ML20079N198

From kanterella
Jump to navigation Jump to search
Mathematical Modeling McGuire Nuclear Station Thermal Discharges
ML20079N198
Person / Time
Site: Mcguire, McGuire  Duke Energy icon.png
Issue date: 05/31/1988
From:
DUKE POWER CO.
To:
References
RTR-NUREG-1437 AR, NUDOCS 9111110107
Download: ML20079N198 (40)


Text

, ._.._

, J j

i MATHEMATICAL MODU.ING MCGUIRE NUCI, EAR STATION THERMi.L DISCHARGES DUKE POWER CCMPANY CHARLOTTE, NOR'IH CAROLINA MAY, 1988 9111110107 000531 "DT4 NUREQ 1437 C ppR

s I. MATHEMATICAL MODEL AND INPUT In order to predict the impact of a change in McGuire's NPDES thermal discharge limit, Lake Norman water temperatures were simulated using the cooling pond mathematical model developed at the Massachusetts Institute of Technology by Ryan and Harleman (ref. 1). The two-dimensional MIT cooling pond model is an extension of Huber and Harleman's one-dimensional " deep reservoir" model (ref. 2). This model was adapted to and validated for Lake Norman to simulate the thermal effectr, of both Marshall Steam Station and McGuire Nuclear Station on the lake.

The model allows the lake surface temperature to vary horizontally while simulating stratification of a deep reservoir.

Factors such as discharge canals, discharge entrance mixing, density currents, internal diking and locations of intake and discharge structures are incorporated in the model. The model is

- capable of operating in two modes, production and predictive.

The production mode assesses station impacts based on actual field conditions and model validation. The predictive mode forecasts the input of station operations based on design conditions. For this study, the predictive mode is employed to

{ simulate water temperatures which would have occurred in Laka Norman if Marshall and McGuire had operated during the 34-year period, 1951-1984. Five model simulation options were executed for the study. Major inputs to the model for the five 34-year simulations were as llows:

1. Daily meteorole :a1 (Met) data obtained from Charlotte International A sort (1951-1975) and McGuire Nuclear Station (1976 ). Met data used include dry bulb and dew point air temperature, relative humidity, wind speed,

, cloud cover and solar radiation.

1 l

2. Lake Norman surface elevations were varied monthly using a simulated worst year developed by taking the lowest monthly average lake level which actually occurred, for each month, from the period 1965-1984.
3. Marshall Ste la Station and McGuire Nuclear Station are simulated us tg design flows for the various condenser cooling wate (ccW) pumping modes and the corresponding temporature  :.se across the condenser. The CCW flow rate chosen is de,<ndant upon station intake temperature and the requirem'ii t to maintain NPDES permit discharge limits.
4. Marshall and McGuire capacity factors were set at 90% for both stations all year. By using 90% capacity factors, worst case qtsign operation is reflected in the model predictions. Capacity factors are defined as energy produced relative to energy production capability at 100%

load. The capacity factors used in this computer simulation reflect a conservative estimate for meeting capacity requirements through the 1980's to the early 2000's.

1

l I

5. Inlet river flow rates and temperatures were varied monthly and are provided from Lookout Shoals Hydroelectric Station data. Outlet flow rates at Cowans Ford are set equal to the river inflow from Lookout Shoals.

II. MODEL SIMULATION,S, In addition to the major inputs for the MIT model, adjustments of the computer program can be made to simulate the impact of changes in permitted station discharge temperatures. As previously stated, five model simulations were chosen to be analyzed for the study.

A list and brief description of the computer model simulation runs is given below:

Run Number Description 1 Base case with a capacity factor (CF) of 90% at both McGuire and Marshall. The NPDES thermal discharge limit at McGuire is set at 95'F all year, while Marshall's NPDES thermal limit is 94'F during the period July 1 to October 15, and 92'F during the remainder of the year. This base case represents the current physical and operating mode of both stations and is used to evaluate the change in Lake Norman's temperature regime when McGuire's discharge temperature is altered.

2 The NPDES discharge thermal limit at McGuire is set at 96*F. All other parameters re.aain the same.

3 The NPDES discharge thermal limit at McGuire is set at 97'F. All other parameters remain the same.

4 The NPDES discharge thermal limit at McGuire is set at 98'F. All other parameters remain the same.

5 The NPDES discharge thermal limit at McGuire is set at 99'F. All other parameters remain the same.

III. MATHEMATICAL MODEL RESULTS The Ryan and Harleman mathematical model produces voluminous amounts of output data for each computer simulation. Therefore, results from the model simulations are condensed into figures and tables when appropriate. All raw data is available upon request.

The specific concern of this study was to determine the change in various output parameters by raising McGuire's NPDES thermal discharge limit. Parameters of prime' interest were (1) McGuire's 2

l discharge temperature, (2) McGuire's low level intake (LLI) temperature, (3) Volume of low level intake water pumped, (4)

Vertical location of the 70*F isotherm, and volume of water less than or equal to 70*F in Lake Norman, (5) Lake surface thermal plume area, (6) Lake shoreline affected by thermal plume, and (7)

McGuire and Marshall thermal plume interaction. The results from the five 34-year model simulations are discussed under the appropriate heading below.

A. McGuire Discharge Temperature The results of the five model simulations with respect to McGuire's discharge temperatures are shown in Figures 1 through

5. The monthly average discharge temperature referenced in all modeling work is the discharge temperature at the condenser outlet, rather than at the NPDES permit thermal compliance point (discharge canal bridge); this contributes to the conservativeness of the model predictions.

Figure 1 (Run Number 1) shows the predicted discharge temperatures at McGuire under existing operating and permit conditions. On one ocrision during the 34 years simulated (August 1953), the model results indicated that the McGuire monthly average discharge temperature would reach 96'F. During the remaining 33 years, McGuire's discharge temperature, as predicted by the model, could have been maintained at 95'F.

These model simulations assumed that McGuire judiciously utilized the cooler hypolimnetic lake water to maintain a 95'F discharge temperature. The CCW system for McGuire includes two intake structures. The upper intake, which contains the CCW pumps, is located in a man-made embayment approximately 2,400 feet east of Cowans Ford Dam. The low level intake is located near the base of the dam at an elevation of approximately 662.5 feet mal. The low level intake was built during the construction of Cowans Ford Dam to serve a future thermal station. Water is pumped at a maximum rate of 2,000 cfs from the low level intake to the forebay of the upper intake, where it mixes with upper intake water. This mixture is then pumped into the CCW system at various flow rates up to a maximum of 4,526 cfs.

Each genera' ting unit at McGuire has four CCW pumps at the upper intake structure. There are three additional pumps per unit located at the low level intake. Since the 2,000 cfs provided by the lower intake cannot support total CCW needs, it is used only to provide supplemental cooling water during periods of high surface temperature in order to maintain NPDES thermal discharge limits. Therefore, during extremely warm summers, utilization of the low level intake earlier in the summer to achieve discharge temperatures less than 95'F could possibly result in the late summer peak temperatures exceeding 95'F.

Figures 2 through 5 (Run Numbers 2 through 5) contain the results of operating McGuire at elevated NPDES thermal discharge limits.

Shown in each figure is the number of monthly frequencies at 3

r various discharge temperatures. For each simulation, the maximum temperature predicted corresponded to the NPDES limit for that particular run. In other words, there were no predicted thermal limit violations when the NPDES permit limit was raised. In addition, as thermal permit limits were increased, the number of monthly discharge temperatures equal to or greater than 95'F did not increase substantially. Shown in Figure 1, there were 55 occurrences when the monthly average discharge temperature was equal to or greater than 95'F. By comparison, there were 63 months when the discharge temperature was equal to or greater than 95'F for simulation number 5 (Figure 5, NPDES = 99'F) or an increase of eight occurrences during the 34-year simulation period. Furthermore, the mean monthly average discharge temperature for all occurrences over the 34-year simulation period at a NPDES discharge temperature of 95'F is 82.4'F. While the mean average discharge temperature corresponding to a NPDES discharge temperature limit of 99'F is 82.6*F, an increase of 0.2*F. Finally, the median monthly average discharge temperature corresponding to a NPDES discharge temperature of 95'F and 99'F are given in Figures 1 and 5, respectively. As shown in the figures, the median discharge temperature for both permit limits is 80*F. Consequently, raising McGuire's effluent thermal limit from 95'F to 99'F will not result in Lake Norman experiencing substantially warmer or a greater number heated discharges.

B. McGuire's Low Level Intake Temperature 1

The results of the five modol simulations with respect to McGuire's LLI temperatures are shown in Figures 6 through 10.

