ML19309C331

From kanterella
Jump to navigation Jump to search
316(b) Predictive Study of Impingement & Entrainment.
ML19309C331
Person / Time
Site: McGuire, Mcguire  Duke Energy icon.png
Issue date: 10/31/1978
From:
DUKE POWER CO.
To:
Shared Package
ML19309C328 List:
References
RTR-NUREG-1437 AR, NUDOCS 8004080459
Download: ML19309C331 (300)


Text

--- _ _ - _ _ . _ _ _ _ _ _ -. . . _ _ _ _ - - . ____________.

O McGUlRE NUCLEAR STATION CONSOLIDATED OVERVIEW BASELINE YEAR 1978-1979 DUKE POWER COMPANY CHARLOTTE, NCRTH CAROLINA MARCH 1980 l

l 8004U?"Y9

McGUIRE NUCLEAR STATION CONSOLIDATED OVERVIEW BASELINE YEAR 1978-1979

., DUKE POWER COMPANY CHARLOTM NORTH CAROLINA MARCH 1980

McGUIRE NUCLEAR STATION CONSOLIDATED OVERVIEW BASELINE YEAR 1978-1979 TABLE OF CONTENTS CHAPTER PAGE

! l. INTRODUCTION . . . . . . .... . . . .. . . . ... . . . . .1 LEGAL BACKGROUND ..... . .... . . .. . . .. . . . .1 McGuire Permit Recuirements . .. . . . .. . . . .. .1 Marshall Permit Recuirements . .. .. . .. . . . .. .3 SITE LOCATION - PHYSICAL DESCRIPTION . . . . . . . .. .3

11. PLANT OPERATING DATA . . .. .. . .. .. . . . .. . . . . .. .8 UNIT INFORMATION .. .. . . .. ... . ... . . ... .8 INTAKE CONFIGURATION .. . . . . ... . ... .. . . . .8 DISCHARGE CONFIGURATION . .. . .... . . . . . . . . .. .10 ll1. PREDICTIVE MODELING . .. . .. .. . ... . .. . . . . . . . .12 HYDROTHERMAL PHYSICAL MODEL , ..... . ... .. . . .. .12 Physical Model Description . . .. . . . .. . . ... . .12 Physical Model Results . . . . . .. . ... . . . ... .15 MATHEMATICAL MODEL ,. . . .. . .... . .. . .. .. . .17 Mathematical Model Descriotion . .. . .. . . .. . . . .17 Mathematical Model Results . .. .. . . .. . . . .. . .19

. IV. TEMPERATURE AND WATER QUALITY , . .... .. . ... . . .. . .28 TEMPERATURE DATA . .. .... .... . ... . . . . . . .28 .

WATE4 QUALITY DATA .. .. . . .... . .. . . . . .. . .41

t-V. BIOLOGICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . .43 PHYTOPLANKTON - PERIPHYTON COMMUNITY . . . . . . . . . . . . .43 ZOOPLANKTON COMMUNITY , . . . . . . . . . . . . . . . . . . . .44 BENTHIC MACROINVERTEBRATE COMMUNITY , . . . . . . . . . . . . .45 FISH COMMUNITY , . . . . . . . . . . . . . . . . . . . . . . 46 LITERATURE CITED . . . . . . . . . . . . . . . . . . . . . . . .80 APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 I

CHAPTER I INTRODUCTION LEGAL BACKGRDUND Under the provision of the Clean Water Act (the Act), operators of steam elec-tric pcwer generating units must comply with applicable technology-based ef-fluen* 'qttations promulgated by the Administrator of the Environmental Pro-tection Agency. These Ilmitations, Effluent Guidelines and Standards, are published at 40 CFR Part 423 In addition, compliance with effluent limita-tions calculated to achieve water quality standards is required under Section 301(b)(1)(c) of the Act. With respect to the discharge of heat, however, an exemption from any of these limitations is available if the operator can make a successful demonstration under Section 316(a) of the Act. In the State of North Carolina NPDES Permit No. NC0024392 Duke Power Company is required to submit the results of a 316(a) Demonstration for the twc units of McGuire Nu-clear Station.

McGuire Permit Recuirements McGuire Nuclear Station will discharge its condenser cooling water to Lake Norman. Therefore, it must operate in accordance with " Classifications and Water Quality Standards Applicable to Surface Waters of North Carolina,"

adopted by the North Carolina Environmental Management Commission under Au-thority of Article 21, Chapter 143, General Statutes of North Carolina, as amended.

Applicable sections include 15 NCAC 28.0211(c)(3)(J) which states that Class A-ll waters are "not to exceed 2.8 degrees C (5.04 degrees F) above the natur-al water temperature,and in no case to exceed .. 32 degrees C (89.6 degrees F) for lower piedmont and coastal plain waters ...."; and 15 NCAC 28.0204 which states that tests conducted to determine compliance with these standards be made "outside the limits of prescribed mixing zcnes."

On March 28, 1978, the North Carolina Department of Natural Resources and Com-munity Development Division of Environmental Management issued NPDES Permit No. NC0024392 authorizing a mixing zone shown in Figure 1-2 and described as follows:

"The facilities shall be effectively maintained and operated at all times so as to meet the temperature standards of 5'F increase above natural water temperature and a maximum of 90*F measured as 24-hour average one foot below the water surface except within a mixing zone containing an area of no more than 3,500 acres and lying upstream of the Dam and south of a line originating on the ,

west bank of N. C. Coordinates E-1,416,900, and N-633,600 and ex-tending south 70*-00' east intersecting the point of land on the eastern shore, but at no time shall the heated waste discharge increase the temperature of the waters at any point within the Lake in excess of 95*F, as of a monthly average."

The mixing zone as described above is shown in Figure 1-2.

Based on a 20 year simulation using the Ryan and Harleman cooling pond mod-el, using conservative inputs mentioned in Chapter lil, McGuire would exceed the 35*C (95*F) criterion by 0.5*C (1 F) for three-one month periods over the 20 years simulated. In no case would the 14 km2 (3500 acre) mixing :one be violated. It should be noted that the McGuire discharge temperature was com-puted at the " mouth of the pipe" and not at the confluence of the 970 m (0.6 mile) long discharge canal with Lake Norman, where the 35*C (95 F) discharge criterion will have to be met. This adds to the conservativeness of the com-putations.

The Ryan and Harleman cooling pond model is the best tool currently available for the simulation of a cooling lake such as Lake Norman. Although Duke Pow-er Company realizes there are some uncertainties associated with the mathema-tical model, II believes that limitations stipulated in NPDES Permit No.

,NC0024392 will not be violated by McGuire due to the conservative assump-tions associated with the model predictions. Nevertheless, Duke Power Com-pany is committed to operate McGuire in accordance with conditions promulgat-ed in the Permit.

I Marshall Permit Recuirements On March 3, 1976, the North Carolina Department of Natural and Economic Re-sources issued NPDES Permit No. NC0004937 for Marshall Steam Station in com-pliance with the provisions of the Federal Water Pollution Control Act. The permit limits the Marshall monthly average discharge temperature to 34.4 C (94*F) during the period July 1 to October 15 and 33.3*C (92 F) the remainder of the year. As with McGuire, the Marshall monthly average discharge tempera-ture was predicted to exceed 34.4*C (94*F) on three occasions (Table 3-4).

As stated earlier, Duke believes the Ryan and Harleman model predictions are extremely conservative and is therefore, confident the permit limitations will not be violated.

SITE LOCATION - PHYSICAL DESCRIPTION The 2360 MW electrical McGuire Nuclear Station is located approximately 27 km (17 miles) north-northwest of Charlotte, North Carolina, in Mecklenburg Coun-ty (Fig. 1-1). This site is located on the south shore of Lake Norman, which was formed in 1963 by the construction of Cowans Ford Dam. The lake was built primarily to provide a source of cooling water for steam electric facil-ities and for hydroelectric power generation. The 360 MW electrical Cowans Ford Hydroelectrical Station is approximately 900 m (1000 yd) west of the McGuire site. A submerged skimmer weir located in front of the Cowans Ford Hydroelectric Station intake allows passage of the warmer epilimnetic water from Lake Norman while retaining cooler hypolimnetic water below elevation 725 ft (204 m) msl. Lake Norman is the source of recirculated condenser cooling water for both McGuire Station and the 2025 MW electrical coal-fired, Marshall Steam Station, located on the west shore of the lake, approximately 18 km (11 miles) north of the dam (Fig. 1-2).

Lake Norman, the largest impoundment in North Carolina, has a surface area of 13,166 ha (32,510 acres) at full pond elevation 231.6 m (760 f t) ms t , a shore-line of approximately 840 km (520 miles), a mean depth of 10 3 m (33.7 ft) and a volume of 1.350 x 10' m (1.094 x 108 ac ft). A drainage area of roughly 2

4662 km (1800 sq. miles) yields a mean annual flow of 75.6 m /s (2670 cfs) 8 at the dam, resulting in an average theroretical retention time of 207 days.

8

VA VA

~' ** ' VA TENN 'f NC --- ,_ __ , , _

NC tis t 28 TT

~~ wthsrav-skEM 3

'N

" 9 -

3 l

S

_I "E M[M./ :::7;"X ,

&&uf *,f N n LAKE NORMAN N N Nll

%*.d'*M 4

S, ' y , MCGUIRE NUCLEAR -

STATION

~~

C CHA9t0TTE qCc f ~~ - - - . -

.f s .

f =

Gsmisma ~,

', ~

FT L.- - _ .ft e ,,

s c.

T*

Y O E.57

~

~e'c-*o

@ \

g E'

M s o s so is 20 rs if sc.u . as

9ED, ccwura

_ - ^_

W D

b Figure 1-1 Regional Site Locations

3_ ?t, /

,T \\t

]

1

(

a

[

?e ..

.~

=

& h5 ,- \

r 4

+ g

( ,

7

<<q f 4 w [

p,, p a' r /

s f

PutRC#

fsys

I* W Y :-

)-g,pky -

i e ~< u a

/

/

,g,.,,y;;p:{

._ J' q%

Q g

v

{;

1 ....; _

, Ita$io o' '

0 l' em w _ .'.- _ _ _ , . _ l' o e '*'y'M11H@T ddL +

i j'. g no,. i.n.. ., o,. s._

P l

4 i

The present eaximum allowable drawdown is 7.6 m (25 f t), or 224 m (735 f t) i est (Ref. 1). When McGuire becomes operational, maximum allcwable drawdown will be reduced to 4.6 m (15 ft), or 227 m (745 ft) msl. Since the comple- ,

tion of the hydroelectric station in 1964, the actual recorded' maximum draw-down has been 3.7 m (12 ft). An area-volurre curve for Lake Norman is present-ed in Figure 1-3 P

5 1

w f

1 i

i a

L P

I t-d i

j .. _. . . ._ . - . --

m e4 bc oggoO e oe oo oe gc O e g4 0 gooO 4 0 me Rs ~2%CR2sg-Rs SS8.00 0GG25 '

v2 l lll l f!!!!;'i o,

@E ii i

i i

1 1

i i

/ ! i i ,

23

>c N ~j i i i 1 , t

'if  ! E" 4 I i i i i ' i 2/ 6

{ E$

i, i i i i i . / 1 i 6 - <6 i ! i ! I /! ' M iI l i , i / i . i i  ! d

, i i i i i t I i/j I i i i ! e i i i i i  ! i . / l 1 0 L i - m t i i i i i i i t / i m

I I

.\  ! ! /

  • Il i i ! I i /

o\i F i i i i / i i

' i r

-) i >i i i OF i '

i i i /. 4 o

y_ ,\ i i ! i 1/ : i i i ' i i i - ' i 'Suy c- j\ j i ! l / ~ e i i i  ! . < L i

U ' '

<y \ I ! i ! / ' ! ' i '

w b i i i i /- i i ' i C g, ij i

i i i i/, i e i i

i i

' ! i i

:'gN 6

!! ! r/ i ! : u

@/ '

o m ! i 1\ i i i ! i i I

@,t -

T/ ' ' i i ! i '

o i i\ i ! .j f//

6 4, i

!\ l i i i i i  ! -

O Oe 1i\

i . ) i 1 ! i r '

i i l i i '

8 i i

- 2 M

y- i i \ i /i i i i 6 '

t i i

8 s t 1 1/i ! i i i : j i t i i e ' t I Z-

' ' ' i r

i \! ./ _! I i i i i i i i i 4

\i / j i j . . e i i i , i ,

i! 2 j,-

i

! ! ( fi j i i i , i i .  ! l l

i ' ' ' *  ! y g, , i 1/! I i i i i i f I

' i * ' . I i i i g 4- t i M! i i i i i i i i i i ! i ' i + 1 I a a i A l j i i i ,  ! ' t '

i >

O

$0 i / \i l l t i  ! i i ! i i i e i i 4 V_ i l [ t ! j j i ! i i i . i i i ' e i W IE N  ! i /l \i i ! ! ! ! '

i ! I ' ' ' '

MN i II i\ i ! i i i i ; i i i 4 ' '

' i g

3 ' ' l ' ! ' ' i i . /! !\i ! i i *  ! g "n

1 i ! / i i \1 i i t i i i i i i i i i i i !QM N i ;j i , i! i ! . , , ! i i i . . 4 i iW y I !/ i l Q\ ! I i , ' ! ! ' ' t N ' i '

i

  • i i '

! {/ i i 4\i ! I i 4 t

o i 6/ i ! Mt i i i ! ! I i

  • N i 5/ l1 iY7 \ j i , i i i i 6- , i i ' i e

i f i i i\ i i i s i i e i i 1 f i 1 l ki i ! i i e i l i f f ' 6 1

% / i i i \i i i t ' i i i 1 '

N lf i j ! i\ i ) i i i e i t . 1 i 5 i ! i

' i a e i

, if, i < i iN I i j . i i a i N < i i i . -

" if ! I. ~l I i i , X! ,

i #

< l I i f l i \i 1 l t I ! I

$ ~j f l i j ! i \ i e i i 4 i i i i l!  ! i i i ! i i \i i i i ! i > i ' '

g ([fi i i i i i i \' i i i i i i i 4g i i i i i ! i i \ i  ! i i ' . '

I i i  !

! 14  ! !\ f  ! ! I ' t

! i i i i I j i i !M ! I i i i i + 4 3 ! t t I ! a i 5 i IN i I

  • I ! i '

.__.i. - i - ! i j 6 i i i i i iN '  !-o m,,b N b h k N k---~~~skNSbbeb.88.k99

~~-~~ . . s3 "1 S W 3AOGY 133J NI NOl1YA373

CHAPTER 11 PLANT OPERATING DATA UNIT INFORMATION McGuire Nuclear Station has two independent generating units, each rated at 1180 MW electrical and powered by a pressurized water reactor for a total net electrical capacity of 2360 MW electrical. Units I and 2 are presently sched-uled for commercial operation in 1980 and 1982, respectively.

INTAKE CONFIGURATION The condenser cooling water (CCW) system for McGuire Nuclear Station includes two intake structures (Fig. 2-1). The upper intake, which contains four CCW pumps per unit, is located in a man-made embayment approximately 732 m (800 yd) east of Cowans Ford Dam and withdraws water between 219 m (715 ft) and 227.1 m (7h5 ft) msl. The low level intake is located near the base of the dam and draws water between elevations 199.3 m (654 f t) and 204.2 m (670 f t) mst, approximately 27.4 m (90 ft) below the full pond lake surface. This low level structure was built during the construction of Cowans Ford Dam in the early 1960's to serve a future thermal power generating station. Water may be pumped at a maximum rate of 57 m'/s (2000 cfs) from the low level intake through three pumps per unit to the forebay of the upper intake where it mixes with upper intake water. The mixture is then pumped into the CCW system at flow rates up to a maximun of 128 m8 /s (6526 cfs) (Table 2-1).

The quantities and sources of cooling water used are determined by the temper-ature of the surface inlet water and the need to control the discharge temper-ature. From late fall to early spring, surface waters will supply the entire condenser cooling water demand, and only two upper intake CCW pumps will be 8_

C O

e 9

90 r-

' U o

d s

CJ

.- g a

\

D

,-~,.

/ ,r a i

/ ,

V , "# m

  • I N
a. s 5

3 Os) i, cn

e

k h

[. k, N

\ *.

K.

,'.\

+*

Oas

'.e I

[ I. ~l s

'[V i

' i) 4' ', ,Y c

i

/

i

% ,. .a ' i. ngs 4

/ .,4,~

ss s

/ n. l

.v%-

--i Q.

, i

/  %,

,u x.= 1, (, i, u

i 1 4 - spyIu ,w t _

a

4

. ,# e

'-A ,ff" r. } - .

-*N ' i ').,x. f' fR A

, '; ( x.

+ N%c, tf s,c

,~ e g "My '\ q

  • u-:ry, - ---..

< P-

-ly sqq. . n,, _. r- 2; x\,R;Qc:;y .x s e .  ;'

~

ae g.

L '

m;y; .y.l  ;- z - y r;/ -y 6

,*9s ) .,

M k ,1

,f 4

lt' i

/ *Q g '. , p f

kj 7

L o, -ib pJ v. ,

/ -

ll

.w t ,

> c ~V

? -- ~~

r

?

[5 T

~ 1 a

  • I' f*

I

w 7-e-

a s 1,:: j is

~

'i .  :

[~ac4
, ,
s. i

= _ a n

$ .p

  • C' a

</ ^yy .

r

,v $ ^ ,

.b l ,

a, m

w g

1 .:

, 8.- f

> =

f p

~

s

' N is ip - ,

y

(:

- g ., p'

'x k'fI $f $k\ , , w

-/

[s 'j, \'l,/, \u

  • db g ~.

,. . ,,. N v s

\ " dEbe

'/

[

=mW,- ~gw i  :.

  1. 3:N- s, s m;, y i ,
  • j' -

w.-

) % -* P fUMJdmm h o / l 8

operated per unit. As inlet temperatures increase, first three, then all feur pumps will be employed for each unit. During the warmest months, cooler hypolimnetic water will be drawn through the low level intake at a rate nec-essary to maintain the sverage monthly discharge temperature specified in the McGuire NPDES permit.

OlSCHARGE CONFIGURATION Condenser cooling water from McGuire Nuclear Station is discharged to Lake Norman through a 1 km (0.6 mile) long discharge canal (Fig. 2-1). This canal has an average depth of 12.2 m (40 ft) when Lake Norman is at full pool.

Heated effluent from the canal mixes initially with surface waters of the main lake before stabilizing vertically and spreading over the lake surface, ulti-mately dissipating its heat to the atmosphere.

Condenser cooling water temperature increase (AT) is inversely proportional to the CCW flow. During the winter when surface inlet temperatures are the coolest, CCW aT's reach their maximum of 14.2*C (25.5 F). Condenser cooling water AT's decline to 8.9 C (16.0*F) in the summer when the warmest inlet tem-peratures occur (Table 2-1) . Note that these CCW aT's reflect McGuire operat-ing at 100% load.

I

F 4

j TABLE 2-1  ;

r McGuire Nuclear Station CCW Flow Rates ,

i  ;

i

?

CCW Flow Rate CCW Temperature f

, Probable Number per Unit increase Season of Pumos in use m /s (cfs) 3

  • C ('F) 4 a

Winter 2 40 (1425) 14.2 (25.5)  ;

Spring, Fall 3 , 55 (1931) 10.4 (18.8)

Summer 4 64 (2263) 8.9 (16.0)  ;

i i

4 I

i I

l

?

0 i

o i

i

?

-11 >:

. CHAPTER lli PREDICTIVE MODELING HYDROTHERMAL PHYSICAL MODEL in 1971 Duke Power Company commissioned the Alden Research Laboratories to build a physical model of Lake Norman at their facilities in Holden, Massa-chusetts. The main purpose of this model was to study the hydrodynamics of Lake Norman and provide insight to the relationships between the hydraulics and heat transfer aspects of the lake.

Physical Model Description .

The Lake Norman physical model was constructed Indoors and covered an area 85 feet wide by 160 feet long. The lake area modeled extended from just below Lookout Shoals Dam to Cowans Ford Dem. Significant features of the Lake Nor-man generating complex included in the physical model were: 1) the Cowans Ford Hydroelectric Station submerged weir; 2) the low level and upper level intakes for McGuire Nuclear Station; and 3) the intake cove skimmer wall and discharge canal for Marshall Steam Station. Condenser cooling water flow rates and corresponding CCW LT's were modeled for each plant as were the Look-out Shoals and Cowans Ford Hydro flow rates. A layout of the model is shown in Figure 3-1.

Scaling ratios for the model were based on Froude number scaling, which stip-ulate that the ratio of inertia to gravity forces be identical in both the model and prototype. Effects of neglecting viscous forces were minimized by choosing a scaling factor which assured fully turbulent model flow regimes as determined by Reynolds number. These basic scaling criteria, in conjunction with model size and testing considerations, resulted in a distorted model with scaling ratios as presented in Table 3-1.

g, r-h '

3 I '&

"g

, 3 n

I _3el 3 l

' .. l.i.

F 7

'9 Q' ,.g.'

k

.# [] r ,

. &.:.. !:9 J 1

a h;

,,(

hf; N

y , e f'g_

.x . , y

.. g* . ,

[~r, e :.a, e,x.3g- .. .

a .

., i

.s .. ..

j'Q': . )[T F t;^ f.

> ^[4l c l " - u ._ e Q';',* O a /g

'p p -

j n s mP* u ,

' E

'I ..

]

f hD'cf* - -T ,

I

- ~ :.  %%l ~  :

9=l I

u , dsy*~<

gf '.Q. h.

t ,.

==.

f M. } .;; i t 4' f  ;

g u.

8. +,

l I

L ' ~.._J I,

4 4

TABLE 3-1 Lake Norman Physical Model Scaling Ratios Model to-

  • Parameter Prototyoe Ratio i Horizontal Distance 1/600 .

Vertical Distance 1/60 ,

Ve loci ty 1/7.74 i

Time 1/77.74 Flow Rate 1/272,900

  • Temperature 1/1 t >

! t i

i l

i 4~

i l

r I-si

A total of 600 thermistors were used to gather water surface and profile tem-perature data throughout the model. Data were collected every 30 seconds model time, which corresponded to 38 minutes prototype time. Intake and dis-charge temperatures at Marshall and McGuire were among the points monitored.

Figure 3-2 shows the thermistor locations in the vicinity of McGuire.

A validation program was conducted with the model to assure that it accurate-ly simulated observed prototype behavior. This was accomplished by using sur-face temperature data from 20 locations throughout Lake Norman with an Inten-sive study in the vicinity of the Marshall Steam Station discharge canal.

Analysis of the model validation results indicated to Alden and Duke Power Company that the rodel was performing satisfactorily as designed, and could be used to model lake temperatures and flow patterns resulting from the opera-tion of McGuire Nuclear Station. A similar viewpoint was expressed by the U.S.

Atomic Energy Commission (now Nuclear Regulatory Commission) (Ref. 2). Details of the model and its validation program were presented by Alden Research Labo-ratories (Ref. 3).

Physical Model Results One of the main objectives of the model testing program was to determine the effectiveness of Ramsey Creek Cove (Fig. 3-1) as a heat dissipation region for the McGuire effluent. Results indicated that Ramsey Creek Cove would be effective. Modeled surface temperatures in the cove exceeded modeled back-ground temperatures in the lake indicating that McGuire's heated effluent was being transported by thermal density currents throughout Ramsey Creek Cove.

Cye tracer injected into the modeled heated discharge confirmed these findings.

The physical model was also used to evaluate the potential for recirculation between the McGuire intake and discharge locations. Based on model simula-tions of various plant operating modes and seasonal conditions, the conclu-sion was that direct recirculation would be negligible. These tests also pro-vided information concerning isotherm shape and distribution for both Marshall and McGuire. Isotherm patterns predicted by the physical model were used in i

conjunction with mathematical model predictions to obtain affected shoreline information and determine isotherm placement.

l I ' .

,. w

.; '2

.s .

-f ap 8

(

' /

. ..g ,

F, r .'..$.Q', .

p r . .$.

.!KI.' *

,J

- , .9 4 15 4 .. . .. .

,j

~

, j , .i .. , o 5,000 10,000 15,000 sr  %  ?

W ' D SCALE-FEE T

~

p .

2 ".% ./ i

, ,s a "%. N

-* g $

' 8. 'i h:r ' ) p -#

,, M AIN COVE

,, 9 i f! % ENTRANCE a

s'"

u r$. : L' , .,

, a ,. .

h,,,

s. , ')

l l

. ' ' .y,. . .

'Y

= at l ,# ',' -

ps e go' ~,,

,k h?'

~

'.'  % 9' l, - i * *+

.y , f,j,, * *' ,

n -5 ,,o* p -r..,,

'> '-5  ;'+ ' ' ; k,p g, is f

p ..

,,h*

- ,. $' .* G *.,

  • 1,1; f), .

b A ,s s *p qo * .$ g , s,.

"Q ** '

',,., ,e  ? .s* c * .,

, Ns*

p -

.a

.I

), .e, .M , ,o*g v6 a j, . p. #. , ' sf st

, se '? ? . ,> Mr ,9 r Lt,> .r a- e+

.s .. .

f5, 5

~

W #

T.,( \i Y

W *, 4

s. .

--g f.

o 't

_t p

e O ' E' , .* ,f'? A

, . g n

}

l

.$.,' *N f

[ -

'4

,' MlXING ZONE BOUNDARY l f . J, )

'y (  : ,-

I

!)L bu *

.u Figure 3-2 Location of Thermistors-Physical Model McGuire Vicinity a

MATHEMATICAL MODEL in addition to the Alden hydrothermal physical model, Lake Norman water tem-peratures were simulated using the cooling pond mathematical model developed in 1973 at Massachusetts institute of Technology by Patrick J. Ryan and Donald R. F. Harleman (Ref. 4) . Development of this model was partially funded by Duke Power Company, and was specifically adapted to Lake Norman by Ryan and Harleman.

Mathemetical Model Descriotion The two-dimensional Ryan and Harleman cooling model is an extension of the Huber and Harleman one-dimensional, " deep reservoir" model (Ref. 5). The model allows the lake surface temperature to vary horizontally while simulat-ing stratification of a deep reservoir. Factors such as discharge canals, discharge entrance mixing, density currents, internal diking, and locations of Intake and discharge structures are incorporated in the model. In the adaptation of the model to Lake Norman, the effects of McGuire Nuclear Sta-tion, Marshall Steam Station, Cowans Ford Hydroelectric Station and inficws from Lookout Shoals were incorporated.

Duke used the model to simulate water temperatures which would have occurred in Lake Norman if Marshall and McGuire had operated during the 20 year period, 1951-1970. The major inputs for the 20 year simulation were as follows:

1. Daily average dry bulb and dew point temperatures, wind speed (Charlotte Airport) and solar . radiation (Greensboro-High Point Air-port).
2. Marshall and McGuire CCW flow rates and CCW AT's (heat rejected to O

the condenser cooling water) were varied daily based on intake tem-perature as will be done in actual operation.

3 Lake Norman surface elevations were varied monthly using a simulated worst year developed by taking the lowest monthly averaged lake level l which actually occurred, for each month, from the period 1963-1974 (the lake completed filling in April, 196h) (see Table 3-2).

l l

i TABLE 3-2 EXTREME MONTHLY AVERAGE LAKE ELEVATIONS AND CAPACITY FACTORS Extreme Lake Norm Extreme Capacity Factors (%)

Surface Elevation Marshall McGuire (feet, mean sea level) Steam Station Nuclear Sta.

January 750.0 75 89 Feb rua ry 750.0 72 89 March 752.5 57 87 April 752.5 57 86 May 755.0 64 86 June 755.0 65 85 July 752.5 74 89 August 755.0 82 89 September 752.5 82 87 october 747.5 80 81 November 747.5 79 89 December 750.0 66 89

' Lowest monthly average lake level 1963-1974 (Full Pond 760')

Highest monthly average capacity factors proj ected for each month for 1980-1992 period i

l

4. Marshall and McGuire capacity factors varied monthly using a simu-lated worst case year for each plant developed by taking the high-est monthly averaged capacity factor which is predicted to occur, for each month, from the period 1980-1992 (period when both plants were to be in full operation; see Table 3-2). capacity factors are defined as energy produced relative to energy production capability at 100% load. It should be noted that capacity factors used in this computer simulation reflected the best estimate for meeting capacity requirements in the 1980's and early 1990's. These estimates were based on the optimized economical dispatch of generation capability to meet projected loads and included scheduled and unscheduled unit outaqes. By using the composite worst operating year, scheduled unit outages for McGuire are not included, which has added to the con- '

servativeness of this worst case composite capacity favor year.

i 5 River inflows and temperatures were varied monthly. l i

Mathematical Model Results The Ryan and Harleman mathematical model 20 year simulation predicted dis-charge temperatures for both McGuire Nuclear Station and Marshall Steam Sta-tion. These monthly average discharge temperatures are presented in Tables 3-3 and 3-4. t McGuire is predicted to have a monthly average discharge temperature of 35 C (95*F) for the summer months of July and August. On three occasions during the 20 years simulated (August of 1952, 1953 and 1954) the model results in-l L - dicated that the McGuire monthly average discharge temperature would reach 35.5*c (96*F) (Table 3-3) . These model simulations assumed that McGuire judiciously utilized the cooler hypolimnetic lake water to maintain a 35*C j

(95*F) discharge temperature. During the remaining 17 years, McGuire's dis-charge temperature, as predicted by the model, could have been maintained be-low 35'C (95*F). However, during extremely warm summers, utilization of the low level intake earlier in the summer to achieve discharge- temperatures less than 35*C (95*F) would result in the late summer peak temperatures exceeding 35*C (95'F) .

TABLE 3-3 PREDICTED McGUIRE HONTilLY AVERAGE DIScilARGE TEMPERATURES Simulated Year J F M A H J J A S 0 N D 1951 71 73 75 77 84 90 95 95 94 86 79 76 1952 75 75 75 78 84 93 95 96 92 83 78 75 1953 74 76 75 79 87 95 95 96 93 85 79 75 1954 73 74 75 81 85 93 95 96 94 86 76 72 1955 72 72 75 80 87 90 95 95 92 83 77 73 1956 68 73 74 76 84 92 95 95 91 81 78 75 1957 74 76 74 78 89 93 95 94 92 80 77 75 1958 69 68 73 76 82 92 95 95 92 83 79 73 1959 71 75 75 79 87 93 95 95 92 86 78 75 1960 73 74 71 78 83 93 95 95 92 85 78 74 1961 72 72 75 75 82 90 95 94 92 85 82 75 1962 70 74 74 78 87 94 95 95 92 84 77 73 0 1963 71 70 74 81 86 92 95 95 92 85 80 72

? 1964 70 73 74 77 83 92 95 95 92 81 79 75 1965 74 74 74 79 88 93 95 95 93 83 78 75 1966 72 71 73 76 83 91 95 95 92 83 78 75 1967 72 73 74 81 82 88 95 95 91 83 76 76 1968 69 71 74 79 82 89 95 95 92 85 77 74 1969 70 72 73 78 83 93 95 95 91 84 76 72 1970 68 71 75 78 75 92 94 93 93 84 78 75 Assumptions: Daily averaged meteorology; variable pump operation - Marshall & McGuire (See Text) liighest monthly capacity factors (1980-1992) for Marshall & McGuire (See Table 5.1.1-1)

Lowest monthly lake levels (1963-1974) (See Table 5.1.1-l)

TABLE 3-4 PREDICTED HARSilALL N0f3TilLY AVERAGE DISCilARGE TEMPERATURE Simulated Year J F M A H J J A S o N D 1951 68 67 67 72 76 79 85 86 93 92 80 73 1952 72 71 68 71 76 78 89 96 91 84 80 71 1953 71 71 69 71 77 80 91 96 92 85 81 71 1954 70 70 68 71 76 79 89 96 93 85 79 66 1955 68 67 69 73 77 79 86 92 90 84 80 67 1956 65 68 70 73 77 79 87 94 90 82 79 70 1957 70 72 68 73 77 81 88 92 90 81 79 69 1958 66 64 64 72 77 79 86 94 91 83 79 68 1959 67 70 69 74 76 81 87 93 91 85 80 69 1960 70 68 63 70 76 77 87 92 90 85 79 70 i

1961 68 66 69 71 76 78 84 U 91 90 85 81 72

' 1962 66 68 66 69 76 78 86 91 90 85 79 66 1963 66 66 67 71 77 78 85 91 90 85 81 68 1964 66 69 69 72 75 79 87 91 90 81 79 71 1965 70 68 66 71 77 78 86 91 91 83 79 71 1966 69 66 66 69 75 77 84 91 89 83 80 70 1967 68 68 65 69 75 77 84 89 88 83 79 70 1968 66 66 65 70 75 77 84 91 90 85 79 68 1969 67 67 65 70 76 77 87 92 90 84 78 66 1970 64 66 65 69 75 77 84 88 89 84 79 72 Assumptions: Daily averaged meteorology; variable pump operation - Marshall & McGuire (See Text) liighest nonthly capacity f actors (1980-1992) for Marshall & McGuire Lowest monthly lake levels (1963-1974)

"f the 20 years simulated, the period 1952-1954 resulted in the highest pre-dicted discharge temperatures for both McGuire and Marshall. From these years, an extreme winter, spring, and summer month were chosen based on predicted plume size and discharge temperatures. The operating conditions for these extreme cases with predicted monthly average intake, discharge and background temperatures for McGuire and Marshall are presented in Table 3-5 Resulting monthly average thermal plume acreages, affected shorelines and respective per-centages of the total Lake Norman surface area and shoreline for both McGuire and Marshall are also given in Table 3-5 Illustrations of the extreme winter, spring, and summer 32.2*C (90*F) and 2.8"c (5*F) above background temperature isotherms for both McGuire and Marshall are presented in Figures 3-3, 3-4, and 3-5, respectively. The largest 2.8*c (5 F) excess isotherm area for McGuire was prsuicted for the extreme winter month of December 1952, to encompass 1140 ha (2800 ac), or 11% of the Lake Norman surface area. For the extreme spring and summer months (April and August 1953), 810 ha (2000 ac) and 690 ha (1700 ac),

respectively, were predicted to exceed the 2.8"C (5 F) isotherm. This repre-sents 7% and 6%, respectively, of lake surface area. The 32.2 c (90 F) isotherm for McGuire predicted for the extreme summer month of August 1953 encompassed 530 ha (1300 ac), or L% of the lake surface area.

The percentage of shallow areas in Lake Norman affected by elevated tempera-tures resulting from McGuire and Marshall operation can be estimated by assum-ing an equivalence to the percentage of shoreline affected. Approximately 37 km (23 miles), or 4%, of the Lake Norman shoreline was predicted to be affect ed by the McGuire 2.8*C (5*F) excess isotherm for the extreme winter condition.

Extreme spring and summer 2.8*C (5*F) excess isotherms resulting from McGuire';

operation were predicted to af fect 26 km (16 miles) and 22 km (14 miles), i respectively, or approximately 3% of the shoreline. The extreme summer 32.2*C  !

(90 F) isotherm is projected to encompass 18 km (11 miles), or 2% of the shore-line, t

Since Lake Norman will receive the cooling water discharge from both McGuire Nuclear Station and Marshall Steam Station, the effect of McGuire must be eval-uated in the context of Marshall's. operation. For the extreme winter, l

e l'

r

.17

Table 3-5 McGuire and Marshall Monthly Average Thermal Data-Predicted '

McGUIRE NUCLEAR STATION MAR $ MALL STEAM STAfl0N Entre *e Condenser g i Intake Olscharge Condenser I intake Olscharge Rackground Season Flow Temperature Temperature ' Flow femperature Temperature Temperature m3/s (qq c < r) 3 c ( r) c t r> m3/s (cfs) c < ri s c < fi c(r) c ( r) u nter Osc. 1952 92(3240) II.0(20) 89 13.0(55) 24.0(75) 37(1300) 10.5(19) 66 II.0(52) 21.5(79) 12.0(54)

Spring APR. l953 194(4040) 8.5(15) 86 17.5(64) 26.0(64) 37(1300) 9.0(t6) 57 *2.5(55) 21.5(71) 19.0(66)

Su w t AUG. 1953 128(4530) 8.0(14) 89 27.5(82) 35.5(96) 65(2290) 8.0(14) 82 27.5(82) 35.5(96) 29.0(84)  ;

90*F (32.2'C) IS0 THERM - 5*F (2.8'C) ABOVE BACFGROUND TEMP (RATUR( ISOTHERM McGUIRE NUCLEAR STATION MARSHALL $ TEAM $7Afl0N TOTAL OF 90TM PtAnT5 McGUIRE NUCLEAR STATION MAR $ MALL STEAM $TAfl04 TOTAL Or 90fM Ft A'ITS Estreme ,,,, Surface % LakeiWore- t. Lake 3 $vrf aci4 Lake.1% ore- ILake)!vrface 'il abe ? Shore- Make3 Surface 'dekei Shore- Rake i SurfacIlake Z Ehore- R ab eJ ive fec.e Rake / Shore. 71ake J Season Area Surface line 5hore Area surf ac< line Shore Area Shere line Shore Area Lurf ace line Shore Area Surface line- Shore Area ivrface line'  % ore M.a 1 E"! I M I M I M I l!.!! } He } g } M } g!i! } Ha } Fm }.

Wlater 0(C.1952 0 0 0 0 0 0 0 0 0 0 0 0 1840 II 37 4 360 5 16 2 1500 14 53 6 Spring AP4.1953 0 0 0 0 0 0 0 0 0 0 0 0 880 7 26 3 40 1 3 I 850 8 29 - 3

$mr Aug.1953 530 4 18 2 200 2 8 1 730 6 26 3 690 6 22 3 280 2 13 1 970 8 '35 4 l

' Sased on the worst projected capacity factor for the referenced month f rom the period 1980 through 1992 (period when both pleets are la full operation) 2 Based on following late elevations? ptC. 1952 ft. 750' mst (10.500 Ha); APR. 1953 El. 752.5' est (ll.170 Ha); AUG.1953 fl. 755' =st (ll.780 Ma)

I sesed on total shoreline mileage of 840 Km 3 -y , s.,

, . w e . - m.-- - -

+w-- , , , 5u__,.,, _m_ _ _ _ _ ____m_. m_____m._ _ . _ , . _ __.u_

N >\

d\

- n 6 A- 3 i

s e 3

N l

(

u

XsN' p fj S

4 \ ({

w. ,. .

~g .

y

.v..a . . , .

,ma==q Jk gs, 3.,sy;y.. y --

, \.

.) P

e. .

/.. . , .

S E +

q . .

8..,~ 1 pS

.s w=..--. .we

.,e' $

L

' ' siae *aec J'h. 1, .

1c. :; .=:.,, 2'

' - ' ~

t vic,,.., . . . . _ . - .

I

% -.,u,.gya u  ::::'r :A r.~

[

s Wil h**fhR-- -- - - - j ., rigure 3-3 McGuire and Marsna11 I

  • A m ~g b neNa'N1$e"s$ItrN

k, winter

)Dl I JbJ]D Ju o .d. m

N fA

.- , m

, _ R

  • 5 ob.

9 .

w. .

)

x ,

L 9A /

1 x- -

/

'N *fV N

h r N I M e...'[ .:=.. ,[ ({

~~"" '

q

) [ e,

{

/ C g.

i Y (h,\fe~.e 'l0*a" )

a;

$N

~

7..

" ~

. .','.Iufb,- ,
  • N

% -3' r%ohee

~. =:.=u J -

od .$'

1

's4 [.,

/ . $.. ... e IQ _

"~'~ - :.;=;:=..; - \

f d%d". ,

,. .n..,. . . . - ..

wcount wcLEAa 5-* I' l $'I f I N ' '

station D

i* ' nan =b-~~.. ,,. . - l Figure 3 4 McGuire and Marshall Predicted Monthly Average A O g"4 Thermal Plumes 4xtrene Spring Wd W ,L .. 4

N .

s k .k

=,.re l

1

@ m .i N

k j N.

f f%

x a /

\ (

Ne h (

'N.

an . _._ _

-gg (p

.s 9 k5 \

j

( ic.0;';;*kg

'~*'

V >

[ t>}

ti ,, V g y;z-.. 9 --

.:.,~..

,./ q -.a. r n,- ,

I' Q

w m.. . ,

a re .,

) L., x .

1

(*.

.nl Q

;g :f **' na

'{,,,,,, y', " * *"

  • qiy '".O' h ps g~

=A"a t, i eV -,:...

%.,,, hes.o t.*>

asyc t,em p

i. sIa io 7 h f4 '.;,9

s

('l)

  • * '--- Figure 3-5 McGuire and Marshall 5, Predicted "onthly Average l

! $ g Q "

'g- Thermal Plumes-Extreme

& . , a .

a

1500 ha (3700 ac), representing 14% of the lake surface area is predicted to exceed background by 2.8'C (5'F) as a result of the operation of both McGuire and Marshall. Approximately 53 km (33 miles), or 6%, of the lake shoreline will be affected. Pr .ted extreme summer conditions will result in 730 ha (1800 ac), or 6%, of the '-ke area being affected by surface temperatures in excess of 32.2*C (90*F),with 26 km (16 miles), or 3%, of the lake shoreline affected (See ~ 3-5 footnotes for basis of percentages).

I I

l t

l 1

i I

I e

i

CHAPTER IV TEMPERATURE AND WATER QUALITY TEMPERATURE DATA Temperature and water quality were monitored on Lake Normr.n at monthly inter-vals from June 1978 through May 1979 (Table 4-1 anc Figure 4-1). Sampling was conducted,in accordance with procedures indicated in Reference 6.

Warmest surface temperatures in the main channel were measuied during July (29.l*C at Location 1.0), in the Ramsey Creek arm during Augest (29.2*C at Location 6.0), and in the Davidson Creek arm during August (23.9 C at Loca-tion 9.5) (Figs. 4-2 through 7 and Appendix Table 1). Coolest surface temp-l eratures were measured during February and ranged between 4.0 and 5.0*C.

Thermal stratification began in Lake Norman in April with a thermocline form-ing at about 15 m (Fig. 4-8). The thermocline was located at a more shallow depth in May. From June through November, it was located progressively deep-er (Figs. 4-9 and 10). The largest observed vertical thermal gradient occur-red in August. Fall overturn occurred during November and Lake Norman was isothermal from December through March (Figs. 4-8 and 11).

Surface temperatures in the Marshall discharge cove between June and Septem-ber were similar to surface temperatures during the same period at other lake locations (Figs. 4-2, 5, and 7). This was probably due to the utilization of hypolimnetic condenser cooling water (CCW) at Marshall. From October through May, the CCW discharge from Marshall was warmer than surface tempera-tures recorded at other locations on the lake (Figs. 4-3 through 7). The Marshall thermal plume extended over the largest surface area of Lake Norman between November and March. Most of the surface temperature decay during this period occurred between Locations 34.0 and 15.0.

l l

l l d

O h

e.

m .

O I X C.

>3

- C. I CC -6

.-. c0 L y

>= -l ac * ' Q *: -

MC G.- f 97 C 2 @g O  :

C = W C. X X "

C +d E

= CC C %, e C O a c *' =U D

  • C4  :

= .O *:: .- .9J C.} C2 l

0 lX X X X C. X X =

uO-@

0V C. 7 CO CO l

>-l 1 C D

7 E t=.

O

.  ?

c3m.

omJ We -

  • J >A W D. X C. X X X X O ed e e C k .

T  : y *a.

3 M l === = Q ===

- .a 3-L @~ h

<. sel @-

>- 6 L-  :

< C m. C: X C. E i== c C C C3  % C O 6 - it a6 ?t is J W i e CC l  ; >= C CO 2

= D C :l -l,

- .-: C. =3 l L* J x x x C. c= W x x W -l < @

gn, l I -

N c: .

u e , =

C w l  ! -=

Q C C s 7 C.l CO LJ X X X = X X X X C A W = Wl C i.t1 C-C Q j e- -

a gl

. I i l

  • J*

o3 y

  • -. Li *.J cJ Q O 0 W U C C C

4l V f X X X W

. LJ C 7

=<a E

O l' f. - C *':" 7 M C _

O-

C U =d a W U-

% C C D A

. .~, TC X X X X C. X X X  : *: me O .J' WCll C '-~,l C - O C e vl' 4

- = o=

U U e U .-

C C l

' I

- C J b cJ C% X 3' X X O O C C. CQ N. LJ M L C

6. M LJ A v Z *J C g

C - U CC e T.J a

~ , - C C , LJ CC C ti- C. .C X C. C3 W X X X X 14 18 tt CC N v U - W CC e C -

J O

= N. C3 >- X X C. W X X X X c4 e w  ! M = - x l -:  :-

>= - *J U . h: *J C '

- O G .: C 3 C. X X X X C. CC .J E C';* - N 7 y - O C

  • C4 g C *J N L.,, U ed 7 : -

O e m O7 >

Q Q *J C-

.J .J a u Q .J J 1 Q OVU C 6 L *:  :

,0 .: O7 2" h Q h OC Q m .Oe L a L U-6

,  ; }

o -

L 2  :

=J ' s.L 7 'J C 'o Od

>.i l r -

a L' l s

. J  : - > ed  : -

CG >

-  : .:4  : E C .;J C C E . - = 6 i == m  : C .CJ Q a=== m  : -d GJ - C

  • J m ** .,,4 .:  % *J d 2 C. - E l

- 1" U .- - > y U ..D. - X y 6 - --

l e 6 . .= m .- 6 . .: m .c = b l -

  • J

.O

=

J U

rd

~,

C.

~

2.

O sd 2

ed O

2 C

s.*

=

".C a L

U A C CL et n to 4 "J .* Z Q O ^3 C,' ***

U O M p= ) '! O C. N "3 C3 L. C. C N 3 X C C-r l

e a

M

(

=r =O -

o h n

'g Q (

s ..

A .

>: -y N

N. ,_

'N <

(

\. +

s

. _ . . _ ,# ' 9 a,-

4Y A,

o,~.. a d

e- -

( .,.

C9A Ig.. -

\ _ ,.

.,/ -

c s.- ,

% .N 9 ,

Q:

%+. #M .

y

. I~ -

7. c ,c:~

~ ~

t.>

~

,, JD ..

{

I

= .=. 3 ,,

settet s %eense n I

_ , =

$1NUo"catiens

'i 15.9 l60.0 =

'1o.0

.c

- a, .

50.0 %o l 14.0 5 od 13.0 i .

34.0 3 2 (

11.0 i R*

8.0 m -e i

ei -

7.5 s. E' .

, 2.0 32 l.2 sM ,

1.0 c.m 16.0 S-

! 60.0 15.9 I$

2e I

15.0 5*

50.0 o%

14.0 5e

,'13.0 a '4 ~~

34.0 $ es c -

..l.0 m oo

" ~% '

8.0

~ 7.5 0%

o-

., 0

u. - ,

~

1.2 -e CJ >

1.0 ea  :

'16.0 5"

.c s.

