plank (108 pounds) traveling end-on at 300 mph at any height; a 4,000 pound automobile with a velocity of 72 mph no higher than 30 feet above the ground with a contact area of 20 square feet; a 1-inch diameter, 3-foot long, 8-pourd steel bar traveling at 216 mph at any height in any directi n, and a 35-foot long utility pole, 13-1/2 inches in diameter, weighing 1,490 pounds, traveling at 144 mph, ar: striking the structure not more than 30 feet above the ground. For tornado-generated missile loads, the structure was allowed to locally exceed the yield strain. The results of the original tornado-generated missile load analysis showed the diesel generator building was acceptable. Results of missile impact tests conducted over the last 6 years indicate that reinforced concrete walls, thinner than the exterior walls of the diesel generator building, have a considerable margin against local damage. The tests indicate that a wall thickness of 12 inches would sufficiently preclude unacceptable local damage (spalling) from these missiles. (The thinnest exterior wall of the diesel generator building is 30 inches thick.) 7

Midicnd Plant Units 1 and 2 - Structural Stresses Induced by Differential Sattlemsnt in the Diesel Generator Building r 2.1.6-Seismic Loads The seismic response of a structure depends on the stiffness properties and mass of the structure, the input seismic motion at i the structure location, and the soil properties of the foundation medium. Of these parameters, only soil properties are affected by insufficient compaction of backfill. The following paragraphs describe how the effects of insufficient compaction and eventual surcharging were accounted for in the revised diesel generator building seismic analysis. The analytical models used for the original seismic analysis and for the seismic reanalyses described in this report are one- . dimensional, stick-type, lumped mass models using beam elements to represent the structural stiffness and impedence functions of the foundation medium (see Figure I-1). The models were analyzed by the modal superposition method, a conventional method used in dynamic analysis. Design responses are calculated by modal superposition in conjunction with the site ground spectra. The site ground spectra are those associated with ground ccceleration set forth in FSAR Section 3.7 and approved by the NRC at the construction permit stage.- The floor response spectra in the building are calculated by the modal superposition method using the design time history. The design time history is a modification of the N21E (north, 21' east) ground motion component recorded during the July 21, 1952, earthquake at Taft, 4 California. The effect of soil-structural interaction is accounted for by coupling the structural model with the foundation media. The foundation media are represented by impedance functions which represent the equivalent spring stiffness and radiation damping coefficients as specified in BC-TOP-4-A (Reference 2). 4 The structural portion of the lumped mass model was not revised in the new dynamic analysis. The difference in the new model was confined to the treatment of the soil-structural interface. The i revised analysis developed the impedance functions based on the building's foundation dimensions and the modification in the soil properties described below. In addition, the weight of the soil and the concrete pedestals and diesel generator pedestals within the building were included in this revised model. The original (presettlement) diesel generator building seismic l analysis was based on the underlying till material, which has a shear wave velocity value of 1,359 ft/s (see Table I-2). This value was not adjusted for the 30 feet of plant fill between the till and building foundation elevation. The seismic reanalysis accounted for the soil properties of the fill by averaging the low strain shear wave velocity of the fill and underlying till (Figure I-5) over a depth of 75 feat, which is the smallest i I 8 l

Midland Plant Unita 1 and 2 Structural Strosaea Inducsd by Differential Settlement in the Diesel Generator Building dimension of the building. This resulted in the value of 796 ft/s, which was used in the seismic reanalysis. However, the effect of decreasing shear wave velocity to a lower bound estimate of 500 ft/s was also analyzed. Both the low strain shear wave velocity value of 796 ft/s and the lower bound shear wave velocity value of 500 ft/s were supplied by soil consultants. The floor spectra at all elevations of the diesel generator building were generated using a shear wave velocity value of 796 ft/s. The resulting floor response spectra were combined in an enveloping fashion with the spectra developed in the original analysis which used a shear wave velocity value of 1,359 ft/s. The floor response spectra were further broadened to account for a lower bound shear wave velocity of 500 ft/s.

Thus, conservative floor response spectra were generated.

The results of the seismic reanalysis indicated that the seismic forces at all elevations of the diesel generator building were somewhat higher than the forces determined in the original analysis. This increased seismic load was conservatively simulated by applying the maximum structural acceleration occurring in the dynamic model to the finite element model in north-south, east-west, and vertical directions. The combined effect of the three directional responses was assessed using the square-root-of-the-sum-of-the-squares method recommended in NRC Regulatory Guide 1.92. The ability of the structure to withstand these increased seismic forces in combination with the other loads is described in Section 3.0. 2.1.7 Thermal Loads Thermal effects were included in the analysis as a linear variation of temperature across the thickness of an element. The thermal effect due to linear variation of temperature across the thickness of an element (also called gradient) results in bending moments being applied to the element. In general, the temperature gradient which is of most concern for the diesel generator building is that anticipated to occur in the winter. In accordance with the Handbook of Concrete Engineering (Reference 3) and FSAR meteorological data, the equivalent steady-state exterior winter temperature of 14.6F was calculated. The corresponding maximum interior ambient air temperature was 75F. For information on how thermal effects were applied to the model, see Section 3.0. 9

Midland Plant Units 1 and 2 Structural Stressan Induced by Differential Settlement in the Diesel Generator Building 3.0 STRUCTURAL ADEQUACY COMPUTATIONS .The computations necessary to verify structural adequacy were performed using a computer analysis program (OPTCON) capable of analyzing reinforced concrete sections. This reinforced concrete analysis program models a portion of the diesel generator building and analyzes it for forces that resulted from the BSAP finite element model analysis. Refer to Appendix A for additional information concerning OPTCON. To determine the structural adequacy of the diesel generator building, the modeled structure was partitioned into structural categories (i.e., north wall, center wall, roof, etc). Critical elements from each category were then selected for further investigation based on their axial force, moment, and in-plane shear force. Using OPTCON, rebar stress values were then calculated in these critical elements to verify that the allowable rebar-tensile stress value was not exceeded. To facilitate the calculation process, a computer program was specifically written for selecting critical elements that would i undergo OPTCON investigation. This program was written so that its selection of critical elements was based on a comparison of the axial force, bending moment, and in-plane shear force of each i separate element within a structural category with all other ) elements of the same structural category. ) Once these critical elements were selected, a thermal gradient was assigned to each element based on the location of that element within the building. The gradient is assigned on a temperature basis, and is converted by OPTCON into a thermal moment. Based upon the procedure discussed above, all structural categories of the diesel generator building were investigated and found to meet the structural acceptance criteria. Table I-4 shows the results of the analysis. The left-hand column of Table I-4 shows the element with the highest rebar stress value for each structural category. The second column shows the load combination which produces the highest stress. In other words, this is the load combination which is critical for this category. The next three columns show the axial, flexural, and in-plane shear force calculated by BSAP for this element's critical load combination. The sixth column presents the rebar stress value computed by OPTCON for each critical element within each structural category. The highest rebar stress value (reflecting the combined effects of flexural, axial, and in-plane shear loads) exists in the south wall where the rebar stress value is 42.5 kai. The last three columns compare maximum separate force component allowables in all structural categories (axial, flexural, and in-plane) against the corresponding critical loads i generated by BSAP. This comparison of separate force components i 10 ^ =-,

Midland Plant Units 1 and 2 Structural Stressas Inducsd by Differential Settlement in the Diescl Generator ' Building ~ is provided for information only. The interactive method used by OPTCON to calculate actual rebar stress values more accurately depicts how close an element is to the maximum allowable stress value of 54 ksi as it considers the combined effect of flexural, axial, and in-plane loads. The final structural reanalysis of the diesel generator building showed that the critical load combinations (Table I-1) are those which include either the tornado load case (W') or the SSE load case (E), specifically: a. 1.0D + 1.0L + 1.0W' + 1.0T. (18) b. 1.0D + 1.0L + 1.0E' + 1.0T (10) .In approximately 70 percent of the diesel generator building, the tornado load combinations produce the stress levels.

4.0 CONCLUSION

S The diesel generator building is a massive, reinforced concrete structure with extensive reserve strength. The structural reanalysis performed on the diesel generator building verifies that the integrity of the structure will not be violated even under the most critical load combinations. Based on the analysis performed, it can be stated that the settlement has had minimal effect on the structure, and there is reasonable assurance that the diesel generator building will safely perform its intended function over the operating life of the Midland plant. l 11 f i

Midlcnd Plcnt Units 1 and 2 Structural Streccas Inducsd by Differsntial Sattlement in the Diesel Generator Building REFERENCES 1. Bechtel Power Corporation, Tornado and Extreme Wind Design Criteria for Nuclear Power Plants, Revision 3, August 1974 (BC-TOP-3-A) 2. Bechtel Power Corporation, Seismic Analyses of Structures and Equipment for Nuclear Power Plants, Revision 3, November 1974 (BC-TOP-4-A) 3. M. Fintel, Handbook of Concrete Engineering, Van Nostrand Reinhold Company, September 1974 12

Midland Plcnt Unito 1 End 2 Structural Stressas Induced by Differsntial Settlem:nt in the Diogol Gensrctor Building TABLE I-1 LOADS AND LOAD COMBINATIONS FOR CONCRETE STRUCTURES OTHER THAN THE CONTAINMENT BUILDING FROM THE FSAR AND QUESTION 15 OF RESPONSES TO NRC REQUESTS REGARDING PLANT FILL Responses to NRC Requests Regarding Plant Fill, Question 15 a. Service Load Condition U = 1.05D + 1.28L + 1.05T (1) U = 1.4D + 1.4T (2) b. Severe Environmental Condition U = 1.0D + 1.0L + 1.0W + 1.0T (3) U = 1.0D + 1.0L + 1.0E + 1.0T (4) FSAR Subsection 3.8.6.3 a. Normal Load Condition U = 1.4D + 1.7L (5) b. Severe Environmental Condition U = 1.25 (D + L + Ho + E) + 1.0T, (6) U = 1.25 (D + L + Ho + W) + 1.0To (7) U = 0.9D + 1.25 (He + E) + 1.0To (8) U = 0.9D + 1.25 (Ho + W) + 1.0To (9) c. Shear Walls and Moment Resisting Frames U = 1.4 (D + L + E) + 1.0T,+ 1.25H3 (10) U = 0.9D + 1.25E + 1.0T + 1.25H (11) g o d. Structural elements carrying mainly earthquake forces, such as equipment supports U = 1.0D + 1.0L + 1.8E + 1.0To + 1.25He (12) 1 l

Midlend Plant Units 1 cn'd 2 Structural Stracess Induced by Differential Settlemsnt in the Diesel Gsnarator Building Table I-1 (continued) e. Extreme Environmental and Accident Conditions U = 1.05D + 1.05L + 1.25E + 1.0T + 1.0H + 1.OR (13) a a U = 0.95D + 1.25E + 1.0Ta + 1.0Ha + 1.OR (14) 1.25Ho + 1.OR (15) U = 1.0D + 1.0L + 1.0E' + 1.0To v U = 1.0D + 1.0L + 1.0E' + 1.0Ta + 1.0Ha + 1.0R (16) U = 1.0D + 1.0L + 1.0B + 1.0To + 1.25He (17) U = 1.0D + 1.0L + 1.0T, + 1.25He + 1.0W' (18) where B = hydrostatic forces due to the postulated maximum flood D = dead loads of structures and equipment and other permanent load contributing stress E = operating basis earthquake (OBE) E' = safe shutdown earthquake load (SSE) e = force on structure caused by thermal expansion of H pipes under operating conditions. i H = force on structure caused by thermal expansion of a pipes under accident conditions L = conventional floor and roof live loads (includes moveable equipment loads or other loads which very in intensity) R = local force, pressure on structure, or penetration caused by rupture of pipe T = effects of differential settlement, creep, shrinkage, and temperature T, = thermal effects during normal operating conditions, including linear expansion of equipment and tempera-j ture gradients Ta = total thermal effects which snay occur during a design accident U = required strength to resist design loads or their related internal moments and forces 2

Midland Plcnt Units 1 cnd 2 ~ Structural Stracces Inductd by Differential Settlem3nt in the Diesel Generator Building Te.ble I-l (continued) 1 W = design wind load W' = tornado wind loads, excluding missile effects, if applicable (refer to subsection 2.2.3.5) 3

MidlEnd Plant Unita 1 and 2 Structural Strecces Induced by Differsntial Satticmant in the Diesel Generator Building TABLE I LOADS AND LOAD COMBINATIONS FOR COMPARISON ANALYSIS REQUESTED IN QUESTION 26 OF NRC REQUESTS REGARDING PLANT FILL ACI 349 as Supplemented by Regulatory Guide 1.142 a. Normal Load Condition: U = 1.4 (D + T) + 1.7L + 1.7R o U = 0.75 (1. 4 ( D + T) + 1.7L + 1.7Tb + 1.7Ro ] b. Severe Environmental Condition: U = 1. 4 ( D + T ) + 1. 4 F + 1.7 L + 1. 7H + 1. 9 Eo + 1.7Ro U = 1.4 (D + T) + 1.4F + 1.7L + 1.7H + 1.7W + 1.7Ro U = 0.75 (1. 4 ( D + T ) + 1. 4 F + 1. 7 L + 1. 7H + 1. 9 Eo + 1. 7Tb + 1.7Roj U = 0.75 (1. 4 ( D + T) + 1.4F + 1.7L + 1.7H + 1.7W + 1.7To + 1.7R ] o c. Extreme Environmental Conditions: U = (D + T) + F + L + H + To + Ro + W: U= ( D + T) + F + L + H + To + Ro + E., d. Abnormal Load Conditions: U= ( D + T ) + F + L + 11 + T. + R + 1.5P. U= ( D + T ) + F + L + H + T. + R. + 1.25P. + 1.0(Y, +Y g +Y) + 1.2SEo U= (D + T) +F+L+H+T. + R. + 1.0P. + l. 0 ( Y, + Yg + Y ) + 1.0E., 1

Midland Plcnt Unito 1 cnd 2 Structural Stresces Inducsd by 'Differsntial Sstticmant in the Diesel Generator Building Table I-2 (Continued) where Normal loads are those loads encountered during normal plant operation and shutdown, and include: T = settlement loads D = dead loads or their related internal moments and forces L = applicable live loads or their related internal moments and forces F = lateral and vertical pressure of liquids or their rela-ted internal moments and forces H = lateral earth pressure or its related internal moments and forces To = thermal effects and loads during normal operating or shutdown conditions, based on the most critical transient or steady-state condition Ro = maximum _ pipe and equipment reactions if not, included in the above loads Severe environmental loads are those loads that could infre-t quently be encountered during the plant life and include: Eo = loads generated by the operating basis earthquake (BOE) W = loads generated by the operating basis wind (OBW) s peci-fled for the plant Extreme environmental loads are those loads which are credible but highly improbable, and include: E,= loads generated by the safe shutdown earthquake (SSE) l W = loads generated by the design tornado specified for the i plant Abnormal loads are those loads generated by a postulated high-energy pipe break accident and include: Ps = maximum differential pressure load generated by a postulated break T. = thermal loads under accident conditions generated by a -postulated break and including To 2

Midicnd Plcnt Unita.1 cnd 2 Structural Strocess Induced by DifferGntial Sattlem2nt in the Diesel Generator Building Table I-2 (Continued) R. = pipe and equipment reactions under accident conditions generated by a postulated break and including Ro U = required strength to resist design loads or their related internal moments and forces Yr = loads on the structure generated by the reaction on the broken high-energy pipe during a postulated break Yi = jet impingement load on a structure generated by a postulated break Ym = missile impact load on a structure generated by or during a postulated break, such as pipe whipping e 3 l

Midland Plant Unita 1 and 2 Structural Strogges Inducsd by-Diffsrential Settlem3nt in the Diesel Generator Building j TABLE I-3 SOIL PROPERTIES USED IN j THE SEISMIC ANALYSIS First Second Original Revised (13 RevisedM3 Analysis Analysis Analysis Modulus of Elasticity (E) 22,000 ksf 6,598 ksf 2,609 ksf Poisson's Ratio 0.42 0.45 0.40 Unit Weight (w) 135 pcf 116 pcf 120 pc/s Shear Wave Velocity (Vs) 1,359 ft/s 796 ft/s 500 ft/s Shear Modulus 7,746 ksf 2,275 ksf 971 ksf U3 Note different shear wave velocity values. 1

') Midlrnd Pltnt UIit3 1 cnd 2 Structur:1 Stracaea Induced by Differential Settlement in the Diesel Generator Building TABLE I-4 REBAR STRESS VALUES-FOR THE DIESEL GENERATOR BUILDING STRUCTURAL MEMBERS (ACCORDING TO FSAR AND THE RESPONSES TO NRC REQUESTS REGARDING PLANT FILL, QUESTION 15) Maximum Calculated Loads Rebar Maximum (BSAP) Stress Value Allowable Loads Concrete 843 Axial In-Plane (ksi) Axial In-Plane Stress (ksi) Description of Load"' Tension Flexural Shearsal. (Allowable Tension Flexural Shear 138 Gradient (Allowable Members / Location Combination (k/ft) (k-ft/ft) (k/ft) = 54 ksl) (k/ft) (k-ft/ft) (k/ft) (*F) = 3.400 ksi) Exterior - West 2'-6" thick wall Tornado 9.73 27.17 5.36

  • 22.17 85.3 95.7 34.2 0

0.354 horizontal reinforce-ment, plate element 44 Exterior - South 2'-6" thick wall Seismic 27.30 1.33 67.58 42.46 85.3 95.7 34.2 60.4 0.000 horizontal reinforce-ment, plate element 287 Elevation - 664'-0" 2'-0" floor slab Tornado 17.70 13.67 5.34 39.15 47.5 44.7 26.7 24 0.068 E-W reinforcement, plate element 167 Elevation - 680'-0" l'-9" floor slab Tornado 3.5? 26.62 1.77 36.06 85.3 63.7 22.7 24 0.834 N-S reinforcement, plate element 788 South 2'-0" missile shield Seismic 15.81 12.50 14.34 32.84 64.8 55.5 26.7 60.4 0.072 wall south, horizontal reinforcement, plate element 631 Interior 2'-0" interior missile Tornado 18.99 3.78 1.35 28.06 47.5 55.5 26.7 24 0.000:s shield wall, vertical reinforcement, plate element 824 1

~ a. Midl nd Plant Unit'J l and 2 Structural StrT se3 Induced by Differential Settlesment in the Diesel Generator Building Tesble I-4 (continued) Maximum Calculated Loads Rebar Maximum (BSAP) Stress Value Allowable Loads Concre tetil Axial In-Plane (ksi) Axial In-Plane Stress (ksi) Description of Load'8 Tension Flexural Shearias (Allowable Tension Flexural Sheartas Gradient (Allowable l Members / location Combination (k/ft) B -ft/ft) (k/ft) = 54 kai) (k/ft) (k-ft/ft) (k/ft) (*P) = 3.400 kai) North 2'-0" missile shield Tornado 23.46 9.14 7.76 13.85 137.2 114.7 26.7 0 ' 0.000'*8 wall north, horizontal reinforcement, plate element 839 Exterior - North 2'-6" thick wall Tornado 11.17 20.27 5.19 21.90 85.3 95.7 34.2 24.0 0.313 horizontal reinforce-ment, plate element 767 Exterior - East 2'-6" thick wall Tornado 9.15 25.44 8.11 23.64 85.3 95.7 34.2 24.0 0.403 horizontal reinforce-ment, plate element 896 Interior l'-6" thick wall Tornado 17.0 0.65 0.31 16,66 64.8 41.2 20.6 24.0 0.000 horizontal reinforce-ment, plate element 683 South 0.00:sp 2'-0" thick box Tornado 4.93 1.62 1.45 8.02 48.6 39.2' 26.7 0 4 missile shield / south, horizontal reinforce-ment, plate element 732 i l l 2 1

c w ~ s. Mid1Cnd PICCt Unito 1 and 2 Structural Stresses Induced by Differential Settlement in / ' the Diesel Generator Building Table I-4 (continued) Maximum Calculated Loads Rebar Maximum (BSAP) Stress Value Allowable Loads Concrete'*1 Axial In-Plane (ksi) Axial In-Plane Stress (ksi) Description of Load 8'8 Tension Flexural Shearsal (Allowable Tension Flexural Shearts' Gradient (Allowable Members / location Combination (k/ft) (k-ft/ft) (k/ft) = 54 ksi) '(h/ft) (k-ft/ft) (k/ft) (*F) = 3.400 kr.1) + Footing / 46.04 ) N/A - 92.14 34.20 16 2'-6" thick footing, Seismic 75.0 beam element 87 e 4 layrES: + 1.0 (T,y., 1. .lllThe tornado load cembination is 1.0 (D + L) + 1.0 (W,) (E') + 1.0 (T The seismic load combination is 1.0 (D + T) + 1.0 l talout-of-plane shear loads were investigated independently from ax'ial, flexural, and in-plane loads. This investigation indicated that the maximum allowable out-of-plane shear force was never exceeded. Shear capacity of concrete only with no tension load on the section 888 Concrete stresses shown are associated with maximum rebar tensile-888 Stresses arg in compressivt. sense. ~ stresses shown in this table. 88'Section is cracked. 888This value is conservatively high and will be reduced. e t 3

M Midland Pl:nt Units 1 and 2 Structural Stresses induced by Differential Settlement in the Diesel Generator Building b"* El. 680'-0" i (Member Number) El. 664'-0" M El. 647'-0" [ M I 3 Rotational Spring Horizontal Translational Spring K M K / y 4 / x El. 630'-0" / -= f yl Horizontal Damper i Rotational Damper ,C C, j [K x' ri st/ rir ritrit i /ist r r/ l Vertical Damper Vertical Translational Spring FIGURE l 1 DIESEL GENERATOR BUILDING DYNAMIC LUMPED MASS MODEL FOR SEISMIC ANALYSIS l l [

l lI u y be 2 h t d deng n cin L au i E t d .1 dnl D n eiu O sI t mB M e i s e nel n r s t i T Ust o lr eet N e tntrSa H E t s aSl e n M l dt nG / / / / K l a n e Pl etie c E O L u o / p, / N nt e 7 t E r! lacec 6 uf s e E d rf e n T i i[ i t MSDD l I r 2 N e / ' j t + I n F l e E G c R N N U I G D 1, / // /- L I F I U B R f O T / A R g /, E N E \\ / y G q Y st D L f/ // E SE I A! g !!q l y ,N / / r /, / ),/ / / ' / 'W k[/ e n (/' j (/ f N n i lre I' 5, / "6 tn

  • 2 ec

[ 5 N\\Q 1 o t e t \\\\ n i lr e n ,) e i \\\\\\N\\ c g

~ \\

N N' n i rp s \\~ N \\ i lano ta lsna s s r t la f e ic on t oi r lr )g e r e v f t n %o nit l 0 a eeo c 1-inco ip / / '9 l of y r t f 4 e o t t b na el s c ( j

^ Midland Plant Units 1 and 2 Structural Stresses induced by Differential Settlement of the i Diesel Generator Building DIESEL GENERATOR BUILDING l 1.13 O l 13 1.45 i.32 9.g p a no na o rp o y r.- u.:

n...

n

  • ,w

.n.,. l '{ Cl 'i lC 1 I i ' OOor ~ d l* le ,$l A Q .t.. 1.70 O BAY 1 BAY 2 BAY 3 BAY 4 h~ a s P

.~~,

L- .C. O C. z e:. c. 1.94 O 1.94 O 1.98 o 2.41 o 2.36 o NORTH LEGEND O BUILDING SETTLEMENT M ARKER 2.36 SETTLEMENT IN INCHES (THIS DRAWING AND THE INFORMATION CONTAINED ON IT WERE OBTAINED FROM FIGURES 27-12 AND 27-13 OF THE RESPONSES TO NRC QUESTIONS REGARDING PLANT FILL) FIGURE I-3 ESTIMATED SECONDARY COMPRESSION SETTLEMENTS FROM 815-79 to 12-31-2025 ASSUMING SURCHARGE REMAINS

s Midland Plant Units 1 and 2 Structural Stresses Induced by -

Differ:ntial Settlement in The Diesel Generator Building 4 L ... ~.... ~.. ". " ". ~ ~.. ~ ~....... ~...............T 0.24 NORTH /*0.25 0.07 0.07 0.24 / SURFACE A / / 0.% 1.03 1 09 1.13 /

=

/ 1.29 / /, ~ ' {j'3 -'- ~ ~ E12 7 1.16 ./ 1.45 SURFACEB h .32 / 1 1.28 j0.1 (Greatest differential / / / // BAY 1 BAY 2 BAY 3 BAY 4 settlement = 0.M imhn) / l l f 39fl / / i f...............................................................................,f f 1.68 SURFACE C 0.20 ) ( i.70 l 0.11 I/ 1.70 0.0g 0.12 0.13 (Greatest differential Il l settlement = 1.17 inches) // i l-SURFACE D 1.83 19 ms.=ars.rm mr - 2.05 _,,g._,.., , _,,,.,,,,,,ff 2.13 (Greatest differential l 1.94 1.94 1.98 " " " ~ = = - - -. - 2.36 settiement = 1.28 inches) 2.41 l i SURFACE A REFERENCE (AS OF AUGUST 15, 1979) SURFACEB...= -......... ACTUAL SETTLEMENT VALUES FROM SEPTEMBER 14,1979 TO JULY 9,1981 i SURFACE C ------ SECONDARY COMPRESSION SETTLEMENT VALUES CALCULATED BY FINITE ELEMENT ANALYSIS SURFACE D ----- ESTIMATED SECONDARY COMPRESSION SETTLEMENT VALUES FROM l AUGUST 15,1979 TO DECEMBER 31, 2025 ASSUMING SURCHARGE REMAINS IN PLACE. FIGURE l-4 COMPARISON OF ESTIMATED SECONDARY COMPRESSION SETTLEMENT VALUES WITH SETTLEMENT VALUES RESULTING FROM A FINITE ELEMENT ANALYSIS OF Tile DIESEL GENERATOR Bull _ DING i

= 1 Midland Plant Units 1 and 2 ~ Structural Strtsses inducrd by Differential Sittizmint of the Diesel Generator Bailding l O S' f, 9% O Elevation 664 A f i 1 A f I l \\ 5 I i \\

  • I I s-Final Plant Grade

[ Elevation 634'-0" ? Merww.-- - uvuev" ? lll lll lll lll Elevation 628'-0" ,_t . V = 500 feet /second ;J.jl j.

c..

s ..3: ~ r. ~ Elevation 615 ~ _;, ya

,,e b

7.j ' s W ~ APP. 75FTk ' Y = 850 feet /second {.l!;. n;,,,- s s c S: i x. ,.v. X ., Elevation 600 IJ . (originalgrade) ^ 90 f.,,

wn ;..e a%,gi3,c CAS*"I*w ML,.J.S

n:::~ 'w *N*OMMg;. g;3,,.. ".dh"n *i- -w : a... Y = 850 feet /second s Elevation 550 (depth of V = 2300 feet /second e(f. soil) s i l l

  • FIGURE l-5 i

BASIS FOR CALCULATION OF i EQUIVALENT SHEAR WAVE VELOCITY YhLUES (V,) l (Shaded region represents the area over which low-strain shear wave velocity values (V,) were averaged, resulting in a V, value of 796 ft(sec.) .-r-- r -,,-v--w --v--.,--w.,y--- w-r

Mid1tnd Plant Units 1 end 2 e-Structural Stresses Inducad by Differential Settlement in the Diesel Generator Building APPENDIX A OPTCON The OPTCON computer code is a versatile and complete design and analysis program for reinforced concrete structures. The program may be used for the investigation of an existing reinforced concrete section where the reinforcing steel area is predetermined. Alternatively, it can be used for obtaining an optimum design by allowing the program to determine the minimum reinforcement required. The computer program operates on the axial force / moment interaction diagram (IAD) of a section, where an IAD is a plot of the maximum allowable resistance of a section for given stress and strain limitations. Combinations of moment (M) and axial load (P) falling within this area are acceptable. Figure IA-1 depicts the appropriate IAD for a symmetrically reinforced, symmetrically shaped section subjected to a combination of flexural and axial loads. The OPTCON program handles loads consisting of axial forces and corresponding bending moments due to different types'of loads. Special subroutines are provided to incorporate the thermal effects into the design and/or investigation. The cracking effect of the concrete and the yielding effects of the reinforcement (as allowed by the appropriate stress / strain yielding criteria) are considered in the calculation of the thermal loads and moments computed by the program. l l 4 A-1 -- ~ ,._ __,,1

  • 3 Midland Plant Units 1 and 2 Structural Stresses induced by the Differential Settlement of the Diesel Generator Building Compression C(-)

Satifies Design Criteria s s Interaction Diagram a' s h'.::V /,, s '? Compression Failure Zone s q;;g,. s. , ~ ~ s ~' . ~ ' s V y ) ss s, y -insi:!g:.;p ?Bii<, s, i 3 . _m s isfsp. '}:E$i',

[g iiiMii 5@.
[l ',

a N Balanced es v:xz,.:si. tsp Failure s =w, ng, :$$m ,ss N kkh: {, -{ s i l

sgi,:!.

.s , e s s s s l fj:' :f} k k y s + ' < i. F*f! " Failure l ym Zone n :, s.gs ~. Moment / (+)M s / Tension T(+) Figure IA 1 TYPICAL INTERACTION DI AGRAM (for single axis bending on a section with symmetrical reinforcement)

e' e >5. ENCLOSURE 2 SUBGRADE MODULUS AND SPRING CONSTANT VALUES FOR DIESEL GENERATOR BUILDING STRUCTURAL ANALYSIS Issue: Basis and actual numerical values of adopted spring constants - both static and dynamic'(reconcile with settlement predictions and observed behavior)

Response

Introduction This describes the methods used to develop the subgrade modulus and spring constant values intendad for use in the structural and seismic analysis of the diesel generator building. These values are indicated in Appendix A. Springs for Dynamic (Short-Term Static) Condition Springs were developed for movements which were assumed sma'll enough to cause a negligible decrease in the low-strain shear modulus which was determined from field geophysical testing. Vertical translation, hori-zontal translation, and rocking mode springs were developed. The shear wave velocity profile assumed for use in the spring development consis-ted of a shear wave velocity of 500 fps from elevation 634 to 615 feet and 850 fps from elevation 615 to 550 feet. The diesel generator j building foundation elevation is 628 feet. In all cases, it was assumed that the structure foundation and walls were rigid. The spring constant values were developed for the best estimate of the existing soil shear i wave velocity. However, as discussed later, a parmaetric study was performed and the effect of varying shear wave velocity profiles on the l spring constants was determined. 5 The spring constant for the vertical translation mode is 9.6 x 10 k/ft (subgrade modulus, 163 kef). This value was developed using the fol-lowing formula developed by Timoshenko and Goodier which is described in Reference 2, Pages 347 and 350: I . 4Gro 4d " 1 -u.

  1. o "

r ' This formula represents the ratio of force to deflection for a rigid circular plate resting on an elastic half-space with shear modulus, G. The shear modulus used was a weighted average of the shear moduli pro-file for a depth below the foundation equal to the width (78 feet) of the building. The subgrade modulus indicated,163 kef, was determined .by dividing the spring constant by the area of the diesel generator building wall footings. I

l The spring constant for the horizontal translation mode was developed as separate components considering the effects of: 1) The horizontal shear force of the base of the building and soil within the building perimeter on the elastic half-space 2) The horizontal shear force of the buried portion of the exterior side walls on the elastic half-space 3) The horizontal force of the walls perpendicular to the translation on the half-space. The base shear component,. directiogk/f, was developed using the following formula deveioped 3.1 x 10 by Bycrof t which is described in Richart, Hall, and Woods (_970), Pages 347 and 350: 32 (1 -u ) Gr

  1. o " J4cd o

K= Yr x 7-8p This formula represents the ratio of horizontal force to horizontal deflection for a rigid circular plate resting on an elastic half-space with shear modulus, G. The shear modulus used was based on the shear wave velocity of 500 fps. 5 5 The side shear components, 1.48 x 10 and 2.97 x 10 k/f, were developed using the following formula developed by Groth and Chapman which is described in Reference 1, Pages 99 through 102: p,qaI E This formula represents the horizontal deflection of the top or bottom corner (depending on the value of I) of a flexible rectangle buried in an elastic half-space with Young's modulus, E. The spring constant was determined by rearranging terms and multiplying by the area of the rectangle (wall). Because the diesel generator building walls are assumed rigid, the spring constants developed for the top and bottom corners were averaged. The Young's modulus used was based on a shear wave velocity of 500 fps. Tha components represented by the wall pushing against the soil, 5.,a x 10 and 2.0 x 10 k/f were developed using the following formulas developed by Douglas and Davis which cre described in Reference 1, Pages 97 and 98: O e 2

(3 - 4u) F7+F4 + 4 (1 - 2u)(1 -U)FS (Upper Corners) Ax " 32 r G ( -u) (3 - 4u) Ft+F2 + 4 (1 - 2 )(1 -u)F3 9 (Lower Corners) p = 32 r G - *a ) These formulas represent the horizontal deflection of the upper and lower corners of a flexible rectangle buried in an elastic half-space with shear modulus, G. The spring constant was determined by rearran-using terms and multiplying by the area of the rectangle (wall). Because the diesel generator building walls are assumed rigid, the spring con-stants developed for the top and bottom corners were averaged. The Young's modulus used was based on a shear wave velocity of 500 fps. 9 The spring constants for the rocking mode are 1.85 x 10 and 4.65 x 10 k-f/ rad. These values were developed using the following formula developed by Gorbunov-Possadov which is described in Reference 2, Page 350: 9= 7 _,, 5 0 Cci This formula represents the ratio of moment to angular rotation for a rigid rectangular plate resting on an elastic half-space with shear modulus, C. The shear modulus used was the same weighted average value that was used for the vertical translation mode. !.nilly, it.as necessary to deter;ine the varistion in the vertical translation and rocking mode spring constants for a variation of back-fill properties consisting of 1) fill below foundation level (el 628 to 600 feet) with a constant shear wave velocity of 500 fps and, 2) fill below foundation level with a constant shear wave velocity of 1,350 fps. This was done by substituting the weighted average shear moduli for these cases for the weighted averages used earlier 1n the calculations ~ l~ for a shear wave velocity profile for fill (el 628 to 600 feet) varying from 500 fps to 850 fps. Because the vertical translations and rocking mode spring constants, K, and K, respectively, are linearly propor-4 tional to the shear modulus, G', the above can also be accompli-hed by l multiplying the original spring constants by 0.85 and 1.8 for fill shear wave velocities of.50u fps and 1,359 fps, respectively. Springs for Long-Term Static Condition The subgrade moduli for the long-term settlement condition of the diesel generator building were developed from the settlement of the structure af ter the surcharge was removed neglecting the humediate heave which occurred following load removal, September 14, 1979, to December 31, 2025 Figure 2 contains the contact pressures used to determine these subgrade moduli. 4 i b 3 s t ~, -,m. y ,.__,_,.,_..,._,m -e- ~ - fr ..m,, u..,..