Low level intake temperatures are a function of low level pumping. As previouri.y stated, operation of low level pumps are f

usedtoensuredischa(.getemperaturesatorbelowthe specifications of the permit. Since the volume of cool water in

' Lake Norman is limited, proper allocation of the hypolimnotic water is crucial. Also, as the withdrawal of hypolimnetic water due to operation of lQw level pumps continues, the lov icvel intake temperatures wqll rise. The temperature rise is due to the lowering of the thermocline as well as increased mixing. As the low level temperatures rise, the amount of low icvel water utilizatiod will increase to ensure a discharge temperature below the pennit limits. Thus, the compounding effect of using the low level pumps will cause a rapid depletion of cooler water from the hypolimnion. Consequently, limiting use of low level pumps will result in the preservation of lower LLI and hypolimnetic water temperaturcs.

In addition to using low level water for thermal permit maintenance, the Nuclear Service Water System (RN) also consumes water from the LLI. The RN System withdraws from the low level intake on a continuous basis during normal plant operation at a

' rate of approximately 23.3 cfs per unit. This water is not added I

to the upper level intake water, but it is mixed with the CCW l discharge. The RN service water is withdrawn to maintain a Lower Containment Technical Specification (Tech. Spec.) requirement.

4 L

The containment technical specification taken from McGuire's Operating License (ref. 3) states:

1 Primary containment average air temperatures shall be maintained between 100 and 120'F in the containment lower compartment. The containment lower compartment temperature may be between 120 and 125'F for up to 90 cumulative days por calendar year provided the lower compartment temperature average over the previous 365 days is less than 120'F.

2. With the containment average air temperature not conforming to the above limits, restore the air temperature to within the limits within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> or be in at least HOT STANDDY within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SHUTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

Through past operating experience, a LLI temperature of 70'F has been identified as an indicator necessary to maintain lower containment Tech. Spec. limits at McGuire.

Figure 6 (Run Humber 1) shows the daily predicted LLI temperatures at McGuire under existing operating and permit conditions. The LLI inlet temperatures presented are the temperature in the inlet with and without low level pumps operating. The percentage distribution shown in Figure 6 illustrates this skewness due to pumping effects. The highest dist;ioution of temperatures occurs around 46'F, but temperatures Lange from 40'F to 83'F. The mean LLI temperature is 53*F while the median temperatul, is 49'F.

Figures 7 through 10 (Run Numbers 2 through 5) jresent the results of operating McGuire at elevated NPDES thermal discharge limits. For each model simulation presented, it can be seen that as thermal limits are raised, the maximum LLI temperature is lowered; less utilization of hypolimnatic water is required to maintain thermal compliance. For a NPDES limit of 99'F (Figure 10), the highest distribution of temperatures again occurs around 46'F; however, the temperatures range from 40'F to 75'F, with a

  • mean of 50'.F, a drop in the average temperature of 3'F. The median tamperature of Figure 10 also drops one degree to 48'F.

Therefore, as NPDES thermal limits are raised, there is less variability in hypolimnetic water. This results in a more stable and consistent temperature distribution of Lake Norman's bottom water from year to year.

C. Volume of Low Level Intake Water Pumped The results of the five model simulations with respect to the volume of LLI water pumped are shown in Figures 11 through 15

! (Run Numbers 1 through 5). As previously stated (see Section III.C), the low level pumps at McGuire are used to ensure discharge temperatures at or below the specifications of the NPDES permit. The use of low level water is highly variable as 5

illustrated in Figure 11 (NPDES limit of 95'F). The maximum value occurred in 1953, due to extreme meteorological conditions, with a volume used of 188,000 AC-FT. Notation should also be made to the three years of zero usage (1972, 1974 and 1976). The mean volume pumped for the 34-year simulation period was predicted to be 41,000 AC-FT, or approximately 4 percent of Lake Norman's total volume.

Figures 12 through 15 contain the results of operating McGuire at elevated NPDES thermal discharge limits. The results are similar to section III.B in that as thermal limits are raised the maximum and mean low level water volume pumped is reduced. For a NPDES limit of 99'F (Figure 15), the maximum value occurred in 1953 with a volume used of 10,000 AC-FT, a reduction from Run Number 1 of 178,000 AC-FT. In addition, the mean volume pumped for the 34-year simulation period was predicted to be only 800 AC-PT or less than 0.1 percent of Lako Norman's total volume. Also, the number of years of zero low level water usage increased to 24.

Therefore, as NPDES thermal limits are raised, hypolimnetic water utilization is reduced.

D. Vertical location of the 70'F Isotherm and Volume of Water Less Than or Equal to 70'F in Lake Norman As previously stated (see Section III.B), the location of the 70'F isotherm and the associated volume of water less than or equal to 70'F in Lake Norman is important with respect to McGuire's Lower Containment Tech. Spec. limit. The results of the five model simulations with respect to the location of the 70*F isotherm and the volume of water with a temperature equal to or less than 70*F in Lake Norman is given in Tabl! 1. The model computes a spatially averaged vertical profile of Lake Norman that is averaged for each month ove'r the 34-year simulation period. The predicted valueu show the change in elevation and volume of water for the summer months July through October at existing and elevated NPDES thermal limits.

The resulto presented in Table I show a declining elevation of the 70'F isotherm in July and August,'with a minimum elevation predicted in September. All model runs predict this pattern, although by' raising NPDES thennal limits, the 70*F isotherm, and associated volume increases. At a discharge temperature of 99'?

the 70'F isotherm can be as much as ten feet higher. The results indicate that while maximum utilization of hypolimnetic water occurs in July and August, the warmest lake bottom waters occur in September. This temporal pattern is reflective of the heating up of the total water body of the lake. However, by accessing less hypolimnetic water, a buffer is created to maintain the hypolimnetic resource it Lake Norman.

E. Lake Surface Therma' Plume Area of the 34 years simulated, the period 1952-1954 resulted in the highest predicted discharge temperatures for both Meduire and 6 l

i Marshall. From these three years, an extreme winter, spring, and summer month were chosen based on predicted plume size and discharge temperatures. The operating conditions for these extreme cases with predicted monthly average intake, discharge, and background temperatures for McGuire and Marshall are presented in Tables 2 through 11. Predicted monthly average thermal plume acreages, affected shoreline, and respective percentages of the total Lake Norman surface area and shoreline for both McGuire and Marshall are also given in Tables 2 through 11. A mixing zone for McGuire's thermal discharge is in the station's current NPDES permit. The mixini tone has been defined containing an area of not more than 3500 acres and lying upstream of Cowans Ford Dam and south of a line originating on the west bank of NC Coordinates E-1, 416,900 and N-633,600 and extending south 70*-00' east intersecting the point of land on the eastern shore (ref. 4) For the current NPDES thermal limit of 95'F shown in Table 2, the 5'T excess isotherm area for McGuire was predicted for the extreme winter month of December 1952, to encompass 2648 acres or 10% of the Lake Norman surface area. For the extreme spring and summer months (April and August I?53), 1834 and 1492 acres, respectively, were predicted to exceed the 5'F excess isotherm. This represents 7% and 5%, respectively, of lake surface area. The 90'F isotherm for McGuire predicted for the extreme summer month of August 1953 encompasned 982 acres or 3%

of the lake surface area.

The predicted results from raising McGuire's NPDES thermai limit are given in Tables 3 through 6. Run Number 5 (NPDES = 99'F) is presented in Table 6. For this model aimulation, tho 5*F excess isotherm area for McGuire was predicted for the extreme winter month of December 1952, to encompass 2648 acres or 10% of the Lake Norman surface area, the same as Run Number 1. For the extreme spring month, the 5'F excess isotherm area was also the j same as Run Number 1 at 1834 acres (7% of lake surface area).

However, the 5'F excess isotherm for the extreme summer month increased to encompass 2006 acres or 7% of lake surface area. In addition, the 90*F isotherm for McGuire predicted for the extreme summer month increased to encompass 1452 acres or 5% of the lake surface area.

F. Lake Shoreline Affected By Thermal Plume The percentage of shallow areas in Lake Norman affected by elevated temperatures resulting from McGuire and Marshall operation can be estimated by assuming an equivalence to the percentage of shoreline affected. It was assumed that Lake Norman has a total shoreline of 522 miles. For a NPDES thermal limit of 95'F, approximately 22 miles, or 4% of the Lake Norman shoreline was predicted to be affected by the McGuire 5'F excess isotherm for the extreme winter condition (Table 2). Extreme spring and summer 5'F excess isotherms resulting from McGuire's current operation were predicted to affect 15 miles and 13 miles, respectively, or approximately 3% of the shoreline while the extreme summer 90*F isotherm, under current permit conditions, .

was projected to encompass 8 miles or 2% of the lake shoreline. (

7

[ _

The percentage of shallow areas in Lake Norman affected by elevated temperatures resulting f rom raising McGuire's NPDES thermal limit to 99'F is presented in Table 6. The results from Run Number 5 during the winter and spring extreme month shoreline affected are the same as Run Number 1 (NPDES = 95'F).