U C 15.9 es 60.0 3" >

15.0 =2 50.0 .

14.0 $ ?; '

13.0 $2

{34.0b

,11.0 8 a% l

%~ ,

8.0 "4 7.5  %-  !

3

~

2.0 l 1.2 1 ' *a 1.0 ~, i 25

'16.0 o-4 m +

15.9 2~

60.0 *5 g  ;

15.0 83 . .

l 50.0 "E3 14.0 bs3 13.0  %=5 3

',,34.0 E

! = ca e -

II.nv '"3 y **= 4 8.0 4*

% o. % '=n l

i 9.3e 1 3@ c

' " ~

  • l 2.0 l 1.2 m l f1.0 4 i l I

'16.0 e i i l  %

o o = o c., o o o i m u ~ ~ ~

2u (3.) aansvaadmag aatts acep ng

  • *\

15.9 60.0 15.0 50.0 . - [

14.0 Rg '

13.0 x9% ,

>,-5 I 34.0 % m s. m 11o0 C M == j 8.0 4 E" l

,m-7.5 -  !

.c 2 2.0 i l.2 F T' 1.0 l 16.0 Ca e

NO 15.9 m -

60.0 ~%

15.0 5-50.0 S.E  :

14.0 US

'13.0 s 5 -

.o a m-

'34.0 11.0 55s 4 v -o

8.0 o a-t c e 7.5 a s.

eo f

2.0 - c.

a  ;

i 1.2 -=

o 1.0 eo 16.0 .e -s 1

.c = ,

uc  !

15.9 ~

c:E 60.0 "*

a 15.0 "

50.0 >

14.0 $~9 o - -

r 13.0 s. zo 34.0 3 m%

11.0 *u %"

i 8.0 x$ a- "I  !

7.5 m-

+

I

  • 2.0 -

l.2 Pc

--a 1.0 eM Q au c h

-16.0 s. c a

==c 3

~o-15.9 2*-

' 60.0 y53 omG 15.0 - - s.

50.0 m

- 14.0 s 5** i 13.0 y. wg-= ea 34.0 a eo e o.

o "

11.0 oo maw u-o i 8.0

% e L. u T 7.5 moe '

2.0 1.2 c, 1.0 4 ,

l i i r , , ,16.0 ,o E N FJ $ c m o ,h l m

(3.) aansvaadma; asses acep ns t 8

32-

~

i 2

15.9  !

. 60.0 a '-

15.0 8*

50.0 L o.

214.0 *S t 13.0 .S.o 34.0 x 5 11.0 2 c; .

8.0 9; &  ;

I

', 7.5 ~%  !

2.C D5" 1.2 .  ;

l 1.0 f,'"

o- .

16.0 o-

s. 4 t

1 e. 9 55s.  !

60.0 D2 '

15.0 3a 50.0 .5

  • t 14.0 u 13.0 .% i 34.0 ;

e .

11.0 s. c.

oC

-u 8.0 * %3 uC 7.5 o-

! 2.0 ~

l 1.2  %$

ee 1.0 e-16.0 .2 s.

ua a.

15.9 5 E-k 60.0 3a 15.0 c .h I

50.0 25 14.0 E:E

  • a

'13.0 34.0 a

5s. 3* r 3u ,I . V 4 eJ m. t

~

8.0 u 7.5 o 2.0 G%

1.2 +

1.0 oli l'

'16.0 5 .*

am e-  ;

t15.9 5=

60.0 $%

ou .

4 15.0 e=a 50.0 s. 8 %  ;

14.0 3*e .

t 13.0 D m 3 8 "- -

I 34.0 m am-u-m 11.0 .s. c = .=

a w s. e. m 8,.0 u.

s e ,.s i.5 m-= .

, 2.0 I

l 1.2 4 '

1.0 4 16.0 '

a e t i i 1

=

e e e m e e e e, m ~ ~ - - -

6 (3.) aan;eaadma; aa;em acep ns l

o N

en

~

6.0 s i 5.0 e e 4.5 9 2 ,

4.0 s s '

3.0 E E 2.0, =

m o

o 5-C -

a 6.0 s e c

5.0 o '

o 4.5 $ a -

4.0 ov a e

  • 3.0 o 2.0 C e

u o

E.

6.0 s m 5.0 o2 am ec 4.5 oe oa bU 4.0 ac v o

3.0 eo. xm o s.

2.0 me ea eu xmw c,

6.0 $E Ow i

5.0 a =o e

4.5 m o ou az i

4.0 m e ao -

3.0 <o aa

.c 2.0 m

^o o

  • do ,

6.0 EE I

5.0 >,

3o

==

i 4.5 o sa o >

4.0 , c. a Gm 3.0 o am 2.0 s.

t ae o.

en 2

e oo 6.0 u-ma 3.0  %

s. = u

- , 4 . o,. o oo

^'

l 4.0 '5  ;

l 3.0 e 2.0 *

! l I I I a

o e o m o e o s.

l m ~ ~ - - o

! o (3.) aangeaadwat aates acep ns C t

! l.-__.

l l

l

'6.0

,5.0 #,

4.5 D 8 t 4.0 = li" 3.0 2.0 R m

L U I

.3 i i 6.0 $

l -

5.0 - 8 I

  • l l I 4.5 T
  • L l A.n <

7 v M 3.0 8J

^

2.0 4 C 4G U U O

m D C

c 6.0 E.g2 5.0 - ue-.M 4.5 U 07 4.0 3.0

)

Ug x-C3 l

- o.n 6 v gC

=U 9E cc U

C .C to a .

6.0 2%  !

1 5.0 D e

E .c l

4.5 3 L

va e n u3 4.U .O mC 3.0

  • t

'E ao 2.0 c .c m

OM o c w

I @

f g D i t U.pv b 'e

' [

I 5.0 5.

! l 4.5 b 2*  ;

l I

i ' 4.0 e

2 C

E. 8 E .-

' J.aU m Qa

'"J a9 l o.n L v U LC l @J ,

a m

3 .

O

= UN o.0 Um

-n an D.U L  %

e a C bh

'+ . 3 a 29 "I

4.0 $

l , U l

J.n v C c 20

! f i f I U

- e c Ln C W C '

M N N " "

p b

(') ) aanteaadwal aa;em acepng 1

4

y a

M ,

5 9

r n p o A i t

a c

r o

L a

M m r

a k

e b e e r f C n

o s

d n i a v J a D

n a

n c n e o .

D N e .

k a

v L o

ri t a

)

C D

t ( . -

c 9 O e7 r9 u1 t

ay p ra e eM p

S mh eg .

t u o

rr g eh u tt A a w8 -

7 e9 c1 a

l f e u rn J uu SJ

- n u 7 4

e r

g u

0 5 0 5 0 s 0 i 3 2 2 1 1 f

_ G Efo@3 b%x 8 hm b' ~

O a a p A #

a b

5-. ,

!J o (J

o d 10' L

h 3.

5 15.

5 c 1 20 .

l c

A 25 - U ty a !! arch f

o d A Acril i

a , o liay 30 ,b _ v . .

0 5 10 15 20 25 30 Temperature (*C)

Figure 4-8 Surface water terperature profiles at Location 2.0 on Lake finn.:an c:ain chancel during !! arch. April, and l!ay l')/9.

0 9

'f Ah p a o A a

5<. j(

6 l

/

10, ,

7

~

l 15-

> 5 /

o fr

.)

i e 20 " 0 fA -

u -

f n

49 U

25- i I

l $

l 3l 0 June f

A July o August 30 .[

0 5 10 l'5 2D 25 30 Temperature (*C)

Figure 4-9 . Surface water temperature profiles at Location 2.0 on Lak6 floman r.:ain channel during June, July, and August 1970.

~ _,

O' o A a O C2 O ti 5 o r) o ,

A ti o /i :1 0 zi I o d 0

10

  • 0 A 0

0 0 i

?

15- 0 5

& a C

./

r a

20 - o e'

tt i

25- - .

I i . O Septeriber A October j' o I:ovecher 30 - -

0 6 TO t5 -_ 15 20 2'S 30 Temperature (*C)

Figure 4-10. Surface water temperature profiles at Location 2.0 cn Lake f:or:rui main channel during Septecher, October, and f:ovecber 1978.

O q a a O A Cl o a u o a U o zs a 5 o zi a o A a o A a o z3 ,

o A 1

10 o A o o zi o o zi o a a T zi U ,

a 15 a a g- o a a o

a a

'1 A

a 20 g ,

1 A a 6 a  ;

O A  ;)

2 E+ n C a o n a December n A January -

t z u o February 30 - . _

! 0 5 10 15 20 25 30

Temperature (*C) i Figure 4-11. Surface water tecperature profiles at Location 2.0 on Lake t'croan main channel durin9 December 1978, and January and February 1979.

i

VATER QUALITY DATA Changes in dissolved oxygen (00) concentrations were generally related to changes in thermal stratification in '.ake Norman. Surface 00 was generally above 7 mg.1-1 year-round. At Locations 11.0, 34.0, 13.0, 14.0, 50.0, and 15.0, surface DO concentrations were lower than 7.0 mg.1-1 during October due to the low 00, hypolimnetic water discharged from Marshall. Anoxic to near anoxic conditions were present below the thermocline at most locations. From fall overturn to the beginning of thermal stratification, concentrations of 7 mg.1 1 or greater were recorded throughout the water column.

' Changes in concentration of some parameters were usually associated with ther-mal stratification (see Appendix Table 2). During summer stratification, sur-face nitrate + nitrite nitrogen concentrations were usually below 0.30 mg.1-2, whereas bottom waters generally were between 0.30 and 0.45 mg.1-1 Nitrate values decreased to less than 0.20 mg.1-1 during fall overturn, but were greater than 0.20 mg.1 2 throughout the water column from January through May.

Surface nitrate concentrations began decreasing noticeably in June. Concentra-tions of ammonia nitrogen were highest in the bottom waters during stratifica-tion (0.2 to 1.4 mg.1-1) and low during the remainder of the year (< 0.10 mg.

1 2). Total phosphorus and iron were also highest in the bottom water during stratification (0.015 to 0.030 mg.1-2, and 1.0 to 4.0 mg.1-2, respectively).

Surface total phosphorus concentrations were generally less than 0.015 mg.1-1-P.

Total fron concentrations in the surface waters were generally less than 1.0 mg.1-3 Turbidity was also generally higher in the bottom waters during stratification, ranging from 30 to 50 NTU. Downlake surface turbidity was usually below 20 NTU whereas uplake values were often higher, up to 80 NTU. Alkalinity usual-ly ranged from 9 to 15 mg.1-1 as CACO 3 except during the height of stratifica-tion when bottom values approached 25 mg.1-1 as CACO . The pH of the lake 3

usually ranged from 6.0 to 7.5 standard units with occasional values up to 8.3 in the surface waters during the summer.

Other variables were not as directly associated with thermal stratification.

l Specific conductance varied little throughout the year with a typical range of 38 to 40 1;mho.cm-I. Filterable silica varied from 3 0 to 4.5 mg.1 .

l

. i i

Magnesium concentrations ranged from 1.0 to 1.5 mg.1-2, and calcium from 2.0 i to 3 5 mg.1-2 Filterable orthophosphate concentrations were usually less l' than 0.005 mg.1-2 with occasional values up to 0.008 mg.1-1 i

t i t

4 s

t 6

i s

A t

j 'i i

i o i l 1

3 t

l .

. i 1

l 4

4 5

, b e.. 42- v e

e., -e w e-, se-~ ---- ' ywy - ---

CHAPTER V BIOLOGICAL DATA PHYTOPLANKTON-PERIPHYTON COMMUNITY The phytoplankton and periphyton community was sampled monthly from June 1978 through May 1979 (Table 4-1 and Fig. 4-1). Samples were collected in accord-ance with procedures indicated in Reference 6.

Densities of phytoplankton (Figs. 5-1 through 5 and Appendix Table 3) ranged from 139 to 4456 units.ml-1 on Lake Norman. The lowest densities were observ-ed at Locations 60.0 and 14.0 prior to fall overturn. These low densities were probably directly related to the Marshall skimmer wall. Lowest lake-wide densities occurred during December. Highest lake-wide densities were ob-served during February and March in the main channel and during May in the Ramsey Creek arm. Densities in the main channel and the Ramsey Creek arm were generally similar except during February and March, when main channel densi-ties were approximately two to three times higher. Downlake densities in the main channel tended to be higher than those uplake during September, October, and March. The reverse was true in January and February with no clear trends in the Ramsey Creek arm except for the tendency of densities at Location 3 9 and 4.0 track those at Location 1.2 during February and March. This was prob-ably due to use of the upper level intake pumps at McGuire to provide service water and for testing purposes.

Phytoplankton community composition was more associated with the seasons than with locations on Lake Norman. From July through September green algae was the dominant algal class. Anabaena, a blue green alga, was co-dominant at some uplake locations in August. Dinoflagellates were important in terms of biovolume in September and October. Diatoms were the co-dominant taxa with cryptomonads at uplake locations during October and November. Diatoms did not become co-dominant with green algae at downlak'e locations uniti November.' From December through April diatoms were the dominant class throughout the lake, l except during February and March in Ramsey Craek. Melosira italica was most often the dominant diatom taxon throughout the lake the crypotomonads gained-

[

. i

co-dominace with diatoms in Ramsey Creek in February and the crypotomonad Rhodomonas dominated in March. The lake was dominated by Rhodomonas or other flagellates in May and June.

Total densities of periphyton ranged from 2.77 X 107 to 3.85 x 1018 units.m -2 (Figs. 5-6 through 8 and Appendix Table 4). Organic accumulation rates ranged from 2.60 to 266 mg.m 2.d 1 (Figs. 5-9 through 11 and Appendix Table 4). The lowest lakewide densities and organic accumulation rates occurred during the winter months of January and February. Highest densities and accumulation rates were during the months of May and June, with a secondary peak during the fall at downlake locations. Periphyton densities were slightly lower in Ram-sey Creek than in the main channel from July through February, and slightly higher the remainder of the year. Periphyton densities were generally greater at uplake locations during the warmer months, whereas no clear trends were evi-dent during the remainder of the year. Organic accumulation rates were more variable than were densities. No definitive trends in accumulation rates were evident between locations in the Ramsey Creek arm and those of the main chan-nel. Similarly there were no clear trends between uplake and downlake loca-tions. Diatoms dominated the periphyton community composition year-round.

Green and blue green algae were second and third in abundance, respectively.

No rare or endangered species of phytoplankton were Identified from Lake Nor-man collections. The same is true of aquatic macrophytes, which constitute a very minor component of the primary producers in Lake Norman.

ZOOPLANKTON COMMUNITY The zooplankton community of Lake Norman was sampled monthly from June 1978 through May 1979 (Table 4-1 and Fig. h-1). Samples were collected in accord-ance with procedures indicated in Reference 6.

Total densities of zooplankton ranged from 2450 to 498,000 organisms.m-3 (Figs. 5-12 through 16 and Appendix Table 5). The lowest density was in the Marshall CCW intake sample in September prior to fall overturn. Lowest lake-wide densities occurred during July and December. Highest lakewide densities

occurred during March and April. Densities in the main channel and Ramsey Creek arm were generally similar. Exceptions were during March when main i channel densities were slightly higher, and during September, October, and January, when Ramsey Creek arm densities were higher. Uplake densities in the main channel were generally higher than those downlake except during Sep-tember and March, when densities downlake were two to three times higher than those uplake. Zooplankton densities tended to be higher in the upstream end of the Ramsey Creek arm than near its confluence with the main channel. Ex-ceptions to this trend were noted in June and from March through Hay.

Zooplankton community composition was more associated with seasons than with locations on Lake Norman. Rotifers numerically dominated the community, usu-ally comprising over 50% of the zooplankton. The percentage of rotifers was highest in the winter and spring months, commonly being 70% and occasionally 90% of the community. Keratella spp. and Conochilus unicornis were abundant year-round. During the warmer months Conochiloides spp. and Ploesoma truncatum were also abundant, as were Synchaeta spp, and Polyarthra vulgaris during the cooler months. Cladocera comprised a minor component of the zoo-plankton community, rarely exceeding 10% of the total density. Bosmina longirostris was present year-round and Diaohanosoma leuchtenbergianum and Daphnia spp. were present during the fall and winter months. Copepods com-prised the remainder of the zooplankton community. Immature copepods, parti-cularly nauptli and cyclopold copepodids were most abundant. Adult copedods present most often were Tropocycloos prasinus and Diaotomus mississippiensis.

No rare of endangered species of zooplankton were Identified from Lake Norman collections. ,

BENTHIC MACROINVERTEBRATE COMMUNITY The bentic macroinvertebrate community was sampled quarterly from June 1978 through May 1979 (Table 4-1 and Fig. 4-1). Samples were collected in accord-ance with procedures indicated in Reference 6.

Benthic macroinvertebrate densities in Lake Norman ranged from 195 to 16,500 organisms.m.2 and biomass ranged from 135 to 85,00 mg.m-2 (Figs. 5 17 through

20 and Appendix Table 6). The lowest lakewide density occurred during July and the highest during April. Sicmass paralleled this trend, except that slightly higher values were observed in January than in April. These lake-wide trends reflected changes at the sublittoral depths (7 to 15 m), since little change was observed in total density and biomass at the profundal depths (26 to 34 m). Little difference was evident between the Ramsey Creek arm sub-littoral-locations and those of the main channel. Uplake densities in the main channel were generally greater than those of downlake locations in July and October; however, this pattern was usually reversed in January and April. No clear trends were observed for biomass data. There was also no definitive trend among biomass and density data for locations in the Ramsey Creek arm.

Benthic macroinvertebrate community composition was more associated with sea-son and sample depth than with location on Lake Norman. Oligochaetes, chiro-nomids, and Chaoborus puncticennis larvae dominated the benthic communities numerically and together with Hexagenia nymphs and Corbicula dominated the biomass. At profundal depths, oligochaetes dominated density and biomass year-round. Only during January and April did C. puncticennis become abun-dant, achieving up to 38% of the total density and 25% of the biomass. No other taxa comprised more than 5% of density or biomass at profundal depths.

At sublittoral depths chironomids and Chaoborus comprised most of the total density year-round. Chaoborus generally canprised a greater percentage of the total density than chironomids during October and declined through April.

Corbicula and Hexagenia dominated the sublittoral biomass at many locations in July and April. Chaoborus and chironomids were usually dominant components of the biomass in October and January. No rare or endangered species were Identified f rom Lake Norman collections.

I FISH COMMUNITY The adult fish community of Lake Norman was sampled from June 1978 through May 1979 (Table 4 -1 and Fig. 4 -1) . Samples were collected in accordance with procedures indicated in Reference 6, except that a rotenone collection was made at the more suitable Location 19.0 instead of 13.0.

l l

~46- s

Gillnet catch ranged from 0 to 78 fish - (17 to 18 hr gillnet set) (Figs.

5-21 through 24 and Appendix Table 7), electrofishing catches from I to 688 fish 600 m shoreline (Figs. 5-25 through 27 and Appendix Table 8), adult fish trawling catches from 0 to 304 fish - 1000 m weighing frem 0 to 66.6 g 1000 m (Figs. 5-28 and 29 and Appendix Table 9), and rotenone catches from 4398 to 10 298 fish ha weighing from 43.7 to 196.3 kg ha (Table 5-1 and 2 and Appendix Table 10). Lowest lakewide values for gillnetting and electrofishing occurred during January, February, and March. Exceptions to this occurred at Locations 14.5 and 14.7 in the Marshall discharge cove, where catches were usually the highest recorded over the one year monitoring period.

Highest lakewide values for gillnetting and electrofishing occurred during April and May.

More fish were caught in gillnets sets at uptake locations than at downlake locations during every sample period. Location 14.7 in the Marshall discharge cove had the highest number of gillnetted fish throughout the year. Gillnet catches declined from July through January and peaked in April. Electrofish-ing catches were generally higher uplake also. Locations 14.5 and 14.7 in the Marshall discharge cove had the highest number of fish during most months of the year. Rotenone data generally indicated higher estimates of abundance and standing crop at downlake locations compared to those uplake.

The relative abundance of fish was similar at ths Ramsey Creek arm and down-lake main channel locations, as determined by gillnetting and trawling. No consistent pattern was observed in electrofishing catches at these two areas.

Within Ramsey Creek arm, Locations 5.0 and 6.0 had higher catches by gillnet-ting than Locations 3.0 and 4.0. The gillnet catches in the Ramsey Creek arm remained consistently high from June through November, dropped off to zero in February and the increased steadily to the highest observed value in May.

Electrofishing catches in this arm rose steadily from June through October, ,

declined steadily through February, then increased in May. The electroffsh-ing data exhibited a bimodal peak in relative abundances in October and May.

Trawling in Ramsey Creek arm resulted in both higher abundance and standing crop estimates at Location 4.5 than 5.0.

I

! Centrarchids dominated the electrofishing samples throughout the year. The {

most abundant species were redbreast sunfish (Leecmis gjritus), bluegill 4

l I 5t

(l.. macrochirus), largemouth bass (Microoterus salmoides), and whitefin shiner (Notropis niveus). Yellow perch (Perca flavescens) was abundant in electrofishing samples during the winter. Gillnet catches were generally dom-Inated by gizzard shad (Dorosoma ceoedianum) and quillback carpsucker 1 (Carolodes cyorinus) throughout the year. Snail bullhead (lctalurus brunneus),

flat bullhead (1. platyceohalus), and white bass (Morone chrysoas) were also abundant during the summer and fall. Trawl catches were comprised almost ex-clusively of threadfin shad (0,. petenense) and gizzard shad. The rotenone samples were dominated by bluegill and yellow perch at all locations. Thread-fin shad, however, made up 20 to 25% of the fish collected at Locations 8.5, 14.7, and 68.0; redbreast sunfish were abundant at other rotenone locations.

Gizzard shad comprised the largest portion of standing crop in rotenone col-lections at most locations; at Location 4.0, over 80% of standing crop (blo-mass) was accounted for by this species. Carp (Cyorinus carolo) were also a large part (12 to 28%) of the standing crop in rotenone collections at all locations except 4.0. No rare or endangered species of fish were identified from Lake Norman collections.

r i

r 15.9

  • 60.0 w3 15.0 53

- 50.0 s 35m 14.0 o. u-13.0 f 3s 34.0 3 3 11.0 wE 8.0 E '.

eo mc

.c c.

2.0 vs 1.2 eg 1.0 gg 16.0 , ?,

15.9 2*

sa 60.0 E*

15.0 o" 50.0 #~

14.0 a " o*

13.0 m a u.

- 34.0 E =

11.0 4 %I 8.0 h*

2.0 l.2 be 1.0  %% .

16.0

  • c3 583 15.9 S*5 60.0 "5-15.0 $e%

~ ~ ~ "

~0'0 5

14.0 -.E co m

13.0 :,, . $*

34.0 '5 7 e% ,

4 11.0 ~# 'iiiS e 8.0 a%d 2.0 "o*

1.2 5"E 1.0 ~.*

16.0 DR

- e ::n J

e - s-15.9 5s3 60.0 "~M

  • 15.0 %h aa 50.0 o c. -

14.0 " $ 'd 5 .= 5 13.0 e 34.0 5 " E' %

11.0 ' 52*

8.0 -5" c.

2.0 3oo 1: Eu 16.0 -

1 I f I f I' I t

~#

o c c- o o o o o o c C C O O O O O O C a O O tt. O W O W Q d 6 w w m m ~ ~ - - o O

( ,tus.s2 tun) 4:tsusp tv20: uoquetd ollyd C

15.9

  • 60.0 m-15.0 -a 53 50.0 a-14.0 >, 0%

oa 13.0 s. m

- c.

c.

34.0 o e

-o e

11.0 ,m co

=s 8.0 m-2.0 '55u 1.2 cz 1.0 %a"*

16.0 CN 3

  • 15.9 E"

- 60.0 8&

I - 15.0 o%

- 50.0  %"

-- 14.0 s 'i 13.0 Je am m-e a E J4.U o no .m.

a 11.0 O@ mC

  • 8.0 o be Q a to a m a to 2.0 Ca L 3 C 1*2 Q o e.
  • J E 1.0 m -

16.0 35%

6 .= i Cmm

- o. e. L 13.aJ Q. m

'60.0 " C?

  • n U C +2 1e.U

'7 .= - to 50.0- ",e-wo eo o. .

i

,4.U e L O ao 13.0 4 ^ vo QA d N V7 M Q w *+ . U e o=

11.0 o e""

8.0 a a ci ei

. 'J 2.0 eN 6 C C4 m 1.2 w 3 .= j U

1.0 h %g > m

=

i 16.0 *J m7

    • = 3 mC-e c=-

13.o - o *J m 60.0 "~C'

.= 5 1c Sb.0, 0 $$$

a .= a 14.0 L e to n U C leJ.V 4

,,* . 0 o CO o.

~~

., .oa a es w l

11.0 c s

5"~

-L

  • l l

l O.nU C. O O l t

n O2x

! L*nw M o r3

>, a a 1.2 .= u c  ;

' ~ '

1.0 16.0  ;

e i e i i i i i t 7 c o o o o o o o e o o o o o o o o o o c I m o m o m o e o m 6 I w w m m ~ ~ - - =

en l

( ,tus.s;;un) 42tsusp te;o; uotaustdo:A4d C l

1

')

15.9

'60.0 J.

15.0 83 50.0 u 14.0 **

13.0 @ o-34.0 E

  • 11.0 8,*

8.0 5s 2.0- #

  • 1.2 e& '

l.0 u 16.0 = .5

=3 cc 15.9 2M 60.0 ea*  :

15.0 e 50.0  %" '-

i 14.0r - a .

13.0 u oa 34.0 2- .t 11.0 ""

8.0 51 2.0 ** '

1,2 s.

a m.

1.0 = . ,

16.01 3 '*s 3

s. ~ m U C&

%3 C 15~Q 50.b "N -

1D*nw oc-

=0C 50.0 t 14.0 = .*

  • s' '

13.0 s_ 0 m o. z 34.02 7*%

11.0 'il =o e ,

8*0 mv0 2a0 & +J Q e m ,

CUT '

1.2 30= .

1.0 '*

16.0 3.~

- en c, i

i m& L I 15.9 !54.2 i 50.0 ~3 J

-m-15*0 mE7 i

.- a s0.0 e .= -

14.0 D " F% i

, 13.0 3 825 m=s 3n,.0 .s.

a aam 4

11.0 2 5 >, *

- s. +a 8.0 C. 4 4 2.0 32o 1.2 Rf,4 1.0

' 16.0 m  !

~

, e i e i f f i o o o o * '^

c- o o o o o o

ii m 5 o

6 o e o o e o e y y n m m m - - u

n

( tm.s; tun) A;psusp te:ot uo p ueldo1A4d C m

C o

'5. 0

  • e I. cv u c

o .c

-w f.=0 4 @ sa Ge i 3.o. o > m m

3*0 o Z x-2.0  ; 8O k

  • vv hC oo m .e 5.0 L

5" cc u 4g 4*h .$ o cS 3

3C d go 3.b o 5 e

2.0 ee xe '

am au [

  • a o 4 O 5.0 s .%

a=

    • 5 .cw mu .

A.0 & e, Ge W- ,

3.0 " *" '

~

3.0 DE bc i eu we r 2*0 d 3 30 0

LE  !

o O. O a= l 5.0 '

,5 a oc

. .=.-

A.nw m 3 m CTl C P=

3.9 3 r=

l' cc m 3.0 m e n 2.0 7"

- c a

E. .o m .J l ed @

i c= u ,

g Co  ;

wnv

  • 3J

\

, A.5 l

A.0 h h *

  • w as

=

-.a q

J 7

-N mm 10

!h .0

$ "b o

.= .

i , eS-

  • J Q4 o>c

& oe Zu 5.0- 8=m u m .=

,,. 5 x 3 *a

^, .0 e =o

.muw qq c -=c 30 s==

of

,0 39 C "J = '

f f I  ! I f f f O O O O O O O O O O O O O O O O O O O .,2*

  • D C D O D CJ D C D e
  • y n m m m - - m o

(l,ti:1.s; tun) 4;tsusp tutot uoquelcoM4d 5 e.

i

'5, .0 c I i - o 3 *c=

a g?.0 x =

-u 3.9 =m Co i m _2

30 xo

-20 oc oa L

u-m x=

oo au 5.0  %,

4-5 - m =. s

'"0 =*

s. m=

3.9 <c ~u Em 3.0 gg 2.0 ..

au g em as e

aO as 5.0 me

- --.' 5 a "m =a O v

.M 6

s. ae

,3. 9 .m *-

3*0 s. m c .e a

2.0 mm 3

  • m L

o=

c. o a-5 ="

i'.0 '*5 x b 4o ou g^

0 *o * ' '

b C

!3*0

.9 o - .

o m f w mh

- m E. mh me.

a o.0

-ecm=, -

22 e

',.5 sx.

-oe

s. v ki O r0 h2 o a a ca

! '9 -

m

= **

mes 4

1.0 "J CN yaw t.o. 0- s-o

- s. :

maa uno oso a cJ E u

D*n w coo CQ4

b. . b s.

ki *Vn w

4.

a a

Cea

.a

,*o Eou mCm

-o

-< c.e e 1A O o +J ** '

'V O aa

.0 A U C.

2o 9 9 , g i i l i I G"T e o o o o o C

  • o o C C o O C O O *'

m, ,o m C m o e O m e m ~ ~ ~ ~

  • e (t tm.s2 tun) Ansusp tv:o uoq uetdo 44d 5

5 en b

15.9

  • SM i 14*0 -

c 13.0 'a c u 'e 34.0 e e

.2 8. '

v c. m 8.0 > 3 U c -

1.2 S & - 0 0 mu e 1.0 x .- -

3-

-- _ . - 16.0 ceooo Er u O

.i5. 9 oe-z c C.

19.0 - e e e

_ 13.0 u au w 3,^ . v^ ."Q .J o C

l 8.0 .o - N.

l o m-c

- I.2 o a

  • U 1.0 U E c a

- - 16.0 eer mJB emm 15.9 mcc 14.0 u J .* m*

- 13.0 o u .a. z

- 34.0 iu m-c c,

8.0 c. e .a. .e 1.2 o .- c-m -on I.0 m 16.0 .E

.eu eom a 15.9 en- e e 14.0 c o C

13. 0 me-5
  • - - 34.0 3e n 0 .

8.0 m -ea I.2 <2 C X w.o

-u o c

1.0 n m .c e uu 16.0 o -

s. a .a

--- ., 15.9 -$ .' - ,

- 14.0 ER%

13.0 - e . ,c

>. u 3k.0 -u o 8.0 >- - or c .2 .

- 1 . .,

,s e a o >.

o u = -.

l C >~V SM < l.0 16.0

-m :2 m-I -r o

. o 20 9

>= 3 C.

15 9 o .7 e NS 14.0 o'-2 NS <

13.0 ~.

> cc.e .

'34.0 U .iu ,3

- E '.ooE 8.0 c 1.2 ,2 m.

e e-e

.awm .- t 1.0 ec e o .- u

' 16.0 o I f I m --

8 8 o o -

o - o3$$

u oum e o oa- e m

.e-(t0! y.m.52 tun) ^2 !sua0 te201 uo2 A4d p ad (15.9 '

14.0 m c

13.0 em l

34.0 'o -

>. Eo '

8.0 rm em a

1.2 gg ,

1.0 u- r 16.0 S-o '

o>

ao SM ,15.9 *- ,

14.0 ,t  :

13.0 mg 34.0 - r=

80 'c. o

'o u 1.2 <

[

lO Ec - '

m v es 16.0 _ I ,c oe

&4 W 15.9 m - ig 14 0 *~

oeu 13*0 .' n -oc-34.0 rv -e-e 8.0 'e e .e

  • 12 I *8 mam 10 -*c -

en a m 16.0 ey g OC mr 15 9 14.0 c-*

o-c

- C 13 0 u>- x-a C-34.0 mm u 5 m u-80 o' C

'a o >o I2 0

  • 2 .5  :

10 .- c e J

16.0 eo ,

~

eE

-w 15.9 he 14.0 - - -

ce o 13.0 5- E 34.0 t 'g;

. 3.0 m  ; ,; y, 1

12 e - m-e ou, i 1.0 ' o "a-e

- 16.0 O -m w m .c

>. c e ,

, 15.9 ec.._o 'm '

14.0  ;- ~ r 13.0 eu u

o

n. o 9 "

34.0 8.0 "$ ^-~ i o e oo 1.2 v *c '

o eo 1.0 o om -

uae ,

gg ,16.0 c, u - 1 i f f I - 1 l u.

e e e o I

o C C o o -

1 I

o - 1

( ct x .cs s2 tun) 421suac te2c1 uo2Aydgaad

~

l i

i

  • l<

- cv s

16.0 x *'

t c: -

s 4*0 '

  • I ca: cJ l 3.0 ez l 5o l 6.0 . e5 4.0 p. 2 m

, 3.0 < *o m .c a-6.0 *

! 4.0

  • E I 3.0 I I

5.E

c. -

o 6.0 '* "

t i kab

.c E i

o mo *-

3.0 f'-

w o.

6.0 .

'! 4.0 c n c m ee t 3.0 n ~o .

-n eu

.6.0 . , a C

'40 a m o a i o - .

3.0 en m i N i

cm 6.0 .

0-l i4 o

_ > oC* e>

o

.  ! 3.0 2 n e l [ X e i

16.0 . n 8 SM 0 's .1

{4.03.0 e ,=

w

. -m

{ 6 . 0m*

r Cm 2-I40 2

  • o o

!g'.0 '^ *C

-w ,3 m

6.0 . 5;

- <4.0

  • 3 8

I3.0 <

~~ *

, ' ma-

~ co oue 6.0 3., .o ou f - C 4.0 ,m oee w w cn 3.0 >. e u 2 C C. .A A

$*nw o - ou b # A gg*O C C b-3 CL. 4.J "3 13.0 '

I  ! I

' m s

m o o e o - 0 o o o -

h e o - -

Q

' c - -

(t01 x:.tu s2 gun) A2 tsusp te2os uo2Aqdgaad ' l l

l l

l i r

l l

\

l s'

l

.cf.

  • \

1 e m

- 15.9  ;; E3 SM ,14.0 u E-o oo 13.0 oo ec-u-

,34.0 Eo u

  • ov 8.0 >o oo zoo 1.2 z --

S~I 10 1 16 0 a mme a

- N. e e-c 15.9 n .e 14.0 -oo na e

'30 u vcE ca 34 0 oo x smw 8.0 .o c

m. m *2 1.2 oo --e em 1.0 --

m m

.6.0 m-ez ame s~c

'59 - g .o h4 mo-g0 3.0 u

o

  • rn -

e

$4.0 io -

eoo u 80 ~c. m .* o4 12 o e c m oo 1'0 -. w .c o

16.0 1-H l m. co .

I

IS 9 ", -o ~m

=' 4 0 E.

mu uo p! 3.0 p,35

34.0 ", -

^

o 80 3 en o co '

a N 12 <3

~N-am-30 1

'6*0 e

.o- o 'or0 u w ax

.' so 15.51 14.Ci i 3 :@ 5 s 13.J o 34*0  % o cn fQ 3 e .>

uucou n .

WO 3 1.2 ' -=" o c - - c. <

l SM ' l .0 @, 3 .o ;

16- 'cc' 03 9

\ m -

C s Cn 15 9 o -oc

- e s .-

NS 14.0 >cmo

, .C Ow e i

NS 43.0 .- . c -

a-m e

34.0 'o u - 6 8.0 ec a. e o o

->- r I2 9 m -o .3 i!-

1.0 e m' eu e

?6 .0 eo l t t i I I I I f 8 *- $ 3  !

o m- o m o m o m o su=m

n C t% N o t% m N .= l N .m. - - w '

( .p .w.6w) ate; uotte gnwnoce a gue6ao uo2 Ayd! Jad

15.9 es

- -e y il4.0 2x 113.0 ee 34.0 $5 m

8.0 m>. ou .

  • **E 1.2 1.0 Jo N. .-e a .e 16.0 a ,g

" o CJ L SM ,15.9 mo

- a-14.0 c. m e c.

13.0 oem

- ooe 34.0 u em#

8.0 <c. m-e

  • J 1.2 ,e "g 1.0 a m e-r

-16.0 em e m V oe mxC 15.9 -

- c .o-14.0 eo-13.0 m e .e m->-

.-.34.0 v n a

, 8.0 u -oO. =w C @ .a 1.2 x o c-e

._ ,1.0 eo 16.0 1 -^3A i-l l

m. C O
  • i 15.9 a oo 114.0 's " '*m l i

-- 13 0 t Fd5 14.0 m ~~e m-i* j 8.0 's e-t l

-Q c

'2 2 ~ t; 1.0 'Im

'16.0 c5 o c1 6

-s1

  • or

'5 9 m'

!!4.0 s5S c w

13.0 5m

>. USM i 34.0 'e umo g o-90 8 g o,o y 1.2 ,m - c .e 1.0 ca-m=

i ci u m

- 36.0 'ue ooo C3 e .

5.9 o -o i ~ma 14.0 >co o"

I' 3 . 0 u -co.c 34.0 .o a 'u u -

' 8.0 E o

s. o o 1.2 v v

Q c

- 1.0 C i o SM J o, .O m ec 'o t

I t i i i t i 2]

sas S

L O @ O m O 'A O @ Q O O N M N N A N N . .O L, l (t.p. .sa 5m) ase; uo 2etnwno:e ogue6;o uo2Ayd!;ad g

n a

m r e oh Nt ef s .o y a

k o a

H Lh u.o . o t u ao t

- m

. h

..o r p

t e ph

..o A d

et

..o ma t

5

- ,.o . 1 i s

) r 6 ,.o a t 0

- 6 M a -

2 , .o l e

-( s en

- r.o o b

e d o i i l t s a o.o F c so sL l

a g

A.o.

- I 9

o n n7 a o9 a.o J

)

1 I y r.o c. - a

d. M s.o e 2 h g

w.o D m.

u o

gr

- Ik .o

- mh

( t o v s8

~

a.o o e7 I N t 9 a1 r

e o nn ou s, o n

- u* t c

i J t

o O a ,

- lun s

mo uil n.o

. ct a o t p

can .

aca _

a.o e oc

.- S cl inmge

- arr n.o . o u g

. gaa r

ok c h

- a.o A nei es

~

ord -

~

t C y e

~.o..o ul y h yr pei i s u a.o J r mG eac -

PRM

,.o e n

1 1

. o -

u 5 J

, .o e r

u 0 5 0 5 0 5 0 5 " g 0 7 5 2 0 7 5 2 i 2 1 1 1 1 F nnI? n 8 EL 32 Ce.am5S 3mu. cme'o

- c 3 >. E ._' 2

.=.

O M

c 3

a m

U-I l5.9 3s 60.0 3 15.0 E s.

50.0 s- o EE

=a t

,14.0 g vs j13.0 3 .c &

34.0 g gg 8.0 m ev o

n 1.0 e=

04

= m 16.0 o -

a, -

15.9 "J I

60.0 mt

!15.0 e" i

50.0 o2 .

14.0 a ~ ,* li

! 13.0 $ 5"3 l 34.0 <E Sc3s-g.0 ,3; l' 2.0 =ce f

1.2 a

"55 CZL i.U l - m

- 16.0 8a o

omm 15.9 2*e

!60.0 x d 15.0 m3*

50.0 's e 2 14.0 >,

a3*

ea -

-13.0 mee

'34.0 5 'E 8 E 3.0 "'2 2.0 o .M

-o-

.2 1.0 3 -o a--

~

ce=

s%

l16.0 o

,l5.9 'ae E%

i '

60.0 = U.

uma 1

1o.0 "

ome 50.0 =o 14.0 E Ed

- -- 13 . 0 E "2"

-34.0 5 E5J

'~

' 8.0 aet 2.0 85e

~ ~' ~

1.2 1.2 2 I i , , , , -l16.0 a o o e e .*

l 3 8

m 8

N 8

~ $ S e 5 e

1 C (CCOL X g_m.smstue6.to) X;Isusp te:o uc a uetdooz

ET i

1 15.9 58

"~

60.0 15.0 8 t' 50.0 -&  ;

14.0 D 5" 13.0 g EE 34.0 5 25 8.0 ' " ?,

2.0 .5 E 1.2 2" 1.0 cm

'16.0 2 e, <

O

  • 15.9 "3

'60.0 33

. 15.0 Se

-50.0 a5 I

l4.0 t *G 13.0 4 5~

34.0 $ S.5 i, J 8.0 8 u S -s 1 2.0 8. 8 c 1.2 ge-1.0 e, c ;

16.0 fi 3 mm

~

c-u 15.9 e2 60.0 86u 15.0 8"*

50.0 -8 14.0 b *38 13.0 1 '? * ,

34.0 g 535  ;

8.0 eE 2.0 .:c a e j1.2 59;h '

- 1.0 E-5 16.0 S D.:2 mm

>3 15.9 "5; 60.0 E's 15.0 850 50.0 82 14.0 t 0 '= u 13.0 S S"*

34.0 " e R o.

8.0 o S$%

2.0 su .

l 1.2 .* 33 1.0 833 16.0 41 8 5 t i i T I I o

m c c c C C C C m a e o e o m -

n m m m - - i m

(000t X C.m.smstue6ao) 4:tsusp (not uoquetdooz g 3

.?

LA.

l 61-

k m .

I n '.

CQ m- "15.9 Q x, m

y '

~ 60.0 a,M c ,

15.0 8-  ;

,50.0 T '

14.0  %$

!0 13 x m

E"

=i 3 *.0 z ae i

6.0 "&  ;

2.0 ." "

1.2 2* i 1.0 C5 16.0 5 1 E z, '-

15.9 E"

,60.0

_m o

!15 0 * -

a-  ;

'50.0

'14.0 - =c  !

t .-. u ,

e ,13 0 5. Em.a

-34 0 <c- e v

~

^

m t

,- 8 0 -um "c

  • 20 *-  !

m am o

' ~

1.2 g~ '

1*0 c c

.- c; 16.0 5*% c-t C3 C r i 15.9 -S- ^

l 60.0 ^ -

oe-

,15.0 eoe o = 1 150.0 .e a

- s_ i i

14.0 x x oz

=

13.0 o s.

m i e-34.0 g~

E-m '-

e 8.0 e c: co e.

2.0 a-e l e -ae t

- 1.2 co, 1.0 moe ,

s- a m <

,16.0 o .

.O hm C I 15.9 a~ *

, -m-= o m'  ;

'60.0 g C - O 1

-15.0 =

a mm x.e - .

i50.0 -

1

!.14.0 s. x =e-s ci-F -n13.0 =3 o== '

j & O4 i 34.0 o -

==s 5- a '

i 8.0 wo oam 6 a x

2.0 1.2 a>a c s.

m

-= 1 i 1.0 c. 5- o.

o4 l

16.0 oae i t i f f I

.:r e o e e o e e o -

m o m o m o m e m m ~ m - - m

.a '

(000tX t m.sustuv6.to) 42Isusp tv202 uo2auetdooz s

=>

l aps.

b 62-

i 5=

I 6.0 %3 a 5.0 s_ am o ou a t

{ ' 4. 5 a eo .

4.0 8 U ,"

3.9 >o hc 3.0

  • S*

2.0 5~

cz e 9

  • m CU co 2 m 6.0 2 E,'

O 5.0 s. S5 4.5 2 oii am 4.0 ao m

3.9 S '

,3.0 ao 9 L i

2.0 s' e I CU

- :c 6.0 h* 3 5.0 s_

2 3C 4.5

,4.0 $e c) "

am j 3.9 l 3.0 m* -c o.

2.0 -

OC CC Ce

-a j 6.0 x 5.0 3 i4.5 a

'?e. CC.

g*nw m 3

l3.9

, T E E:s

3.0 < "-
2.0 =

. s.,.

ea -

C CT14.=

6 m oou w> ,

6.0

  • oo 5.0 a"5 4.5 A '5-C3 o

- 4.0 ,o o s:

-3.9 ,s i

_c a

-a n

3.0 m aJ -

o 2.0 oc -

a=a C

o a ama

6.0 aee Co 5.0

, -m-a .m -

.n.5 o

=_ m ooc w.0 = 0o m - m.

=

3.9 ,a 3.0 f f f T I I 2.0 a g

C C C C C C C C 6 Ln O D O La o La 3 m m m m - - ..c,

' w (000L X E a.smstuv6ao) 42)susp teso2 uoquetdcoz 8'

~

l_ _ _ _ - _ _ _ _ - - - _ -

i 6.0 u-ve D. QC um t *.5

>, uv

' 4.0 $ xe o en 3.9 mu se m=

3.0 mu 2.0 e-m mz e

un C u 6.0 =-

o 5.0 mo M V 3

4.5 u a==

4.0 <c. a .co 3.9 ma 3.0 s=-

1 2.0 o em s~

e Cs 6.0 Ed L 50 1 a-5 4.5 =v g .-

4.0 z, eu I

- 3.9 -o i a 3.0 -

e ..

I 2.0 o o cn -

y -~e

- C4 C x-m

' 6.0 m, x" ea e.0 ><

. v s. z .c a 4.D <> m=

-: s 0%

4.0 ' amo I

6 30 u.

- $ '~m=z 2-i 3.0 ci a s u g

- 2.0 -~

om=

cn e a

x-= a ,

-u

,. 6. 0 mea 1 c.0 c .g c Q c j

- 4.5 xu = a .m. u.

t 40 "o -o noe i 0 = " -

3'6

3. 5 3 E$

2.0 C .E .o.

a-.

aaa anc C UL 4 oo

' ' ~ '

w l, 6.0 5.0 u 8Ei N4m

! 4.5 2

! 4.0 $ $

I 3.9 0 a 3.0 o e 2.0} h e

t t i f , t i -

o o o o o o o u S

m o

m e

m e

~

e o

e (000t x g.a.smsfue6ao) 4;tsuap te:02 uo21uetdooz 1

\

= _ _ s -

_ _ = 2  :

=

~

n = =

= = = = =

s-

~ ~

= n  : = ~ -

a =

=

100 r/2 -

A m

~ - - .=

gijg m, -5 -

4

'1,:

1 ;9

. r-So' .- ,~ 555 O I; = jI.i I 'I

= fs e% e  ?

- : = 'a ui M so<

(lJa -

= 4 == l.: .

.-l = .<!

'e-j 8 '*;. 5 D h,N, y p 6o<

,o<

k,

=55 a,

=C +

= -- L , "" fJ =M.!

- ==

m 9, 4 .

h-

=Es ' h: E=E E 6 -

==5 4! = = i-s - == -t -

E=5

{ 50.

' i- =  !