The vertical subgrade moduli were determined by dividing the contact pressures by the corresponding measured and estimated settlements. The settlement used is the sum of 1) the measured settlement which occurred from September 14, 1979, to January 16, 1980, neglecting the imnediate heave occurring af ter surcharge removal on August 15, 1979,

2) the estimated settlement from January 16, 1980, to December 31, 2025, extrapolated from settlement versus log (time) plots of the building settlement. markers which were plotted for the time period during sur-charge loading, and 3) the estimated dewatering settlement which had an estimated range of 0 inch to 0.25 inch. The estimated values were then proportioned within this range according to the settlement predicted f r om Augus t 15, 1979, to December 31, 1981, by extrapolation of settle-ment versus log (time) plots described in (2) above. The effect of seismic shakedown settlements has been omitted as discussed in Subsec-

~ tion 2.1.2 of Enclosure 1. The horizontal spring constant valua to be used is the same as the value computed for the short-term static case. I 3: in2s for Seismic r.nalysis The seismic analysis for the diesel generator building was done by using the half-space lumped spring and mass representation approach presented in BC-TOP-4-A, Revision 3 Otf ferences may be noted between the spring values used for the seismic

alysis a.ti S.e sprir.gs used fo r tLa syr.ani: (.h:c:-te: c:::;:) cc. % -

f sis. This is primarily due to the consideration of only local ef fects for the short-term static analysis, whereas the seismic analysis must consider global ef fects due to ground motion. Minor differences arise i also because of the use of alternate formulas to calculate equivalent area, variations in Poisson's ratio, and graphical interpolation. 9 8 4

REFERENCES 1. Poulor, H.G., and Davis, E.H., Elastic Solutions for Soil and Rock Mechanics, John Uiley and Sons, Inc., 1974, (New York), 411 pp. 2. Richart, F.E., Jr., Hall, J.R.,, Jr., and Woods, R.D., Vibrations of Soils and Foundations, Prentice-Hall, Inc.1970, (Englewood Clif f s, N.J.), 414 pp. s I o e F 9 i l t 5

e G e A??ENDIX A S*J5GR.GE ".0::LUS /d:D SFRING CO::52iu;! VALUES FOR STRUCTURAL AND SEISMIC ANALYSIS OF THE DIESEL GENERATOR BUILDING 9 9

-e APPENDIX A ) 1. Dynamic (Short-Term Static) Condition The vertical subgrade modulus values and the horizontal and rocking spring constant values for the dynamic (short-term static) analyses of the diesel generator building are listed below. Spring Constants N-S Direction E-W Direction Mode Subgrade Modulus (k/ft) (k/ft) j -Vertical 163 kcf Horizontal 5 5 1. Base shear 3.1 x 10 3,1 x 13 5 2. Side friction. be-1.48 x 10 2 97 x 10 - tween soil and wall 5 5 [ 3. Wall pushing against 3.56 x 10 2 0 x 10 soil 5 5 TorAL OF 1, 2, and 3 8.14 x 10 8.07 x 10 Rocking Rocking Axis Rocking Axis E-W ( k-f t/ rad) N-S ( k-f t/ rad) 1.85 x 10 4.65 x 10' 9 II. Long-Term Static Condition The vertical subgrade modulus values and the norizontal spring constants values for the long-term static analysis of the diesel generator buil-ding are given below. 1. Vertical subgrade modulus - The subgrade moduli of the selected points along the exterior wall footings are shown in Figure 1. 2. Horizontal spring constants - The horizontal spring constants given previously for the short-term static or dynamic case can also be used for the long-term, static case. This is because horizontal displacements are small and in the elastic range. III. Seismic Analysis Soil springs for the seismic analysis of the diesel generator building were determined for two conditions to envelope the anticipated range of soil properties beneath the building. These springs are used for both the safe shutdown egrthquake and the operating basis earthquake. Springs i . fo r the E = 22 x 10 kaf are as follows: A-1 .. - ~.,.,. - 4 4 --,.------. -,.r - ~. -. - - -.--

l e e North-South East-West Vertical i 6 6 K (K/ft) 1 5 x 10 1.5 x 10 x 6 2.0 x 10 K (K/ft) 9 9 K, (K-f t/ rad) 3 30 x 10 8.10 x 10 3 Soil springs based on revised soil properties with E = 6.6 x 10 ksf and V, = 796 f t/s as follows: N,crth-South East-West Vertical 5 K (k/ft) 6.9 x 10 7.0 x 10 5 9.3 x 10 K (k/ft) K9 (k-f t/ rad) 1.70 x 10 3.50 x 10' 9 chen-tm-e velocity of 796 f t/s is a Ict strain value. Its deriva-tica is discussed in Subsection 2.1.6 of Enc 1csure 1. To account for strain ef fects on the modulus of elasticity, this low strain value is degraded to 660 f t/s, ' Mc modulus of elasticity corresponding to this reduced value is then varied by +50% to account for variations in soil properties. The ef fect of lowering the shear wave velocity to 500 f t/s tras sise analy:ed to ensure that the cost conservative values were used f t r the s tructural analysis. 0 9 A-2 l l

eq,. FIGURE 1 1 I LONG-TERM STATIC SUBCRADE. MODULI IN KCF DIESEL GENERATOR EUILDING } l 22.0 3?.3 31.4 35.9 25.5 I ~ I I l g. 25.5 24.7 I I I i i 24.7 24.1 23.8 18.8 18.8 9 4-O e w-


e-..

~,. _,. _,, _,,,_,,_,,.

~~o e, FIGURE 2

SUMMARY

'0F BEARING STRESS (KSF) DUE TO DEAD LOAD s i I 3.17 3.14 3.11 3.09 3.05 1 I ~ l I I s I I a g a m 6 l 3.80 3.76 3.73 3.70 3.67 S e r i w i i e v - ~ ..n.,w ---.m..~~ e,.,--- ,,un, nn,,,,--.n-,,v-

r .k 7-IO,r d ENCLOSURE 3 BEARING CAPACITY EVALUATION OF DIESEL GENERATOR BUILDING FOUNDATION INTRODUCTION Analyses were carried out to evaluate the factor of safety against bearing capacity failure of the diesel generator building footings.when subjected to static and combined static and earthquake loading. Factors of Safety Factors of safety against bearing capacity failure were calculated for two different conditions: 1. A long time after the permanent structural load has been applied and the induced pore water pressures below the footing have dissipated. Effective shear strength parameters of the soil were used to calculate the factors of safety under these conditions. Laboratory testing of the fill materials indicated the effective strength parameters to be c' = 0 psf and $' = 30*. Factors of safety under drained conditions were calculated for a high water level at elevation 628' (at the bottom of the footing) and a low water table below elevation 603'. Factors of safety equal to 5.3 and 7.2 were calculated for these two conditions, respectively. These values exceed the value of 3 required in the Midland FSAR for dead and live load conditions. 2. Factor of safety against bearing capacity failure were calculated for a second condition corresponding to an earthquake occurrence sometime after the structure has been built. In the analysis it was assumed that during the time span before the earthquake occurs the excess pore water pressure in the ground, induced by the static loads on the footing, have dissi-pated. The undrained shear strength of the soil corresponding to consol-idation under the 6 feet of surcharge plus the static footing load was used in estimating the factor of safety. The effective confining stresses along the failure surface was estimated by utilizing the method of slices to determine the mobilized friction angle required to maintain static equilibrium. The effective normal stress and shear stress at the base of each slice were then used to estimate the absolute values of the major and minor principle stresses IT and cI at the base of ea:h slice due to the long 1 3 term static loads. These 15itial consolidation stresses were used by Woodward-Clyde Consultants for determining the range of consolidation pressures and the appropriate anisotropic consolidation stress ratio, 3 /6, to use in anisotropically consolidated undrained triaxial tests. 3 3 The results of these triaxial tests were summarized by plotting the 10/19/81 mi1081-0833a100

7 y- '.\\ l i 2 ) undrained shear strength, If, along the failure surface for each sample ~ asdefinedbyLoewe,andKarafiath(1959),andtheinitialeffective l confining stress, o, on that surface for both anisotropically and isotropically consofidated samples. It was found that the anisotropically consc.tidated samples gave slightly higher undrained strengths than the isot npically consolidated samples. The factors of safety for the combined earthquake and static loading were obtained by using the method of slices. The undrained shear strength, gg, at the base of each slice was determined from the plots of Tff versus I o, referenced above, by entering the plots at the value of the initial sEatic confining stress, o, at the base of each slice. Factors of safety were calculated for a high water table at elevation 628' for the anisotropic and isotropic shear strength relationships which yielded factors of safety of 2.8 and 2.4, respectively. For the dewatered case when the water table is below the failure surfaces considered, a factor of safety of 3.1 was calculated from the anisotropic shear strength relationship. In current engineering practice which is consistent with the Midland FSAR, a factor of safety of 2 is considered adequate when considering combined static and earthquake loads; under these conditions it is concluded that the present diesel generator building footings are adequate for the static and earthquake loads considered above. 10/19/81 mi1081-0833a100

ENCLOSURE 4 i LONG-TERM MONITORING OF SETTLEMENT FOR DIESEL GENERATOR BUILDING Issue: Plans for Long-Ters Monitoring of Settlement for Diesel Generator Building (Includes Technical Specifications, etc)

Response

The settlement monitoring program for the diesel generator building has been established and is being implemented. Settlement monitoring points have been located around the building and on the machine pedestals to identify any tilting or warpage. These points are surveyed every 60 days during construction, and every 90 days during the first year of plant operation. It is currently planned to evaluate the settlement data during the first year of plant operation and develop an appropriate monitoring interval for the re-maining plant operating life. As a minimum, the building would be monitored annually for the next 5 years of operation and then at 5-year intervals thereaf ter. At least 6 points on the building will be monitored for the operating life of the plant: one point at each building corner and a point at the center of each east-west wall. Each corner of each machine pedestal will also be monitored as discussed above. If the rate of settlement increases at any time during the monitoring program to a value greater than predicted for that monitoring point (see the response to Nnc 10 CFR 50.54(f) Question 27), the monitoring interial will be increased to every 60 days to permit evaluation of the change in settlement. The allowable limit of absolute settlement of any point and relative settlement between points will be provided as part of the technical specifications in the Final Safety Analysis Report. These values for the pedestals are given in the response to NRC 10 CFR 50.54(f) Question 8. The building values due to fill consolidation are given below. SW Corner South SE Corner NE Corner North NW Corner DG 1 DG 21 DG 3 DC 28 DC 26 DG 24 Allowable limit 1.85 1.89 2.34 1.38 1.19 1.18 of settlement After August 15, 1979 (inches) 10/19/81

f o' g_ ENCLOSURE 5 RELATIVE DENSITY AND SHAKEDOWN SETTLEMENT OF SAND UNDER THE DIESEL GENERATOR BUILDING Comparison of Relative Densities The relative densities of the sand fill in the area of the diesel generator building were compared based on information from the DG series borings conducted before surcharge and.the COE series borings conducted after surcharge. The relative densities from the DG series be.ings were determined from standard penetration blow count data using Gibbs and Ho'ltz (1957) relationships. The relative densities from the COE series borings were determined by Woodward-Clyde Consultants (WCC) from in-situ densities of tube samples and grain size data as described in the report entitled " Estimates of Relative Density of Granular Fill Materials, Diesel Generator Building, Midland Plant, Units 1 & 2, Midland, Michigan" dated July 24, 1981. For the purpose of presentation of relative density data the building was divided into four quadrants as shown in Figure 1. The same Figure 1 also shows the location of DG series borings and COE series borings. The relative densities are compared below. Relative Density Comparison (%) DG Series Borings COE Series Borings Quadrant Range Average Range Average Northwest 15-100 62 42-100 82 Northeast 15-100 72 28-100 74 Southwest 45 45 57-100 88 Southeast 10-100 69 56-100 88 It is seen from the above comparison that the relative density obtained from the COE series borings after surcharge are higher than the relative densities obtained from the DG borings before surcharge. Shakedown Settlement The settlement of the granular fill materials under the diesel generator building due to ground shaking (SSE = 0.12g) caused by earthquakes was calculated based on tests performed on soil samples obtained after the surcharge progara during the recent (1981) soil investigation program by Woodward-Clyde Consultants (WCC). The details of the tests and results obtained are presented in the WCC report entitled, " Estimates of Relative Density of Granular Fill Materials, Diesel Generator Building, Midland Plant Units 1 and 2, Midland, Michigan" dated July 24, 1981. The settlements were estimated based on the approach described by Seed and Silver (1969) and the recommendation. on multidirectional shaking by Pike, Seed and Chen (1975) at mi1081-0459a100 i

4 2 the location of Borings COE 8, COE 10, COE 11, COE 12 and COE 13. For the COE borings the relative density used in the analyses was the average relative density reported by WCC in the report referenced above. The settlement values based on DS series borings prior to surcharge were also calculated using the above approach. However, the relative density values were obtained using the standard penetration blow count and the Gibbs and Holtz relationship. The settlement estimate based on borings prior to and after surcharge program are compared below. Location DG Series Borings COE Series Borings (Inch) (Inch) Northwest Quarter 0.02-0.36 0.07 Fortheast Quarter 0.00-0.25 0.07 Southwest Quarter 0.00-0.02 0.02-0.11 Southeast Quarter 0.00-0.14 0.02-0.11 It can be seen from the above comparison that the maximum settlement calculated based on the COE series borings (after surcharge) are lower than that calculated based on the DG series borings (before surcharge). Therefore, the design values of settlement and differential settlement of 1/2 inch provided in the response to 10CFR50.54(f) Question 27 are conservative. 10/15/81 i i I l mi1081-0459a100 i l

/ DIESEL GENERATOR BUILDING COE-8 d NE QUADRANT d GOE-10 NW QUADRANT SDG-32 SDG-28 ODG-31 Ci-Wl T CR,_ I J O DC-19I i l i'

  • l l

h~I ~ DC-14

H-1f Cil-14 kH-15 DC-10 DG-9 DG-27 DG-20 9

,_ _ _ _ _ _e, [DG-8 DG-21 DG y _ _ _ __,,c_ f .c _ __-13 S i i 1 i g g I e I l l l 3 8 1 i l l lx-22 i i J i j ( j i fDG-15 I I I (D.G-24 I ( i is i i i i i iDG-26 1 I l l I DC-12 8 1 DG-17 8 9I I e e DG-16 l GDG-il I eg i CH-17 SSCH-13 i It _ _ _ _,I Cil-16 8 s_____., .I_____ g g g u _ _ _ _, ._J L.J L J LI L_ DG-1. d COE-11 SW QUADRANT d COE-12 SE QUADRANT gCOE-13 9 PREVIOUS (1979) BECHTEL DIESEL GENERATOR BORING dRECENT(1981)UCCCOEBORING i I FIGURE 1 BORING LOCATION PLAN IN AREA OF DIESEL GENERATOR BUILDING

C>

,s 1 r E'ICLOSURE 6 ESTIMATES OF RELATIVE DENSITY OF GRANULAR FILL MATERIALS DIESEL GENERATOR BUILDING MIDLAND PLANT - UNIT 1 and 2 MIDLAND, MICHIGAN 4 i f f i

,',%= $""'

Woodward Clyde Consultants Chicago. Imnoie 80603 i e 312-939-1000 Telex 253875 (WOODWARD CGO) ESTIMATES OF RELATIVE DENSITY OF GRANULAR FILL MATERIALS DIESEL GENERATOR BUILDING MIDLAND PLANT - UNIT 1 and 2 MIDLAND, MICHIGAN 5 For Consumers Power Company 1945 West Parnall Road Jackson, Michigan By mes W. Stenborg and L . Campbel 24 July 1981 81C217 ) Consulting Engineers Geologists A and Environmental Scientists Offices in Other Pnncipal Cities fll,'SCOiQ'[ hb f f

. _ _. = 9 5 TABLE OF CONTENTS ~ fage 1. INTRODUCTION 1 '2 DATA SOURCES 1 3. ANALYTICAL PROCEDURE 2 3.1 In-situ Density 2 3.2 Maximum and Minimum Densities (Void Ratios) 2 3.3 Relative Density 3 4. DATA PRESENTATION 3 i .5. REFERENCES 5 k I 1 t i l e d 4 _. = * 'em-

  • * = = = = =. = = _

e.. e=

i n 8 LIST OF TABLES Table 1 Summary of Relative Density Values Based on Particle-Size Distribution-Boring COE-8 Table 2 Summary of Relative Density Values Based on Particle-Size Distribution-Boring COE-10 Table 3 Summary of Relative Density Values Based on Particle-Size Distribution Boring COE-11 Table 4 Summary of Relative Density Values Based on Particle-Size Distribution Boring COE-12 Table 5 Summary of Relative Density Values Based on Particle-Size Distribution Boring COE-13R LIST OF FIGURES Figure 1 Boring Location Plan - Borings Drilled In 1981 Figure 2 Relative Densities Calculated Using Tube Densities Figure 3 Relative Densities Calculated Using Section Densities Figure 4 Histogram of Relative Densities LIST OF APPENDICES l Appendix A Particle-Size Distribution Curves Appendix B Empirical Relationships for Estimating Densities (VoidRatios) Appendix C Density and Relative Density Plots i ( e

W. 1. INTRODUCTION-s This report. presents estimates of relative density of granular fill materialsobtainedattheDieselGeneratorBuilding(DG8)atConsumersPower Company (CPCo) Midland Plant - Units 1 and 2. These estimates of relative (density are provided in direct response' to a request from (and in the manner i' suggested by) Dr. Paul Hadala of the Corps of Engineers Waterways Experiment Station. This request was made during a meeting with the Nuclear Regulatory Consission in Bethesday, MD on 6 May 1981. Estimates of relative density were made using densities of granular ' fill samples obtained from the vicinity of the DGB'during a Soil Boring and 4 l ' Testing Program conducted at the Midland Plant by Woodward-Clyde Consultants (WCC) /during the spring of 1981. Maximum and minimum densities of these granular fill samples were estimated from various empirical relationships based on the gradation of the samples as determined from particle-size dis-tribution analyses performed during the referenced testing program. i I 2. DATA SOURCES i All " test" data for the granular fill samples were obtained from a report to CPCo prepared by WCC (1981) concerning test results of the Soil j Boring and Testing Program for the DGB. These data had been obtained from i measurements and tests on granular fill samples obtained above elev. 600 from i five borings drilled outside of the DGB, (but within the crest of the l previously applied surcharge) as shown on Fig.1. Densities of granular fill 1 i materials had been determined during the referenced testing program based on measurements of the entire thin-walled tube samples and some 6-in.-long sections extruded from the tubes. i These total tube (wet) densities, section (dry) densities, and water contents were obtained from the tables in Appendix 8 of WCC (1981). Parti-cle eize distribution data were obtained from Appendix C of the same report. i ~ i l WClyde Consultants i e ,--,,,.,,--m..-, ,,,-w_,- ,,,,,,,,,,,,,_-_.,-~,.,,-n---,,--,,_,,a,, ,,_,,,-,__,.c .,,,,__m

2 Copies of 38 particle-size distribution curves for the granular fill samples considered are presented in boring / sample-number order in Appendix A of this report. Multiple particle-size distribution analyses were performed on some , tube samples because the tubes contained materials of differing gradations. i Maximum and minimum densities of the granular fill samples were esti-mated from empirical relationships between density and gradation as de-scribedbyBurmister(1962),Alpan(1976),andJohnston(1973). Similarly, maximum and minimum void ratios were estimated from an empirical relation-ship described by Youd (1973). Brief descriptions of each of the methods .and illustrations of the relationships are presented in Appendix 8. j 3. ANALYTICAL PROCEDURE 3.1 In-situ Density Values of in-situ dry density were calculated for each of 27 tube i samples by dividing the reported total tube density by the quantity one plus the averaged tube sample water content (expressed in decimal form). The average tube water content was calculated as the average of the water content determinations done on specimens from the tube. In nine cases, in-situ dry i densities had been determined hsed on measurements of sections extruded i from the tubes. Because most of the densities were calculated for an entire {f tube sample, the density correction factor suggested by Marcuson and Franklin (1979) in Fig. 5d (for location within the sample tube) was not applied to the available data. I l 3.2 Maximum and Minimum Densities (Void Ratios) t For each of the 38 particle-size distribution curves presented in ![ Appendix A, maximum and minimum densities (or void ratios) were estimated f using each of the four empirical relationships illustrated in Appendix B. Three of these relationships (Alpan, Johnston, and Youd) utilize the coef- '~ ficient of uniformity (C ) as the parameter to represent the gradation u characteristics of the samples. For the Burmister maximum density re- _,7_

4 / i 9 9 '[ 3 .i r lationship, a shape designation of the particle-size distribution curve and the effective grain size range (C ) are required; the minimum density r relationship requires C and the effective grain size (D50)* r These required parameters were determined for each particle-size dis-tribution curve. Using these parameters, maximum and minimum densities were estimated for the relationships developed by Burmister, Alpan, and Johnston. Using Youd's relationship maximum and minimum void ratios were estimated. These void ratios were converted to densities assu itng that the specific ^ ' gravity of the granular fill materials was 2.68. 3.3 Relative Density Relative density (D ) was calculated using the following equation: r T max Td T min d d y X 100 D (%) = T max Tdmin r yd d yd' Y max, and ydmin are the in-situ, maximum, and minimum dry where: d densities, ret.pectively. In-situ dry densities and maximum and minimum dry densities were obtained as previously described in Sections 3.1 and 3.2, respectively. -l Estimates of relative density were calculated for applicable combi-nations of tube and section densities and multiple gradations from a single i tube. A total of 47 relative densities, for each of the four different 4 relationships previously described, were calculated; 38 were based on tube i densities and 9 were based on section densities for each relationsnip. 4. DATA PRESENTATION The data determined and/or calculated as described in Section 3 are presented graphically in Appendix C. The densities (yd' Tmax and ymin) and ~ relative density values (D ) are plotted by clevation in Figures C-1 through r - ~,,,.,.,,,,, -, -..,,,-,-,,,--,-,-~a

4 C-5 for each of the five borings from which density and gradation data were cbtained. For each boring, the results based on the Burmister Alpan, Johnston, and Youd relationships are plotted and presented as Figures -a, -b, -c, and -d, respectively. The left-hand portion of each figure depicts the tube and section dry densities and the estimates of maximum and minimum dry densities. The calculated relative densities are plotted on the right-portion of each figure. These calculated relative densities are also sumarized by boring in Tables 1 through 5. The data are tabulated in order of decreasing elevation and include 1) the relative densities based on the four relationships, 2) the range of these calculated values, and 3) the average for each sample. The range and average of these estimated relative densities are also plotted by elevation for all 38 tube densities as Fig. 2 and for all 9 section densities on Fig. 3. A histogram showing the distribution of the average estimated relative densities based on the four relationships is presented on Fig. 4. The average estimated relative density is greater than 70% for 37 of the 47 densities (79%), greater than 60% for 94% of the densities, and greater than 50% for 100% of the densities. Woodward Clyde Consultants

5 5. REFERENCES

Alpan, I.

(1976). Personal comunications with D.M. Hendron of Woodward-Clyde Consultants. Burmister, D.M. (1962). Physical, Stress-Strain, and Strength Responses of Granular Soils. In Symposium on Field Testing of Soils, ASTM Special Technical Publicatfon No. 322, pp 67-97. l f l Johnston, M.M. (1973). Laboratory Studies of Maximum and Minimum Dry Densities of Cohesionless Soils. In Evaluation of Relative Density and Its Role in Geotechnical Projects 7nvolving Cohe:;ionless Soils, ASTM Special Technical Publication No. 523, pp 133-140. l Marcuson, III, W.F., and Franklin, A. G. (1979). State of the Art of Undisturbed Sampling of Cohesionless Soils. In State of the Art on Current Practice of Soil Sampling, ProceedingTof the International l Symposium of Soil Sampling, Singapore, pp 57-71. Woodward-Clyde Consultants (1981). Test Results, Diesel Generator Building, Soil Boring and Testing Program, Midland Plant-Units 1 and 2. Midland, Michigan. Report preared for Consumers Power Company, Jackson, MI, by Woodward-Clyde Consultants, Chicago, IL, 8 July 1981, p 9, 8 appendices. Youd, T.L. (1973). Factors Controlling Maximum and Minimum Densities of Sand. In Evaluation of Relative Density and Its Role in Geotechnical ProjectT Involving Cohesionless

Soils, ASTM Special Technical Publication No. 523, pp 98-112.

Woodward Clyde Consultants

TABLE 1

SUMMARY

OF RELATIVE DENSITY VALUES BASED ON PARTICLE-51ZE DISTRIBUTION Boring COE-8 D, Relative Dansity (%) r Calculated Based On: Sample Depth Elev. Number (ft) (ft) Burmister Youd Alpan Johnston Average Range i f f 5-3A 6.6 627.6 74 79 88 93 83.5 74-93 S-4A 8.4 625.8 67 53 66 42 57.0 42-67 5-5B 10.4 623.8 65 59 75 66 66.2 59-75 5-7A 12.4 621.8 82 93 100 103 94.5 82-103 S-7B 13.0 621.2 80 73 81 60 73.5 60-81 S-8A 13.5 620.7 95 83 93 90 90.2 83-95 5-8B 14.2 620.0 94 90 97 99 95.0 90-99 5-9A 14.6 619.6 86 76 86 77 81.2 76-86 5-10B 15.6 618.6 85 84 ' 92 94 88.8 84-94 5-11 A 17.6 616.6 74 103 110 127 103.5 74-127 S-11D 19.4 614.8 79 78 88 88 83.2 78-88 S-12A 20.1 614.1 85 77 86 80 82.0 77-86 S-12 C 21.0 613.2 85 82 92 92 87.8 82-92 S-13A 22.8 611.4 67 55 71 57 62.5 55-71 S-14A 25.1 609.1 67 59 74 61 65.2 59-74 S-14D 26.6 607.6 74 80 91 97 85.5 74-97 S-15A 27.5 606.7 86 98 101 129 103.5 86-129 S-15B 28.0 606.2 46 57 69 77 62.2 46-77 S-16B 30.6 603.6 89 89 99 115 98.0 89-115 5-16C 31.7 603.1 65 65 80 80 72.5 65-80 S-17A 32.7 601.5 49 62 75 88 68.5 49-88 S-17A 32.7 601.5 (82) (96) (106) (121) (101.2) (82-121) S-17C 33.6 600.6 81 89 91 116 94.2 81-116 5-17C 33.6 600.6 (57) (71) (74) (100) (75.5) (57-100) Note: All relative densities were calculated using tube densities except those shown in parentheses which were calculated using section densities. 81C217

~ '~ TABLE 2

SUMMARY

OF RELATIVE DENSITY VALUES BASED ON PARTICLE-SIZE DISTRIBUTION Boring COE-10 D, Relative Density (%) r Calculated Based On: - Sample Depth Elev. Number (ft) (ft) Burmister Youd Alpan Johnston Average Range 5-1B 6.8 627.1 28 49 59 72 52.0 28-72 5-1B 6.8 627.1 (51) (70) (77) (92) (72.5) (51-92) S-2A 8.3 625.6 64 81 88 103 84.0 64-103 5-2A 8.3 '625.6 (53) (71) (78) (93) (73.8) (53-93) S-8B 24.8 609.1 44 55 57 88 61.0 44-88 S-9B 26.3 607.6 98 102 106 128 108.5 98-128 S-9B 26.3 607.6 (91) (96) (100) (122) (102.2) (91-122) S-10A 28.3 605'.6 66 62 72 92 73.0 62-92 S-10A 28.3 605.6 (58) (55) (65) (85) (65.8) (55-85) 5-10 C 29.0 604.9 49 53 67 63 58.0 49-63 5-llB 31.2 602.7 57 72 82 93 76.0 57-93 Note: All relative densities were calculated using tube densities except those shown in parentheses which were calculated using section densities. SIC 217 l _ _ _ _ _ _. _, _ _ _ _ _ _ _ _ _,,..,,, j

TABLE 3

SUMMARY

OF RELATIVE DENSITY VALUES BASED ON PARTICLE-SIZE DISTRIBUTION Boring COE-11 D,, Relative Density (%) Calculated Based On: Sample Depth Elev. Number (ft) (ft) Burmist-r Youd Alpan Johnston Average Range S-2B 8.6 624.9 123 110 112 116 115.2 110-123 i S-10A 21.1 612.4 83 80 84 111 89.5 A0-111 ~ S-10A 21.1 612.4 (72) (73) (76) (104) (81.3) (72-104) S-11B 24.6 .608.9 74 88 90 119 92.8 74-119 S-14 A 30.7 602.8 94 69 76 96 83.8 69-96 5-14 A 30.7 602.8 (78) (57) (85) (85) (76.2) (57-85) l ~ S-14C 31.7 601.8 94 82 74 110 90.0 74-110 Note: All relative densities were calculated using tuLa densities except those shown in parentheses which were calculated using section densities. r 81C217

TABLE 4

SUMMARY

OF RELATIVE DENSITY VALUES BASED ON PARTICLE-SIZE DISTRIBUTION Boring COE-12 D, Relative Density (%) r Calculated Based On: Sample Depth Elev. Number (ft) (ft) Burmister Youd Alpen Johnston Averag Range 5-5A 11.4 622.2 74 73 85 86 79.5 73-86 1 Note: All relative densities were calculated using tube densities except those shown in parentheses which were calculated using section densities. i D 1 6 81C217 l t

p TABLE 5

SUMMARY

OF RELATIVE DENSITY VALUES BASED ON PARTICLE-SIZE DISTRIBUTION Boring COE-13R D, Relative Density (%) r Calculated Based On: Sample Depth Elev. Number (ft) (ft) Burmister Youd Alpan Johnston Average Range S-16B 30.0 603.6 56 68 76 110 77.5 56-110 5-17A 31.3 602.3 63 82 85 113 85.8 63-113 S-17C 32.4 601.2 86 97 95 125 100.8 86-125 ~ 5-17C 32.4 601.2 (66) (85) (82) (114) (86.8) 66-114 Note: All relative densities were calculated using tube densities except those shown in parentheses which were calculated using section densities. t 6 f 4 81C217 l

'I \\J 1 0 ~ 4 g s i t F n / Y2 1 A 0 N8 a 2 A1 l t l PMs u s Ot n 1 Ci 8 n M n 9 o O RU 1 'E e C N Wt y On e N 1 Pa l b M u d l r J y SP D l R 9 4 C m Ed 2 Mn -d Ua n m Sl l r o Nd Br a Oi 9 4 w m CM g 7 d ) ~' 1 2 o m 0 A )8 c o / 33 W 1 // 8 w Ef O v w s C ~ l m MY /d e 't3 )s A I m O E ( / O n w W C e v m w C AQ yi w 9 22 f-c Q g w E h Ef khR sp // / e e i / ir O O c O na d d n m i C 1' C r d e v ~ds O e w n l L3 / i o L u e4 r = B w ) i t C-M1= A G, 1 r 9 a 2 t d w t y / n al p n e /; E-r m G eg C nn n e 3 E e u O u - a m a n i s b m a t C i i r 8-D v d Tu t m e hm t e s n E y a c g / m W w nhi / i s n ~ rl AY E h i Nce r w o m

c. e M-a A

n it n / u s m /c a s m r e i d E v s c o h t lr i O f w C o e J L < i-c r } '1 ye c /r m c h e ge To n n je. c g c = x in a m irir d r d, I B N r e o ne B B e H D.&r m e e w m / cr r u m A ks o Y S m neo A Tr 8 m l l ) ~ m R ee S w a o / w cc ( I fIl l

jl O ~2 7g s i t Y2 F n N& s a A1 s e t P e i l l Ms i t u Ot t i 1 s Ci i s 8 n n sdn m RU nee o 9 1 E - etD C u Wt Da y n* On l e l e i Pa eub u d i l vcu J xo SP ilT y 6 R ta l 42 C Ed aCg M Mn l n Ua e i d Sl R s l r Nd U a Oi w e CM 4-g 7 d a o 1 2 r C o e R W 1 v 8 / 2S A 8D//I E E-E E E n O O OOO o CCCCC n r e C o V a BO i n i M o o o ,o i ? ^~ f o- ' 3 = o o ?

'~

u ,a = e c _ c o o: = c pc a g

c y

,oy c af .e o i c y c ec = c o ^ v g m 7 a o y D o c ~ ee e .oss c c c c.r c /a e c R o y Q c ,od v 0 2 5 0 5 0 s O 5 o 3 3 2 2 i I 0 o 6 6 6 G s G 6 G 4 co.$ j 9 ijl ll lIllllI;ll 7il l l l

p ~3 g s i t Y2 ' s F sr e N& a s i A1 t e t l l P u i i Ms t s m Ot s i n 1 u n sda 8 n Ci RU neD 9 o et 1 n E - Wt Dan C i'r) On ~ l o y e eui l s Pa vct u d a l il c J y SP M tae l R aCS 4 C Id l 2 Pn e g d Ua R n Sl l r i Nd a e Oi s w j CM U 4 a R 7 d r = 1 2 o e 8 O/2 3 C o v / W / / 1 1 A 8 E E-E- EE OOO oO m CCC cC u m ic 0 V a aO n iM 0 u y 0 / 7 c 7 1 08 c. c is n 0e \\ 6 c D e e ev H a l e 0R 4 D, W = = 5 0 5 0 5 O 5 0 0 0' e 3 3 2 2 / I 6 G G G 6 G 6 6 %ebs ,C 0.4 e > ,1!l1 \\ llliIl' ll ^ ,1

8- ~ i g 6. k 3 i.. q_]i_ p u u 7-- Z$ 32$ ..I. 4-d l 1 p 1 i 1 l g 2-t- 6 . _. q - -t 4 ij [

p...