However, for an elevated discharge NPDES limit, an increase in the extreme summer 90*F isotherm was projected to encompass 12 miles or 2% of the lake shoreline.

G. McGuire and Marshall Plume Interaction Cooling waters for McGuire Nuclear Station and Marshall Steam Station are withdrawn from and discharged to Lake Norman. While each station withdraws cooling waters from distinctly different levels of the lake water column, it was postulated that simultaneous station operation might result-in interaction of surface discharge plumes. Total monthly average thermal plume acreage and affected shoreline combined from the operation of McGuire and Marshall are presented for the 5'F excess isotherm and the 90*r isotherm in Tables 12 and 13, respectively. For the current NPDES discharge limit of 95'F shown in Table 12, the extreme winter 3873 acres representing 15% of the lake surface area was predicted to exceed background by 5'F resulting from the operation of both McGuire and Marshall. Approximately 34 miles, or 6%, of the lake shoreline, would be affected. Predicted extreme summer conditions would result in 1424 acres, or 4%, of the lake area being affected by surface temperatures in excess of 90*F, with 12 miles or 3% of the lake shoreline affected (Table 13).

Increasing McGuire's NPDES permit to 99'F will not result in raising the extreme winter condition 5'F excess isotherm total plume size (3873 acres, 15% surface area) as shown in Table 12 However, surface temperatures in excess of 90'F will increase by raising discharge limits. For a thermal discharge limit of 99'F, the 90'F isotherm will encompass 1755 acres or 6% of the lake surface area from the combined operation of McGuire and Marshall.

The total shoreline affected will be approximately 15 miles or 3%

of the total lake shoreline. Based on these projections, the thermal plumes from McGuire Nuclear Station and Marshall Steam Station do hot interact at the present NPDES discharge limit of 95'F and will not interact at an increased NPDES discharge limit for McGuire.

IV. CONCLUSIONS The conclusions reached after investigating the effect of raising McGuire's NPDES permit thermal limit to 99'F on a monthly average are listed below:

t I

8 l

1. There will be no change in the median mcnthly average discharge temperature, a 0.2'F increase of the mean average discharge temperature and eight additi nal monthly average discharge temperatures greater than or i.@inl to 95'F over a projected 34-year period.
2. The maximum daily average low level intake (LLI) water temperature is predicted to be lowered from 83'F to 75'F, the mean LLI water temperature lowered 3'F to 50'F and the median LLI water temperature lowered l'F to 48'F.
3. The maximum one year volume of LLI water pumped will be reduced froa 188,000 AC-FT to 10,000 AC-FT. In addition, the mean yearly volume of LLI water pumped will be reduced from approximately 41,000 AC-FT to 800 AC-FT.
4. The 70'F isotherm location will be preserved in Lake Norman during the thermally critical month of September.

preserving the isotherm will more than double the amount of hypolimnetic water less than or equal to 70*F at a volume of approximately 20,000 AC-FT.

5. The summer condition worst case thermal plume from McGuire for the 5'F excess isotherm will increase 514 acres to 2006 acres. The summer condition worst case thermal plume for the 90*F isotherm will increase 470 acres to 1452 acres.

McGuire's thermal plume size will remain below the current NPDES mixing zone size limit of 3500 acres or 15% of the total lake surface area at minimum historical water surface elevation and operating with a discharge thermal limit of 99'F.

6. The summer condition worst case lake shoreline affected by McGuire's thermal plume for the 5'F excess isotherm will increase 4 miles to approximately 17 miles. The summer condition worst case lake shoreline effected by the 90'F isotherm will also increase 4 miles to approximately 12 miles.
7. The summer condition total plume sizes and shoreline affected from both Marshall and McGuire will increase. The 5'F above background and the 90'F isocherm are predicted to be 2558 acres and 1755 acres, respectively. The shoreline affected by the 5'F excess isotherm and the 90*F isotherm plumes are predicted to be 23 miles and 15 miles, respectively, an increase of three miles each.
8. McGuire and' Marshall surface plumes, as defined by the 5'F excess isotherm or the 90'F isotherm, Will not meet or int'eract under extreme modeled conditions when McGuire's NPDES thermal limit is raised to 99'F.

9

l I

)

V. LIST OF REFERENCES

1. Ryan, P. J. and D. R. F. Harleman, 1973. Simulation of the Effect of the Lake Norman Generating Complex Upon the Reservoir Thurmal Structure Supplement Report. Ralph M.

Phrson Laboratory for Water Resources and Hydrodynamics, supplement to Report No. 161, MIT.

2. Huber, W. C. and D. R. F. Harleman, 1968. Laboratory and Analytical Studies of Thermal Stratification of Reservoirs.

MIT Hydrodynamics Laboratory Technical Report Number 112.

3. Duke Power Compan/, McGuire Nuclear Station, Units 1 and 2, operating License, 1971.
4. North Carolina Department of Natural Resources and Community Development, Permit No. NC0024392, August 31, 1984, p. 16.

e l

l l

1 l

l l

10

p.

\ . .

Ff <;.sre 1:

Predicted McGuire Discharge Temperatures Frequency of All Monthly Averages NFDES = 9fF CF = 90 %

Run Number: I PEACENT AGE SMt CMMtT Faf4J CtM. PERCENT CtM.

fMS PE KENT 1 1 0.25 8.25 e I t 8.25 9.50 66 7 d,24 3.75 61 e 5 6e senese f. 25 1.49 5.22 69 emesses a 21 1.96 5.29 esewese'me 15 54 3.22 s.42 70 50 5.96 12.54 71 meseenemeuseemos 16 ese*eeeeeeeeeeeeee ee le 66 5.96 16.54 72 91 6.19 22.52

^ 75 eseeeeeeeeeeeeeemaee 25 eeeeeeeeeeeee::::::::::::::: r: 18 129 9.41 11.95 e

74 75 eeeeeeeeeeeeen mesee::::::::::::: e d6 145 5.96 35.89

" eeeeeeeeeeeeeeeeeeee 34 359 5.47 59.56 76 26 185 6.44 45.79 77 esseseeeeeeeeeeen 2.72 e

73 eseeeeeeeeeeeeeeeeee;;:::::::: e 11 196 48.51 massensenessee 6 202 1.49 50.04 79 5 207 1.24 Ei.24 se eeeemee 55.71 g .1 esenen newomenessee le 9

227 226 2.48 2.25 55.94 l g 32 16 242 3.96 59.90 e5 eseese* essa 61.65 l og eeeeeeeeeeeeeeeeeeee 7 249 3.75 meneesene 14 265 5.47 65.10 SS a 271 1.96 67.08 36 emeseemesseeeseen S.25 67.35 gy eeeeeeeems 1 272 l 5 275 0.74 6s.e7 gg e 285 2.44 70.54

eens le 72.52 39 S 295 1.55 t

e0 anseesseeeen 5.94 78.47

.. ..e 24 SIF 9g 16 555 5.96 82.45

' 92 seeeeeeeeeeeeeeeeeeeee:::::: e 36 549 5.56 86.39 l 95 emeneseemeeasemessee 4e5 15.57 99.75 meeeeeeeeeeeeeeeeees 54 100.00 94 eseeeeeeeeeesseeeee:::::::: :::::::::::::::::::::::::::::::r::::rre 1 444 S.Z5 g *--

96 e

. .., _ e.- e--o - o 5

- 6e -- o7 --- o8 ---- 9o ----10* -- 11

+ ----12+ - 15 1 2 3 4 PE2CENTA'E I

l . . . ..

i

Figure 2:

Predicted McGuire Discharge Temperatures Frequency of All Monthly Averages .