E2g nI' 'I o

'1 A = a., =a = 14.:  !!.; ! h-

= 4,o.

g

. '. = as y m

= ,m g, =- 'w=  ; EEE

=

e s=E.

= v,! s' c. r ,'1 o , . EE: M '.11, 525 e. 15 t .t.s .' => = ,

ne E55

= .s. + '2i ,. a m't!a .e" s-5 6 30'  ;** -l ., as

=== L! t..,;:

r . t,

=

l' "n i ,Js,

!'1 ed /. l  :==

z=

. =: P, ., .
. 3E3

.:.i 553 4*

g . .;.i ." == =)< M. ,q,;';'d EEE ,

20' -.i i

\: ", .%;;q o;',l = = . ,

10' NE f. 'I ( 0;!

y,la"d.

hl l.!.i ,-

-u h;f m

y [' da

= ._ ...

o ..

2.o s.o i.2 3.o 3. 3 4.o s.o ..o 73 6.3 u.o n.o i..o as.:

Loca tion

  • 8  :: C A O O~ c n  :  : a 2 : S " ~

$ $ ^ - e ~  ;

ico< pq m p gg --

p ,e, .

3c-au ., + ty E=s + p'i -

s

,,. 1 n as +

is g=g .:

, i c. !

>_ m -

. ,u ==

30 ',j : $ t "l'.  ; M '

. <. 7 is as _ee:=

70. x m =ge -"

. i G

T L c Egi =a

=

s so.

! gis - ,

EEi

.: , , , 4 7. , ,' as s=a ,

, . , c .

. == == ,..

i 50< 1 1  : 4 M Mi 5 t i, : 3 3 w ' ..'.: ; ij gig as -

  • t.o <

~ ,. 1 1 ie t.

man -

igs =

E== -

t isi y 3o. -

m ii, d . EEE

,$' r. 4

20- -

a =J

)__

c m i == . q ja. E 6 3dE q.! EIs . . -

r EEE p Q n ._ Ei .

- [- ,

.. . 1 h, 2.o Lo i.2 3.o 3.3 ..o s.o 6.o 7. 3 s.s i2.o n.o is.o is.2 Location l Figure 5-17 July 1978 ben $ hic macrainvertebrates. Top-composi tion, density (organisms.m '), and diversity (number of taxa); numbers at top of each bar are total density as a mean of three replicates and values in parentheses are total number of taxa. Bottem-composition an<1 standing crop biomass (mg.m '); numbers at top of each bar are biomass as a mean of three replicates. The patterns within each bar represent Gironomidae Ilhll, Chaoboridae

, Oligochaetallillllilll, Ephemeridae M. Corbiculidae M, and otherssW.

s

$ ;'- 3 0~ 0  ;

~ ~

O O O $ 0 0 0

~ < e ~ c m n e o g g

~n 8 - 3

+

~

e n

ne

~

"n- -

R S.

n n

. S 2~

QM M3 7tll '""" m e*J rmi mm 30, U(e.p: I Eg _"_ sEE cm . . "@'gMj P"!

-=

_ n li Ul m

sE

= = _=E EiM EEE E

= == == _ //, 2 o EEs

.= ...&e tr/

u I

e 80' o

fb

$. s , an M

=

M @== @d =

Ed C, i

=== 5 h.4

== ,

b sIE h

- 'g- ifE Esi EEE 55 5 u.. EEE % .

7; h@, e.,- EEE = EE! Egg

= ==  !ET

== 4 wob E=E

== v-S t,, '

2.

in p

E=E (;q y EE= c; a s

$60-

.a r

e qn sEE eas =a _: a.,J,

=

as EEE m &y' :m;.;

o g;  : Ess EEE EEE EEE EEEE EEE EE

- 7 kk b' b 5 $N O $l r

" 50- H q; H. i Id E=E ;=5 Egg - >s,! y-g,dj

-si ==

g=g

%- Q: .

e On i4 == =-- E. ==5 - == 1

. :g=3 he n, [ er  ;

3 40- Q N EE! EEE EEE E!E y ,a E5 gig gig fJ .

gh m 4

t f /i E EEE EEE EEE a EEE EEg EEE [--

' 30- D @y)1 E=E EE " EEE i E=5 ==

5 ', +l. . EsE .,1 EEE EEE ni EEE3 hl f.

r-s4 a C "J M -=g.- == == === ,a = = = == 3 p1 pj 20" f { [= -@ @ @ ,; - 'ilS @

55 @

gig =Es Isj N y

EE= EEE sE E= E=5 ,,

m, to- E=E EEE Em 25 EEE , i,

== EEE .V g g Egg g=g g= =- i i n- ggg gEg 0

== - -

2.0 3.0 1.2 3. 0 3.9 4.0 5.0 6.0 7.3 S.5 12.0 14.0 16.0 16.2 Location I g" E $ S E "

E "a E 7 0 7 3 e O ~ ~ e g  : e ~

~ =

7,, , {J f ag.

~

h M 6

21

@ { m~5

==

-E ==N p ] 8;.

t t < %$ 5i%(-

=

%,j., ~ >

1

  • kt 80 - f" Eis E5 EE5 h ),

.i EEE EEE b+; E

=

c C 4, /. '

m Es EEE EEE y%

EE= )g, j

.: ry EE EE: EEE E=E piu g

g

,0

, - J- y y, gg gg g g 4, .7 A,

, N v. E=s E=E Em , vg a  % -

=E .

? 60 - p- @ g=g gg GEE W E =EE gEg . gig c,l ..

g!; t...' T-

{ 3

- Y' vi EEE sE Es EE 55 uJ

-bd m.

1' I E55 3=E E

EEE

E2 Ei 4 9

" 50 - EEE ..: EEE #- .0} 0 "1 C.' P.  !!!E.

== =-- y. .i /

rw =.: ==-

tJ e . -

b',

3 40 - W EEE Esi >< isi E=5 EE=

s er (;tj , t/

k, ,, ' Q.;i 0 =E . Es: >

u == , .! ,, == ===

e w EEE ., === EEE t* i 4 '...;

' 30 ' j. . , ,

M.,3 ( "

U U E5 M 555 \,,: .-, EEi h

  • O *
  • 'd EU i =EE 'O EU "1 ~ u 4.k i #=d5 ' ' ' 5 i ,i,. EEE 5 j, S 555 . E55 =- -

E 10 EE Es EE5

==

EE ==E

+

1 ~EE:

a 2.0 S.0 1.2 3.0 3.9 4.0 5.0 6.0 7.3 S.5 12.0 14.0 16.0 16,2 Location -

i

[a 3 a u su ~ + ~

r Top-ccmposition, density Figure 5-13 October (organisms.m- 1978 genthic), andmacroinvertebrates.

diversity (number of taxa); numbers at top of each bar are total density as a mean of three replicates and values in parentheses are total number of taxa. Sottom-composition and standing crop biomass (mg m-2); numbers at top of each bar are bio .

mass as a mean of three replicates. The patterns within each bar .

represent Chironomidae 11111, Chaoboridae ,__., Oligochaetaill' lull!!,

Ephemeridae !lE, Corbiculidae M, and othersW29.

1 l

l

\ .

l l

  • = =aa = - 2 a

^

== *

= . ~

= = = = = = ~

= -

a e ~~~A g e e a e ~

=%

., ~

G

~ - .

~ "_ _

~

:c

_ =_

100 ~ ~* M M .M

, ] Q~"C 90 - ,

e c

F M L. i g '30 I ,j.

j} g h x

yo g ]. 'g ,j

= - - _'

,I r 5 i

O 4

n' E P!

EEE -

F C.

' 255 EEE )

m :5 . . ~=$ 5 g 60 =!

{ 50 ;

+

s

&j 5 -@'? 5, EEE ,

5 EEE -

W .!

-i l

.s j s.

,, , .i  %' + == ... sEs e 5 40 " '"*4 I -

! 2 i E ,. E*

5W ' ~"

4

  • E 7. e Y f '

2 30 - 5E ' ' 4 M 'ad ~L MM '

b' >i ME ig

~ '

g 10 2 ==

~

=

~

c ,. ,

c 0

2.0 8.0 1.2 3.0 3.9 4.0 5.0 6.0 7.3 8.5 12.0 14.0 16.0 16.2 Loca t ion E 3 s=

$ 3_ 0 ~bhI

~ ~ A E ~*

G O

G

^

E g

Ic0 - - - ~'

F gg gm m *r5 1 30

- i

.g g

p g .. r1 [9 I

e i '

,' ia H i '

--'-~ 'j

,o O,01 SO q J Ll

.;. j i

pg py, 5 5 (j EEE

=

,j 9 .e, , ._. g

< = . '

. ..g

[60 a

{ ;.-l M zE; w k; 5 [,' ) ,

L y l g .- - b 2 55 .. ...

e 50 J t: M7 f],

M [J l '

3 i 5 ':1 fj p M *- .

40 - ..,' f 5J [#'4 = MiEi E -id m 9 gg3 + 23s
t- _3 30

._a 4

55 'l 5>

~

EE

.9-20 . 5 *E$

@Ei 325 [A ' .

  • _. '

I5

,f ==

I

.i '

10 - kh q 555 h gh_-=th -j

[

s e -

2.0 8.0 1.2 3.0 3.9 4.0 5.0 6.0 7 3 S.5 12.0 14.0 16.0 16.2 Locatien - , , , ,

l . L l Figure 5-19 January 1979 benthic macroinvertebrates. Top-composition, density (or.ganisms m-2), and diversity (number of taxa); numbers at top of each bar are total density as a mean of three replicates and values in parenthes'es are total num Sottom-ccmposition and standing crop biomass (mg m); ger numbers of taxa. at top of each bar are bio-mass as a mean of three replicates. The_ patterns within each bar represent Chironomidae 11!!!, Chaoboridae , Oli gochaeta lE!!!!,

Ephemeridae 5FJ, Corbiculidae M, and others 2Ms.

i l

$ $ 5 bb b 3 b $

s x

e :

2 e s e ;~ g  :

'O ' a e n = = ~

5 Q q r T't F1 p m o -

m "'s 90 '

h,ih k hM

$ E h'"j 5 i -

no .

fI 3j -@

E q y n s E:5 t_1 a :N t

." 73 j- --

O F' 55 EEE a..o 6-I h t ad i

h kl , b

) { 60 '

- {h r

p

.,e J

d,,

ggg 7

,{ g g} L 7

^,. 7 '

thp]

7 50' .i = ,d p,p : 0  %

S g!

e

. ..y FN p ,#

de t

$.9:

2

.:@ a ' L, r I 1,i . . .

y* w P f

M i' .

$;h N, f.% E:=E jl}ill ,I.t .!!j

.l ' ,;,I j 5 gj

a. +. W E=5 'j ;. .;l': j 1- f'

' ' "l 30 " k... 1 E M ."y =55  ?..

, .4

',%] ;. c .I Jt ida

' $C >

'O . b bh M h

h. 55 ' i ,

g- =E =-!

y i ' EE:

E== .:.I

,T. ,

,f"i w @," -El- j lh; $$-

10 ' s:5 "

Nn!

+ ' ~ lP'

%l W a ..

5% '

' s Pi !.h]p ':[i; i" 19

.' t.

i-t

'j 2.0 d.3 8.2 3.0 39 *.0 50 a.J J.3 45 sJ.) g3 16.3 10 2 Location a:; - E s

  • 2 2 3 ~

2 a  :

  • O 2 2 : 2  ?., = 0 ico q --

c-, .;  : R

? .

' ,1 m A m.a ~ ~ ~i rq,. 3 =

m

30. ,-

~! k'] r~ 1 Q -

n =d " 92 k s i

$ s2- ., I

Y ,1 r* =1 :4 ~=an 2 ,3 i: - == '* -

ss ::,::  :.

t' s.

q l 2

  • e=

g 60 MM J. ,

.,< EE!

.25 y . .. =zz .*. !

y so- .

l a ;. ,

n,,

,i

,,i MI m, -

9 EE ss =se _

t ' ,

g=g -

t 40- ..

{.' t~ ,..li  : j E55- .==

gem=== EEE

=m -

I j

.' ;I.. - M !! d+"

30 '  ;

Es! a ~=E

= -

L. .a igg j' gig i, ., j 20- ,h i; L-i Es l- M EM . .ql L

- ?

.Es j g=-

e

=.=a;..." ' 5 1

= , .

=

ic. by M ._

3 _

2.a a.a i.2 3.o 3.3 4.o s.o 6..: 7.3 s.s 2.o it..o is.a i6.:

Locat.cn Figure 5-2.0 April 1979 benthic macroinvertebrates. Top-ccmposition, density (organisms.m-2), and diversity (number of taxa); numbers at top of each bar are total density as a mean of three replicates and values in parentheses are total number of taxa. Bottom-composition and standing crop biomass (mg m-2); numbers at top of eacn bar are bio-mass as a mean of three repli6 cates. The catterns within each bar represent Chironomidae 'ihl , Chaoboridae , Olicacnaeta !! Uni, Ephemeridae g, Corbiculidae E, and others bas.

f> I i{

I

e m c

  • om NS ,19.0 'O ~

NS 15.5 3 ~~*

NS 14.7 j.2 NS 13.0 >~

85z e" e,'

5m 5~e e c 19.0 7 .2 :

u s. ==

15,.5 .ao euo n ,4.7 o e m

-- 13.0 o u e .a o.ge 8.5 *2.* a o ma J uo c cc

.a .= =

u w me

  • ~

NS 19.0 u a c v

NS 15.5 .e a o-e NS 14.7 5 *78 NS .13.0 E o

.5 fiuu 5 f l 8.5 m c: -x: e e

ooz

- = =

s c

--ce-NS .19.0' u -

NS 15.5 o c. o .e_ .c_

NS 14.7 as a8o >

NS 13.0 <: uu-r .'c -

8.5 -c

$c*

._o.co

._ a -

om u ..

19.0 .c o >-

l 15, .5 >. m a'o-i1*.7 g gt i13.0 , o~c m-i 8.5 'v - e

.c u ~J goo e "S ~e.

- si NS 19.0 3S*

NS 15.5 4=2 NS 14.7 E .

Fi a

NS 13.0 ,3 -mi t.c-me.

8.5 m -

f f f f C e o e o e o ume m -r m n - o a O

w l tas ay gt ot Lt/panaut t 16 ys!3 Jo angenu tesoi l

I l

l ,:

e C

o -

NS ,19 0 -r

~

NS 15.5 >. m -r v-NS 14.7 re o NS 13.0 o 8.5 o4 e-e oe

c v o:~

= -5 19.0 -mo -

eu-

- 15.5 - e aeo c-m -

m 14.7 u e e

~ n e

- 13.0 <e. E

i. y -

M 8.5 gag m:

ue ae-a-c co NS ,19.0 g_g NS ,15.5 , , ; g.

NS 14.7 8 )2 NS 13.0 2 s. % :

8.5 #*$

c: o:

~: c

.o a .o -

ma r m NS .19.0 g -c-NS .15.5 m g en, 8 NS ,14.7 ojj NS 13.0 m s-o u

' 8.5 'o cc "o4 w

o-~

="

-m..

-o>

-o-C4 J b 19.0 o

,15*5 6>' *

.=. m' 'e 14.7 3 m 5-i13.0 g o ,

8.5 i. ?!T.2 v = e.

.2 e a:

3 C1 e m

cs

-ww oo NS 19.0 i- m=c o

NS 15.5 o "o ~ z NS 14.7 6 v

i mm .

NS 13.0 u e a 8.5 ast t , , , l- *U-2 mC c

o o o o o o 239 m -r m ~ -

=ae em-C 20s ;4 St o3 Lt/pa;;sutt15 ys!3 3o 2acanu te2o1 8

l l

i O

O 6

6.0 'e $a 5, 5.0 i y :;

4.0 *aa 3.0 e e .'

na E r.*!

L u ME

~

U u o .c 6.0 U .M w

.O Q e.0 2 0 J so k.0 *u* ,M 3.0 C C .+-

48 mC C. >

4 L

% .: C 6.0 3 ao .

e0 a - w

.r

  • oe M h.0 *c. *e C u 3.0 Ss" -

L CO '

UN

c. -m 6.0 a 7u3 5.0 g.0 C 0 m m ee 3*0 < ~=0>

-z Q

R Cn

+o

-O 6.0 ".5

. >ww 30 o" 4.0 4u*"c

' 3 *0 g7 5 -

c+ ,

C

- O m-

    • o 6.0 om 5.0 8*a 4.0 4 .~ I

, 3.0 0, Ee I i t t t m ,

e o e o a e o m n - eu ,

$2 en u .

- i L.

20s 14 gt os Lt/pa%2autt!6 ys !J Jo J agt:nu tesoi l

l l

i

1 6.0 **

R 5.0  ? 85

~ 4.0  : *S 3.0 E*

so C **

=#

on

.x 6.0 -

a a .m -

5.0 '

4, . 0 <c. c, e. #

3.0 -

oe A .O_

ua m

U CO O 6.0 _

-a uo.

5.0 V L 4.0 xa ss m

- 3.0 -m -

u v >.

' C. M x

~c c.0 w u .c.,

. a m =

50 = vo e cw

,4.0 o' -2 v -

30 u.

-en e N

m

.o s _ u-10 6 >.

mjc=

5* m o

'g*O 6 u

< C U U w 3*0 9' 4 g. .

ce C

- e

.eo u-6.0 6u ro oe 0

5.0 1 t i 4.0 84sJ

( -

3

>d*n w Q e mu 8 Q 6 en

@ Q i

I I f g a=

o o e e oou ,

C C G y A >

  1. 4 m m _ u ._

eu a u.

285 J4 gg o3 Lg/pa22augi!S ys !J Jo J aganu g es ci t

[

19.0 8 15.5 ,3 '

14.7 y 8.

14.5 e cE i13.0 S .3 o I 8.5 =C w 6 c-U 3 1.2

.s=oo U 16.0 m 8we 19.0 8m 15.5 5J

, 14.7 u ec t

14.5 3 -

.2 I

(201) l3.0 o E-8.3 o u eu nc (271) 1.2 E" 16.0 S.J o

ou 19.0 -f

  • 15.5 u 23 ^

(201) 14.7 j " :5 (6 75) 14.5 g .

- 13.0 wc. c-

.- n 8.5 3 -=

t . *7 L 6 cc 16.0 5%

eE -

i 19.0 o .

I

-15.5 ow 0 e , .z 11 4.7 uu I 14.3 e w o

c. n' =

8 13.0 g, ,mj 8.5 <=c =* .7*-e 1.2 e--

i-16.0 -ee = ._=

6@@

w w 14.0 vse s

v = a 15.5 -12 11 4.7 ae c 11 4.ce e occ  ;

l Ie.0 J _>. w -w o.

85 ,= "e *u *-

1.2 m3eC 16.0 'd 3-mm . ' .;

15*0 CNu mc

,15, . 5 ~5 - ",

I4.7 ~ 6 oo:

! ! 4.5 "J

  • 9' g

I 313.0 s .>3 1 8.5 '

I

- I.2 me*

N '

a .c- '

il6.0 # ;9_ _

  • , , t I I g OC o 6 6 >

2: o

@ R 8 N e o e--

~ _ _ _N O O N -

out teacys u C09/P845!joa2coto ys!J Jo apu teloi I l

8-'

4 119.0 15.5 (275) I'*7 -

'14.5 >. #

I13.0 2 85 i 8.5 Om i 1.2 SJ

, _ , ,16.0 .2 e 19.0 8%

.15.5 ~

8o (401) (14*7 ~ " -

(344) 14.5 g ,e g 13.0 eu 8.5 82 1.2 5M

,_!!6.0 5:5 i e-119.0 ee 15.5 I5' (260)

(688) 14*7 14.5 g "2

u e,y 13.0 u o=m

  • ~"

- 85 x .,

1.2 em=

16.0 je*

en-19.0 EmC

.d15.5 g $ ~2 (359) - '34 7 D *

>E (402)_ __ 14.5 g ggg

. 13.0 ,g gc 8.5 g 7;o 1.2 =-o il6.0 $gf l19.0 2*eo w-J 15.5 03~

-oe (415) '14 7 ? ""8 jil4.5 g (408) = ,a 13.0 e  ;;- g 7 i 8.5 , ,ea l 1.2 o o

__jl6.0 g[I n .-c m5e 19.0 es-

'15.5 _ey; 114.7 u .m. = ..

'14.5 3 c m, 113.0 s ~o

! 8.5 3 s i 1.2 S "' ~I 16.0 *32 =-

t i I I I '

I 235

=cu o m o m o m o m o cn o I o  % m o ~ m n -

~ - .m -

w I

aug taJoys u3 C09/ pays!3o;2 sala 4513 Jo Jaquu te:o1 l

l 'l

16.0 e 6

1 4.0 m>. e r a

'3.0 u b

6.0 6

. u 4.0 c. 3

< v 3.0 e

.6.0 e .

I 4.0 w. ee e a :n i 3.0 x 6 w om 2 -

0 0@

~1,6.0 .

s, e

4.0 owy a

$ o .

  • 3.0 -u
  • ~

l 6.0e . 8'8 4.0 c .z 3.0 ' by o"

6.0 .

7" 0 E o a 4'.0 30 o 8-e c.

L .T f .O o . o 4.0 $ '8 3.0 =

'.=

@W n -

6.0 . cC o 4.0 *u 6 3.0 o w .

v es UN

- cn 6.0 : 8-4.0 'u **

en 3.0 Cr b 79 6.0 . 02 4.0 ?

3.0 d N~E S co

= r~

6.0 >. 9 4.0 5

  • a 3.0 ' ,3 ,E 6.0 e r41 4.0 E  ;

l f f 1 1 f f '

J.0 m

cd

.8 6 v o m o m m

=o o

o e e c :n -

rs m N o r% m N N - - - - u .

au t taaoys tu 009/Poys!JoJ23st8 45 !J Jo J agtunu t e201

'~

_ ,8.08

,8.ON

,1.0B p

. 1.ON

~

C C

  • _ ,8.08 9

. 8.ON g D0j 1.08 I .c g 1.ON g-gC .'.

em 8.0B g f, 8.ON I o

1.0B d *j 1.ON "

4 "

-m o

+

8.0B --

8.ON g S e.

1.0B ' "-

1.ON

.t 8 m-3 m u

8.08 'o

~~

8.ON u "

1.08 j Jg 1.ON yQ o-u.

6 8.0B --

1

- 8.ON g c<

l.0B ,f.

1.ON j@

  • -b w

C 8.0B _ P?,

8.Oh - ~ .S 1.0B e ,3 1.ON *-

2 ,;

c

.= e 8.0B yg 8.ON E j, i 1.0B 3 _5 1.ON 5u-e.

i o

8.03 -9 f l

8.ON p  !.@

l 1.08 < c;

! 1.ON 2g l r-m 8.08 '

m. ,

(234.81 8.ON > m i 1.0B i n

( 170. 7'- 1.ON $ i

._o i

i e e e I I i I '

g e o e

g s e e

m o

-r e

m o

N e

o t

w 0001 JSd 4513 jo swe26 Jo JagwnN '

5.0Bl.- .

5 0N c'. a m

4.5B < 'a

. 4.5N1 j .5 vE ,-.*

5.08'  ?*

5.ON 5u E3

- 4.5B e =n cv 4.5N

  • e*

2.E u-O

- 5.08 e E' oo v 5.0N oac u m o

4.5B aa+

4.5N 2

~

mm -e 2

5.0B 32g 5.ON e ' ~ ~

4.5B Et0 4.5N. ,* ~mca 2,

T .

-m 5.0B b eg 5.ON j p-4.5B *U T .- -

4.5N 8oi u<

v 2%o=

5.08 5- o uo 5.ON 9 4.5B $3~5 4.5N @ -m 7m O-

- 5.0B u =-

. 5.ON j,'

o * -

4.5B ~* g o 4.5N y g g

.a ,

C u,e 5.0B .o c aem

. ,5.ON g_y

- 4.5B 1,=, ,

4.5N y u g o~

.O *e

s. vc 5.0B ,eo 5.ON y$g 4.5B *= za e' 6.5N < .

m

, 5.0B J/

'5.0N >,

4.5B 52" (303.51 4.5N o u.

1 I 1 I I I I I I i e o e o e o o o m

e o o l c m co h @ m -7 N -

gm 000g Jad ys!3 Jo sweJ6 ao ascenN r

l C .

N C N e e N .= = 0 a= c C C w - T C C - N C N - 40 4 C N N N e C -- e f z

e. daaddddd4d a - dddadddada4dddddddd44a g -

i d = . C. 4. C. N. 4. N. 4. O. . .=. 4 O.

4 c e g c. e. w. C. N. a= . O. . C. N. O. e.

. . N. C. O. . N. O. N.

  • p

(

.J =

a e O@ o wN- O C C C C, C - O C C - O C O N O N O. == O C C @ C C C C. C. m N w a g

0 E * '

Og cc ee O. c. a. m. . w. h. o. . o. . o. . m. o. o. o. s. C. C. . . . . C. . o. . c. o, N. N. o. e.

e l

C U C w N- C a= C C C C C C C C C - C C -- C @ C * - w w o cv .= c c C C C w a= c C .O. -

M 20 e C ar C C N.= a= ==. O ==O C .= C @, V, CO C Ceo CO O ON e N == e CO m C we @ CDd N CNCNC .w @ e 4 4 .c Na N .= gr ei gr

$ .m= == @ == m e N Q  % w e C l O g N -

i Wa c0

.a.

g e ..w.=.N.m. .n.o. .w.o.o.m.w.N.C.o. ,. v.o.to.C.N.N.o. . . . .o. .

e

p. O.wO ONm O O O CwC at C C C C - C O C m C
  • C C CD C C N C < O C C v CN e ,

T 3

O

  • e a

. e. . e. N. . . o. . m. o. o. N. m. m. o. o. . o. e. w. o. m. e.**C C. C. w. . . C. . . C. m.

tQ oa @ C C C vC vC N e e gg O ee CQCNCCCOOmCCCO-CCCNQwCC

== N

, 4U g q l

Vc 0, l . . . N. N. m. C. o. w. . o. o. . c. N. e. c. e. m. e. N. C. m. . o. . c. N. C. o. w. n. e. e.

ao V e . ee e e C. N a= C N C = C C C C C C. = N C C C C O N- C .= mo C C. == C a= C C o -e e g6 o e, g ,

C .=

i

@U lg N [

M w ., memCWNECwNCCc-wCCeNOWCS8Cw-w-Camm NeNuN m ~m TN o o -e

~-m ANwNm m o- tN - -

- w - C

s. -J !d mo  ;

Gb

.C - I e.e.N. .o. .e.c.o. N. N.a.C.o. o.m. .w.e. . N.C. . c. N.e.c. . . . .P.

.e ao l8 =gCmcooCONCoCCCCCCmC-Co-Ce-CeoCCN g

% o 1 -

6 Z

oe 1. . C N m - - - - C - .r e e w .r e C C C w - m C - m C - e w e c - - N - m e

g ,,

o o o

.; 8 .?

u f afadddddddddddadddddaddaddaddddd4 :f b c e U- o g a C. 4 4. .=. =. w. C. C. N. N. O. C. N. N. N. O. O. C. e. ==. N. C. w. #. Q. . ca. . =. m. C. . G. N. O.

e gg C **=

9 g

m N. j 44 C-eC-COCCCCCCC-OCCCONOCeCC.CC-OCo@

- v m N 5

.- - e

.g o C

  • I C 4 =r .* e -eoN o ar%eN ~e C aa=== w C C -w- w e s c o C g - -mC e *'.* C - .e = w ~eCome - er m N M 14
v. N N@

@ N .F M CD ec N - @ r mC C IZ De CM

'i 4 4 U

, CQ i OJ +

l +. e -

- 3 3 Q v

@e 3 .'5 e.= n in s

3

=,

< N'-

  • . t 3i.e=

4 w te de 6'"

'"d @* l l@ 3; =* O ce 3 ee a

!6e Q., e 33 6

O iA 3

==

el et -4a ==

se e de w i.Ci.U Q f% se c - e w. 3= c - vl 3 we v l > .eell op .a* ne-t w*f 3. telJll! O a-ufb

=

-{ w'i e

  • O en= @ Oletc 3 e.= e t*J C 10 6 g w, we 3f
  • 896

,.W.-tc -

Q =t3,iet3e rO T 919{ d.a= i eel S 44 3 W e j c'i =l 0,;*t *d 4e; U e 2.* i ! = . *.i =l e o

,e ..

Cl $.14lJ le -O w%c 216 tc . 6. 6 ua ,alvia .+. - viv a. et3'w m2 ms m 3 o .t E. wie.. l'o ,3 et po 3

.* ..,m.i bt o, m6 2;a!4 em eicte

,36 ; el wle=e

=ic - 2 n.a.

.o. gliat el.

WC

  • e= 3 e

ed G4

=

QJ

.SM ., * .

. . ww.

3: 3* -:ej i tf.##

.-4= #i.e. l ei,et

> - .nia.

~~ -

  1. 4 #i ew-Q.-- e in. ee wi = wi O. 3 g -
- O.

.n c : C.i et. - - - -

c a =;gta; g'

.e, c e- o 69+ . o.i D. w.. di c.o.i.s.i.e..,.e c o' 3 t s 3,1,g, g.s,ww y4 i

c r 6.0:w,6 m . ..

,icag,5,x 9,x, m.

3! ,= .e, t

C,. M.h -

c 01 O t c is d'.c'u%a 2.x' X.

9 ;v6vtwiW u - hD .I i O w! a O[3w'.f"" .-== =.=-d6.c f.2. 6. 4. . d.e W e.G.e.t a.d w. Z A.a. ".= u .A

' f.s.

3

>=

[ g .,C o ..

l l ..

m N y i -

.O l- 4 I'

-i

C O l C. *. *. w. C. C. ". ~. C. 80. M. C. C. C. w. m. @. C. =. C. N. C. N. m. . . @. N. w. C. C. . m, ' o, Z H C =C** *NN C C C. C. C == w m C - C N O C C O m Q = = c C @ N w C C C N g mC 9 e

=J O* m. c. @. c. C. * . C. @. m. m. C m. w. @. m. C. =. C. m. C. =* M. =. . @. C C * -C C =* =*

m C.

C y .4% ONiaeCCCCC-mvCCCNOCCCNC-CCCeNwCCCN 4**

C t = ~ - - - - - =

0

  • O *m N 2
    • . o. m. @. m.C.C.C. .C. C. .N.C.m. e. m.C. C. C.O.N.C.m.C.C. C.C.C. . C.o. .w. e.
  • C m Ne C C C o c o C C C C C C C C C o o m c - mNC o m a m C C C a= m

,O g N N @

a , -

v ,. Cee=CONCoNN.eomCmmCNCNCeNN-wCgCCe@

o,N muu , eu N. N m, e

O w Nm N - N m io @

-. o = N - N C

(3 i

m't Q l C. e. e. m. m. . =. C. a=. C. C. C. C. C. =. m. ta. =. N. =. m. C. M. @. C. =. ==. =. =. C. C. ~. N. C.

ay H Co O -w =N M O C. C C C, C C C O - C, w m C. C C. C C C @ C C. - = a m N O C o. m g J

C Q. 9 m N t N

.4 C. e. M. N. M. =. ". C. a=. Q. C. C. Q. w. . @. M. a=. CO. ==. @. C. P.@. C. ==. N. e. CO. C. C. *=. N. e.

5L w > ci O mm-m W OeC C CvC O O"J Ca=C v w a C,O C,O O.3m o C. Nd"'tM - CCC v w w

@C no o u =

=

C4 W C u 8 ,

C 4 y .m M C. . CO. M. w. C. @. C. . C. C. C. C. m. =. w. C. C. m. . N. C. m. e. C. C. @. m. :0. C. C. N. N. m.

m OmmCCO-CCCCCCCCCCCCC-CO-CCNC=CCC@

sq O h 9

- N N m g b r= 6 a=

9 Cw @a= N N@ m C O -O C C C C C@w mN N = NN@ mCOo m @ C == NNm= w CO O C ==MNM C3 m "FJ .c w m Ne m gg rw mN

m. e == - er N 4m " N
  • mb @4
  • ~ & <

%C gg

l. C. C. e. @. N. N. N. C. N. C. C. w. N. N. O. N. O. C. o. C. e. C. N. . e. C. e. h. m. C. N. N. m.

CN m-- O N C O C C Ce C C .= C C - C, C C m C M C Ow-N C C CD C C C C v vC m C.

C

+.8 _C '

C.

O C ,

6 .r=

C.

  • 4 e. n. e. m. m. . m. e. . e. e. g. .....

. . g . e. e. N. e. %. e. . m. e. e. m. m. N. o. .. .. %.  %.

U  %

C =@ w m C vC C C vC C C C C C C C v C O N C a= C C, m C o m C C C C* C -

> M g m m w me 8 C g ,

= 4

      • f.

7 C. W. N. .=. m. . @. o. e. C. C. . . e. c0. . C. C. C. C. N. O. N. m. C. C. e. w. =. Q. =. m. w. C.

Cy * *N lH Cecc@omCCCCCCCCCCC=CCCONCC-C-CCom e gy g ** = - w v = e a

C

., -l'g "O

'C .=

4 CC wmC @ .=

NN w Criww=N O N O C - N mm N *

  • w == C C Nm o m O C @ @C C C N-m w m CeCCNm N m

o 3

Cd } " w C C U

CO OJ

. M

' - - sw - t ,

s

! e es 4 e t -

L+

O rs sl- et n m e j g 'l cu c'g.#1#1E'i c is 4 cl.ie.

m. - .mt
9. O e -

.er.,i o si s, C 4,J ie 4 tw Is

-o et3 o1 c- a c.# si -C "c- a v w Q 4.i o!i- c i c

% . ... a6 . c.

,, i wl. gj

- e,,#f ed#swli - -c .M.< #l qa -t htow5ft., c:~,ls es m el eS0 E u rio wiwlw=.l.m.:o =,si.,v H e s W=- o,.,-i.ol we.ti c.

we s-ore m elTc w 6 p.E, m- 3 -,

=3ww 5,... - o.% # s t o..r i w er,s;w i . w mC w*) e w] el a,4.6 W6 Col * >g e t 6 4.2.'.o, .m. s, W s w a! C':"1 C. Gi U #1 G,6.Spe- e >l sgs s Wt"eWic:4;W sad 6  !>

C iAl w*I ne c ael=, g 4 99terl s- si.p; E!E we st Clem. M m

  • C P=i g c. aj-1
    • '" 3 ** Q 4 gaiM ht w,es s st se gl i.,l es gl Cr5 Cr$ 5 t

g<

C o,e, giel i s-3i ci o.elm.i ela ei , ,o _. s. 6s wss -= - #,4 pin i.i .. .i . . .e.,1 s-o i .L. .. -

.#.wi f t C. -= .

, me=--- ,

w =,

m C. 8i .e : oi 5.2.

w.c @ w -.oi  % =t m .- .,5'. gi cu 15; 8.,,

oi q ci e ge gi,5;.at g ali sd ;; s. :

U e'k .k3.Q%.!w.

g wpviw.we>

. . ._ofi 6 l Q. = .. . . ., .'w .ym ym*i!.:.=w.v .

l3. m. h. e. an, e , t.,.m = s, p. = . c i o. . i .

3. A.----c.v 4

w w.-,,.

.-.- 9 ..z .c. A a.l . a.

. 2.a w,l 4

m C

N e

M Q

O "J

>=

8 LITERATURE CITED

1. Duke Power Company, 1974 McGuire Nuclear Station. Environmental Report, Operating License Stage. Volume I and 11.
2. United States Atomic Energy Commission Directorate of Licensing, 1972.

Final Environmental Statement: Related to the Proposed William B.

McGuire Nuclear Station Units 1 & 2 (Duke Power Company). Dockets 50-369  ;

and 50-370.

3 Colon, F. P. and J. W. Leavitt, 1973 Progress Report Number 1. Lake Norman Hydrothermal Model Study for Duke Power Company. Alden Research Laboratories, Worcester Polytechnic Institute, Holden, MA. 31 pp.

4. Ryan, J. and D. R. F. Harleman, 1973 Analytical and Experimental Study of Transient Cooling Pond Behavior. Ralph M. Parsons Laboratory for Wa-ter Resources and Hydrodynamics, Report Number 161, MIT.

5 Huber, V. C. and D. R. F. Harleman, 1968. Laboratory and Analytical Stud-les of Thermal Stratification of Reservoirs. MIT Hydrodynamics Laboratory Technical Report Number 112.

6. Duke Power Company: Letter dated June 27, 1978 to Mr. L. P. Senton, Chief, Water Quality Section NCDNRCD.

l l

I APPENDIX TABLE OF CONTENTS  !

PAGE Appendix Table 1. Lake Norman Physical Data . . . . . . . . . . . . . 82 Appendix Table ,2. Lake Norman Chemical Variables ..........,94 ,

Appendix Table 3. Phytoplankton Data .... . . . . . . . . . . . . 106 Appendix Table 4. Periphyton Data . . . . . . . . . . . . . . . ... .118 Appendix Table 5. Zooplankton Data ..... ... ... . ... . 130  ;

I Appendix Table 6. Senthic Data . . . . . . . . . . . . . . . . . . . 154 l t

1 Appendix Table 7. Gillnetting Data . .. ........ . . . . . . 162 i i

Appendix Table 8. Electrofishing Data . . . . . . . . . . . . . . . . 173 l

Appendix Table 9. Trawl Data .. . . .... . . . . . . . . . . . . 185 i

J Appendix Table 10. Rotenene Data. . . .. ............. . .186 E

-t i

4 4

t b

i 31_. .

5

Appendix Table 1. Page 1 of 12 Lake florman physical data collected 6 and 7 June 1978 4

Dissolved Specific Temperature Oxygen Conductance Turbidi ty Location Depth ('C)' (eg/l) pH (umhos/cm) (NTU) _

1.0 Surface 24.5 8.5 7.4 43 4 Bottom 10 5.7 6.2 44 36

! 1.2 Surface 24.2 8.5 ~ 7.4 44 4 Bottom 11.9 7.0 6.3 43 24 2.0 Surface 24.5 . 8.3 7.3 44 4 Bottom 10.2 6.2 6.2 44 28 3.0 Surface 24.1 8.4 7.2 44 4

, sottcm 10.9 6.5 6.2 44 38 4.0 Surface 24.6 8.3 7.3 44 5 Bottom 16.9 6.8 6.4 42 10 4.5 Surface 24.4 8.3 7.3 44 4

Bottom 14.2 6.7 6.3 42 15

~-

5'0 Surface 25.0 8.3 7.3 44 5 Botton 11.4 5.9 6.2 44 29

! 6*0 Surface 26.1 8.0 7.3 44 7 Bottom 15.6 5.1 6.1 42 44 4

7 ' *-

Surface 24.5 8.3 7.3 44 4 I

Bottom 10.2 6.0 6.2 44 40 8'0 Surface 24.6 3.3 7.3 44 4 Bottom 10.4 5.6 6.1 44 42  !

11 ~* 0 Surface 24.8 9.1 7.3 44 4 4

Bottom 10.7- 6.7 6.2 44 36

! 13'0 ~ Surface 25.1 8.9 7.0 44 4 10.7 5.8 Bottom 6.1 45 30 14*0 Surface 25.2 9.0 7.0 44 6 l

! Bottom 16.3 6.8 6.2 42 4 25.5 9.1 1

15'0 Surface 7.4 44 3 Bottom 11.6 3.0 6.0 47 32 15*9 Surface 25.2 9.3 7.7 43  ;

Bottom 11.7 3.0 6.0 47 32 l 16.0 Surface 21.3 ~ 8.5 6.8 62 17

-34.0 Surface 25.0 - 9.0 7.2 44 4

! Botton 10.9 6.5 ' 6.1 44 , . 23 50.0 Surface. 25.4 9.1 - '7.3 44 NS ';

i Bottom 12.7 6.5 6.2 ~43 NS i 60.0- Surface 19.S 7.2 6.5~ 74- NS Bottom 1 2.8 5.3 -6.2 43 'NS L

j NS y Not Sampled

j. -o E-- - _ _ _ . -

4 J

I Appendix Table 1. Page 2 of 12 Lake Norman physical data collected 6 and 7 July 1978 i Dissolved Specific Temperature Oxygen 1

toth Conductance Turbidity '

(*C) (mg/1) pH (umhos/cm) (NTU)

, face 29.1 8.2 7.3 38 3

' : tem 10.5 3.3 6.1 38 .50 l faca 28.7 8.1 7.2 39 4 i : tom 14.7 4.9 6.3 .40 15 t

i-face 2S.5 8.2 7.2 38 3 item 11.0 4.9 6.3 37 26 face 28.1 8.3 7.2 38 4 [

! ; tom 12.1 4.3 6.2 37 34 face 28.7 7.9 7.2 38 5

. tom 28.6 8.2 7.2 39 4 i face . 28.0 8.3 7.1 38 3

. tom 17.3 4.4 6.0 36 6 face 28.1 8.2 7.3 38 3 '

, tom 12.4 3.8 6.0 38 26 face 27.0 8.3 7.2 38 4 5 tem 23.2 5.7 6.0 38 12 f ,

face 27.7 8.4 7.1 38 3

tem 11.0 3.9 6.1 37 40 l face 27.6 8.2 7.0 38 4 1

tem 10.9 3.6 6.1 38 46 face 27.2 8.0 7.0 39 2  ;

l tem 11.2 3.6 6.3 39 42 i face 26.7 7.7 6.8 39 2 ton 11.6 3.5 6.4 39 30 ,

l face 26.5 7.6 6.7 39 4 -

tem 16.3 3.2 6.2 37 14 l l face 27.6 8.2 7.6 39 3 l tem 11.8 2.8 6.3 40 34 i

face 27.7 8.7 7.8 39. 4-tem 12.1 1.0 6.3 42 35 face 23.0 7.2 6.8 48 6 l face 27.0- 8.0 7.1 39 4

--tom 11.5 3 . 7. 6.3 38 24 1

face 127.1 8.1 7.2 '39 NS tem 14.6 3.7 '6.2 37 NS

-face 18.7 4.8- 6.2 54 NS l

tem 13. 7-' 3.4 - 6.2 38 NS

.i }l i

i d

Appendix Table 1. - Page 3 of 12 Lake Norman physical data collected 8 and 9 August 1978 Dissolved Specific.

Temperature Oxygen Conductance Turbidity location Death (*C) (mg/1) pH (umhos/cm) OtTU)

Surface 27.3 7.9- 7.2 42 2-1.0 10.9 0.7 6.0 45 '58 Bottcm Surface 27.3 7.9 7.2 43 3 I2 Bottom 14.0 2.8 5.9 42 24 Surface 27.5 7.9 7.2 43 2.

2.0 11.1 1.9 5.9- 42 46 Bottom Surface 27.8 7.9 7.2 43 3 3*0 12.2 1.9 6.0 42 24 Bottom Surface 28.9 7.7 7.1 41 2 ,

4*0 25.7 5.4 6.3 41 5 Bottom Surface 29.0 7.9 7.4 43 2 4*5 21 .9 1.1 5.9 43 6 Bottcm Surface 28.5 7.9 7.3 43 2 5*0 12.9 1.1 6.1 14 22 Bottom Surface 29.2 8.0 7.5 43 3 6*0 23.8 1.5 5.9 44 9 Bottom Surface 28.3 7.8 7.2 41 3 7*5 11.2 0.9 5.9 42 46 Bottom Surface 28.3 7.7 7.3 43 3 8.0 11.3 0.9 5.9 43 52 Bottom Surface 27.7 7.4 7.1 43 24 i 11*0 12.1 1.4 6.0 44 410 Bottom .

' Surface 27.5 7.0 6.8 44 42 13 0 12.4 1.4 6.0 44 35 Bottom Surface 27.6 6.9 6.8 44 48 ,

14*0 26.5 4.2 6.3 47 94 Bottom [

Surface 27.6 7.3 7.0 43 42 15 0 12.9 1.2 6.0 44 280' Bottom Surface 27.6 7.5 7.3 44 46 .