4 .g{ 3 ,*e i t t +t l ,i .' 9,l *_, 4 t i

I l

q,, 20 80 90 /00 /to /20 Dr. ReteHve DensMy, =/. CONSUMERS POWER COMPANY Sampk o/z, n =47 Midland Plant-Units 182 Tube anc/s chon dens /Wes i I Histogram of Relative. Densities l t ~~ ~ Sample size n --as {~' Tube dens /hes on/y i '~ etc217-4. l 24 July 1981 'l Fig. 4 l woco e.cwco on G 1

-3, f APPENDIX A Particle-Size Distribution Curves l

e . ~... .e a s PARTICLE-SIZE DISTRIBUTION SILT OR CLAY l l C vL f saw i CotSLES l CO AR SE I FINE I COAmSE l M E DiUM l FIN E i k 01AMETER U S. ST ANDARD SIEVE SIZE UNIFIED Soll CLASSIFICATION SYSTEM s~ 4~ r 14-3'4-3's - 4 10 20 40 e0 100 200 n

ti t i i i e di M i i i it'i i

i t.t i i i U . ;i i ! i 6 ,ii i t A e 6 ti 6

i. Ii 6

80 i .i!iie T i si i i i !.. i., i i 4 e s i .I I e i s .ii.I i i\\ D ei I ,!+ 1 ! \\: 'i i i g l i .i: i i \\ ii!! 6 i e i, ei i , i i g y i =\\ ..i.. l.. i. i!,. i i i I n i' Ii ! \\ 't i 6 8 i g ii i ! i N .i. i 4 i i z 50 i Tc i i e i ,. i 4 3 .4 f g i .\\ ! i s i i n i i '\\! ! I i 6 g g g s,, i

m i

!i i. V a: . a i i i t . i ,, i ..T i . i.,i. i Ii i e .it e \\- ,,. i i 1 i . i i i i 'O , s ..i i i : (q i e i i i i ., i e . i [ e i 6 ..i i i % i i,, 200 100 10 1.0 0.1 - 0 01 0 001 GR AIN SIZE IN MILLIMETER $ SORING SAMPLE DE PTH lfti SYMBOL CLASSIFICATION wt%1 m t%i =,t % 1 g 5 l'af A S-S A L (a O _5'? k w R,7 4 on >

n. 4 f TD/D /-
8. 5 b

$anh/ /, $-Jh ' ' / y 5 i* l l cc,,3,", l co,,3,, ,,g,L,", l 5 m p Cm l CoastES ,,s, ,,s, DIAMETER U.S STANDARD $lEVE SIZE UNIFIED SQiL CLASSIFICATION SYSTEM $~ 4* r 14" 1'4"

3) "

4 10 20 40 60 100 200 100 - Ei.i i i i i

i. i i i

} l 4 vii i !. . i e i i - ;i.e i .ie M i e i i i i l i i.. ~ li i I I l lD' i ! I ' i 8 k i P** - Iie iii ! l.. I I eii i i l it i ei i i i i i i ii e I l i i i !i! 't** i!. I-i. e j ieii += i i e i e e i.\\ l i

i

!.,,ii [ f 1.!i! iHi! .i .i., i iN g g ' f ' '!' !i i\\ i' i ! !'.. '9.,, i f

  • e"

$0 j [ j ( ,9gg i 9 j, I I i % iil I i 't 'I i i 2 .I.i ! i I 'i' i

  • m ia e i i l ei. 4i j t

\\ ' i e

  • i i

b d .O! aei i l l N'i i i j +8 i i e f a e i a .\\ i .6 !',i O y !s'! l 6 i Ni i , i i i i i i i 7 .,.i6 i i ' ;e' i ii ! !14 l Ii ! l

  • i l

U - t. e e i +e i .i i i \\i Fe it i i. l l i: I j !i t

  • 'il

( i*ii j e i1a i e .ii i e 'ti i t iW 3 si i i i e i i i y i....! I i ihg^' ! i i i i ii.. l i i t eri i ; i.! i a i j j i !9 i O 7; i 9 e i l 200 100 lb 1.0 0.1 0.01 0 001 E GR AIN $1ZE IN MILLIMETEMS 1 BORING SAMPL E DEPTMitti SYMBOL; CL AS$1FIC ATION .tsi ., t v ..t v [Of $ $*& SW D $ Y W.?M M k $AA'O h A*L'// l$ b / / / / ,4-_ ri t' Fig. A-1 (1/7)

e j PARTICLE-SIZE DISTRIBUTION ( ] CoteLES 'L L I COARSE I fine I CoAR$E I Mio UM t FINE l h DI_AMETER U.S. STANDARD SIEVE SIZE UNIFIED SOIL CLASSIFICATION SYSTEM g-4 3-14" 3/4" 3/8 - 4 10 20 40 60 100 200 h ihi t t i i % hl I iii l i 4 isiii t 8. g

ti 6 i i i.T '

I isti i i ij.ie i h ia*. l .!i! e h i i8IIf i I.. t i .t. t .ilI $i\\ ..ii il t i ! i 6-I eii!l i !\\ ' !l ? I I i i-I g iii i ; e \\ ..i.i. e, I.. i. i, i s ,ii ii. i y g i!i6 ) ii,: l i ! b,q

eii i i t

to - I e g j ,i, j i, i i f i i i x ii i o R 1 ..i e, w.,ii . : i i g .>. i i wi., 3 - i, t .Ai t i i w t. W 'o E e i e it - iT, i i 8.... i i:.

i

.i\\. i .; i i \\ l ,i e i 1,. ! e

i..

i i ; i ,e e , i ,; e i i s ,sv _m.

;i i i ! i 1
. i e

i i i 200 100 10 10 01 0 01 0.001 GR AIN SIZE IN MILLIMETERS BORING SAMPLE DEFTM itti SYMBOL CL ASSIFIC ATioN .igt ., i o .p%: J.,C S4Mn +1. fem / 95 5 Ma s-ne n4 O SP M,.ai, s 6 / / / / / / + c /,/ V En f Er l l CosaLES m oR CL AY , en,,,,,

  • ist coARsri MeoiuM i

si%s i OI AME TE R U S. ST AND ARD SIEVE SIZE UNIFIED SOIL CLASSIFICATION SYSTEM ~ s4r tw-3/4-3g - 4 10 20 40 s0 100 200 100 'hN i [..! 1 i l l ..: i i t .i.9 i .iiii I 6 4 i.lhi iiiii i a, i. i. i i,i i e k e. i i i f h\\ j i! e i

1. i i!,,.

i t. { i l i N\\i .iIII . I:. ie ! e i e i e i g ff: !! i i i\\ X ti!! i it.ii i 3 }

i ! ! I i i 1Aw 6;..

i i, i g g ..... i i eii i &N ..!ii t ,, i, i!;e i i i i ii.I i

N Me i ! t i

. ti.. i i E ii, f 8 e ti!t i NINi i I i sq r !i e i li i i i % >iN i i i i i i. F R is. i i !!! l ! t %i@ i i i O f

3

.e i l ii i i i iN i.\\ i t. e i. E rei e i t !i i i i i !.i it \\ l i i t i t ip~ i i j i !iii I iie i9 \\_i w i. i a j 14 ! i!! i i I 8!iii !\\.4 ti t i. I i!iii i i 6 i;iii i\\ \\ i i i i y E ti.ir i t i !! I t i 1 t ill C,i i i i i; i } i iiil i ! ' i t g 10 '.1 g i 3. ! ! I j } !!l i ! l t 3 !! j ! I j N !.i, i i O i( , e i i 6 lIi j i I 6 iiii 6 I i WW i

  • l i

200 100 10 1.0 0.1 0.01 0 0C1 GR AIN SIZE IN MILLIMETERS soRimo SAMPLE os *Tw ini SYMaot CL ASSiFiC ATioN .isil .,isi ..i s. /*M A S-7A /2. d O SP f en t' ,4 / *~4Eh te S.ce w /,4-74 Qg) / ~ / / $Zf A $- 7A /2. 8 h SP-o!hw A / cAMD dr. 1^ er v.- / vn, 9.6 m/f J,4 As a-.efe,4 - 6 e '4 si A &Mh.) Fig. A-1 (2/7)

e s I PARTICLE-SIZE DISTRIBUTION ] I " L l COSSLES I CO Am st l Feht l COARSE f M E DIUM l FIN E I DIAMETE R U1 STANDARO $1 EVE SIZE UNIFIEO SOIL CLAS$1FICATION SY$T[w = ~ I 8" 4" 3" 1%" 3/8" 3J " 4 10 20 40 00 100 200 4 l N L4 ! l 4l'l 8 i i !II ! ! 4 4 k ia i . i W 6 I t il i I 6 i l i:i 6 i i i i i = me,w i -, e i i

iiii l ii i i ! i

. s.NN o ie; i. 80 ..: i i, \\\\ .i i i .. '6 e i 't e 4 i: \\\\ '!l i i 4 3, i y g ps: i. s \\( .i.i ; a i i i 6 .i i i .a. l w ,,, i i p it a . i g .. i i i . i' i i y I i i g 6 x ..;i j e g j .. i .i i i i o i i ' ' r ( .,i i m i i q W " xx e i,, e l i* \\\\ i i i i E Ip. y i e i i g l 4 i X i, i .,-.. t i li! t t :- l ll' l ll % ' 200 100 10 1.0 01 0 01 0 001 CR AIN SIZE IN MILLIMETERS BORING SAMPLE DEFTMtfu SYMSOL CLASSIFIC ATION =(gi e,i%: ,,( % ) ii /%r A R-e A 13.6 O SP her,.m

s. k.,C *TN n Jr. / ? = v.- / -4=

2.9 / / ~/ - / / e ~' g h Cot e S=e.B N2 b SP heur-n Jn f SAM n -4. / o e w /

h. /

/ / I J / / / 5 dr. .t i /J o 5 m l SILT OR 4AY CO88LES I COAmSE I FINE I Coam SE ', MEDIUM i FeNE DI AM E TE R U.S. STANDARO SIEVE SIZE UNIFIEO SOIL CLASSIFICATION SYSTEY .~ 8" 4" 3" 14" 3'4" 3/3 " 4 10 20 40 40 100 200 6 I k _i*iI i i iI i e !: t i i I i i i lA' i i ii i .i i 4 i e e i k .iii l I i

i ) ilk.

l IIe l 4 E. 8 i f 8 i i i ..ee s ii : i e I i t t. ! i i !iii ihi h l.\\ illI i sj.e i i i l i.,, .5 ,P, j i e i.ii i A .iiii i g g iair i 8 i*i. I ! \\ tIi'i f I '4? t' 8 l .,I i \\ ii i : ! 6 i i i! i3. , ; e g ,eji l 9 l .9 o i; i e i l l;ii [ r g s

: i !

i ii i e i i siii e a w . 1 i a j f .B.i i t i i ie I l t \\ ii t i s. 6 i i M g !; i i i I i i G f g

i, i e i i

ie 'I i i i;\\_i } e I i i i N _. 6 i i. i ig i.. i ai w t M N 3

W.\\ i i
ii; t i

e i } i i .ti,, i. O E .s..i 6 e i i , i i i i i i e 1 l ii } ! \\ 'I.I l Iii 1 i eO-e in 3 } i i iejii i ; i ii. i g W !.3 iiI l I ill II I TN l 5 i i i U A+ ] o i i e i i 6. i E 200 100 10 1.0 01 0 01 3 0C1 GR AIN SIZE IN MILLIMETER $ DORING SAMPL E DEPTM (f6 $YM80L' CL ASSIFICATION .t%) e,i%: /%r e S-9 A N 6S O SP Ar m ?. .4 / <2Ath & / orm / r r. 9 &i i i < Fig. A-1 (3/7) )

e .e PARTICLE-SIZE DISTRIBUTION l f COARSE I L I k COSBLES l CO A R $E I FINE MEDiu I FINE U.S. ST ANDARD SIEVE SIZE UNIFIED SOIL CLAS$1FICATION SYSTEY DI_AM ETE R $~ d 3-1%* 3/4" 3/8 " 4 10 20 40 to 100 200 o i i i i It I i t. t l! I ii:..

1. Nj i n i iii.

I i 6 i ,j i

!,! ; i i

ii i n a). i i is i ) i if it\\ i e'!t t i t' - t t i f 8 i ' 4 e 3\\ ii a i 6i. I I ii e B i i\\ iiii i i e i'. i i i [ g t i i iti![ i e i \\ .! e i ,'ii _ g 3, - [;. i i i .- i6 5) .t, i 1 - i - tI t 1

si s i,

g g . i i.

i. i.

ifi.. i i .i l .\\ i i ! i i i N, .ie i. i i. e ,.. t I e l .;I g i i N i i i i E i,i, 2 ,, 4 4, D g 50 . >.x i g .!.i .\\ i i ! 1 i gj y i. t es) .i u i w .i.. I i f \\- 8 'I ll; ! 4 .N E i;, i... i .i; i ..i N tai . i ! I j!i i i i e- .s , i s t .6,i ij s. I i t W ,i. 6

[.. 1 i
  • i I

.i. 200 too to 1.c ci c.oi c.001 GR AIN SIZE IN MILLIMETERS SORING SAMPLE DEPTHttt) SYMBOL CLASSIFICATION .I%1 .,i%> .,6%: fg I /'Ot A S/08 /34S O SP f nn A. 6 [ L*WD 4 / m s / de S./, ) / / / / e i Y COO 8LES 1 CO ARSE I FINE t COARSE I M E Diuu i FINE DIAVETER U.S STANDARD SIEVE SIZE UNIFIED SOIL CLASSIFICATION SYSTEM ~ s 1%- sle-sy - 4 to 20 40 so 100 200 i m '!.6 ! e ~Ni .!i e i.> i.

i i p i

iI i% i e iil I i i i. - i i 6 e i e i .i. i i i i ;\\\\. .;i i, e i t, i i i a li ! t I t it i ii\\\\ t iti i t i i

i...

gg 1,!i i \\\\+ ii i !: i i g j, g

le i e

4 .6.. ii i\\ \\ .i. i e [ I i i 4: ! l i i \\4 .,. i ( ; 6 .. i g g !s.., i i ,\\N .6: i .n . i.. .!.iii t % \\ i i ! I i ! . i t i i g" ,i',6 t i; i 4 g z !i; e ! i i li e i i g i ! i { h Iiet iii l 6 ( \\ t & i 1 i i f 4!. i i iii. l 6 W i \\; i I e. g y i ! ' I iie i ! i I ..M i ' i i i e - ia) e i e i i. I)i i e i i i i;i i i e \\ w g N !lt, I

\\.

l .n i e t i i ! .\\ i. i ! i i,t! i\\ i i-1 i 6 N E !!i. i e i .iii l

i \\

i i h iil t i ! i !t ff I l \\ 'i ' i i !\\ _ t inii ! i 4 i i. i } I i eiiii ii ii t i R e 8 !i i ! f I i ?I 'i t .N 6 N. !: 6 1 1 1 i 8 i 1; i s i i i i!.I ! i i t ! i i" V % i ! t i 200 100 10 to 0.1 ' O.01 0 001 GR AIN SIZE IN MILLIMETERS I 90 RING SAMPL E DEPTM tfu SYMBOL CLASSIFIC ATION wi%> .g % i ..'t Y,, f ~5'ANb di-f Gru / -A-45 .Df 8 $-//-A l17 6 Q J*? s. / / / ( mH' CM B S-//- D /M b SP de

e. 4 / D Afh h / n m / 4-

//9 / s j / '/ ' i f/, Fig. A-1 (4/7) 1 i 1 I I

e PARTICLE-SIZE DISTRIBUTION j l co,,3g",* l CoAmSE i l SILT oR CL AY l CoesLEs uEosu i FINE U.S 5TANDARD 53 EVE SIZE UNIFIED SOIL CLASSIFICATION SYSTEY \\ Ot AMETE R ~ s" 4" 3" 14" 3/4" 1,1 " 4 10 20 40 80 100 200 iiai i ) e tN i I ..!!I t t i i 6 l l 100 .. m I isti ei i ii e i i - N. \\t .I i . s0 1,8 i f il N8 1 t!!!! l I s. - >I I 1 v i. gi. \\- i .;.;6 i i t i Q i,, !\\ N _ ,, i e . i. i.i 6

gig,

..i i i i IO I i\\ A j i e i ...i i ,.x \\ , so g g e , s x. s so x o a i N N t 2 . a i E \\_ i . e y - n. .-N4 , i (, g, i. i L\\ a i t. g E e y\\ !i i i \\(. i. i i ;, i i ,., i 6 AQ,_ . e i i i. ei.

; i

,, el l ,A , e 9 6.., i i* i i i ; ,ii i i e _~4 i e i 200 100 to 1.0 0.1 0.01 0 001 CR AIN SIZE IN MILLIMETERS BORING $ AMPLE DEPTH tft) SYM80L CLAS$1FIC ATION .ts: ., ti.; Eg e 4,f UN,n wt f o,Ts./ A.n I for 8 S-12 -A 20.1 O SD J i. is i 3 g Ar. o /d h COE 8 S-/2-C 21 0 O $P hn A h / _CAln h S' mw l h M9 / / j) ' / y i f COAaSE O LA Cos8LES I FINE COARSE i MEDive i FtNE DI AMETE R U.S. ST ANDARD SIEVE SIZE UNIFIED SOfL CLASS!FICATION SYSTEV $~ 4'* 3" 14" 3'4" 3)" 4 10 20 40 60 100 200 1% j %i i a j !jii g g!! j j i i !i i ) 1 + d !i*i l i1.ii i i

i. ;i,
Ihl*

,a4' i e it !,i 1 lp'a t i b . j i, i i j l- .il ! 4\\ a t i ll I i i

16. !

i D t. s 4 i 2 itt i! t i t i:! ' ' i i i i .:' !\\ i i eeii { i i 6.-.ji f h i . e e ee.. i\\ ii! j e ) i I. i. ! i i .*? ei ._\\ _ g g i e is e i i. . i ii: ! j \\; ,iea p e j ;, ,,j.[9 g j,,, ,9 , 9 9,, [ yg .t i e i i!.! 8

  • \\

i i i b lt !!I i ! { h .*8 6 t e i i i !ii i e % i.. i. i a i W g i i

  • i.

4

iii, t i i N

ii i e g .j 3 e, i, 4 i, ...i -se ,e .. i i y% N ,8i s e 6 i..I E N. s a i 6.. I i i e ~ ,i % i i ei . i 6 h E 's; i i i .i i 1 e 8 - !!! ! NI ! !?. ! ' i l 'iit I i * 'i ! ,e! I i t i iie t

  • i!4 i i\\i i

! sii i I 6 6 e ( .i* i t 'i!i i ! i! t 8 !W i ' ! '! ' t i ! ! e g ,, i

i i i 4

7 9 j ! i o 200 100 10 1.0 0.1 0.01 0 00* CR AIN $12E IN WILLIMETERS l BORING SavPLE DEPTH (f0 FYM80L CL AS$17 tC ATION l .t%1 .,t%. m.iY the A S-Le

22. e O

=~P Anon n J, m TLAID _rmt f 1 w/ In.2 $>w I'rud 4 ed ' / / l l Fig. A-1 (5/7)

1 e s PARTICLE-SIZE DISTRIBUTION L k l COSBLES l COARSE I psNE l COARSE i ME DIUM i 8iN E i DIAMETER U.S. STANDARD SIEVE SIZE UN.FtED SOIL CLASSIFICATION SYSTEv $~ 4" T' 14" T 4" 3p " 4 to 20 40 60 100 200 h 100 .!I i 6 % fh I t !ii ! l ! l ' i. ! I i i I t I

  • O

[+i i i t t\\i 6 X e

i. !II {

l 4. s t 4 t 6 I 'U !\\ 6: i! i i i i io a i 1 :- e i l i l\\ l \\. eii i 6 l 6

  • i.

g gi.i i a i i e e ' ' ' i i i 6 i i i ! i\\. X 4 'ii \\ 7 i! . 6 i e a. e f e;6. e i g ip!ii i e no I _\\ \\ i i ' i - i e i ' it ' i l \\ \\ ~ e.. a i!...+ i isi p g gy. j; e ,,,, i i i .gi;! j \\ T.,a i e i e e i e i 3 -i iT i i i, ...!i M g it i. N*..\\ g .i. i M m i g !i i \\ t i ist.4 e j! N _\\ e I E E 6. I , 3. . i i i I. ...N\\ i ,i, \\. &

6 i.

6 i 4 .i; ' i i i I~ W

,,,i

!ti i i. 10 \\ I i i i.i. I i I I i h I ' i 200 100 10 1.0 0.1 0 01 0 001 GR AIN S12E IN MILLtMETERS i SORING SAMPLE DEPTM tstl SYMBOL CL ASSIFIC ATION . t si .gb .,tE g des p/ F2 5 /*0E 8 S-i./ A

22. !E O

9 inn /* A irt MAN.3

  • r/r:re

/ / f<* _ ? */ i ~ J 6 b M/

  • Of8

$*/*l*D $$.$v b fh d /*_ h T0AfD h f MA ?'i f /k @ .L. s k-n L COARSE l FINE l COARSE I M E DiUM I FINE DIAMETER U.S. STANDARD SIEVE SIZE UNIFIED Solk CLASSIFICATION SYSTEV 6" 4" 3" 1%" F4" 3] " 4 10 20 40 60 100 200 100 N' siii I j l 4

i i i e

i 'd i! I ! I ii h' i i i i. - i i i i t; i i i .li; i b t'i!

iii, i i IN:

116i M i i s ie i ! i i ' ' ' ' i 9! i ' ' ii l ! ' 'i' i '\\ i 00 i i-- t 6 i '!! ! i ! ! i i!!! ! 8 \\ iii i! l\\ I \\ i4e i 1 \\ 3 h i[*'i 6 iii ! i a e ii.,,,., ,ii! ,, i \\ sii i ! \\ % i i g 4 i

tti !t

% iii I e i i i w Nii e i e i, g i;..i i i

i. i i (

= i i 3 .g i+4 \\ ii e i e i i i SO

j;,

,,\\, (,\\; l .i;. I e

, A 7 e

.... i j y [ e s.. i ,{ g li, p.! I ii! i i. \\ t ti i i t \\ \\. i i iiil-6 .g.: i j e i e w g N !.i? i I f i iiI! i i 6 \\\\ i i * ' 3 N .h \\ i D E !!i i I i e iii i i i j iiii i e ii i i I isi i\\\\ l t f siei ! i t 'a i l i6ie I iii; I M n i { g +ei !. t E f ! ;! l lf! . i 200 100 10 1.0 0.1 0 01 0 DC1 f GR AIN SIZE IN MILLtMETER$ SORING SAMPLE DEPTH (ft) SYMBOL CLASSf 74C Aff 0N .is? ,g s: .,Is' f m w /.4. m. 19.4 / _c t.v D /bf 8 $-15-A 27.s o SP f, 1 r-av <n hf-5// 6"'E A $=15-8 28.0 h SP-Thf hn n. h E TAUn de f Jrw/ M.L / / / / g J Fig. A-1 (6/7)

e '.J... t PARTICLE-SIZE DISTRIBUTION I COS8LES l COAmSE I FINE I COamSE I MEDiu l FINE I DI AMETE R U.S. ST ANDARD SIEVE SIZE UNIFIED Scil CLASSIFICATION SYSTEv 4" 4* y-14" 1'4" 3'8 " 4 10 20 40 40 100 200 !h! t l NL i, ill I I fii! I I z i l i O l 6 .iie Tsi i t iii i i. 90 8) r t . I i .i i I i i\\A !ii. I I

iii i i

1- ,t!i !! 6 \\- 1q i i

i

! i P 5 i

  • A

- N i i i

70 g

g ,g ( f i!i i .e-6 8 i i t N/. I \\ 6 i ti; i t eo g,, g-. 0 8 g E . X _. A I i t

6 a

58 S i, ...g .x i i i i ,\\ v. U g .i. ii\\\\. i e 1 i i

i

g i i .; i i. g\\. ii i g g i i i i i cR \\ .il o a ,s. ...,i r

p i

.ii ie xx i i Nya ..iti .,iii .i i i.

i, i i.

i i i .ii6 i a. - t . iii i. .es . i. i. .i.! .ii i i w, i e t

i 6 i i I

}G i i ' I 4 . 6 I ii l i [ l roo 3o0 30 to

0. i 00i 0 00i GR AiN SIZE IN MILLIMETER $

SORING $ AMPLE DEPTM itti SYMBOL CL ASSIFIC ATION wsv wy a,:0 5 t'or a .s'- a -B so c, O <9-of #w n h l' SAUI) #e f erw / /2.8 i s

i

<3 g,. q g i - h cor e s-a -e 31.1 A sp r% n 4.[ TAND !r. f or !. / 86 b '4-dN-o E 5 s i GRAVEL i SAC i f I SILT OR CL AY

  • oggggg l CO A R S E I

FINE i COARSE I M E DIUV i FINE I Ot AM ETE R U.S. 5TANDARD SIEVE SIZE UNIFIED SOIL CLASSIFICATION $YSTEV E" 4~ 3" 14" 3'4" 11 " { 1,0 20 40 60 100 200 100 iB: ie i 4 6 4N't' s i..si _i j ie.i { i i i i. I iii N. t

ii %l I

, i ! i { i t \\t I i~~li \\i !p , t i e i .i!e e i 6 i \\ i i l \\

i' ' i i
I'

{ i l l\\ l i !!i i i i .!i ie i i e i g l a. i e ai. I i N it .,e i i r I i i i i i

  • N i

i t 6 .i* 6 i i i g g Nj i n; ! i t n 3 I i i i: ii 2 8 i i i it 6 . ii. ! i i, i [ .ie i i i eiij t i, 2 't i e i:i i 'iiI4 ili .'~i-88 ii i i .ii i i\\i i i S i i., ,61 i i t h { j iii ! j ,ei i i \\ \\i .i.., i i e. r i;ii i !\\ \\. g ! i, i i.. t ,, i i e'i e i i i(l i i. i i i

e

. i

i..

e wN # i W.\\ ii! : ! e { ': i i 1 6 s 1 i ! ! l* E j[; 4 i i ei ii r i: i 6 i i \\i \\ . e i i e i 3 8 ! 1N ! 4' I I i ! i

! ', ! I Ei I ! !

I ' ! I 2 4 ei ' i i I .I i I \\\\ 4 ii,.. 6 i 6 i ! I i e-i k !~ l i I i ! l! l i l I s I I i i !1I I O

(

i.6 i i ilii i i .it ii i I r i i i I i 200 100 10 1.0 0.1 0 01 0 001 GRA!N ElZE IN MILLIMETERS SORING $AMPL E DEPTHttt) SYMBOL CLAS$1FICATION wiv w, t v we - ?% f TAAID -h !0rm I 9a !bfis 2-11-A

  • 27 O

SP fw /* / - / / / ~ / / / .4. arf /M Core S-/7 d A3fo a SP AsN l SAA/D dr f orw /4 177. /d B ~bu-l b, -e,/! I ' Fig. A-1 (7/7)

e ..s-9 9 PARTICLE-SIZE DISTRIBUTION i G"'*8' I S^N slLT OR CLAY l CostLgg l CO A R $ E ) FINE {COAR$EI M E DIUM l FINE l DI_AMETER U.S. STANDARD $1 EVE $IZE UNIFIED SOfL CLA$$1FICATION SYSTEM c cr ,4-we nv a 10 20 so e0 ,00 200 w0 'i. i%1 i !!l ,j i'I ! I i

Q,

!fil f[t l il i !IN i .it i..iI i i 19.}i 1, q.u !,

.. _.... a.

mi o i t i x; i i i eri i i ( ini si i g. ! a i i i Q( ili ! i .i.'f i e h i[; i l i4i i X ~T6 t i 1 6 i i

4. s.,

g !i i oji c I .6 l. a. = ,,i y in i

,
i

,i i K-+7 - i- -- ( ,s0 l!',i i i . M -t- - '+k ' W '. ' -jr i 'l u 30 a i,t. 4i. s y .pii, i i i'r n i 1 \\ ~ ~ ~ ~ ~ I i.. s i . i a ihl H: i l4 ..,:'lb l 7 - F-y !!!i i ! l 5$!,il l-S!. ! ! ";6 6 g 5 200 100 10 to 01 0 01 0 0C1 GRAN SIZE IN MILLIMETERS 80 RING SAMPLE DEPTH tft: SYMBOL CL AS$1FIC ATION =6%f =,t%1

m.. O Q

ce! so S /8

6. 8 0

9 P h it s. d,, f SAND & f nna / Jr. 9.7 / f -l / / / s U SI/f I CO AR SE I FINE COAmSEI M E D tvM 7'NE DIAMETER U.S. STANDARD SIEVE SIZE UNIFIED Soit CL AssiFICAfs0N SYSTEM 6" 4" r 14" S'4" 3;t " 4 10 20 40 60 100 200 100

!! ! l } i

'da!* h. i .* i ~L. !. e I i tO'ie i e .[ i i i iei li\\ .1 i i i 90 .i. e i. q .!ti i\\: si. a I 'It i I l \\ g ,g ) f f. ! I i i .!.i 6 i j !! ii i i W i i}ie i.. h 70 .' i.. \\ t!* g g !t.i i t t li!! .1 it i x .!.4 i 8 l[6.ii !.ii i M e 5 y h ij. . i e ie i i e &a k ili ! 6If f \\f I I i 1 { .j: i. e. i .\\ M !l!* -h -N.i +i b ' 9 x =a ... i, i. 1 I' i!.,.ii "f'. ~ i i e j ai ; \\ ~ i i i i ! I 4hl ' q.... < 200 100 10 10 0.1 0 01 0 001 GRAIN SIZE IN MILLIMETER $ DORING SAMPLE DE PTM ttil SYM90L' CL AS$.F.C ATION .ts. .,ess ..t%. i M, h n. e. fc.f SAMD. & f on ud, b. // 2 COE/o 3-2-A &3 O .n N J Fig. A-2 (1/3)

PARTICLE-SIZE DISTRIBUTION l co,,,,"" ^,*,,,, ,'co... l j l 'C'^Y constES ,,,,u u i FINE OIAMETER U.S. STANDARD SIEVE SIZE UNIFIED SOIL CLASSIFICATION SYSTEv ~rer 1r se sy 4 10 20 40 e0 100 200 I00 O _M i ! i: i ii i i lti i 4 .+. T i4 i i

  • ii 4

i l . l [i 6 g i I ' I i ' i\\ l i ! l' ' ! I i >t' t '!'t ie. i i i sii ii i ..Iii i \\1 6 i lii ; i 4 , 6 1 e i f a llI g. ,5,. i 8 9 i l l i i w 5 si i

\\ i i

i i e iiI - i e g 78 e i ! e i ..i. i, pi

i...

. i ;a ; >>e .1 i .i. i

i,
p i

a j y e i ,,i i ii i i i... i I 5' e, , i,, t i g l g .a. , i , ig e.. g. i.. i K 5 ~ i, i i e .., i x W 8 \\ ii. t e. .\\ e 8 g .[i m . i... i i e i ! .. i i I i A 6 %g . i,

s. i i

!i, , i x_.!+ , i, i i i i t.; :,,, t 200 100 10 1.0 0.1 0 01 0 001 GR AIN SIZE IN MILLIMETE R$ met %i SQRING SAM 8L E DEPTM Ht) SYMBOL CL ASSIFIC ATION elv m,tsi I (0E;/0 P 8-B 24.2 O vp -h n. J 3Ano _ 6 -f wHe/ tb m_ C A rvl, A I d h b n Yh ' dfe ~'19 1 l daw l Y sa nofu.vi//n h A Y 6 t) J J d / ss a I OR CLAY COB 8LES l Coanst i FINE ICoaRSE I MED U i FIN E OtAMETER U.S. ST AND ARD SIEVE SIZE UNIFIED SOIL CLASSIFICATION SYSTEY 8' 4 T 14" $ 4 3'8 " 4 10 20 40 80 130 200 100 M t i lj!ii j j!i ! $ t i e i e !! i t i i e l-h I: i I iiT E M' I i i i e: iI e i i e ( - t!i i .. iN I i ! pi i e .ji;ij 1 e i (' ili e i i e i 8 i .i l9 N I i i: I 6 i iie i e\\ t i:.6 i e a i i +e 8 e- +- i i a 5

i

.iiii i x. i - > i i Ii i e i*ai) i\\ i . i. ! 4 l t s e i e i g 1 i e i!t i i I. j i i\\ i l ii -. I i i it 4 e0 ,,,, ; ; ;g, e g

  • . ie I 2

.e i i Ii j .i i i i * (h.- i a h

f !i '

i Ii ! tii !!i } j ! i g { .j.i I i i iii \\. .... i ' i ! i iii i i \\i g 1 - i t i + eN \\ . i; i a i i i w . ; i i e iii e i i N ii. i i i i i t itt 9 i N >.s e ! ! e i e i i O E is-. . i 6 i i: iii i i iy i v. i. 6,, i i!>i t i i% t io ; ! i

ii

. i i - )i I ; i i riii ! I i N is e e t i. i 4 g j ! pp !, a j, 4 { i C i e i. 200 100 10 1.0 01 0.01 0 001 GR AIN SIZE IN utLLibETERS BORtNG SAM #t t DEPTWim SYMBOL CL AS$1FICATsON .tv .gv m.tv (OC/0 3-9-E o& 3 O fp.Th _,% w lo 4 K N M) 4./ n m h lo.7 k( % d b sill Fig.A-2(2/3)

..w.......~~.---~~~=-* e PARTICLE-SIZE DISTRIBUTION I 0"I' 3^ 0 SILT OR CLAY I C0taLEg l CO AR 5 E I F6NE COAR$E i Mf DtVM I FINE 00AMETER U1 STANDARD $ttVE SIZE UNIFit0 508L CLA15!FICATION $YSTEM 8" 4* 3 14" 3/4" y' " 4 10 20 80 60 100 200 100 lll ii i k^kl! l ~ ~ ~"d ~" b k ~~ i

ll11' ;.

%K+i. pH-n. t l . i i '4: \\ .!i

i:, !\\ i i g

6 i [ it; 6 i i i. .g-x 1 i!i l i seie [

\\

_. g' i y i...i , i \\. .i ,i ll!'! ! ', HHH\\ w -4 - +F' r !l' : : l l x 'w -N. m - \\- +N .d. : E' .l:;',!!' iu-4: \\ H + a-ti': ! l j K' 4P i- -'T't** 1 '* * * * * ~ ~ - ** ~ x, ' T*K

  • i j

i m -Q i . i

a i,

200 100 to 10 0.1 0.01 000 t GRAIN St21 IN MILLIMITERS 90 RING EAMPLE CEPTMite SYMBOL CL ASSI FiC ATION .ts' ., t o ... o 3 CM/0 S to A 228 O sAsmbwn e 4 / Si,'A!D,.Jr. /,ei-v.- f, 15 7 .s h-v> A radh nt r t. On ue f i ) ./ -l (Offa 3- /&t* .? 9 0 O 2")3 frt1 tun, /* ln TA W N fM'*. &. < ld l caavtt t $AND I I, $1LT OR CL AY C085LES co..gg piNa 4 COan$t 6 Mt0:vM i fin E I OtAMETER U.S. STANDARD Silvt SIZE UNIFitD SOIL CLASSIFICATION Sv5 TEM 6" 4" 3" 14" 3(4" 3 '8 " 4 10 20 40 60 100 20c 100 7 f f, i = . i ,, i , rv ~ I '.i I iN. ti i.i 'l'.I 1 h 9 iji t i i i l'. i .I-g h l[3 i i e ii'a g i \\ ii. 4 i, e i ie g je;e e i \\it-4 e i - j ., i I

[ i i i y

h !I*! ! i< I

!'?

i ' i e i i Q i ei i 2 eli i a I l {' s 40 i ~~ ' '~1~ ~ ~ f ~ l

  • M l

,,![ i i 20 4

  • ~

f ' .i. i 'p._. .I h J..-. 200 100 10 10 01 0 01 0 cc' CR AIN Sllt IN WILLIMETERS DORING SAMPLE DEPTie ttil $vM80L CL ASSIFIC AtiON .t%' a, t V l a.'O cy to swp 3 I. 2, o _5'P m v. Ar n w A k/ TANn dr. [ / / / r / ~ vt// / nrm l.4. J / t Fig. A-2 (3/3)

.o O PARTICLE-SIZE DISTRIBUTION l co,,,,'" ^f ' ',,,, l co,,,,, ,,,,u, j 5 silt OR CtAv Comes De_AMETER U.S. STANDARD SIEVE SIZE UNIFIED 50tL CLASSIFICAtaON SYSTEM r er sm-we wa-a to 2a ao ao too too 100 ! l'i TIQI ! ! --%- O Ni t ' 4 r ------ i ,,v

m...
g., 4 i,

i i t. i i !x; i i. ; i., !e e i iii, ,;;6\\i ..ii.i .f i i

\\;

r'T,.. [ i

i i t

i g g i., ,,,i i\\ .,6. iil i 8 i e Q 'Yi i i 3 + If i pl,, lll l !!!l l i i i \\ 2H-b E -' ;W 5 a !N', l l H + 4 + '-%* ++ l l l4 !- l l lih l I hM f r r-y- E l l t M =

i,,,.