NPDES =96*F CF = 90 %

Run Number: 2 nacunau aan cunar f Me Ctm. F W sNT Ctm.

tme nacua 66 e 1 1 e 25 e.25 67 e 1 2 25 e.5e sa mesee 4 6 e.99 1.49 69  ::::::::: 7 15 1.75 5.22 7e meeeeeeeem 8 21 1.94 5.29 71 m:::::: :::::: 12' 55 2.97 8.17 72 emme -::  ::::::::::: 13 51 4.44 12.62

^ 75  ::: -- 22:22:22:*e 16 67 3.96 16.54 Du }g ee : n - ::::::::::::eeeeeeeee 26 95 6.44 25.92

  • y$ meeer --- :: eeeeee::::::::::::::::::::::::: 56 129 s.91 31.95
  • e:::::::::::r- reeseem la 147 4.46 56.39 76

- 77  ;;::::::::: ree 12 159 2.97 39.56 N 73 eme:::::::::::: -::::::::::::::: 26 185 6.44 45.79 79 emeer::::::::: 11 196 2.72 44.51 as emeeene 6 2e2 1.49 50.00 31 eeeeee 5 287 1.24 51.24 32 eeeeeeeeeeee le 217 2.48 55.71-e5 ee***memene 9 226 2.25 55.9%

ge, seeee::::::::::::: ee 17 245 4.21 68.15 45 e*ewee 5 244 1.24 61.59 86  :::::::::::::e***ee 15 265 5.71 65.19 57 mese****ee 8 271 1.98 67.88 se a 1 272 e.25 67.55 emme 3 275 e.74 68.87 39 79.54 ge eeeeeeeeeees 1C 205 2.48 91 e eeeeeeee e 295 1.98 72.52 eeeeeeeeeeeeeeeeeeeeeeeeeen 22 515 5.45 77.97 l 92 352 s2.18 i 95 **esseeeeeeeeeeeeeman 17 4.21 9g meneeeeeeeeeeee 12 544 2.97 85.15 m; :::::ressesseeeeeeeeeee 21 565 5.29 98.35 95 404 .9.65 lee ee 96  :::::::::;;;;*******************:::::::::::::::: 59

-..-.e.

_e_.., -e.._, .. - e-3 2 3 4 5 6 7 8 9 MRCENTaE

.....~ ,- ... ~..

.g. ~.~ ~ 3.9 .a * ~.9 g ~ ~ g :a g ~ ~*

  • g g ~.-~ g g g

~.<.9.*.-*. 3.

.. . .~.-~4 --- . < .ft .. 33..... . .~-~.8 ...~~ . .2 t

1 2 $00%$$$2":%7:230"4:53378238133 y siia44iJ4.;44444A4444J4444A444444 t

a -

-~.mm.~.S.,-..f~.

.e .u.

w u rwm

--M--NNNNN

.-~. gm.am23 NNNNNWMM .MM

~~ .-- J~g e as

=e , --,, -....,~... --- ..........~~g

... - ~- --

'g g ---~ --~.

  • "
  • o ..

=: o ll r *e u m

  • o ll e

cr .c E o

.. uuw ..

o m agu ' ..

. t. z 3 5 Io m 6 -- S

  • s c:s<;- w x 3 o

o al o

en o oe

- e o e g w kwm

-om a

oc w

W .o' ll o

'l o

o

!.?. *3 n .

9 a G> t lll ll o

o o

ll o .. E.

Mum sw eo o u n o-n o o

o o

o o

o W

5 3 0-o cr z l! llW h o ll: n ..

E l Io a.t o i o o o uo n i ii o,i o o ii u

il s

'ti t. i i 1 1 it :l U 1.

~w l ll,o lll l R-i .

ll ll ll t c

4J I 'l

. u o:

i l ii o u i i o ,

i i

i o

ll o

o

.i l o

ll o

I3.is.oo.I,itm .t u 4 ,

a- u, i,ll lloo ll l ll. *llo t t. . lal1.t*'

II o o, o ..

.oo-t . o o o u.

l lh M 'l oo i H ; l llt 13ll l oIo3l.tu l

Ium lou ,lm,u l;,l l ll*

ot.

l o

llI.j. tlol Il u. m u o o o

.g.....go o SWI

..looogoooo .W o W " I W I . I. l"* U I .

o ttilo..Wi!!Itt.!!I.Wll

. 3.,.

.ee.,..,,R ~u~.S.~,1

~, . . 3~.8 . 8... *** .

, (A.) M YH N l

i t

0

y 552527g8s9091041459*677427866550

.w 2 7 2 4 4 4. s. 2 6 3 6 7 5 0 2 7 9 1 3. s.9 5 8 5 5 9 1 1 1 5 0 0 mt cn c 155s262169540t55e15778827249270 1}2355445e556666467773889901 n

n 5,9576191029294851418048851e8797 o

24429476472174242227955494292979 c.

112E4S594562112241518921541524E n

.e 1y524270870562776585155555Z81524777891546790 -

ma s 121569246890812446111112222222222225535554 cr e 16692855a955165e,7558E2ea2741292 1112l1121 l 1 1 l 21 2111 c

a -

r

  • 9 s
  • 8 e r -

r - -

r t e us  :

ag  :

ra  :

er pe% +7 mv eA0  :

T 9 r  : --

y a  :

el = 4 a  :

. gh u  : -

rtF  : c e r

4 anC t  :  : +6 ho e r  :

cM b a  :  :

e s m = :  :

r il u ai  : :  :

u Dl N  :

g AF m  : ;  : e e n

i e u t  ; :

e

  • 5

- c s

F rf8 c r :  :

e i o9 R a  : :  : - e e

- et u

Gy

=

n  : :

- e e -.

:  : . e e c

o ccS  :  ;:: :

MnE 2 ee:  : -

: - n eD 2 se: : :

. e  :  : -

dup 2 ae _ : .

n  : e  : : -

e qN . e: ^

: e : : e4 t e 1 e'

-  : :  :  : e : :

e :: : - -

cr 2  :

r iF 2 d -  : -

e - -

r  : :  :  : : : -

r  : x  :

r  : : : :

P - _: - e :_  : : : : -

: - e -  :  : : :eeee3 r 2  : : :e  : :  : : eee-r  : : :e :  : :  : : : eeee-eeee-
e :  : :  :
1 : : e :e  : :  : e eeee
2 . : :ee s  : :

em e e : : n  : e eeee

2  ;

r:ee r: J. e e : : e m  :  : e e eeee eeee

e
: e  : e eeee
2 s :; s
e:.e .e ss : :

ee  : : e  : n eees e :e e :e:

e :e e ::ee- e e ;. ee se : : e es ::me e e e e e e e. 2 e

e ;

r=a m :ee:m a

ee ne : : ; e e ee em :ee ee ::: e:

eee.

ee:

ee: .

e ;2 : =:ee: ee : ;;ee e;: :: eee :-

c me :; ee ee : e: e:

ee: .

ee: .

2 =:: ree eee :mr me ee ee ;; :ee :ee  :
nee eee; ee e. ;; eeee ee ; ;e :ee
eee ; = : ee;mm e, s ee :ee : .
eee : ::eeeseme eeseme: e ;eee  ; ee; ;e ees.
eee : : ::: eee eeeeee.3 eee ::

neee eeee :ee:

ee eeeesse.em:

eenseoee.ee:

eemseee .e. ::

e* : eeeseeeee eeeesseee.

eeessseee.

eeee se :eeesnneeeen eeeeene :eeseoeesmee: eeeeeeeee.

eeeseee :eesmmmseoeeemeeeensseee.

eees*ee:eeememnesseeeeeesoseeee.eenseeeee.

eeee*se*eeseneeeeesee esem*eseeesneneeneseseseeemmes,.

- meeeemessmeeeemmemeeemessmeeeee..

6s9012545673901t54567g901254567g 4e4777777777788aa 388g399999999g

^b* *lu ll

=

e **

.;l 1iil lllllllilJiI illllj ,lll,1f liljifii l

._ _. . . . _ __ _. , - m _ _

i

- i l

..N.

1 N a. h. ,. 3. ~.N. 3. . $.%3. . I.N.~. . K. . m. - 3. ~.~. $. N.~. . ., . $. 3 gN . . . .

~~

nW.

.em..N.N

--N. Ae .me31.. . 3.

.. 32~ nun ~. $eNt$3

.e #

t

...mN ...N.N. .. .~...... .. ~.

E N f. f. N. N. N. ~. . M. P. W. M. a. f. N. 4. N. N. f. f. P. . . d. F. f. N. N. f. 4. P=. P. S.

.e-Neem efmeNe-NNoam ..N~.eN.Nmu.

t m

.a f ~N .,.3'.4. M 8N~P..,..,

~ .N-

. e - ~ N -. 2N *. M m N..-N N N N N D..~~~ N N N3 N e--

N N m8%M m.$ ~

mm N.