15.9 13.5 0.0 6.7 74 500 Bottom

~

16.0 Surface 26.9 5.5 6.9 40 4 Surface 27.6 '7.1- 7.0 43 10 34.0 12.3 1.5 6.0 44 180 Bottom

- Surface 27.6 7.a 7.1- 44 NS

=0.0 19.5 0.0 6.0 47 -

Bottom. NS

- Surface 16.6 0.8 6.2 47 NS e0.0. 16.6 0.6 6.1 '47 -NS Bo ttom NS = Not Sampled E

Appendix Table 1. Page 4 of 12 Like Norman physical data collected 5 and 6 Septemoer 1978 Dissolved Specific Temperature Oxygen Conductance Turbidity Location Death ('C) (mc/l) pH (umhos/cm) (NTU)

Surface 27.5 8.3 7.2 47 2 1.0 11.7 0.8 6.4 50 26 Bottom Surface 27.5 7.5 7.3 47 3 I2 Bottom 23.3 0.3 6.3 50 5 Surface 27.1 7.5 7.2 46 3 2.0 12.1 0.8 6.4 46 30 Bottom Surfaca 27.0 7.3 7.3 46 3 -

3.0 2.8 6.4 Bm' 12.8 48 . 20 Surface 27.3 6.9 6.7 48 4 40 27.0 6.6 6.7 48 5 Bottom Surface 27.5 8.1 7.4 48 4 4*5 21.9 0.1 6.1 50 6 Bottom Surface 27.4 8.0 7.3 47 4 5.0 14.0 0.1 6.3 54 18 Bottom Surface 27.3 6.9 6.7 46 5 6.0 26.5 6.4 6.6 46 9 Bottom Surface 27.0 7.2 7.1 47 3 7' " 12.1 0.1 6.3 50 25 Bottom Surface 27.5 7.3 7.4 48 3 8.0 12.5 0.2 6.4 50 28 Bottom Surface 27 5 7.6 7.2 49 2-11.0 Bottom 13.0 0.1 6.5 50 22 13.0 Surface 27.0 6.4 6.8 50 4 Bottom 13.0 0.2 6.6 51 14 14.0 Surface 27.4 7.4 7.3 48 5 Sottom 25.0 0.7 6.3 5.9 10 15.0 Surface 27.5 7.6 7.4 48 4 Bottom 15.0 0.1 6.4 52 9 27.5 8.5 8.3 48 a 15.9 Surface Bottom 14.2 0.2 6.9 62 38 16.0 Surface 27.0 7.3 7.3 52 3 Surface 27.4 7.2 7.1 49 5 34.0 13.2 0.1 6.4 52 19 Bottom

- Surface 27.5 7.4 7.3 48 NS

=0.0 20.1 0.1 6.3 54 NS Bottom Surface 20.0 1.8 6.3 ~ 58 NS 60.0 18.1 0.6 6.2 58 NS l Bottom NS = Not Sample:i Appendix Table 1. Page 5 of 12 Lake Norman physical data collected 3 and 4 October 1978 Dissolved Specific Temperature Oxygen Conductance Turbidity Location Depth ('C) (ma/l) pH (umhos/cm) (NTU)

Surface 22.9 7.0 6.6 44 2 1.0 Bottom 11.7 0.0 6.3 62 46 ,

Surface 22.9 7.2 6.6 44 3 1.2 19.3 1.7 5.9 46 Bottem 9 Surface 22.9 7.1 6.6 44 3 2.0 12.2 0.0 6.1 53 Bottom 30 Surface 22.9 7.4 6.7 44 3' 3.0 13.2 0.0 6.1 51 38 Bottem

' Surface 23.2 7.1 6.6 44 3

0 Bottom 22.7 7.0 6.6 44 4 Surface 23.2 7.5 6.8 44 3 4.5 22.4 Bottom 6.4 6.4 44 4 Surface 23.2 7.6 6.8 44 3 c.0 15.4 0.0 Botten 6.2 54 34 6.0 Surface 23.5 7.9 7.0 44 4 Bottem 22.7 7.5 6.8 44 6

    • Surface 23.0 7.3 6.7 45 3 Bottom 12.5 0.0 6.1 53 48 8*0 Surface 22.9 7.0 6.6 JS 3 Bottom 12.5 0.0 6.2 54 32 11.0 Surface 23.5 5.9 6.4 46 2 Bottcm 13.0 0.0 6.3 44 23 Surface 25.7 4.2 6.3 48 4 13.0 Bottom 14.0 0.0 6.2 50 14 14.0 Surface 28.9 2.9 6.3 52 6 Bottem 23.5 4.6 6.4 46 12 15.0 Surface 24.4 6.1 6.6 46 3 Bottom 20.6 0.0 6.3 53 21 15.9 Surface 23.5 6.7 6.6 44 4 Bottem 17.5 0.0 7.0 108 21 16.0 Surface 23.2 7.3 7.2 60 4 2 4.0 Surface 25.0 4.8 6.4 48 4' Bottom 14.3 0.0 6.2 52 15 80 0 Surface 24.3 4.8 6.4 47 '6 Botton 23.1 4.4 6.3 44 !is Surface 21 .7 2.8 6.3 49 NS 60.0 21 .2 ~2.4 6.3' Bottem 51 NS NS = Not Sampled l

Appendix Table 1. Page 6 of 12 Lake Noman physical data collected 7 and 8 November 1978 Dissolved Specific Temperature Oxygen Condectance Turbidity Location Deoth ('C) (mg/1) pH (umhas/cm) (NTU) 1 *0 Surface 17.2 8.6 7.0 48 2 Bottom 11.8 0.0 6.9 i? 40 Surface 17.2 8.6 7.0 47 3 -

1*2 Bottom 17.2 8.6 7.0 47 3 2.0 Surface 17.2 8.6 7.0 43 3 Bottom 12.8 0.1 6.3 57 4 3'0 Surface 17.2 8.7 7.0 47 2 Bottom 14.4 1.3 6.4 57 36 4*0 Surface 17.2 8.6 7.0 48 3 Bottom 17.2 8.6 7.0 48 4 4.5 Surface 17.2 8.6 7.0 47 3 Bottom 17.2 8.6 7.0 48 3 5*0 Surface 17.2 8.8 7.1 48 3 Bottom 16.8 8.1 6.8 48 6 Surface 17.3 9.0 7.1 47 4 6*0 Bottom 17.3 8.9 6.9 48 5

' i 7*5 Surface 17.3 8.4 7.0 49 3 Bottom 12.8 0.1 6.6 70 40 Surface 17.4 8.3 6.9 48 3 8*0 12.5 Bottom 0.1 6.6 71 60 Surface 18.3 8.2 7.0 50 2 '

11'0 14.3 Bottom 0.1 6.7 72 50 Surface 19.0 7.9 6.9 50 3 13*0 16.4 Bottem 0.6 6.5 62 32 Surface 24.0 8.0 6.7 50 8 14*0 18.1 Bo ttom 6.1 6.7 50 5 15*0 Surface 19.6 7.8 6.8 50 4 Bottom 17.0 7.2 6.8 50 30 Surface 18.4 7.9 6.9 49 4 15'a '

16.5 7.7 6.8 50 Sottom 16 16.0 Surface 17.0 8.6 7.1 52 4

, Surface 18.5 8.1 6.9 50 3 a4.0 17.0 1.9 6.5 Ecttom 56 22 Surface 20.9- 7.7 6.8 50 NS 20.0 17.5 6.9 6.8 49 Bottom NS

- Surface 17.4 3.6 6.8 49 NS e0.0 17.4 3.5 6.8 49-Bot cm NS NS = Not Sampled i

Appendix Table 1. Page 7 of 12 Lake Noman physical data collected 5 and '6 December 1978 Dissolved Specific Temperature Oxygen Conductance Turbidity location Death (*C) (ag/l) pH (umnos/cm) (NTU) 1.0 Surface 13.7 8.9 7.1 47 6 '

Bottom 13.1 7.9 6.9 48 18 Surface 13.7 8.9 7.2 46 7 1.2 13.6 Bottom 8.8 7.2 46 6 2.0 Surface 13.7 8.9 7.2 47 6 Bottem 13.2 8.5 7.1 47 12 3*0 Surface 13.5 9.0 7.2 45 6 Bottom 13.1 8.3 7.0 47 18 Surface 14.2 9.0 7.2 47 6 4*0 14.2 Bottom 9.0 7.0 47 7 Surface 14.0 9.1 7.3 46 6 4*5 13.8 Bottom 9.1 7.3 46 5 Surface 13.7 9.4 7.3 46 c.0 13.3 5

Bottom 9.0 7.3 46 10-Surface 13.6 9.5 7.3 43 8 6.0 13.5 9.4 L

Bottom 7.3 43 9 Surface 13.8 8.8 7.2 48 6 Bottom 13.1 8.2 7.2 47 22 .

8.0 Surface 14.1 8.5 7.1 48 6 Bottom 13.1 8.2 7.0 48 21 11.0 Surface 14.5 8.2 7.0 22 7 Bottom- 13.8 6.8 6.8 40 28 13.0 Surface 16.5 8.3 7.0 46 10 Bottom 13.3 7.7 7.0 48 32 14'0 Surface 21.5 9.0 6.9 52 la Bottom 14.6 7.3 6.9 48 10 15.0 Surface 15.8 8.2 7.1 48 10 Bottom 12.8 7.6 7.0 50 38 15.9 Surface 15.1 8.7 7.2 48 8

[ Bo ttom 12.7 7.6 7.1 50 28 l 16.0 Surface 13.8 9.1 6.9 48 8 Surface 14.9 8.1 7.1 44 8 34.0 13.5 Bottom 7.3 6.9 44 48 l Surface 16.6 8.2 7.1 48 NS 50.0 13.4 l Bottom 7.5 . 7.1 48 NS.

- Surface 13.5 7.7 6.7 50 NS o0.0 Bottom 13.0 7.6 6.5 50 NS l NS = Not Sampled 1

Appendix Table 1. Page 8 of 12 Lake Norman physical data collected 2 and 3 January 1979 Dissolved Specific Temperature Oxygen Conductance Turbidity 1.oca tion Death ('C) (mo/l) pH (umhos/cm) (NTU)

Surface 9.2 10.4 7.0 44 8 1'0 Bottom 9.0 10.4 7.1 44 7 Surface 9.0 10.2 7.0 45 7 1*2 9.0 10.2 7.0 45 8 Bottom Surface 9.3 10.6 7.0 45 8 2*0 9.0 10.6 7.0 45 7 Bottom Surface 9.0 10.6 7.0 45 8 3*0 9.0 10.6 7.0 45 9 Bottom Surface 9.1 10.6 7.0 46 9 4*0 9.0 10.8 7.0 46 7 Bottom Surface 9.0 10.8 7.1 46 6 4 ~: 9.0 10.8 7.0 46 7 Bottom Surface 8.9 10.9 7.0 46 8 5*0 8.4 10.9 7.1 46 9 Bottom Surface 8.5 11.1 7.0 45 9 6*0 8.2 11.1 7.0 45 10 Bottom Surface 9.2 10.5 7.0 46 8 7*5 9.0 10.6 7.0 46 10 Bottom Surface 9.1 10.4 7.0 44 8 8*0 9.0 10.4 7.0 46 9 Bottom ,

Surface 10.5 9.9 6.9 50 6

'l'0 9.7 9.6 7.0 50 7 Bottom Surface 11.1 9.5 6.8 52 8 13.0 8.5 9.4 6.9 52 10 Bottom Surface 18.0 9.7 6.7 58 10 14.0 11.0 9.0 6.8 52 9 Bottom Surface 12.8 9.7 6.8 52 8 15.0 8.0 9.8 6.8 52 10 Bottom 1 Surface 9.5 10.2 6.9 51 8 15*9 7.5 9.9 6.8 53 10 Ecttom 16.0 Surface 8.3 10.8 6.8 60 10 Surface 10.7 9.7 6.8 50 6

'M' *0 9.7 9.2 6.9. 50 10 Bottom Surface 12.5 9.4 6.7 52 NS 50.0 Bottom 8.8 9.6 6.8 52 NS l

- Surface 8.7 7.7 6.9 54 NS c0.0 Bottom 8.7 9.7 7.2 52 NS NS =- Not Sampled 5

1 Appendix Table 1. Page 9 of 12 Lake Noman physical data collected 6 and 8 February 1979 Dissolved Specific Temperature Oxygen Conductance Turbidity Location Death (*C) (mg/1) OH (umhos/cm) (NTU)

Surface 5.0 11.6 7.4 43 5 1.0 5.0 11.6 7.3 43 Bottom 6 Surface 5.0 11.6 7.4 42 5 1*2 5.0 11.6 7.3 43 Bottom 6 Surface 5.0 11.6 7.3 42 6 2*0 5.0 11.4 7.3 43 6 Bottom Surface 5.0 11.6 7.3 42 6 3*0 5.0 11.6 7.3 42 7 Bottom Surface 5.0 11.6 7.3 42 6 4*0 5.0 11.6 7.3 42 Bottom 6 5urrace 5.0 11.8 7.3 42 7 4*5 4.9 11.8 7.3 42 Bottom 7 Surface 4.3 11.9 7.3 41 7 5*0 4.3 11.8 7.3 Bottom 41 7 Surface 4.0 12.0 7.3 41 8 6*0 4.0 11.9 7.3 40 8 Bottom Surface 5.4 11.6 7.3 44 7 7'5 5.0 11.4 7.2 44 7 Bottom Surface 5.4 11.6 7.3 44 7 8*0 5.0 11.4 7.3 44 9 Bottom Surface 6.8 11.4 6.9 49 9 11*0 6.8 11.5 6.9 50 10 Bottom Surface 9.9 11.6 6.8 52 20 13*0 5.4 11.2 6.9 49 22 Bottom Surface 16.0 11.9 6.6 55 21 14*0 7.6 11.4 6.8 52 20 Bottom Surface 7.0 H .7 6.9 50 20 15*0 4.9 11.4 6.7 47 21 Bottom Surface 4.4 11.5 6.7 46 25 15.9 4 . '; 11.5 6.7 -46 22 Bottom 16.0 Surface 5.6 11.8 6.7 54 5 Surface 7.4 11.4 6.8 50 20 34*0 !i .2 11.0 6.6 48 28 Bottom 50.0 Surface 1.6 11.6 6.9 52 NS Bottom 5.2 11.2 6.7 46 NS Surface 5.1 11.6 6.8 50 NS 60.0 Bottem 5.1 11.7 6.9 50 NS NS = Not Samoled i 40-

?

Appendix Table 1. Page 10 of 12 Lake Norman physical data collected 6 and 7 March 1979 Dissolved Specific Temperature Oxygen Conductance Turbidity Location Deoth ('C) (mo/1) pH (umhos/cm) (NTU)

Surface 7.6 12.0 7.0 44 9 1.0 5.7 11.4 7.0 Bottom 44 9 Surface 7.6 12.1 7.1 44 8 1.2 6.3 11.7 6.9 Bottom 44 20 Surface 8.1 12.1 7.0 44 10 2.0 5.7 11.4 6.9 Bottom 44 10 Surface 8.5 11.9 7.0 43 10 3.0 5.7 11.5 6.9 44 Bottem 7 Surface 7.6 12.0 7.1 44 7 4.0 7.3 11.8 7.0 44 Bottom 9 Surface 9.3 12.0 7.0 44 8 4.5 6.6 11.6 6.9 Bottom 43 7 Surface 9.6 12.1 7.0 43 8 5.0 6.1 11.4 7.1 44 Bottom 8 Surface 8.9 11.9 6.9 43 9 6.0 6.9 11.4 6.9 42 Bottom 9 >

Su.-face 8.5 12.2 6.9 44 20 7.5 6.0 11.0 7.0 Bottcm 43 19 curface 8.1 12.2 6.9 44 18 8.0 5.6 11.8 6.9 44 Bottom 20 Surface 8.1 11.4 6.7 40 38 11.0 6.5 11.2 6.8 Bottom 38 60 Su ' face 10.4 11.4 6.6 43 60 13.0 6.9 11.2 6.8 38 Bottom 75 Surface 13.6 11.6 6.6. 48 60 14.0 7.6 11.2 6.9 38 Bottom 60 Surface 8.0 11.2 6.6 38 90 15.0 7.6 11.0 6.7 38 Bottom 100 Surface 8.1 11.4 6.6 38 80 15.9 7.9 11.4 6.7 38 100 Bottom 16.0 Surface. 7.8 12.4 6.5 58 10 Surface 10.3 11.4 6.6 40 60 34.0 6.9 11.2 6.7 38 85 Bottom Surface 9.1 11.2 6.6 40 NS 50.0 7.5 11.0 6.9 38 Bottom NS Surface 8.4 11.8 6.7 64 NS

.60.0 8.4 11.6 6.8 60 Bottom NS NS = Not Samoled

Appendix Table 1. Page 11 of 12.

Lake Noman physical data collected 3 and 4 April 1979 Dissolved Specific I Temperature Oxygen Conductance Turbidity Location Death (*C) (mg/l) pH (umhos/cm) (NTU)

Surface 12.5 10.6 6.8 47 11 1.0 8.5 10.2 6.5 46 Bottom 22 Surface 12.5 10.6 6.9 46 12 1.2 11.8 10.6 6.7 46 Bottom 16 Surface 12.4 10.6 6.9 46 12 2.0 8.5 9.9 6.6 47 22 Bottom Surface 12.6 10.8 7.0 48 10 3*0 8.9 10.4 6.7 48 18 Bottom 4'0 Surface 12.5 10.8 6.9 47 la Bottom 12.4 10.7 6.9 47 14 Surface 12'8 10.6 6.9 49 10 4*5 11.5 10.6 6.8 48 12 Bottom Surface 12.7 10.6 6.9 49 10 5*0 9.0 10.3 6.6 48 18 Bottom Surface H .4 10.6 6.7 48 10 6*0 9.6 10.2 6.6 48 10 Bottom Surface 12.6 10.9 6.9 47 18 7'D 9.5 10.4 6.7 48 22 Bottom Surface 13.0 10.8 6.9 46 18 8*0 9.0 10.4 6.6 47 22 Bottom Surface 15.0 10.3 6.9 42 28 11'0 9.0 9.0 6.5 44 38 Bottom Surface M.7 10.2 6.7 40 30 13*0 9.0 8.5 6.4 42 58 Bottom Surface 18.5 10.0 6.5 48 26 14 0 11.8 9.6 6.5 34 28 Bottom Surface 15.1 10.1 6.7 40 28 15*0 10.5 9.2 6.5 40 38 Bottom

St
face 14.6 10.2 6.7 38 28 15.9 10.5 9.0 6.4 40 34 Bottom 16.0 Surface 12.0 10.5 6.1 50 16 Surface 14.9 10.1 6.7 40 30 a4.0 i gotten 9.6 9.1 6.4 42 38 Surface 15.5 10.1 6.7 40 NS 50.0 11.3 9.5 6.5 40 NS Bottom Surface 12.7 10.0 6.5 50 NS e 0.0 11.6 9.6 6.5 44 NS Bottom NS = Not Sampled

Appendix Table 1. Page 12 of 12 Lake Nonnan physical data collected 8 and 9 May 1979 Dissolved Specific Temperature Oxygen Conductance Turbidity Location Depth (*C) (mg/1) pH (umhos/cm) (NTU) 1.0 Surface 19.9 9.6 7.2 43 7 Bottom 10.2 7.4 6.3 46 25 1*2 Surface 19.3 9.4 7.1 42 8 Bottom 12.2 7.5 6.3 43 24 2*0 Surface 19.9 9.3 7.1 42 8 Bottom 10.4 7.2 6.3 45 26 3*0 Surface 21.1 9.6 7.4 43 9 Bottom 10.7 7.0 6.3 44 31 4*0 Surface 20.0 9.4 7.0 41 9 Bottom 17.0 8.4 6.6 41 10 4*5 Surface 20.6 9.5 7.3 42 8 Bottom 12.3 7.2 6.3 43 16 5*0 Surface 20.7 9.5 7.4 42 8 Bottom 11.5 6.7 6.3 44 22 6'0 Surface 22.5 9.6 7.6 42 9 Bottom 15.5 6.5 6.3 42 20 7*g Surface 20.9 9.6 7.4 41 7 Bottom 10.2 6.5 6.3 44 26 8*0 Surface 21 .0 9.6 7.5 42 7 Bottom 10.5 6.2 6.2 44 29 11*0 Surface 21 .2 9.7 7.4 40 5 Bottom 10.8 6.1 6.2 44 38 13.0 Surface 22.6 8.!i 6.6 42 18 Bottom 11.2 5.2 6.3 44 42 14.0 Surface 23.0 6.7 6.2 44 27 Bottom 16.4 7.8 6.4 38 10 15.0 Surface 21 .6 9.5 7.0 41 11 Bottcm 11,4 5.5 6.3 44 42 15.9 Surface 21 .7 9.8 7.6 39 5 Bottom 12.1 3.1 6.1 44 40 16.0 Surface 17.2 8.7 6.1 52 10 34.0 Surface 21 .6 9.7 7.2 40 8 Bottom 11.0 5.8 6.3 44 32 50.0 Surface ~22.2 9.2 6.9 42 NS Bottom 14.1 6.4 6.4 40 NS Surface 17.4 7.4 6.5 49 NS 60.0 Bottom 14.1 6.0 6.5 41 NS NS = Not Sampled

Appetidix Table 2. Page 1 of 12 LoLe flonnail cheinical variables collected June 6 and 7,1978.

!! s t e .e t e - Or ti.o- Total Alkalinity fli t i' i te+ ht)%is t a i.#.us(4.a te P Silica lion Calcium

  • tla 9"C h iu"*

IM tIh" .hDlit- Pil 9'9.1 . Pf/1 ll . Pl!I- f! . . N/ I d' -- id&f. RilIUI E J/I -EllI "3I I .---

I*U Sirriace 9 0.33 0.I1 0.005 so.6US 2.9 u.2 2.2 1.0 j Battus 9 U . 4'3 0.12 -0.065 s0.014 3.6 1.1 HS t15 Surtas.c 9 0.29 0. O l t! .0.035 s0.005 2.9 U.2 lis t:5 I2 Bottui 24 0. 12 0.090 0.005 <u.006 3.3 0.0 fis fl5 Surface 9 0.3a 0.095 0.005 0.005 2.9 0.3 HS lis 2.0 Oc t tw. 8 0.46 0. f;h4 <0.005 0.010 3.5 0.9 f45 ta5 Surface 9 0.29 0.024 <0.005 0.005 2.9 0.2 2.2 1.0

, 3.0 Outtom 0.41 0.43 <0.005 0.016 3.5 tS 9 1.5 tes surface 9 0.2> 0.62tt 0.005 0.005 2.9 0.6 US h5 4U Buttus 9 0.lG 0.41 0.005 <0.005 3.0 0.4 11 5 I:S Sortace 9 0.31 0. f) <0.0u5 <0.005 2.9 0.2 2.1 1.0 4D Buttom 9 0.39 0.45 <0.005 *0.005 3.0 0.6 t.S HS Surface 9 U.29 0.30 < 0. C.05 0.005 2. ti 0.2 US US hU 1%ttom 10 (1.42 0.13 0.005 0.005 3.4 1.5 f45 IJS

  • Surface 9 0.29 0. 0L5 0.005 0.005 2.8 0.5 I;S tes y 6.0 but1om 9 0.J5 O.I1 0.005 <0.005 3.1 1.4 DS N5 Stafacc 9 0.29 U.41 <0.005 0.005 2.9 U.2 tis t:5 76 ba t ten 9 0.45 0.39 <0.005 0.005 3.5 1.5 f45 11 5 Surface 9 0.29 0.41 <0.005 <0.005 2.9 0.3 1.8 1.1 8.0 But t u 10 0.44 0.5a 0.005 0.005 3.6 1.7 hs us 11.0 furface 9 0.33 0.32 <.0. 005 0.005 2.8 0.2 tis its Bo t t o.n 10 0.35 0.17 -0.005 <0.021 3.4 1.3 tis 45 Sustote 10 0.23 0.11 0.005 0.005 2. tl 0.1 14 5 n$

13 U 0.45 0.i2 -0.005 Cot tchn 10 <0.015 3.5 1.1 US t:S Saiface 10 0.23 0.0 34 0.005 =0.009 2. ti 0.3 2.2 1.0 I4 U Bo t tui 11 0.27 0.11 0.005 0.005 3.1 0.2 45 GS Surf.n.c 11 0 . 1 11 0.11 0.005 -0.005 2.7 0.1 tis tis 15.0 Bo t tui.. 10 0.45 0.25 0.005 <0.017 3.5 1.1 nS US Susface 11 0.14 0.026 <0.005 0.u05 2.1 0.3 2.3 1.1 IS 9 Bu t tu.n 11 0.14 0.uil <0.005 0.620 3. t! 1.1 ns HS 16.0 Sur f aci: 16 0. N 0.02 0.005 < 0. 0111 5.5 0.9 3.3 1.4 Susface 10 4.?S 0.UUH <0.005 <u.005 2.8 0.1 N5 us 34 U Ec t toa$ 10 0.44 0.16 <0.005 (0.014 3.5 1.1 US nS

" June's calcitasi aint magneslua samples beee analned as localica cuocosites.

05

  • IJot 54mple0 flA - Hot Au lyzed SC a u mple Contaminated

- s' l -

-- - - . .- - - , , ~ -

i t

1 N

h o

V' N e '

en m

Q.

II g.

y,a.:aa

. OO aaJ;.:;;; :: :.: a; .:4 gggg ::gg O. - . O- . .

== .:pe -

aI i i 5 .. .. .. ,, ,, ,. ,. .~ .-

-.#~ ge- "- ce ~. ge gg . gr "

2e 3., 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 44 - 4 w .

g . -~ . -~ ~~ e ,~.-.~-~.~~e~C ~~w 54 da da 6 C6 da a; 54 d4 d4 04 Oa Os aa 64 6 da e.o r -

m M me e~e.e,m. . e ... .e .~.~-~e~ e, ~~ we--.

3 44 44 44 44 44 wa 44 44 44 44 44 44 44 44 44 4 4x

. ,L e

.e e:.e. - ._. ,R .-

~

,e

. B.g ,S.*c. 08 B.q C.

e m.,

% E. O.

~ew

- O ~- S. .e me

~e m.

-N

,c .y 5. .0 . O. S. O. . O. . O. S. Ow. O. O. D. O. 8.0 . 8.0 ., o O. O.

j -c L CO OO DO CO CO DO O.C OO CO CO CO OO OO OO OO

=

QC x .e.  !, -

3 Sup

. ,, ,, ,, ,, ,, ,, ,, ,, , ,e . . ,, , ,

o

.C

. m E.,m. 8 8 8.8 O 9 [* C, O= =OO wCO w 8 8. 8 8. $.,8. 8 8 8 8 8.8 8 8 8.e. 8.8. $.,8 8 8 8.$. I. ,8 8. g OO e v CO= = D.w OvCO = = wCO wCO a == QC wCO e CO w g

  • CO
  • CO w
  • CO w e O* CO

= wO

=

W W '

"e 4.A e

m n. . ,

"o NN N NN NN NN NN N N NN v ~} NN NN NN NN NN NN NN N to .

U .E., .w b N ei 4 e w

  • * . N. Ne O. - -N we ee ~e a. w ,c e e =. e .e== e 9 4 .h. == N N. 8. #N.=. w. N. e. N. w. em. N. N. . N. w. N. N. N. w. N. w. ce. w. N. w. . e. . w. O. w. N. . .e. e e

1.

g,00 00 00 00 00 00 00 00 OC 00 00 00 OO C0 00 0 00 I

~

g

  • 5 i

l> E

.;2 "m c% 8 w e. n. c. e ce O G .= 1 . . O.

. m -.O. .O. m e e .D. .e. .S. e .n. e .. .e. .. .e. .s .e .. O.

. . . ~ . .e. n. e 9 m - s,i

.C m 5

m .c e

,o v e e = e e o e = = = = =

e o e b

e C a.

c : .I. . .E. .1. 4 w .5.w .E. .b .E. .8 .:h .1.  : .8 :w .F .8 .8. :k .5. : o 33.4:- .1. ,

g .30 w e 30 b

3o b

30 3o 30 w b .m a. b w b b -8

==e.  !

g l#G ,3 m MS Me HB MG #M ,3@S 30 30 3o 3o Me We ean He ,D e0 MG3oMG3 d+3 3 ,3 eo l

    • O
  • l '1:9 2: r C 3; **

! gM G ei

,l C ~ O O

.: ; 4 4 4 4 4 4 4 6 a 4 4 O , O 'O , O O O O O 4- 4 e O O 4 4 E

e

! c. e g '

- - - . - - e ,

. *C J I F

t i

O P

e-l

  • r k.

a ->

N N

w 4

O m P W

cn e

C.

.I. -l. e. m

' m e. un ea u ee n em ne u n e.w um e+ -w n

  • y ;ra m; ;; ;; ;; ;; ;J a; ;; ;; ;; * = ge= a ; g += ; ; ; g y

[.

ai 1 l ..

-- .m .. .. o..~.....~.se * *e, ..

an " sea .-A .ae "~ .,

f.8} an ad aa aA ;a as aA 44 4A 4A 4 4 C3 g -t -, - .n e. .n -= se w- e. .n - e c. .n w cs c co ~ ~ c. e -w c, es o .

Cn }} c'; di o; da do dd da odo;o;dadddidiond 'a e

C .2 T EE EE EE EE SI IE EE EI EI IE IE EE EI EE EE E IE C ek ,

g I

st) g eg.e om

d. a.

e g ee e cc -

e ce

- . . -e eo e- me %c g .

1 Q -.= a. s . o. . e. E. o. . o. o. e. . e. 8. e. . a. .. . . o. . o. 8. o. o. .. 8. a a. ~o.

. , =.=.

I o a g oo ao oc oo oe ao ee oo ao ao ao ao oc oc oo ee, 6- .

  • . i -

r -,

o a ~ ~ae~a ac a a ~t m p m- t s :ca.so.e e.

ew e s.h. e.

8. 8. 8 8. S. s. 88. B.e as. s8.8. e. e. e rs.S.$. e. e c a.s. c 8.a.c es. e. 8 8. g gp 1 oo m e. c. e. c. e. a. o a. o o. c. o. c. o. c c. e. e. o. a. o. a. o. a. o. a. o. o. c. ,,

"' e Q "

a U *

@ -g en

- e o se e. er e ne en @ @E 46 % N% -mN NS e6 m .p gN .P w m .e p

g . . .==. o. o. C. o. o. . d". o. e. o. e. o. o. .=. *'=. o. . o. .=. =. m..a. . . o. . o. a.

to g o. =. y, O g g oc oo oc oc oo oc om oo ce oo oo oc oo ao oo co e U

th U $ .e . .

w

,Q e-= =e o% e3 *

  • em -e e ok *e e= we e .* *e eeg

--6. 6. %oo . m. .ne.e

. c. m.. e. o. .e. ..o. e . O. oN. PO.% N. o. m. . m. o. m. . en. . en. es. N. o. es. . .e g N. eo. ,

.m.

. g ao ao oo ao ao oe oo om oo ao oC oo oo om oo m~ ,,

1-m

> y 1

.e i "m

u I4 -,-~~e

_w * -- -

-- c. c. m u. - n - c.

- - - - - - - - - - - - - - - - - - - ~ ~ ~ - - - - - -

c. c. m es em . ie .. em .E '

. .e. g N

g ;El ,

. .c V . . ., . . . e e, = = = e, o e = i t

eg 5y .

4. 5. : .3. ,u.g .I. .:..s. 45. :.3.

. w . . w

.3 .:.5.

4 8 .:.!.

6- w

.!. w .5., .:.B

.:.8. .: 6-43. ,

. . =

g Q ~1 0 E J E S E A E O S 3 5 $ $ A S A S E E S E S E E S A S E S S S E ,

- o e "O _ Z .,

C . o e o 5..

. o e, o o o e o e .n a o o' a o . o o a O.

Q,

.ac e 'g;;' ;  ; a 4 4 4 J J e.' e - -A -a -a- Jd -; m a ,

e eC J .,a E e

9

-g.

f N

4.

O e et Cn e

Cn.

5. '.

e- o o o c o c o c oc o- o c oo o- o ee gt asaaaaaaaaaaaaaaaaa;gegoo-ceew f

- -a;--aaa--

,. o !.

t

_t.*-

n . ,, , . . . , . . . . . . , . . . e_ e_ c a N M

. . NN NN NN Ne NN NN Ne NN NN . . . . . . . . . e .. . . e e . ~.

NN -- NM N

. . e a-w, *na.

4 5-s o ..~ . e- o. o~. ~.o-. .a.o o. ~o. .~. . ~ . ~ . . . .a. . , . N.~. ~ . . , N.,. . . . . . o.

=

o e- o c o ~ o ~ e- e- o c o - c e eo co ,

rm en

. ::t.

-- = . = = . , . c. e. .~ o. c. e. . w e.

m ~ , . ~- ~~ N ,. em .

~m ~-

. . c. . o. o. . m. . ~. . ~. o.m-..

~em -, -- em ,-

. ~. =. m. .

.4 en e1 .

,- o c . -+~en c +oec+ +e en N . s sn e sg aa +er m - aA +- E..$.3838.F.eg+88.S.o.885.ysnm5. ". 3. 8. 8. 5. 2 2. s. e. S. B. 5, S. i C e. e. o. t

= g m?

- . o. C. e. o o. C o. 1 o. e. o. o.- o. o o. C. e. o o. o o. C e. o o. o. C. o O o O. O. C.

a '.t

]

wi as '

3 e 6 *

$ +

1$b.

  • a **

.c- 1,, $

s. e. Te.T. .$.*8.8.e. Es.a.f te.a. f f 8.e.
  1. T 'E".t e. s. e. f fe.Ts.S *a. s. S.t a.
  • a:f fs.f 8'* 8.e.n.

. TC s. Ta- :T -:C I

-a y &_;Da. L

o. c . o. o. c g o o. c. o. c. c. o. o. c. o. c. c. o o. c. o. c. o. c. e. c. e. o. o, c. e. s

@ s-e U b O

  • W z!. e .e M

e .e e $ inm ~, =~ - mw 3 we Na e e ea -% c, .n

-  % - m- ~- -- ou m -e 9=

me oN

====..C. ==. =c. N-

. c. ==. o. o. o. o. o. o. o. o. ==. o. o. e o. o. o. o. o. o. o.o. ..c e

. n. o. o. C. y C '

. ee oo oo oc oc oo oc oc oc on oc oe oo oo oc o oe o U

en y , e

- .m = e n. .

e, J .9 ee ,

4 e===== ce e .- ew m en oe m

. . g . e-w. N en , c,p .,e R,m, ,N -

w

.b % m

. = . u. m.

c. S . ,. o. . c. .. N. . o. ,. =. o. c. $. . .,.,

,,m. -5E-e% c.o. ao .

. . . co

.n. ao ao oo oo ao ao ao ao C o ao ao ao o CO .E.

g 9 4 e em ad ot T

- 5 c se y .=.w,e.=. .. - .o. == .c =

o

==.o.o..====-.==.c.==.#3

. s

= . = . S e ...o. N.

.. o. .M. ay m. .o. .N.e e, .=

. o.

  • - .o = . 5

~

N EE w

h

.c

- .v

~,g I e e e, e e, e e e e e a e e e e e e N

m e 5L .x.w .B. :. .3. .e b

.: .I. :m-.I. :m .5. ee

m 5.A .:b.3. . b.3..e

.8.

= .

  • e.
8. :b--I.e: 5. .: .E. : .E. :b.* 1 -*:-- 43

.. m .* be b** e

, g C,..3o o .,g p

?.o 3 .c 3 .o j .o 30 3.a.

3 9 3, .O j .o 3. 4 3 .o n g -3o- eS 3.#2

-g . .

3ge 5 -

. .. e o

.e.

eM y

e. -

g n

. o.

e g. o.

te o.

e ~

. o.

m

e. o. o.

e o.

.ap. .- o*

.* 8

@g e m.

. - .en. - 8"5 e

.4 4 ,

E 4 6 4

6 6

97-

.c f

i _ . - -

N 4.=

0 to G

CD 9

Cw

.I. _'! um um nw

  • L~t. n ea; a; ;; ;; ad -----m aa a; aa-~ aa ~m -n aa gg gg mna; gg -ma;n ; ge=

2l -

-l1I o~ cu o .a o e o e= o=o e m e e ow ow ge ce e- ce eo o ge "

E.h 4e e F AA A A A A AA ed 44 dA Ad A A As " ~~ As ~ ~ S n A

-- e -eNoum =m w- c= wm eow mw

='+r d A di da da da da 5wm Ame dd N == we oc co g m d A da da da da da da- a i.:

O M o% e W 5* em MN hP= h .A NN @w om ow -a=

  • o .n .n + = = # 55 8** wa w ~g Aa A A AJ A4 AA A A A4 AA 4 JJ 44 44 44 44 44 A us t
  • 4.

C A

am M. - ee e er ow eo-,=.e.  % -m em .e e en ~ e- e -

O

--o. o. m. --ee to N --

em Q- e= W =. a=- .en. e=5

    • 8=* NN --
  • ==.
o. a. o. o. o. a. o. o. o. a. o. o. o. a. o. ==

oo o ooa. o. e a. NN o.-o. o.=o.= =

s C. o. o. o. o. o. c. o.

g O C* oo eo emoeoeoeoooeooooeooooeoo O 2 n -

.oa e t

. . -. ee em ee.. .e e .e .. e. .e e en .++e e e

S fia 88 88 88 88 88 88 88 88 88 88 WW W8 88 8$ ce.8 8 WW E T ~ 9 r do m e da w w 66 w a de w w ad w w ad w w ad w w on w w as v e 66v w

    • #6 da w w w da os 6 v ## 5W u

w - *

~e dJ u P o . i e N -

  • f== - a.1 %e me e e@ en e NN%N e e. .e gym e se ne @ sus - N e.= w p

c eW. o. e. o. . Wem M w. N. m. e W ** o. . W.AW . o. W W o. N. .. - = =o - m.

% e . e. o. =sN.

o a g om ao o ao o o ao em oo oe ao ao e e o- e oc g m

e .

e m o:

-e .

E ee - L .~

.- .-e m~e e--- ~

o e. me m ww

. o. 8. . 8o. ~ ewSo.w

. . o.~.

ce- 8..~.c.o.$.

o o. . 8. o. ~8.o.. . ~. c. o. . o. o.o. o. . . 9 6.

g- oo oc om ao ao oc oo ao oc oo oo ao ao ao em o co 3 m  :

Uo9 O m

v -W i ~- m~

-~ -- --

~e ~. -~ ~~ - .3 ~~

-. -- -- -~ -- -- -~ -- w o m~

- - - - W.- - A ~ . =.

. .,. ,, e 9d g e .c .

r== V e g e, e e e e e e o e e o e e e e o e c . . 5. 4 w3.*.:. w-8. .:.8  : .8. .: .!. : .t. : .!. : E : .I. :6-.8. .: .5. :m .*I :w-.B. : 1 4 - -- :w-8w

>" 9 w 6.* w- 6 ., - 6 ., 6

  • -w 6 6- 6 e E 3C 3 3 30 30 30 30 30 3 0 O 30 30 3C 33 30 30 3 30 g { em eG em me es eM es c G Em em me MS eG e6 eG e c5 -g*

- o

  • T 2:

c 3:

WW G- M

-i o u o o o .n o o e o o o o o ** O o 8

c. m .4 4 4 4 J J ; e a A 4 .5 i

- - ~

d a e J

g' - - - .

81C s a

6 1 0 e

, 4 l 8 f

a e _

N.

46 .

  • O m

Ca.

Il -- -- - . = -- . . , -. ~ ~--e+---~

-- a - m ----M ym ? Ja da da da da da da da da Ja * * ** ad

  • Ja a *
  • e I

. ..NN . .. .NN.. . ~. ...

Nm. NM

-5a I . . + .. . . ~gg e. +g +. .+ c,, e

. .~ ... ....

. .sg . ..

NN mW m. NN..Nm ~NN .~ NN NN NN N g .

be i

. e. N. N. ... N. N. N. N. N.+. N. . m. . N. d,l N..=. N.~. . m. N.~. N.~.

. N. N. N.

Q . .

[ . .

D+ Om O- DC CC CC G C=

m b CN OD CC CN CO DO OO CC Cm m -

. w

= . ~ . ... ... ~ . ~ . . + . N. . .,. m. . +, .. .. e. N. m.

co 3 ,0. . m.N. . ~ . ~ . ~ . ~.N.

mm em m.

mm em em mm .

e + E m

n - a a +8 ex eoc +u #

g +8 SCc tse + t *8 5 g *5 5 5 s ct r e_Cc gEC g " a *8 es sR s t *8ac e t*5-* $2C e g 0b b. . b.

b b. b. b. b. . b. b. b b. b. b b b b b b bb b b, ,

a -

3

-=

m G O w l g+++

t_ 8 8 5 8 8 8 E eg +8 8++e++++++++++++++

> .~d++e+++ +

S S 8 8 5 8 8 8 8 8 8 8 88 8 8 8 8 8 $ +S e 8 8 8 }-

g d" $ ~[' . b, bw be C vb. b. C. . C.

b, b=bw b b. b . $0 v v v v v s b. b. b. bv b. 0 0 b. b, b. . W W G.

U A C

  • e e. i e

e

?- N .= ce

+-

m. . e- .+m. g ~E ~. m

. e +~ e e e em .m ++c.me ee ~

e ~.e

  • p

- g- C. m. . . O. b. C. N. O. C. =.==.C.C. O. C. O. N. O. M. . + .... . N. . ...*=.O. * = . ..

co oc ao oc ca aC ao ao oc oo ao oc c oc y o 3gg Oc co oc M

c t 1 me .e . -N- + .N.

2. bs 5..*'90 ~N == .m

+-

~e

.N

~- ~~ ec e.n Nm

  1. + .~~+~- eNe~ N N. N+ ~

9 o .bau m C. O. C. 0 C. C. O. c.

e C. s. C. c.

. C. C. O. C. O. C. . o. . c. .. ~.==. C.

CC.. C 0C

. Q. go

.,m. =-

EE e

- & CO CO CO CC DO CO QC 00 CC Qo CC CC QC CO ,'%' p 2

=

  • M

-- m_

e

mm m. ,

m 5: , , - -N . N o m- . N~ e- .m N.

-~ -~ --

-tm -- -

-- - -~ =

l i

u .-~-----~---------~-N g

j N E c2 M ,

G Z e e e e e. e e e e

" V e o e o e e o U .S U- S-. $ 5--E -- S - 5 bY b** 5 5. ,

mC J o.E.! 5.E. U .E. .% .I. .U d

b es b e.

.S4 5.$Ub$enS.

6. ee

.U b** .S.

. E .E.

33 30 b ** b ad be b=* b+8 3 0 -&

+e 3 +e

  • $me m b

?S d ";eo to30EG30 b es b e.

b3 e.s

) 3 O "

  • 3 #3 3 30 30to3C G 3+8". + +e &

to 3300 +G +e + ER i

to + at to 53 479 EIS +G

+

f I K- O ., I T U o

  • C . $f + + o. o. o. o. o. e. o. o. n .

I O --4 on o. N. o. O. o. o. o.

. - e= M - + + @

  • 8 l g et ** a N M , + . 9

.= == es w= - M g g * =

< J l

e b

O

.- -e

r 9

N to.

O h.

en -I u m. m. gg

m. ew ns.-- . ee -n.. n.

g wi %

m. ew.%. N. ew a. ew s. ew sw w =. ez ha n- e g u. m. er m
n. 9.

e n.

ew- - - .

p 1

- e. - -- ew s -- w e. u - - c. ew - ee a ge 2.,6s% A A A A A A A A A A A A A d A A A A A d ~ AA~~AAA

~ggeoeeom

~

= e co 8b m. e. ~. m. ce. m. m. e. e. m. .

ew e.

. . m.,. e. m. m. e. m. e. a. n. .e. m. .n. o. e. m. m. e.. . n. o.

N oo ao ao ao ao ao oc em ao o c o - o - o o o - o - o o ew cn -

W 3 *i e. m. m. e. m. e. m. e.. e. m. m. e. m. e. ~. ~. m. e. . u. m.,=.=.m.m. m. o. m. m. l y

q mm em mm am em mm em em mm em we we

. m. . w ., wee. we n == .

= a b.

m Lth s ew - n eo n ew .e .e g e .e .e m n nn me m ee . - - R ce 9 m

-m ~

L. .= , s. t 8.

e. e c;6 5 8.e. 8. .e go.85 88 6 8 8 5. n -
e. . o. 8. ue. o.c. o.c. o.c. o.o. 5 . o.

o.

e e m g or oo co oc oc oc co oc oc oc oc co co oc oo o ao - ,

i. a .e v . s., 1s;e e .e + n o .e ce .e .e c c e.e .e .e ce ee ee e .e e .e .n e .e .e c e e .r.

o t

Sir 88 d 88 88 as 88 88 88 88 88 88 88 88 88 88 88 8 88 E

o. s. d. o. d. o. d. o. o. c. d. o. o. s. a. o. a. d. a. c. d. d. i. w W &" E$ 'E . o. a. o. 6 6. d. i. a. s.
  • e, a -

u $

o t om e .r w e. ee we ee e e = e en

- . z.1 e. -

=w me .o c. me o ew wm O -h o' o' b .5 o'c' '5 o'e' o'o' o'm o c' o'o a'o' o' c' o' o' o' c'o ~o 8oew 8 8 8e e8 8e*o o$

  • o- eo oe ao o-o----o *
  • o oa'oo' c* o**

o* oE~~e 4 g, oo 3 th O .

nee -e-e

'"'" em ~~

2. 3 Y En ie

-e e m F e -=

.e. c. ew w

~e

c. e.o . o..a. m.oo.sco~. Nm.

_O .bo e.a. - o. o. - o. . o. . o. .=. - ~ e -. =. =. o.

o. o. . o.b. . R . . N. . .. . e.. o L EE . oC oo ao ao oc oc co oo oc co ao oo co ao oc o oo **y* ,

C

> .l! '

- 22., e m '. v*w m.

v

' M 8"4 N 8

N. N -NN es e.i, a. .N .r. e. e. e .w.

o.r. N e .e e

. = .-- -- NN ew N N es -- -- -- . - -. . . . . - - --

N P 3 $a e

W .::

- u

.O le e s. e e a. e e e e * * * * =

, e c- *. * .!. .* .E e,!. v .3, * .E X -E

  • 1 3 v .5. 4 3. 4 3 X E *M E,- .X'.E. 4 8. 4 -8 =

s g b b

. b .a b b .s

-b .

  • b O S b .e 3S 3 b .= t. -.*b.*

a b.* b C

b b.* as x C.i e e3 3 3Q as

.e 3 3O 3O anal e a e m e m en aa de en d e m in eS d e n o en e3 d e 3C 30 0 3O 3

.S n 38 g.

"'" O 4

' ]EW '

o. e. o. e. o. o. o. o. o. ' e. o. o.

g, g

.g g . =o. u. o.

sw m o.

= w o.

e e h e -- m e .e e ee e

e r

< a 8.. .

E h y e

e . ,

e

-100-

i N

o cc G

cn m

C Il se s

. Cem e a f eg y $#a gd.,~.

c. -

. N.

m e 2l tI...................ce 44 44 44 A d 44 ~

  • e
  • 44 g .. * * ~Ad.-4 c * * ~

f }. d a A s d a A n d a

. E ; . o. ~. . . ... . c. ..

. c. .. w e.. .. ... . e. . c. c. e. e. o. e

. . . . . . e. ...#.. .. ..

m 3 p o- oooooocoaoaoaoaoao o c o- o o a o o- e oc rs Ch

  • * *l ee em em em om ee me c~ sw ~ am * * ~ ~ . mm am e. ~ sw ew n 59 AA AA AA AA 44 AA AA AA 44444444444444444 m e n.

e m e

  • ~1

-e.,

'R e .n e .e ec ec -o--wome me 'A .. n

5. 55. g 8. o. o. a. ~o.a. o. a. o. -~

N .=, s. s 8. o.55-- ..

g 85 5 . 88 88 a. o. 3. o. o.

- oeooomoooooo. o. c. o o. c. o. o. c. oc oc oc oo ao o oo ,

c x

s

- a e

m ~

m e i =

c . e # u ## ce # e+ me e #

4 S_ t, ai d8.e5 s c c88.8.$.c#8.8.8.$.e$.cc8888.88.888.$.em8 8 8 8 8 8 8. $. 5. ,8 -8 8.t i y AJ 3n. ?? op 99 99 99 99 99 99 99 99 99 99 99 oo 9 9 9 9 9 ,g.

.o>d u - .

"t w e <

- a. :e. -~ ~- ~~ ~~ ~-~~a. ~ -- e e e e, me ~ ~e

  • e'* i M o. a. o. o. c. o. c. o. m. o. c. o. c. o. c. o.c. o. o. G. o. o. .=. o. c. o. o. o. ==. o. a. o.

Q g oo oo oo oo oo eo oo eo ao. o e. o o o o e o e o o o o. eo $

e,n

,U

. .e .e b. ,

e .. ee -oee m~

.m e.-

.b* .b,.

N

.e.

. .e. . s.

g; y oo ao oo ao ao ao ao ao. aoaoaoaoaoao ao o oc e

e en. .en.

e..ew . .... . .

.. eg ~.. M.~. gw gg

. e, .e o e9 ~.

eg e . gy. ~. gy eg .o.

g e

~. gy..

s

.~. o ,

"m sY c y --wi ...~. ~ ~ .~ ~ ~. .~-~.. ~. ~. - ~. ~ ~

~~

- . ~ -~ .a . .. ..