.,.1 E r .n i; i ; .x !!!!l l l ! H!' -t- .. ' ' l -h--- h r b-- k l', I l i;ll t ! l ; ---

4 : ; l % ;i e

L 200 100 to 1.0 0.1 o ci o oci ob GRAIN $12E IN MILLIMETER $ SORING $ AMPLE DEPTMtft) SYMBCL CL A551F4C ATION . tv l .,:0 enf-H S28 ? f, o so om. A,n,.,rr d. As f SAND 4 f to.4 s - / f s / L i o o, rs >> /, h- .>/t EO II L l CO A 8 51 l F.NE COAR$(! M [,,v, l

FtN, DIAMETER U 5 STANDARD SitVE $1ZE UNIFIED SofL CLAS$iFsCAfsON SYSTEM 8"

4" T 14" 3/ 4" 38* 4 10 20 to So 100 200 too , i i w i t.1, .(iI. I j f elii E'T Ie i ~ II.;, l ! ' ll l'! '. N t i .. s. ,i.i g { i i, i i i 66l. .;i..\\ .i 1 p y i i... l i i\\ ii.i ii i 1; .i \\ i!,ii, i o j;!. ! i !i 9 i i I 't l 8 li.! lh'li g r !,g '!i! ll b-- - ll P .i E lli! l l l M ' i t--- -+i h 4. \\- W+' k V " i i i nvr. i .i.. r . H. ; i i, ii .3 m y, l lh' ll l M -I-- -44 Hit l\\ i !i, a 6 i t. - __a !., i i a,..._...4+ii: i N-i ie ' i'. i r. ,, i Iw i i i i 2oo too to 1.0 0.1 o 01 o oC1 GR AIN SIZE IN MILLIMETER $ 90 RING SAMPLE DEPTMitti - SYMBOL CL AS$1FIC ATION l .av .,.O ..tv t'orl/ 3-10-A 2 /.1 O SP-Sm hn m /n f SAMD fr f nnuel 173 h t_ 'sa n d, h-SH Fig. A-3 (1/2)

e 8 s PARTICLE-SIZE DISTRIBUTION l OR CW COSSLES l COamsE i FINE ( CoamSE I MEDIUM ( 5e%E ( UNIFIED SOIL CLAS$1FICAtl0N SYSTEM U.S. $T AND ARD SIEVE SIZE OIAMETER 8" 4* r 14" 3/4" 3/8 " 4 10 20 40 80 100 200 i+,, ~. WlIi il 6 6 ..ei i e 100 v" i s ,6 is i i.4 t i 6 iN 4 i.! I t i ',: e

  • t' i

s i ! t i t t I!i ! 8) i i t' ' ' I J IIte i e iil l i e a ' i44i k i' ' d f i;I \\ t iri*'t i i .a 6 l i e .ii \\ i e i i I l e{ . ei 1 IO i i e i 6 ij -

\\

eer 6 g i e 'il* !\\ 6 e ll i i e i!.. i .i,e 4 6 i il t ? !) ! 'O' e i i i 8 a'. j l 6 . 3, l i ^ i e e i i i E 3-t i 1. gi j ,8 50 g ,,; t i i '() {

  1. 8, 4s t

a ! ! l i.i. i g .iee 6 ? I g. I e : i. w .- i i, N 6. i l I \\ f

  • i4 e i 1

i \\ e i e E .s i, e i e i s iie {

\\

.ii.. i e

i..

i i j i i k e t i i ei. iei a ii \\ i i e _i i a 1 6 iP-e t # .(ii i i i taii ( l 6 ( - i.i 610 i i i e i 200 100 to 1.0 0.1 0.01 0 00'. GRAIN SIZE IN MILLlMETIR$ CLAS$1FacATiON .i%i .,is .. i %1 BORING $ AMPLE DE PTH (ft) $YM80L (or n 3-H-A 24 to O SP M S SAA/D som* f new / k B.7 5 sa hd h silf l OmCLAY l gg,,,,*,* fine l COamSE I MEOtu j siht f Cmts Da AMETER U.S. ST ANDARD SitVE SIZE UNIFitD SOIL CLAS$1FICATION SYSTEM 5" 4" r 14" We" als " 4 to q 40 00 100 200 i i 4 li !i64 6 i e' ilil ~ N_i 'TITI '~ i iQg'i 100

    • 1 ' N 1

i' i it i lii l 6 "I" i 'e i is: t i I i i .i ,1 i a l i-A li. e, i e ...i e i i ; N \\ i i. ; > 4 ; 7

  • D i i

D0 -.I .lii .\\ i.- a t i i 6

i '

i t il h i ll el. i t 7, 7 . Ti 6 ..i i . i il i ! i ie i e i is g

  • T i

,4 l l E so y lil .3! l ' H 2-4 e-- n ++ : i i .0 l Hl

': : l i \\\\ MHv%- -

x-it;! ll;. ; l

-\\W l,-

.'ll l %-vt-,' t! 10 t, i 9 9 e lI i j , i.. a i I e l 1 i i i I i i 200 100 10 10 0.1 0 01 0 OC1 GRAIN 5!!! IN MILLtMETERS Doming SAMPLE Ot pTH itti ' 5vMactF CLAssFIC ATION .isi .,is- .,i g i fW H kW 30 '? O S/f h, f _S;0Nn J.- in ssad e in s - y,.19 $1 H, s i i Cor// S-NC 31.7 b sp._sW h J'snn k in. ve,--,f _en /u 00 ii i i i i til i ee! 4 i s" e i. 6 pi i i t i e ! i ti i't i i i 1 e i i e i i ( ..,.l i!: l l i 'ii t i pl.t i 6 i e i

  • sei i

iiii e t i ...i e i i e i. ils 6 i e i g si t1 4 se

  1. ii e l i.!!

e et4i i i .. 6 i . i l w Ji6 it i i i e i le i i i l i r ai e h! N Ii t i i f. I e i e i . i i E l1 6 to e i ! t! t i t. ! !! : I I e 'ii i ' ' f ll e iii I. I i ii. j i ie* 6 ,i.,... 9J! 6 i; j 'j i a:!, .. I f .[. I sei.

i, t.

200 100 10 1.0 0.1 0 01 0 001 GRAIN SIZE IN MILLIMETERS

8YMBOL CLA58tF CATION 1%i e t%i'

=, t %) t Domino gAmpLE DE PTM itti l l Fig. A-4 (1/1) l

.,. w =.=.: - . ~. -. - -. - ..e. ,M PARTICLE-SIZE DISTRIBUTION l l I coa.,,'"i* ,,~,

coa.,,,

M o,#', l =Io oac'av Co-as .IN. OsAMETER U.S. STANDARD $1 EVE $1ZE UNIFitD SOIL CLAS$1FICATION SYSTEM .v. -r rr ,,- or ,o = s. no too '~ l I 4i-Pk-l" 'H!' i l i i So \\ ! ;' 6 ! i. i e i

    • i ;

I-i g

6i i

e i i i 4 4i i . e.. i, i. ...i.. ' M. i., a i. 8 . ig i i iii i i , i 6.: i i.. i .i, Ml l C i l l

lH-f

- 50 !fh~ ()

  • E~

llii !M +i ' ". ! ! ' l l i 1 @H l

-+

--+ E, 1, - t, 'i i s .6, \\;~~ " * ' -.. t (4 k E i[i \\ i i i! !l l i\\ I' f-k- - * ~ " ~ ~ !!'!l Hl !Il-- M! l N,l ; ; 200 100 to 1o o.1 o of o CC1 GR AIN 512E IN MILLIMETE R$ BOntNGl3AMPLt Ot PTM ieti SYMBOL CL ASSI FICATION .4%i w is- ..i t Riu. Thin, & en ssud ta.4 sp hr, / come san .3 o o o ,b. c/ r D h 6 l l i omavit i sand i CotBLES $1LT OR CL AY I coanst I pins Icoassei M E DiuM I FINE Ot_AME TE R U.S. ST ANDARD SIIVE SIZE UNIFitD SOIL CLASSIFICAf TON SYSTEV r er tw-or sy - 4 i,o ro ao u too roo in ilt i i

  • 6!!b

.NA' I i i 1 ~"*~ ' i i. i i:, .:!I t i i !!! i e d i WAi ! i i i i it' ..ii t il {s.. i i N ix. i ! 6.i> ,, 16 i i ,,-.i .o, ,i e,n. 4 i i i rt's 'i ilii i it! 5 ;\\ i i !l

  • i t.

i i t .g;ie i ri;i l i.i .g \\- .i. i it '@l i i t. ' i i g g it'i i i iiii e i I I it.6i i

it i 6

ilii ! \\ \\ i ii i ! I ist i 8 til iiit !!i I Ili i%i i!.

    • t*

i e E t ji l e i l i;I i e gT I I i' r I i

i 7

i liii i i i.i. i !!! i ! !\\\\

!
1i e iti.

i

isi i. \\ }.

ei. i, i i. i i.. I i i iii \\ 't t ' '?[l 1 I !i! ! ! 1 ! 'Ie i6 -M.1 'T i , i i i i i i.ii i!! i ! l ! 6\\ 'u,t ii i ll! i i i !

'i, i \\\\ ~~ M1 i

E i!i i l e i i i!i e i i i i;~l e i f llll T- ; dMN !.. ! d l - L_ ! Ni'ii t i i ili i + i i ! '. I .. _ _liti i T _... I. O i i ., i ii, i 200 too to 1.0 01 o.oi c oct GRAIN SIZE IN MILLlMETER5 met %) coming SAM *L E Ot PTM ttil SYMBOL CLA1517 CATION wi%i =, t o Car /39 S-/7-A 31S e SPhrwn m /b / JAND. fr / na v* / '70 k s.sind, 4-si/t ' Wise S-17-t 32 4 L JP. hewn -f 3 M O.m m

  • m n n d.

&5 W.s t /f' ' Fig.A-5(1/1)

c APPENDIX B Empirical Relationships for Estimating Densities (Void Ratios) 4 v-r e-

APPENDIX B EMPIRICAL RELATIONSHIPS FOR ESTIMATING DENSITIES (VOID RATIOS) B.1 INTRODUCTION Maximum density (y,3x) and minimum density of (y in) of granular soils may m be estimated from empirical relationships between density and gradation from Burmister (1962), Alpan (1976), and Johnston (1973). Similarly, maximum void ratio (e,x) and minimum void ratio (e in) may be estimated from empirical g m relationships by Youd (1973). Brief descriptions of these methods and tilustrations of these relationships, are presented herein. B.2 COEFFICIENT OF UNIFORMITY The empirical relationships of Alpan, Johnston, and' Youd utilize the l coefficient of uniformity (C ) as the parameter to correlate y,,x and ymin r u and e in with the gradation characteristics of the soil. C is calculated u e m max from the following equation: D60 Cu" Q where: Particle-size diameter in millimeters corresponding to 3 = 10 10% passing on the cumulative particle-size distribution curve; Particle-size diamecer in millimeters corresponding to D = 60 60% passing on the cumulative particle-size distribution curve. l

2 B.3 DETERMINATION OF DENSITIES B.3.1 Burmister (1962) For a given particle-size distribution curve, classify the shape of the curve as S ("s" shaped), L (linear), C (concave upward), E (convex upward), D (irregular), or a combination of these symbols. Fit a mean slope line to the particle-size distribution curve and calculate the effective grain size range (C ) using the following equation: r 1 C = 2 Log 10 (D100 g l /D ) r l where: D and D are particle-size diameters at the terminal 100 o points of the mean slope line corresponding to 100% and 0% passing on the particle-size distribution, respectively. To determine ymax, locate the value of C on the horizontal axis of r Fig, B-1(a) and project it vertically to intersect the appropriate curve corresponding to the shape classification of the particle-size distribution curve. Project this intersection horizontally and read the value of y from the vertical axis. j max l To determine y in, fi st determine the effective grain size (D50) m is the particle-size diameter of the particle-size distribution curve (D50 in millimeters corresponding to 50% passing on the cumulative particle-size distribution curve). Then locate the value of D on the horizontal SO axis of Fig. B-1(b) and project it vertically to intersect the curve corresponding to the appropriate value of C. Project this intersec-r tion horizontally and read the value of y in fr m the vertical axis. m B.3.2 Alpan (1976) For a given particle-size distribution curve, locate the value of C on the horizontal axis of Fig. B-2 and project it vertically to u intersect the lines D = 0% and D = 100%, corresponding to ymin and r r Ymax, respectively. Project these intersections horizontally to the

3 left and read the values of y,,, and y in from the vertical axis. These m values are expressed in t/m3 (metric tons per cubic meter) and can be converted to lb/ft3 (pounds per cubic foot) by multiplying by 62.4. B.'3. 3 Johnston (1973) For a given particle-size distribution curve, locate the value of C 0" u the horizontal axis of Fig. B-3 and project it vertically to intersect the lines marked " maximum" and " minimum". Project these intersections hori-zontally and read the values of y,,x and y in from the vertical axis. m B.4 DETERMINATION OF V0ID RATIOS B.4.1 Youd (1973) For a given particle-size distribution curve, locate the value of C 0" u the horizontal axis of Fig. B-4 and project it vertically to intersect the curve for the appropriate mean roundness (R) of the soil. Project these l intersections horizontally and read the values of e,,x and e from the min vertical axis. The void ratios determined in this study were converted to densities using an assumed specific gravity of 2.68. t

\\ Busansts: ou Rasrousss or GaAumAm Sons i i Oradation k 150 1lrpo 3 r A a p 0 ,y @L j u,g g s / D ED g /1 _ j 135 s h R I. as 3D lf[,- ~ 7'~ s Qg 5 (lp',ff h"g d [jI'I 120 120 j arves are for subangular 'I s Sand and waterworn (aravel.

  • HQ F*# ""E"l*#

t ""

    • E*"t*

I and crushed materials, deduct 10 to 15 pcf. from Kaximam Densit;r. D h E when greater than 33 percent of 5 8 ~ ~ ~ the ie. ole soil. g 0 1 2 3 de 5 6 7 8 9 10 11 12 g Effective " Grain Sise Range. C ex;ressed try Eean Slope D g. r f in Soil Fractions atm e i Fig. A 120 Gravel more than 3and. acre than hilt more than 0 percent. 30 percent. $0 percent. ~ g110 ilt less than 5 percent. ".k oc 5N l l l nhWSeh c m r mit Si percent; b!w-N J *ad sr**$*r-f,,. (.I uuni / II'N Ob N so Silt D percent

  • 8 Silt more than 30,

{.y gg,, Il F **" e i i e 30 6 2 0.6 0.2 0.06 0.02 0.006 Effective Grain Size, D in F.1111matars. 3g . GRA1FAL, 300 SII.T e m f e m f e f 3" l' 3/8" hos. 'O 30 60 200 Steves 0.02 Soil Congxcents and Fractions Fig. B CONSUMERS POWER COMPANY Midland Plant-Units 1&2 Empirical Relationships for Estimating Densities from Burmister 81C217-4l24 July 1981 Fig. B-1 wooo re.c w con.oitant. O

h T m g SS S E vi n gg to s- =2 .e s ~ 5? %s ~i $ { !5 e 85 3 2 0 ~ 8 g: c.s 1 E5 is

I

= 3 ux a U E .tyG*M H"O P* E'* *9"S 0 b 0 m ,1 b o 4 0 h k o O t t 9 V 0 q d s s x s x s s o o o \\~ 's N \\ \\T ak o s g .\\ <\\ <\\ \\ \\ 0 t '3 0 s \\x \\\\ \\\\ \\\\\\R\\ ~ k n \\s\\\\ \\ \\ \\ \\ . \\ \\ \\ \\ \\ \\ KO\\ \\ \\ \\ \\ Q ~c \\ \\\\ f\\'.\\\\ \\ D3 TV\\ \\\\\\\\ \\ 6}\\\\X\\\\\\\\\\\\ iT \\\\MMN6 \\\\ n wy y\\ u\\ s\\\\ v\\, 3 i s 3 1 i i li \\x ,e n o e e n = n n' <~, COEFFICIENT OF UNIFORMITY, Cu CONSUMERS POWER COMPANY l Midland Plant-Units 1&2 Empirical Relationships for Estimating Void Ratios from Youd 81C217-4 24 July 1981 Fig. B-4 woodward.ctyde consultants O

e e APP 21 DIX C Density and Relative Density Plots l

ii -.... - --. e ... es.

          • a****

e 4 k' 4 8 I W ' : 4_ 1 I l I I I El 1 m 1 I 1 I

gg i

1 I I I I I I ' 1% M I I I l I I 1 I I g. I I I I E I 1 1 I f I I I I 1 - n [ 7 ~ A, y-y - ] 1 h '9'.= i i i y C 1 1 I I I I J I I I ~ I ~ I ~- 3 m 1 i % g g C4-c. i 1 t" I 1 3 w n . -r ' = * ' 4 l 1 I ' i Q I 2M -u u. Npsd - o r i 1 1: 2g i i r' 1 1 l [ = E-I.e. , 1 I 1 I I - w u Y ,m 1 J i I :.' 1 I I I I I g I

  • 4 4 w

, i1 1

ii44-H.!!!
j L'

mg 'n l' i.!! met'+ W:. ? ~ C, ", > s .ry2 .a 4 5 4 1 2, wr, I I L Y l 1 M4 }'4 . mo 1 'I I J w b W' 1 I I I i I _,.4' i I t+ +" *t+ i *^ Cr 1 g2 l, l' i' i ^ aa. =- N u I I I I ' I . T-I I 1 I I 1 1 1 1 1 I I I 1 I ET.'.. E a -.44 g p'~. r o; u.++ -+4! .1. 3. e 1 1 p&,F a- =

.++t

. ~ ~ ' = ~!i. ~ > 1 > '+g t;.jp +.4 i 1 OM 1 1 e-. m. m 1 ,4. 4

4. _.

~ '_I . 2 e e. s= e b b 2.N . n\\.--.

1,.T

.- ~r: u . i : 1 i I i .1: ..y I L 4-7 J'%. I 1 .N'.

  • r c I

.I ! ] 1 hl I i 1 1 -;+ t r i1 t l), r-i s Q i : i 1 1 1 A I h, .#~. I Z ~ _~ I l 1 I I 1 I L 4

    • T *titM.

l-1N",O 2 i ~ l' I' _ M ~ ~. m -.., 2 N;7 1 2im': h' I T *~ b K_3 1 1 L. I -* T (. I. Kp I 7g o., - ' m'._ r. 1 m i y Id .4 -g' -a e e.4.+-.;*-m.+~"+.* 7 -+ b* + +- n,. - * * - Pv: - -i; '4, '..' d ^ 4 4---44e..=.%TN. s 4 ^ $.d 4 -- 4-P 4 4

4. s w.

4J44.' t,.+ g + 4 4.-.- M_- '-{"}.- Ja . u.. A &g. i. _.... pA+ ,I

4

.o s. ~: +.. - + 4 r: +- 1 +. <.a..kQ 7,,,,w- .u.- .1... -... i e . b.4 - 4 4 _, _ _. ~. 4 .. 4 4... 4

+-.- >

r

5. z.. -

2 _-. + +- 1 i :! - i. - 17y...4 e,, 1 a,.- h..,- 1 2<>1 g ._4~... ""* i ' 4 ~ w 2 . h: TA I - i , ai5 .O~-+tM &Wyt Qg

it :

1-+-: J _I - w --Fs: -m- -n a - ,. s. Q 1 + .4.. ~.., - +++- 4. ; .1 - - - g-w m,, a., &.3+.. - ph- .. +. 4 - w m-- .i ++ +-* --* +. +. - ** u-w- e 3. - - '..b. + _4,,* +.4 .1 1, '1 . 9i-.m.g +< g.. - 44.,'..,_ 4-t - 4^:

.*4 1

4 7 3 r-W:a t i.; :; 1+4 4V1. g.. g.- 1 1 -m- + 44: .+4 i i i .-.g..o 1 -. i . + 1 s_,. 1 g ~)_ *.* 1. * *.. =. - 4 .<g-.9. j..e,++ + , ; i ' 1 +- w.--t 4* +-1 4s(.

  • *4

+4. +: ++++. p g: .$ 4. +.444- ..e-44. l

" ' !' ! ! M.-9 i ;-

I < L4 44 + ,p } 2

: ; ;- 4.

~,. ."t111.f.: og (., g +.+ 4

M'

+, <.1 :. 4tt - M tt. <.41-.j..g.. .,4+ b.2+.3 *t i a ..t r t-, . g 4 + .tr 1

t..

g e,# L1.p i n._n.:1.r. h !.:: T .:M.g .:-+ . L. :.~. t i-N- r i h ^ ~ T &,*n. :tur

e. #T* *1_.m,.

4.ni. 4ti.jF - 4 , L _o

i - w
-

,A *=.. I p :, -u - - > 1 4, .. tt+ +.._.. i i :! N. t m, mi, u +m - 1 ' _' itu. .. J.' ' t.'..'.. ~ ' - -. 1 m 1 I E { o 7 UEDil . m m. m !nE IE, i. i I Fig. r-la

e i MJ r-- [C L_- L-7 i..I i I 9."+.... e n H A {- "'~ [] I b, y 1 I I .7- !C b El -'i _j . !f b i - 1 L.g .++

.1-

. g , u_;. L__. I I C,E - i-O E Q 2 3' e e.- C I

i :

r--' w 1 . ; ;7 ). i $= g% .4-.. O. 1 c --- t t i - ^ 1

u<

' sk-

m m

g 4 g - t.e 4 +<- W "d i i

y _...* 4 y-+++4- ;.

O .4-+ 4., E ** 444*E* m

4+4 W D 4 4 +d--

4+4 a..._ 1 1 .:+4-. +4 4 1-*h* 4 -' y b n D. a. -w

r; q.

7 u +-.++.,: - + - C w i

4+

4

    • f.-

.=c,

i...

4 p m ow ,s,,,,,. 4 9., . [!f bN.e r

  • d d t ++

+*: i .4 ---*4.*-+-+: W p, I - v++444+4 - ^ +

  • g T

I 4 ^ 2 {',:

  • .++-.+t1 4;----

++. Mr I 3.17

i :

I. , + 4.:4 + ,u. $.1 -e.. '4++* -4 er 4 Q e A,-. I 4 : .y - ..+ C. -" f1 --+-<4

+4

..,4-+4u+-+4 m

44 4-e + 4 +=

e.- 'w ' ' ++ - Lt1

+4 4+--.+4-6+-+...

....*4 .-' -.++44.*+ - -.' O a y -.+,.+~*7,- I . 1. - i!- .4 -s.+-+~.< ^ p e4 4 y re I' LL -m ,.g. ,-,,n.--- .~--- - 4 ,,} -n 4. + r ".M"O 7 gg

4 :
  • +++. -

p.g v- - +. JJ ,, } - ew. <.. 7 M 'C""Pi .A- +- x - - ~ -+.-.w.

+

.~ +<. ( + g 4 4 4.g, 4 t I 4 ++. 4 4.4. , 4 -. -+ H-O r+ e- - j - - .,I -* * ~. +. 4 ,, + -.~... 4< ..4u.-+.- - 3 .+-.-.-+4.4.... t. :.. 4 -+ + - - + .---a- .,-. - p\\" : a 4w 4 .-4 < 4 g+

  • pup--

_1 ^ +<-td n '+4 p 4 K..- ~. ,. e,,uJ L..,,.,4.- . yn, -u a,, 7 s u .-.,4.d- .m-.- 11.y 3 +,.4.--.< . :+,. 4 + . - ~ -E3 .-+4. 43 4 - 4.+.. .o +, +, +. 4 + ..+ + M4 .- 4 4..r.v 4:.. : _: ',-.+w .4 <((%-4 a4 +. -+4

. W 4

<g..(.--.. 7,7, u 4- +. + e. +- m.++.+ .-+; +. :. +.%.,+-.w.~.--4.p 4, +. g 4 4.-<.+ 4 .4 6.,. -4 ..-.4.e... J3 -+.- 4-+ .4 + ..,. j.. ,4 4 m. ~.. e y %.-- ..+ -+ 4-. 4 , -. - + w < q*.rt- C p<.. 4_,. 9, ,..4. w.- 4 t<- g-m.. 4 g, 7 g_ +, ...4 + +..p~+,.u4.- *. y-4 4.<% - 44aJ$, 4 ) .+ +4 4.+ 4+.. -.+4 g

4.-,4.-<

.-+ 7 4.+- 4-- j[ . +_. + -.. Z + +-+ .-+: 4+-. 4--

  • .-.-4.+

14+, 4-4-+++. 4.-+ +< e m.,-w. _ l :, o.. +. .~ m y +.4-,. o +.- ~ W,*.mr-- ..++ <~... * +.

+-+--

.4.+ p,- g -.-4-.w .... + .4. ),... - + < + _. - - e.... - - - +. + .4-.. -.., N... - + +-. -O: - - - ^ N-+4-+. .. + -4 44. .7 -Q.- - W ..4.4 ... ~. .~.4-.-4-~ +

--a
j:

-.p' 1.J*.4 + h- - +4-+ r.++,- g 4.-,.... ~ + +.... ..y4+ 4-++4-+_ 4.. ..e.. V.. e. + +. ,+yw:++ w+, .,4+< -+ + ..-.u... 4 y 4 4-. o.' -++4

4

..4.++4 .y,..(} .~4.. - + + ~

+ + - + + <.

.4+- ,'. j 4,.. -T4 ..~ 44.44p., .,4~- 4%y - --+< .4u-+ n .+4+!+4-++- 4 s (,,) +

+-s

.o

  • + 44

"""*4 t 4 0 41i d 4:

. + <

.. o..-, 4... i.,t 9 1..,,...'*.4.4* 4~ u d; U 4 4 4. -. 4, e "@ ' 4' ' .. eiI 4+ 4 h

  • +*t 4+4 h i+

44+ g* 4-4. : r - 4

4 q.i g +... 4 &+

,.u,. w4+.4 +u r . ;++ t+: . + + --444 e44 . 4 ++ 4 +. .. n3.... +4 %u w 4-+ r.e4 : 4+4 I + 4. 4. i e t e e +-446+-.4-..-.< .,+444 4 g( W 4 44 4 q :: g ., ~.. f. 4 4++4. y < +g++ . +4 4 r H. 4...,, } e 4 e +4 ;. 3. .4-<

4

.-4 +v44j. w'. ; 4+ .a +4 .~ w ~u 3 .4+..+4. ...... 7 +< u-w- ~ ' " 4-a .+ ..., +,, * . o.-4 e +4e9 4 4, t 44$444 .4 4 j4 .f44e4.4 L) 4. 4, e, 6 _.+4s. 4 ' 4. 4.1,,N t $4 b 8 4-4 4 + + +4M. t.'*.s h (. 4 .~ 4 I

  • . + 4 $..+4 t+. - -44.

44 + i . 4-4.L m..< <..-g. <. +., <.++-o.-=..4..4 . * <. -+ u- .4 .b..- .o.W-+ +. : :., <..++w a+.+ e-.... -4<.... -. +. +.- .M. .4+.. .4,, .e+w, g .+4-+... ,44+++..----+++u-4+ .7 '4u.-. + 4- .-4...$.... ... +. <.~....+*J .44W .4 ..Wh . 44 4-+'M ++'> .M.i4-:4 ,+ g ...e-.-<. l l eM W Wd>O4.' -+h W.. e e-*. &+-.iM -wim.-.> D. m. ++.'m.l. .-...~. .*m..<h=.~+a.*....'O. ~- ~-.J., -- ..+.em. + -,. u. -&. +4. o .u.y _ e- +.4.4.. .A ~. . : +.. v. --n ,+, w +4.* ..u u uw y.++ - .++. 4. -..-.A...+ _ @ -. +. ai n 4 -4 +- 4+. 4++ W +++ 4

  • -*-+

g- .+..=+4 ..+:.. -+.+ - -.-.+-.-..o.=-*---* .+ . - -.... ;;:. : +% -+-++- - e6- + -M +- .e. A ++4-- +-e++.--.

  • e4 m -

Fig. C-lb

e 0 0 e0 - 6 1 4 g I l 1 t 1 - 1 - pg El i -- I N-i M KZ M r-- m .u-s ma ug u u _ u i I 1 I T I 1 I I O ,,, y . I i 1 iI T I I i.. I y - . n m F--- I ET A E 1 y l 3 f I l IsW I g-I I I I - ~~- - I - N 2 1 I I I f f f 1 I I I I T

N 1

1 h'"'"T I I I I I ~ 1I I '. 3. I I I .E=I i L__I I f I I -I - i (

p I

I E-I I .W 1 I7 I g j 1 I 1 I i W. I g O I g [ 2 ] IJ' e - y I I I I I I I I I = I I I -.5 x, i - g 1 O

- c

._I I I "n't l [ W m I I I I l I 1 I I I I b, I I I I ' ' I I i 1 I I I I I I j I I I I 1 1 I g T [ ] I TJ - 1 I E I I g 1 I 1 1 1 3 I I I I i f E II I I g ~ 4' = - - I F [ I I 1 I I 1 1 1 I f"1 P ' I I h ^ g ]" g 1 I 4 4 %- ) d;. i - =. - .M l 4 I W I 'F =, r, a i I I I I I I I I I I M,,,,,,q , h 1 1 I I I I I I. T a I I Q ..u.F T. I iI i 1 I I ,.,g.,,,_g,.j g y r ai t rri i i I g g j 1 1 1 I I, s.,y 1 g I i 5" e5 Y I ' ++.4 l I, e- .i.. I N-I I I I ,I I ' T -ff a I 1 1 I I 1 I L y4 W-gm '.

  • S a C.
4,,,g,
  • tW *+++.6~

i I T -a , f ..Aa, ei. 1 = -*-*** -+ + -e+ 1I' I 1 I - II EL I i i I I I - 'F _ M ". 'A ~~" R W M l I I I I 1 8" - ~ ~. T I v c a T A. I ..4. I l'T'i I I K1 X n m I E 'z L1 l I I I iia l - itNiitit y,r~1av p;4 76, r# M _ 6 i M rt-- m-.4,g ,, : 1. u , i xi 1 i i. O2.ukt+bu1h; m ri: 11 w;r 3 va i i 1 .: m. mA

v 4

u j w2 C t1N - += D-++ t_Mr 1 I}1} +.~1:;+t).g;. - - - = '

4-H m :-

+ P -i

y..1 fr 4 w+++

- = ~ .n ry-- g .u_'rFr r 1 y..-

:a hq:

1 ,... ---m. L M M -tt++ 4 -p j. I a 4 +- +o.4 .. M. g o s 7,-' i g - '- t-++ + - ~ + * ~ ii,, j -.7-t: 1 4.x -t - + itj p#g 1 . i : -m m y ~5W c - n tryp.4 m, 4-g 4 '4+ # H_ ~~'++' a

l

.,t, ' ^t~i^

    • "+* ~m' 4..

W ,r e 1 ^ ~^ **' C4 "*4' * &aJ 4 i r c -- + + i z m . c 7

b., w

.. a' . 1 I t I . m_ ]. y.T.,4 + t +.- a +. - - : -.pf i l 3-i ;%.9t+4** 4 ++ 1 o m m 1.,_, p.e e<. .~ _3 %. , s, m 1 4 %_ x=.- ,+ 44 m 7 +_ .u 4444;' 1 -..+ ., u.

o. _ t,t4 t
4. :.

1 1 - i 1, y 1 . y m G.-, ,,,, m . _. e rev--v r e. . u n. +s 4.., 4 4.. +-.. + - + 1 . u o .. + 4 . +4 r ++ 4: .,,,,,,,,,4, I .,4. g4 4. 4 , 4,, I ri r ,,q 4,,, 9 E .w,_.4 9 ,4 g> I. I ,e e 4 -, + H. ..4 4 4+ ... y -,.4 p. i. .. _.. ~.. g [. () o w . g....a. : i _,g... -.+ o .-4.. g' y. g., ..h ^ ,,[, , [

d. !

t:N.w,'MM;...48 tti W b,} . _ _ tnE M. _- E .} c u. u...a..'.3 - m' 4u m' M_-.. ..h-w. ~4+4 = s.. ' 1 E. I N,: _ L.,3. Ei,....i s( 4 hh $t) i% E.] r I cn a-e -w w y : w. it - - ; > : I. ~ ~ 1 1 -+ m. , 1 1 1 I 1 Fig. C-1c

mm. G e e

  • ea.

t

  • em-e = e an.e 4

0 .4 i I 4 1 m 1 1 I I l 54 : 3 I I I I El i i I 1 I I 1 I g I . LM K L _w I I ' I I I I I I I I I 1 E. I. T". I I I E I I I

] ;

I I I [ g I I I i I I A I J l J g7 V1 . A [ I I I I 2 i1 I I tg-+ i I 1 I 1, I I i 1 g m.. I I, 1 i i I r I- - r-1 1 - m: i: ___._ I c: L, . 14l 1 14. I

LJ f

I J g F-' . I I I E [ ] 1 , w -L O s f.C l~ W. ]. I w C T l,, il

i'I

-m . o i i b :. - m. i r 1 1 - = 1 h I 1 f I 1 I I ] I I .1 . E I 1 1 I I i I I T I 1 1 I I I 1 . 1*i I i 1 1 s I I f I.. ~ rg ,y Z gg )> 1 = - v I I I I h I I ! I 1 I iI I 'I I 16 .2 f I 1 - - l;: 4 :- ,!4-.. 4 ',E I i. 4,4 w 3 l2:- - - ~. -, - -, 4 'i.

e.,

1 1 I I '.a 44 3 I I I Ij,jdhI}"E. g 1 F P. 4d i"g 7 .TI. '~ 7 W m. I 1 [ I h k I I I f l I I t I I 1 I I 1 1 1 I 1 I 14 1 I l .i_ J 1K Lm ".' .a B I 1 I I I I I I i l 1 I I I [ I i 1 I ? f 1 !!,NN h[ l1 i I 1 'f, aA ~ Y ~' I .L, dM.*U1 a E cU~ l I I I + W k,.

  • i 1

W bi .__i . 1 1 [l _a i [ ] [ ' [ F 7 I I 1 1 1 7 m 7 v } I 1 I I 'i. f C 3 1 1 i I I b. i r 2 t 1 i r ."I I I I I I 1Y f Y I I I I ' I I 1 C ,3 r.-- m .A. I J

  1. wb i

i W <.e a+44ttd! ~sh. J ni

  • L:

I.. t i ' ' 1 I i. I I '.N i i,. 1..- 4'. I 'd.l i . A' 2"' 'a1 1 .k .1 - I'D 1 '"m, 3414 . i. + M I.a 44. 'I$ 44 4 nif K1 ~ "' I' I HN 2 p ',<' y -4 >4 4 4 M+4 >4 +4 41 g,. m I'F=--*--H'.4< -P4 4 -b.) .-h M'Y .,%~, -. - W %F J I I '"we . I -.- 4+ 4- '" 1 "4 +1 2 4~***~'~ ^+# .....=- r - k ~AI - ~ )

  • T"*d."

t" '4 ; j 4+: +. i .3_,,-: - + .,4...+4 g rg,4 I -d.p.l.J ++ - _.+ - 4,b + 4 4 .r -4 - i-1

t. +. y -

44 4.,..+ +. 4 4 ***d+++'**'-*! w. m +* r-

  • I'

+. 4..-...D' p. .e ,4.:... p m , i a. 4. +.. [g 1 . S 3 . 44 .,.-.m.q+ . p: m,. g ,+... 4___ P ],g g,:. .fW 4: - -.. :. og

- r ug4 p-

.x 1 , i 1.- w.pt' 8

m. ;.