. ..e=~.=~.m.-

mmmNmHMNM

..em,$#.NN..N~

mM e M NM N..N, Nm-M g

N l

' ' .e ll o

Il ll ll ll It es 6 o i me 'i

' I "g er o o ii Lg '

6 . e.

eH l'l

> o

<o@ o

+ x w o ll W P- 44 e ii I

il CriJ.:

    • k&w **

L W ll lo .'.

m .e c v . o

((-

.8 2 -

ll c n l

1I iI b #88 4 se il 3 ' "C3 m ii is ag; w esi ii m C Ull ll "

  • c= W O l!

w 6%m s n on o oon o o

o .2

-ap d >,

cm E

!ll" E

$$ii l o 1 3

=

Mum e$

  • o es"
  • tll ho 0

o o

o o.

,I t v s o. o o o m Il 11 .$

@ 7E Il Ii Ilil I 1I II i I l ll iI 1I g,) g i

Il I fl y ll Il 1 1 l II il

" $.d i i 1L I ! I ll l l l 1 I I l1 ii ll l Il S ll ll T l} }

IJ , I I l Il Il ll Q ll 1 I i I I I

,l I 1i ll 9Il Il

l II II1 l l 'I i111 . 1I ll ll .

Il il il .I

.l b ll l ci si, l I I j .

l I i; .,

l i) u li ii . at

. l l I I1 1 I]Ii l1 1 11 11 GI II if li 11 1 ll fI i 'I II IIlIi I I i

Il I r 1) I I i l ;lil11g II ll l l . Il g ll l 11 Il ll $

e  !

t l l e 1Il$1I $llllilil5' Il 11 I I Il ii 1i S 1I $ l.

ll eggiiil ii I I ll lt it e e 1i 4

$st16II)) It in 11 Il $ Q$ t eit rl ell ilitil i iieil it e $ il t 4e i ,l ll eit il e$11 g e

$$$ ir il isil ' i 1IifIi1I l iI $I i 1L $ll $1l e1>aIi y

e

$N I

e$e osits5t) J> II o il Il

$$$$1l $Il 11 1 I e$1 I II $91l SII iI e$

ee16eit i tu9

$ $ll 11 1i 11 1 1 $el l il e$q g Ii i l 1I1I $. I l Il 1Ii l ll $$11 ll l l$

ii i iS s$ lii t ile 1 t it lI1 l i lg eitii e8$ ll ltil$ il itIl11 ll 3 ell ll ll 11S S$S ll ll ll 1 1 11 l i Il

$g q

e $fl nll flil3ilileg eif (I $

ge a li ii li i i e ilIlli y$ $ ll Ilil 11$

IL5 ll il il

$1 l lP y,,

$1l eililgiI

$11Il uI 11 $ qg $ . We l ile gS y $p5 illI:I il11 11 $$3$i l 11 SIl 511 Il S ff S$ $

$ eS IIilIf S$ $1 1 $ $il $ $ Cl Ii $$- $

eeSe ii eil e$ $1 I e eit a e e ii ee e 436 e e il 4e eilq 4 (i ea$e ee g Se$Seee 4 8 e e il y a$gSeeW$$ e$ g

$$es$$8eeege$ eSee9 $$g $es$e$ e$

8eea3eS$$

SSS9ee8seee ee$ea 5eee$Se$S eaeeeeae 9e s' S

S $ e S W $ e a .J S e S 5 e e s. $ SS e9SSeaeeaS$$

.~.Pq

..POm.Nm#

. . . P* Pm '* ~ P* ~ h P= P= ~ . .Nm.5.g.qe9MNmg@d~WPf@ . qu . .PP P PgaF@@FW4 (d.) zus.vusaxx1

- 15

Figure 6 : .

Predicted McGuire Low Level Intake Temperatures frequency of All Daily Values NPDES = 95* F CF = 90 %

Run Number: 1 naCENT AE SAA CH6RY ree cm. necrNr ctee.

race nacwr 16 16 0.15 0.15 4e e 151 167 . 1.25 1.56 41 se**** 556 525 2.90 4.25

(

42 enese********* 675 1198 5.49 9.74 45 eseeeeeer:::::::::::: e**se 887 2005 7.21 16.96 gg eeeeeeeen:::::::::resseeeeeeeeeeeeee 1152 523F 9.57 26.52 45 e*s**eeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeen 1251 4468 18.01 56.55 44 eseessees  :::::::r:eeeesmanneenesseeeeeeeeeeeeeeee882 5558 7.17 45.51 47 eseeeee;; ::::::::::eeeeeeeeeeeeeeee 755 6085 5.94 49.4F 48 emeeeeeee ;;;::::::::::::::::: 4 74 6557 5.85 55.52 49 meeeeeeeeeeeeeeeees 412 6969 5.55 56.67 50 seesesseeeeeeeees 595 7562 5.20 59.a7 51 e**eeeeeeeeeeees 360 7722 2.95 62.e4 52 es*eenseemseeen 27s 8000 2.26 65.06 ensaamenene 21F 8217 66.82

" 55 1.76, a.51

  • ^ 54 meeeesese 185 8 00 1.4 m anseene 202 8602 1.e4 69.95 e 55 2.25 72.18 w g seeeeene 274 8816 meneseeeees 298 9174 2.42 74.60 57 1.F7 76.38 M 68 eeeeeeeeeeee 218 ,9592 78.21 W 59 weesseene n5 6ir 1.85 80.cG g 6 41

.ee.ee.e.

          • eees 221 til 9858 10049 1.80 1.72 81.72 62 messeneee 168 10217 1.57 85.09 ee**mee 201 19918 1.65 89.72 no 65 1.9% 86.66 64 e***emme 258 196 %
    • eseenese 225 leeF9 1.81 88.47 65 1.54 90.01 66 aseenemos 189 11968 91.66 47 eeeeeems 205 11271 1.65 eeeeeeee 151 11422 1.25 92.88 68 1.18 94.06 49 eeense 145 11%F 95.28 ye .e 154 11717 1.22 seeses 41 11798 9.66 95.9%

y1 96.49 See 6F 11865 9.54 72 9.78 97.27 73 een 96 11961 52 12815 0.42 97.69 yg meee e.65 98.54 75 se Se 12995 98.89 ese 68 12161 0.55 76 12189 S.25 99.12 77 ee, 23 99.46 e 41 12258 8.55 78 12257 9.22 99.67 79 em 27 99.95 e 31 8.25 80 1228,8 122 5 S.06 99.98 81 e 7 2 12297 0.82 100.00 82 33 -e

.._e~e.--.e_.....-+---,--e~--e 7 8 9 IS 2 3 4 5 6 1

PE RcE NT AGE

.v.

r i O.t.232.3.82.:.*.827.:.3..:.:.188.t.".".33.3383.3.2.1.55.3.2.:.50.:.38

-8 ""**2 2$315 $00:222:3E338828**3858EST$$$$$2 "

t

. t "10:3:STR 8:2 83:3:F*tz:R*8:RE:522"$220:223 g dadidiidididdAAAdadAAAAddaadAssii4444i44444 e

r g

e

= -: ss:::~ a.*:::st:a:s:::::rggl:e::e:gsg I! ass:!::ssesegi:s.eg  : -----------------------

s  :  :-  ::~:~ ::::::

e 6

m I 2333.:.*~V122:,33~:22I.23:1:333lt"S*22721*

- .~ ~~~ ~~~~-~~ - - 2%:***

we . --

>= 3 emE o

" l e m ~ o i; .

3

& h N

.t o i o n

.c -e w g ..

- --u .. o ll'

% o ,i

-c e

L. e iii ,

3 llll ..

e >- o o

$ fue b Ii 1I a a .c w o u em o

  • lllll. '

., ~

m a

Ew*- e 3

a y

ii i,o .

o n n o u n o o ev wu cc llll" ll ..i WE

> t o o o n u n o

6 c us l

-*w h llll I. I E lllll 8 E E, ll l

  • 1l L. "w o m _ m -

$,u '

1 'l llll ll' . , , t w i 7

l i

ll ii l l, u

i i:

i

., m y ,

I' , , 1 l e l l l l

,; l ll u , ,. 1 , ,o o o

- .' i. .. .,

, l 'l  ! h'l l jo

  • 1 ,l li :l '; ,l l; l;; ll'l ll ll. ll l l U V ' ll ll:l:lsii l f. llll
  • ll. l g

.l ll ,l ': . .a l nll 'sll h:I l ul =a l i ' 'll,uswn!.: u s . . u l ::: l:lal l g li . . . . . . .

ll ll l ll hll ll ll i

j

.-~-.,P....---..~........~...-.=P=PohPmNh... ...~...-~

ffffffwfff.ddd... ..e4444@@@4.hbeP (A.) unsinaanz 17

Figure 8 :

Predicted McGuire Lcw Level Intake Temperatures Frequency of All Daily Values CF = 90 % (