- -- -- .- ..~...e e - sQ 5 N g ~2 ~

e .c O I e, e e e o o e e e e *e o e e

.8. .: .t. .:e! e* 3.: .5.

m e J .e,41 :3 : 1 :i..5. .: .E .:w-.5. :w- .! .w-3 : -1 4 . 8. .a H. m . . E. .: . . , .. . w . .- n. - %

s ao y ao eg em eI. g me em em es eg em i- =g g: ao 2o so ao 3C 3o 30 3o 2o :* 30 2 3c g de em em en de e me

= O O v m c r

=I 3

@ @ o. ~. o. o. o. en. o. o. e. o. o. o. o o. e. o. o.

%; - j.g N $ . @ @ - O - @ O g g N. .N g - . - - -

  • C. J m e

i i

I

-101-

o e m... w - -m -o _

4 N

be.

O On W

m L

I a.

I . em

e. p.

. . .. m. a. . a=. me.==. . am. am.se. am.a=.=. . em. g .n gn e ... . e EE .n - o .pi e a-* 2E-g - se e ao en em a- en a- a= a= se a- - em a= - am == . am a=

a. E Eg a-. an e-* ==

a1 i

It

--_.~.~.m.

as

== gi

. ~ . ~ . ~.N.

NN NN NN NN Ne NN NN NN NN Me

.. ....e.~.

. e. m. ... o. ~ ~ a .

EE EE NN

. em EE .n. e. a.EEn N r. N 4

w e.;

96 05 Ch & ==4 m. m. m. m. N. e. m. v. w m. m. m. m. e. c. e.

. w. e. w e. .n. e. 85 oet. e.

. . N. M. M. 05. m.

rm. "

w == o c o m o c e o a o a o a o a o o c e m o o c o o = = a o-C"n o -'

Q e u .A. e W. ee et 56 ee e et ee e.N~ 96 e 04 On et en a= m N == s- M .n .n O' o a=

'e kk &k && kk Yb kk kk k kk kk Yk && &w kN kk k &&

C "}

, e a a J.

.n m

. --m

a. s N Ne m e.

- . . -a- -- .o .

a

e. e. e. em
a. .m-~ e- e. e-
e. N m- ~- .S mm we wees - e.
  • e.

- me

-o. c. o. C.. a. o. a. o. a. o. a. o. a. o. --a. o.

~

4

.e. =s C.e. o. c. e.m. a. o. a. o. e. o. a. o. o. a. o.

m

- E om ao emooaoaoaoaoaoaoaoeo ao me oc o ao w m 2 e

b e 1 3 C . ht .n c .n # ## # .n e, .n e e .n .n o ec!

O Bi2 ec #$ ##S.E. 8 8 8 8.8 8.8. 8 8 8 8. $.$. $.o8 8 8. 8 8. $.o8 8.8. 8 8. $.e ae888.8.1 e ggp o.o. o. c. o. o. a. o. a. o. a. o. o. c. o. m. o. c. 9 p o. p m. e. m. e. o. c. o. c. o. o. p w e 7- .

a ~e v

  • I W . E' "

~ d

~ v mn.u++

vu

.v nn.u <nv eu +v w u .v nm u m o n

.u un+u ou vu uw mm em m+

w m .u n

vu uu ou u uu*

em em me e mm ue C f i u

4 m

  • W

- 3e

  • aJ v m o -* - mN.e. w Nm me
e. ee.. N. N. c.c. c .. e N. o

.~ .n m. ce cN w . .n #w .~ ~ , , ,. e. .,

o o o c o o o c o c o o a o a o e m aev.o.e. N.e..e.~. .c. co. m. e. N. c . e, c . N. c . . N. . N. e. c. N. c. N. ev. e,.

.e

--EE oc om aoemocoao h -

as

- ** C1 Y E

e g a=

W. -- N e. NN

- w{. a=== a=== = = = --

= me - N.

em .. N. .c.-

.a N a-am a. ~..e.

. . NN m m.

e- a .

NN

.a. . .e. ..

e .N. o. N. . .c c .

. - as j m -g . p, W .c

  • O 8 e e e e o e e o e e e * *
  • i c d,  :. -E.

= . .E. 6- .8. :.a.5. :w .5. :. .!. .I. :w-.5a .x6 .8. : .5. :.-.3 : m- .5. -. 9 : 5 4- --: ! w-

>= m z g sg sg

. .I. . 6- -. w w =*

  • y y

.e . g .2 .o .a .o .3 .o 3 .a m .o gg =.o .m .e -- --3C -3 3J p a 3 "J

, "g*

C g e.

gi 2 g% e o o o-o , e o in e o o o o =: o o. -

)

l l

2 c a fN a

k 4 4 k 4

  • J 4 = d d d d
  • 2 X *

=

6 l

i l

l l e 6

  • .4 '

e o

-102-

N i.

O ,

o 4

e Cn 4

--l I

CM =8 8$8s<z<z <<

as << zu== << <<na <<mz << ummzee $em <8ee

= << a < ce

c. 6 x

. - - mm um ~z Ej ,

t

-i""l p mewmz.c ==8e<<<<<<<<

c .c .e e m mz ==ca zu == z<< eg mz rea=ce < == .r ee << < ee

== sm= ac g ': .. me we em .. mN mm .. em~. g <* <** <*- e s*=<* < < <* . .c c

-E ed di ad dd dd di di di ad dd i "*

cn N -e O * '*' m e

" e% eo~~ee em m e m es m e ,~ w e a o e e --NN e me

~ C A A M A A d A A A d A A A n e;e; AA A A A A 44 da 44 44 A A A N

e e .r T

c- e. . .w -e e.-e ~ om 85

~ e - -om e, ee N-.~.

9 ~8. 8. o. c. o. c. o.-- c .n Ne -m em ee e- N No 8..e. c. 8 8.~8. o.N c. ~

m e

-6s o

o. E. .
c. c. o. o. c. o. c. 8 8 8.ee ~. . c 8 e - E oe oo oo oo oo oo oo oO oe oo Ce oo eo eo oC C oC ,

.c 3 v

  • t 5 L e .n ~c 214 5 8 8 5 h,e8 88 88cn88ce88ee88e 88 ., em eg se ~~--me

, ,6 e# c .a S 88 8e s8 88 EE EE Ec SE ~e g

~

E o g i.h

  • bb e =

b0w w ba w = a b o wbb w w b bd w b w w w w e bb 0 bb bb $ C b$

% w e w bp Q E a

U g <

e o z. . -N Nm N ~Aa -N Nm .m.N~ e. Nc * - e.r .e N m o e- m e e,9 in ~ e- o-ee e

a. o. c. o.--me N

. -N ce m er N e -. b=. e in e

c. o. o. c. o. o. o. o. o. o. o. c. o g"* s g oc co ao ao ao oe == == C. C.

oo a.c.c.D .

o ao ao ec ee C. o. o. O. D D* e ==. o.

oc ce e oo g e.C.

o. o.
  • u i

M e 4 F

W .e .e. a.f, e - m. ee ~e e to N en e to N .P

~hb ~ g N ew NN NN NN NN NN NN NN N@ NN mNNN eNmemMMemmM~ooa e.*

4 NN NN N NM 1 ee 53 e ~ e PS M

mz L, 6 c d d d d . c d d d o d 6 d o d 6 6 d d d i d d oddoocdd d4y b e I M

> - E.

.. o.

w **

3 e

y '.e-h.' M . -.

NN NN

e. N NN N* MN e.- N

. . N. N.N ..o N=

o

-9 -m e. N N .N

  • e

('y Oh 4L 8

. .c

- U 4 ,) 41 4e 3 : e5 4oE e, e = = = e e e e m e.=

-. 1 --= ci 33= -e35 4 ! 43= 5 4 5-b.- 4 5 41 *

  • E ,

e e c -

! 1 * ! #  :

@

  • i n. .*

30 30 b es --.e

w. .*6 .. k es a..* b b .a w =d b m

-~

b ad te s d. e. .eS .1 e nen 3 3o 3 e .0 Jl .0 e3 .3 eo e m .Q au eo e .0 9

e .o we30 3

  • e.o eG 3e e0 3
  • p x L

.r. O e

'E mW Z Et "

a

-o. N. o. o. o. e. o. o. .e. .o. a. o. o. o. e. o. o.

6. u = - N m = = # e ~ m - m * * * * ;:;
  • m 5.,l

.o.

g, . y .

e E

s a

e 4

4 e

  • l -103-s

N O

O Cn N

A

--l I

es -o oc o- o -o -o ao o- o c c e

[ Q a d a d J J d d J J J J J J d d a d a d *~* *em

  • dom b ~ c~e cboe J **

- ce El tI a.

o g e. ~. ~ . ~ ~ .

et NN Nc NN ..~.e.~.~.e.~.~.~.~.~.~.~.~.~.

~ ~

wa - NN N De NN NN NN NN NN ma za ..mNc .e.

z ~. . e. ~ma NN N g o.' eo We N-e% e@ eN wN #A e-bb b bb b b eM eo O

Mm oM M% Me C wh

. N NN A N O

N -

" ~U. - m ~~ -w Nm --N- Nm me -m -m om he de em wm N Ne

.e a

GE~K d4 dd && 44 dd && Ad 44 dd di dd dd di dd && 4 dd T

c -e oN -e g

e - 4. .

~~ -~ -- c-eoe- --me o c we cc cN e- Nw me eo we


Nw mm e R e.

e. m e. N N em=

GC OO CQ CoOCm o-  %.N .-

M "

O bb b bOObCC bbCC CC CC b CC bb eQ QQ b QC bb QC L5 b e

OC

- J

    • = en l "$

E C y ilfissssssissssissssiis15sssssssis h

g, b Y. Y. b. b. b. 0 . b. . .

Es3 c o. $. . b. b. b. b. b b b Y & b. b b f b$w U g i c - a.. ce m ~N *4 m e3 e*

.. ee c. 7 mm*. eevo@e. oo *w e Qo QCe.QoC- - c. o m~

F eN

  • e
c. = e m ~h ww e. *

=CQ b GQ QC b QC oo oC ##

G= ee C=

ce ce CC 0C O s=

me $ o mN WS b Yb i

a u b bb bb bb b bb b bb y Q == #

M ,i O e, e 3 m

.c  %

ww s

d e ra e %e

c. m.  % %.  %% ee e% we we %e~R, m -==- 3..N. e.. . o . c. N. N. m. e. N. N. N. c. N. N.

cooocococoo

. N. c. N.N. N.

a oo cooc.oN. aN.o. a N. R. ~e e~

. N.~ N. N. N e

N e

e.R. S b o o c o c o.oe R. ~.oo 1

. 6 m .

> , . , 9

.* o E

- n  %

  • a O

u

- w.

e *=t

. ...N.

e. .. e . .c e ...--e- - N c.

.e - .. ..

. . - .o. .o. .N - ee e -.- . .o. - eN,.

=

2h e N Eo e4 I

G =C

- U J e,

= I, .e,.8 e, o en e, e e o
e. rgc a.  : .I. :e,. 3. := .5. .w-.E e.E -. !. . .E *.8, e e e, e g p w w- w w w. w . w- . 6-6- 6

.3. r.E 9 : w.3. : 4 5. w w .w w w .

x b~ 'a S E E E S E A E A S S E S E S E l E A E A o Am SE SE SE E SE 5

- o 7 2 g e c

m . N L

o. e

.ow .. .

e. -

o.

se o.

m o.

w e.

w o.

e o.

e e.

m o.

e -

e. o. o. o.

e e.

e e =

o. o. - s egg, J B:

w.

_m 3 e e

E 4

4*

I *

-104 .

N O

l N G

CD 4

c- 1I em e-

%Q(? Ja Oeda CDda C0da 00 ad :0 00 aaCO adCO daDO aaOO ad c~ e pg Ce ad ** da a gg C

fI 1I

-.#~ e. c~ e~ ~ ~ ~ e~ .. c. c~ em ce ~~ e 44""*=44=,m.44 4e y, x.sE, o

444444444444444444

$es, #. O. c. e. O-

.. e. O-

. m. .~.~.C.

C O O-O-

. ~.O. #. #. #.~. e. ~. ~. ~. O. c. .. m. e.

D- D O- -O O-C- O

. .O-c.

O- CD C- C-

-a s

et .. .~ .. .. .O.~ .. .- .. .e -c e..~ .. -. O me 4A AA AA 44 AA AA A AA e

d: ~ A A 4 A 4 A 4 A 4 A W A 4 A 4 A 4 A a .

m ai g ~ ,~- ._ g .; .~~

6O 5O O 50 8C C0 Om ~

g

-O O

-~ e. m-~ e O M ~c QQ

.O - -~-. -Og~O OO Oc

~~ ~ ~~O

.c e V'E Os da da as 60 dd as 06 Os ad dC da ad Os 66 d ad,*

m .

m e I

, " a,i, e t ce e ce oc e e- ee ce ce #e , , u

  • e. 8 c8 e8. 8. e x

m .w t. sa 8. a. 8 8 8.s s. ~8 8 8.a.g $. ~8 8. S.E. $.e8. 8 5 8 8 8 5 8 8. 8 8.5. g3

==

m CO OO CO DO CO OC CO DO OC CO OC OC CO OC CO O OO

= v v v v v v v v v v v w w w w w g O _g mE. R. e g T

U 'f'"

M t N w. w~ C e%.

- =. i me .~ =. w s: me c e e .- e U e. - e~ N .= .N c,.a ~e w% ~

w 5e cee w. e ~. e co me ## mw we ~ em

  • W +

C. C. O. O. O. O. . O. O. O. O. w. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O. O.

QQ CO CO CO. CO CO CO O.CO OO CO CO CO OC CO CO O CO O. O. M O

U OJ e e I:

- ~: .O e. m- ~m .~ w non m ,a ~~ m. . nu ~w n um o

0 66 CO DO DO OO DODO DO CO OO OC OO CO CD OO OO O CO ww

u. e. = . = . s. e. m. .. %. A. m.,.n ~ . , . u. m. m. ,. . . u. w. R. w. m.

. . . . m.

w,

m. ~. ,. me es=

Ea . g S= 2 4 as a > hM

    • C; 3

v ~

.O "m 11, ...O -- -O

-e O-c

.C .e O -N- .e e .O. .O -

. .O. .C ~. m--CO

. . . . .e -O .O .u .e C

. e U as --I I

w e CN N *E

{

o cu e e e e e e e e o e e e e e e e m

sl E 3 E 1 : !- :- .t ,: I : 2 : 3-

  • E--:--E EME -3
  • E : 48

-- ***b-

  • o. c ew - . ,

w ww w - .e --

ww n.me m w 6 es 6.* ---*4 h ma w =* b Ew

>= ss Au- e za ae es 3ocu3omu3o ae e3c s= e k 3o 3 e= e> em e S m= E 3o ea

= 3o em eC em es e #O

-g

.,5 =O g:

8 c

e, O. u. o. O. O. e. O. O. e. O. O. O. O. O.

. . O- O.

as . ~ = -

au . , - ~ m , w e = = = c2  ::; *

o. e-

& - 2 as; a 1

L l D.

.-105-8 l

i

n; p .

t .~-

j-Appendix Table 3. Page 1 of 12 Total phytoplankton density and biovolume, ". composition by taxoncmic class, and true chlorophyll of phytoplankton popu-lations in the upper waters of 1.ake Norman, June 1978.

Cnositten*

0 .

  • ~

w d o E o <> . 5 E 2 i 3 2 e o $ 07 5 8.

4 1 3  % K 2  : Ea 5 8-

% i i E A G s3 ar , E F  : 3 2 i i s. ,7 _, 's *7 2 L D 2 S E 2 f. ?, M s?

tecace, 6 2 6 a 2' E E Eh E3 $F

,g 22 12 2 52 3 0 11 N,' I3d 12 35 1 42 3 0 7 J*.- 22 9 2 48 10 <1 10 , , ,

9 33  ; 3 4 1559 .w- 0.r.

1 5 15 10 4 45 12 0 13 4,3 3 46 2 39 1 0 S 16 2":

-- C*:

4.5 g{ f l,2 { 9 If 14;s 17c 1.1

  • 1 "

5.0 l{'

15 3g j 'l j3 ,)

7

~j 16*7 352 C.3 .

2

-.g 13 8 7 43 11 1 17 1632 34,, C..,

5 22 3 23 J 39 5 13.0

{f ff , { If j 0 j 1193 1458 0.3 15 1 5 <1 3 14.3 1

g.

. <1 . <1

<{. <1 3jg; 1735 0.2 15.0 18 j5 <1 19 <1 0 3 1727 2101 0.2

2. e1 <1 0 <1 0 <1 -

15 a- 16 74 <1 7 <1 0 2 2174 ,511

. O a.

19 ~ 75 <1 4 <1 0 1 34.0 7{ j 'j j ]

j jets 194: 1,4 50.0 24 5g 1 24 0 0 .1 33 So 0 1273 1629 0.1

<1 8 0 <1 60.0 1{

2 0 0

.j 396 215 0.1

  • Tc: nurser in each cell represents of total co .sity. !.ower number reoresents of-total biovoi re.

"Mactcenyceae. Ianthconycase. Euglencenyceae, Unidentified

-106-i

Appendix Table'3. Page 2 of 12 Total phytoplankton density and biovolume, % composition by taxonomic class, and true ctlerophyll of phytoplankton popu-lations in the upper waters of Lake Norman, July 1978.

i

Co:cositien*

%' _a 3  : - W =

% 1  % -t *- 3 f

$ & $ $  %  % 0 ~F 5 S I I J J $ 3. 2 55 2

  • ~'

2

& 2 & & 2 1 *2 f, s  :  % 1 & & t Ei t? w 's 2

w e

% a w w O E

=

3 m

5 o

ET

-s El

-3 Et

-=

t 3:.a.

I~ 1277 517 2.3 6

i3 3* 13 15 25 1 3 9 --

7 24 3 9 2 52 2

.95. S ' *, I ' *.

.- 44 13 21 6 1 2 14 6 22 7 4 1 56 3 l'6' 4.. :a 1.5

., 39 21 17 9 1 3 9 ,

- 1. . ,,c. 107., .6 4 2E 1 4 1 62 1

,a ~3 13 20 12 1 3 3

" I..I

,II

- ,O 6 22 2 6 <1 62 2 8.0 #j 1 j 2 .S 7eg 3,3

}f Zj  ; j;35 3 3 49 13 5 17 1 7 7

    • 2 III'. '.I 6".
  • 4 5 2 7 <1 82 1 14.0 Ej 19 0 0 0 Ig i

- 3 0 3 0 8, <1 1909 5214 8.3 53 15 1 19 6 3 3 15.0 3793 jg7,- ,

9 14 <1 11 1 66 <1 15.9 29 04 1 13 2 3 3 4 31 <1 1. *1 53 <1 1191 1339 5.3 9:,o 62 20 1 10 1 3 2 *'

9 19 1 10 <1 62 <1 820- '01 50.0 6 S2 7 0 0 0 4 ,

j *o*

3 79 11 0 0 0 7

'33 4*3 60.0 9 76 15 0 0 0 0 1 71 28 0 0 0 0 814 741 1.9

  • Too nue. der in eacn cell repre: ants : of t0:31 density. Lcwer nureer recretent:
  • of .

tc:at stovolun .

  • =ma:t::ny: ace. Iantr.cenyceae. Eaglercenycese. '.widentifie:

.' -107-t

, _, - , c. -m,. -.- -e-- . ' -

l

.c s

Appendix Table 3. Page 3 of 12 Total phytoplankton density and biovolume. 7. composition by t

taxonomic class, and true chlorophyll of phytoplankton popu-lations in the upper waters of Lake _ Norman, August 1978. l t

i 2c:.cosition*

% a 2 w =

3 -

! 2  %  % C O'- 3 5 3 & 8 3 2 2 af s- 5 2 I 2 2 $ $ 2 2 -

t t & 2 2 " 8" :i =9 5-5 = A 2 & & 4 d5 d' e 's 2 4 i C

A .5

=

=

o E

~ *3 s's

~=

r t,

-=

te m ic- _=

= ** 5 6 2 5 1 1.2

'. 0 j #~

2 1 ,2 1 ~1 - i 1623 E51 51 18 8 10 1 3 10 -,,

3.*- 1643 , ...

4 12 2 4 4 73 2

  • "
  • 6 1 2 2 4.0 - 1 1577 777 C.7 9 25 5 2 1 61 1 i

4 U23 ml 1..

I 4.5 3 (( { f l 6 <

51 19 9 11 2 8 491 1.2 5.0 1729 7 19 3 6 3 S}s -

59 17 4 9 2 ,2 9 1.1 3.3 1E32 9E3 4 8 1 5 4 46 2 39 27 5 12 10 0 7 43'. 7 g *,

13"*" 9 9 63 C 1 10 1 16 1 4 15 4 3 14.0 5{ 2229 3312 S.3 16 . <1 4 1 76 1 15.3 55 16 1 3 13 3 9 ); yge 3,3 14 10 <1 - 2 70 1 29 24 1 9 11 1 14 4.0 15.9 ,1 1647 .1401 5 19 1 12 30 4 12

24.  ;; i;  ;  ; ,; ,;  ; m7 2m 5.2 8 4,3 33.0 '

ll If l, If gf 34 3 3339 8

0.9 60.0 If l } l 276 262

  • To: nu ::er in each cell re3 resents : of tot:! d:-sity. Lcwer num:e* represents % of ~

tet3! cicvoluce.

" Fact :ayc ee. Xant;:c:nyccse hq1c'.ceryccad. Unicentif teT ,

.-108-i

Appendix Table 3. 'Page 4 tf 12 Total phytoplankton density and biovolume, % composition by taxonemic class, and true chlorophyll of phytoplankton popu-  ;

lations in the upper waters of Lake Norman, September 1978.

1

Cc ::csttion*

a

%. . w

.  % . =

~

m ii

! i 2 2 . . CT 3 5 2  % i  ; t 5h E i i t i i  %  % G E3 E

  • E .

2  ; 3 S i i u si a -7 3 -

t it; 2 E S 5& li- E3

, eene ,

5 a 5 G  ? 3 5 EB Ei  : I 33 7 6 1.0 I5 3 5 7

M. 2067 2125 2:

a o 1 <a 6 6 3.0 f!; O 3

t 2

c

}

a ., E 15 6

2257 1C2' 2. 7. ,

. E3  ? 4 4 2 2 16 . ..

.' 1640 c..a. .-

3 L 2 3 3 71 5 4.3  ;; J  ; i  ! J  ; 2
: Sc- c.-

57 8 10 3 1 E 15 ..

e.3 4 6 3 2 1 EO 4 II.,.

' .21. i.e 6 1 E.0 1654 3.3 l 2175 13.4- si 14 9 14 10 5 5 I63 '. 105c. .e.:

8 15 8 23 1 42 3 U*0 25 21 2' 16 7 0 20 133 .cu. 0.9 7 18 1 45 2 0 27 f

35,3 42 12 13 to 14 1 10 9 73 c.,

e, 14 25 14 26 2 11 9

  1. l 1037 170 5.7 I

15.9 h fl 2 0 10

.- 40 is 10 14 li 7 4 ,,..

S.:. .

g gj 7 je j 53 7 is.1 .. .

3 l 50.0 f[ ;l l lE If $ l .1743 1C21 4.5 37 31 0 18 2 0 13 c. O. ,,

60'0 123 I 9 29 0 47 <1 0 14 i

  • Tco ng= car in each cell represents : cf ::tal censity. Lower nuecer represents ; of I t:tal biovol ee.

r "w aatc:nyc:ae. Xantncenycete, Zuglene:nyceae. '.'nicentifies l -109-1

Appendix Table 3. Page 5 of 12 Total phytoplankton density and biovolume, *. composition by taxonomic class, and true chlorophyll of phytoplankton popu-lations in the upper waters of Lake Norman, October 1978.

  • O c osition*

3 .

3 . :. _ w -

E_

o x . . . ~

3 f. Z Z .  : 3

7 m E 5 $ ~5 E Z Z E4 5 5 1w .a "

'l 5 U 22 5,

- - - Y._ u a- E'. .