1 "--*+ ** g<>[t: j r 1 . 1i i la 1 i i

[ ^

I 7T 4 ..d; v1 1 -g i g 1 1 r 1 1. g,4,.p ;. r3 u. y 2 1 .1 .-. i - t. 1 1 i w

a

.4 ++ c.~4 . -

  • o i-y,

,, g-. _. y 4 y _4 I 1 : t i 3*L m e@..,. x, -4.,4-. v-g"k L. p -. 4

t, p 'y --

... w. W 4 + *f,. . 4: 14 ww -4. 1 4.; m _a y + w ++ E ++4- - 44 +4 4 4 'O.4 - + w 4' +-..- -h4 ... t. ._;;:tg '. 44 I 4* +d 4 =-8 4+4 W F.{ 4 ^ 7y 1 1 1, i itj

a t'"'... ;

y g s y i ; .w . 4 :. 1 1 1 1 1 1 A. g g - +,. + + * * - 1 -y4 +

9..- t, ; j.et, j.* *.-. 4.y 44
  • t.

+ -. - ' +

  • * - + +,

+, w 4 u. .t<o+++++-M t+t+:+:M 7 ; g p g4 a.. 44.-. ,l..., I .,4 . 4 %. ~.,.ea. I .4 il 4.' y 4+44 4-1 - {:

  • 1

^

d>-'4 4

4 .4 ^9 4 is J/ y4 .4, } +4 ) y+ 4M< <+ 4 .+ <,

4..

4 6 r., g.g.,. p.e9A.+4.4O --4o.,. 4 44., ,.i = = + + e j 44 r. .4- .4. 5 .I .,4 4 g W4 g, lp,. y4..I, 44 4-7 1.M. 4 4,.,4 _.4 .= - ; m; - : - 4_- '..o ]'...-. * + +..t&5 .f . -.. ^ w.+ ^., - I ). +414. : : M+d d -r Q.g,+g & N +4 f, .,,..-, 4 s 4...J m&4 p.4 ^ -' : . -4 e-T0. ...q . +... -m++ ~a, 4

4. -

g y 44-+ + o4 .- g I I 1 1. e 64 4 64 e. .e.a. e . e ~

  • f**9**~'_~'*-'

7 _. %... '.f*] ** II : 71. .1 i in-a, 1 o 1 1:. _1, . I 'I S II 1. _ - 1 _ .n n.... g- . 4 y y m - z i i ua 'm **> 54 ( 1 _w J.

==

m _w 1 i i i ! I ~l'UtT1'5 w 1 I Fig. C-Id

L L .mm + - - K ll- -F 1 ^-- .f ^.

u.r
ss m

1 +-+ .e '-g 3 g

mi.

i)- es d 'f 4 z

m s

m w--. 1 g g CTT C gu, 1 i N y L,. o 2G C O i". . I, -4,--- 9.+ i a i !. Dg I g

  • 21

> g

6. a n U

~+*+ +~*++* E-U ....h-. O

'J.D

. I - - f.h = r C-E - 1 : I ] i - i z g !E 4-. - u r. w r, a ti - NE 3 4 Q T - 4,+4.-.-.+.4+M m E~- 449. 4 p,g N N. O -m ["..;... + * * ~4 -+- 3; O m --

+

~ .r- -***-'*t.4 W .m F-" - W 4

  • t'

.s.+.4 -.4 - 1E-W -r ,._g,4_,. 4 +, 3"- 'I. -a ~m. 7 h'. y 4 4.+.4 44 1 g 9 9 4 +4 .*-4-64 4,. 44-F I I p-~K" I"w. .+44++-.-+. I I.h +4 M 444.. -~- ++d-~++d g .r--- r -~ 1 4 u. cr m m a

"".=*

w-6 w.4 - fW , ~,,. '+4-+4 n, ' -n g.. .4.~ 4 ~ ' '

g. M..

.u: - : -r +

      • 4+.4

-.+--. I-cm -+ . 4,- 4

==- C ~' N ,4- .+.,u 4 a -y h Y- """ LI

44.....-eeh.A.-'

a, -n ..4-4+. [1 .,.,,.4.,..-.4 I 1 1 ++-W 44.4 J',", l .4- . + + * - vI ,-.e++e- - _--e++p '- ' "** ~~~' ~~~ 4, -.7 p' -4 .Z-.c ~ - [.c, +++- .t l "= ~ P

_~ _ _

K,--. . -..-.-+. 6 ..~ ~. +. - i

w 4

M .-e=& M!. +: .--. 4 e44-4.., M.., 6.+ .4-e44 .+. ++-4 g 4-- .. u. M. +}. -..4,4 4 4 -m. 4.. Q... ,4 A ~,. 2 .u,2 Q

  • +

MA A .. ~. 4.n. ...+g,--._ p,4.4 4, . a -.-. ~... + . + sw. ~4.. { +: 4-.+ 4+ 4 4 4.H... .4 44 -- ~.- m H.~ 4 - + ..4u r MA.++- ..+~~.J... h.. 4 +4 .+44.u-,.. u+ -.-.-++.% 4 o.+.. + . +, f 4 i-,+M.W* -.e 4.... M M 1=.....- .. 4 44 4 4-. .-4 A . -. + - - - -M _t. 47 b4 M M. .4 1 ,P++ .4 44 w -. 4-4 +: +4.- {--- (k %.,,4.. 4~... ~..,.. ,y,, 9 .a -44+ ~.yA. ~.

u.

w... 4, 4~..4 S. y,.-* - -r,-E m.,. +4 -g.e .g $=.&. .,r. 4.. 4,-- .~..

4. m. < +

7" .+. -] 4 +4. .-4+ ~ _. ...4 g --.w4 ~- ..+....f -. .+-1.- ^.-. _ u

  • 4=.

4> M + A . +,s.hubM ~ f' .e .y -4.4* 4%.; - Z [u+ N 4 +. . p-4,,....-.. a, .+. w..... - +. _.._ y .+ .a.- 4-4,p4+- -... O .++ -.g 4

e A

..-4.~ .--+: qe ., - W b,M .,,,'D-.M

h. 4 '-

s ^.Wiby.- .*+ y-a_ ' h+' e*-.'M.- '.. ..m: .a ,.,..- -.+.. . i.e-4 m: A(.+ .*4

  • 4 i

+M +4 44s g* -W . _ - - +. + ' 4l ' ' -. -. 'i ~.. *++M+M-rh : _ _ +. M_ [+. 4 I_, .-..A-.-w .-$.f.. '.4.=H.W.+,e. . e -.4 M. 4 +4 h .Whw . -,....-u e.~. .m-3.- p64g++,g44 ..i.. 4-. '4.-+. + + / +*.*e e 4 ..W e4->+ '4+ +M....n.+ +. + + -. -..e +-+++ 4 .. ~. - - 4 .... ^ +. + + - - +++4+.++-+1 e e m w.+,,<. ... i.., 4 t....- u

e. +. -. _..

.mn+ g. E .-4._ 4.-.~.u-.~ ,,,o j 44-.4 ..g. . -=_ _ _ - : L-+.+++44 --4 m,4,i .+ 4, j..e 4444.., 44+$ M e +' -+44+h.M44-+-++i . ( j 4.. . t.4 4 4444.-44 4 +4 4 M-++4 4-4=. 4

  • 4H

.+4+-44+.+- 4 .... i, 44.+. 4 4 +w u +. - + -. -. + +4 .+++ ~ ~ + .o,J+ 4 + 414 4-4.-+. 4. ) o-+ 4.. q,. E ++.*.*4++++.#+ 44 4+4+o443 + 4 m+4-w ++++4-+- + +u- + +i* t+ .. i + i + g. . 4+* W...D* - +4 Hu t +

  • t44.++*.+**

+++ n "~~.-*.4.u - .44 T* *:.'

  • '4 +u. 4..

4. .+de.+d~+4+4+4.+ ~4 ~ .4 ++ 4 4 ..-w.u.~..u .-.~.-+m.-.s.4 ++u ++,44 n: -+ +..ro. + 4 g _y_ 3 ,3 .~nm .~~,44_.. i, 4, 4, 4. .#..+ i+ en 4 9,+ W- ,4.u.4.........-e. i 4 4 44 4. 1, { ..44w4 44 4. %.. ~u, .44 4 4 4 m u4 b g..g.M . ~ -. .. -. ~4. .. *u4 ..-4..~.. ...4.. . -4 i 4 m,,

o..

- Om W =.. -....+. _ - :~ 4 . 9 ' '- ~ ~ ~ ~~ ' ~ u, .+.n.. ...'+ " **4 h + 4 4 . - ** -.. -. - = +.'*. " - *. - * * - * * -* ~ * *" * ' * *.

  • * * * " * ~. 4".

E- ^ M. .e,4M-b...e - p ...e---e.4-+6 N. 6d. 4.-" .4' ~ -* ^ E

  • 4 W M4+

M4 ,.-e4 = ....+4^:

: : - - +4+.e..-*i

+ W .4. -'M--e >w-+e-ve 9_o ih=+.- w .U... %, - +* 2l 4'

  • W
  • .+..M*.Ih.-

+ + a. % + + ++4-d>. ++.. '2 ... + +. *CT.. .4..... w.w LL+.-++.. T-.. 1 o , 4. u. u. 4-.~ 4... 4. ~.- 4. M . _ _.. + -

+.-m * ~g _

e w

  • C L.. _. *ur.

.._.w__- -_ YL--- --.*~'O .- m. m. 30..- +...+.UL. n : .-..4 . _....... ~.. - _ -~. .wt. ..+.p 9 -- -..~ u.. = .+.._ i -. " + m-c 4.-+..----

+w_

-w. J Fig. C-2a _.--.-_-s-__--..___.__________

0 [ ^ * ' 7. ' C* 1 [*.E e I 1 I y -,a [ I I I I f I I I 1 I I I 1 I I I 33 - i;_ I 7 y [ I I I t I 1 I I A I I I I O E 1 1 I v WW _,I r, I I 1 1 I 1 3 I A I I I I I I h - t, 1 I I I I 1 g. m I I 1 Y I I I I I 3 y - 0 I I I ] I I I I I I I b*+ I I I 1 I I I I I [ I I I I dI ( 3 gi,,, I F'-- 1 I l I I L 1 I I I I I I I M 4 6 I""I I I I I I -r, I C E @- 1 2 1 i - L g I I I => : i 1 1 ay~+e-' a I I I I I W I j g hq >= 2 i_; gh i i i i t-d-~;;i> H 1 c 1 1 1 m 1 1 1 1 M. ++ 2 c, g: I i Z i'1^ i "~'1+++* W 1 I 1 1 1 1 1 1 1 : 1 1 . i. C3 i 1 1 r 1 1 1 1 1.. 1 1 1 1 1 1 I I Q [ I I I I I 3 1 ,w,, 4 1 i.- --- 1 1 i +,4 4 -n i i I 3 I I I I ..4. 44.i I 1 g et - n u w.: J -.. 1 i. a 1

1

+ + 1 i 4 1 I n _ er.. m -. ma I it i r I i 1: i gg ,.,,4 S 1L_' i - AI r I i I I ' i E5G ,.444 - ia = u - i i i i z i rr g m._ 1 1 a, a 4 4,. 1 TV ^ l lh:!. ., +t+44+1 0 I I 7 t+ +++ -a i r i - r:

1 +g

,.c '.4+b44- ,4 4q., q;-. - i. . 4- + + -.- ", -~ C: 1 1. 4: - m. , g ; 4,,.; ;.4 L 24u4 g i r i 1 n [ 5 } W l { f ag _ m

ar. 4 4. ! b..*+4 4 ;

t ' M i 5 L-F - J"\\. i 1 1 f I j 2 O 7 1 I 1 I I T I I 1 '.v^,2 l E*"4 i riii 1 1 i i FT'i I I I f. 4m e.>

jI%.11 **

M h,~', i 2 't t 2 .+.p.rii: - l l'1 M r;+t+< 1g~.~.f i I u-r 1 i ,.u _ 4- -e-i i .1 1 44g 2: , :4 "g .i-i.lT d l% i:'777*44 14 i i 1 i. g.pg.+.R.- 4, +4 ! :: 4o w.O. M Iv m-j++4+; &::pj;tt;. 4 2

p" +.++ %.++

't t': - 1

M j

.-gh,, ^ - ' j . i ti ;j,

    • g

" +++r'i t-0g((. A}.+U.p y.o,u p~g. m

i W

1 + a. s 4 +.3.e +,,.. p 4a4w2 + 1 i "" i > - ; i a + - ; u-,. 4 =g, 4 (e'l_ 444

  1. +4,+4

~*4+++.44-e.M. - [_ e4443a.4 .g ~D *' " 'l 'M:D.1'.I M.. l'~~ ~"*d ii ~"~" lI 5 O-D, w 1 --E i

  • 5 th

. j i i 4-a. i t 1 i - i 1 1 .g4 w -

uu g

l 44 I

    • =g l

'-l'I Ie " I t--*t+r 7 4 ~ ,Wqg ;: m . #[ +- gg- . z 1 ri i i 1 t I; 1 i n 4d i 1. 2 b44.. ".'y4. _g 1....++++++ ++. -p.-., 4. w I 4, i. ?.., 1 an 4. Q g e A .Sim 3 -'-1&.* 4.& D4 + 4 1.++,.4 4 Jw.E,+. ! ; :' r .w - & H- + ':++++ , I .+g u.4.e. (+e ,4.4 +4 +9.g.4 4 i

  • +

4.+ 1 4' g I +4 4 4.+4 9 }' :; ..ed.4 4 4 k 9 4 H 4 4 44.9 4 ed-e++ +++ e 1 - I -4 7. ++.+. 4 I _.5.e-. ^ ^ .($ i 444. W. Mee 4 4-.4 ^'M I I I I I I -44 ,4 ^

( 4e**. e4 I

&W*, Q[..:+4 l l ' -,.

. -..4...

g "t, . ',j,14,u. j@*3 4.44- ~ ~ ' 1 ** -} ; *

  • ".{*J
  • iii iit<- t+a'+t+11 r?

,.d444.4 4 '. s. l 44 44 i 1 1 44 4 I I, . p +'l. e h+ l-4.+ >h I> -4. - p. w .-L,4 4 .e.1 h 4 !+ 4. ~.- +., e,e 1 na !~. + -+ 4

j j

gj4 . g} .,. p .I .7 4 s.+,..,,,_. ..~ -.4 1 74 g-g w y-l l ". {'I d 'Lji'lU!I~} h'11'k_l' 1 . +llIICT If1.: TI7}. *t i _ -di ]- .t:I7T* }:Z,TUIC 2 j t1 r:$W +g - +

J u fl J.
  • ++
  • -t ;iji 3 3 %4.u.4 1,

i 1. u,,

  • g

+.++ ++W-, + +. ' !.+! ! ' . m 1 m 1 h 4+44 ++++++++* +-6 . $ ++.+ A 4 m. 46". ~ 44 .~--+4 ..4 - +++. 1 + n., .4 444 4.-e. 4+ ,E .4 .. ce w w-pe m em e.ia e.- e e e ge*- .**.****+* M h [ 1 d bh ? g; ' O 3 l j c-e_3 ^' I I EEE 1 L:3

W I EJ EE3
EK3.

W .W3 - M# k i I I I I I I 1 I I 1 i I I 1 Fig. C-2b I

_ m - = ..o e .O A I ] I .I I I 1 I I I A I m' ] g E

c_

5 I ' 1 i 1 i 1 O . y O n. I 1 - I I i I I I I 1 I I I I I g 7 9'S yh ' 1 I I 7 g ! T1 . n 1 I ' JE { I I I y ~ I I I I I 1 1 I I I 3 I I I I [ g g r 1 M ~ I I I 1 17. g g h.' g g I I I IJ 1 3 I 1 I g (> I I I I I

g 1

1 I I I U I I I I I I T 1 I I I ( g I 1 1 f 1 i l 1 3 I I L 1 I g 1 am ,__j [ g C*M l I I iI' t'i! M i it I t y i 1 1 1 I I I I 1 I I I I M I i1 I Q 7 g T 3 I A y g ; y I I I fa' I 4' ] 4' .mt u,. r' i dtt4.,-M i I i 1 jyn i i. i . g d.<wd.t 1 1 Y 3 I w. 2 eg ~ - a, w*+- ^44a =a 1 1, 1 i '1

La

] I I I '_e' 1 i I I I I ^ .i M... ' I M 1-_ w g I 1 i g g I g I I A l <.nimM d y E2 l 7 g y I I ~ L 1 I I I I I I h [ I q I I 3 3 ^ I I I A g I e.w 'd. y I ' 11 j i I I I I 1 I I I I "'.N I I 1. y fh. 4.i g g i 1 I .. I l 2^M 4 g ^ l gm I I I ~ II ^ I ^ ^ g""r' s A I l ^ -' n. I w.= y' ~ 1 I 1 1 g g I y I m. " L.J - V [ I I 3 1 * - - i TT UTU I--k:- ^ .'Mh ,I "C f;_ k.; ; ill; _; _ ' ~^ ^ ~~ ' g I I I I i 1 +

  • I '

'y "R - , I - ", 7 1 ! N' .1 1 II I

  • {

y y I I I 1 24 F -7 . 1"4 I I b y m I l l 1 i a i 1 I r_ me i ! I I I I T yD I 1 1 I I I j I 1 1 I I 1 1 I = m, L.# 1 1 1, 71 m. 1 .u..m ;, 1 i u,.. -.. .t = .r-rr1 7 I, I h . *M 4

1Qm, e..q,

^ go - r' 4, t . c c.w a.., (t i 1 1 r ' ^ ^4 i i i I i : d; 1 i I ~ n.T. 1 1 1 1 t i i. - i

h..+ l~

.~ Om

1

,1 .nu !iti 1 r 1 1 1 L n +-4+

i.

.N. 9 4 a r-t.L4w <aej * -9MW1 n-( i w M' .i t _w. t' 1 1 i i r. tt .h....r.t <- +-- ..u w3, ,1 1 .y g

  • e m

i-H a 1 1 p .. 1 1 u t 1 1, 1 1 f.t p:mrME. w% g3 s, -4

,, w+

i I ' i i i t %l p g li!!i! Ul tt:niiJ mA as >;,, g 1 n- +~ ^ ~m y ..m m l> #*,4 ._-n ^ %.s "4. 4+4;i. 1 : i - sf-E 1 i 1:.h' r 1. 1 7 gw m 1 1

$1

' HtNMM*ttid ' m-E [ gd;-jji,jj ,;!'A i i i > 1.. 2 1 i i ; i Mxit"hiidle E E OE i t+*~m. : ii++h; i a ,-+ E F z-tii; m.._r . i i w- . i ; I i 1 .u p ..,e-. r i t! " i t? N 01Th*3 dD w v i i ii11 u4. -% .-- e l]i 3 " D

ii 1

1 b E .e i 1 r J2!33 5E tt +t* - * [.. 3,J::'{ nmm i. s }.+4m~;i f 9, Or . r (:~ fi'i.. !'i 1 1., T 1. : 4 g, E,. .&.44 L - _1

4..,, 4.4 4

4 .} t.M.. L. y M..:ty +4 -..r .+ +-T~7p' !! H r .- R N %

h. k i ' i d[:g~ i:MtMi

+44!.... 4ht-MMQ.MMW~* @ h_.' M -- i I ti;i m.

rm m q.

....- m m: 1 m 1 g . 1: n.,.,,. s -- w . " ~ ~- _y e u . M ~m .u+.- -y- ,u_. m._ 1 :... M ' m ,t u ii i: =r '] 1 ^ ^: t ' i 'i is

  • I

^ - ',O t++e++-* _. i 1 1.. xm-1

t ai i

+' i - '

  • i 1

1 1 r .v h

i ' 1 1ii} h

' nn Iw ^* ^ *

  • I

'd I t L. -..n. 1 1 1 Fig. C-2c

0 E# : I 'e I I O I I I EX 8 I f ; EJ I I I I I I I I I ' A "I W ' L I w I 3 I I E 3 I I I I l La1 1 I I I l l I I I I I , N' I I I m I r I I y I I E I I I i i r I I I 3 I, Y, I I 1 i i i 1 1 _ 1 I I i pm j g I 1 1 1 1 I I I I 1 1 g

  • M m

I I I I I I L I I I i a' O 2-' ' * ', - i . L.- 3; I I I I I I I I I I I 1 1 I w

mig, I

I e - I 1 1 1 I I I I I 1 I l--- 3 ' y a 1 I I 1 I I I 1 I I I I I I .,M g I I I I I 1 1 I g Y t i I i I I I I I 1 1 I I F" g =g Z u 3 g i i i 1 1 1 I I as .Ja K 1 1 I I-i I h.hh I, ' ' f h ' ^ 1 g 1 I I I I I 1 1 I .a l 1 - Ed I I I I I .iN Q Y 1 -' I I I p. 74 I I I I I I 1 m.- F,- I I I l I 1 Id ,y,A F 2 - o '~ 7 h l

q. mum.

I f I f i M,. ph I y =. ) I I I I I & I 4 g 2-- g y I i-- q

44. j g

am EE I I I i 1 I I I I I i 1-I p 1 1 I . I I I 1 I I 3 ' ' 'M a u m M La w. I I I l I l I I a "'. _ I I I i 1 3 I I I I I _ QQQ l 1 1 1 I I .I . 1.. 3 i l i I Qi 1 em, g'T _ I a f I I~ kh 1 I r-1 I ] I 4 i f a WWiF _ 1 I I I I , j g 4, h,,,, k I I 1 [ I -+o ++1"77 t I 11.,,, L.- a 1 1, ,., +.: + - < 1 4 A-- ,.~ t ~ 2 wr m-7 _, ; - r- -m m,-r 1 I I I - a a I 1 'wd m '7 a m 7 m W 3 F -. - - I I 1 I I 7Au an I I I I j.,, I 1 I I + --- Y' 4E

Y I I MM I

.P' A I I 1 I I A I ,,j. -. l iI E'1 "'E I 1 I I I I 1 4 I h4 M.2 .h ^ q 1 1 I me " I i 1 i i I I 44, 444,9 444, 4. 97 E]* w - i.d La - i 1 i II i i i. NNN hg" n t 4 4 *g~1 -*Ne j t +-+- ~ +w + ~+ t y e*'. '

+-

1 1 i I i 1 1 I < - + +. . 1 {..* f + 4- + + - +--be,

  • po
, '; ;W, r'..

4- !,w,,< l ++; h "*4*4, 9 - 4 a.'-t44.g.+**,4.. *.

+++,.,-

1 2 1 .--.+ w i I 4a 4 '4 64 ,9 +49 94 g 44 I f f.<> I. p. l y 4 H 4e S g +4 g-4<> ^:^ ^ ^ ^ a.h*++4.. ^' -P , eMg 4 l ,y,. j 3..=.{"} a.. u, ~-... .-4 y m 4.< 1__ y k +' *1 1 j.h*g. j' '****"*"'*y* i i i 4 i Iii Tta y J ~ gg[ T; i rI i . 1 i i i j !! ' d 4- .i I -414.t:,*~_+4.t1 } iI m t-m 1 i t > I -4 t+-

  • +4++-C:

- % 4.- - a: . ++++ A g l l5 ,u"+++- 4, u n ; ! i +-4 v4-++4 nig+ . m.--; g g-y u; I I .x.5. = s. ,. m .. --4.. .*.i, I ' W **i$ I W***' i I I 4 *M, .+:.. c. 1 I ~4.. 6 ,'.+ia 1 I i 1 ' :4 4 4 h.,t leT_.-;,.+ 1 2 -4 4 + +, - 1 2.. - + + wf &.<..++d 4 q 4 g.>9 g.9 4 - I H $eo l - I 'l y 444. 4 . : i.

I"5'LD".,j, w

4 c,: - ',- s -{,: - - + - ,4 9 :- . - I :- -.[,,i, I - r m 4 4.. I e1 -G -- ,,4 : .4...., e.,+, m-4e +: - e. (-l 4 t=< } {all,4, - 44 .e-e 4 4 e 4+ 444 ++ <>++444my a ,4.y,,., ++ ,4 =,y .h h.<,Mw, hI. I =>. .*,=>.- w d 4 . E p.9 5 ' 6-' 4 i -*<i- <><-. <,+ 1 < g.r<--, <+4- + < <qi< i [ i-

p..9 < r.

, += m.e.4"=*4' l I I I 4 4+ '4u. 4=6.e ' ' 4 'm-o >., WQ. i <n .>= a>< w-4+4 4 -+4 [ ~ q$

  • ,8!. d O

M !1i Up t.t1M. tibi. d i b<< y *1 e 11 1 1. l !. ,, +. i' .,,w- .. 1

4. m<.

- - - - 44 4 ,,JE. 2. [ M- - i '.""'"I'* y. 1 ^ i I i i i I tt*****" ~ 4 ] '.

== ' + M 1 2

w I 1 1~

i .m - 4m b + 44+++1h,. M_ + - .N. - **+*- N h_ 'i., 4-2 1 j M 1

M_

'M1 W I W W -M - W W3 3I 1 I I I I E BI I 1 - 1 _ ?t. 1 1 Fig. C-2d

S

m.. amp....

e,,__ .G l %d 1 -p i a E g O K I . ~_ I I f i.I. I I I I I ' A ! I 1 .I I I 2 I I I EI E y g hW l l g CM I I I I I I I [ I-- 1 I i i a: 7 a' .C E-1 i J a 27 W I' bad I I I I A I E I I I I I I I""I "*M** g ' F #'-' W ' 1 I I i T D."5 V ] I ~ I 3 I I I I T I I I f ~. I i1 a,g I I h. I 1 I I I ? (n'e g I 3 I I I I A I IM'_ g 1 I I I i j I I I - {h i t Y I I A i I - b bb } ' f I ] I I I A. T. dL I I I I 1 m =

n..:.,

.~.h.. \\ j I I I I 1 4 W"E 8 4.

m..4

, um. m I I 1 i m_.- -- 1 i i 1 i 1 i ..f.4. 4,.- 1 g x m I I I um. u _m. i, 1. 1 i i

-1 1

XV fy y g 5 H+*w'ir mL 5

m. _

1 1 1 r tt , m oo mmunmu =. I [ ] 1 I ... _ i_ _ _. 'ii I. d w w 1 .1 5 _.4,,g4 1 r a 4- = i

= -

4, 1 1 1 1 "T* h. 2 . t 1. i 1 1 t I 1 I 1 I _q, P. I A ^ ' tt' t*****+d

7. -

a-.4 t +7+.n i m, 1 4. P.,r!; c j-ie 4 I : I w : m mesne1M'L: Ia.l I I . 1 I I ~ se m x I 4. ..1, 2.. m,.m:.. ~ -.t .4_.- a_.., m ~

  1. ,,.m r,.,,.C..

n. ..n x... ,a. - ~. m, 4.=.4..m _. o

s.,. _.

+ , u m. .+ - r c. r-m4 g m.;.t a.p l l

c. m-4m e u-

-u 59,,t. g a_

a. _.rn.,

=- - ,gg - y._., ~, Z 4 .+ 2 .4 -4. l

1
: ge.
s. ; -4

.e m. mm m o. n. 1 r y_ - - - :._._... : m. <,--., - - ~ m , 1, - ('j. _e-+-A - -.. 1. o. - - r .a-..- m m g g w.,:ng...,41 (.T)p.-. e u m,ti n v+y.ak:-- -m tr -mm~m.. m. -. 1 pe,. q,+--- .. i; n m --. n 41 gja:L a. ...-~t.. p, 7

t..

7H4;_ . 14._,A.. _-M... r 1i i 4,..; .a. 4 y.

4..

sg.._ ~~ r._. p.... f. - - -a. s1 .,.4 4 e .i..i..., o m. _.... ~ , n. . i .g..r .a 2g.._.._.; mrj +r - ~. E, ij ya s ++;*r. te2,+t u,lii m m,+*1 -mm4. -- v

m..

= 1 : h + *. .. t.. _: _:._. _- m m

u..-e..s a

,. + ...g g.. . ;.... ;. g.. e a6 ._a..~ l j ' !r f M 4 :: A.p q-**.:;4.y. $m htY,dil iG A: i -~ i E ~ 2 -+W 4 i, EDN T Fig. C-3a i l _.-i,-,--, -, - 4 m__ -_._._,y.- --.w--_q, m. _ ~ ,-__.w---y y_, -y ,_m ,v__-_.g9 g

F 9 9. g e, t 9 i-- g I y y L I I I I I I I I I L I I I I I I i y .y g.. - A ^ EJ I g., g I I I I I I r I I I I I 1 I I I I I l l l I l g-,- 1 I I I E I y ' J.' % I, I I f I I I g I I Y I 1 3 i 1 I I i I T-I ' I I I I I I 1 1 I LJ : I y 5 M ' I I I I giug e I I I I I 1 1 hi ,M I 1 I E -] :' j 1 I

U I

o 2W u ,M. I w 1 I F"". I -'I g t g y j g ' EAan-I I ( -^ I 1 I 1 i .m

- I I

88, I, E. I i 1 I y [ r f I J J I I - 1 I 1 I 1 1 I 1 1 I I b I I I I I I I I 3 i I I I I I 3 I I I I I I g I I I 1 1 I j A,y-1 1 I I I 1 I 1 1, I l 7 s. N ~ I 1 I l 1 4 l" N ir I I i 1 I I I I ,4 4 4 _ ' - I 1 4 4C iBut rg g 3 5h I I I I I I E .W1 ' Q I I I I L I A I .a. h.w 1 1 I I I 1 I l I 1 1 I I I I i-f. 4 .E-L g" iI. T I I I A ,'a I - 1I dy us W I I I I K w' e i I I pa h 'I ' 1 I I I I , QQ Q I ' i.e+ M+'4?- W+i a i

  • ~

+t+1 i

  • +4 4.

~,4_ 44444.44! i y -_P' a i i I i I = -- r, 1 1 I i. ! 4.+ m:. u : - - .p , s _.w. = 1 I -.,4 4 : 44 i u 4. n - i-4.- 5 i 1,. * ** P M : I i i i . _a _a IN "4N T I' ..a _. u n__ N ] ... _ m 7 I ?. .2 2 m. I i 4 1 7 s'% -. O ! 2 i 'I. 1: u i I 1 1 1 I I I 'a .A 1

4 1
  • Q 1

1 ,,, I k FT1 1 I ,I ! l' 4: ^ t't-t++ +* f+*y++-

t 1

-.+- z .r-i 1 Grp! '.+ ,, 7 I y ^ i -w.1 _: i Er, I ... 1 1 - 444

i i l

M- +u< -+; 1 i r++- - i ~ I I a M.I I I. m'T ~ 1. I ..I&-.1.. + . L, Y 3 - ' .I I L' I 2'2 V U l..J4m m.- iU .O-E .~.tm

  • ^

+,o. .u.4-e. 4 o..4... -4 4 ---- 4 .h m

  1. ]4 1..d n f-': e4~.~+..

^ ; ^ t

  1. nmo q.
+M. TOC d*'

't.;:O.!*-"@ t W '.*.;.s

^

i 7 i, 1 I i W-l -tI 4~4*17}. U I 1 1 I I {....&.L} ~. .. 4 -... .. ~... - J Ii i' - iI

ji J

t1 m Ii I I i -. g,. 1 .. s.. g..4 1 y = 5,m-1 , ; ;i

i. e.2 +..

o.. ... l. <-+_44.,,, .,.. 3:: 4 . )r. - ^ ' ',- +- -++.[ Y

,1 ;^

44 -=-

i

+*4- ~~-+ g p 1 1 1 i 55 d T' J,pl.. - *+- gM f 1 i. - i -.n ^ ^ : i i i: "+*** u I.3.. m 1 1 1 .. I

., E 1

n.. .. 2 y . : - -q....i.-.pp- - -.;a 4. -u I -., 4 w4+4 y .,n-. I I g +v..m M I 4. .. o..: - :,..+_4.* .+4,. G .-+. - 1 1 - i : =

- :. 3 '-

.I , 1 -7 4.% ~ 44 4 4 me = n,.-. - ' M.' ii; 1 - {- ^^' J"1 {.'.-_+ g, 7 .. +-.,. - -, ' -.4- . q l ~. 1

,,e 4.

.. 4., p - - - . 4.: -. - : 4 e.4_ .m. 1 . 4

+.

.~ 1 vf .m". .-y,. T 4p n. .~ tem-e

! g *1.f,ii

.r

i i i....

..;,. i i ; ..t- - -+- .4 - m

4. t'

<T + u,. . 44+... s

+-.~-+

4<*< -4 4

g +, + -

3~ 1 +. +.,, ,,4 *. I E j, 44.,.4 I l, H y.j m,.4 { t 1 +. 4. 4. I. +y+ W. .,44+ o 1 - 1 -4: -

..+ -

-6+-. . o 43.. ..m i fh.J hfj'i ' ~ M. h b ++ Y+ h. h[<'..] f ..j h.. _hh. h.f.N.. p m ~ n. bh:*j h.[, _f.* [4.,4 4 f'.

  • 45

+t 22 , ^1 I - i r- .4 ...4- -M- 'I e pq 9,iie% +qe-.-.e, +e N '5h U E' 1 a m jj - - - g_ S ^

li'
c j'

^^ 1 - !ii

EM I

. EIl . um.F g.r _ EE2 I . I.EJ

W W2 45 I

I I .I l E I _ 1 I I I I l I Fig. C-3b l

1 E-g -+. M, E, .v y; r, 1-o

  • W

.j : y_.. r ^ I m I I f5 n

  • Q a

.-c m; 3 r t

?i o:

i g m 1 e CRI. F CES 1 i +-- 3,r=- t i n. C + 5_ -~ " U n. --G O emG ~~b

++-

~=' p >r> . r

i i

- U. E r .u 1 c + 1 1 m T c u z u ~++... -+4'*",

III h.
- ri !.

1 4-..e,. ~.u i; i ..4 +4 %...+.+4.++.t tT-,.-* W 3 w .a-- m .4 4,:.- :4 > e r

- +-;

yn .+. g -.e- .4- : r en q m, .J ,g .~.e.a tm,. - E i 1 +42. 0. ! F"~'n ~~

a_..=
m 4.

1 e.g ^ 1~***..- 1 . ;Z l ' '.. < +-+4 r _.. 9-pn w- - i - . _ y.,. .i 3 + ._.,4,-. -,-.. ~, e h,. es - -,y+44.M*++.*-.- + .. + - .+: -= _ m 44++++. _.*.. y w 1 ..+..6+ g5 - Su_ --_o. .'l,_..,.~_.,

1 2._

. 1 - ne ..--v-* ,-.c i -~_ --- .~. -. ~fD. -iy--- w r w L r'"1 +., 1 A .K. h_._.._ ...... ~. - _a _ w- _r 1 +m 4_.,.-

.4

~. -t m 2 .w u. ,n_ m- ....4.... e u. ~ ~,, _ 4 ..4..,,u.. -..1:- .. _... --. _ ~. _ 4_ , ~... s 2 . u. m 14 o ,. y-r;;.4 w &. ..... w........ 4.. .,.4. .,,... ~, _..___.. e. + s_

1. _._

.s...!r .f1_. r. .._. _-= z .1. 1 - - - .4 .%.-- A..,. , '} - A.o w ..g a .~. s- ..~.t-._..... - _e . _.,...g. m-...... _. _. ~... _...~.. ~. m.... ..o. .~._. . L... ,4. ....n. __. - .44 1,.. ,. 1, .. e u.4.... 1 .. _-.... ~. ~._.. 4 q.i ..~..4 ++ ..r.: _..

n. 4.a u 4..