NPDES = 97 F 2un Number: 3 M5iCENT6EE SAR CMMtT FRES CtM. MRCENT C1M .

t hE9 MRCENT j

16 16 0.15 0.15 e l 40 141 157 - 1.15 1.28 41 se***e 557 514 2.90 4.la gg one...eeeeeeeee 656 1150 5.17 9.55 45 ***eemer ::::::::::::: ree 919 2069 7.47 16.85 44 anseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseee 1118 5287 9.90 26.75 45 anseeeeeee::::::::::::::eeeeeeeeeeeeeeeeeeeeee.*ee 1277 45 % 13.53 57.11 46 emeneee s : : ::: :: :: :: :::eeeeeee eeeee eee ee ee eeeeeeeee*e 948 5552 8.85 65.15 47 emeessene :::::::::::eeeeeeeeeeeeeeeeees 841 6595 6.84 51.99 43 s aes emeee eeeeeeeeeeeeeeeeeeeeeeeee GS6 6999 4.95 54.92 eeeeeeeeeeee;; :::::::: r 7502 4.09 61.01 49 505 '

Se eseeeeeeee:::::::r : 421 7925 5.42 64.45

^ 500 F 67.50 m El see.eeeeeeeeeeeese In 5.

e 52 es nes - 276 8576 2.24 69.74 seesmessees 2.07 71.81

$ w 53 54 messenesee 255 242 8451 9075 1.97 75.78 g 55 asseme***e 254 9507 1.90 7

% meeeeeeees 322 ~9 2.62 7.5.69

.50 g 57 emee eeeeee esse **eeseeen 325 9952 19205 2.65 80.91 82.97 54 251 2.04 59 eeeeeeense 254 19457 1.90 94.87 M 60 **ese**ene 240 10677 1.95 e6.85 61 seneseeese 225 10902 1.85 as.6e 62 eneesemen 196 11098 1.59 90.25 65 memeneen 218 11516 1.77 92.82

% ensemenee 254 11550 1.90 95.95 55 menemonees 197 11747 1.60 95.55 a meneemen 298 11954 1.69 97.22 yv asesseee 95 12048 S.76 97.98 6w **,e 64 12108 9.49 96.46 6, so 54 12164 S.46 98.92 y0 os 62 12226 S.54 99.42 yg mee in 12254 9.25 99.65 12 e 25 12279 8.20 99.85 75 e 12 12291 S.19 99.95 pg 5 12294 0.02 99.98 75 2 122 % 0.02 99.99 ys 1 12297 0.01 13e.00 77

.......--..- ....--+----+----+-

4 5 6

--+--

7

-+----+----*--

8 9 to 1 2 3 vtRCEH1 AGE L - - -

Figurc 9:

+- Predicted McGuire Low Level Intake Tesceratures frequency of All Daily Values MPDES =98 F CF = 90 %

1 Run Number: 4 A PESCEMTAGE SAS CleMT fee 4 CtM. PteCENT ~ 7.

fee 4 nM 4e e e 4.07 e.97 41 seeee .126 154 - 1.87 1.89 62  ::::::::-- - ::: 595 529 5. '<1 4.58 45  ::::::::: ---- - ::: ** 641 117e 5.21 .9.51 44 .

-:----- --- _:::::::eeeeese 091 2e61 7.25 16.76 l ::;

1245 5546 18.12 45 -  :: - ' '

26.98 u Ieeeeee:r-  :::::::eeeemosoeeeeeee:::::::::::: 1584 4618 14.6e 57.49 47 neses:: - _ - ::::::eeeeeeeeeeeeeeee lees 561e e.2e 46.69 4e emeeeeene ---- ::::ee :: -:::::: 902 6520 7.54 53.82 49 emeneem : - ---- - ::: 654 7156 5.17 5e.19 m Et e*****o*e- -----

$19 7675 4.22 62.41 A 51' e*****o**-- : : ::: 451 e126 5,67 M.es

  • ' 52 seeeeeeeeeeeeees 586 8512 3.14 69.22

" v

  • 55 eeeeeeeeene tel 8795 2.29 71.51 54 eeeeeeeeee 247 9048 2.81 75.51 55 *ee*ee*ees 254 '9276 1.92 75.45 56 eseeeeemos 256 9512 1.92 77.35 57 ee******e***** 355 9047 2.72 es.se j 5e seeeeeeeeeeeee 354 19141 2.72 42.79 88 39 eeeeeeeees 241 19422 1.46 94.75 6e eseeeeeee 22e 18654 1.e5 86.61 61 e******* e 257 lese 7 1.95 es.55 42 eeeeeeeee 219 11106 . 1.7e 98.31 45 eeeeeeee 195 11581 1.51, 91.90 64 eneseseee 252 11555 1. et 95.79 65 eeeeeeeeee 251 11784 2.04 95.85 64 eeeeese tu 11950 1.55 97.14 67 eeeeee les 1299e 1.29 98.5e 6e 64 12162 e.52 98.98 69 ee 45 12295 8.35 99.25 ye o. 45 12254 9.37 99.62 71 e M 12294 e.2e 99.99 I 72 8 12292 8.07 99.96 yg 2 12294 S.92 99.98 yg 2 12296 S.82 99.99 75 1 12297 8.81 189.88

_e +_e e ___e -e e-, e-_--+ -

1 2 3 4 5 6 7 e 9 le PteCENTAGE

Figure 10:

Predicted McGuire Low Level Intake Temperatures Frequency of All Bally Values i NPDES =99 F CF = 90 % 1 Run fiumber: 5 P8RCEMTAGE EAR CHART 7M9 CLM . 9tactMT CLM.

I REG Ptacitif 8 8 0.97 0.07 40 lit 119 1.37 1.15 l

41 meses 595 554 5.21 4.54 '

42 ***e*****eeee**e 614 1364 5.16 9.50 45 eeeeeeeeee;;;;; :::::::ees 866 20M 7.21 16.79 44 speeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeene 1245 3299 10.12 26.85 45 esseeeeeee;;;::::::::: eesessesseeeeeeeeeeeeeeeeene 1529 4619 18.75 5 7. M 46 seeeeeeeeeeeeeeeeeeeeeeeeeeerseeeeeeeeeeeeeeeeeeeeeeee 2026 EMS 4.54 45.91 gy seen emeeseeeeeeeeeeeeeeeeeeeeene-seessee 944 6589 7 48 55.58 43 mesesseeemenesseeeeeeeeeeeeeeeeeeeeeee ese 7247 5.15 54.95 49 eseeeeeeee;; :::::eeeeeeeee 541 7784 4.40 65.55 m So emeeeeeeeeeeeeeeeeeese 459 8247 3.75 67.eT A r.1 emeneeseeeeeeeeeese - 145 8658 5.11 70.1s DJ

  • 52 emesseseeeeeeeee 267 8897 2.17 72.Sk O
  • El *****o***** 256 9155 1.92 74.27

% seeeeeeeen 240 *571 1.95 76.22 55 eeeeeeeeee 255 9608 1.91 78.11 54 emmeneeeee 354 9 2. 84.85 57 eenseeeeeemese 55 i.942 2% 2.72 5.75 g 5 eeeeeee.eeeese seeseessee 258 10554 39747 1.94 1.75 85.46 87.44 M 59 235 60 e*eeseeee 227 19974 1.85 89.24 61 ***** essa 215 1118* 1.75 98.99 62 e**eeemse 19e 11579 1.55 92.55 65 ***eme*e 212 18611 1.49 94.42 u messeeese 268 11871 2.11 96.54 65 messemeneee 155 12004 1.06 97.62 g names 117 12141 1.11 98.75 67 **e*** 52 12195 9.42 99.35 em 12225 0.24 99.48 64 SS 99.72 69 e 19 12262 0.52 yo en 24 12286 9.29 99.91 y1 e 6 12292 e.05 99. %

yg 2 122% 9.02 99.9C yy 2 12296 8.02 99.9t yg 1 11297 0.01 100.0e 75 e _ . - . .~ e -- e .-6 e ~7 ~ e8 --- e9 .--10* - -

1 2 3 4 5 PtRCENTAGE

Figure II:

Predicted McGuire Low Level Water Pumped Yearly Total NPDES = 95 F CF = 90 %

Run Number: 1 SAR DIAAT W SMS De 1 94 ee 100 +

me ed me au * *e se A De se C Ge De **

O Igg ,Se se 94 C nun Se se se g me me se s29 e me se se me se me y

p.

g ee ee se H M M

< i . We 9e De De v om Se se se 9e Se De se De ce 99 9e H e 9e se De Os me ee se se Se a ** *e *e *e *e ** 9e o Se se Se se se em se t>

.0

  • ee ao se se se se Se Se De me me ee se De ce ce De De se SeseSe9ese9e ee Se De se Se se De 99 99 Se se 9e se 99 se De se 98

($ $ pe Se Se De 9e se Se Se De De Se Se Se me9eSese9eSeme9eem 96 Se 9e 9e Se Se se Se seseteDeDeDeSesese se se se De De 9. We Se me se 94h ee se De 9e De se Se 9e De Se se Se Se De se em Se Se Se gg e se De te se se se me De se De me se se se se 9e Se se se De Se se me se se se De De se De me se me De se be 99 se SG Se De De Se me em se 9e Se G4 95 GG se Se ce De SG es e4 Se 9e Se SG Ge Se se se se Se Se Se se Se 99 WS 9e De We te e6 Se se te De SS Se De De se me Se 99 si si ss u a a si s. s, .i .e .s a .s u .r ., = 71 rr is = is u ir 1 7, .> 2 i

m.m.m.