J b ) h g df

., e c 3. w. 5 5 C U E E E St Si Ei c4  :: 2 4 1 S 21

..f.

~~~

1. ,*, *-

10 <1 1 1 84 2 If  :.5 2.0

  1. f I[ [ f } g! 1101 till

'1

. 33 c r 7

4.2 '

  • 1

.s i .

ICOS 1079 0.0 1 15 <1 1 1 42 21 6 5 1 9 14 ..

12:3 1:19 a.:

2 '2 1 1 1 50 2 5.0 if f f III2 I2I I'I If } 6 45 27 5 4 2 3 13 ... ,,

e.O o III. - ' '" *'

5 25 2 3 3 49 3 ,

12.0 3f f55 }j 1 f 750 384 1.3 22 39 1 15 11 0 2 ,n j','

j,..* ,

  • c '.

~" '--

11 57 1 25 0 1 15.0 Ef If ll  !# j j 'f 1175 655 3.

I" 7C: 5.4 15.3 Uf Ef f ff g 2053 72: 2.5 24.3 Ef (( f 'ff f f If 392 50.0 3f ff. $ ['. l jf j E54 275' 1.5 33 3 4 1 0 7 60.3 734 255 2.9 12 55 6 is 1 0 9

  • Teo nu:-:er in ete . cell represents : of :::s1 density. La.sce n..::er represen:s : sf tetal stovolu a.

~s:::1r.yer.se, tant.. rycase. Suglencenyceae. Unteer.tifie?. ~

-110-8

4 Appendix Table 3. Page 6 of 12 Total phytoplankton density and biovolute, ; composition by taxonomic class, and true chlorophyll of Dhytoplankton popu- .

lations in the upper waters of Lake Normar., November 1978.

. C:=::osi tior*

a e  : _ - =

1  : =._ a e 3 i $ 5  ? 2 =f E f 2 I' a 2 0 8 54 3

& & & 2 2 " *: "". 5.m s  : A E & i t #5 2* ei 2 =

4 2 v

C v =

A 3 m

5 o

BC

-s El nb 1.0 j 333 323 1.-

3.3  :; ;2  ; $

i ,; i; ic57 5:5 2.2

  • .3

. 25 46 3 11 1 1 7 ,,

  • . I,' 'C.'

6 65 3 7 3 *2 4 29 26 sz 5

g 9

2 3

4 16

, 9.. .,

5.g 2 j 4 a

2 1105 Eis 2.4 g,o 36 37 4 14 1 1 7

  • 10 69 4 2 2 2 -3 112-* '*-* 1*3

,- 4 23 29 2 24 1 0 12 .

u.

2 62 1 29 1 0 6 I..d

"' -' 3.0 14.0 25 50 2' la <1 0 8 *o 2 79 1 16 <1 0 1 g.. ** 65 -*-

15.0 Ej y j fj 0 1 2'9 442 2.7 15~9 *0 29 2 31 1 <1 18 65., .

., . 4 12..a-8 37 2 50 <1 <1 3

~

y* . -* 19 22 2 30 1 il 25 ., .

3 40 4 33 <1 3 3 6es m3 s.3 15 3 41 1 1 10 50.;

4

((. 5 -3 <1 4 2

357 7;) 3,3 60.0 20 <1 2 0 25 4 4}

6, <1

{0

.1 7 5 5 3 i 0 = = 3 C *ii s t i 3  %  % 3 3 Er M 3 i a i i  %  % G E f! Em s 2  ; 3 3 i i u si s 's -7 3 ~3 D 5 2 8 3 5a 1- w2 tee, t e, 5 2 5 G 2 5 5 23 S3 35' 26 7 9 il 1 1 gg7 );;

1.0 1{= ,,.

e }O i 3 9 4 5

.n 23 41 6 15 1 1 9  :':

      • 6'O ~~~ i 5 63 3 12 1 10 5
  • z
  • 3 4.0 '- "'

l;' 1 1 7 517 123 1.3 6 cu - 1. 7 8 -

4*$ 22 3

46 67 6

3 18 12 2

4 1

11 2 3

6~ ' "9

    • c 4

5.0 2h h ff 26 69", 231 2.3 23 40 6 24 1 1 6 20 4 7.c* . , . '

'~~ 1*5 5 65 7 17 1 1 19 61 2 10 0 0 5 ..

13.0 3 07 <1 6 0 0 1 3r.o 34 3.a.

6 84 2 4 1 0 2 ..

14.0 I "- '. IE'. **'

<1 81 <1 6 <1 0 10 15 2 45 0 0 3 15.0 1

{

=a 1 54 0 0 .

705 '25

. 3.4 15.9 If $ $ l [ If 931 579 3.0 10 63 1 20 1. 0 5 .. -,

3. ..J 65 32 <1 0
      1. d'6 9 . ,.

2 1 1 3 78 2 10 0 0 1 n

    • j ..

'O*O

- 3 3 *. '*'

el 73 2 25 0 0 <1

' 60 I 7 0 0 5 60.0 889 455 1.6 6 65 8 16 0 0 1

  • Teo nu: ter in esen cell represents : of total censity. Lower numDer recresents ; of .

total stavol ue.

    • 4ct:chyceae. Iant.*iocr.yceae. Eugleno:nyceae Unican:tfiei

-112-8

)

Appendix Table 3. Page 8 of 12 Total phytcolankton density and biov)lume, T. composition by taxonomic class, and true chloropnyli of phytoplankton popu-lations in the upper waters of Lake Norman, January 1979.

cs-ocst ti on*

3 a ,

3 2 - w 2

c

  1. 2  % 2 CL E

$ . 6- 3 $ 3  % GP 5 E X  %  ; 3 8 2 52' S

2 s & r 2 w o .
m a.,

3 1 E i #  % di d?

v' *

...:en. - ,

2 W 3 C -A 5 =

o E? c s. 5 9, v c v _v_ -2 -

16 3 10 1 0 .,.,

.. ,63 , 7, .m.. ..

. s , , ,

i 2.0 1 g i 1  ;  ;  ; ic2e 20 2.4  ;

4.0 y  ;;  ; y g  ;  ; m m 2.5 2.7 4.5 If h ,l If 0 ) 1115 621 14 1 1 5 5.0 6,5 1

13 1000 489 2.6 2 .6 <1 e <1 6 1 ,

3.3 9 71 2 12 7

0 0

0 0

6 1

12 *' '*

~!

2 BS 2 13 65 2 10 0 0 7 10,,.

u 64 2.8 ,.

1., . ".

1 77 1 20 0 0 1 i .0 6 83 <1 '

2 3

9 0

0 0

0 3

<1 135., .-

.e ,a ,e

<1 CS 11 63 1 17 <1 0 7 .g. 4*g-It**3 3 ". 4

1 G3 7 22 <1 0 1 7 74 1 14 0 <1 4 II., 1.,.0 4.,.

5.9 '. .

1 74 1 23 0 1 1 14 63 0 16 0 0 7 3.5 34.0 856 451 1 81 0 15 0 0 2 f

19 63 1 M 0 0 2 617 235 2.3 50.0 31 el 17 0 0 1 2

' 0 0 7 87 0 1 I38I 5.2 60.0 0 3

  • 723 1 94 0 5 0'
  • Too neer in esen cell re: resents *. cf ::tsi censity. Lower nu=:er re: resent-
  • sf total blivolc e.

= tact cryceae. Jantne:nyceae. Eugicncony:ess. Unicentiffe:

1 i

  • i l -113-I

~ - . . -. .

~

. o i

r I

Appendix Table 3. Page 9 of_12 ,

Total phytoplankton density and biovolume,-% composition by ,

taxonomic class, and true chlorophyll of phytoplankton popu- -

lations in the upper waters of Lake Nont.an, February 1979. t 4

f P. c: :estesc,-

3n 2 H z

<, e . - ~ -

0 i 2 3 . = 07 5 5 L 2  %  %  ; i G E :~ 5 2

+

r -

% ia ie  %

a

.=

C E3 - e.* 5 -*

5 4

E ai E

C i

i 5 i b 5

p i EE El s-

)

Lce nse- " = " " = * * * * ' ~' "'

c 1.0 h j h f f 1!!2 a?3 i

2.3 lj a

jj 2

3 27 1.

1 0

1 1

19,  ;;7;  ;;;  ;,7 31 0 18

=

-.3 15 2

3

(; 6 10 1

1 0 7 109

?

. 13 23 3 29 1 1 21 .., ..

. *e 3 62 3 15 1 9 7 IEI3 --- -'

l 15 25 3 40 0 1 18 .,

$*.* 21 0 4 8 e.,

1 3 64 1 ,

7 62 3 17 0 15 10 .., ,,

S.0 4 *--" 9) *, ***

1 34 1 8 0 2 6 35 4 0 0 3 .

3.3 3122 f u.. .a

<1 95 <1 3 0 0 <1 14,3 9 76 1 9 0 el 4

<1 36 4 7 0 2 1 23 "C't

  • "- i'1

+

g 5. "- 6 E2 1 9 -1 0 2 , ..

<1 51 8 <1 0 <1

  • Ie,
  • 3". 3 ***

91 9 76 2 7 0 1 5 15.3 2732 2293 5.3 1 34 2 7 0 6 1

.. , 2 29 1 5 <1 0 2 ,

sw 425o. 46,4

, <1 93 <1 6 1 0 <1 50.0 ,; y .; i;  :; g a 4227 . 23:2 10.3 .

,,.o 4 3 i a 0 0 2 ....

  • "3 7 *,

0 23 1 10 0 0 el

  • 700 ncter in =aca cell represents ". of total density. Lowe* nunser recrasents *. cf
  • otal sicwolu: e.

"dactcenycase Aanthe nyceae. Ei.glenc:nyceae. L'nteentified -

l

-114-t l

f

. + , . - -. .

l Appendix Table 3. Page 10 of 12 Total phytoplankton density and biovolume, % conposition by taxonemic class, and true chlorophyll of phytoplankton popu-lations in the upper waters of Lake florman, tiarch 1979.

r

' 0:::cosition*

% e 8  : - W 5

x 2  % 2 Obd 5 8

x -i 8, $

x  %,

-  %,.  ::  ::=, 5 c

?

i !E i i  %  % G Ei -r-, 5

"?

2  : S 3 i i u A s 's d t b R S  ? 3 23 0- W" et ,. . :., d 2 6 e  ? 3 E S3 E' ET 5 77 2 12 0 0 3 ,. -  :*

'5*:

<1 93 1 4 0 1 41 s  : ,e 1 '- ** 0 1 2 3.0 O, e

~

1025 337 1.0 1 . 1- 0 1 &

2 69 2 15 0 0 5 .e,

.0 3 0 0

... 12..

<=

<1 95 <1 <1 0

4.5 If ff ,f )g;; g;3 g,g 16 27 5 44 1 1 S n, ,7'* ..

    • 0 2 6 14 17 1 1 3 8.0 ,f h l [ f f } 4*:0 3777 5.7 i3.0  ; g  ;  ; g g a

=> im 3.:

a3 4 0 14.0 <1 3

56 1

1 2 <1 1

0 <1 1

1367 3.9
    • g 2 SS 4 3 0 0 2 1 S1 10 3 0 0 1
  • 5-8
  • 3*' 1 * '*

03 2 2 0 0 0 15.9 ,}' j5 677 7:6 2.1 3 2 0 0 0 24.3 3 M 1 6 0 0 2D l*43 I'3

.<1 96 1 2 0 0 I' 50.0 f h { f j l f 2533 1::: 4.*

4 6 1 0 0 5 e' 1026 60*3 1 C' <1 14 0 0 ': 493 ***

  • Too nor in esca ec11 represents : of total const:y. Lower nu=:er represents : cf I

total otovoice.

    • =a:::: .y: pas , Ian: .:enyceae. Suglenconyceaa. Unwen:1fic, 4 -115-1 e , . - . . - --

.i .

Appendix Table 3. Page 11 of 12 Total phytoplankton density and biovolume, % composition by taxonomic class, and true chlorophyll of phytoplankton popu-lations in the upper waters of Lake Norman, April 1979.

i

, cc..oesitten-3  : -

W = i 2 2 2 0 2*-  ; 5

$ t a 3  :

  • 2 G*
  • I 2 I 2 2 3 3 2 57 E 5

" =r "'

a- 2 & & 2 2 >

a  ?, E & & b #4 i' m 's 2  % .s b 1 i f EF Ts si b teca c., - = v v = = _c _ -o -- -=

c

'-= 4 e 1.0 Y e 93 <3 4

i.

a 1

i 1

1 01 915 0.3

. 15 61 3 15 0 0 7 I O', , , . . 3 .

a.0 7 0 0 2 1 53 2 0 1316 55 2.;

I 4.0 f If ffg f 4 I 3.*

4.5 If  ; g l l- l 1 05 46 IS 47 5 21 0 0 9 '"

ee 75 4 16 0 0 3 1342 *E" "*

9 67 2 15 0 0 7 6'S 4.5 J S.0 1665 1 89 <1 8 0 0 .

5 7 1 18 0 0 3 )Sgg );.; g,3 10.0 1 67 <1 30 0 0 1 14.0 ,( h f' l l l f 1437 923 5.1 7.0 15.0 f h f h l l f 1843 1493 3.6 15.9 If~ #l f ll l "l ( 2525 1378 3 SI 1 14 0 0 1 l*54 6.4 24.0 1ESS

(

<l 70 1 .0 0 0 <1 r

50.0 o 63 el 'E al 0  : gg39 j;;; g,;

I 63 *1 .5 <1 0 <1 4 4.4 60.0 h f h6 l l ,

1521 776

  • 7co nu :er in eacn cell represents : of total density. Leuer nut oce represents : sf t:tal tiovelur.e.
  • uactecrycese, Jantr.::hyceae. Euglanconyceae. Unicentiffe(

l

-116-

--- - g y -

' Appendix Table 3. Page 12 of 12 Total phytoplankton density and biovolume, ", composition by taxonomic class, and true chlorophyll of phytoplankton popu-lations in the upper waters of Lake Norman, May 1979.

2

- Cc= c:ition' .

% a 8 2 -

W; E

  1. #~ #  % 0 O !.- I 3 & -8 3  %  %  : 35 9 2 2

I I

E t 2 t

2 8 a" ja4: 2

"?

3 cm s  : T E & & t W ii  :: ? wi

'c:

, t*:n 2

v X

=

i v

O v

i 5 c

i 5?

-3 Ts= E4

-3 1.0 13 16 7 42 1 1, 22 3 31 10 to <1 o 10 25*S 434 1.5

-g

, 14 21 7 34 0 0 24

  • 4*,,
  • '10 5 30 8 34 0 1 11

.v 12 20 7 33 0 0 23 .. -

3 45 12 28 0 0 13 446 37.e 1.3 4.5 y* gj 8

jj 6.

0 0 2473 475 2.0 11 15 9 39 0 0 25 5.3 3230 '31 2**'

8 34 6 39 0 0 13 -

b 8 13 5 47 0 0 26 0*n*

3 31 8 46- 0 0 12

,g

- 4,, ,,2 13.0 If h ff f *f f 2065 BE2 0.9 14.0 8 57 1 33 1 0 1 3 71 1 .4 <1 0 <1 1457 645 4.1 j 15.0 8 1 0 0 3 1

53 64 1 .f0 0 0 1 9;g ;333 3,9 15.9 11 67 0 19 1 0 1 3 06 0 10 41 0 <1

  • 711 1560 1.0 24.0 If f ,"j 19El 599 2.5 .

50.0 10 4g g 30 - el 0 3 6 Es 4 54 <1 0 1 2257 1000 5.0 60.0 11 72 0 14 0 0 2 1 82 0 16 0 0 1 ES2 373 *0.

  • Tco nu-2er in eac . cell represents : Of tot:1 const y. Lower ne ser represee.:s s cf tats) biovolues.

-M a:te:eyceae Janth::.yceae. Ewglenceryceae. Unteentifies I

i L -117-

Appendix Table 4. Page 1 of 12 Lake Norman periphyton densities (units m-2) and organic accumulation rates (m9 m-2.d'I) from artificial substrate samples exposed 28 days and collected on 6/29/78. Densities and organic accumulation rates are based on at least two replicates. (NS - not sampled.)

Chlorophyceae: Bacillariophyceae: ityxophyceae: Other Classes: Total Mean Organic Density Density Density Density Periphyton Accumulation Locatica (% Composition)  % Composition (% Composition) (% Composition) Density Rate 9 9 9 7 10 6.87x10 7.19x10 3.00x10 5.41x10 1.71 x10 74,9

.0 (40.1) (42.0) (17.5) (0.3) 9 9 9 7 9 3.32x10 4.15 x10 1.90x10 4.24x10 9.40x10 48.4 1.2 (35.2) (43.8) (20.2) (0.4) 10 9 9 7 10 2.08x10 8.16x10 1.60x10 5.05x10 3.07x10 173.8 3.0 (67.9) (26.4) (5.2) (0.4 )

9 9 9 b 2.46x10 3.48x10 9

1.05x10 0 7.00x10 69.9 4.0 (35.2) (49.8) (15.0) (0) 9 9 7 10 9.28x10 5.18x10 2.91x10 1.63x10 1.74x10 91.0 6.0 (53.5) (29.6) (16.7) (0.1) 9 10 9 7 10 9.91 x10 1.06x10 6.05x10 2.18x10 2.65x10 103.0 8.0 (37.3) (39.7) (22.8) (0.1)

NS NS NS NS NS NS NS NS NS NS NS NS 9 9 9 7 10 1.33x10 7.96x10 3.55x10 3.89x10 1.29x10 133.3 15.9 (61.6) (27.5) (0.7)

(10.3) 9 9 7 9 2.67x10 1.14x10 1.35x10 2.12x10 1.57x10 16.7 16.0 (72.8) (8.6) (1.4)

(17.0) 9 10 9 9 10 2.55x10 1.29x10 3.43x10 1.03x10 1.9x10 107.2 34 .0 (67.9) (18.0) (0.5 (13.5)

Appendix Table 4. page 2 of 12

-2 Lake llonnan periphyton densities (units m-2) and organic accumulation rates (m9 m d -I) from artificial substrate samples exposed 29 days and collected on 7/28/78 Densities and organic accumulation rates are based on at least twe replicates. (Sit - Sample missing).

Chlorophyceae: Pacilliriophyceae: Hyxophyceae: Other Classes: Total Hean Organic Density Density Density Density tNriphyton Accumulation Location _ (% Composition)  % Conposition (% Composition) (% Composition) Dt.nsji ty_ Rate SM SM SM SM SM SM 1.0 8 9 8 7 9 9.02x10 3.02x10 4.41x10 3.08x10 3.40x10 107.7 1.2 (25.9) (59.5) (13.0) (0.9) 9 9 0 7 9 1.55x10 4.28x10 9.38x10 5.13x10 6.82x10 1 31 .3 3.0 (22.7) (62.5) (13.8) (0.8) 0 9 0 7 9 2.62x10 1.36x10 5.33x10 1.64x10 2.17x10 12.1 4.0 (12.1) (62.4) (24.6) (0.8) 0 9 8 7 9 7.57x10 2.91x10 8.18x10 5.53x10 4.54x10 129.7 6.0 (16.7) (64.0) (18.0) (1.2) 0 0 0 7 9 2.21x10 9.35x10 5.17x10 5.10x10 1.61 x10 8.8 8.0 (13.8) ( 51.5 ) (32.0) (2.5) 9 10 9 7 10 1.15x10 1.12x19 1.76x10 6.49x10 1.42x10 45.7 13.9 (8.1 ) (78.8) (12.4 ) (0.5) 9 9 8 10 1.54x10 8.00x10 4.70x10 1.24x10 1.44x10 1 31 .0 14.0 (10.6) (55.7) (32.7) (0.8) 9 9 9 0 9 1.15x10 4.53x10 3.08x10 1.87x10 8.95x10 55.1 15.9 (12.8) (50.6) (34.5) (2.0) 0 9 0 7 9 9.56x10 3.58x10 4.23x10 6.02x10 5.02x10 30.9 16.0 (8.4)

(19.0) ( 71.3) (1.2) 9 9 9 10 1.37x10 7.7x10 1.66x10 30 0 1.08x10 66.6 34.0 (12.6) (71.2) (15.3) 8(0.8

s Appendix Table 4. Pa9e 3 of 12

-2 Lake florman periphyton densities (units m-2I and organic accumulation rates (mg m d-I) from artificial substrate samples exposed 33 days and collected on 8/30/78 Densities and organic accumulation rates are based on at least two replicates.

Chlorophyceae: Bacillariophyceae: flyxophyceae: Other Classes: Total Hean Organic Density Density Density Density Periphyton Accumulation Location 1% Composition)  % Composition (% Composition) (% Composition) Density Rate 1.95x10 7 8.61 x10 7

1.74x10 7

1.54x10 6

1.25x10 8

3.1 1.0 (15.6) (69.1 ) (14.0) (1.2) 8 9 8 6 9 5.86x10 2.91x10 3.08x10 8.20x10 3.81 x10 220.4 I*2 (15.5) (76.2) (8.0) (0.2) 9 9 9 9 10 2.48x10 5.83x10 1.91x10 1.77x10 1.04x10 84.7 3.0

, (23.8) (56.0) (18.4 ) (1.7) 8 9 8 9 5.66x10 2.32x10 5.91x10 4.1x10 3.52x10 35.3

'- 4.0 (16.0) (66.0) (16.8) (1.1 )

8 8 8 7 9 2.30x10 8.20x10 2.44x10 2.15x10 1.32x10 17.3 6.0 (17.5) (62.3) (18.5) (1.6) 8 9 7 9 5.98x10 2.96x10 1.93x10 1.18x10 3.77x10 31.0 8.0 (15.8) (78.6) (5.1 ) (0.3) 9 9 9 6 9 13.0 7.23x10 3.47x10 5.23x10 5.13x10 4.72x10 36.9 (15.4 ) (73.4) (11.0) (0.1) 8 9 9 7 9 14.0 6.46x10 6.07x10 1.21x10 4.31 x10 7.97x10 57.8 (8.1 ) (76.1) (15.1) (0.6) 9 9 9 7 9 15.9 4.23x10 5.7x10 1.21 x10 4.31 x10 7.40x10 106.5 (5.7) (76.9) (16.4) (0.9) 9 9 9 7 9 16.0 9.59x10 1.99x10 5.52x10 6.76x10 3.57x10 47.4 (26.8) (55.8) (15.4) (2.0) 9 34*0 1.71 x10 5.67x10 9 9 7 1.0lx1010 76.0 (17.0) (56.2) 2{60x10 25.8) 0.8 8(00x0

Appendix Table 4. Page 4 of 12 Lake florman periphyton densities (units m-2) and organic accumulation rates (mg m -2 d -I) from artificial substrate samples exposed 36 days and collected on 10/6/78 Densities and organic accumulation rates are based on at least two replicates.

Chlorophyceae: Baci11ariophyceae: Myxophyceae: Other Classes: Total Mean Organic Density Density Density Density Periphyton Accumulation Locition (% Composition)  % Composition (% Composition) ]% Composition) Density _ Rate 0 0 7 9 j~g 1.80x10 1.68x10 4.46x10 2.46x10 2.33x10 16.2 (7.6) (72.0) (19.2) (1.0) 0 9 0 7 9 1*2 3.90x10 2.82x10 7.39x10 5.13x10 4.00x10 71.1 (9.8) (70.3) (18.4) (1.3) 8 9 0 7 9 3*0 1.44x10 1.16x10 3.52x10 1.55x10 1.67x10 118.3

, (8.6) (69.3) (21.0) (0.9) 8 9 8 7 9 4*0 4.92x10 3.50x10 4.36x10 6.66x10 4.49x10 130.4 (10.9) (77.6) (9.7) (1.4) 9 10 9 7 10 6*0 2.70x10 1.23x10 1.61x10 5.19x10 1.67x10 77.0 (16.1) (73.8) (9.6) (0.3) 9 8 1.89x10 0 7

8.0 1.45x10 4.39x10 1.64x10 2.10x10 9 19.8 (9.0) (69.1) (20.9) (0.8) 8 0 7 7 9 13*0 1.18x10 8.33x10 5.98x10 3.08x10 1.04x10 41.4 (11.3) (80.0) (5.7) (3.0) 8 9 0 6 9 14*0 4.08x10 1.53x10 1.40x10 7.69x10 2.08x10 22.8 (19.5) (73.2) (6.7) (0.4) 0 9 0 7 9 1.54x10 5.50x10 2.21 x10 2.46x10 5.90x10 128.2 I*

(2.6) (93.1 ) (3.8) (0.4) 9 0 9 5.64x10 0 7

3.08x10 3.95x10 1.64x10 4.05x10 36.6 16.0 (13.9) (76.0) (9.7) (0.4) 0 53x10 0 7 7 34*0 5.38x100 28.9 5(23x10 9.8) 3(65.5) 1(20x10 22.3) 1(23x10 2.3)

Appendix Table 4. Page 5 of 12 Lake Ilonnan periphyton densities (units m-2) and organic accumulation rates (m9 m-2 d-I) from artificial substrate samples exposed 31 days and collected on 11/6/78. Densities and organic accumulation rates are based on at least two replicates. (SM - Sample missing).

Chlorophyceae: Bacillariophyceae: Myxophyceae: Other Classes: Total Mean Organic Density Density Density Density Periphyton Accumulation Location (% Composition)  % Composition D Composition) D Composition). Density Rate 9 6 6 9 4.27x10 7 9.36x10 9.43x10 4.82x10 7.12x10 5.4 1.0 (4.2) (94.3) (0.9) (0.5) 7 9 6 9.08x10 8 7

3.77x10 8.40x10 2.62x10 4.92x10 26.6 1.2 (4.1 ) (92.3) (2.9) (0.6) 7 9 8 6 9 8.61 x10 1.48x10 1.72x10 7.18x10 1.75x10 17.8 3.0 1 (5.0) (84.7) (9.8) (0.4) n SM 4.0 SM SM SM SM SM 9 9 8 7 9 3.83x10 6.67x10 3.78x10 5.08x10 7.48x10 115.9 6.0 (0.7)

(5.2) (89.0) (5.0) 7 7 6 9 8.0 4.22x10 6.70x109 3.85x10 5.08x10 7.55x10 11.5 (5.6) (88.7) (5.1) (0.7) 7 9 8 7 9 13.0 4.86x10 6.51x10 1.17x10 1.23x10 7.12x10 53.2 (6.8) (91.3) (1.6) (0.2) 9 9 8 9 14.0 1.85x10 1.94x10 8.40x10 0 2.96x10 174.1 (6.2) (65.2) (28.3) (0) 8 9 4.12x10 9 9 7 15.9 8.13x10 1.75x10 1.13x10 8.73x10 186.1 (4.7) (93.1 ) (2.0) (0.1) 9 9 9 4.30x10 9 7

16.0 2.34x10 3.90x10 1.60x10 1.22x10 37.8 (5.4) (90.6) (3.7) (0.2) 7 6 9 34.0 3.12x10 8 3.62x10 9 9.02x10 8.20x10 4.03x10 33.4 (7.7) (89.8) (2.2) (0.2)

Appendix Table 4. Page 6 of 12 Lake Norman periphyton densities (units m-2) and organic accumulation rates (mg m-2 d -I) from artificial substrate samples exposed 30 days and collected on 12/6/78. Densities and organic accumulation rates are based on at least two replicates. (SM - sample missing).

Chlorophyceae: Baci11ariophyceae: Myxophyceae: Other Classes: Total Mean Organic Density Density Density Density Periphyton Accumulation Location (% Composition)  % Composition (% Composition) (% Composition) Density Rate 6 8 0 8 1*0 7.18x10 3.19x10 1.03x10 0 3.27x10 3.9 (2.2) (97.4) (0.3) (0) 7 0 9 1'2 2.05x10 9.70x10 1.64x10 0 1.01 x10 11.9 (2.0) (96.3) (1.6) (0) 7 0 8 3'0 1.54x10 5.49x10 2.05x106 0 5.66x10 12.7 (2.7) (96.8) (0.4) (0) 7 9 6 9 4*0 2.56x10 1.29x10 2.56x10 0 1.32x10 22.5 (1.9) (97.8) (0.2) (0) 6 0 6 6 0 6'0 9.74x10 2.27x10 2.05x10 5.65x10 2.44x10 14.4

.(4.0) (92.8) (0.8) (2.2) 7 0 6 8 8.0 1.23x10 3.95x10 4.61x10 0 4.12x10 12.5 (3.0) (95.8) (1.1) (0) 7 9 8 9 13.0 4.61x10 1.13x10 1.23x10 0 1.30x10 25.2 (3.5) (86.9) (9.4) (0) 14.0 SM SM SM SM SM SM 7 7 7 7 9 8.61 x10 2.01 x10 5.54x10 1.23x10 2.16x10 37.6 15.9 (4.0) (92.8) (2.5) (0.5) 7 7 6 9 6.28x10 1.29x10 4.36x10 1.28x10 1.40x10 11.8 16.0 (4.5) (92.3) (3.1 ) (0.1) 7 9 7 6 34.0 1 3 0 5 0 1.30x10 9 29.8 9h8h0

Appendix Table 4. page 7 of 12 Lake Noman periphyton densities (units m-2) and organic accumulation rates (mg m-2 d'I) from artificial substrate samples exposed 30 days and collected on 1/5/79. Densities and organic accumulation rates are based on at least two replicates. (SM - sample missing).

Chlorophyceae: Baci11ariophyceae: Myxophyceae: Other Classes: Total Mean Organic Density Density Density Density Periphyton Accumulation Location (% Composition)  % Composition (%Compositionl (% Composition) _ Density Rate 6 8 0 1.0 9.02x10 8.56x10 0 0 8.65x10 3.8 (1.0) (98.9) (0) (0) 6 0 6 0 1.2 5.13x10 7.08x10 2.05x10 0 7.15x10 8.2 (0.7) (99.0) (0.3) (0) 7 9 6 9 3.0 1.11x10 1.07x10 1.23x10 6 1.23x10 1.10x10 21.7

. (1.0) (98.7) (0.1) (0.1) 8 9 7 6 h 4,0 1.06x10 1.5! x10 1.85x10 1.54x10 1.64x10 9 44.9 (6.4) (92.3) (1.1) (0.1) 6 8 6 5 0 6.0 3.69x10 2.38x10 1.23x10 6.15x10 2.44x10 12.8 (1.5) (97.7) (0.5) (0.2) 0 8.0 1.74 x10 7

4.56x10 0 4.10x10 0 4.78x10 0 12.4 (3.6) (95.5) (0.8) (0) 0 5.78x10 7

4.10x10 1.11x10 7 0 4.79x10 0 16.0 13*0 (12.1 ) (85.5) (2.3) (0) 7 0 6 0 4.68x10 3.39x10 2.46x10 0 3.88x10 17.4 14*0 (12.0) (87.3) (0.6) (0) 7 8 6 0 2.58x10 5.38x10 0 1.23x10 5.65x10 7.8 15.9 (0) (0.2)

(4.6) (95.1)

SM SM SM SM SM SH 16.0 7 8 6 0 5.47x10 2.28x10 2.82x10 0 2.86x10 13.4 34.0 (0)

(19.2) (79.7) (1.0)

Appendix Table 4. Page 8 of 12 Lake llorman periphyton densities (units m-2) and organic accumulation rates (m9 m-2 d'I) from artificial substrate samples exposed 30 days and collected on 2/5/79 Densities and or9anic accumulation rates are based on at least two replicates.

Chlorophyceae: 8acillariophyceae: Hyxophyceae: Other Classes: Total Mean Organic Density Density Density Density Periphyton Accumula tion Location 1% Composition)-  % Composition (% Composition), 1% Composition) Density Rate 6 7 5 7 1.37x10 8.33x10 0 3.42x10 8.50x10 2.6 1.0 (1.6) (98.0) (0) (0.4) 6 7 7 1.54x10 4.41 x10 0 0 4.56x10 4.7 1.2 (3.4) (56.6) (0) (0) 6 7 3.0 1.28x10 3:02x10 7 0 0 3.15x10 17.4

. (4.1) (95.8) (0) (0) 6 8 1.60x10 8 7

h 4.0 1.38x10 0 1.03x10 1.75x10 15.4 (8.0) (91.3) (0) (0.6) 6 7 5 6 8 4.10x10 9.37x10 5.13x10 2.05x10 1.00x10 11.6 6.0 (0.5) (2.0)

(4.1) (93.3) 6 7 6 7 5.13x10 5.61 x10 4.61x10 0 6.59x10 5.6 8.0 (85.1) (7.0) (0)

(7.8) 6 8 6 6 0 9.23x10 2.81 x10 4.10x10 2.05x10 2.%x10 18.9 13.0 (94.7) (1.4) (0.7)

(3.1 )

0 6 2.36x10 7 2.44x10 5.15x10 0 2.73x10 33.4 14.0 (89.4) (1.9) (0)

(8.6) 7 8 5 8 1.08x10 1.38x10 0 5.15x10 1.50x10 12.4 15.9 (7.2) (92.4) (0) (0.3) 7 0 6 5 8 1.55x10 1.56x10 2.56x10 5.15x10 1.74 x10 33.3 16.0 (8.9) (89.4) (1.5) (0.3) 9.23: 10 6 1.12x10 8 0 5.13x10 5 1.22x108 15.1 34.0 (7.6; .(91.9) (0) (0.4)

Appendix Table 4. Pa9e 9 of 12

-Lake florman periphyton densities (units m-2) and organic accumulation r.ites (m9 m-2 d'I) from artificial substrate samples exposed 28 days and collected on 3/6/79. Densities and organic accumulation rates are based on at least two replicates.

Chlorophyceae: Baci11ariophyceae: Myxophyceae: Other Classes: Total Mean Organic

. Density Density Density Densi ty Periohyinn Accumulation Location (% Composition)  % Composition {% Composition) (% Composition) . oens i ty_ ' Rate 7 8 6 8 1.13x10 1.97x10 0 3.09x10 2.11 x10 83.5 1.0 (5.3) (93.1 ) (0) (1.5) 5 2.56x10 6 7

9.79x10 5.13x10 0 1.01 x10 0 7.0 1.2 (2.5) (96.9) (0.5) (0) 6 7 5 1.54x10 2.60x10 0 1.28x10 2.77x10 7 43.0 3.0

, (5.6) (93.9) (0) (0.5) 0 6 1.24x10 8 7 6 h 4.0 1.17x10 1.09x10 1.85x10 1.23x10 24.2 (9.4) (88.0) (1.5) (1.0) 6 7 5 5 7 3.33x10 5.56x10 5.13x10 2.56x10 5.97x10 9.8 6.0 (5.6) (93.0) (0.8) (0.4) 6 8 8.0 4.10x10 1.26x10 0 0 0 1.30x10 30.5 (3.2) (96.8) (0) (0) 6 7 5 7 13.0 8.20x10 7.94x10 0 5.13x10 8.81 x10 8.2 (9.4) (90.0) (0) (0.6) 0 8 14.0 5.13x106 1.23x10 0 0 1.28x10 - 130.6 (4.1) (95.9) (0) (0) 5 15.9 2.56x10 6 9.69x10 7

0 5.13x10 9.99x10 7 27.9 (2.6) (96.9) (0) (0.5) 6 7 6 7 2.05x10 2.02x10 1.03x10 0 2.33x10 li.s 16.0 (8.8) (86.7) (4.4) (0) 34.0 1.13x107 1.57x108 0 1.03x106 1.69x108 29.3 (6.7) (92.7) (0) (0.6)

Appendix Table 4. Page 10 of 12 Lake florman periphyton densities (units m- and organic accumulation rates (mg m- d-1) from artificial substrate samples exposed 30 days and collected on4/5/79. Densities and organic accumulation rates are based on at least two replicates.

Chlorophyceae: Bacillariophyceae: flyxophyceae: Other Classes: Total flean Or9anic Density Density Density Density Periphyton Accumulation Lo_ca tion j% Composition)  % Composition (% Composition) (% Composition) Density _ Rate 7 9 7 9 1.54x10 1.35x10 3.08x10 0 1.40x10 6.9 1.0 (1.1) (96.6) (2.2) (0) 1.23x10 7 8.99x10 8 0 0 9.12x10 0 17.8 1.2 (1.4) (98.6) (0) (0) 6 0 6 5.13x10 3.11 x10 1.03x10 0 3.18x10 8 16.1 3.0 1 (1.6) (98.0) (0.3) (0) 8 9 9 2.87x10 4.37x10 8.20x10 7 1.54x10 7 4.75x10 266.3 4.0 (6.0) (91.9) (1.7) (0.3) 2.05x107 7.00x10 0 6.15x10 6 4.10x10 6

7.31x10 8 22.9 6.0 (2.8) (95.7) (0.8) (0.6) 6 0 8.20x10 1.78x10 0 2.05x106 0 1.89x10 3.4 0.0 (4.3) (94.5) (1.1) (0) 1.13x10 8 7 7 2.05x10 9.23x10 0 0 33.4 13.0 (18.3) (81.7) (0) (0) 7 0 6.15x10 8.96x10 7 0 0 1.51 x10 153.6 14.0 (40.8) (59.2) (0) (0) 7 0 7 6 0 1.54x10 1.00x10 1.03x10 8.21 x10 1.34x10 21.5 15.9 (11.4) (74.7) (7.7) (6.1) 7 0 7 5 0 4.10x10 5.99x10 1.13x10 5.15x10 6.52x10 9.6 16.0 (6.3) (91.9) (1. 7) (0.1) 34*0 1.44x10 7 9.84 x107 3.08x10 6 6 1.18x100 7.3 (12.2) (83.4) (2.6) 2(05x10 1.7)

Appendix Table 4. Page 11 of 12 Lake Norman periphyton densities (units m-2) and organic accumulation rates (mg 2 ri d-I) from artificial substrate samples exposed 29 days and collected on 5/4/79. Densities and organic accunulation rates are based on at least two replicates. (SM - sample missing).

Chlorophyceae: Baci11ariophyceae: Myxophyceae: Other Classes: Total Mean Organic Density Density Density Density Periphyton Accumulation Location (% Composition)  % Composition (% Composition) (% Composition) Density Rate 8 9 7 9 4.43x10 8.22x10 7.38x10 0 8.73x10 64.8 1.0 (5.0) (94.1 ) (0.8) (0) 8 9 8 7 9 8.53x10 8.80x10 2.67x10 1.35x10 9.94x10 40.3 1.2 (8.6) (88.5) (2.7) (0.1) 8 10 8 7 10 5.66x10 1.13x10 2.21 x10 8.61 x10 1.22x10 49.8

.L 3.0 (4.6) (92.8) (1.8) (0.7) 9 9 9 8 10 2.50x10 9.27x10 4.20x10 1.54x10 1.23x10 89.5 4.0 (20.2) (75.0) (3.4) (1.3) 8 9 7 9 3.69x10 8.33x10 8.61 x10 7.38x107 8.86x10 39.2 6.0 (4.1) (94.0) (1.0) (0.7) 7 9 7 9 4.31 x10 1.44x10 4.61 x10 0 1.52x10 44.4 8.0 (2.8) (94.2) (3.0) (0) 8 9 8 9 6.17x10 7.51 x10 4.88x10 0 8.61x10 108.5 13.0 (7.1) (87.2) (5.7) (0) 9 9 9 2.46x10 7.62x10 3.38x10 0 1.35x10 40.3 14.0 (25.1) (0)

(18.2) (56.6) 15.9 SM SM SM SM SM SH 9 9 8 10 6.71 x10 3.01 x10 2.78x10 0 1.00x10 76.5 16.0 (2.8) (0)

(67.1) (30.1) 9 8.06 x10 9

14x10 8 7 1.06x10 10 17.3 34'0 2{46x0 1(80x10 17.0) (76.0) 7{6.7) 0.2

Page 12 of 12 Appendix Table 4.

Lake Norman periphyton densities (units m~ ) and organic accumulation rates (mg m" d'I) from artificial substrate samples exposed 28 days and collected on 6/4/79. Densities and organic accumulation rates are based on at least two replicates. (NS - not sampled).

Bacillariophyceae 11yxophyceae: Other Classes: Total 11ean Organic Chlorophyceae:

Density Density Density Density Periphyton Accumulation Location (% Composition)  % Composition (% Composition) (% Composition _l Density _ Rate 9 9 7 10 9

1.10x10 3.50x10 9.02x10 2.16x10 71.6 6.97x10 1*0 (51.1) (16.2) (0.4)

(32.2) 0 7 10 9

9.06x10 9

9.93x10 4.51x10 1.14x10 52.0 1.26x10 1.2 (79.7) (8.7) (0.4)

(11.1) 10 9 8 10 33),j 5.12x10 9

1.43x10 5.55x10 1.58x10 2.51x10 3.0 (56.9) (22.0) (0.6)

(20.4) 8 7 9 9 9 4.53x10 4.00x10 6.46x10 84.9 b 4.0 1.45x10 4.51x10 y (22.5) (69.8) (7.0) (0.6) 10 9 7 10 9

1.28x10 1.62x10 1.35x10 1.74x10 182.0 2.80x10 6.0 (73.7) (9.3) (0.8)

(16.1) 10 9 8 10 9 1.18x10 4.33x10 1.13x10 1.78x10 112.3 1.56x10 8.0 (66.3) (24.3) (0.6)

(8.7) 9 7 10 9 10 2.26x10 4.92x10 1.46x10 gj,3 1.16x10 1.11x10 13.0 -(76.3) (15.5) (0.3)

(7.9) 0 0 6 9 8 6.31x10 5.70x10 5.04x10 1.31x10 20.9 1.02x10 H.0 (48.3) (43.5) (0.4)

(7.8) 10 0 10 9 10 1.33x10 2.15x10 3.85x10 203.3 1.11x10 2.39x10 15~9 (34.6) (0.5)

(2.8) (62.1) .

8 7 9 0 9 2.04x10 4.79x10 3.55x10 17.6 2.46x10 3.06x10 16.0 (5.7) (1.4)

(6.9) (86.0) 9 7 10 9 10 7.51x10 6.77x10 2.24x10 102.2 1.76x10 1.30x10 34*0 (33.6) (0.3)

(7.9) .(58.2)

~

Appendix Tabla 5. Page 1 of 24 LCEE NUSMAN 200FLANtIDil DEftSillES ESill1AIED IRON VERIICAL NEI 10W SAMILES.

6ENSillES ARE EXPRESSE1 AS NUMBER fli DRGANISHS l'ER CUBIC HE1ER.

ICIAL ICIAL 10!AL IUIAL IUIAL R0ilfERS: LufEFDDS: CTCL0f01BS: CALANUIDS: LLAl'0LERANS:

DEllSilf/ DENSilf/ PEllSil f / PENSliT/ DENSitT/ IUIAL l'EPIN (IERCfMI (I'E RC E N I (PERCLNI (FFRCENI (f ERCitil Zuuf'LAN1:IUN:

1.0C ATION MONill YE AR (N) 00HFOSilI0NI CUl1FDSil10N) CUMPUSil10N) CUMFOSil10N) COMI'051IIONI tilliSil Y 1.0 6 78 10.0 I3165 25870 19683 7765 6H54 45891 (28.7) (56.43 (25.51 (16.99 (14.7) 2.0 6

~

78 10.0 13200 33138 14335 1069I 4783 51120 (25.83 (64.8) (28.0) (20.9) ( ?.41 3.0 6 78 10.0 10322 16301 BC25 4086 7274 33897 (30.5) (40.8) (26.0) (12.1) (21.5) 3.9 6 78 8.0 19355 40417 t/535 7733 9217 68989 (28.8) (58.63 (25.41 (11.2) (13.4) 4.0 6 78 4.0 29480 24968 4369 4335 3556 50004 (50.8) (43.08 ( /.5) s ( 7.51 ( 6.1) 4.5 6 78 9.0 9615 19552 9790 Sitt 6113 35280

2. (27.31 (55.41 (27.7) (14.5) (17.3)

I$ 5.0 6 78 3.0 15568 7648 343 1173 1251 24467 (63.6) (31.33 ( l.4) ( 4.81 ( 5.1) 6.0 6 78 9.0 18707 17437 6342 7876 2839 30902 (48.0) (44.7) (16.33 (20.21 ( 7.3) 8.0 6 78 10.0 17951 30610 14825 6637 4/57 53318 (33.73 (57.41 (27.8) (12.43 ( 8.V) 13.0 6 78 10.0 24569 39409 15927 2176 6764 70742 (34.7) (55.7) (22.5) ( 3.1) ( ?.6) 14.0 6 78 8.0 71028 50898 17341 1610 5626 127551 (55.11 (39.9) (13.6) ( l.31 ( 4.4) 15.0 6 78 10.0 52595 59955 19833 7856 5065 It?614 (44.7) (51.01 (16.9) ( 6.7) ( 4.3) 15.9 6 78 10.0 132313 734?? 19465 10020 V729 215520 (61.4) (34.11 ( 8.6) ( 4.61 ( 4.51 16.0 6 78 0.3 9799 1916 19 236 1416 12630 (17.6) (11.2) ( 0.8) ( l.9) (ll.2) 34.0 6 78 10.0 10490 35900 14928 4016 10164 56553 (18.5) (63.51 (24.81 ( 7.8) (18.0) 50.0 6 78 10.0 67202 77514 30833 10059 10324 155540 (43.2) (49.8) (19.8) ( 7.0) ( 7.0) 60.0 6 78 7.0 13947 3D301 5785 125 3649 56397 (24.11 (68.8) (10.3) ( 0.2) ( 6.5)

Appendix Table 5. Page 2 of 24 LAll[ llDRHAN 2001'LAtitIDil DEllSillLS ESilMAIED FRoli Vf RilCAL 11El Ito SANILES.

bEllSillES AF:E EXPRESSEli AS Ilutil;ER OF URGAlllSrtS l'ER CUDIC t1EIER.

IDIAL ID I Al. IUIAL 101AL IDIAL R0llFERS: CUPEf0DS: Cr[LufolDS: CALAMotD3: CL AcuCERAt45:

DLNSIIT/ DEllSliT/ DLHS11T/ l'EWSil t/ IsE11Sli f/ 10l AL DEPIH (FEkEENI (PERCFill (PERCElli (I ERCE HI (I'EF:CENI ZUuttANNION:

LOCATION MONilt TEAR (H) 00Mr0 Sill 0N) LC11 POSIT 10N) CUf1FUS!Ilull) ( OttPOSIllDill Cut 100 SIT 10ft) Dt tiSil f l.9 6 78 30.0 5244 10780 5107 2729 2815 17040 (27.5) (57.7) (26.0) (15.4) (14.0) 1.2 4 78 14.0 6308 21215 11588 5076 3340 30943 (20.6) (68.6) (37.2) (16.41 (10.H) 2.0 6 78 20.0 6114 15023 7186 3937 4153 25290 (21.2) (59.4) (28.41 (15.6) (16.4) 3.0 6 78 20.0 7650 12932 6420 3505 3?36 24318 (31.51 (53.21 (26.4) (14.41 (15.4)

,s, 8.0 6 78 20.0 11803 20141 10834 360/ 2362 34506 La (34.2) (58.11 (31.4) (10.5) ( 7.4)

Y 13.0 6 78 23.0 11641 30388 13293 620 4/19 46748 (24.9) (65.0) (28.4) ( l.3) (10.1) 15.0 6 78 20.0 2V333 37071 10281 3Y15 4235 70659 (41.5) (52.51 (14.5) ( 5.5) ( 6.0) .

15.9 6 78 21.0 106990 63448 15023 2968 7710 170178 (60.9) (35.6) ( 8.4) ( l.7) ( 4.3) 34.0 6 78 17.0 10059 34134 14162 2T.6V 7102 51575 (l?.5) (66.7) (27.41 ( 5.0) (13.8) 50.0 6 78 15.0 36051 36144 13894 4113 5973 78874 (46.1) (46.2) (17.8) ( 5.3) ( 7.6)

~

Appendix ' Table 5. Page 3 of 24 LACE NORMAN 200PLANKIUM BEN 311IES ESIINAIED Fh0M VERIICAL NE T 10U SAnFLES.

BENSIIIIS ARE EIFIESSED AS HUMBER OF URGANISMS FER CUBIC NEIER.

10lAL IDIAL 101AL IUIAL IDIAL Rul!FERS: Cui'Lf0DS: CICLDPUIDS: CALAHO!DS: CLAD 00ERANS:

DENSill/ DEUSill/ DENSitT/ bENSilf/ LENSlif/ 10lAL Dif'ill (IEklElli (IEEllHI (l'ERCC.N I ti EliEEN I (l'EstCElli 200FLAllKIUH 1.I'E AIION MONIX IEAR (d) CONF US ill Dril Cus1F trSIIIUll) Ltir.F 03IIIDH ) LunPOSIllONI 00nF OSIII0lil BENS!!Y 1.0 7 78 10.0 6450 13315 2576 4666 152V 21294 (30.31 (62.51 (12.11 (21.9) { /.21 2.0 7 78 10.0 13512 13248 2268 3725 677 27437 (49.21 (40.33 ( 8.3) (13.61 ( 2.5) 3.0 7 78 10.0 13994 16390 3593 3751 563 30947 (45.21 (53.0) (11.6) (12.1) ( l.8) 3.9 7 73 H.0 7451 V126 3466 1700 B10 17648 (43.49 (51.7) (17.6) ( 9.61 ( 4.9) 4.0 7 78 5.0 8152 4009 661 177 171 13132 (62.18 (36.61 ( 5.01 ( l.33 ( l.31 4.5 7 78 10.0 15137 15425 244l 2773 936 31477

-- (48.ll (49.03 ( 7.8) ( 8.8) ( 3.0)

IU 5.0 7 78 10.0 18508 17364 il24 4640 1441 37313 (49.61 (46.51 (11.1) (12.41 ( 3.9) 6.0 7 78 8.0 26157 25806 7536 5144 2137 54100 (40.38 (47.7) (13.9) ( 9.5) ( 4.0) 8.0 7 78 10.0 if415 23395 5647 6433 2291 3/191 .

(30.8) (63.1) (15.2) (17.33 ( 6.2) 13.0 7 78 10.0 12930 18078 3933 1456 6142 37150 (34.0) (49.7) (10.67 ( 3.9) (16.5) 14.0 7 78 8.5 19994 17080 7697 V40 2024 39100 (51.1) (43.7) (19.7) E 2.4) ( 5.2) 15.0 7 78 10.0 33935 25351 6600 4208 V403 686VO (49.4) (36.Y) ( 9.7) ( 6.11 (13.71 15.Y 7 78 10.0 30036 40207 10107 6248 16001 94323 (40.3) (42.7) (10.7) ( 6.61 (17.0) 16.0 7 78 0.3 12075 7226 150 109 354 17655 (61.41 (36.8) ( 0.8) ( 0.6) ( l.8) 34.0 7 78 10.0 11359 27391 6/29 40V3 8034 46784 (24.33 (58.51 (14.4) ( 8.7) (17.2) 50.0 7 78 10.0 26343 27733 6860 3713 10134 64210 (41.0) (43.2) (10.7) ( 6.li (15.0) 60.0 7 78 6.0 9377 35951 6969 972 1685 47012 (19.V) (76.51 (14.8) ( 2.1) ( 3.6)

Appendix Table 5. Page 4 of 24 L AKE IN3pMAN In0PLAHRiuti l'EllSlilES ESilflAIED FRUR VERilCAL llEl 10u SAnitES.

DENSillES ARE EXPRESSED AS HUllBER OF ORGel41SMS l'ER CUBIC REIER.

IOIAL 101AL IUIAL IUIAL luiAL huliFERS: CCFEPUDS: CYLLUF OIDS: CALANUIDS: ELADOCERAllS:

DEllSil f / tiEllS ti f / DEllSilf/ DENS!!T/ BEN 518's / IUIAL DEPIH (l'ERLENI (l'EF:CENI (PEF.tENI ( PERCElli (IERCElli IUDPLAril:104:

LOCATI0li MONIH TE AR (ft) Lf1Ml 0SIII0ll) Cull l USil 10N) 00ril USil10ft) CUtlPOSillOrl) C011f 05I11011) DENS!IY l.0 7 78 30.0 3741 8202 3526 1803 907 12650 (29.1) (63.8) (27.41 (14.0) ( 7.1) 14.0 6438 21038 72/U 7900 1378 20834 1.2 7 18 (22.3) (12.9) (25.21 (27.4) ( 4.8) 7401 10006 3070 2485 1292 18704 2.0 7 78 20.0 (39.61 (53.51 (16.41 (13.3) ( 6.V) 20.0 12163 11/14 3674 2274 1756 25633 3.0 7 78 (47.41 (45.7) (14.3) ( 8.71 ( 6.Y) 20.0 13291 3828 3732 7208 21583