.4 ~4 ..L... + _.._o.h. m~. e . e. ... _.. u_.. tn..o. 4_ w...E.., ...L.

4...

.+ .......4.,.,.,. m_. 1 3.. 4, w. 4.....,,,...... e.u o t r., i 1_ 41 m. .a.u. ~.s._,........ _ _- _..- 4.,.._..__ __.. - . -.4.. ., =

43... a, Ja w

m ... _ - ~. - . ~ ~ ~.. _~. -+... .y w . m - _m... ..m -,._____....._s_,_..... ........_a.__.n._.. - ; Lc....u r C.. e ..m._ 6.._.s_.._..m.o:.._a. 4 .m. - m.. .m .~ - %...... +w m _.g.~. -.v _.., -_ .I ... ~. %. 4, ..m.,. _. _ - _. ~. - _ _.. . - ~ _. .nnm .%4; -+ e-. Fig. C-3c

9 6 w. s +

  • IhiI 3 AI I

I I KI ' i' I I I I I I I I y 6g-g 3 ' bd. I f E 'I I y ] . PT. I I I I I l LI - 1 I I I I I 7 y y g I g I k I I I I I g i, g g g y I y - - A n K1 1 I I I I I Q y g 3 g i ] I I I 1 I I I (g I I l I I ! I [{ g h.' I I I I I I I I I N y j i y I I I I I M ; I 1 I T I it i r i 1 1 1 1 - I I g I I I I I i 3 C

' f ft:
r- '

232 R nni O Q I I I y g g g y j g j g g 1 [ .=. I gu hh.h. {^ I 1 I I C ++ 5, 1 1 1 1 1 i 1 1 1 i ..{- e j l 1; I 3 I I I I (/) i i i r s . Ir iI I I I g z Q ++ i w m . i. j:.-m___,u ;, ja 1 q - 1 1 i 1 1 2 . 1 _ 1 2 g. 1 1 1 i 1 1 1 1 i i 1 g 1 ! 2;,' j-,j t.t 4<-,...- - .1 i. 4 .tH 44i4 w 1 ij :. 1 t ii7 I t 1 1 M,. m ,l i;;! ' i .F_Mt. H f. ?,_' 44 i 1 1 _-r, 4, w+n n . u 1, 1 i

t
--"-

- +- l', l' -pc 2 , 1 w 1 '1 't4*t

t--

-+ ' ~ 1 ii 2 1 : 1 a E e j' + i 11 :.. ,1 1 1 1.. 1 i_?t* > , -+ t r 1 1 i i ri 1 I I : i 1 1 i i i i i r -s in 1 1 i

++

e,_ a',,'_. I g y [ g [ [ I I I A, ..m 4 {4,;; I m.. -a I 1 4 ,7, u -+ +.- 1U31 1 _ 1 n. 1 1 1 i i i 1 . 2 2;---.a 2. - _1......i4.j?*****Ti . i i =. _ ;,i -. m ......1 _= J7

  1. \\

l l I I I I I 2. 6 __1 I I I - I I l h4 C ? -D 1 I I I I I I 1 I I I 1.i i i i 1 I I J. .m-i I I I { a 7 h@ y*++- I I i i zi If . #V I I I I 1 i I ' sE --'E .f 1 - --- I l A I I I E ].. I =

=

m.i:ir-M>4 - e-- 1~ ~.< '*i t A! 1 i .1 ...ih, _'4 1 4: g :.-.. . u. i 1. 5 i i utttnH tr..M1 ' ' li 4% i i i +44+++++ m" ~a ' ""- - Z 41rf*u++++ ^ i : i +.++***+~-*

  • ++'

i.'i i t-1 ++- i i ,,. ++-m s* <g=w 1 1 1.

--^

i. . 1 i n.u ,3 ur u -o 1 1 1 .5 a4g:.. K, t. - 2 4.+.4 N4a 4. o . e 4 t 44 u 2 4t=44tt :: i...T.L ttn14.2; T.w# - 1 a Uud j i i 1 .a%,.

!i 1

1 y >i*d -t *- - i : ._9+.W -.a. ,w;

5. g i;,,,

i i i ; i n i

i. t..

..... p. 4a.. y .+4 [j.j 1 1 1 1 -1 > 1 t - 1A**4 -+-+ +*-* 4 H p

i i E-+4" j +i!

---t i; 1 1 ~ i ^^ ^^ 1 1 + I-i i M r i r I Q z t 4 E; 1 5.. g: 4,: J.-.4.~....w-4-- i . w 1 ,y

  • A

+4 +. 9 g .. =..

. h.-.+.

7 '...*.44-9,i j +t,t. A+- -..,, ; ? -+4 . w ,, ' i :

  • j :

-J-.i-. e++ 4 +- + + 4 4+4+. 1 1

  • : e

+- . : 7.. - :,1- ..-.e. a '. '. . j$..; l11' 4 _4 4 N4"7 !I 4 4.+4 +M++".2 !..', 1.. I 4 +4 + +- 2 I I 9.. .s;. m.: i 3 ,~ g..... g4: y;.

4.+.,4

+ 1 g.. + t. E. 1 1

e. m.

mi .-4, +.. . _u_. 4.. .g. ,.,,,.a4 _-,,.z,... .7 4 4 o -, -.+ ~ n 4 o i.4 4. e. . 4 4. >. ; ums -m.1. ...i,,4 m. 4f, 4 I I I I o .._4,,_,4, -93% 4 ,4, g, . -.,,.>.v. .>.i um.-,.

w. 1,gu 1

..i. m-. ...- +. . r. g, ,.y. m. .g in aEE,gm. m. i nnn y.d. % _nq.h.. E !Wi!Ea..h.u..u ...~ u-x

m.. - 4.a.. u

...,.. m o, m m1.-m - p -- -t m 1 13 .t 3:3:< 7, lf.~ ~. - a.m... T: ! ! l ln ' ' ' ' ' # a ka4--44 !I^ : - - ~ _ ~ y .~.,4.,,nn-~- 44449-M- - - I!i : ::: ^ !Mit !!. T i'i, . -+++++++ ^-

  • 1 g

m {1 g [ t-t -t+-- 1 1 1 i i i !!! llj ^i ^ l w v,4l.. 3 3 us

.5;m
w, "3

m. -P

=

1 I - - 4m l 5!

((ji
3.3."13*

I I Fig. C-3d

~. a i 2 anmua un. enr n ~ tft i!d till Hiti'M UlIl E$iE $[ 9T bl" - :1MNI D LA lir[R PL RflY - IHtill 'j SQ }}tdididgN!$tQgjp. l PREPARE!!%.111 t-+:-:: nIcil7

d_ r!

4UT MATEE QF3 WW A N C 4 ik . wi E'o M m#ik L E lie O m IO J r m aumisun (tun 4.. _. _ I. ..a. -T idott i -3 ~ 3,30 gM I@

  • o- - lesN i.

f] M H M t:: In he#9ttin PQ 4::d..M h t_ p ist.: 1 :! ] 4 4 - 0 4 ] W - M !W K1 .. t. %

1
:t;jj tz

-} -' i[t {::: t' 1. _. -.: In r-' . g:2{t. + : ~ ~ ~~ ~ ~ I t i:@ r ] . E . g.. g...a. ggg ._...3 .)g. 77. ..y kI1E ~ [. - -:5.N -h.. tw-. t:. J ~~ ~ -E2 i ~

M_.._i.g:

3 x r ..p. y.p g 7 - E u s ~ ~ ~ ~ ~ x_ J.. p ..: t":_ ..:x.xxc::q tx-d ~ ~ '.i P: i-xx---x 1... ~ ~ I mixt:: . t ti:$3 _:___

x:-x:

t "I $r-' "t ~ : PLE-

f x-

~- r :r 4 J- : ~ ~ ~ ~ ~ t-:~ i

-f -: :

cx x ri - . zt- .x,f.] _4 1 l:

n.

.x-E!kd --Edi bib b h5b 1 E[*l[ ~7-1 _f ~ ~ ~ [t1E. ~ 11 - ntyg [~ 1

-x-u

~ J l:tF.g~i.s.i }:t:m':t r n1 $. E J g* . _r:x x; 2:xu .._1:. x pp4ty{

x-:t :;ti;::c.

) ~ ~ .g?} I:P i 2:=::2 4 ,:,: pit tt

y.lyg
:Ir

~ f:: _...-r--

t~t ti:~t't r-i i

i x:t ~ ~

-'tt h: {hcr;:Y.12 t:
1
titi: tit 4

Ijiii'*:1 it d:1[- .:d. b ~ ~ n e -++ ~ -a t d a: m-i

"1
+

t. j.~] 9 + 3: 'y:= x

:~

r ++ t z t:it r.4dti: +. j J'1 1 ."t+iitt tLm}:]._ + 2 r 7 x~

x 1:

u. It .+ t_.,. 1,1 35 f : ..t. J . t ---.-u i 3

t p.t

._ w ;, p:

+4:.2:

u a t _4g:* m-c _r tlIt'c't 11 : .i f'f'" 4 I';: jftT1{.C f agt: "' JFI' b: {_j::ti tt 11 -f ~ ..it i::

o 1, l::ii:.T, r::

.I }:t+}:. . :.} ... jet = :. _u x ^ .g... 1 t: ~#(1- ..... m. Lji ... u- } fidl:: nt.i 5 in [ut.1 ~..;

t't!:tt1[1

~ l- :v: : ::'--- ?

l. -In1 !;mtm

' I11 7: -k. cx :*!

  • itti :

tt+ 11 I: 11..:1 :. !.h. }11,.t t

  • f g

. j:i:x.. :..---a:.:'k}it.[ :.ti. }{t .-t:. y mm i.- I m JU DENSITY 4)lb / f t3 REL ATIVE DENSITY ( Dg)% WoodwartiClydeConsultants h

mm m.m. mmmmmm-imm um g g . O Ah ~ - t Mi - w ' A KE me +4+ u g py. f A-3 ~ t CT1 t .+++ N 06

1 y@

M h.. ^ 1'-~ g 1 I . I C' O ME ass-w 6 e 4. +++. 4 2 . bg3- ~ + - + + ' ' ,*++: ' ; e '~ t : b O ++ C i ... '. ;+*+. y ~ m a E Z .O -a,+e.+a e. < a, . 1. m - :444+- o

+++

4 4 +. 4 ; 4 g -_- 4 w 4 ++.. 9 4 -+w. - . *. 4 4-4 4 -... y T .uw m. 4 : - 9 -. 4. .4-e 4-.- 6 ++- 4. <4 ,+ w. .e..- 4 .+: -4. 7-- P % C3 __ U $. 4.+.+t.-,.y+*<

  • +4 4 +1

+4+*4 -4 -.o %.9+ w . - ~ +4 1-kk-O.- ~44-*++-"< - a;.<. !I'~-'< ,"'*u".,.'* E 4

  • i 2

g _- ,,.+'W< 4 WM< M4-t -, -u. ^.=.6m .,.. I :&++44&4- +* g* =- . 44 yo. @ 4 -.- -.n+.+.-<. ...u. g. +.+4-9 4 m. 4 ++4 4++ ->4. g - + < -u+4++44-+-- 4.- .W. 3 - - -+..--, w' -.-. o p-w.e 4+<4 u-.u * -

  • u 4 4 4-

-a,j ^-+4. 4 4+ --++: .+ n, 4<. .'-,.e . L u -+.-*m.-s+.+-, ..-44 .++ ._.4 I w' -j 4.. . 4 e.44 4W - . -. -. + + + +.. . +. - m =w--e eg9 e-e-.'-y'-TP.**-

  • 'hM-V 9'*

y*T

  • d*

Mt4T* * * ' * - < W.m--..'

  • ~ *
  • P*

=. > '. .4m4 e- +~.44 + 7 O '_*'"b..-. ~ -'4 g +444.,++++ +-.. 4 + L..w.- .+-.+-*: .4+- m. h. T<>. + p 4, -- m -+++++++. ,44< +++*

+

4. .......+<. -~~.. -. -.. '.4 +44 4+ ^ ..u.- +4-4 .-s-. r ++ - + ' .w T .4+ .t' 4..+- @g 4 :

+,.

_.-+ .-*,-M< ..1 4. ~. ++t+++- ..+.+4

4y+++4 44 A e.-+'.~~,<* + - - = + * ~ ~ ~

- * + - -. .4 .. +m u a 'u g +-+ -4 -p .4. Aa.I.%~~ ;- .n..-+m e,4.m, 4 w u. 4<a4. $ w.4 ,-+

4*

m4. 4,,,. m.,.. ~. . <._~ ~......- .....~. +~.u 4 .4 m ~ g -4.++m++. - +... . - -+ -m +4 u .+ ... 4 .g}* -M ~.+~ m 44444%= N 4 '4- -. M M <. k4+-P4 4-b4 4 E W < M ..4.,~ _... - -~.. -. - p 6+ .u,.4 u.. +4 +$.--+- ---+ .44-.- ,.4~.- s -w..4.,4.4+-.++,-. 4 . +++44 +. 4. .4 .+ u.4 g ~. .++: +: -4++ ..m...-.+.. D - -. ~.. +4.w+.+.-++, .++-e4 .... +. + - .s.... -- .--.m-.+-<.+ . nm.. .-+s+.-+-+ --4 ..m n -.+.-4 ' *~ ~ ~ ~ ~

  • p W 'O b'

. + ' ' - + - + - - ** +-* -~ ** 44 ++m'

    • +*~

h* ,- + ~ + +: - +**..-:: .-4.. 2..... +-*4-..-...-4. p -~ ~.. ~. +. ~-.~4-4 -e ++,4 +t..,.: + ++44+4< +t-+4 +**-.e + -++***~ *- p -g..W -4 u:. . e +++< ,.a -u .+4 4 -t+-_ +44+< ++4-.-+-44-+<.-.-*-44 4++d++*-*' M -Q' , - * + ' *.4+*-4-+h,+ . - -.~ +. +.4 4.m.-.t++4++<- +mu--- .. +~.~~ g e4 -4++ W 44'. +4 4 + .444~ 44.. 4-.- .++ + +. 4 4.&+ - -.44.++.+4 .4, +++ ~h . - - + + + + + .u. 4+,+ +-*+ 4+++++ ..m .4m +

4...-.4-.m.,

Q -u ... -. - * ~ g._,.. - +. ' '

  • 44...
4..

+ + -..... <... _ ~.. 4~ ~ .~ ..,. ~ -. ~ ~ + - +. .-+m++. <.u : ..~.-.4 .a.m,.-.. . + m.4.++ - w 4- . +. < ++. ,4- +- ++-. * + g.-4.+4 .M.++- .n ^M< ++ -+&. 44 4 .W '*.H

    • -*d

+ 4M +*..+4.4H 4-. F .- - + =.

'4'4 +<. + +.._.

) " 4 W< .+ W .** M.-*~. e-. +4.-+..-...+4 ++... +- ~ ~- 4=4. m. < -.+-++o_+...-. - g:

4-

<...e+-4-*+, .. ~ ~.. -....-,44.-.,.i. .4.4-.e-. - +. ~.. +.-.* 4 ~. .++-+++m.-r ++. .*+ _.- + .+ -g +++ +- ++

  • * + + -.4.

.. +4 +t M...++4++4.e.+ w t +-+-.4.--4< . : ;+- . +.. 44 - 4 4+ . ~ m 4-+-e 4 .- m %, m: 4+-

4. +u m e

.+-u .u. e . ~ 4-u e...u. <. 4. 4..~m . -. + + + .4i 4. $.- .. 4 4 h.. .+ 4-4 . " += .. M. +O : +M.4+++-.. * + MiT+'< 4 W+th -. 44 u,l,.' s , 6 e i e44 .+ . g

4. ( (

. g ~4 - 4 + L+-+ ++ +I + ..-W f + +.. +4++. .,44444-4 +< .+ 4,..,,9, t,. e 44, l . e..i 444 . ++ 4 -u-~~ ....u~4 q. -+ ~. 4 4 4 + o4 +- .u4+ ..... : m -4.,.m,,,.. uu. .+*:.....+.m.~.., 4+ + ...+n+.4 O..,. .+ 44 +4444-i 6. 4 .. +4 + 4 e W. t A L i 4.. } + t + + +4 44+4. ++d'4 i ' 4 +4~.+d--4

  • 6 +4 6-4 <
  • 4 4+44+

4. v.il.6 . ( $ t 4-4 4+< + nn 4.m; 4 . 4 4 + 4.-.....4mur. ' +* ~ +o.-~+44

4.,.

.-~ - - - .-.4u.~-

u. u...

g Q,, .-..4.++-+t< <+4 44 4.-.4 . j. $.g ..,.w ,<4.** 4 ++ + 4. e 4.$ .-444.4-44 .4 e, e 4 6 .#.e

i l.e, 6..

ee 44 4.*. 4 .6 a 95 . e + + +-4 +.4.e. 44.. +4

+

<++%.44++4.- . + +. + - +..4 + ..++-4 b.- g 644. . + ~ +. - -..... _. _. +..m. .m

m.. ~ __o..4-~.

..*N4.....h,4 . + + u m.-.- 4 $4 9-

    • 9

, 5 on .4 ..%4-1-... 4+4 4.. +-- - +.

  • + i-N4+<'4.M$&.++.44'..

~ +.4 M <k+-..u'~ ~-- . - - - <.....~~. . - -n m v..en .g m . +.4++.4.m4 4++.+ +.4.. .4 + +.. g .++4++. + ..-.m+~+ ,.m4.- 4.- '+. W --M4.*++ 4++h . +. -. + -. M< .4--+- M+.- .. +.-.. m+..... -.. ...... ~..... - -.-.. i..~ . - -c -+, .+V.....~** +. #.. + ~.4. .,..A....... IT.._. 0. _. --.-th ~.4-. J.m. ++..C1.~_. .m .4 4%..~.. ~+.~ n 9.. + -.++.. di -+.. _.%4 . +. ~. +. - -. -4 ~.._ &. m. --.m 4g. -.w m w..: -. m m.* ..._~4r. a -+ w.m ~.. ~ ~ .4.-._. .+m m_.m..~ o W. -. 4 m +-...~ - + + - + ~ .E++.+w+W..-.-+++4.. W ++w*+ ..++4- -+.e.m++~.6++++e-. +: -.4.w4+~ .4+++w..+'+,44+++.+~4+.~+.m.++~+-.~~..-..~~u~...w.+4 . ++ g gg. o.--+-.+- +.+W4. + + .. - + .e N 4+ -+4++ H.++++9t-.. ~: I++++ 4m +-e-.-be. 4 4 + 4 M +.4 4 h++: +++ Fig. C-4b

e e Y AN M: .t-g) 1 v.. N h 2% y E I I - I I ul be - m ~ @-+~C- _.++, 7 g a I cu 8 m ~ ~ c a:n:,,- . v-e o c.s -. _ 1 I O 2A -N-o e w = ~w j {% _[]g _ _ m j 1 +_ o

' '~

c_ E g m.. z e -au. ~ ~.. w a ~. - +- a. J.,.. o .... +. 4 w w 4.~.. .-4 o v* --.4*. o - ;y-

  • m..._.~ _.

- 3 u r .4. g 4e.

-.4 e

4,- w 7y t . m.e,4 4w4 4 g ETg. .. +. +.

~

^^:+- ++ y. 1" c, ro ..e_. .++..:. .. _-+ + g... 2 --- y. .~ .. 1 m, ..~. . s m m .-.->4-. ..r.4.

3.,y

- C -.4,...~... -4..._...-,. w m_ - rc a .o -*~1a m t - + +. - .i ,_L x x .~ _.4 ur .o Mn ~.. n 4 .a g 4._._. e4 th_.. ..,.4..-... _ e..~_.. ~.. -. ..,. ~ _ _.... m

  • a_

,n_ ~.. _ 4.. m_ .._.u... v2._. ~... s . _o..u. 4.... n....... .u,.. o ...ma 2. +.. _ e r.m _. .....m 1,_ o .. ~. _ .~ 1 .3.

a. <,

m.,, .~ -.t .u. - _ _. w ... u. o e _ . ~. _.. +, ~. .g m._ _p

. =

..w.. .w... _... ~... _._, 4..e._._ _.. . ~ ~. -. ...4,-..,_ .. _ _ ~..._..... -..... _. _. a:. ... _. ~.. .a. G.+..... _ ..,L,..,.). m... ..~..-. .L __ m. w._- .u. m- -_......... _u -.~. 4.. 64 .. u. 2 ;: t._~__ _... - w ++4 g........,e + + + q. g 4 44 4 4._4.. e..,E _.. w

4..

4 4..,. .. s _.4........ .. L. _ _ _ . _. _... _ ~. -. _ ~.. ,e .y .. a v. ~__- _m .~ 1 ._.4_..u_. ....-. ~.. ... ~.. s m .~ ~,.. - n. ..-.. - m nw . -.... ~.... ....u,. w p..,,. n w .s.. _ ~. _.._. _.. _...- _.. .. _... ~ _. a u .. ~. . m.._a. ~ .: a _. -..y .e. . _.4. ,.a...... cr. __..v.- .w, .s:c -+...-. _4.. ~ ......% _. w ..~ .A 1 cr... _+- _ m. . g..- - w_.. _.~ w._.- --.a. _._ _- n. . ~...... ~._.. _.- .. n.312_ _ _~ _ ~ ~x. Fig. C-4c

G ....*.e. 8 A. O* . t 1 a c.1.x 1 KI - i' I I I 3 ! 4.J. N.e a I I I I I I I I I I.I - ~- I I I g g 3 g g E _ i.n T P i A I I I I I 1 1 1 I I 7 g ; 1 I I T I I I l >.e.9 p. M f I I 1 i i I I 3 I k.MT g iI I I 1 1 A I T t 1 1 1 1 n 2'::I

  • I I

1 o v g.N Y y I 1 I I I I I I I I I I A qui.p I f I I I I I 1 I .. I 1 I I M y I i 11 'r2 1 - 2 C *+ 1 i I I Q '"'T l 1 3 1 i I g I 1 I' t* 1 +t +- W g - a 1 I i 1 III h. r f I 3 I I .I 1 1I- ~ g g ^ < i Am 4.". 4'.='. 4. { 4. g 44 ,7,--- 1 1 I I.i. 4 py4 , i 1 . n M w.m I I I I .,.. 449. ' 3r 4 cr ^Mi .i44-r - z'.'_-

+y 7

e ^ ..M. y I 1 1 1 1 1 1. M.,..., I kg i 1 I Wiir i i I i ,q .l ,my p- !M 1; E W 1, i i 1 1 m,. 1 1 ii ,1 i T-1 I I I I . M I. A

  • W 4.~

11 m.. 1 .i... 1 ...,,E. : .44. +. +4. <, -. ++.44.,. 4 4 !. i 1 1 i i. 1.1. 4. _ tit.h. di J d' 4 44. L ,f Q hI ,W I i . 4 r_- - '_. - '... - + .t. i 1 g 9*M I i i i 7 ^ 1

  • [

I$I. ,I 1 i s .+**4 m~ n rf". i _ A 'E m, 1 i 4 I h ha-4-9 4 b M N+ M., r4 1 vx2 1 1 i i 1 . -. 43 . 42 .1:. 1 1 1 m i . I I , M .e 4 . ed M. a. I ^ +.. *. *. +. + +

  • 4<

4' ^ + < + t. e... it t*t+- 4-*-' ** t+494 '. <+~. 1 i i i -4. +;-*; t *-' + + - .*4 '. u M -r E -q-++.-- d**+* d , t. -+ + * * * <, p* < 1

4. *. <..

+:. <4 <, w' .n 1

  1. 4st 4

^ 4 444., en. 7 I144 %94 4,< 4. , 4 . 44 4 94 ,4.%.,,...%, p.44,. g += 3 +. .4.. -- w -- - w..4-44.= 4.4 - + = 1 1 1 .4 .+,. .4 .4 4 k* hjr {

^

y - 3 !Y *1 NM$.' - * *** iT* ~~** '**9 *M.f c_ CU i i I 1 I 9NW-4 - 4++-- INN b !N i i : M.-.dd r m i i i i i. .4. 4. ~ i!3: g Cjfi k4.t+4 *+++'**C**,*** g +. 'r ^ i ri ' lr y 7g* i i i .+.+*+ n, +.e +. : o-4- I _ _ ww -L-w --s.++++. -*~A r- ~4-

      • i ; i :-

g 1 I f +: - - ;- 9: 1 +: 4 +4 4 i44 t

.gt 4

4<> - 4 49.+ o 4 4- 'g.4 . *4$ I I I I -^f,^ 4,, . 4 4 44. +++.4 7 1 7 g

_ _ 4

+4... 4.+< .+* 4 e+ - ii . d4; 1 44 t _M u w n1

- i ;

te - : 4- - + .3. i. i. i. ..~:.%: -,e;,__.. 4 4- ..+ +< 4 4 ..g 74r 1

t. n,

-t - 44 4 g a: g

4 1...2.-

. 4. ). t I,.6 4... t ::4: ~ ,. 31, g.., 3-- ,. * +4 +. 4 1 L .... +44 w 4 ..+ 4-. ; :. _; <+- 44 .,4.....,,. g .-4.4.+- 4.R.r. tt.!.:.: mt u. n2:::r t~t;..:t '. nr:: m 1:n -- w. ~~ ..:q..n44.. m +++,., ..,+ 4 1 -- - - -. ~..

,44

.. + - 4 ,-e 1....-... *+. <- . 4 '4.*.**.*.--..4 i - i u J,; + -. + W-w 1 w *++ -41 . s.

t.*.*. '*4*'.'**..*"*.*.'.

+4.' 4 1.+ 4-1 1 E .I .. m e* gge.... = ++**1--*"- 4 p-.. a

s BTGl m

Js m + - m i prn 1 1 1 1 : i 1 1 I Fig. C-4d ~

0 t. <-e we seeO. em e m==-eg

a. e e.

<m .m= 4.. ei_ e s==.se, f as [0 6 ] I I I I

]

I I y I 3 I I I I I ( f I [y l 1 I I I ' A y y I I ] I I 1 I I I I I 1 1 I I I I I f ] f 1 I r I F8 y r g y r3 I I I 1 1 I I I A I I I I I I I I 7 y [ 2 J J J I I I mignem I I 1 g I I f I I I I I ] I I I Y Y I 1 I I I I I I I I I I M I M e i g y g i I I 1 I A I I I I I I I I 1 I I I I O 24 u .I I I I g tap 1 I I I I I 1 1 1 I g g y .e I I I I i i i ' d h I I I dh I I I I ,I

  • 4f G-
  • g I I Y I I

I I I I I i r- -- -. I I"*" l I I t I g i I g,4 t a g g y I [ 1 I I I f I 1 1 A ---J I I I 1 I 1 E 3,, .q h<> <i a4<i-4 1 1 'a I I I I f 1 I hd<l-$.im ,..am... <seg=p.e4 $ I I 4__ 1reE I I I I I I <w.g ,4mm.$4 4 W I I ,1 ! 3 I I i 444 ^ ^ ^ ^ I 1 ,p Ii f l - ^ ^ I I - ^ ,41-7 mm-I g i j I I I I I I III ,q d

  • * ^

m 1 I I ^ ^ I I I <.h i< h h - - - ;I I Q 3, ,.n i j j J l r 2TI . I I ' L,,,4,, 4. ,j^ i g, jg-y I I I I I 1 I - a I ,, g w I I I I I ^ I ^ 4gr ;a g 1 1 1 ^ 1 ^ ^, I que L m 1 1 1 I I - I = M, p, E . MM,h I y I f 1 I I I I I I 3 1 dw I I Y I L I 1, 4-en k"1 -- 1 1 I I I I ^ ^ 4, ^.-, ^,,- I I r-1 I I w I.A.2 1 1 1 I f I I 1 I' . a 4W - 1 I ! I 1 I I I I I I i < h.4 4 4.. a 'M I I I I . 44^ J<=.d be i 4 n - A m g i 1 I I k 4 1 = u,__.,_Mi I_ '. i !. _.i_' e,4'.9. 44..! i i i i I 1 i. w 6- ~""-"T i ' *. 7E' 1 1 i I I 1 I ^ 4 ~ .I'F A Ia 7 . Iw 1 1 I sim I I I h -h. L 8-8 -E. LI I I i I I I I .a 1 1 I I f ,,I 1 5. 'EE ET1 J'.it Ij i I 2 I Y 1 1 I I I! 'iM. itNUt'j 1 W,,li! t I l b I i 1 I I I 4

!
.: -.-t $ o.4 4-4.4.= 9 $wo 9.

qh-I!!' - I' I 44< $44 4 < i.W= q. ..4444-- 9 db. [ ^ - - ^ ++ ,,,4 - H" .g %4+ 4 - 4 -.+ ...4 4- ., 44 + 4-.e pr) + - ^^ ^ ^ M'8 ', '* * +1

== ..y44 _

  • t * + + -4'~.~, ". *e

' ' '4 4.4+4 .g el. ., 44 g I I 4.=,i.44 +.+4 e4+. '^

4. +e 444 I

1 -g.g I I ' ' - i ; 2 I 2 I 1 '!^

+<

4 A 4 4.+4- ., +d ipi 4 4 4g4 44 ,444 4.-* 4 4 e

== .g + - ;*>4a,~ '" < 3 U .11 I I I I I I I I I I M-.<Mh. 'e - ;} _Ief N 6 I I I I I I I I I E ey Y Ik I 1 I I I I I.. I I I L. g g I I11 I ,pp4 I 1 1 r ._ I__ _g MMN-W g. F*pAj" . 5 7 g g - (( f Mf .-4 p d-.

  • de

_ g <- +,. -4,: b.-..L 4 : -

  • 6*'***.

-^ .+4i,,

p i-M<

4+ 4 >p W)*-'*"*'9' 4& M 4, l ^ -4 W<

  • ^

7 i ^ I 7 g

4 i-+ 4 4M 4 * +h!
....

e=*

  • M $4 4&d****

i. 1< -. +. +. 4p.4 .- <u4 +&e-4+ +4+*- -*..e,++ <a '4 6+ , 7 i

      • * ' '999
[

i ; j o.4 ^ 4< ^ ^ I i - +< 4 j t+ ^ ^ ; 4e 4 6 em$ gase pe- ^ i e a $i ^ !!jf ^ !-^- t I 4 44a <,4 4 _ 4 <4 m $.4 4..4-. *g e..e h 4 4 I I + m 4+ g' I ' I I et v..w .n.S'.- ,4 .,4, v-. v -.4 w,-,. i<- g4 - $4-I ^ ^ I I I a-4< <.$4 44 y ^ I i pt' .i r 4 n.<i< ; 44.<.<r - jy I <i 4 <.< 4. ,4 I i -.4,.i.4,,,.4 4 - < 4 ei <i <==>4- . l hj aa' 40-t4 4.ar -.i.+<,< +,<i.w I, $<i + , < + 4, -e+- i 94m.<, i s <>.i i a g 4 ee Jr 1 e h i ^ 4.4 M,in. ~+1 ;.._ - - 1 I. ; ;- ' +t;,

l'

' : il! "Imr : m... m. 12 lit,it, T4t1TM.f,' 1 4 N1..it 6 f,,. 4.:'h. 1 i ;

4. 4.,.+ e
  • ... +.-

I e-4 +4 4.,, 4.4 ,,,+ 6 4 ; - We i

  • R-I i

Qo

  • i
  • 1 !!2.*J.!_ ~*1.Ti tr,Z.ju'* :

R 'IS'S .4~.... .. - = = __-_g-* k E3 EJ F W at. 4i. I " g - s' w" m' J#h I I m l -.I 1 ~ - I I ~ , m 1 J h m I p.... 1

I I ' '

I Fig. C-Sa

a 9 y .o I ,9 m. e. gW 9 g e, a I I I I y g I I 1 I I . y y pe I A E I.* I y y I I j f I I I I I T I I I I I I I n _ n h0 I I I I I -~ f y , i 7 1 9'+* I I I I I I I I I I I I I I I 1 I I I I I 7 y I I ] I I I 1 e j I I [ I I I I I I L I ..Im.I I I q 1 - N' I lI'l @4 I I I I I I I I I I I I g I I pe I 1 1 3 o u h ] I I I l A I I I I I I h W

I'I p

i I I I 1 I I I A I I

4. m(

h I I ( I >=*9 j g I I I y I j I I A I I I I I 4 I I ' I 1 I I I i z . m 5 I 1 I ...Y I I I -^ ^ ^ y 44 4 1 i 1 F" n I I 1 1 1 . s.54 ,44 4 ) i -m I 1 1 1 ,4 +49 I 4-e- ha.. +

  • *
  • A b

1 I 7 A a-, "m1 ur 7 Wa

*< My 4 I,..

E m - " ' I I I I I I I I I 4, + g ,4 4 44M l '3.4

p. um I I I

I I .i-w_ y. I I T I I I 1 1 ,,,,g,, _d Q ^A 7 t g 3 { j" "'d k I I I gE e . f 4+. I I I 1 I I I I I I I I I I I I I I w. y I I f'T I 1 I I I I Y I' I I I ^ ^ ^ ^ ^ 'y*.-+y.+, , 3 4 p4,4. - e 1 I I I

- ;a4*>+< t4'a M

I 9, V: 4.<. M y . d2 m. i2 . _ _..i'.. b E-_E. 4

  • N ""I I

'U^ l I 1' - ! 1 ~~ I & I 1 'f 'F J'% I I I 1 1 a 4 . = w T m I I I I I k I I 1 I I I I .a L I I I I t .A. I I 1 I I I I l I 'E I w %,,g l H< . ++u_L,+uo 1 ;- t 1 1 1 1 I I I e. 1 a ,:,4: - i 1 1. i !. :t ,"iI UWJ i.- 4 m 1 1 I I .1 4.< k'I Til} I I I I I i I 1 1 wu I I t i 43 2 !44 I ! 2 I 1 4 L= .- p -- q p <.t+. n. *-- - +H.*.--+-+ -*+..**<+,.~%+- V I I u a, b"" aaE M. 1 ,1 - i f Ii

  • ~

I -.H.'*--- +.++-.4+* N".I

    • 4 ' ' ' ' ' ' * " ' **

4 I I .--.4.<g 4.<

*^..
  • M*444ii

<==6 j MW4 '- a W N' ,944 ese ^ jdt

^+4<

{ {.* I p a ++4 44*. 1' ' *< . gw.. - 6

- 7 3

7 g g y +fto4*44l g,_,g_o-& a i. p a _l; - u 7; - 4 4 + 4.~..' !il::l: -J. ++u. UT'. + 1 +, 4-u +44 + "I h .Qd 174.3%) ! .e.j N' D, i ii !7M !' .**?* i i iI i I 44ll; , g. -. '..... +*r z %.J1l* ^

..,4''t++# 'N i

1 = 1 1 1 1, ~ 4.- r i 1._ y- $4 .44i E 2 2 I +.+ ++ p 1. 1 1 ++ gg I 1 I -. I I I I I u ggy r' l 5! Iifi' ijjHy6,1 j+4H A+ *

  • '**C g

~4 . j :

i.