I

Figure 12:

Predicted McGuire Low Level Water Pumped Yearly Total NPDES = 96 F CF = 90 %

Run Number: 2 SAA CMART OF 'RPts l

oo . ..

.. l 7e . 1 n i o

o ..

o 6e . .. -

u w so .

w U ..

6

< a v ..

~ ..

So u o ..

u to . = * = == = =.

9.

so . n

. .. a.s

.--4. n -

5152 53 54 55 56 57 54 59 64 6162 63 64 65 44 67 68 69 79 7172 73 M F5 76 77 78 79 se 4142 a5 34 YEAR MIDPSINT l

[ _- -

8 IIIIIIIIIII. 3 IIIIIIII 2 IIIIIIII I R

IIIIIIIII 2 IIIIIII R t

I E K

I- C m

" 5 b ~

z 8 I 2

, n L u. g IIIIIIIIIIII: [

$3" L' IIIIIII 3[

~"# 2

  • g ~g

$"- h l e:a =

c -~ { s 1

8 m I. .

l E 8 3 "3 I IIIII. ::

.S 3 "o III a 1 a- titIIstIIIIIIIII s III- 2

- IIIIIIIIIIIIII 3 IIIIIII IIIIIIIIIt!!!IIIIII' s IIIII:331:11tIIIIIIIIIIIIIIIIIIIIIIII 2 IIIIIIIIIIIllittIIIIt!IIIIIIIttIIII 2 II:!IIIIIIIIIIIIIIIIIIIIII '3 1

l (0001 * .u-DV) END10A l

G 23

s Figure 14:

1 Predicted McGuire Low Level Water Pumped Yearly Total NPDES = 98 F CF = 90 %

Run Number: 4 to

  • me se se em 18 + em se es se 16 * *e em ee se se se

^ ]% 9 en H O se ee j

O en ee N O ye we l

  • pe se
  • 12 +

en ee ee 4

se ee se HHH

1. . ee em en o em em me 4 es me se v es se se a se se se se se me me me se se H se se se me e4 em em C 6 + en me e ** se me I > en se me se es l em es es se se e es ne se se 4 * ** *e se me ## e* se me se ee se se es es ee se ce es secemese se se se me me me se se se me se ee me se se se se se se me es se me se 2 e en se se se se es me se me me se se es se me me se isemesesesees sesesesecese 9e em se se se se l ee ee se se se es b1 st E3 56 55 54 57 se 59 6e 6162 c3 64 65 66 67 64 69 7e 7172 73 74 75 76 77 7e 79 se at et as a6 YEAS MISPEDtT

Figure 15:

Predicted McGuire Low Level Water Pumped Yearly Total NPDES = 99 F CF = 90 %

Run Number: 5 SAS CMART EllF !

18 ee

    • 3

==  ; a c.e - M : , tr ') fP - 9 3,540 f t se , .-

IO OO @F %g

$ 3 8 j ,* [,v.3' l .5

~

Y U saO en n *e . 900 Q .-

. o C ye me es g

s g5,t,rgi- -

. - q'.

t O se e.

.e .

,y {., ,)

ae De Se t p'. y ,-

PJ g - /*

u s. .e .5 p y .e .* --

no

,6 s.

en se 6 03 2 0 (CS c} s.m -

y p17' '

ry p w me se se se s 9.

Se De V r p)i g%

a u

-4" }

,.s

- .e , i i

95 De De

'O #

j Q ,

. .e 1 ...,( .. .

s * ** en **

se om es me

\ .

Ts .s s- r,- ) . {'PJ De en Ce 99 Se De me me 2 . ee Se Sn SS me me os De 9e to 6e De De De De e5 (

1 e es se es se me se we se me en se me se me De De se Se me se se Se SG Se 9e es se De se u u ss Gu sr u s, m u u u m a u n se s, n n ie n n n u rr i.1, u u .s n= m.==r

TABLE 1 -

LOCATION AND VOLUME OF THE 70'c ISOTHERM IN LAKE NORMAN SIMULATED OVER A 34-YEAR PERIOD (CAPACITY FACTOR = 90%)

July August Seotemeer October pgn McGuire Discharge Vol Elv Vol No*

Limit Elv Vol Elv 4 Vol Elv 4 4 4

(10 ac-ft) (ft) (10 ac-ft) (ft) (10 ac-ft) (ft) (10 ac <-

(SF) (ft) 84 635 32 669 8 676 17 1 95 699 686 37 676 17 679 20 2 96 700 90 686 37 679 20 682 28 3 97 702 98 39 679 20 682 28 a 98 702 98 687 690 45 679 20 682 28 5 99 703 105 26

. . . . . . . - . . - . . . . . . . . .- , . . - .- ..-.- - - ~ . _ . - _ _ ~

i

+..

Table 2:

Lake Norman

-Predicted Monthl7 Average Thermal. Data. I CF = 90% MNS NPDES = 95'F Run Number: 1 McGuire Nuclear Station .

Winter Spring Summer Description L'ec . 1952 April. 1953 Aug. 1953

-Condenser Flow (cf7) 3062 3999 4580 23 17 15 Delta T:('F)

Ine.ake Temp;(*F) 53 62 81 Djscharge Temp l(*F) 75 79 96 Background Temp t-F) 53 66 84 90*r Isotherm Surface Area fac)- 0 0 982 0 3 Lake surface (%) 0 8

Shoreline (mi) 0- 0 0 2 Lake Shoreline (%) 0 5'F Above Backgruind Surface-Area (ac) 2648 1834 1492-7 5 Lake Surface (%) 10 13 Shorelir.a (m!.) 22 15 2

Lake Shcroline-(%) 4 3 p

l 27 .

~- _

F- l

e; ,

Table 3:

Lake Norman Predicted Monthly Average Thermal Data _

CF = 90% MNS NPDES = 96*F Run Number: 2 McGuire Nuc2 ear Station

' Winter Spring Summer Description Dec. 1952 April, 1953 Aua. 1953 3062 3999 4580 Condenser Flow (cfs) 17 15 Delta T (*F) 22 Intake Temp (*F.) 53 62 81-Discharge Temp (*F) 75 79 96 Background Temp (*F) 53 66 84 90*F Isotherm 0 1055 Surface Area (ac) 0 0 4 Lake surface'(%) 0 0 9 Shoreline (mi) 0 0 2 Lake Shoreline (%) 0 5'F Above Background Surface Area (ac) 2648 1834 1602 10 7 6 Lake Surface (%) 13

Shoreline (1mi) 22 15

=3 L Lake shoreline (%) 4 3 I

I I

I, l

28

a Ta'cle 4:

Lake Norman Predicted Monthly Average Thermal Data CF = 90% MNS NPDES = 97'F Run Number: 3 McGuire Nuclear Station

~

Winter Spring Summer Description Dec. 1952 April. 1953 Aug. 1953 Condenser Flow (cfs) 3062 3999 4580 22 17 15 Delta T (*F) 62 82 Intake Temp (*F) 53 Discharge Temp (*F) 75 79 97 Background Temp (*F) 53 66 84 90*F Isotherm 0 1227 Surface Area (ac) 0 0 4 Lake Surface (%) 0 0 10 Shoreline (mi) 0 0 2 Lake Shoreline (%) 0 5'? Atcvo Background Surface Area (ac) 2648 1334 1760 10 7 6 Lake Surface (%) 15 Shoreline Emi) 22 15 3

Lake Shoreline (%) 4 3 29

l

\

Table 5:

Lake Norman Predicted Monthly Average Thermal Data CF = 90% MNS NPDES = 98'F Run Number: 4 McGuire Nuclear Station Winter Spring Summer Description Dec. 1952 April. 1953 Aug. 1953 Condenser Flow (cfs) 3062 3999 4580 Delta T ('F) 22 17 14 Intake Temp (*F) 53 62 83 Discharge Temp (*F) 75 79 97 Background Temp (*F) 53 66 84 90*F Isotherm Surface Area (ac) 0 0 1309 0 4 Lake Surface (%) 0 11 Shoreline (mi) 0 0 2

Lake Shoreline (%) 0 0 5'F Above Background Surface Area (ac) 2648 1834 1875 7 6 Lake surface (%) 10 16 Shoreline (mi) 22 15 3

Lake Shoreline (%) 4 3 30

o 4

Table 6:

Lake Norman Predicted Monthly Average Thermal Data CF = 90% MNS NPDES = 99'F Run Number: 5 McGuire Nuclear Station Winter Spring Summer Description Dec. 1952 April, 1953 Aug. 1953 Condenser Flow (cfs) 3062 3999 4580 Delta T (*F) 22 17 15 Intake Temp ('F) 53 62 83 Discharge Temp (*F) 75 79 98 Background Temp (*F) 53 66 84 90*F Isotherm Surface Area (ac) 0 0 1452 Lake Surface (%) 0 0 5 ,

Shoreline (mi) 0 0 12 Lake Shoreline (%) 0 0 2 5'F Above Background Surface Area (ac) 2648 1834 2006 Lake Surface (%) 10 7 7 Shoreline (mi) 22 15 17 Lake Shoreline (%) 4 3 3 31 l

a Table 7:

Lake Norman Predicted Monthly Average Thermal Data CF = 90% MNS NPDES = 95'F Run Number: 1 Marshall Fossil Station-Winter Spring- Summer

. Description Dec. 1952- April, 1953 Aug. 1953 Condenser Flow (cfs) 1260 1414 2264 Delta T (*F)' 26 23 14 intake Tamp (*F)- 51 54 82 Discharge Temp (*F) 77 '77 96 Background Tomp (*F) 53 66 84-90*F Isotherm Surface Area (ac) 0 0 432 Lake _ Surface.(%) 0 0 1 Shoreline-(mi) 0 0 4

-1 Lake Shoreline--(%) 0 0

- 5*F Above Background Surface Area (ac) 1225 -373 714 Lake surface (%) 5 1 3 12 4 7 Shoreline - (nd.)

Lake Shoreline (%) 2 1 1 i

l ._

t l

i L- 32

1 4

Table 8:

Lake Norman ,

Predicted Monthly Average Thermal Data CF = 90% MNO 9" :~ -

.6*F Run Num'ser: 2 Marshall-Fossil Station ,

Winter Spring Summer Dec. 1952 April, 1953 Aug. 1953

. Description 1260 1414 2264 Condenser Flow (cfs) 23 14 Delta T-(*F) 26 Intake. Temp-(*F) 51 54 82 Discharge Temp (*F) -77 77 96

  • 53 66 84 Background. Temp ('F) 90*F-Isotherm 0 431-Surface Area (ac) 0 0 1 Lake Surface (%) 0 0 4 Shoreline-(mi) 0 0- 1 LakeLShoreline (%) 0 5'F Above Background-t 1225 373 709 l

Surface Area (ac) 1 3 Lake Surf ace (%) 5

- 4 7 L Shoreline (mi) 12-1 1 t- Lake Shoreline (%) 2 l-l

\ .

33

2-a Table 9: ,

" Lake Norman ,

, Predicted Monthly Average Thermal Data CF'= 90% MNS1 NPDES = 97'F Run Number: 3 Marshall Fossil Station Winter Spring Summer Description Dec. 1952 April, 1953 Auc. 1953 Condenser Flow (cfs) 1260 1414 2264-23 15

-Delta T (*F) 26 Intake Temp ('F) 51 54 81-Discharge Temp (*F) .77 77 96 Background Temp ('F) 53 66 84 90*F Isotherm Surface Arca (ac) 0 0 386 Lake: Surface (%). 0 0 1 Shoreline (mi) 0 0 4 0 1 Lake Shoreline (%) 0 5'FlAbove Background Surface Area (ac) 1225 373 164 Lake Surface (%) 5 1 3 7

Shoreline (mi) 12 4 1

2 1 Lake ~ Shoreline (%) _

4 l:

L l ..

l l'

l' I

M .

.A f Table 10:-

Lake Norman -

Predicted Monthly Average-Thermal Data CF m-90% MNS NPDES = 98'F Run Number: 4 Marshall Fossil Station Winter spring Summer Descriptiori Dec. 1952 April. 1953 Aug._1953 Condenser Flow (cfs) 1250 1414 2264 Delta T.('F)- 26 23 14 Intake Temp (*F) 51 54 81 Discharge Temp ('F) 77 77 95 Background Temp (*F) 53 66 84 90*F Isotherm Surface r ea (ac) 0 0 325 Lake Surface (%) 0 0 1 Shoreline (mi) 0 0 3 1

Lake Shoreline (%) 0 0 5'F'Above Background-Surface Area (ac) 1225 373 583 Lake Surfgce (%) 5 1 ,2 6

Shoreline (mi) 12 4 Lake Shoreline (%) 2 1 1 35-

Table 11:

Lake Norman Predicted Monthly Average Thermal Data CF = 90% MNS NPDES = 99'F Run Number: 5 Marshall Fossil Ste. tion Winter Spring Summer Description Dec. 1951, April. 1953 Aug. 1953 Condenser Flow (cfs) 1260 1414 2264 Delta T (*F) 21 23 14 Intake Temp (*F) al 54 di Discharge Temp (*F) 77 77 95 Background Temp (*F) 53 66 84 90*F Isothe,m Surface Area (ac) 0 0 303 Lake Surface (%) 0 0 1 Shoreline (mi\ 0 0 3 Lake Shoreline (%) 0 0 1 5'F Above Background Surface Area (ac) 1225 373 552 Lake Surface (%) 5 1 2 Shoreline (mi) 12 4 6 Lake Shoreline (%) 2 1 1 36

I I TABLE 12:

LAKE NORMAN MONTHLY AVERAGE THERMAL PLUME DATA CAPACITY = 90%

- Combined Marshall and McGuire 5'F AB0VE BACKGROUND TOTAL MNS Disch. Extreme Surface Lake Shoreline Lake Temp Season Date Area Surface Shoreline

'g

  • F ) (ac) (%) (mi) (%)

3873 15 34 6 95 Winter Dec. 1952 19 4 95 Spring Apr. 1953 2207 8 Aug. 1953 2206 8 20 3 95 Summer 3873 15 34 5 96 Winter Dec. 1952 19 4 96 Spring Apr. 1953 2207 8 9 20 4 96 Summer Aug. 1953 2311 3873 15 34 6 97 Winter Dec. 1952 Apr. 1953 8 19 4 97 Spring 2207 9 22 4 97 Summer Aug. 1953 2424 4

3d73 15 34 6 98 Winter Dec. 1952 8 19 4 98 Spring Ape. 1953 2207 8 22 4 98 Summer Aug. 1953 2458 3873 15 34 6 99 Winter Dec. 1952 19 4 99 Spring Apr. 1953 2207 8 9 23 4 99 Summer Aug. 1953 2558 37

., . . . . . ~. _._

g '.

e -;

TABLE 13:

LAKE NORhAN MONTHLY AVERAGE THERMAL PLUME DATA CAPACITY = 90%

Combined Marsha'll and McGuire 90*F ISOTHERM TOTAL FNS ,

0)sch. Extreme Surface Lake Shoreline Lake

. Temp. Season Date Area Surface -Shoreline

(*F) (ac) (%) (mi) (%)

Winter Dec. 1952 0 0 0 0 95 95 Spring Apr. 1953 0 0 0 0 Aug 1953 1424 4 12 3 95 3ummer Winter -Dec. 1952 0 0 0 0 96 Spring Apr. 1953 0 0 0 0 96 Aug. 1953- 1476 5 13 3 96 Summer.

Winter Dec. 1952 0 0 0 0 97 Spring Apr. 1953 0 0 0 0 97--

Aug.-1953 1613 5 14 3 97 Summer Winter Dec. 1952 0 0 0 0 98

?

Spring Apr. 1953 0 0 0 0 98 Aug. 1953 1634 5 14 3

98. Summer Winter Dec. 1952 0 0 0 0 99 Spring Apr. 1953- 0 0 0 -0 99 ,

Summer Aug. 1953 1755 6 15 3 .

l 99 38 1 - -

-,