2. 8.0 7 78 6088 IU (28.21 (61.6) (17.7) (18.2) (10.2) 20.0 14202 14302 4270 1557 724 27130 13.0 7 78 (47.01 (47.01 (14.4) t 5.21 ( 2.41 5174 2616 6011 48252 15.0 7 78 20.0 21310 20731 (44.2) (43.4) (10.7) ( 5.51 (12.5) 15.9 7 78 20.0 28143 30428 8066 2200 18240 698tl (40.3) (43.61 (11.6) ( 3.21 (16.1) 20.0 8845 15007 4371 1906 4168 300lf 34.0 7 78 (29.5) (50.01 (14.6) ( 6.3) 120.5) 15.0 27184 27517 5164 4484 9633 64334 50.0 7 78 (42.31 (42.8) ( 8.0) ( 7.0) (l5.01 M
  • Appendix Table 5. Page 5 of 24 Lfel:E NUkHAN 200tLAtiKICit l'ENSillES ESIINAIED FROM VERIICAL NEI 10W SAnPLES.

DENSIITES ARE EXFkESSED AS IlUHFIR OF ORGANISnS FEk CUBIC RElER.

101AL IOTAL IUIAL IUIAL IDIAL RollfERS: 001EF0DS: CYCt0FOIDS CALANOIDS: LE AbOCERANS:

SENSilf/ DlH5ITT/ DENSitT/ DENS 11T/ DENSilf/ IUTAL DEPill (PERCENI (PERCENI (PERCENT (PER[ENT (FERLEHI 200FL ANC l0ll:

1.CCATION MONIH TEAR (N) COMPOSil10til CONF 0SITION) COMPOS!Il0N) 00dFOSilI0N) CUMPOSIIlON) DENSITY 1.0 8 78 10.0 57784 36537 6058 6939 3/26 98047 (58.9) (37.3) ( 6.2) ( 7.8) ( 3.3) 2.0 8 78 10.0 83104 45075 6004 9641 3404 131502 (63.2) (34.3) ( 4.6) ( 7.3) ( 2.6) 3.0 8 78 10.0 b8534 34472 3711 7864 3081 Y6086 (60.9) (35.9) ( 4.1) ( 8.21 ( 3.2) 3.9 8 78 8.0 58627 42464 7331 14678 5382 106472 (55.1) (39.9) ( 6.9) (13.8) ( 5.1) 4.0 8 78 5.0 59112 30023 2519 4863 1631 90766

, (65.1) (33.11 ( 2.8) ( 5.41 ( 1.8) 4.5 8 /B 9.0 64167 46394 307/ 7614 4984 116116 j' ($5.8) (39.9) ( 3.33 ( 4.6) ( 4.3) 5.0 8 78 10.0 47458 349e8 3352 9255 4839 87205 (54.4) (40.8) ( 3.8) (10.6) ( 5.5) 6.0 8 78 9.0 100763 32496 10143 6902 2684 135743 '

(74.1) (23.9) ( 7.5) ( 5.1) ( 2.0) 8.0 8 78 10.0 89500 34886 7222 4635 638V 130855 (68.5) (26.7) ( 5.53 ( 5.13 ( 4.9) 13.0 8 78 10.0 82768 24740 5806 2007 12809 120597 (68.8) (20.5) ( 4.8) ( l.7) (10.7) 14.0 8 /8 8.0 140055 48140 8142 872 7272 IH8467 (74.31 (21.8) ( 4.3) ( 0.5) ( 3.9) 15.0 8 78 10.0 /7161 22874 4112 1763 24557 124891 (62.03 (18.3) ( 4.9) ( 3.21 (lY.7) 15.9 8 78 10.0 80229 17586 4392 2216 10?/6 108790 (73.1) (16.21 ( 4.0) ( 2.0) (10.8) 16.0 8 78 0.3 12515 2122 744 22 52 1468V (BS.2) (14.4) ( l.7) ( 0.8) ( 0.4) 50.0 8 78 10.0 72783 27500 5631 2210 15316 115598 (63.0) (23.8) ( 4.9) ( l.9) (13.2) 60.0 8 78 7.0 10211 13544 68J6 6 11 2256 26012 (39.3) (52.13 (26.31 ( 2.51 ( 8.7)

Appendix Table 5. Page 6 of 24 LARE Nutt1Atl ICUPL ArnIOli DEllSlilES ESilNolEB TROtt VERitCAL NEI TUU SAMILES.

pef 4SillES ARE EXiRESSED AS tlUMPER Ur DRGAlllSMS PER CUBIC NEIER.

10lAL IDitL IDIAL 10lAL IUIAL RUllfERS: Lul'El DDS: EfCLOPOIDS: CAL All3 IDS: CLADOCERAllS:

DEllSIIY/ I'EllSil f / DEt1 Sill / DEN 3111/ DENSIIY/ IUIAL DEPIH (fERLElli (I'LkCEN I (PERCEffi (fERCEN! (ilkCENI IUUI L ANI; ION :

LOCAL 10N MONill YEAR (M) COMl0Sil101) Cuntijs t ilott) CollPUSIIION) COMPOSilloral LUMPOSIIIO!Il DENSIIY l.0 8 78 30.0 25573 13278 3613 32I2 1269 40129 (63.7) (31.1) ( ?.0) ( 8.0) ( 3.2) 1.2 8 78 14.0 50296 21161 6990 4935 1205 72663 (69.2) (27.8) ( ?.6) ( 6.8) ( l.7) 2.0 8 78 20.0 43314 24607 6461 64VD 1683 69604 (62.2) (35.4) ( ?.33 ( 9.31 ( ?.41 3.0 8 18 20.0 34025 23875 6800 6800 1513 59412 (57.31 (40.?) (11.4) (11.4) ( 2.5) e 8.0 8 78 20.0 392?l 13674 4070 3483 2908 55813 CC (70.3) (24.51 ( 7.3) ( 6.2) ( 5.2) 9F 13.0 8 18 22.0 48163 16392 63S3 1318 4905 69540 (69.31 (23.6) ( ?.13 ( l.?) ( 7.2) 15.0 8 78 24.0 31747 12446 45?0 601 7325 57517 (65.6) (21.6) ( 8.0) ( l.0) (12.7)

  • 15.? 8 78 21.0 43331 7046 1608 776 4088 54465 (79.6) (12.?) ( 3.0) ( l.4) ( /.5) 34.0 8 78 18.0 28004 15573 5876 1466 3209 46866 (59.8) (33.2) (12.5) ( 3.1) ( 7.9) 50.0 8 78 16.0 64271 17051 7216 2192 8634 90755 (70.8) (19.7) ( H.0) ( 2.4) ( ?.5)

Appendix Table 5. Pag 2 7 of 24 LAt:E NURNAff 20UILAtitI0tf dells!!!ES ESilliAIED FR0tl VERIICAL NET luu SAMPLES.

IIENSII!ES ARE EXI$ESSED AS liudBER OF URGANISMS FER CUBIC MEltR.

10lAL IDIAL IDI AI. IUIAL IUIAL ROIIFERS: LOPEPODS: EfCLOPOIDS: CALAttulDS: CLADOCERAllS:

DEftSil V / liEllSil f / DEllSilY7 DENSilT/ DEtiSil V/ IDIAL I4 Pill (f ERLElli (I LI: TEN I (PEltCENI (F EREElll (PEklilll 200f'L A!!KlUH:

LOCAII0tl M0tilH TEAR (11) 0011f'U5111011) CIHil'OS il 10 N ) CunPOSil10N) Coni'0Sil10N ) 00M105111011) DE tiSII Y l.0 9 78 10.0 125466 26580 10247 1543 7886 159932 (78.41 (16.6) ( 6.4) ( l.0) ( 4.Y) 2.0 9 78 10.0 1079I6 20596 7226 1804 5896 134407 (80.3) (15.3) ( 5.4) ( 0.8) ( 4.4) 3.0 9 78 10.0 147504 20106 6494 3019 7099 174709 (84.4) (11.5) ( 3.7) I 1.7) ( 4.1) 3.9 9 78 7.0 128574 33768 18229 2336 8230 1705?2 (75.43 (19.8) ( 6.6) ( l.4) ( 4.0) 4.0 9 78 5.0 115679 30021 9048 1581 7014 153515 (75.4) (20.Il ( 5.9) ( 0.9) ( 4.6) 4.5 9 78 10.0 133453 28792 9742 3251 9823 172068 IN (77.6) (16.7) ( 5.7) ( l.9) ( 5.7) 5.0 9 78 10.0 125322 24454 6550 2039 12104 161979 (77.4) (15.1) ( 4.0) ( l.8) ( 7.5) 6.0 9 78 8.0 182581 52322 11503 9080 21123 256026 (71.3) (20.9) ( 4.5) ( 3.5) ( 8.3) 8.0 9 78 10.0 108143 33275 16827 1603 20598 162328 (66.8) (20.5) (10.4) ( l.0) (12.7) 13.0 9 70 10.0 68591 I??a; 10639 1627 13943 102488 (66.9) (19.5) (10.43 ( l.6) (13.6) 14.0 9 78 9.0 24756 7457 2000 133 1107 33320 (74.37 (22.4) ( 3.7) ( 0.4) ( 3.37 15.0 9 78 10.0 63273 18373 7206 IY33 15337 97002 (65.2) (19.0) ( /.4) ( 2.0) (15.8) 15.9 7 78 10.0 3/640 17145 7057 618 13270 68054 (55.31 (25.2) (10.4) ( 0.9) (17.5) 0.3 21691 8311 3863 271 U00 32802 16.0 9 78 (72.21 (25.3) (11.8) ( 0.8) ( 2.4) 34.0 9 78 10.0 80423 20273 10333 2Y9 17840 110536 (67.8) (17.13 ( 8.7) ( 0.3) (15.0) 50.0 9 78 10.0 50879 15826 7495 980 14717 89422 (65.8) (17.7) ( 8.41 ( l.1) (16.5) 6.0 947 1250 94 386 255 2453 60.0 9 78 (33.6) (51.0) ( 3.8) (15.7) (10.4)

Appendix Table 5. Page 8 of 24 LAFE NORMAN 200fLAHEIDH DLilaillES ESilllAIED Fk0tl VERilCAL NET 100 SAMI'LES.

DENSillES ARE FIFRESSED AS flVNPtk 0F URGANISMS ILR CUBIC NEIER.

IDIAL IDIAL IDIAL 10iAL 10lAL RUllIERS: 00l'EF0bS: CILLDPOIDS: CALAN 0lbS: CLADGCERANS:

DEllSil f / DEllSIIT/ dells I T Y/ DCHSlif/ DENSIIT/ IDIAL 11EPitt (IERCEHI (l'EkCE N I (PERCENI (l'El<EEN I (PERCENI 200FLANKIDH:

LOCATION MONTH YEAR (H) CUN) CUCI 00dFUSil10:ll COMPOSill0N) CollPOSil10N ) DENSili

-.... __..... ......_____. ___'USilI0H)______________'US!! ION) l.0 9 78 30.0 55744 11264 5131 1094 2556 67565 (H0.1) (16.2) ( 7.4) ( l.6) ( 3.7) 1.2 9 70 13.0 68053 18569 7050 3134 6930 93460 (72.0) (19.9) ( 7.5) ( 3.4) ( 7.J) 2.0 9 78 20.0 46483 13127 4733 1623 3618 63228 (73.51 (20.8) ( 7.5) ( 2.6) ( 5.7) 3.0 9 78 20.0 90653 1079l 4804 890 4387 103fl35 (05.7) (10.7) ( 4.5) ( 0.8) t 4.1)

, 8.0 9 78 20.0 15206 15031 1858 755 12771 193011

(73.0) (14.6) ( 7.6) ( 0.7) (12.4)

'/ 13.0 9 78 20.0 46851 10310 5682 359 1034 64195 (73.0) (16.1) ( 8.9) ( 0.6) (11.0) 15.0 9 78 20.0 40324 11088 5057 402 6762 50175 (69.3) (19.1) ( 3.7) ( 0.7) (11.6) ,

15.9 9 78 15.0 26511 11517 4779 552 5999 44076 (60.21 (26.21 (10.9) ( l.3) (13.6) 34.0 9 78 23.0 37795 7970 3333 363 6044 52609 (78.8) (15.11 ( 7.4) ( 0.7) (13.0) 50.0 9 78 15.0 45942 10412 4245 506 10020 66104 (69.21 (15.7) ( 6.4) ( 0.9) (15.1)

Appendix' Table 5. Page 9 of 24 l AKE N0kRAN 100f tANKlutt DENSillES ESIINAIED FEOM VERilCAL NEl 10U SAMPLES.

DENSIIIES ARE EXPRESSED AS NUllbER OF 0RGANISNS PER CUBIC MElER.

10lAL IDIAL IDIAL lufAL fulAL ROIIFERS: 001EPODS: CYCL 0rolDS: CALANOIDS: LLADUCERANS:

DENSilf/ DENSilf/ DENSilY/ CENSitT/ IiENSIIV/ 10fAL DEPill (PERLENI (IESCENI (PERCENI (PERCENI (l'EliLEM I ZUUI'L ANI lON:

1.0 CAT 10N N0 Hill YEAR (M) CONPUSilI0N) CUMPUSITION) CONPUSil10N) CultPOSilI0N) CUHl Sill 0N) DEllSI IT

-.__.. ______________ .__.. ...________....._______________..____ .___________________'0 . __ .. _____________.

I.0 10 78 10.0 3055l 24746 13422 1560 6052 61349 (49.8) (40.3) (21.7) ( ?.6) ( 9.9) 2.0 10 78 10.0 45186 26439 12584 1844 6303 77927 (58.0) (33.V) (16.11 ( l.5) ( 8.8) 3.0 10 78 10.0 12b945 36703 l'sY49 1860 6214 160941 (74.5) (21.0) (11.8) ( l.8) ( 3.7) 3.9 10 78 7.0 47984 37869 13522 2618 3975 89827 (53.4) (42.2) (15.1) ( 2.9) ( 4.4) 4.0 10 78 ,4 . 0 61598 43748 17050 3500 9704 115049 (53.5) (3R.0) (14.8) ( 3.0) ( U.4)

, 4.5 10 78 10.0 114554 44278 16406 357 7595 166426 C; (68.8) (26.6) ( Y.9) ( 0.21 ( 4.6) jo 5.0 10 78 10.0 150973 53564 27607 2170 4918 217455 (73.11 (24.6) (12.7) ( l.0) ( 2.3) 6.0 10 78 9.0 418990 75329 26798 240 3313 49/692 (84.2) (15.1) ( 5.4) ( 0.0) ( 0.7) .

8.0 10 78 10.0 44600 32722 18885 1746 4919 82240 (54.21 (3V.U) (14.5) ( 2.11 ( 6.0) 17.0 10 70 10.0 21097 25822 8210 2178  ??63 54683 (30.6) (47.2) (15.1) ( 4.0) (14.2) i4.0 10 78 9.0 33615 31271 18107 6170 21963 89849 (37.4) (30.11 (12.4) ( 6.9) (24.4) 15.0 10 78 10.0 107434 66286 30975 2227 19014 192??4 (55.7) (34.4) (16.1) ( l.21 ( 9.9) 15.9 10 78 10.0 62156 300/3 10V00 2386 16145 186374 (53.4) (32.7) ( 9.4) ( 2.13 (13.V) 16.0 10 78 0.3 14380 6345 3564 89 857 21582 (66.6) (29.4) (16.5) ( 0.4) ( 4.0) l 34.0 10 78 10.0 20943 2?lV8 8805 3790 6719 56860 (36.8) (51.4) (15.5) ( 6.7) (11.8) 50.0 10 78 10.0 34208 47275 17930 2884 11100 92662 (36.9) (51.0) (19.3) ( 3.1) (12.1) 60.0 10 78 4.0 22484 17440 5090 928 5503 45507 (49.4) (38.3) (11.2) ( 2.0) (12.3)

_ e

, -- r-

Appendix Table 5. Pag 10 of 24 LARE it0RNAN ZD0PLAfitl0ll DENSIIIES ESilHAIED FRON VERIICAL NET TOW SAMPLES.

DEllSillES ARE EXtF:ESSED AS NUHPER OF ORGAll!SMS FER CUBIC (1EIER.

Illl AL IDIAL 10lAL IUIAL 101AL ROIIFEkS: COPEFUDS: CICLOPUIDS: C ALAtl01DS: CLADOCERAt4S OFNSilV/ DENSilf/ DENSitT/ DENSIIY/  !! ENS!!T/  !!ai DEPill (FEkCENI (PERCEHI (PERCENI (I ERCEtti (FE kCEttl 200PL ANK illN :

1.0E AIIOli ;1ollill YEAR (H) ConrHSil10lO COMPOSilloft) 00t1FOSIIION) COMPOSil10N) COnPOSill0N) DENSIIT 1.0 10 78 30.0 17942 12410 6452 1737 2885 33268 (53.9) (37.4) (19.4) ( 5.2) ( 8.7) 1.2 10 78 14.0 46694 29730 15377 4956 6007 82431 (56.6) (36.1) (10.7) ( 6.0) ( 7.3) 2.0 10 78 20.0 34019 243'? 11273 3100 4374 62712 (51.2) (38.0) (10.0) ( 5.0) ( 7.0) 3.0 10 78 20.0 79101 27462 12004 2702 3295 104938 (75.5) (21.41 (11.5) ( 2.6) ( 3.1) 8.0 10 78 20.0 30557 22295 6970 2428 2711 55V62 (54.6) (40.6) (12.3) ( 4.31 ( 4.8)

2. 13.0 10 78 20.0 32032 19556 6686 1670 5211 56799

[g (56.4) (34.4) ti 8) ( 3.0) ( V.2)

' 15.0 10 73 20.0 181378 39021 19902 1902 15655 166053 (67.1) (23.51 (12.0) ( l.1) ( 9.4) 15.9 10 78 20,0 50305 20028 6904 1878 16073 08006 t37.2) (23.7) ( 7.8) ( l.3) (19.2) 34.0 10 78 23.0 17067 158/4 5146 1537 3293 36233 (47.8) ($2 8) (14.21 ( 4.2) ( 9.1) 50.0 10 78 15.0 37?61 46Y75 15785 1843 12862 9/798 (38.8) (48.0) (16.11 ( l.9) (13.2)

Appendix Table 5. Page 11 of 24 LAKE WORNAN 200 FLANK 10N DEt4Sli!ES ESilNAIED FRON VERIICAL NEI 100 SAMPLES.

l'ENSIIIES ARE EXI RESSED AS Hut 1FER OF ORGAtllSMS FER CUBIC METER.

IDIAL IUIAL l0lAL IDIAL IDIAL ROIIFERS: CurEf0DS: CYCL 000lDS: CALANDIDS: CLADOCERAN3:

l'E NS I I Y / I'EllSI T Y / DENSITY / DENSlIY/ liENSII Y/ 101AL DErill (I ERLENI (FENCENI (IERCENT (PERLEMI (PERCEMI IUOl l ANI:10N:

1.UE A110lf tiDNill YE AR (H) 00llPOSilI0fil 0010051110H) COMPUSil10N) CultPOSil!UN) COMiUSIIION) DENSIIY l.0 11 18 10.0 27096 8169 3004 525 3462 38726 (70.0) (21.11 ( 7.8) i 1.4) ( 8.9) 2.0 11 78 10.0 46149 14195 5756 2146 4476 65020 (71.0) (21.8) ( 8.9s ( 3.8) ( 7.2) 3.0 11 /8 10.0 46906 13063 5730 1820 3956 63925 (73.4) (20.4) ( 9.0) ( l.8) ( 6.2) 3.9 11 78 7.0 42150 13966 4461 1894 3903 60019 (70.2) (23.3) (10.8) ( 3.2) ( 6.5) 4.0 11 78 4.0 40305 14785 5714 1932 2131 57821 (69.7) (25.6) ( 9.9) ( 3.3) ( 4.7)

, 4.5 Il 78 10.0 74934 16872 7149 1796 3182 94989 I; (78./) (17.8) ( 7.5) ( l.9) ( 3.3)

? 5.0 11 78 10.0 50311 16618 7007 1038 3073 80001 (75.41 (20.8) ( 8.8) ( l.3) ( 3.8) 6.0 11 78 6.0 110752 21521 6315 176 042 133114 (83.2) (16.21 ( 4.7) ( 0.ll ( 0.6) 8.0 11 78 10.0 39578 11206 3336 1581 7050 57834 (68.4) (19.4) ( 5.8) ( 2.7) (12.2) 13.0 11 78 10.0 37641 15515 4101 2376 10459 63615 (59.2) (24.4) ( 6.4) ( 3.7) (16.4) 14.0 11 78 7.0 31844 24654 9178 $510 12905 69402 (45.9) (35.5) (13.2) ( 7.9) (18.6) 15.0 11 78 10.0 38321 21420 9303 4055 12622 72362 (53.0) (29.6) (12.9) ( 5.6) (17.4) 15.9 11 78 10.0 57580 29261 14548 3947 13730 100570 (57.3) (29.8) (14.5) ( 3.9) (13.7) 16.0 11 78 0.3 14547 2966 327 129 769 18283 (79.6) (16.21 ( 1.8) ( 0.7) ( 4.2) i 34.0 11 78 10.0 26092 13106 4236 2526 6251 45449 (57.4) (28.8) ( 9.3) ( 5.6) (13.8) 60.0 11 78 6.0 16357 9772 2988 1542 9143 35272 (46.4) (27.7) ( 8.5) ( 4.41 (25.9)

Appendix Table 5. Page 12 of 24 LIWF. fil'Rilott lilt)ILollril:ll ('EllSillf U ESilll4IED I filill VFitiltol. IlFI IOU SA11PLES.

lirflSii119 ARE CYi I4 .ht.fr AU tiill;ti P (4 fili uill'.HS t l'El: LillelC 1101ER.

till 6l 1016l IDIAI. 10lAL 18)l AL Fili ti f l'3 r E t:l ti- U D'i: til:t ul'U I h": C(thilOIDS: LL ADUCERail3:

141'Silf/ Dlitsllf / 11t8SilV/ DEllbill/ Di' HSI I Y / IDIAL PEI'lli (I fl.t t ui (l'I.?:CFi;l (1 l ar,[ti g (I FitCE N I (IERC(fil ZUtill ANK l eils 1.0 Col 10il fllllfill VEo!! (Ill - Ellili llS i l lf rio I.01.f p S i l 10:1) Etie;1't,51 t l 0!!! 00010Sillfill) CUhr0 Sill 81111 l'[lIS II Y

/.63 2300 41130 1.0 11 78 30.0 31911 7704 3661

(??.11 (1/.51 ( 0.3) ( l.5) ( 5.1) 12.0 t??t5 10231 30P.1 1275 2924 63070 I.2 11 70 (77.13 (14.23 ( 6.21 ( 2.11 ( 4.6) 30.0 41530 13226 5'87 0 1913 2003 53?60 2.0 Il 74 t//.31 (19.0) ( l l . ') ) ( 3.6) ( J./)

25.0 10474 l15Y? 7?l5 1211 2760 52731 3.0 11 in (72.91 (22.0) (15.1) ( 2.3) ( 5.2) 3765 13.50 5102 47075 0.0 11 70 20.0 33732 0712 (70.51 (111.31 ( 0.31 ( ?.8) (11.3) 20.9 25652 7/55 3511 1956 17/.15 53042

13.0 il 78 (40.41 (18.11 ( 6.41 ( 2.7) ( 3.1.2 )

7 70 22.0 2933I I 41:3 3 u t!f i 1172 7115 52201 15.0 tt (54.2) ( 7 11 . 4 ) (16.?) ( 2.0) (11.4)

'22Hi6 12t175 3222 9279 9 41)l ?

15.? Il 78 21.0 6?A41 (66.1) (24.11 (ll.6) ( 3.41 ( 7.8) 11003 1759 19235 72/17 34.0 11 70 22.0 33751 20233 (45.11 (27.C) (15.1) ( 2.41 (26.51 7932 2519 7162 53801 50.0 11 78 13.0 2?l31 17205 (54.7) (3?.06 (13.11 ( 4.7) (13.9) i t

ae

' ' - - " - ~ ~ - ,._ - .,y,. . , . - , - __,

Appendix Table 5. Page 13 of 24 1 A01. FURL 1All 200FL AllKlull IllllSillLS F SIIIIAIED F RDit vel (IICAL leEl IUW sal 1PLES. -

DENSillES ARE EXi'kESSED AS filll1 DER Of UhGAlllSilS PLR CUBIC 11E1ER.

lulot IDIAL Ip f Al. 101AL 101AL RollfERS: 000LlupS: LYCLUPOIDS: CAL All0 IDS: [1 ott0CE RAllS :

DEllSil V/ tLifullY/ DLilS il f / LIENS!!Y/ DEllSi l Y/ IUIAL

, PErill (I EltLElli (I EliCElif (I El?CENI ( F El< LF N I (FELClill 200i'L AliK lurt:

1.0CAllUit 1111tl111 YE AR (11) C0110051110l!! LUlll'DSil 10ill CollPOSillull) 0011POSill0N) 00lll 0Sl f lull) dells il Y 1.0 12 78 10.0 20215 7618 14Yi 1667 5745 J560B (56.0)

(17.1) ( 4.21 ( 4.7) (16.1) 2.0 12 78 10.0 24030 10967 2507 1772 6126 41025 (58.6) (26.5) ( 6.3) ( 4.3) (14.9) 3.0 12 78 10.0 15106 9103 1923 1333 3333 27993 (55.2) (32.6) ( 6.9) ( 4.9) (12.1) 3.? 12 78 6.0 10670 12469 1061 1046 3183 26631 (40.11 (16.U) ( 7.0) ( 6.9) (13.11 4.0 12 78 4.0 16111 till? 1362 1270 2176 2Y106 (54.21 (37.1) ( 4.6) ( 4.11 ( 0.3)

, 4.5 12 78 10.0 27050 11100 1731 13/0 2722 44252 3" (67.51 (25.Y) ( 3.9) ( 3.1) ( 6.6) 7 5.0 12 78 10.0 62360 12077 1736 2505 4777 79117 (7S.5) (15.2) ( 2.21 ( 3.2) ( 6.3) 6.0 12 78 9.0 371J3 9707 U93 1415 6132 53403 (6Y.5) (18.3) { l.7) ( 3.0) (12.1) ,.

8.0 12 73 10.0 12H94 17553 2402 307? 3008 33456 (38.5) (52.51 ( 7.4) ( 9.2: ( V.0) 13.0 12 70 10.0 7815 11659 3052 2442 5677  ??453

( 2'i . 9 ) (53.4) (14.0) ( 8.9) (20.7) 14.0 12 78 7.0 17572 26769 10176 3304 1200s 57446 (30.6) (46.9) (10.21 ( 5.3) (22.4) 15.0 12 78 10.0 47733 21747 4350 4130 7100 76808 (62.1) (28.3) ( 5.7) ( 5.4) ( 7.6) 15.9 12 78 10.0 171022 20218 46Yo 2740 4604 195V23 (U7.3) (10.3) ( 2.1) ( l.5) ( 2.4) 16.0 12 ?8 0.3 16400 4572 735 182 1961  ??S41 (73.1) (20.4) ( 4.1) i e.6) ( 6.5) 34.0 12 75 10.0 115119 15hl6 2042 1751 70lb 30622 (70.0) (47.0) ( 6. 7.5 ( 5.7) (22.?)

e - -

we m +- m

Appendix Table 5. Page 14 of 24 LAKE il0fihAll 200f LAllllIDH l'EllSlilES ESill1ATED FR0li VERilCAL tlEl 10tJ stllf i LES.

I; Ell 5 tiles ARE EKTkESSED AS lilH1BER OF Of.GAlllS!!S PER CifDIC 11EIER.

IDIAL 10l Al. IUI AI. 10 ! Al. IUIAL R0flFERS: 00F E PL'D S : C101.0F0lPS: Ct.l. Alllll DS: 01 ADOLERAllS:

tfEllS11 Y/ I'EllSIIY/ DLilS il f / DEllSII(/ I'E llS I I Y/ IUIAL DEPill (PERLElli (I ERCElli (l'EhCElli (PEP.tElli (FirsLEt(I lilult Atit l0ll:

1OCAIION M0llIH YEAR (H) CH111185111011) 00!!PUSillutti CollP4S il10ll) [0 fit 0Silltfi) 00llPn3titull) DENSilY 1.0 12 78 30.0 9013 6682 20;% 1377 4493 20109 (44.6) (33.11 (13.1) ( 6.9) (22.3) 1.2 12 70 14.0 14616 9400 1512 1527 2955 26Y92 (51.23 (34.0) ( 5.6) t 5.7) (10.9) 2.0 12 78 28.0 12040 Oll2 2351 1047 3058 24010 (30.I) ( 3.1. 8 ) ( U.5) ( /.7) (14.1) 3.0 12 78 25.0 14397 8727 3123 IU97 3041 26167 (55.0) (33.4) (12.0) ( 7.2) (ll.6) 8.0 12 70 27.0 8404 10604 204l 19U9 3310 22399 (37.5) (47.7) ( V.1) ( B.9) (14.0)

I; 13.0 12 78 20.0 10204 12316 4794 t/05 18629 34148

'f (29.9) (36.1) (14.0) ( 5.0) (34.1) 15.0 12 78 22.0 64700 22898 8312 4105 5 1.51 V6/19 (65.9) (27.0) ( 0.6) ( 4.3) ( 5.3) 15.? 12 78 18.0 125472 17312 7177 1049 5475 148237 '

(84.6) (11.7) ( 4.0) ( 0.7) ( 3./)

34.0 12 78 17.0 8195 14443 1996 1730 127V7 35436 (23.11 (40.0) ( 5.4) ( 4.91 (34.1) 50.0 12 78 I?.0 16620 14128 4779 2032 4297 .15238 (47.2) (10.4) (13.6) ( 5.9) (12.2) i e

Appendix Table 5. Page 15 of 24 LAKE NORMAN 200tl.ANKION l'ENSillES ESilHAIED FROH VERIICAL NET 10W SAMPLES.

DENSIIIES ARE EXPRESSED AS HUMBER Of URGANISMS PER CUBIC MEIER.

10lAL IUIAL IDIAL 10lAL IDIAL ROIIFERS: COPEPUDS: 01CLOPUIDS: CALAtl0 IDS: CL AD0CERAtlS:

DENSilf/ DENSilf/ DEllSil f / DENSiff/ DENS!!T/ IUTAL DEPill (FERCENI (I- ERC EN I (IERCENT (PERCENI (I EliCENI ZOOPLANKTON:

1.0CATIDM MONIH TEAR (M) COMPUSil10N) COMPUSillDill COMPOS 1110N) 00MPOSil10ll) COMt0 Sill 0N) DENS!!Y l.0 1 79 10.0 14602 10817 1679 391 4513 2993l (48.8) (36.1) ( 5.6) ( l.31 (15.1) 1.2 1 79 8.0 24374 13623 2230 Y20 4163 42160 (57.8) (32.33 ( 5.3) ( 2.2) ( ?.9) 2.0 1 79 10.0 44132 13556 1239 727 3715 61403 (71.9) (22.11 ( 2.0) ( l.2) ( 6.01 3.0 1 79 10.0 31648 15240 1891 1862 5110 52005 (60.9) (29.31 ( 3.6) ( 2.2) ( 9.8) 3.9 1 79 6.0 47084 8591 1060 763 3620 59295 (79.4) (14.53 ( l.8) ( l.3) ( 6.1)

J, 4.0 1 79 4.0 46727 12982 1548 842 3900 63609 j; (73.51 (20.41 ( 2.4) ( l.3) ( 6.1)

  • 4.5 1 79 7.0 82612 12351 1630 1514 3447 98410 (83.9) (12.6) ( l.7) { l.5) ( 3.5) 5.0 1 79 10.0 192112 15413 2142 3528 6939 134463 (83.41 (11.5) ( l.6) ( 2.6) ( 5.2) 6.0 1 79 7.0 148936 25838 5937 6105 17643 192418 (77.4) (13.4) ( J.11 ( 3.2) i 9.2) 8.0 1 79 10.0 32624 12093 1956 733 59/J 50696 (64.4) (23.9) ( 3.9) ( l.41 (ll.8) 13.0 1 79 10.0 16270 18687 3612 0 5793 40750 (39.9) (45.V) ( U.9) ( 0.0) (14.2) 14.0 1 79 5.0 15365 30070 13733 152 10120 55356 (27.7) (54.11 (24.7) ( 0.33 (18.2) 15.0 1 79 10.0 71072 22042 5782 516 80V6 101210 (70.21 (21.8) ( 5.7) ( 0.5) ( 8.0) 15.9 1 79 10.0 190960 27688 8268 221 5001 173649 (81.2) (15.9) ( 4.8) ( 0.1) ( ?.Y) 16.0 1 79 0.3 23760 7065 642 175 3347 34172 (69.5) (20.7) ( l.9) ( 0.5) ( 9.9) 34.0 1 79 10.0 12127 16063 2937 94 7625 36615 (33.I) (46.13 ( 8.0) ( 0.3) (20.8) 50.0 l 79 10.0 27746 15428 3066 65 3060 47034 (5V.0) (32.0) ( 6.5) ( 0.8) ( 8.2) 60.0 1 79 5.0 20719 10417 3673 91 3902 35030

( T.V . 8 ) (29.71 (10.51 e n . .t t (11.11

Appendix Table 5. Page 16 of 24 E ARE NORMAN 100PLANKIDH DEllSillES ES!!N*.;Ec FRON VERIICAL NEI IUW SAhPLES.

PENSillES ARE EXTRESSED AS NUf13ER OF ORGAtllSMS PER CUBIC MLIER.

IUIAI IUIAL TOIAL IDIAL lulAL RollFFRS: CUP E F'0 DS : CVCLOPOIDS: CALANDIDS: C( Al'0CERANS:

DENSitT/ liENSilf/ DENSIIY/ DEllSi t T/ DEllSI T Y/ IUIAL DEPill (F FRC[NI (PERCENI (FERCEtli (I'E(;CENI (PERCENI 200f'l ANK IDH:

1.OCATION MONill TEAR (M) (:011P0S 11!011) 00MI C0llPLSil10N) COMPOS il10ll) CUrlF DENSITY

.. . . _ _ _ _ . _ _ _ . . . . . . _ _ _ _ _ _ _ . . . . . . . . . . . . . . _ _ _' U S i l l 0 N I.. ._ __ .. ___ _ __ . .__ __ __ .__ ... .. ._ _ . _ _

l.0- 1 79 30.0 19554 17571 4256 413 49V3 42110 (46.48 (41.7) (10.8) ( l.01 (11.9) 2.0 1 79 18.0 3/096 20635 2016 1943 7185 64917 (57.1) (31.8) ( 3.11 ( l.01 (11.1) 3.0 1 79 20.0 46217 18?O6 1538 757 5825 70348 (65.7) (26.01 ( 2.31 ( l.11 ( 8.31 8.0 1 79 25.0 49900 12337 1614 696 C878 71115 (70.21 (17.3) ( 2.3) ( l.0) (12.5) 13.0 1 79 19.0 18529 22196 7140 0 13748 54473 (34.01 (40.7) (13.11 ( 0.0) (25.2)

.. 15.0 1  ?? 18.0 71343 24118 5959 414 8354 103815

&' (68.7) (23.21 ( 5.7) ( 0.() ( B.0) 15.9 1 79 19.0 155682 19298 7636 293 5174 100084 (86.41 (10.7) ( 4.2) ( 0.2) I 2.9) 34.0 1 79 15.0 10005 23523 5678 218 13085 44494 (22.7) (46.1) (12.8) ( 0.5) (31.2) ,

e

.y

Appendix Table 5. Pags 17 of 24 EAKE flORMAN 200 FLANK 10N DENSillES ESilHAIED FROM VERI:4.AL NEl (UU SANFLES.

DENSIIIES ARE EXFRESSED AS NUMBER OF ORGANISHS

  • h CUBIC METER.

101AL 10lAL IDIAL tulAL IHIAL RUilFERS: 001'E PO DS : CTCLUF01DS: CALANDIDS: CIADOCERANS:

DENSilT/ DEllSil T / DEllSliT/ DENSilV/ PENSilf/ 10iAL li[ Pill (IE Rt.Elli (I LF<CE N I ( PEl(CEN T (F'ERLENI (l'ERCENI luufLANKl0N:

1.OCAT10N MUNIH TEAR (n) COMPOSill0N) CUMPUSillull) COMPUSITION) COMPOSillDill CUNPOStil0N) dells il Y l.0 2 79 10.0 39524 27762 8212 1011 4262 71547 (55.2) (38.8) (11.53 ( l.41 ( 6.0) 1.2 2 79 7.0 15912 30169 11904 II59 2410 40691 (32.7) (62.01 (24.4) ( 2.41 ( 5.4) 2.0 2 79 10.0 24632 23093 10949 646 7533 55258 (44.6) (41.8) (19.8) ( l.2) (13.6) 3.0 2 79 10.0 21803 23505 6408 063 3602 48V10 (44.6) (40.I) (13.3) ( l.8) ( 7.4) 3.9 2 19 6.0 32519 20470 V3b4 198 3787 56774 (57.31 (36.11 (16.5) ( 0.31 ( 6.7)

, 4.0 2 79 4.0 39302 19764 R618 193 2059 60125

(65.4) (31.2) (14.3) ( 0.31 ( 3.4)

CF 4.5 2 79 8.0 16894 20506 V703 602 3526 40926 (41.31 (50.I) (23./) ( l.S) ( 8.4) 5.0 2 79 10.0 14430 40679 21504 2H02 $YOO 61097 (23.6) (46.6) (35.3) ( 4.6) ( V.0) .

6.0 2 79 7.0 20313 35379 4721 1611 5300 60992 (33.3) (58.0) ( 7.7) ( 2.6) ( 8.7) 0.0 2 79 10.0 48574 29930 13364 0 7228 85740 (56.7) (34.9) (15.6) ( 0.0) ( 8.4) 13.0 2 79 10.0 64906 30006 16011 211 12665 1075/7 (60.3) (27.9) (14.9) ( 0.2) (11.8) 14.0 2 79 5.0 44133 33279 19631 0 14161 91572 (48.7* (36.3) (21.4) ( 0.0) (15.5p 15.0 2 19 10.0 205'68 50978 22279 1744 28352 204897 (72.?) (17.9) { /.8) ( 0.6) (10.0) 15.9 2 19 10.0 1070?l 25004 8709 0 5460 IJ8286 (77.4' (18.7) ( 6.31 ( 0.0) ( 3.9) 16.0 2 79 0.3 25291 11437 5874 51 2170 38898 (65.0) (29.4) (15.11 ( 0.11 ( 5.6) 34.0 2 79 10.0 99707 26925 7127 217 11136 137768

'(72.41 (19.51 ( 5.21 ( 0.21 ( 8.1) 50.0 2 79 10.0 89062 30667 10250 145 14801 142531 (62.51 (27.13 (12.3) ( 0.1) (10.4) 60.0 2 79 4.5 35427 12984 5176 222 :i300 51712 (46.0) (24.21 ( 9.6) ( 0.41 ( 9.01

Appemfix Table 5. Page 18 of 24 inrE lillf:llAll IDOPl t,0:ltlit til fl9IIIES ( S111418 li 1 RUil t/Li(Ill.nl_1;tg lijy $nfi[ trg.

- liti!!Illis AliE LIl tistills As tilhlltif t'll 01:UAlllSits l Lit Ct: file lit itt-:. ,

IH I Al. liil AL ll!! AI. Ilil AL l til Al.

l 01 Ili I(S: Cl'l I.I 41:S : t.it.101 til DS: CAloillllliS: LI Ailfil.Elif.ilS t l' Ell'Il l V / I'f lf 911 (/ I'lllSI I Y / 1 Ells il f / 1:ll!Sil T/ 10 l Al l'El'ill (l'EliCli:1 (l [1(Ci l:1 Il ! !.Ci tti - tillitil!I (111)Lisal 2001 Lolll:19ti I UCAllilii !!!i; fill if f!i (Ill CUtli fG i l litill 1.ul.i t'S ' I lutl) 1.111110S1110!!) 00til IIS illull! 00sil HS i l !Uti) l'ill3117 l.0  ?? 30.0 77792 3 4.M I 10110 12/ 7277 119!,24 l 2 (65.3) ( 2il . 4 ) ( !! .11) ( 0.4) ( o.1) 2.0 2 /7 30 0 S A',9 6 21/50 18 ?5') 174 6175 92510

( 41. ) (31.11 (12.2) ( 0.?) ( e./)

?!. 0 3154'J JiO57 7163 d?O 52L'O /2y04

. 3.0 2 79 (13.38 14?.bl (l?.6) ( ti . V ) ( /.2) 5.9  ? 75 17.0 l '.si9 a 43511 l i .' l'i 2 12/ 6556 4".044 (24.2) (65.?) (27.1) ( 3.51 ( 9.9) fl . 0 2 75 20.0 731,10 34773 15J49 146 UP2l ll673Y

.$. (62.7) i27.8) {l2.1) ( 0.II ( 7.6) 13.0 2 79 22.0 72427 2L78i7 10521 128 7555 196970

((./ . / l (25.21 ( 9 . 11 ) 1 0.11 ( ?.2) 15.0 2 77 22.0 20fs721 4:1733 18317 420 21555 2/V leil (74.0) (17.53 ( 6.4) t 0.7) ( /.7) 15.9 2 77 20.0 Y7105 34155 94V5 131 5702 137122 (70.7) (25.1) ( 7.11 ( 0.11 ( 4.21 31.0 2 79 22.0 735f13 22702 10233 0 5104 1 0 1 51141 (72.4) (22.5) (10.I) ( 0.0)

  • 3.0)

_ - - - __. . _ . - _ _ ,y_ ,., . , , , , ,_. -__

_7

Appendix Table 5. Page 19 of 24 L AKE fiORMAN 100PL AtitlUll DEllSillES ESi1HAIED FROM VEkilCAL 4EI 10U SAMPLES.

DEllSillES ARE EXIEESSED AS NUMBER UF DRGAtilSMS I'ER EUblC SEIER.

10lAL IUIAL IDIAL 101AL 101AL RollFERS: CUPEF0DS: CYCL 0001DS: CAL All0 IDS: CLADOEERANS:

DEllSil f / littlSIIY/ Dell 5il V / DF il3111/ DEf43111/ IPI SL DEPill (I ERCENI (FEl(Celli (l'E RCE N T (F ERCElfi (I E RCElfi 2000E ANI; ION :

1.0 CAT 10N MONIH 1 EAR (M) COMPUSIllutti CONFOSil10N) 00hl'US i l 10N) COMPOSillull) COMPOSil f ull) DEllSil f l.0 3 79 10.0 123488 84475 24590 255 20620 22H583 (54.0) (37.0) (10.8) ( 0.11 ( ?.0) 1.2 3 79 10.0 131974 73163 21228 2030 11443 214500 (60.9) (33.8) ( ?.8) ( 0.9) ( 5.3) 2.0 3 79 10.0 227177 166580 21557 0 16845 410602 (55.31 (40.6) ( 5.3) ( 0.0) ( 4.1) 3.0 3 7V 10.0 40585 71468 193Y2 1099 Y2Y7 14134Y (28.7) (64.7) (13.7) ( 0.7) ( 6.6) 3.7 3 77 8.0 168004 62582 16314 467 1495Y 245144 e (68.51 (25.41 ( 6.6) ( 0.21 ( 4.1)

I* 4.0 3  ?? 6.0 132659 BV530 24167 1517 18V00 2410H9 i' (55.0) (37.8) (10.9) ( 0.6) ( 7.8) 4.5 3 77 i0.0 78492 58599 13763 361 6237 143328 (54.8) (40.9) ( 9.6) ( 0.3) ( 4.4) 5.0 3 79 10.0 22240 77795 14909 1831 8349 100384 (20.5) (71.0) f i l.8) ( l.0) ( 7.7) -

6.0 3 79 8.0 5211 25006 2828 3/4 3106 34123 (15.3) (75.6) ( 8.3) ( l.1) ( 9.1) 8.0 3 79 10.0 208354 55371 15101 678 7310 271034 (76.9) (20.41 ( 5.6) ( 0.3) ( 2.7) 13.0 3 79 10.0 109987 40854 10762 242 3554 154375 (71.21 (26.51 ( 7.0) ( 0.2) ( 2.3) 14.0 3 79 8.0 70751 24072 7311 06 4804 9V707 (71.0) (24.1) ( 7.3) ( 0.l) ( 4.?)

15.0 3 79 10.0 132060 21840 3009 0 1172 155073 (85.21 (14.1) ( 2.5) ( 0.0) ( 0.8) 15.9 3 79 10.0 56420 16520 5064 145 1014 73954 (76.3) (22.31 ( 7.9) ( 0.2) ( l.4) 16.0 3 79 0.3 90l13 42326 7107 111 7836 140275 (64.21 (30.2) ( 5.11 ( 0.5) ( 5.6) 34.0 3 79 10.n 174/16 51924 10080 0 2433 229'OY4

. (76.3) (22.7) ( 4.4) ( 0.0) ( l.1) 50.0 3 79 10.0 77694 27426 6686 84 3 33 108253 (71.0) (25.3) ( 6.21 ( 0.Il ( 2.9) 60.0 3 79 7.0 41992 22349 4987 til 2131 664/2 (A(.?i ( t t. i t ( 7. r. ) f n ?' ( 1. ? )

' Appendix Table 5. Pag? 20 of 24 LAl:E Il0Et1All ZO0f LAtitlDit DEilSillES ESilt1AIED FR0ll VERIICAL NET 100 SA!!PLES.

PENSITIES ARE EXFRESSE D AS flUMPER UF UNGANIShS PEk LUh10 f. LIER.

10lAL IUIAL 10fAL IDIAL 10iAL ROIIIERS: LUTEPUDS: [fCLOPUIDS: CALANDIDS: CLADOCERAHS:

DENSIlf/ l'E tl511 Y/ DEllSli f / DENStif/ l'E NSl i f / IUTAL DEPlH (PERLElli (PERCEffi (PERLElli (PERCElli (l'ERCEtli .00FL Alli:Iult:

LOCATIOtttiONill YEAR (fi) Oth1 PUS illDH) 00fitOS!!!Dil) 00tilllSil!Util CultPDSi ll0N ) 00ill-USi l!UN ) l

-_.............._.._..........._........___.....................................................'E.SilY...........

l.0 3 79 33.3 99645 29??2 11370 398 5196 134832 (73.91 (22.2) ( 8.4) ( 0.3) ( 3.V) 2.0 3 79 29.0 122165 69973 14983 464 5903 IV8041 (61.7) (35.3) ( 7.61 ( 0.7) ( 3.0) 3.0 3 79 27.0 84617 72612 15010 1650 11566 165793 (51.0) (43.8) ( ?.I) ( l.0) ( 5.2) 5.0 3 79 21.0 44685 39328 7141 389 4l10 H8I23

( 5 81 . / s (41.6) ( 0.8) ( 0.4) ( 4.1) 8.0 3 77 27.0 129478 .3160 805I 2/1 5630 158276

, (81.8) (It.6) ( 5.11 ( 0.2) ( J.61

13.0 3 79 25.0 160370 46222 75l8 345 5540 212133

'/ (15.6) (21.0) ( J.51 ( 0.21 ( 2.61 15.0 3 79 24.0 114566 31344 7301 0 2363 148273 (77.3) (21.1) ( 4.?' ( 0.0) ( l.6) 15.9 3 79 20.0 65631 15124 5436 227 1455 82507 (79.51 (18.7) ( 6.6) t 0.31 ( l.8) 34.0 3 79 25.0 229896 61486 17311 524 25l0 293093 (78.2) (20.9) ( 5.9) ( 0.2) ( 0.9) i

Appendix Table 5.

Pag 2 21 of 24 LAKE NURNAN 700 FLANK!Old DENSITIES ES!!NAIED FROM VERilCAL NET IUU SAMPLES.

DENSlilES ARE EXPRESSED AS HUMPER OF ORGANISMS l'Ek CUBIC MEIER.

IU I AI. IDIAL IDIAL IUIAL IUIAL kuillERS: CUI'EFUDS: CfCLOPOIDS: CALAHul0S: CLAl#0LEkANS:

bEllSII Y / dei 4SII T / DLilSilf/ DEPSilf/ DENSIIV/ IUIAL DErill (l'ER0f MI (I'EHEElli (I'ERLENI (I'lRCENI (I EktLtll 200fLANKI0ll LOCA110N MONIH YEAR (M) COMI'Oh l l I 0ll) CUllf 0 Sill 0N) COMi'0Si ll0N ) 00nPUSIIION) COMIOSil10N) DENSiff 1.0 4 79 10.0 148630 68094 18687 679 21435 238159 (62.4) (23.6) ( 7.8) ( 0.31 ( V.0) 1.2 4 79 10.0 143083 63461 16833 2167 22110 228661 (62.6) (27.8) ( 7.4) ( 0.9) ( 7.7) 2.0 4 79 10.0 201305 86496 IV976 663 18191 305Y93 (65.8) (28.3) ( 6.5) ( 0.2) ( 5.9) 3.0 4 79 10.0 149262 113322 21767 1501 18385 271969 (51.6) (41.7) ( 9.0) ( 0.6) ( 6.8) 3.9 4 79 8.0 204545 54504 13635 1249 1/512 276561 (74.01 (19.7) ( 4.9) ( 0.51 ( 6.3)

, 4.0 4 79 5.0 98959 53269 15590 1023 14078 166306

(59.51 (32.0) ( 9.4) ( 0.6) ( U.$)

if 4.5 4 79 10.0 209545 91315 20604 335 19055 JtV915 (65.5) (28.5) ( 6.4) ( 0.8) ( 6.0) 5.0 4 79 10.0 133157 96386 19092 353 0570 230133 (55.9) (40.5) ( 8.0)

( 0.8) ( 3.6) 6.0 4 /9 7.0 11/278 122913 19378 351 2JU46 264036 (44.4) (46.6) ( 7.31 ( 0.8) ( V.0) 8.0 4 79 10.0 301507 705th 21286 2263 24744 3??349 (76.3) (17.7) ( 5.3) ( 0.6) ( 6.1) 13.0 4 79 10.0 177536 37076 16057 144 1755V 232171 (76.5) (16.0) ( 6.9) ( 0.11 ( 7.~6 )

14.0 4 79 7.0 62533 37790 19801 498 21101 121506 (51.51 (31.11 (16.3) ( 0.41 (17.4) 15.0 4 79 10.0 256983 38536 14570 196 11667 307187 (83.7) (12.5) ( 4.7) ( 0.8) ( 3.0) 15.9 4 79 10.0 285028 43338 I??fV 723 14332 342678 (U3.2) (12.6) ( 5.3) ( 0.2) ( 4.2) 16.0 4 79 0.3 99501 38324 5881 1763 4119 142024 (70.8) (27.0) ( 4.11 ( l.2) ( 2.9) 34.0 4 79 10.0 307805 80570 33764 840 29263 417718

~(73.7) (19.3) ( U.11 ( 0.2) ( /.0) 50.0 4 79 10.0 141591 J3564 14886 338 12466 187620 (75.5) (17.9) ( 7.9) ( 0.21 ( 6.6) 40.0 4 79 6.0 14690 16542 3765 69 469 31701 (46. 11 (52.?) (11.9) ( 0.21 ( l.5)

Appendix Table 5. Pag: 22 of 24 Loi:E NORMAN 700PLAtitt0ll 1:EllSillES ESilMAIED IRoll VERilCAL HEI 100 SANFLES.

PEllSillES ARE EXPRESSED AS tilll1BER OF URCAfflSitS PER Cul'IC f1EIER.

IDIAL I C I Al. 10lAL IUIAL 10lAL R0!!IERS: COI E F'0DS : CICLOIDIDS: CALANDIDS: CL AliOCERAllS:

DENSilf/ DENSIIT/ DEllSil f / DENSitT/ DErfSilT/ ICIAL DEPill (l'ERLf H f (PERCENI (IERCEHI (PERCENI (l'ERCENI 200f E ANKl0H:

LOCATION MONIH TEAR (M) LONPOSil10H) CUNFUSil10ft) CultFilS!!!0ll) LONI'US il 10til CONFOSillDill billSil Y

_____......a.____... _____________ . ___.______.......... __.. ....._..__.____....._________...___..._... __

l.0 4 77 30.0 160315 53087 13501 465 11475 224076 (71.31 (23.6) ( 6.0) ( 0.2) ( 5.1) 2.0 4 79 30.0 180200 78764 13010 2777 9095 261067 (69.0) (27.51 ( 5.31 ( l.I) ( 3.53 3.0 4 77 25.0 136770 08/75 13471 0 100/6 235890 (58.1) (37.6) ( 5.7) ( 0.0) ( 4.3) 5.0 4 77 21.0 131453 80364 13432 0 8471 220307 (59.7) (36.5) ( 6.11 ( 0.0) ( 3.9) 0.0 4 77 30.0 2?3072 E5203 18779 1757 17573 397847

_- (73.7) (21.4) ( 4.7) ( 0.4) ( 4.7)

Y2 13.0 4 79 24.0 128076 45218 17638 771 11999 105353

' (69.8) (24.41 ( 9.5) ( 0.41 ( 6.5) 15.0 4 79 -22.0 167637 34445 18953 229 7538 20V620 (80.0) (16.4) ( 5.7) ( 0.1) ( 3.6) 15.9 4  ?? 20.0 216552 33374 12718 135 7 1I19 257115 *

(83.6) (12.7) ( 4.7) ( 0.l) ( 3.5) 34.0 4 79 24.0 174744  ???65 12102 470 12V71 215480 (UI.1) (12.7) ( 5.4) ( 0.7) ( 6.0)

Appendix Table 5. Pag 2 23 of 24 LAt:E NURNAN ZOUfLAllEION DENSillES ESTINAIED FROM VIRTICAL NET 100 SAMPLES.

DENSillES ARE EXPRESSED AS NUMBER OF ORGAtilShS IER CUBIC MLIER.

~

IDIAL IUIAL IlllAL IUIAL 10lAL RullrERS: C0FE00liS CTLL OPOIDS: CALANDIDS: C L Al'UCER AtlS :

DENSilf/ DENSiff/ DENSIIY/ DENSIII/ DEllSIII/ 10iAL DEPlH (l'EhCEffi (PERCENI (PERCENI ( F ERCElli (I EI.CEril JUUF L Atti:10N 1.DCAl10N MONill IEoR (M) CunFUSillUill CUNibSil10N) CUdPUS!Il0N) COMPOSill0ill C0f1P05111081) DEllSi l f l.0 5 79 10.0 37399 68852 26230 201 5417 91667 (19.0) (75.11 (28.6) ( 0.21 ( 5.9) 1.2 5 79 10.0 29003 89978 36888 666 3523 122504 (23.7) (73.4) (30.11 ( 0.5) ( 2.9) 2.0 5 79 10.0 17919 76654 22669 633 7861 102433 (17.5) (74.8) (22.1) ( 0.6) ( 7./)

3.0 5 79 10.0 23367 85124 30533 218 6339 184829 (20.3) (74.11 (26.6) ( 0.2) ( 5.5) 3.9 5 79 7.0 20771 73325 23738 199 4293 V8309 (21.11 (74.5) (?4.1) ( 0.2) ( 4.4)