...: :44. .M. *,.4,+< u,<. ~T+W I ...A >4 ^++.*a+.4-w-+ - + - - +

4+

4 ,+ 4 1 i 1 1

4~,4 yE

..4,- > 4. -' +1 +4+1+4444

: : w.4++g.

,44 +. + ,4 4< a ( 44,4 +. I '*I +g m ..+4i+ >-4 +-4=4***4-I N 'i i i ...I

i$

'Ii n'} ga y t m. 44 _4., _. 9 ,'g7 .-.e mm 1 1 1 1 1 1I2 11. I m I 1 4 < <'j' . p, } "* f,j. +.4 44. 4'<* ',' + ' 44 W.*4 +' I * ~ - * '

  • ++++*1.*t.'-

t i i i i +d~ . +1. +!. ?, 9* -~t

  • t4 1

+4 I 4dM.M.<- $. 64 4(<.14-4 4 pu 4 4 4 %) .>4. I ': <>.4.q, !2 I I i , 4< .T<4.. i<, E s,-+. 4 .. <A,44,,- .-yII - I 4,,,. n.6.ed=4 <i ,4-,.+4 I I s-46 s e. 4< .<-c. 1- . p. ,,4 <., 4,,, t 6< 4 g w. s. e + + + g4 I g), g,6+ -e.+<r++.464-.. +. I ' I .i~. n.4.

4. -

<,.,,,,44 i 4 4. 4 4=. *. 4. 44

  • 4**

'd 6 1 k. Ub.. hk+ N hb h4..<._. bh !fl f I ..1 ~4f._.n11j,..4f./4..L M J '*N -- w ,4 N.A !I ' <oA 4 !!i.'.

i

y ei ' i I -- im i&; prn: i Fig. C-Sb

Y e s

  • .eew e eaw e e wee e.

~mme-e ese 4** l- - - - t. 1 L e e > E 1 1 I 1 m 9 ^ 4 %d O-- I y [ g i g , -EE I [ ] .1m EI - E"J l I I L L K 1 2 J I I I I I ' A 1 I [ t 1 I I LI I ~ 1 I I 1 I I I I 1 1 j J 1 g g I I I I A I A I I g y 1 em I I I I t I I . M i1 2 I r i I I i t I I ~ r i I I I T I 1 I y i 1 i I (> s'.b O I g 8 .C2~ _ _ e ..'I I %.y I I e $i i I I g"p t I 1 .2 I h 1, [ 1 I I I I y g I,,g' 2 I 3 3 L I l I e Me.9 I f I I g I l ( 1 3 g.4 94 y I I f .y*I% E { I. ? i I ' i@++. Mwg w - 2 _.. ?.g.#.t..t.::.t. :. E I 11 4 at <. ~,. 2LL I A E ^f +9 I ,,4,,,,,. 1 I, I. d I er' ' I I I ^ ^4. g h h-1 )I I a' pM ~ -4.g,,, A, I I -- I am [IL g" I 1 We L I I I I ' I J g ;, g. 1 ,w= r% I I I I I Q I 4 b bl4+ <i+ +n:! W a: m 1 I I-

  1. 'I

+4.. 44e; .. 44,.4 p 44., ,.4.. I er - m ' q i +4 A.,. - = 3 J L .4.o 4 44+-- 24 m gm I J4: A ,,.9,.,9,,... 4 ,4 wu y i,

  • <., +

-f ; '1 '. --- -- M4: I P' ..a.. , ~, ".+-*. 1 ' IQ4 I I 2 A-O 4 m 4i i444* i ' ^ ' 1 1 11.] -3, I I ' n y I... i m .?+i

^?

'+4, 2 it - .r- .ft"?+4 +, * +4 : 1 = , : f 4-.4+*4 4 44 I-~ nr, 1 1 i 7 M't+*+ i 4- ~p i ! O ittr-- 4.^ - 'M..da 1 wa.I e.4 4 44' - 4, uJ i ^1-E++-- e4 1 - - i vu i i i b +d > 4-e.4-n ...+,.,, M+ h44,. e4<< m m, .. 9...*4< 4_ ..4.. h4 w- "+.: ++ ,4 ++.,4 ++ b-4 . -4;- ,4.,. : .r.4 U *v ^ " 4..s o m. 4 4 1 4 +-e.q + em. ,4 4 . 4 m,,. ^ +. 4 4 4. +.+. 4 6., 4 . g ^4 44 y 4 ..,M4 o4.- 44 .i Z') + < 4 4+.+4.+. Ws. .-.di444-J3 +. N 2

  1. '14'. 44.,-

a. t- ;as, -9%^ - ; i, e 4 o 4 7MMMl _,r-I IkMM h7MC'-*'+'1 +.j *y t- [

i' %.4 M
q.

. p.. I t I i 1 I Q4f I m . I - - I,,'.-.1+d+ t *-* ** ' o 4 ,4 . 2 ' I I t T 1 4... .1 t i-ii f ~

    • * +++ W m

-~t 1 1 1 9 ...o.p,4 f,+.43 =5_6,--4+.e.++- r4+; _ I 4<,.N. 4 r.,., w 4.+.+i 1 :^ :- t+.- +..<p,4 E.: w,

  • ++,

2 4, 4+ .4 a =; 4 4 4+++ +- 4 ++4 .eg ,^;< 1 ' ^ 4 +f,.~< 4 k. +* 4 -4 +4+, --4 4++++++ . + ,4 M- .4 I.

1. + i ^,

f.-+ +, + 4 J +,4 e + i- ..} }. 44, r1 ' 6..-4, j . 444 -44 i i - 4+: b I ,e ?

      • I9

'1 +< <44.<14 '.' e j *. H e + 1 - + - ' 44 t.' idtt t*'* ++4 *4 t ,444 t4l44 +-. j i 3 ti i 1 ' M W"* t'h

4. [-1 rr6 i
  1. ~ -

^ k<g{.L' I.f, l.i.j d.i.}.4:. E{FM,.,-. _. NEI:[_g -+,44 it 9t_. ' 1. i I **- 1 3 7 ~ 1 i j. 4 m. ...r.....1 2 n' +++ i N; ,A;1 1 11;

4..+

--. u.- 1 e3U.., t.) t - 4 r-e - H^ ' '. .'37. +... *.. + 4 .+ +4 4 o 1 4 4+ 4i. o -.4.. + -. *

  • i g.

i ..~. -.-n,;, _Iffa391 m m.c m t-a..g.1w-m -t %. m.* ..g- ,.L-,..,.

s x,

w-L a._ 2-p f i 1 ta;,1 I 1 L I I I I Fig. C-5c i

g \\ .i A.A l .,c, .= : l , x..- = s., e I 3 I I I 3

rm

'A I 1 1 1 . I.I g p e gg. m p J w=: = o ce: 2$ G

1 1 v_ _ =

'S,' e$8 t ..; 'c yp c_., " l u: i g 1 8 i 1 w o

!*9 4 + w.

g +' i1 5 TU' i W 3 1 IIN [ij M,4 i r t 494N"' *M 1,1_,,.. 4'** ..t.t.ti. n,.. n d

m..

- m=, _ I I 1,

4. ;

---4. s w a 5t Y 1[7 44 1 1.... g I __L. .2 4 . = w 1 .. =w: _.... .....g . g... 4 1 1 i i I m _ 4: t r'.__ e iEs:Ec i *. rp _ii ': iPm ism @ 1 c.sy4 e. ....n. m -. -++ :c 14 .- c m-. r.a.g.u m -c .- u- -m m. 99,**,9^ L_2 .-:a. __ ^'. ..__1 ~.N_ _1... i ~'~v' ..T'- 1 5

T:

44 z.a 1 I 1 m aR _ e .u. 1 _1 2 34 1 t '^ 1 1 1 = M

tb MHFa '

Mk 4 i. a. H-8' -.. % Es a in 'm uli.2&$$K-ia : 1 e- ,3- . g o.. _ ; .4.< ,. 4 +

n 4-a

= i, m._ . m __.-.4 .d4. 4 a +. 4 ! j444+- LI M ^ 7 ,_..M, g ..k. d .W.., =. v 4 __u ~. . -. _. _. _....n. s. m_ -# 4 n:a;._._4 4 J - r-u uw. -4 :n g n i+ m ey4 m - I" t M ogE ~ t+4 oi4iject:a,..h

  • SWAM % ++4 -

-.:n m dEb1 = v. 4a.:. 5 1 .m .r g~ c o 4 3 2 m

e.. m m.
t,e m

=,_.. w .~, ,x, n,. 4., -..4- . t.

u. m :4L-

.4.,,4 ~. -.-~- 1: - ~g 1Q...4I ...4 m

1..

.+..

a...

r

4u 3

.i .,; om w 4.,, . n.. ...14.,.a. .. o. '3L ......,,... 1.t..i... 4 4 w. s.. .n w. .. 4:..& . h. g 4 f t um i . r-. ...2 _;m udE:n; -i.+ %~.-mE Jhh q - mv -.4 j - ++ S ~1gn :~M4 m4rl..q: w g.,g I - +< + - - -

  • 4-

.,ly n.*d.p :,:_: n.n..:. t +11" *"7-tt.. 3 y 2ntu r a +- .i.,. 4 6 64 : - ~ ~ ,!:if rl, m#tii 1 - 4 -+4. ... M.*I 'N. L h l..IM I.} (j *.,, r ++, L t. ~ """***"*i Y .NQ__ h ~.ri l L2 I+i DN i ,a ]F i.y._ r .3-_ 1 E 3 1 I -.{g{ . Ex 1 ,w _y _m , gg,g, 3,gg . 3 ,qg 1 _m g r g g t D TI E I I I Fig. C-5d l

Ls. ?. ENCLOSURE 7 REVIEW AND CONTROL OF FACILITY CHANGES TO THE DIESEL GENERATOR BUILDING Facility changes, ie, changes in structures or changes and additions in equipment and bulk commodities, to the Midland Plant safety-related structures are subjected to the reviews of the organizations identified in the Administrative Controls Section of the Midland Technical Specifications, FSAR Subsection 16.6.5. The two major organizations responsible for the reviews of facility changes are the Plant Review Committee (PRC), composed of plant staff members, and the independent Safety and Audit Review Board (SARB), which reports directly to the Vice President of Nuclear Operations. The functions, responsibilities and authority of these two review groups are identified in the Midland FSAR Subsections 16.6.5.1 and 16.6.5.2. Facility change reviews will be conducted in accordance with the requirements of 10CFR50.59. Facility change reviews will include a review of the Midland FSAR to determine whether the change affects the safety of the structure or system and whether an unreviewed safety question is involved. This review is performed by a Consumers Power employee or a consultant. The subsequent evaluation is reviewed by the onsite Plant Review Committee prior to implementation of the change. The SARB also conducts an independent review of facility changes. 10/15/81 mi1081-0459a100 l ~.

J ;,s l ENCLOSURE 8 DIESEL GENERATOR BUILDING BEARING PRESSURE DUE TO EQUIPMENT AND COMMODITIES A detailed weight summary has been made for equipment and commodities (piping, cable tray, wire, etc) which were included as live loads in the bearing pressure calculations for the diesel generator building. The total weight.of equipment is estimated to be 1,474 kips of which 1,217 kips is on the pedestals and 257 kips is distributed throughout the 4 building. The weight of commodities distributed throughout,the building is estimated to be 614 kips. The weight of equipment was determined from vendor drawings for each piece of equipment. The majority of equipment is directly mounted on the diesel generator pedestal and contributes to the bearing pressure below the t-pedestals. The remaining pieces of equipment are mounted on walls and elevated slabs and contribute to the bearing pressure below the building spread footings. The weight of commodities was determined by performing a take-off of the lineal footage or square footage of the various commodities. These values are then multiplied by an appropriate unit weight for each commodity to determine i the total weight of the commodity. . The commodities are attached to the walls and elevated slabs of the building and contribute to the bearing pressure below the building spread footings. l l The contact area of each pedestal is approximately 745 square feet and the contact area of the building spread footings is approximately 6,425 square feet. Thus, the load intensity due to equipment and commodities is 408 psf 3 under each pedestal and 136 psf under the building footings. Because the building is normally unoccupied, occupancy loads contributing to settlement will be negligible. The specified live load for the building floors represents the maximum estimated load on the floor during' construction and maintenance. This load is used for design of the floor slab. Hence, the assumption of a 5 psf allowance for the occupancy load at the building footings is considered conservative. A 5 psf allowance for occupancy live loads on the grade slab would also be conservative. 4 s 10/15/81 mi1081-0459a100 -,y-. ~- -, ,.,,,3m ...,-----.,____.,,w-,,,,.-,,,,,_,--w__, ._,,..y.. 3- -w,,.,%,-w.,

a. l CORSum8IS Power Comn8Ry ^"""*" p' Vice President - Projects, Engsneering and Construction General offices: 1945 West Parnall Road, Jackson, MI 49201 * (517) 788 0453 September 30, 1981 Harold R Denton, Director Office of Nuclear Reactor Regulation US Nuclear Regulatory Commission Washington, DC 20555 MIDLAND PROJECT DOCKET NOS 50-329, 50-330 SUBMITTAL OF THE AUXILIARY BUILDING DYNAMIC MODEL, SERVICE WATER PUMP STRUCTURE DYNAMIC MODEL AND DESCRIPTION OF SOILS SETTLEMENT REMEDIAL FIX FOR THE AUXILIARY BUILDING FILE 0485.16, B3.0.1 SERIAL 14110

REFERENCES:

(1) JWCook Letter to HRDenton, Serial 11625 Dated March 23, 1981 (2) JWCook Letter to HRDenton, Serial 13738 Dated August 26, 1981 ENCLOSURES: (1) Service Water Pump Structure Seismic Model (2) Auxiliary Building Seismic Model (3) Technical Report on Underpinning the Auxiliary Building and Feedwater Isolation Valve Pits In our previous correspondence of August 26, 1981 (Reference 2) construction permit level design information relating to the remedial actions for the service water pump structure was provided to the staff. Enclosed are twenty-five (25) copies of the report (Enclosure 1) entitled " Service Water Pump Structure reismic Model" which is based upon the design information already forwarded to the NRC. In addition, we are providing twenty-five (25) copies each of two reports, Enclosures 2 and 3. describes the seismic model for the auxiliary building for computing the building response to seismic loading as well as to generate instructure response spectra. represents the construction permit level of design information for the auxiliary building remedial actions. All three of the enclosed documents are provided to complete commitments contained in the " Statement of Agreement" from the ASLB Prehearing Conference Order of May 5, 1981. The seismic model reports for the service water pump structure and the auxiliary building include the following information: (1) model description, (2) soil-structure interaction considerations; (3) the dynamic model properties; and (4) fundamental frequencies and mode shapes. The auxiliary building model includes full underpinning of the control tower and electrical penetration areas, integrally tied to the main auxiliary building at Column Line H. The service water pump structure model includes full underpinning of the northern lli ur ? Ch8

C - s y 2 . portion of the building originally supported by the fill. The models reflect the underpinning currently planned and, therefore, are subject to possible revision after the final building structural analysis and NRC staff review is completed. We believe that the enclosed reports combined with our scheduled meeting with the staff during the week of September 30, 1981 provides sufficient information to permit the NRC to review and provide its concurrence with the proposed remedial actions. Your expeditious review and approval would be most appreciated to support the hearings and construction of the remedial work. ./.n l ( /c(&, -} ~ JWC/RLT/bh CC Atomic Safety and Licensing Appeal Board, w/o CBechhoefer, ASLB, w/o MMCherry, Esq, w/o RJCook, Midland Resident Inspector, w/o RSDecker, ASLB, w/o DHood, NRC, w/a (2) DFJudd, B&W, w/o JDKane, NRC, w/a FJKelley, Esq, w/o RBLandsman, NRC Region III, w/a WHMarshall, w/o W0tto, US Army Corps of Engineers, w/a WDPaton, Esq, w/o FRinaldi, NRC, w/a HSingh, Army Corps of Engineers, w/a BStamiris, w/o FPCowan, w/o 1 l i i

^ 4 o,, UNITED STATES [ p, NUCLEAR REGULATORY COMMISSION \\....+J T b,-/PEL "E WASHINGTON D. C. 20555 t SEP 2 b 1981 Docket Nos. 50-329 OM, OL and 50-330 OM, OL Mr. J. W. Cook Vice President Consumers Power Company 1945 West Parnall Road Jackson, Michigan 49201

Dear Mr. Cook:

Subject:

Staff Concurrence on Surcharging of Valve Pits for Borated Water Storage Tank Foundations References : (1) Interim 50.55(e) Reports 81-03 dated February 20, 1981, April 3,1981, June 12,1981, June 26,1981 July 21,1981 and August 28, 1981 (2) Structurel Design Audit by NRC Staff of Midland Plant, April 20-24,1981, AmArbor, Michigan (3) Meetings of May 4-6, 1981, to discuss Soils Remediation, Bethesda, Maryland (4) Meeting of August 25, 1981 Midland, Michigan (5) Telephone conference on July 30, 1981, August 12 & 14, 1981, September 10 & 11, 1981 By several interim 50.55(e) reports, meetings and telephone conversations (Reference 1-5), you have informed us of the status of the cracks in the concrete foundations of the Borated Water Storage Tanks (BWST) for Midland Plant, Units 1 and 2 and your preliminary plans for remediation. Your plans for remediation include, in part, surcharging a portion of the BWST valve pits and the surrounding area in order to consolidate the fill beneath the pits, reduce residual settlement during plant life, reduce distortion of the ring wall foundation, partially close existing cracks, and reduce tank shell deformation. As noted in Mr. J. Keppler's letter of July 13, 1981, you have agreed that the surcharging would not begin until conferences with the NRR staff were completed. Your letter of August 28, 1981, states your belief that resolution of NRC concerns has been achieved and requests NRR concurrence of the proposed surcharge program. Your plans call for daily visual inspection of cracks in the BWST ring walls and valve pits during the surcharge period. You have also committed to stop further loading if a maximum 1/2-inch settlement is reached prior to full surcharge loading 'to provide for engineering evaluations. We find these plans to be acceptable, but not sufficient. Our approval recognizes your adoption of two further conditions:

ax//p =

SEP 2 91981

'9 s J. E Cook. .. j l. Ycu state that, while it is not anticipated that existing cracks will widen or that significant new cracks will form, any new or existing cracks in excess of 10 mils during the surcharge program will be monitored and the results reported to the NRC upon removal of the surcharge. The absence of any immediate actions to assure that cracks approaching acceptable . limits during the program will be terminated in a timely manner was unacceptable to the NRC staff. You, therefore, have also comitted that in the event that the monitoring program should indicate a crack reaching or exceeding 16 mils, then the last increment of surcharge which was added prior to start of crack growth will be removed imediately and any further surcharge addition will be prohibited pending engineering evaluation and further NRC staff concurrence. This, of course, excludes the existing 20 mil crack already known to exist at the ring-pit interface of Unit 1. 2. You state that propagation of a crack from the tension zone of the wall is not expected to occur because the ultimate moment capacity of the valve pit wall is governed by the yielding of the reinforcement steel. Your expected limit of new crack propagation is 18 inches from the top of the valve pit roof slab. However, your plans provide no imediate action in the event a ( crack should propagate above this 18 inch value. You, therefore, have 1 committed that in the event a crack should propagate to within 18 inches from the top of the valve pit roof slab, then the last increment of surcharge which was added prior to start of crack propagation will be removed immediately j and any further surcharge addition will be prohibited pending engineering evaluation and further NRC staff concurrence. 4 On the basis the above two additional committments, the NRC staff concurs with your plans to commence surcharging of the BWST valve pits. Our concurrence to begin this activity does not address the adequacy of the proposed remedy to achieve its intended purpose nor does it have any effect on 4 any other remedial action that may be required as a result of the staff's OL l review or as a result of the OL-0M hearing. Rather, the staff's review at this point has been limited to assurance that proper precautions are or will be in l place to preclude potential detrimental effects due to surcharging. 1 j Sincerely, ', F c *.. e. Robert L. Tedesco, Assistant Director i for Licensing i Division of Licensing j cc: See next page i +,r,

Prc Goos e., 0406l'i James W Ceek Vice Preseiens - Projects, Engineereng and Constreetion Generei offices: 1945 West Parnett Road, Jackson. MI 40201 e (St n 78&o4S3 August 26, 1981 Harold R Denton, Director Office of Nuclear Reactor Regulation US Nuclear Regulatory Commission Washington, DC 20555 MIDLAND PROJECT DOCKET NOS 50-329, 50-330 SOILS SETTLEMENT REMEDIAL ACTION FOR THE SERVICE WATER PUMP STRUCTURE (SWPS) FILE: 0485.16, B3.0.8 SERIAL: 13738

REFERENCES:

JWC00". TO HRDENTON, SERIAL 11625 DATED MARCH 23, 1981. ENCLOSURES: MIDLAND UNITS 1 AND 2 - TECHNICAL REPORT ON UNDERPINNING THE SERVICE WATER PUMP STRUCTURE. In the referenced correspondence of March 23, 1981 we advised the NRC of the underpinning concept for the overhanging portion of the service water pump structure which is a full length wall extending into the natural till material. This full length wall concept was adopted to replace the original remedial action, a driven pile support concept, as a result of the increased seismic requirements imposed by the staff. We are forwarding thirty (30) copies of the enclosed report entitled " Technical Report on Underpinning the Service Water Pump Structure" which describes the design and construction requirements of this SWPS remedial action. The design and construction criteria contained in the attached report has been written to provide the NRC with information which substantially exceeds the construction permit level of detail. Included in this report are the following types of information: (1) drawings showing the underpinning scheme and a description of the construction sequence for this scheme; (2) dewatering for construction; (3) the design and acceptance criteria for the underpinning scheme, including load combinations, bearing preraures, structural stresses, and seismic loads; (4) applicable codes; and (5) scope of the quality assurance requirements. The proposed service water structure remedial underpinning is approximately a 4-foot thick, reinforced concrete wall that is approximately 30 feet high with a flared base at the north wall and is constructed to act as a continuous member under the perimeter of that portion of the structure founded on backfill material. In addition, a predetermined jacking force will be applied to the full perimeter of the SWPS overhang during construction to provide adequate load transfer from the structure to the underpinning wall. oc0881-0407a100 ?? ?! X ?

2 0406ii While we believe that the enclosed report provides sufficient information to permit the NRC to review and provide its concurrence with the proposed underpinning scheme, we suggest that a technical review meeting be held during the week of August 31, 1981 to respond to any outstanding NRC concerns. Please contact us to establish a mutually agreeable day for this meeting. Your expeditious review and approval would be most appreciated to support the hearings and construction of the remedial work. 4 t k l. a N - JWC/RLT/cr CC Atomic Safety & Licensing Appeal Board, w/o Atomic Safety & Licensing Board Panel, w/o Charles Bechhoefer, Esq, w/o MMCherry, Esq, w/o RJCook, Midland Resident Inspector, w/o Dr FPCowan, w/o RSDecker, w/o NRC Docketing Service Section, w/a SGadler, w/o RWHuston, Washington, w/a JDKane, NRC w/a FJKelley, Esq, w/o WHMarshall, w/o MIMiller, Esq, w/a W0tto, US Army Corps of Engineers, w/a WDPaton, Esq, w/o MSinclair, w/o BStamiris, w/o HSingh, US Army Corps of Engineers, w/a oc0881-0407a100

3 0406Ii BCC RCBauman/TRThiruvengadam, P-14-400, w/o WRBird, P-14-418A, w/a JEBrunner, M-1079, w/a GSKeeley, P-14-113B, w/a DBMiller, Midland, w/a NRamanujas, P-14-100, w/a TJSu11ivan/DMBudzik, P-24-517, w/o RLTeuteberg, P-24-513, w/a ALBoos, Bechtel, w/a Dr AJHendron, Bechtel Consultant, w/a DFJudd, B&W, w/o Dr Ralph B Peck, Becthel Consultant, w/a SSAfifi, Becthel, w/a JARutgers, Bechtel, w/a WJCloutier, P-24-611, w/a KLRazdan, P-13-220, w/a oc0881-0407a100 I i

04061i TECHNICAL REPORT ON UNDERPINNING THE SERVICE WATER PUMP STRUCTURE FOR' MIDLAND PLANT UNITS 1 AND 2 CONSUMERS POWER COMPANY DOCKET NUMBERS 50-329 AND 50-330 4 s AUGUST 25, 1981 6 4 9 8. A 'S / V f (/ 2 O C O Y

TECHNICAL REPORT ON UNDERPINNING 0406II EE SER M E W ER P M S M CWRE TABLE OF CONTENTS Section Title

1.0 INTRODUCTION

2.0 PRESENT CONDITION 3.0 REMEDIAL ACTION 4.0 DESIGN FEATURES 5.0 CONSTRUCTION 5.1 DEWATERING 5.2 BUILDING POST-TENSIONING 5.3 CONSTRUCTION PROCEDURES 5.3.1 Initial Construction Activities 5.3.2 Final Jacking State 5.3.3 Completion of the Underpinnina Wall 6.0 MONITORING REQUIREMENTS 6.1 SETTLEMENTS 6.2 CRACKS 7.0 ANALYSIS AND DESIGN 7.1 STRUCTURAL BEHAVIOR 7.2 DESIGN CRITERIA AND APPLICABLE CODES 7.3 LOADS AND LOAD COMBINATIONS 7.4 STRUCTURAL ACCEPTANCE CRITERIA 8.0 QUALITY ASSURANCE REQUIREMENT 9.0 ADDITIONAL NRC REQUIREMEh"fS miO881-0412a100 i

e TABLES TABLE 1 Load Equations for the Service Water 06I; Pump Structure Modified to Include Preload. FIGURES FIGURE 1 Service Water Pump Structure Concrete Floor Plans at EL. 592'-0" and EL. 634'-6"(C-94, Rev 8) FIGURE 2 Service Water Pump Structure Section (C-97, Rev 2) FIGURE 3 Service Water Pump Structure Underpinning Requirements FIGURE 4 Service Water Pump Structure Underpinning Plan & Sections FIGURE 5 Service Water Pump Structure Underpinning Sections and Details FIGURE 6 Service Water Pump Structure Tension Ties. 4 miO481-0412a100 11

. -. ~. ~.. ~ I-I O4061;- NIntANo PLANT UNITS 1 ANo 2 TECHNICAL REPORT ON UNoERPINNING i THE SERVICE WATER PUMP STRUCTURE i

1.0 INTRODUCTION

[ This report describes the design and construction require-j monts of the remedial action for the service water pump 3 structure-(SWPS) necessitated by the settlement potential of } the plant fill underlying the structure. l 1 i 2.0 PRESENT CONDITION i The SWPS is a two level, rectangular, reinforced concrete structure. Below el 617', it measures 86 feet by 71 feet i 11.inchest above el 617' it measures 106 feet by 86 feet. l The maximum overall height is 69 feet [See Figures 1 and 2 i (FSAR Figures 3.8-56 and 3.8-57)]. l The structure was designed to be supported by the two foun-i dation slabs, one at el 587'-0" and the other at el 617'-0". The lower slab rests on undisturbed natural material and the upper slab rests on fill material placed during construction in 1977. After discovering settlement of the fill under the diesel generator building, an investigation of the plant fill revealed some questionable areas under the upper base slab, el 617'-0", of the SWPS. t 3.0 REMEDIAL ACTION For the part of the structure resting on plant fill, a con-j tinuous underpinning wall, resting on. undisturbed natural '/ i i Af terial_, is provided to support the structure adequately ] under all design load conditions. The underpinning wall j provides the necessary vertical and horizontal support to j the affected part of the structure. To ensure adequate load l transfer, the underpinned structure is jacked'from the underpinning walls (Refer to Figure 3). j 4.0 DESIGN FEATURES The proposed underpinning is a 4-foot thick,. reinforced concrete wall that is 30 feet high and is constructed to i act as a continuous member under the perimeter of the structure overhang. The entire wall is founded on undisturbed natural material. The base of the north underpinning wall is belled I out to a 4-foot thickness to limit bearing pressures to the i allowable values, whereas the bases of the east and west i j side walls ~are 4 feet wide. The allowable bearing pressures - j i , - -. ~,,. _. - -,. - _ _. - - _

0406Ii for the undisturbed natural material are based on safety factors of 2 for dynamic loading and 3 for static loading. A predetermined jacking force is applied to the overhang perimeter to provide adequate load transfer from the struc-ture to the underpinning. The connection between the underpinning wall and the exis-ting structure is made by 2-inch diameter rock bolts at the vertical interfaces and 2-3/4-inch diameter anchor bolt assemblies at the horizontal interfaces (Refer to Figures 4 and 5). The connectors are designed to transfer shear and tension forces to the underpinned wall. The connectors are not subject to stresses during the jacking procedures be-cause the rock bolts have not yet been installed and the anchor bolts have not been tightened (Refer to Subsec-tion 5.3.2). After the underpinning wall is connected to the existing structure, the connectors are stressed by loads applied to the underpinned structure. 5.0 CONSTRUCTION The construction procedures discussed in this report are recommended for underpinning the SWPS. If subcontracter recommendations result in improved procedures, they will be incorporated. For details of construction and the construc-tion procedures, refer to Figures 4 and 5. 5.1 DEWATERING To construct the underpinning, the SWPS site is dewatered: The groundwater level is lowered to el 587 (approximately) by using temporary dewatering wells. These wells will be sealed after the underpinning wall is completed. The accep-tance criteria for the dewatering system require that the system produces an effluent that has less than 10 parts per million of soil particles larger than 0.05 millimeters. N 5.2 BUILDING POST-TENSIONING Construction site dewatering removes the buoyancy force on the overhang portion of the structure, resulting in addi-tional loading on the overhang. To compensate for this additional loading of the overhang, a temporary post-ten-sioning system applies a compressive force to the upper part t of the building along each north-south wall. This post-tensioning allows the additional force to be transferred from the overhang by beam action to the adjoining walls which rest on undisturbed natural material (Refer to Fig-ure 6). The post-tensioning system is removed after the initial jacking loads are applied. i I l 2 l l t

l. 04061; 5.3 CONSTRUCTION PROCEDURES 7 The underpinning is constructed as individual piers tied l together by threaded reinforcing bar couplers and shear keys ) to form a continuous wall. Refer to details and procedures 'in Figures 4 and 5. 5.3.1 Initial Construction Activities To preserve the structural integrity of the building, the underpinning wall is constructed in small sections (piers) -from tunnels which are advanced simultaneously from access j shafts located at the northeast and northwest corners of the building. The tunnels initially extend only far enough to l' construct an approximately 30-foot deep, 5 foot by 4 foot, sheeted pit at each corner of the overhang. The pit is hand dug. The shear strength of the subgrade soil is assessed with a Corps of Engineers cone penetrometer, model CN-973. Under a maximum force of 150 pounds, the cone should not penetrate the surface more than 1/2 inch. After the sub-grade is inspected and approved by a geotechnical engineer, reinforcement, subgrade settlement monitoring instrumenta-i tion, and anchor bolt assemblies to tie the pier to the underside of the slab, are installed. The pier is then cast g with concrete _ pumped from the access shaft. After at least 48 hours of (curing) an initial jacking load is applied to the overhang from jacks placed on the pier top. To ensure adequate support to the building, the tunnel is not advanced j to the next stage until the pier is jacked. i Simultaneously with applying the jacking force, the tunnels are advanced to the location of the next pier,'which is constructed in a similar manner to the first pier. The l piers are tied together with threaded reinforcing bar j couplers and shear keys to form a continuous unde pinning wall. The threaded reinforcing bar couplers (see Detail 1, Figure 5) conform to the requirements of Section III, Divi-l sion 2 of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code,1980 Edition,1980 and 1981 l Summer Addenda. The tensile strength of the splice system t is not less than 125% of the specified minimum yield strength of the spliced bar. 1 A settlement monitoring program for the top and base of each pier begins immediately af ter pier construction. Instruments i accurate to 0.001 inch are installed before the initial jacking is applied. The information from the monitoring program is used to evaluate the time required to dissipate shrinkage and creep of the concrete and creep of the undis-turbed natural material. The rate of settlement decreases with time. At the proper point on the settlement-time curve (as determined by the geotechnical engineer), the I final jacking operations (as described below) begins. i I l 3 1

0406Ii 5.3.2 Final Jacking Stage After Piers 10 (Figure 4) are constructed, the underpinning wall has progressed to within 6 feet of the vertical inter-faces with the existing structure, and the final jacking load is applied. Settlements caused by this load are monitored. When the geotechnical engineer judges that the settlement rate has decreased to a proper value, the load is transferred from the jacks to wedges positioned between the top of the piers and the underside of the overhang, and the jacks are removed. Piers 11 are poured, encasing rock anchors that were previously drilled into the vertical face of the existing structure and thereby connecting the under-pinning wall to the vertical face of the existing stucture (Refer to Detail 5, Figure 5). The space between the top of the underpinning wall and the underside of the base slab is filled with nonshrink grout, and previously placed anchor bolt assemblies (which tie the top of the piers to the foundation slab) are tightened (Refer to Detail 7, Figure 4 ). The underpinning wall is connected to the structure at both the vertical and horizontal interfaces. 5.3.3 Completion of the Underpinning Wall The tunnel is backfilled with lean concrete beginning at the vertical interface and at the north wall. The completion of the tunnel backfilling terminates at the locations of Piers 12. These piers are then constructed, completing the underpinning wall. 6.0 MONITORING REQUIREMENTS During construction, the underpinning of the existing struc-ture is monitored for settlement and crack propogation. The long-term surveillance program of the building after the construction of the underpinning is being evaluated. 6.1 SETTLEMENTS The elevations of settlement markers attached to the structure are measured in accordance with a schedule based on construction procedures. Expected building movements during underpinning operations are small. These movements are recorded, and those exceeding 1/4 inch will be evaluated and reported to the NRC. 6.2 CRACKS Monitoring of existing or new cracks appearing during the underpinning construction is scheduled. Because of the l 4 i .... J

0406ii sequencing of construction procedures,.it is not anticipated that existing cracks will significantly widen or new cracks will appear. However, any new structural cracks or changes ,p in. existing structural crack widths exceeding 0.010 inch will be evaluated and reported to the NRC. F 7.0 ANALYSIS AND DESIGN. i The SWPS was originally designed in accordance with FSAR requirements for Seismic Category I structures.- A prelim-inary analysis of the underpinned structure was made which t . complied with these FSAR requirements, and added a jacking load to the load combinations. The seismic loads used in this analysis were extrapolated from the seismic loading from a previous underpinning design based on piles. When the final [ seismic loads become available, they will be incorporated in the final' design. 1 In the final design, seismically induced forces and instructure response spectra of the structure are generated in accor-1 dance with FSAR Section 3.7. The revised model portrays the i structural behavior including the effects of the underpinning 7 and associated foundation modification. i i The mathematical seismic model and a description of the soil-structure interaction coefficients to be used in the I seismic analysis will be submitted to the NRC in Septem-1 ber 1981. i 1 The static structural analysis uses an analytical model j capable of representing the structure behavior. The interface i between the existing structure and the underpinning wall is i modeled to transfer direct loads without providing rota-tional' restraint. The soil media are represented by springs i of' appropriate stiffness at the base of the structure. The detailed analysis will be performed by conventional methods I such as beam theory and/or plate theory or ~by using the { i computer program Bechtel Structural Analysis Program (BSAP). I For details of the BSAP computer program see FSAR Subsec-I tion 3.8.3.4. ? 7.1 STRUCTURE BEHAVIOR 1 i i i The vertical. loads of the structure are transmitted to the l foundation medium through the existing base slab at 1 el 587'-0" and the underpinning wall bearing area. The i lateral forces due to seismic and tornado loads are resisted l by the shear walls in the structure. These lateral loads 1 are transferred to the foundation medium by the combined action of the base slab at el 587'-0" and the underpinning wall bearing area. To ensure this action, the underpinning walls are connected to the existing structure by rock anchors I and anchor bolts capable of transferring a11' direct loads. } This connection is a pinned connection that is consistent j with the analysis method. E' { 5 _ _ _ _ _ _, _. - -... _ _ ~ _. _ d

040611 7.2 DESIGN CRITERIA AND APPLICABLE CODES The underpinned structure is designed as a Seismic Category I structure. The design complies with the requirements of ACI.318-71 and the 1969 edition of the AISC. a 7.3 LOADS AND LOAD COMBINATIONS The underpinning structure rests entirely on undisturbed natural material. The preliminary analysis of the underpinned structure utilises the same load combinations used in the original design. However, each load combination is modified by adding the jacking load (P ). For each loading combination, the jacking load was evaluateh with two load factors: a value of 1.0, and the load factor associated with the dead load for that load combination. l For the design of the underpinning and the connections to the existing structure, the safe shutdown earthquake (SSE) forces were increased by 504 to provide for a possible future increase in this loading.- The 50% increase was applied to the seismic response of the structure correspond-ing to the analytical model with the mean soil properties. The existing structure was checked for a 0.12g SSE. t The long-term settlement of the underpinning wall after it is connected to the existing structure will be calculated. t The calculation is based on properties of the supporting soil. The long-term settlement effects will be considered in the final analysis of the structure. To provide for these effects, the final analysis is governed by four addi-tional load combinations. These load combinations are i discussed in the response to Question 15 of the NRC Requests Regarding Plant Fill (September 1979) and were used in the diesel generator building reanalysis. The load combinations are modified by the addition of the jacking load. Table 1 lists 26 load combinations, modified for jacking loads. For the preliminary analysis of the underpinned SWPS, the following load combination was most critical: U = 1. 0D + 1. 0L + 1. 0E ' + 1. 0T, + 1. 25H + 1.0R + Pg where D = dead loads L = live loads E' = safe shutdown earthquake l c i 6 i

0406Ii 7 .T, = thermal effects during normal operating conditions N' = force on structure due to thermal expansion of pipes under operating conditions t R = local force or pressure on structure or penetration caused by rupture of any one pipe j. Pg = load on structure due to jacking preload In' addition to this load combination, the underpinned struc-j ture was checked for stability using the load combinations specified in FSAR Subsection 3.8.6.3.4. A complete analysis of the underpinned structure, using all 1 applicable load combinations, will be made when the final l seismic loads become available. l 7.4 -STRUCTURAL ACCEPTANCE CRITERIA 1 The acceptance criterion for analyzing the underpinned j structure is in accordance with FSAR Subsection 3.8.6.5. 1 r 8.0 QUALITY ASSURANCE REQUIREMENT i This project work is a combination of Q-and non-Q-listed work'. 4 The construction of the permanent structures such as the under-pinning wall and the connectors are Q-listed, as well as any i other activity or structure necessary to protect the SWPS. Con-l struction of temporary structures such as the access shafts and i tunnels is non-Q-listed. A detailed quality plan shall be pre-l pared by the subcontractor to identify those specific activities l which are required to have a safety "Q" quality program applied i along with the major quality program elements for these activi-ties. This quality plan shall be approved by Bechtel and Con-l sumers Power Company prior to the start of any Q-listed work. J 9.0 ADDITIONAL NRC REQUIREMENTS For information, purposes, an analysis of the critical sections of the underpinned structure will be made conforming to the provisions of ACI 349-76 as supplemented by NRC Regulatory ) Guide 1.142. I b L l l i 7 i l

~ c 040611 TABLE 1 LOAD EQUATIONS FOR THE SERVICE WATER PUMP STRUCTURE MODIFIED TO INCLUDE PRELOAD Responses to NRC Requests Regarding Plant Fill, Question 15 a. Normal Operating Condition U = 1.05D + 1.28L + 1.05T + P (1) g U = 1.4D + 1.4T + P (2) g b. Severe Environmental Condition U = 1.0D + 1.0L + 1.0W + 1.0T + P (3) g U = 1.0D + 1.0L + 1.0E + 1.0T + P (4) g Loading Under Normal Conditions a. Concrete U = 1. 4D + 1. 7L + P (5) g U = 1.25 (D + L + H + E) + 1.0T +P (6) g O g U = 1.25 (D + L + H + W) + 1.0T +P (7) g g U = 0.9D + 1.25 (H + E) + 1.0T + P (8) g U = 0.9D + 1.25 (H + W) + 1.0T + P (9) g g For ductile moment resisting concrete frames and for shear walls U = 1. 4 (D + L + E) + 1.0T + 1.25H +P (10) g g U = 0.9D + 1.25E + 1.0T + 1.25H +P (l'1) g o g Structural Elements Carrying Mainly Earthquake Forces, Such as Equipment Supports I.25H +P (12) U = 1.0D + 1.0L + 1.8E + 1.0T + g g b. Structural Steel D+L+Pg (stress limit = f,) (13) D+L+T +H +E+Pg (stress limit = 1.25f,) (14) g O 8 l l L

'T7'blo 1 (Continued) ss limit = 1.33f,) (15) D+L+T +H +W+ t g In addition, for structural elements carrying mainly earthquake forces, such as struts and bracing: D+L+T +H +E+Pg (stress limit = f,) (16) g Loading Under Accident Conditions a. Concrete II I U = 1.05D + 1.05L + 1.25E + 1.0Tg + 1.0HA + 1.0R + Pg U = 0.95D + 1.25E + 1.0T + 1.0H + 1.0R + P (18) g g g U = 1. 0D + 1. 0L + 1. 0E ' + 1.0T + 1.25H (19) 0 0 + 1.0R + Pg U = 1. 0D + 1. 0L + 1. 0E ' + 1.0T + 1. 0H + 1.0R (20) A g +P g U = 1.0D + 1.0L + 1.0B + 1.0T + 1.25H + P (21) g g g U = 1.0D + 1.0L + 1.0T + 1.25H + 1. 0W ' +P (22) g g g b. Structural Steel D+L+R+T +H + E' t P (23) L (stress limit = 1.3fs) D+L+R+TA+Hg g (stress limit = (24) t E' +P 1.Sf,) D+L+B+T +H +P g (stress limit = 1.5f,) (25) g D+ ,+T + H + W' +P (stress limit = 1.5f,) (26) g where U = required strength to resist design loads or their related internal moments and forces For the ultimate load capacity of a concrete section, U is calculated in accordance with ACI 318-71. F = specified minimum yield strength for structural steel y f = allowable stress for structural steel; f is calcula-a ted in accordance with the AISC Code, 1963 Edition for design calculations initiated prior to February 1, 1973. f is calculated in accordance with the AISC Code, 1969 Edition, with Supplements, 1, 2, and 3 for design calculations initiated after February 1, 1973. 9

Table 1 (Continued) 0406li D - dead loads L = live loads P = load on structure due to jacking preload L R = local force or pressure on structure or penetration caused by rupture of any one pipe T, = thermal effects during normal operating conditons H = force on structure due to thermal expansion of pipes under operating conditions T = total thermal effects which may occur during a design 3 accident other than Hg H = force on structure due to thermal expansion of pipes 3 under accident condition E = operating basis earthquake (CBE) E' = safe shutdown earthquake load (SSE) B = hydrostatic forces due to the postulated maximum flood (PMF) elevation of 635.5 feet W = design wind load W' = tornado wind loads, including missile effects and i differential pressure 9 = capacity reduction factor The capacity reduction factor (9) provides for the possibility that small adverse variations in material strengths, workmanship, dimensions, control, and degree of supervision, although individually within required tolerances and the limits of good practice, occasionally may combine to result in undercapacity. NOTES: 1. In the load equations, the following factors are used: 9 = 0.90 for reinforced concrete in flexure 9 = 0.75 for spirally reinforced concrete compression members l 9 = 0.70 for tied compression members 9 = 0.90 for fabricated structural steel l 10 . - _ _ _ _ _ _. _ _ _ _ _ ~ _ - - _ _ _ _ _

e Table 1 (Continued) 0406II

  1. = 0.90 for reinforced steel in direct tension p = 0.90 for welded or mechanical splices of reinforcing steel 2.

Unity load factor is shown for P. An alternative load factor to be considered in all lhad combinations is the load factor associated with dead load (D) in that loading combination. For load combinations 23-26: Maximum allowable stress in bending and tension is 0.9 F. Maximum allowable stress in shear is 0.5 F. y For these load combinations, the maximum allowable stress except for local areas that do not affect overall stability is limited to 0.9 F for bending, bearing, and tension and 0.5 F for shear. he time phasing between loadings is used Y where applicable to satisfy the above equations. Structural components subjected to postulated impulse loads and/or impact effects are designed in accordance with BC-TOP-9-A, Rev 2, using ductility ratios not exceeding 10. Structural members subjected to missile and pipe break loads are designed in accordance with Bechtel's BC-TOP-9-A, Rev 2, and Bechtel's BN-TOP-2, Rev 2. 11

0406II DN's N N N T E NS ION TIES s' C ~ ~. y CONSUMERS POWER COMPANY l MIDLAND PLANT UNITS 1 & 2 SERVICE WATER PUMP STRUCTURE TENSION TIES Figure 6

4 l'R m. Sgg Ed a 8 Y 4 d--lglE llz 1 ~ l183h i l !ll8 1/4 mps 'p}s,,kI! l!!n g / $llI@ht 4 J W!i g gt i i i ^ lil i g! ! ;. r tilii: lijJt! ihl...! t i tj D !!!!!!!!!!!! 11 G l b. -h I-~ " d.5 h C M.r y*l'F ~h [5 p i d ? ~ I M. [ w. % w @{ illj}l 5 i ' l D-e eW 4 r >g ff1 IhJ!"[ k new; ,w a v M+id$@N0si(M' Y h.MM@i d"T !i "i e o'gf

  • p1,1..)II..il..[ ;y p. d p< it 19nPy... :>i 1

-ar=' / ! 11 - = y?Tpg/l e 0 -A l u g. i t:::,$1.3 ih 1 1 ,,,nh' 13 c= u m :i yi p ; L. ort 1 m si m ei, '~:, p eg a %e ?.. m ); ~"rg l I _-q! jg Jem 1, 9 i@ gig a ~7LGT_@7 % p ' w I ..n u. i I 4 s i .d.. .t ' l %.4 ji \\ i er,T l', .d-. -~~ b-Ml%a jy\\ ,lbq } 4 -e t . y.c i le Ok fC TPM;Os 'y n } g{ 7 f lijeva vu i 0 i 4O g e (!

tilt, e:~iaq=n,gt,_

t p))ln pd gy !! w i.y m n, _, e a s. 1 A V lg a "; l } i g.- tu,25, , W: nl i U sfifT's / m l' ' )N,.-4e {l l liil r en9 i f,, 2u j. t [ M e.unp*.=i:;;}t % j (r; i c i qq G!T.T' ' -f y

  • i A

r u,; I + z 1,:. m, 7 2 L .t s i y i 78 3 ,fy u -:, y i ', s . 17 i % @ a,',$ Nl - li[ ' i-'I".7.st< I kd N 'd $1 I 9 f t g j, / ....!m@hh r I,LTna_.,! {Lh L L i n Q l t Il.1,._,__!.l -l 7' \\ Il.f i !! g[T., i L 1: s 4 4\\ 8i e_ ) t (1, I [t I ye.g:. 1 lIhlj[,,',e I 'e o ,il { j S, N k l j [. E a 4 L

n I /.- y. i U //F@P"!i jIll,M; lim lhjj!d;!g[di llI' E ll ik i isit i iiij ill

p.). li >li,1 p g l y illi eJ )

1 l h!!!I!!$Ujkd!! 4,lgg!!s!lii!!!$!p$llialI)$ll! Id)! ssi peig, s:ldi ll 6 e6 iis RFaley!; ~ i s%.g[i ll: Lt <j M-i) Ihe ;l;h 0 !iW g, \\.fi[ i i a wa li~l!jf ll1 ig u 6,. %}l.It t[,q l II.l h, ,9 r1 k,; h, w' a m,, ! j lg l "7"g 3 i q, 1 rei 1 4 ga 2 )f f } $ 5 i 1 I / '(( i g \\k j b)I!b0 'l b, ,+ a 1 -- --- -- i --- --

c -'- 1 .y~~---- - --- J_ - - _ T ysy,.] ~. -- ~-

-- - ~ _ __.__

a_,,,;, _ = . ymp. ...r ._ } -l mL "' .9. I .- o

  • E ~.,... yrsA.c

...,m. ~ m " ' u,h.I25. _/.). ., ss % e,% 's, ( . _ v., -,_m,,.,,, -. _ _9 3,, _ _ _ _ _y________t s,,

t.. -t

~.u s. l f. __. y 7' .. u n 1 '*a** scoa .. ".c a e 3 A- .,. u q l C V v i -c 5 se,,% -. L,,,',,, 4 ., 1 k.. _g M.y'u g opw s = f.,._ -,...b..;,.3-Y,pr,_ _ '._ i 1. i om d - g.,_,_.,,,.,, \\...- J j ._. __. _~ j, [.^. a .,. s n b s += 4 \\..,,,,:; r .e.. n- \\ n'.t ) ^n ., s.ed rb n urc + e. e s==e g .y van =sg j %__ j.es* peev c y g f 4 g_: w. i,.g=. ' .7 n 1 2_ r.,. u.. .y e e -*sse [ [ ? y _ ]

p<

q

  • M3-t
U 9.

M' ~L ~ Zl. ss ^~ _....a a s ) FT :.:: ~ I_l nw vs-1,. _ C m,c. 3 ...< o 2 .D 1' c h o n e e-t t = r.ad Y l 5 m.,,, 4 -- -t ;.d_. i, j! /** - m x,

.t.

F't:____L h=-rrrr. e ~.,e,,. '}yo*>

  • ea n%

_,y,,,, _ g ~< FIGURE 2 CONSUMERS POWER COMPANY srcTioes A MIDLAND PLANT UNITS 1 & 2 FINAL SAFETY ANALYSIS REPORT w rotvaToa. WEST wrLL t (LEvAtos EAST WA L L_ ts '. a*.el j Service Mater Pump 1; Structure Section C-97, Rev 2) FSAR Figure 3.8-57

f ,/ a,- e .A L s 1~ 5 a-h n V Q '] ,T gn-9 y -- 9" Jernes W Cook j Vice Pressdent - Projects, Engsnernng and Constructson Generet offices: 194s West Parnest Road. Jackson. MI 492ot * (517) 788 o453 June 19, 1981 PiU N:1_P/J, STApp yIQg'k NIR NS /[>' JD pao e 4 f d8 i gn t.' Mr Harold R Denton, Director C[7./9 //j '. 3,J.. Office of Nuclear Reactor Regulation j f ff c '. ", j ',i l I US Nuclear Regulatory Comunission l / [ $[U.V.Il f- '. s 7920 Norfolk Ave ".r T r ~ 7. gg.,.' Bethesda, MD 20014 frile Y 'rt'60 ; s y MIDLAND PROJECT /N [h DOCKET NOS 50-329, 50-330 PRELIMINARY RESULTS OF SOIL BORING AND TESTING PROGRAM FOR PERIMETER AND BAFFLE DIKE AREAS FILE: 0485.16 UFI: 70*01*/00234(S) SERIAL: 12244 ENCLOSURES: (1) COMPARISON OF SOIL PROPERTIES USED IN THE FSAR.WITH DATA RECEIVED FROM WOODWARD-CLYDE CONSULTANTS, DATED JUNE 1981 (2) COMPARISON OF SOIL PROPERTIES USED IN THE RESPONSE 50.54(f) (NEWMARK ANALYSIS) WITH DATA RECEIVED FROM WOODWARD-CLYDE CONSULTANTS, JUNE 1981 (3) PRELIMINARY TEST RESULTS, SOIL BORING AND TESTING PROGRAM, PERIMETER AND BAFFLE DIKE AREAS FOR MIDLAND - UNITS 1 AND 2 In accordance with our discussion with the NRC on May 13, 1981, we are providing the enclosed Woodward-Clyde Consultants' report dated June 10, 1981 which documents the preliminary soil boring and laboratory testing data for the fill and natural foundation materials in the perimeter and baffle dike areas. The report is marked " preliminary" because a few index property and undrained triaxial compression test results are not yet available. The Soil Boring and Testing Program was performed by Woodward-Clyde Consultants who have been retained by Consumers Power as an independent contractor. l The data presented on the dike areas can be considered essentially complete l and representative of the materials from the dike areas. The soil properties obtained from the laboratory tests (Boring Nos COE-1 through COE-7 and COE-7A) and the property values used in the design of the dikes are provided in Tables 1 and 2. Table 1 indicates that the shear strength values of the fill and the natural foundation materials of the perimeter dike are higher than the 300j conservative values used in the design of the dikes. The slope stability analysis of the perimeter dike with the new shear strength properties will I result in a higher factor of safety than the factor of safety values reported in the FSAR Table 2.5-20. / YO Table 2 indicates that the shear strength values of fill material and foundation clay for the baffle dike to an Elevation 598 are higher than the values used in the 50.54(f) response (Response to Question 45, Part If, Table oc0681-0327a100 b w*.f n qw' _~ - ec k ,'$ 0 TW s

2 b low Elevation 598 is The analysis l 45-2) while the shear strength of foundation c ay )e 54(f response. olightly lower than the values used in the 50. for 1.0g seismic i d for the Midland site are at dine in the 50.54(f) response showed a high marg n ceceleration and the acceleration values assume Therefore the slightly less shearl sions in the 50. lacst a factor of 5 less than 1.0g.ctrength values do not in any w I r:sponse. il boring and laboratory test h as the diesel generator We will continue to provide the NRC with the sodnta and building, when these results become available. JWC/NR/RLT/cr oc0681-0327a100

3 CC Atomic Safety & Licensing Appeal Board w/o Atomic Safety & Licensing Board Panel w/o Charles Bechhoefer, Esq w/o Myron M Cherry, Esq, w/o RJCook, Midland Resident Inspector w/o Dr Frederick P Cowan, w/o Ralph S Decker w/o NRC Docketing and Service Section w/o Steve Gadler, w/o RWHuston, w/o Frank J Kelley, Esq, w/o Wendell H Marshall, w/o Michael I Miller, Esq w/a W Otto, US Army Corps of Engineers, w/a William D Paton, w/o Mary Sinclair, w/o Barbara Stamiris, w/o I l i oc0681-0327a100 1

~ TABIE - 1 l Comparison of Soil Properties Used in the FSAR with Data Received from Woodward-Clyde Consultants, June 1981 1 PERIMETER DIKE Total Strasses Effective Stresses i FSAR Woodward-Clyde FSAR Woodward-Clyde I (' c' F (' c' E c I ( c l Zone Description (pcf) (deg.) (psf) pcf) (deg.) (psf) (pcf) (d g ) (psf) (pcf),(deg.) (psf) III 135 0 1600-(2) 1 Impervious fill 135 29 0 J35 30.9 140 6300 i. I2) II) 2 Random fill 135 29 0 II) (i) 7 F>undation 110 32 0 sand,' silt, and j firm clay I0) II) 35(5) 0 140 33.4 1810 140 0 !!,000 8 Foundation 140 25,000 alacial till I7) 11,00M0) 125 0 7000 140 0 9 Foundation ) 25,000 R acial till i a Values shown above were used in stability analysis. ( See FSAR Table 2.5-22 for ranges of dry density for various zones. I Values used in analysis June 1981 are c=2500 psf and 9 =0. 1 l (3) Samples taken from the Baffle Dike random fill-cohesive gave c'=190 psf and (' =28.6* and random fill granular gave I c'=0 and ('=35.!*. i (4) Samples taken from the Raffle Dike foundation clay gave an effective angle of internal friction of( =25.3* and c'=780 psf however, borings COE 2, 3, 4, 5 and 6 drilled in the Perimeter Dike showed only foundation glacial till. i ( FSAR Table 2.5-22 shows 37* while actual value used was 35*. I (6) Values used in analysis June, 1981 are c=ll,000 psf and(=0. c' used only in earthquake analysis of emergency cooling water reservoir slope (Section Z-Z'). I i i

t. TABLE 2 An:1y7in) Comparison of Soll Properties-Used in the Responss SU.'54(P) (Newmark 1981 with Data Received from Woodward-Clyde Consultants, June BAFFLB DIKr. (SECTION Y-Y') Total StressesWoodward-Clyde Response 50.54(f) c y 4 (d(ea.) (psf) c ( (pcf) (deg.) (psf) (psf) _ 130 0 1000-130 0 2100-Description Zone (1) 4 2 Random fill 13d 25(1) 0 3200-(2) 132 0 3500 140 0 5600 7 Foundation clay 5300-(2) El 598 to El 604 132 0 6000 140 0 6300 8A Foundation clay 6500(2) El 590 to El 598 140 0 7000 140 0 85 Foundation clay l Below El 590 9* but for the total stress (1)The random fill materials were assumed to have effective angle of internal frictio l friction The tests from Woodward-Clyde showed an effective angle 1 analysis, an angle of 25* was used. of ( '=35.l* and c'-0 for random fill granular and an e c'=190 psf for random fill-cohesive. h ranging from 11,000 to 25,000 psf was For the Perimeter Dike 6ection T-T!), glacial till with shear strengt ( encountered in horings COE 2, 3, 4, 5 and 6. i i e l i 5 \\ w l

c- " pa nem ? k UNITED STATES 8 NUCLEAR REGULATORY COMMISSION o i j wAssiwaTow.o.c.aossa 3

  • %,, * *</

PR 15 1881 Docket Nos.: 50-329/330 OM, OL d MEMORANDUM FOR: F. J. Miraglia, Acting Chief, Licensing Branch No. 3. DL FROM: D. S. Hood, Project Manager, Licensing Branch No. 3, DL

SUBJECT:

NOTICE OF MEETING - MIDLAND PLANT, UNITS 1 AND 2 DATE & TIME: May 5-7, 1981 8:30 a.m. LOCATION: Rm. P-114 (5th), Rm. P-114 (6th), Rm. P-422 (7th) Phillips Building Bethesda, Maryland PURPOSE: TO DISCUSS (1) REMEDIAL ACTIONS AND UPDATE OF SOILS DEFICIENCIES, AND (2) REVIEW STATUS OF AMENDMENT 85 0F APPLICATION PARTICIPANTSk NRC NRC Consultants G. Lear F. Schauer U. S. Army Corps of Engineers R. Bosnak, et.al. ~ Naval Surface Weapons Center Energy Technology Engineering Center Consumers Power Company G. Keeley, et.al. Bechtel L. Curtis, et.al. oo ,1 - ~4, Darl S. Hood, Project Manager _n1 ? D Licensing Branch No. 3 '~ C) J Division of Licensing e i l

Enclosures:

1. Background and Agenda 2. 3/23/81 Letter cc: See next page. E eetings between NRC technical staff and applicants for licenses.are open Mfor interested members of the public, petitioners, intervenors, or other parties to attend as observers pursuant to "Open Meeting and Statement of HRC Staff Policy", 43 Federal Register 28058,6/28/78.

1 BACKGROUND The meeting is in response to the applicant's letter of March 23, 1981 (attached) to further discuss the matters therein. However, the matter of seismic design criteria it the subject of separato meetings 1/. t Amendment 85 'of the Midland application, which responds to several requests for additional information (Questions 39 through 53) regarding soils deficiencies, will also be discussed, with particular emphasis upon the identification and resolution of open items 2/ from the review of that amendment by the NRR staff and its consultants. AGENDA i 1. ' Dewatering - Installation of intercepter back-up wells and permanent dewatering system design. 2. Underground Piping - Planned activities and results of investigation to date. 3. Additional Soil Borings - Update on borings. 4. BWST - Causes of ring beam foundation cracks and remedial activities. 5. Review of Amendment 85 (Soils, Structural) 6. Remedial Activities (a) Service Water Building (b) Auxiliary Bldg. Electrical Penetration area and FW Valve Pit. I t 1/ previous Notice of Meeting has scheduled April 16, 1981 for discussion Aof the first two of three reports on Midland seismic criteria; scheduling of a subsequent meeting for the third report is pending receipt of that report by NRC. 2/ ee Transcript for Oral Deposition of Joseph Kane, NRC, on 3/26,27/81. S i I a / . - - ~ _. _ _., -. _ - -. -.v -. _ -. -.. ~ ,,,_,+,,.-..--,,___.,,m _...,.m-

r 1-de i; ~ o.M%;s !i ~ t 'N 5

e.... ; ;..: :. ;

James W.Ceek J *...*. '. Mus.vs..? Viet hesident

  • hopri l.mp.strsing il

\\ e ' ~ end Cesarmasise i oeaeros oMices: 1945 West Paraan steed. Jacknoa. MI 49201 * (5171788 oesa g [1 ! (O ) March 23, 1981 O' / S g f,*,A. i(UA.8

% gdaag %,6 Harold R Denton,liirector 7,

Office of Nuclear Reactor Regulation US Nuclear Regulatory Counission y Washington, DC 20555 "J d'3 iC MIDLAND PROJECT i-ACTIVITIES FOR THE RESOI.UTION OF OUTSTANDING ISSUES REGARDING THE MIDLAND SOII.S EARINGS FILE: 0485.16, B2.5.2 UFI': 42*05*22*01, 00234S, 71*01 SERIAL: 11625 This letter is submitted to document the telephone conversation of February 27, 1981 between myself, R H Vollmer, and ' embers of both our staf fs. The m call addressed several matters relating to the Midland soils hearings. In order to put the items discussed in context, a brief background summary is presented below. On August 22, 1978 Consumers Power Company verbally notified the Region III Resident Inspector that the partially completed diesel gen'erator building was experiencing more settlement than had been postulated. This was later determined to be due to inadequate compaction of backfill. A 50.55(e) report was initially issued on September 29,,1978 and further interira 50.55(e) reports were issued until the last report of February 7, 1980, after which subsequent information was supplied by 50.54(f) responses. On March 21, 1979 the NRC issued the initial 50.54(f) request regarding plant fill and subsequent requests were issued. Answe.rs to most of these 50.54(f) questions have been forwarded with the latest being Amendment 88 (Rev 11 to the 50.54(f) responses) dated March 16, 1981. On December 6,1979 sn order Modifying Construction Permits No CPPR-81' and CPPR-82 was issued by the NRC. A principal reason this order was issued was due to the Staff's erroneous l assumption that remedial actions, other than the surcharging of the diesel l generator building, were proceeding. On December 26, 1979 Consumers Power Company requested a hearing in accordance with Part V of' the Order. On October 14, 1980 a letter from R L Tedesco to us indicated that one of the open items associated with the review of our operating licenses for Midland Units 1 and 2 was the establishment of additional seismological input parameters against which to review the plant structures and equipment. The letter stated that consideration of this open item would also be introduced into the review of the remedial actions associated with the soils settlement matter which was the subject of the December 6, 1979 Order ModifyinE 0{ Construction Permits. 0 oc0381-0258a100 54 ftYisd ir b

4 ~. 2 e l i i ~ Since our initial notification to the NRC about the soils problem, there.. svh been many meetings and telephone conversations to discuss the proposed remedial actions and the responses to questions by the NRC and their consultants. In addition, depositions have been taken by Consumers and the .NRC. During all the above activities it has become apparent that there are some areas of disagreement between the Staff and its consultants and Consumers and its consultants: In addition, the October 14, 1980 letter from R L Tedesco on' a seismic response spectra has placed us in the position of having to evaluate our remedial fixes against an unknown, but possibly higher margin, since the site specific response spectra issue could result in structural loads larger than those resulting from an SSE zero period acceleration of 0.12g and modified Housner spectra which are the PSAR and FSAR design basis, w t On February 27, 1961 I initiated the referenced es11 to R H Vollmer anil other Staff personnel to inform the Stpff of new developments. We hope these i actions will help resolve certain issues that to date have been in contention { with the Staff. We also hope that the Staff will look favorably on our i requests to pursue with your concurrence certsin activities which if not - undertaken shortly will have a significant adverse schedule impact. 1. BORINGS While we still disagree with the need to take additional borin'gs and run tests, we will take borings as specified in the January 8,1981 letter to us from R L Tedesco. Consolidation tests by an independent laboratory will be run on soils samples taken near the diesel generator area to obtain pre-consolidation pressures, and comparisons will be made to the calculated stresses to which the soils in the areas of the samples were subjected during the surcharge program. An evaluation of these tests and results will be undertaken to assess the level of uncertainty inherent in these data. Shear strength tests will be run on soils samples taken in the power block area to determine factors of safety for bearing capacity. Shear strength tests will also be run on soils samples taken from dike borings to substantiate slope stability. We will keep the Staff informed of all the above activities so that they can witness the activities, if desired. The results of the test program will be submitted and reviewed with the Staff. 2. SERVICE WATER BUILDING AND ELECTRICAL PENETRATION AREAS The October 14, 1980 R 1 Tedesco letter on seismic, accelerated the completion of a margin analysis of the underpinning systems proposed as remedial actions. While all structural analyses have shown the tixes to be adequate for the plant seismic design basis of.12g, there was concern r that a seismic margin analysis based on the currently undefined site specific response spectra would introduce new potential areas of contention with the Staff. As a result we have decided to change from a pile suppo'rt design for the overhang portion of the service water building to an underpinning concept involving a full length wall under the overhann portion with the wall extending into the till. We are confident that this will provide sufficient margin-for any reasonable resolution of the.<is e ocC381-0258'a100 l

i 3 l p i. i specific response spectra issue. The conceptual design for this appro.ich will be available to allow discussions with the Staff in April 1981. The remedial action under the electrical penetration area.will remain essentially the same as has been described both in discussions and in answers to Staff q'uestions, except that more caissons and,some enlargement of the.. base of the pier under the valve pit will be utilized in order to obtain additional margin.. r 3. PERMANENT PLANT DEWATERING Although it is our legal opinion that we can implement remedial actions at our own risk without Staff concurrence, we have chosen not to proceed without their knowl, edge and concurrence. The single pacing activity for the entire sequence of installing the remedial underpinnings is the completion of the permanent plant dewatering system. The first phase of this activty is the installgtion of a few back-up wells commencing in May of 1981. A large amount of information on the permanent plant dewatering system has been provided to the Staff. Installation of back-up wells along.the service water a'nd circulating water buildings will facilitate draw down and recharge rate tests, verify the design of the remainder of the permanent plant dewatering system, provide' dewatering settlement data, and facilitate preparation for installation of the wall under the overhang portion of the service water structure. Since the wells can be abandoned and grouted, we do not believe it is necessary to consider the installation of wells as an irrevocable committment. We request that the Staff concur with our position and that we so notify i the Soils Licensing Board. 4. SITE SPECIFIC SEISMIC CRITERIA We have had several discussions with the Staff on this subject, and as previously requested by them we supplied them with the Final Report Part I " Response Spectra Original Ground Surface" and Part III " Seismic Hazard Analysis". Part II entitled " Response Spectra For Top of Fill and l Theoretical studies on possible Ground Motion Amplification Through Till under the Diesel Generator Building" will be furnished by April 1981. As already scheduled, we will be meeting with the Staff on these issues on April 16, 198I. Our objective is not only.to rasolve the site specific response spectra with the Staff but also to recognize and schedule with the Staff management the total sequence of seismic margin analysis activities that are currently required in the operating, licensing process. We are also petitioning the soils hearing Licensing Board to remove the seismic issue from that, hearing and urge the Staff to consider our motion and join with us if possible. l oc0381-0258a100 l z o m -m- -w,---v-r ,v -w--y-w--e-. y m --y&m--- ee---- -eee-w-m, - w--ee..w -v-+ee - -r --mm-e--e --ww

  • -***--s-*'d-e-r

7 4 I I In prior conversations.with Mr Vollmer on the general topic of resolution i of issues, it was anticipated that the Staff could support an escpedit...! review of the underpinning designs. Bas'ed on the scheduled submittats of f ., we are hopeful that as much staff review of these materials as possible can be accomplished prior to the hearing while still reflecting the limitation'of Staff resources. We will be in contact with the NRC's Midland project manager to pursue in detail the ad.ditional submittals and meetings referenced in this letter, + s JWC/GSK/cr i s i CC: RJCock, Midland Resident Inspecto Atomic Safety & Licens @ Appeal Board j Atomic Safsty,& Licensing Board Panel i Charles Bechhoefer, Esq James E Brunner, Esq Myron M Cherry, Esq Dr Frederick P Cowan Mr Steve Gadler i D F Judd, Sr Project Manager Frank J Kelley, Esq Ralph S Decker Mr Wendell H Marshall Michael Miller, Esq William D Paton, Esq Ms Mary Sinclair Barbara Stamiris Mr C R Stephens Chief, Docketing & Service Section l l \\ oc0381-0258a100

1,. s_ ?** ATTAC)DIENT 1 NEAR TERM SCHEDULE MILESTONES FOR ACTIVITIES RELATED TO SOILS HEARINGS A. SEISMIC DESIGN CRITERIA .I 1. Submit Weston~ Report Part I and III to NRC. Completed and provided to NRC on 3/3/81. L 2. Submit Part. II in April 1981. Meet with NRC Staff in 'pril to discuss resolution of issues. Also A 3. discuss schedule for resolution of these issues with respect to Operating License. B. PERS.A.NT.NT PLANT DEWATERING 1. Drill and develop bac'E'-up wells along service water and circulating water pump bouse 5/1/81 start. 2. ' Drill and development remainder.of permanent plant dewatering wells. 11/1/81 start. C. AUXILIARY BUILDING 1. Meet with NRC on conceptual design April 1981. 2. Complete conceptual design 6/1/81. 3. Complete final design 8/1/81. NOTE: Construction activities are scheduled to the following milestones: Award subcontract 1/1/82; Mobilize 4/1/82; Start Excavation and installation 6/1/82; Complete April 1983. D. SERVICE WATER PUMP STRUCTURE 1. Meet with'NRC on conceptual design April 1981. 2. Complete conceptual design April 1981. 3. Complete design 6/15/81. NOTE: Construction activities are scheduled to the following milestones: Award subcontract 1/1/82; Mobilize 9/1/82; Start Excavation and installation 11/1/82; Complete May 1983. E. UNDERGROUND UTILITIES I Meet with NRC in April 1981 on results of discussions with Consult.:nts and discuss schedule for completion of investigation. l oc0381-0258b100 l

V 2 v-a. P T. BORINGS Issue specification and retain subcontractor 3/2-3/81. 1. Commence Borings week of 3/23/81. 2. Commence Lab Testing Week of 3/30/81. 3. 4. Complete Borings 5/1/81. 5. Complete Lab Testing 6/8/81. Periodically review results of detailed program 3/23/81 to 6/8/31, 6. with NRC. G. BORATED WATER STORAGE TANKS - Meet with NRC on remehial actions April 1981. 1. i i ( + e oc0381-0258b100 0 -v-, mis _ - -}}