, 4.0 5 79 5.0 39958 83391 29990 1797 9131 132479 s (30.7) (62.9) (22.6) ( 1.4) ( 6.7) 7 4.5 5 79 10.0 20452 66915 J0116 637 6362 101728 (28.0) (65.8) (29.6) ( 0.6) ( 6.3) 5.0 5  ?? 10.0 21717 73439 26196 958 1541 101776 (23.3) (72.1) (25.7) ( 0.9) ( 4.6) 6.0 $ 79 6.0 33231 82491 31814 0 4107 119829 (27.7) (68.8) (26.5) ( 0.0) ( 3.4) 8.0 5 79 10.0 24023 41836 19790 1482 13002 78860 (30.5) (53.0) (25.1) ( l.9) (16.5) 13.0 5 79 10.0 97708 26276 9235 698 12913 136896 (71.4) (19.2) ( 6.7) ( 0.5) ( 9.4) 14.0 5 79 7.0 44953 36140 14270 1228 5719 86011 (51.8) (41.6) (16.4) ( l.4) ( 6.6) 15.0 5 79 10.0 219979 29852 7985 216 16376 326208 (85.8) ( 9.2) ( 2.41 ( 0.11 ( 5.0) 15.9 5 79 10.0 377786 30449 8515 1233 15036 423278 (89.31 ( 7.21 ( 2.0) ( 0.3) ( 3.6) 16.0 5 79 0.3 10284 32112 14716 862 5603 47999 (21.41 (66.9) (30.7) ( l.8) (11.7) 34.0 5 79 10.0 80424 33033 13164 1003 13b09 134965 (65.51 (24.5) ( 9.8) ( 0.7) (10.0) 50.0 5 79 10.0 192723 26597 7717 306 13806 233126 (82.7) (11.41 ( 3.4) ( 0.1) ( 5.9) 60.0 5 79 6.0 38583 11253 1242 46 2142 52278 (73.R) I't.5) ( 2.4) ( U.11 ( 4./)

Appendil Table 5. Pag; 24 of 24 EAKE NDHNAN ZOOPLANKION DLilSillES ESIIM4 FED FROM VElllCAL NEI IDU SAMFLES.

DENSIIIES ARE EXPkESSED AS NUMDER OF UkGANISMS PER CUBIC MEIER.

ICIAL IUlAL IDIAL 101AL 10fAL ROIIFERS: CurEF0DS: CVLLOPOIDS: CALANDIDS: CLADUCERANS:

DENSIIY/ BINSIIT/ lie NSIIT/ PEllSi t T / DErlS!!Y/ IDIAL PfrIH (1EECENI (FEREENT (FERCENI (PERCENI (IERLENI IUDFL ANkillN:

1.0C A110N M0llill TE AR (II) CUMr0S1110M) Col 1F USIIION ) 00llPOS!!!0H) 00MFOSIIIDH) COMPOSIIION) DENSilf I.0 5 79 32.0 1 4117 47088 15382 273 3745 50321 (12.0) (80.7) (26.43 ( 0.5) ( 6.4) 2.0 5 79 29.6 7337 52685 17877 300 4/03 74725

( 9.8) (83.9) (23.9) ( 0.4) ( 6.31 3.0 5 79 25.0 9591 93786 2S060 084 3973 107369

( 8.9) (87.31 (23.3) ( 0.8) ( 3.7) 5.0 5 79 20.0 15475 50/73 20158 724 J796 78044 (19.9) (75.3) (25.8) ( 0.9) ( 4.V) 8.0 5 79 31.0 12420 50186 19922 776 5731 76640 (16.2) (/6.31 (26.0) ( l.0) ( 7.51 e 13.0 5 79 18.0 64703 29743 9958 352 8524 102970

(% (62.8) (28.9) ( Y.7) ( 0.3) ( U.3)

'f 15.0 5 79 19.0 211510 ?C292 8330 284 15525 2hS326 (D2.8) (11.1) ( 3.3) ( 0.8) ( 6.1) 15.9 5 79 21.0 2Vl563 31473 7773 326 7770 330U06 (88.l) ( 9.5) ( 2.31 ( 0.l) ( 2.3)

  • 34.0 5 /9 24.0 53091 J5534 15238 1066 5798 74423 (56.21 (37.6) (16.1) I 1.1) ( 6.1)

Appendix Table 6. Page 1 of 8 L Al:E NOF(HAN DENill10 DENSilES ESIIMATED FROM FEIERSEN GRAB SAMPLES.

DEN 511tES ARE EXFRESSED AS MEAN NunbEk 0F ORGANISMS IEk SOUARE nE1ER, BASED ON IHEEE REltlEAIES.

EllIR0H0tl!DAE EHAOPORIDAE: OLIGUCHAEIA: EPIIEHERIDAE: CORBICULIDAE: UTHERS:

SENSilY DENSilf dells!IY DE 651 t f DElsSIII DEttSII T IUI Al.

(PER0ENI (FERCEtti (PERCENT (PERLENI (l'ERCEN T (FERCINI l'E N IHIC EUCATION MONill IEAR COMPOS!!!UN) COMPOS!IION) CUntOSil10t() 00t PH5!Ilutti CONFOSil10N) CONtOS!I lott) DENSilf 1.2 7 7H 78 546 13 13 0 13 663 (ll.8) (82.4) ( 2.0) ( 2.0) ( 0.0) ( 2.0) 2.0 7 78 117 91 1742 0 52 39 2041

( 5.7) ( 4.51 (BL.4) ( 0.0) ( 2.5) ( l.9)

.. 3.9 7 78 364 13 286 0 52 1965 1780 y (20.4) ( 0.7) (16.11 ( 0.0) ( 2.9) (59.8) 4.0 7 78 78 117 13 52 0 13 273 (28.6) (42.9) ( 4.8) (19.0) ( 0.0) ( 4.8) 5.0 7 78 234 65 13 65 26 52 455 (51.4) (14.31 ( 2.9) (14.37 ( 5.7) (11.4) 6.0 7 78 130 52 39 26 13 52 312 (41.7) (16.7) (12.51 ( 8.3) ( 4.21 (16.7) 8.0 7 78 0 26 2912 0 0 0 2938

( 0.0) ( 0.9) (99.11 ( 0.0) ( 0.0) ( 0.9) 12.0 7 78 234 1969 65 0 0 13 1781 (13.1) (82.5) ( 3.6) ( 0.0) ( 0.0) ( 0.7) 14.0 7 78 234 0 2535 0 39 13 2B21

( B.31 ( 0.0) (89.9) ( 0.0) ( l.43 ( 0.5) 16.0 7 78 1918 0 221 0 130 3 1472 (76.0) ( 0.0) (15.0) ( 0.0) ( 8.8) ( 0.2)

Appendix Table 6. Page 2 of 8 LAI:E NURitAN PEi4IlliC SI AHDil4G LRUP DI0l1A'iS ESilt1AIED F Rutt IEllkSEN GRAD SANILES.

BIDl1 ASS IS Elf RESSED AS IllE I EAN BL0ilLD UEI UEIGHI (MG) PER SullAftE ItEIER, B ASED UN IlfREE REI'EECAIE S.

ClllR0H0lll!'AE: CllAUBURI t'AE OLIGUCHAEIA: EPilEHERifi AE CORBICULIDAE: Ull6(RS:

BIOMASS B IDil ASS B I0li ASS B10 MASS B10HASS BIDHASS 101AL (PERCENT (PE RCElli (FERCENI (FERCENI (FERLENI (I'E hCE N I BEHilllC t 00All0N MONill YE AR COMI'0S i l 10N ) 00nFOSil10H) CU Hl'USI T ION ) CUMPOSill(IN) 00lli'US il 10N) tilHI'OS i l 10N) blhdASS 1.2 7 78 156 610 1 190 0 3043 4000

( 3.7) (15.2) ( 0.0) ( 4./) ( 0.0) (16.1) 2.0 7 78 98 13 855 0 53 19 10V8

. ( 8.9) ( 6.6) (77.9) ( 0.0) ( 4.0) ( l.7)

> G 3.0 7 78 178 6 23 0 110 104 421 T (42.31 ( l.41 (.5.5p ( 0.0) (26.1) (24.7) 4.0 7 78 136 120 12 1365 0 6 1617

( 8.31 ( 7.31 ( 0.7) (83.3) ( 0.0) ( 0.4) 5.0 7 78 98 6V l 939 5/36 4 6847

( l.41 ( l.0) ( 0.0) (13.7) (83.8) ( 0.1) 6.0 7 78 13 18 3 207 6 16 263

( 4.9) ( 6.8) ( l.1) (78.7) ( ?.3) ( 6.1) 8.0 7 78 0 35 5149 0 0 0 5184

( 0.0) -( 0.7) (99.3)  ! 0.0) ( 0.0) ( 0.0) 12.0 7 78 139 416 9 0 0 14 578 (24.0) (/2.0) ( l.6) i 0.0) ( 0.08 ( 2.4) 14.0 7 78 95 0 2453 0 5 1 2554

( 3.11 ( 0.0) (96.0) ( 0.0) ( 0.21 ( 0.0) 16.0 7 18 238 0 120 0 V33 6 12??

(18.41 ( 0.0) ( ?.31 ( 0.0) (71.95 ( 0.5) y n

Appendix Table 6. Page 3 of 8 LAKE HORNAN PEHilllC DENSIIES ESilttAIED FROH FEIERSEN GRAB SANFLES.

DENSITIES ARE EXFilESSID AS MEAN llUMPER OF URGANISHS PER SHUARE ftEIER, isASED 011 IllkEE REFLICAIES.

ElllRON0lllDAE CllAHlf 0RIDAE OLIGtJCHAEIA: ErifENERildE: CUHblCULIDAE: gillers:

l'E N Si l f DENSlif I'E N S I I T DENSilf l' Ells I II DENSIIT IDIAL (PERCENI (PERCENT (PERCElli (PER[ENI (PERCENI (FEREElli BitillilC LOCA110ft MONIH TEAR CONPOSil10N) CUhl'US lil 0!!) 00nF0SITION) CUMPOSil!UN) COMPUS!Il0N) COMPUSill0N) DENSIIT 3.2 10 78 13 1521 13 13 0 26 1586

( 0.8) (95.9) ( 0.8) ( 0.8) ( 0.0) ( l.6) 2.0 10 78 0 624 2834 0 0 52 3510

( 0.0) (17.8) (80.7) ( 0.0) ( 0.0) ( l.5) e 3.0 10 78 234 468 0 0 26 39 767 G (30.51 (61.0) ( 0.0) ( 0.0) ( 3.4) ( 5.1) i 4.0 10 78 78 806 0 26 52 13 775

( 8.0) (82.7) ( 0.0) ( 2.7) ( 5.33 ( l.3) 5.0 10 78 169 26 26 52 0 78 351 (48.l) ( 7.4) ( 7.41 (14.8) ( 0.0) (22.2) 6.0 10 78 884 325 70 130 26 104 1547 (57.1) (21.01 ( 5.0) t 8.4) I t.7) ( 4.7) 8.0 10 78 0 793 3107 0 0 0 3700

( 0.9) (20.31 (79.7) ( 0.0) ( 0.0) ( 0.0) 12.0 10 78 104 2392 13 0 0 78 2587

( 4.0) (92.5) ( 0.51 ( 0.0) ( 0.0) ( 3.0) 14.0 10 78 78 494 1612 0 0 16 2200

( 3.51 (22.51 (73.33 ( 0.0) ( 0.0) ( 0.7) 4

.e

Appendix Table 6. Page 4 of 8 L AKE N0kNAll BillilllC SI ANDitlG CFol' FIUllAS'i ESilflAIEls FROM IEIERSEN GRAB SAHilES.

BIDHASS IS EXPRESSED AS IIIE hl Att I' lulled Ull UEIGill (flG) Pf it St30ARE MEIER.

BASEB Ull illHEE REFLECAIES.

CillRufforIIDAE: Cil A010R i t' AE UL IGUEllAEI A: EI'llEMERIDAE: CORBICULIDAE: GlHERS:

bl0l1 ASS BIOMASS BlonASS B10 MASS TOTAL FIDHASS B10 MASS (PERCENI (l'E RCElli (PikCENI (PEkCENT (I ERCEtli BEtelHIC (PERCENI LOCAL!0N M018IN YEAR COMPOSil10N) LONPOSill0N) 00nf 0Sil10ll) cut 1POSill0M) COMI0 Sill 0N) COMIOSill0N) BIOMASS 1010 52 0 17 1988 1.2 10 18 6 1

( 9.6) (72.8) ( 0.11 ( 4.8) ( 0.0) ( 1.7) 478 5l43 0 0 43 5664 2.0 10 7R 0

( 0.0) ( 0.4) (70.8) ( 0.0) ( 0.0) ( 0.8) 192 0 0 6 62 568

~

u, 3.0 10 78 309 (54.2) (33.8) ( 0.0) ( 0.0) ( l.13 (10.9) 7 530 0 1511 2227 1 429V 4.0 10 78 30

- ( 0./) (12.3) ( 0.0) (35.13 (51.8) ( 0.0) 13 14 13 0 326 714 5.0 10 78 348 (48.7) ( l.8) ( 2.0) ( l.8) ( 0.0) (45.7) 22 143 3 66 978 6.0. 10 78 572 172 (58.5) (17.6) ( 2.2) (14.6) ( 0.31 ( 6.7) 554 3839 0 0 0 4373 8.0 10 78 0 1 0.0) (12.6) (87.4) ( 0.0) ( 0.0) ( 0.0) 948 0 0 31 1943 12.0 10 78 163 1 (82.9) ( 0.0) ( 0.0) ( ?.7)

(14.3) ( 0.1) 320 1834 0 0 90 157/

14.0 10 78 25

( 1.6) (20.8) (71.9) ( 0.0) ( 0.0) ( 5.1) 347 0 246 12 773 16.0 10 78 176 12 (22.2) ( l.5# (43.8) ( 0.0) (31.0) ( f.5)

Appendix Table 6. Page 5 of 8 LAl;E ilDRMAlf BEHilliC DEllSIIE S ESiliiAIED FKoll IEIERSEll GRAtt SArif LES.

DENSillES ARE EXPRESSED AS ME All fl0MBER OF URGAlflShS IER S(IUARE MEIER, l'ASED Dit liikEE REf LICAIES.

ElllRUf10lllDAE: LilAUpflR iliAE : DLIGOCllAL I A: El'lIEllERIDAE: CURB 100LIDAE DIHERS:

l'E NS I I Y 1:ENSil V DENSilli DENSilf DENSilf I:ENSil f 10l Al.

(PEI;CENI (PERCElli (l'EECENI (FERCEHI (PERLENI (FEl(CEN I bEHlHit LOCAll0N MONill TEAft CUNf'USIllull) C011!'0S111011) 0011i 4S1110f1) 00HF OSIII0t8) COMEUSilI0N) COMIOSIIION) DENSIIT 1.2 1 79 338 247 37 39 52 26 741 (45.6) (33.3) ( 5.31 ( 5.3) ( 7.0) ( 3.5) 2.0 1 79 0 1677 7678 0 39 0 4394

, ( 0.0) (38.21 (60.9) ( 0.0) ( 0.9) ( 0.0) g 3.0 1 79 2639 39 104 312 411 102 3887 y (67.9) ( l.0) ( 2.7) ( 8.0) (15.7) ( 4.7) 4.0 1 79 325 65 208 26 1118 14133 16575

( 2.0) ( 0.4) { l.3) ( 0.2) ( 6.7) (U?.5) 5.0 1 79 3549 443 39 520 819 416 5486 (64.7) ( 2.6) ( 0.7) ( 9.51 (14.9) ( 7.6) 6.0 1 79 910 429 91 182 416 221 2249 (40.51 (19.11 ( 4.0) ( 8.8) (18.5) ( 9 . 11 )

8.0 1 79 65 676 1430 0 117 0 2208

( 2.8) (29.51 (62.5) ( 0.0) ( 5.11 ( 0.0) 12.0 l 79 273 806 286 0 39 65 1469 (18.6) (54.9) (19.5) ( 0.0) ( 2.7) ( 4.4) 14.0 1 79 52 78 104 0 200 13 455 (11.41 (17.1) (22.9) ( 0.0) (45.7) ( 2.9) 16.0 1 79 624 0 65 0 429 52 I170

. (53.31 ( 0.0) ( 5.6) ( 0.0) (36.7) ( 4.4)

9 Appendix Table 6. Page 6 of 8 L Al:E il0EitAll PElllHIC SI ANiill!G LICW IIIUl1 ASS ESill1AIED F Ruli PEIERSEN GRAll S Al1PL E S.

BIDMASS IS EXIPESSED AS lilE HEAI) Bl0llEli UEl UEIGill (MG) IIR SOUAhE MEIER, itASED UN lilREE REILECAIES.

ElllP0i10llll'AE EllAUbDRillAE: OLIGul;llAE1 A : EPilEliERillAE 00tiplCilLIDAE: OlllERS:

B10t1 ASS BIONASS P!0iiASS B10NASS BI0ttoSS B 10tiASS 10 i AI.

(FERCENI (PER0ENI (l'ERCE N T (PERCENI (PERCENI (I E RI.E N I BEHillit LOCATION MONIH YEAR 00NPOSlilUtil COMPOSil10N) CutlPOS t i10N ) 00nf 0Sillotl) 00liPOSillut() CUHF OS! Il0N ) bl0NASS 1.2 1 79 195 260 126 41 72 2 716 (27.21 (36.31 (17.61 ( 8.51 (10.8) ( 0.3) 2.0 1 79 0 1415 4949 0 27 0 6591

( 0.0) (24.51 (75.1) ( 0.0) ( 0.41 ( 0.0) 1 3.0 1 79 588 39 46 344 130 39 1906

$ (49.6) ( 3.3) ( 3.9) (29.0) (11.0) ( 3.3) e 4.0 1 79 42 56 277 43 205 1551 2174

( l.9) ( 2.6) (12.7) i 2.0) ( 9.41 (71.3) 5.0 1 79 98N 173 3 5837 185 45 7231 (13.7) ( 2.4) ( 0.0) (80.7) ( 2.6) ( 0.6) 6.0 1 79 1010 491 13 2142 118 136 3710 (25.8) (12.6) ( 0.31 (54.8) ( 3.0) ( 3.5) 8.0 l 79 79 694 2734 0 32 0 3539

( 2.21 (19.6) (77.31 ( 0.0) ( 0.9) ( 0.0) 12.0 1 79 471 655 153 0 30 52 1361 (34.6) '48.11 (11.21 ( 0.0) ( 2.21 ( 3.8) 14.0 1 79 51 105 142 0 52 11 341 (14.l) (29.1) (39.3) ( 0.0) (14.4) ( J.0) 16.0 1 79 281 0 35 0 150 li 480 (58.5) ( 0.01 ( 7.3) ( 0.0) (31.3) ( 2.9)

Appendix Table 6. Page 7 of 8

. l ARE fl0PMAN Prilllllt DENSilES E511MAIED FR0rt I'LIERSEN GPA9 SAMIEES.

DENS!!IES ARE LIFLESSED AS MEAN fiUMBER OF ORGANISHS PER 500ARE METER, PASED 09 litREE REF LICAIES.

[IllRONOMIDAE: EllA010R IDAE: UllG0CHAEIA: EF HEHERil'AL: CORBICUllBAE: OIHERS:

DENSIIT DENSilf DEliSil f DEllSil f PEffSilf DEllSII T IDIAL (PER[ENI (I'ERCElli (FERLENI (I'ERCEt81 (IERCENI (l'EkCEN I PEtilillC LOCAIION MONill FEAR COMPOS!!I0ff) 00nPDSIl10N) 00Hi tis!Il0N) CUMPOS!! ION) COMPUSil!0H) CHMPOSil10N) DEt4Sil f 1.2 4 79 117 III 52 26 143 104 557-(20.93 (20.9) ( 9.3) ( 4.7) (25.6) (18.6) 2.0 4 79 39 377 4374 0 91 13 4914

( 0.8) ( 7.7). (09.4) ( 0.0) ( l.9) ( 0.31 3.0 4 79 3965 169 182 143 923 165 5547 s,

j; (71.51 ( 3.0) ( 3.3) ( 2.6) (16.6) ( 3.0)

  • 4.0 4 79 1092 tot 52 52 377 247 1924 (56.8) ( 5.4) -( 2.7) ( 2.7) (19.41 (12.0) 5.0 4 79 832 195 507 45 2743 767 5109 (16.3) ( 3.81 ( 9.9) ( l.3) (53.7) (15.0) 6.0 4 79 3978 676 364 273 1638 505 7514 (52.9) ( 9.01 ( 4.8) ( 3.6) (21.8) ( ? 8) 8.0 4 79 39 1857 2366 0 104 0 3666

( l.1) (31.6) (64.5) ( 0.0) ( 2.8) ( 0.0) 12.0 4 79 195 65 ~l95 0 37 91 585 (33.3) (11.13 (33.31 ( 0.0) ( 6.7) (15.6) 14.0 4 79 260 169 412 0 1914 52 2067 (12.6) ( 8.2) (21.4) ( 0.01 (55.31 ( 2.5) 16.0 4 79 416 -0 104 0 442 27 991 (42.0) ( 0.0) (10.51 ( 0.0) (44.6) ( 2.9)

- .w ,

Appendix Table 6. Page 8 of 8 LAl:E NURNAN FENIHit SI ANDIl10 CI(OF' UlullASS ESilHAIED FRutt l'EIERSEN GRAB sal 1FLES.

BIONASS IS EJFRESSED AS IllE HEAtl BLD(IED UEl WEIGHT (MG) FER SUUAffE HEIER, BASED ON tilREE REFLECAIES.

CHIR 0110Mll'AE : CIIAOBORIDAE: OLIGDCilAEIA: EFilEf1E RIDAE : CURBICULIDAE: OlllERS:

B10HASS BIDHASS B10NASS BIUMASS P10dASS B I0liASS 101AL (FERCENI (FERCEtti (tEkCENT (FERCEHI (fERCEHI (PEhCENI BElllHit LOCAI10ll MUNIH TEAR CONFOSil10N) 00HFDSil!0N) 00liF0Slilull) 00MFDSli10N) 00N10 Sill 0N) COMFOSIIION) bl0HASS 1.2 4 79 60 91 53 122 23 12 361 (16.6) (25.2) (14.7) (33.8) ( 6.4) ( 3.3) 2.0 4 79 32 426 4718 0 14 2 5192

( 0.6) ( 8.21 (90.9) ( 0.0) ( 0.3) ( 0.0) e 3.0 4 79 930 181 40 344 118 52 1103 3" (54.6) (10.6) ( 2.A) (20.2) ( B.7) ( 3.1) l' .4.0 4 367 122 1 354 66 1866 2076 (17.7) ( 5.9) ( 0.0) (17.11 ( 3.21 (56.2) 5.0 4 79 298 235 98 441 290 107 1477 (29.21 (15.9) ( 6.6) (29.7) *

(20.21 ( 7.2) 6.0 4 79 1891 974 18 1871 339 77 3??0 (31.6) (25.8) ( 0.5) (31.11 ( 9.0) ( 2.0) 8.0 4 79 65 1122 5103 0 55 0 6315

( l.0) (17.7) (80.4) ( 0.9) ( 0.9) ( 0.0) 12.0 4 79 927 55 138 0 to 80 1210 (76.6) ( 4.5) (11.4) ( 0.0) ( 0.8) ( 6.6) 14.0 4 79 247 177 370 0 1845 10 1949 (12.7) ( 9.1) (19.0) ( 0.0) (58.7) ( 0.5) 16.0 4 79 394 0 56 0 736 15 1201 (32.8) ( 0.0) ( 4.7) ( 0.0) (61.3) ( l.2)

Appendix Table 7. Page 1 of 11 Gillnetting catch rates (mean no. fisli/ gillnet set) in Lake llorman, flortti Carolina, during June 1978.

Lepisosteus Dorosoma Cypilnus Carpicdes Ictalurus ictalurus horone Ilorone -

Location osseus- cep_edianura carpio cyprinus catus platycephalus chrysops

  • saxa t i l_i s* Otijer_

3.0 1.00- 2.33 1.67 1.00 1.33 4.0 0.33 0.67 1.33 0.33

- 5.0 0.33 1.67 5.00 0.67 1.33 6.0 1.00 2.00 0.33 2.33 0.33 '1.33 8.5 1.33 0.33 0.33 0.33 1.67 O *llone Collected

Appendix Table 7. Page 2 of 11 Gillnetting catcli rates (mean no. fisli/ gillnet set) in Lake florman, !!ortli Carolina, during July 1978.

Lepisosteus Dorosoma Cyprinus Carpiodes ictalu.us Ictalurus lloroTe Norone Location osseus ce[Ledianum cargio_

cyprinus ca tu.s platycephalus clurysops s saxatilis* Ollier 3.0 0.33 2.67 0.67 0.33 0.33 0.33 0.33 4.0 0.67 0.33 0.33 0.67 0.33 5.0 0.33 2.00 1.67 0.33 0.6/ 0.33 2.00 6.0 0.33 0.33 1.33 1.00 8.5 0.33 . 1.33 0.67 0.67 y 13.0 0.67 3.67 0.67 0.33 1.00 14.7 0.33 5.00 0.33 0.33 2.67 15.5 1.33 0.33 2.00 4.00 0.33 2.33 19.0 0.67 2.33 2.33 0.33 1.00 0.33

  • llone Collected i

t 6

-@, e e 4 - w e - w - , . - r,

. . - . _ _ . _ . _ . .._. _ __.m_ _ _ _ _ _ . . _ . _. ._, . . _ . . . - . . . , _.

Appendix Table 7. Page 3 of 11 G111 netting catch rates (mean no. fish / gillnet set) in Lake florman, florth Carolina, during August l'J78.

Lepisosteus Dorosoma Cyprinus Carpiodes 7ctalurus lctalurus llorone florone .

Lo_ca tion osseus cepedianum carpio cyprinus catus pla tycep!Lalus chrysops saxatilis* Other 3.0 2.33 0.33 0.33 1.33 4.0 1.00 1.00 0.33 0.33 5.0 3.00 4.33 0.67 0.67 6.0 1.00 1.00 0.33 -

8.5 0.67 2.33 0.33 1.00 0.67 0.33 0.33

% *flone Collected g.

U 1

t 1

4 9

.y 1 ,_y , , , , - - ..y- y. , - , . . _ _. - ,p., , , ,

D

Appendix Table -7. .Page 4 of 11 Gillnetting catch rates (mean no. fish / gillnet set) in Lake llorman, florth Carolina, during September 1978.'

Lepisosteus . Dorososaa Cyprinus Carpiodes ictalurus Ictalurus Horone florone Loca t i,on -

osseus* cepedianum carpio cypr_inus catus* platycephalus chrysops saxatilis Other 3.0 2.33 0.33 2.33 0.66 0.33 4.0 0.66 0.33 5.0 2.00 3.00 0.33

.6.0 0.67 5.00 0.67 0.67 0.67 8.5 1.33 .0.33 2.00 0.67 0.6/

.E

' Y - *tione Collected 4

. - - _ - - . - - ,.e-- . . + - -,, .- , ~- ._ - . . . , .

Page 5 of 11 Appendix Table 7.

Gillnetting catch rates (mean no. fisli/ gillnet set) in. Lake florman, florth Carolina, during October 1973.

Lepisosteus Dorosorna Cyprinus Carpiodes lctalurus ictalurus llorone Morone-ceped ianuni_ cyprinns_ catus pla ty_cephalus chry_ sops saxatilis Other Loca tion osseus car][io_

1.33 0.33 0.33 0.67 0.61 3.0 .

0.67 U.33 0.33 0.33 1.33 4.0 1.33 0.33 4.33 0.33 0.33 0.67 1.00 5.0 2.00 0.67 2.67 0.33 1.33 0.33 6.0 8.5 1.6/ 0.33 0.67 0.67 0.33 E 1.33 0.67 0.33 i 13.0 0.67 0.67 2.00 0.67 0.33 1.'67 1.67 14.7 10.33 0.67 0.33 1.00 2.00 15.5 1.00 0.33 4.67 0.33 0.33 0.67 1.00 19.0-

. - , , -n-- . en, , ,

5

-Appendix Table 7. Page 6 of.11 Gillnetting catch rates (mean no. fish /gillnel set) in I. ale floruan, llorth Carolina, during floveraber 1978.

Lepisosteus Dorosoun Cyprinus Carpiodes Ictalurus lctalurus Horone Morone Location osseus* cepedianum_ carpio* cyprinus catus _platycephalus chrysops _ saxatilis Other 3.0 0.67 .U.33 0.33 2.00 0.67 4.0 5.0 '1.67 2.33 0.33 0.67 0.33 6.0 0.67 1.33 0.67 U.67 8.5 0.33 4 -k allone Collected Y

~

,- - . , , - -, --- - .-- e, , ,

4 Appendix Table 7. Page 7 of 11'

'Gi11 netting catch rates (mean no. fisli/ gillnet set) in Lake florman, llortli Carolina, during December 1973.

~

Lepisosteus Dorosoma CypFIEiss ~ i'arplodes lctalurus ictalurus florone Horone Location osseus* cepedianuut carpio* cyprinus catus platyce}@a,Lu.s clirysops saxatilis Other 3.0 0.67

~

.4.0 0.67 0.67 5.0 2.33 0.33-6.0 0.33 1.6/ 0.33 0.33

. 8.5 0.33 0.33 0.33 - 0.33 y

=

  • None Collected

, . - . - . . _ , . - - . - - . . - , + . . _ , ,

Appendix Table 7. Page 8 of.ll Gillnetting catch rates (mean no. fish / gillnet set) in Lal:e florman, llorth Carolina, during January,1979.

Lepisosteus Dorosoma Cyprinus Cariiiiifei~~1ctalurus lctalurus Horone llorone Location osseus*- cepedianum carpio cyprinus catus pla tycepha lus chrysops saxatilis Other 3.0 0.33 4.0 5.0 0.33 0.33 0.33 0.33 0.33 4

6.0 0.33 8.5 .

8

., 13.0 0.67 0.33 0.67 0.33 m

T 14.7 7.67 0.67 1.00 4.67 1.00-15.5 0.33 0.31 19.0- 0.33 0.33 0.33 allone Collected tio catch during February

, wr -e-,-- rm v ., ,<>r- . e , ,e- ~ < - - - - , ,a- m -

s-, w-

7 Appendix Table 7. Page 9 of.11 Gillnetting catch rates (i:can no. fish / gillnet set) in Lake llorman, llorth Carolina, during Itarch 1.979.

?

Lepisosteus Dorosoma Cyprinus. Carpibi!E Ictalurus Ictalurus llorone florone

' Location osseus* cepedianuni__ carpio cyjeripus catus _platycephalus ' chrysops saxatilisa Other.

3.0 O.33

' 4.'O 0.33 0.67 ,

5.0 1.67 0.33 0.67

6.0 1.33 0.33 1.00 1.33 0.67.

i 3.5 .2.67 0.33 6.u/

, o y

  • llone Collected 1

i 0

e i

4

,_4 - -

  • 4. + -

-,...w=-+i , ,m= -w-- . v -,- - e , ~.,,e- -- , ,- ,,v--., ,-e-- ,vw--- ----4 vv-- - , , . v , --,--------,-e

Appendix Table 7. Page 10 of 11 Gillnetting catch rates (mean no. f ;sh/ gillnet set) in Lake lionnan, !!ortli Carolina, during _ April 1979.

Lepisosteus Dorosorna ~~T:yprinus Caryodes Ictalurus lctalurus florone ~Morone Location osseus cepedianuris carp _lo cyj rjpus ca t_us_ platycephalus chrysups saxatilis Other 3.0 2.33 2.00 0.67 1.00 0.33 4.0 1.67 1.33 0.67 1.00' O.67 5.0 2.67 8.67 0.33 0.67 0.33 0.33 1.67 6.0 0.33 1.00 13.67 0.33 0.33 8.5 1.67 0.33 1.00 N 13.0 6.00 9.33 0.33 1.33 0.33 T-14.7 7.00 1.33 5.67 0.67 0.67 0.67 1.67 15.5 3.33 0.67 1.00 0.67 0.33 19.0 0.67 0.67 5.67 0.33 0.33 0.33 l

4 4

i 9

Page 11 of.ll Appendix Table 7.

Gillnetting' catch rates (mean no. fish / gillnet set) in Lake florman, florth Carolina, during'llay 1979.

i llorone

~

Lepisosteus Dorosoma CypRnus Carplodes IctaTurus icialurus llorone i cyprinus platycepi talus chry_ sops saxatilis Other Location o_sseus cepedianuu carjto catus_

2.00 0.33 0.67 0.67 0.67 1.67 3.0 0.00 0.67 2.00 0.33 1.00 4.0 1.33 4.67 0.67 0.67 2.67 5.0 0.33 17.00 1.00 4.00 0.33 1.00 0.33 0.33 2.00 6.0 2.00 3.33 1.33 1.33 0.33 1.00 8.5 2.67 2.67

Appendix Table 8. Page 1 of i2.

Electrofishing catch rates ',mean no. fish /152 m shoreline) in Lake llorman, it. C., during June,1978.

Notropis Ictalurus Lepomis Lepomis flicropterus Pomoxis Perca Location niveus platycephalus auritus macrochirus salmoides nigrouaculatus flavescens Other 1.2 0.75 0.25 6.75 2.50 1.50 0.25 1.75 3.0 0.75 -0.50 3.75 0.50 0.25 0.50 0.75 3.9 0.25 0.25 15.50 12.75 0.75 0.25 1.50-4.0 0.50 0.50 8.00 1.50 0.25 1.50 5.0 2.75 3.25 3.50 0.25 1.00 6.0 2.75 1.50 0.75 1.00 1.00 w

' 0.25 1.50 0.50 8.5 1.50 0.25 3.75 4.25 13.0 0.75 2.00 12.25 2.25 0.75 3.25 14.5 1.50 2.00 10.25 9.25 3.75 18.25 14.7 3.00 4.25 21.25 11.25 0.50 7.00 15.5 2.50 2.75 5.75 3.00 2.25 0.25

16.0 0.25 4.25 1.25 2.00 0.50 0.75 4.50 19.J' 2.00 5.25 9.50 0.75 1.00 7.00 9

-- - - - - - - s ,w w

c.-

Appendix Table 8. Page 2 of 12 Electroff shing catch rates (mean no. fish /152 m shoreline) in Lake llorman, fl. C., during July 1978.

Ilotropis Ictalurus Ler.omis LepoWs flicropterus Pomoxis perca Location niveus pla tycephalus auritus macrochirus salmoides nii3romaculatus flavescens Other 1.2 0.75 8.50 4.25 0.50 0.75 1.75 3.0 1.25 5.50 1.50 0.25 3.9 1.75 19.00 14.50 6.25 0.25 0.75 3.25 4.0 1.00 0.25 3.75 0.50 0.25 2.00 5.0' O.75 6.50 3.50 0.25 1.25 6.0 2.50 6.75 0.75 0.75 2.00 1.00 8.5 2.00 4.25 9.75 0.25 0.25 3.75 13.0 0.50 1.50 12.50 1.00 3.00 1.75 14.5 0.50 0.75 2.00 1.75 1.50 8.25 14.7 1.00 1.25 3.00 0.50 2.75 1.25 15.5 1.50 0.25 0.50 3.00 3.75 1.00 0.75 16.0 0.25 8.50 1.50 4.25 1.50 3.50 19.0 0.50 3.50 7.50 0.75 0.25 1.75

2 .

1 r 5 0 0 5 5 0 5 0 0 0 5 5 5 8 r__ 5 0 2 7 7 7 e 2 5 5 7 7 0 7 5 f

o 1 9 h_

t 0 4 5 1 0 1 0 0 2 1 0 0 0 O 2 3 t e s g u g s Pa u n e

A 5 5 5 5 0 5 5 5 ac 2 7 2 5 2 2 2 g cs 7 n re 0 0 0 3 0 0 0 0 i ev r P a u l d f e C s

. t u "

I I a sl

, i u 5 5 n xc 2 2 a oa m

r mu oo 3 0 o Pr g

ll i -

e n t

a L

s n us i re 0 0 5 5 0 5 5 0 5 0 0

) ti ed 0 5 0 0 7 7 0 7 2 5 2 5 0 >

e po i

n om rl 2 8 1 0 0 2 0 2 2 0 1 1 m

l ca e is r l I

o h

s s

m u sr 0 5 0 5 5 0 5 5 2 i i 0 0 5 0 0 5 mh 0 5 2 0 0 5 2 5 2 7 0 7 2

. 1 oc po 5 0 2 2 1 3 9 0 0 2 1 0 3 r

/ 2 h

s e. r ic a i

f m o

n ss 5 5 5 5 5 5 I u 0 5 5 5 0 0 5 n st 5 2 7 7 0 5 2 2 2 7 7 2 7 a ioipr 3 8 0 4 4 2 0 0 0 0 e 1 1 1

(

m eu 1 La s

e t s a u r sl ua h rh c up 0 5 5 5 t l e 5 2 7 2 a ac 0 0 0 0 8 c t y

_ ct

_ e g i a l

b i n l p

a h T s f

x f s

_. i o i s pu 0 0 0 0 5 0 5

_ d r 5 n t oe 5 2 5 5 0 2 5 2 e

p ec rv ti 0 1 0 1 1 0 0 0 p on

_ A E l

l f

_ n

- o 0 i 2 0 9 0 0 0 5 0 5 7 5 0 t

a l 3 3 4 5 6 8 3 4 4 5 6 9 c 1 1 1 1 1 1 o

L

' . M'

Appendix Table 8. Page 4. of 12 Electrofishing catch rates (mean no. fish /152 m shoreline) in Late Horman,fl. C., during September'1978.

Ilotropis ictalnrus Lepunis Lepomis flicropterus Pomoxis Perca

,Loca tion niveus pla_tycephalu's auritus macrochirus salmoldes nigromaculatus flavescens Otijg 1.2 0.25 1.25 11.50 6.75 1.50 1.00 1.00 3.0 0.75 .0.75 9.00 3.00 1.00 0.25 24.25 3.9' l.50 27.25 60.75 3.75 0.50 1.25 4.75 4.0 1.25 0.25 9.75 2.50 0.50 0.25 0.25 4.50 5.0 1.00 9.00 3.00 0.50 1.50 e 6.0 0.50 7.75 0.50 0.25 1.00 1.75 U.S 1.00 ' O.25 - 7.50 14.50 2.00 0.25 13.0 3.00 2.25 5.75 1.25 0.25 3.25.

14.5 0.25 1.00 13.25 4.50 2.50 30.50 69.75 14.7 0.50 4.75 13.75 4.25 22.75 4.25 15.5 1.75 3.25 '7.00 4.00 8.25 5.75 16.0 1.75 1.50 2.25 1.75 19.0 3.50 1.00 9.00 25.00 1.75 1.00

Appendix Table 8.

Page 5 of 12 Electrof f shing catch rates (incan no. fish /152 m shoreline) in Lake floruan, fl. C. , during October 1978.

flotropis Ictalurus Lepomis Lepomis 11icro erus PoirExis Perca Location niveus pla tyc,e[th alus auritus macrochirus sair ides nigror.ucula tus flavescens Other 1.2- 0.25 29.75 27.75 3.25 4.25 0.25 2.25 3.0 0.75 0.50 0.00 4.25 7.00 3.9 3.25 22.75 31.50 2.50 1.00 0.75 6.50 4.0 5.00 8.50 4.25 0.50 0.75 18.00 5.0 1.00 0.25 7.00 1.50 1.00 10.00 6.0 1.50 14.00 6.25 0.25 2.75 g 8.5 0.75 0.25 5.50 7.00 3.25- 0.25 1.25 13.0 4.50 5.25 12.50 4.25 0.50 23.25 14.5 2.25 1.50 7.25 14.7 1.75 0.50 2.75 2.25 0.25 15.5 0.50 0.75 6.00 0.75 0.75 3.75 16.0 1.50 0.75 2.75 0.50 19.0 2.75 0.50 2.00 6.75 1.50 o no w . , . - .. , . . . _ ,

i Appendix Table 8. Page 6 of 12 '

Electrofishing catch rates (sacan no. fish /152 m shoreline) in take flornen, fl. C., during flovember 1978.

ilotropis ictaTurus Lepomis Lept 5Is Ilicropterus Pomoxis Perca niveus platycephalus auritus macrochirus salmoides nigroniacula tus flavescens Other

_ Location _

1.2 0.25 12.50 12.25 1.25 0.75 0.75 3.0 0.50 0.25 0.25 0.75 3.9 2.00 0.50 14.75 18.00 0.75 0.25 6.75 4.0 5.50 1.00 4.25 1.00 16.25 5.0 0.25 2.75 0.75 1.00 6.0- 2.50 5.75 1.50 1.25 1.75

.m 8.5 2. 50 -- 0.25 3.50 7.00 1.50 3.00 13.0 3.25 1.00 1.75 0.50 0.25 9.00 0.25: 1.50 1.00 6.75 1.50 14.5

-14.7 3.75 4.25 3.00 0.25 5.00 12.00 0.25 0.50 2.50 0.75 0.75 15.5 1.50 4.25 1.75 1.50 16.0 3.50 4.25 1.75 0.75 19.0

Appendix Table 8. Page 7 of 12 Electrofisliing catch rates (inean no. fisli/152 m slioreline) in Lake lionaan,11. C., during Deceniber 1978.

tiotropis Ictalurus i.eponals Leporais illcropterus Punioxis Perca Location niveus pla tyceplialus auritus niacrochirus salmoldes nigroinacula tus flavescens O ttier -

1.2 1.25 2.25 0.25 1.25 3.0 1.25 1.25 0.25 3.9 1.25 27.25 16.75 1.50 0.50 0.25 10.00 4.0 0.50 0.25 0.25 4.50 1.00 5.0 0.25 3.25 0.50 0.25 0.75 0.25 6.0 7.75 3.75 6.25 1.00 3.00 8.5 0.75 2.00 2.25 1.25 0.50 12.25 13.0 2.00 3.50 1.50 0.50 6.75 14.5 0.50 0.75 0.50 7.25 19.75 14.7 4.25 2.50 13.75 3.25 0.25 6.50 13.50 15.5 1.75 0.25 2.75 2.50 0.25 0.25 16.0 1.00 1.25 2.25 5.50 19.0 7.75 2.25 3.00 4.00 0.75

2 .

1 9 -

5 5 5 f 7 r 5 0 5 5 5 0 0 9 e 2 5 7 7 2 0 5 7 7 2 o 1 h .

t 1 0 2 0 9 1 2i 0 0 3 8 y O 0 t e r 1 g a a u P n s a n J e 5 5 5 0 5 5 g

ac 0 2 0 7 2 cs 5 7 2 n re 0 3 0 i ev 1 2 0 4 r Pa u l d f C. s u

. t I

I a sl iu 0 n xc 5 an oa 0 n miw o

o Pr g

ll i

e n k

a L

s n us i re 5 5 ed 5 0 5 0 0 0 0 5 5 0

) tl 2 5 2 5 0 5 0 7 7 5 7 2 e po i

n om 0 rl 0 0 0 1 0 2 0 3 0 0 0 l ca e

r is l

f o

h s

s

_ m u sr

_ 2 i 0 5 5 5 0 0 5 5 5 5 lt ih 5 7 2 2 0 5 2 2 2 1 oc po

/ 3 0 1 0 4 8 0 0 2 h er s L t i

a f u o

n is 0 5 0 0 5 0 n du it 0 t 5 5

2 0 2 5 5 2 5 a oi pr ic 0 0 3 0 0 1 0 1 c u

( i e. a s

e t s a u r sl ua h rh c up t l e a ac 8 c t y ct e g I a

_ l n .l b i p a h T s f

x f s i

o is

. d r pu 5 0 5 0 5 n t oe 2 0 2 0 2

- e p ec rv p

ti 0 3 0 2 6 l on A E l f

n

_ o i 2 0 9 0 0 0 5 0 5 7 5 0 0

_ t

_ *. a 1 3 3 4 5 6 8 3 4 4 5 6 9 c 1 1 1 1 1 1 o

L

~

hO'

-Appendix Table 8. Page 9 of 12 Electroftshing catch rates (mean no. fish /152 m shoreline) in Lake llorman, fl. C., during February 1979.

4 flotropis Ictalurus LepoEIs .illcropierus Porwxis Perca Loca tion niveus platycephalus-' i.~ciomis auritus macrochirus salmoides nigromaculatus flavescens Other 1.2 0.25 0.25 0.25 0.75 0.50 1.25

. 3.0 0.25 3.9 6.75 6.00 0.50 10.50 4.0 0.75 3.50 0.50 2.50 5.0 0.25 6.0 - 0.25

' 8.5 1.25 0.50 3.25 0.75 2.60 13.0 1.50 0.25 0.50 1.75 12.25 14.5 0.25 100.25 14.7 3.50 0.25 3.25- 7.25 1.50 74.00 15.5 .0.25 0.75 16.0- 2.50 2.00 1.50 1.00 6.75 19.0 1.00 0.25 4.00 1.50

. t .

t i

Appendix Table 8. Page 10 of 12

> Electrof f shing catch rates (inean no. fisle/152 m shoreline) in Lake florman,11. C. , during March 19/9.

flotropis ictalurus Lepomis Leponis filcropterus pomoxis perca Location niveus platyg phalus auritus macrochirus sairacides nigromaculatus flavescens Otier 1.2 1.25 4.00 1.25 I.25

' 3. 0 1.75 0.25 0.25 0.75 3.9 0.25 ,

10.25 19.00 0.25 1.50 5.00 4.0 1.00' l.00 0.50 0.75 0.25 5.0 1.25 0.25 0.25 1.00

-6.0 0.75 0.25 0.50 0.25 0.7b' 8.5 0.25- 0.50 13.0 0. 50 .- 0.75 4.00 6.50 2.00 5.00 14.5 2.50 0.75 24.75 4.25 65.50 74.25 14.7. 1.50 0.25 5.75 8.00 0.50 4.25 44.75 15.5 1.50 0.25 0.75 3.50 0.75 0.25 6.75 16.0.

19.0 0.25 0.50 0.25 1.00 0.75

Appendix Table 8. Page 11 of 12

~

Electrofisliing catch rates (mean no. fish /152 m shoreline) in Lake florman, fl. C., durin9 April 1979.

ilotropis Ictalurus Lepomis Lepomis flicropterus Ponoxis Perca

~ Location niveus platycephalus* auritus macrochirus salkoides nigromaculatus flavescens Other 1.2 0.25 6.00 1.00 3.0 9.50 0.50 0.75 2.00 3.9 0.25 16 50 28.25 0.50 0.25 1.50 4.0 9.00 2.50 11.25 1.75 0.75 5.0 0.25' 3.50 1.25 2.75 0.75 2.00

.'. 6.0 'O.25 1.00 0.50 ~ 2.25 0.50

. ,oo

' 8.5 0.25 2.00 0.50 0.25 0.50 13.0 4.50 1.75 9.00 7.00 0.25 .5.50 14.5 .l.50 4.50 4.75 0.25 40.00 28.75 '

14.7 ~4.25 0.75 13.25 5.00 13.75 '63.25 15.5 3.50 0.75 7.25 7.00 1.50 0.50 5.00 16.0 0.50 0.75 19.0 3.50 1.00 0.75 3.25 1.25 4.25

  • llone collected

r 0 0 5 0 5 0 0 0 5 5 0 0 e 0 0 7 5 7 0 5 0 7 2 0 5 2 . h .

7 5 1 0 1 9 t 4 1 5 1 0 1 1 2 7 O 1 f 9 o 1 2 y s 1 a n l

f e 5 0 5 0 0 0 5 e ac 5 5 7 7 0 7 5 0 5 7 g g cs 2 a n re 0 0 7 2 0 2 0 1 P i ev 1 3

r Pa u l d f C s

. t u

l f a sl I u 5 0 n xc 7 0 a oa a

n mm 0 1 oo l

o Pr g

i i

e n k

a L

s n us i re ed 5 0 0 0 5

) ti 0 5 5 0 0 5 0 0 e po 0 7 2 5 5 7 0 0 2 0 0 5 2 i

n om rl 4 0 2 3 2 5 1 3 1 3 3 0 2 l ca e

r is l

f l

oi s

s m u sr 5 0 5 5 0 5 5 5 2 ii 0 0 5 0 5 mh 5 5 2 5 7 5 7 7 5 2 7 2 1 oc po 5 2 5 3 6 8 5

/ 3 0 4 1 1 h er 2 2 2 s Lc i a f m o

n ss 5 0 0 iu 5 5 0 5 0 0 0 5 0 n mt 2 2 0 7 0 5 5 7 5 2 0 5 a oi 2 0 e pr 7 5 9 9 5 2 1 3 0 2 m eu 1

( La s

e t s a u r sl h ua_

r! i 5

c ul! 5 5 5 2 2 t l e 2 2

. a ac 0 8 c t y 0 0 0 ct e g l a l n l p

b i a h T s f x f s i o is pu 0 0 0 0 0 0 d rt 5 5 5 0 5 5

n oe 2 7 7 0 2 5 0 0 5 0 e

p ec rv ti 0 6 O 6 0 4 1 1 1 2 1 p l l

on 1 1 A E f n

o 0 5 7 5 0 0 i 2 0 9 0 0 0 L S.

a 1 3 3 4 5 6 U 3 4 4 5 6 9

- 1 c 1 1 1 1 1 o

L W

l Appendix Table 9. Page 1 of 1 Hean number of shad collected by mid-water trawlin9 fromLakeNorman,NorthCaroiina. Anasterisk(*)

indicates samples collected during daylight; all other samples were collected at night. The asterisk also indicates catch rates for both gizzard and threadfin shad; other catches refer to threadfin shad.

LOCAT1011 1.0 4.5 5.0 8.0 Sample Numbeg/ Number / llumber/

Oate Numbeg/

locan Gramsf iooan locom Gramsf locom locan3 Gramsf iooom icoom3 Gramsf locan 13 July 1978* 189.4 16.9 335.5 48.5 89.0 22.4 258.7 45.3 2 August 1978* 0.0 0.0 84.8 15.3 50.2 21.7 62.5 11.9 7 September 1978* 25.7 9.6 4.6 2.4 0.7 0.3 0.0 0.0 5 October 1978* 0.4 0.1 0.0 0.0 1.0 1.1 0.0 0.0 d; 9.Hovember 1978 4.8 6.6 4.2 7.7 5.1 7.5 3.4 5.3 T 6.7 2.2 4.4 5.6 9.8 14 December 1978 5.4 9.8 3.3 8 January 1979 13.6 27.2 19.8 66.6 5.8 17.3 7.5 16.8 13 february 1979 19.8 59.3 3.2 15.4 0.3 1.0 27.0 62.8 13 March 1979 0.0 0.0 0.4 0.5 0.0 0.0 0.5 2.2 18 April _1979 0.9 3.3 1.5 11.6 0.0 0.0 0.8 5.4

Appendix Tablo 10. Page 1 cf 2 Species composition and standing crop of major fish species rotenoned at downlake locations on Lake Norman in Auqust 1978.

Location 4.0 is the McGuire Steam Station discharge cove.

Location 4.0 Location 6.5 Location 8.5 Species 1.23 ha cove 0.95 ha cove 1.18 ha cove No/ha  % kg/ha  % No/ha  % kg/ha  % No/ha  % kg/ha  %

Dorosoma cepedianum 791 11.5 160.7 81.9 179 2.1 30.8 40.6 464 4.5 60.6 53.8 Dorosona petenense 657 9.6 1.3 0.7 93 1.1 0.1 0.1 21.8 4.4

- 2250 3.6 Cyprinus carpio 6 0.1 6.1 3.1 20 0.2 17.6 23.2 20 0.2 21.0 17.0 Ictalurus catus 46 0.7 0.4 0.2 121 1.5 0.3 0.4 36 0.3 0.1 0.1 Ictalurus platycephalus 80 1.2 1.5 0.7 184 2.2 1.3 1.7 158 1.5 1.7 1.4 Morone chrysops 60 0.9 6.4 3.2 27 0.3 2.6 3.4 100 1.0 2.7 2.2

, Lepomis auritus 531 7.7 2.8 1.4 1058 12.7 4.4 5.8 625 6.1 2.6 2.1 5; Lepomis macrochirus 2439 35.5 2.3 1.2 4596 55.1 6.6 8.7 4538 44.1 10.5 8.5 i' RIcropterus salmoldes 48 0.7 3.0 1.5 124 1.5 5.4 7.1 98 1.0 6.5 5.3 Pomoxis nigromaculatus 92 1.3 0.9 0.5 81 1.0 0.1 0.1 52 0.5 0.6 0.5 Perca flavescens 1834 26.7 4.2 2.1 1243 14.9 2.0 2.6 1445 14.0 3.6 2.9 Other 285 4.1 6.6 3.4 611 7.3 4.6 6.1 512 5.0 3.4 2.7 Total 6869' 100 196.2 99.9 8337 99.9 75.8 99.8 10298 100.0 123.7 100.1

Appendix Tablo 10. Page 2 of 2 Species composition and standing crop of major fish species rotenoned at uplake locations on Lake Norman in August 1978.

Location 14.7 is in the Marshall Steam Station discharge cove.

Location 19.0 Location 14.7 Location 68.0 Species 1.25 ha cove 1.15 ha cove 1.21 ha cove No/ha , % kg/ha  % No/ha  % kg/ha  % No/ha  % kg/ha  %

Dorosoma cepedianum 240 3.7 16.5 37.8 344 5.1 39.5 34.5 705 9.3 17.5 19.5 borosoma petenense 2299 35.5 4.6 10.5 1736 25.8 3.3 2.9 1946 25.6 5.0 5.6 Cyprinus carpio 6 0.1 5.5 12.6 17 0.3 15.2 13.3 21 0.3 24.6 27.4 Ictalurus calui 39 0.6 0.1 0.2 60 0.9 1.4 1.0 35 0.5 0.9 1.0 Ictalurus platycephalus 34 0.5 0.8 1.8 4 0.1 < 0.1 <0.1 28 0.4 0.4 0.4 Morone chrysops 79 1.2 2.2 5.0 22 0.3 0.8 0.7 2 <0.1 <0.1 <0.1

[epomis Auri1Hi 450 7.0 1.7 ' 3.9 83 1.2 0.6 0.5 242 3.2 2.9 3.2 Lepomis macrochirus 1860 28.8 5.3 12.1 1446 21.5 7.6 6.6 2127 28.0 10.3 11.5 Micropterus salmoides 78 1.2 3.5 8.0 177 2.6 12.7 11.1 224 3.0 5.9 6.6 Pomoxis nigromaculatus_ 50 0.8 0.2 0.5 118 1.8 13.8 12.1 388 5.1 4.0 4.4

2. Perca flavescens 588 9.1 1.7 3.9 2473 36.7 4.2 3.7 1626 21.4 2.1 2.3 other 744 11.5 1.7 3.9 259 3.8 15.4 13.4 249 3.3 16.3 18.1 q;

Total 6467 100.0 43.8 100.2 6738 100.1 114.5 100.0 7593 1 00.1 89.9 100.0 4

4

~

_ .___ .-- , . -