ML19309C332

From kanterella
Jump to navigation Jump to search
Consolidated Overview,Baseline Yr 1978-79
ML19309C332
Person / Time
Site: McGuire, Mcguire  Duke Energy icon.png
Issue date: 03/31/1980
From:
DUKE POWER CO.
To:
Shared Package
ML19309C328 List:
References
NUDOCS 8004080461
Download: ML19309C332 (300)


Text

.

9 l

McGUIRE NUCLEAR STATION l

l i

l 316(b) PREDICTIVE STUDY OF l

lMPINGEMENT AND ENTRAINMENT DUKE POWER COMPANY CHARLOTTE, NORTH CAROLINA OCTOBER 1978 8004080461

^

MCGUIRE NUCLEAR STATION 316(b) REPORT i

OUKE POWER COMPANY TABLE OF CONTENTS CHAPTER PAGE I,

SUMMARY

AND CONCLUSIONS 1

i

SUMMARY

l CONCLUSIONS 1

II.

INTRODUCTION 3

LEGAL BACKGROUND 3-DEFINITIONS 3

1-MCGUIRE NUCLEAR STATION-4 j

LAKE NORMAN

'4 OBJECTIVES 5

i III.

THECONDENSERCOOLINGWATERSYNTEM 8

l GENERAL DESCRIPTION 8

THE INTAKE STRUCTURES 9

INTAKE VELOCITIES 9

d IV.

EVALUATION OF IMPINGEMENT 15 INTRODUCTION 15 FACTORS AFFECTING If1PINGEMENT 15 ANALYSIS OF BIOLOGICAL DATA 19 j

COMPARISON OF MCGUIRE WITH MARSHALL STEAM STATION 20 CONCLUSIONS 21 V,

EVALUATION OF ENTRAINMENT 31

' INTRODUCTION 31 l

FACTORS AFFECTING ENTRAINMENT 31' 3

ANALYSIS OF PHYTOPLANKTON AND ZOOPLANKTON DATA

'32 ANALYSIS OF ICHTHYOPLANKTON DATA 33 CONCLUSIONS 35 LITERATURE CITED 40 i

F APPENDIX FIGURES 42-APPENDIX TABLES 56 i

f l

' s.

.i a

LIST OF FIGURES l

l FIGURE PAGE 2-1 Regional location 6-2-2 Lake Norman 7

j 3-1 General arrangement of McGuire Nuclear Station CCW intake and discharge structures.

11

-i 3-2 Plan view of the upper level intake at elevation 760' ms1.

12 i

3-3 Upper level intake:

transverse section.

13 5-la Day and night distribution of larval shad (Dorosoma.spp.) and j

associated water temperatures (dashed line) on 19 May 1975 at Location 4, Lake Norman (from Reference 15).

36 5-lb Cross section of McGuire Nuclear Station intake structure, showing relationship of intake opening to vertical distribu-

~

tion of larval shad (from Reference 15).

36 5-2 Densities of larval shad (Dorosoma spp.) on 12 sample dates 4

during 1975 at Location 1.2 (surface shoreline), Lake Norman.

I Values are means of duplicate samples collected on each date (from Reference 15).

37 l

5-3 Densities of larval shad.(Dorosoma spp.) of 14 sample dates during 1975 at Location 1.2 (surface, channel), Lake Norman.

7 e

j Values are means of duplicate samples collected on'each-date (from Reference 15).

38 i

5-4 Densities of larval shad (Dorosoma spp.) on 15 sample dates during 1975 at Location 1.2 (Sm.. channel), Lake Norman.

Values are means of duplicate samples collected on each date (from Reference 15).

39 if 3

i l

F

~,,.

LIST OF TABLES TABLE PAGE 3-1 McGuire Nuclear Station CCW flow rates and intake velocities under different operating conditions.

14 4-1 Summary of burst swim speed data for field acclimated Lake Wylie fish.

23 4-2 Species composition of fishes collected using rotenone at Locations 4.0, 6.5 and 10.0 during June 1973.

24 4-3 Species composition of fishes collected using rotenone at Locations 4.0, 6.5 and 10.0 during June 1974.

25 4-4 Species composition of fishes collected using rotenone at Locations 4.0, 6.5 and 10.0 during August 1975.

26 4-5 Species composition of fishes collected using rotenone at Locations 4.0, 6.5 and 8.5 during August 1976.

27 4-6 Species composition of fishes collected using rotenone at Locations 4.0, 6.5 and 8.5 during August 1977.

28 4-7 Species composition of fishes collected using gill nets at Location 2.0 during 1974 and 1975.

29 4-B Species composition of fishes collected using electro-fishing gear at Location 1.2 from 1974 through 1977.

30

_, Y '

l-l' 1

L I~

L _..

.~

CHAPTER I t

SUMMARY

AND CONCLUSIONS

SUMMARY

This document presents engineering and ecological data which form the basis for a 316(b) predictive study for Duke Power Company's McGuire Nuclear Station on Lake Norman, near Charlotte, North Carolina.

It describes the location, design, capacity and operating characteristics of the McGuire con-denser cooling water intake systems. Also presented are limnological and ecological data on Lake Norman near the intake structures, drawn from studies conducted by Duke Power Company from 1973 through 1977.

i CONCLUSIONS

[

l The principal conclusions reached in this document are that the location,

[

design, construction and capacity of the McGuire Nuclear Station condenser f

I cooling water intake structure minimize adverse environmental impacts, and that those impacts which may occur are not expected to be detrimental to the Lake Norman ecosystem. These conclusions are supported by the following points:

1.

There are no rare or endangered species of fishes in' Lake Norman.

2.

Most of the fishes impinged at McGuire will probably be threadfin shad, an introduced species highly susceptible to low temperature stress; their high mortality in the late fall and early winter is primarily due to-cold, not impingement.

t 3.

.The low level intake system, which draws lake water from approximately a 100 f t. depth, will not contribute directly to either impingement or entrainment.

Low level withdrawal will be used to supplement cooling I

I 1

l I

water only during periods of lake stratification when surface tempera-tures are high.

During these periods the hypolimnion is cold and low in oxygen, and it is not expected that fish will cross the thermocline to enter it.

4.

Fish swimming between the trash racks and the screens will be the ones most subject to impingement when the low level pumps are on.

On the other hand, fish approaching the upper level trash racks when the low level pumps are operating may be repelled by low temperature, low oxygen and turbulence.

5.

The impact of entrainment on the phytoplankton and zooplankton of Lake Norman is expcated to be low and not detrimental to the lake ecosystem.

This is due primari y to their rapid rate of reproduction, which allows l

both communities to tecover rapid'y from stress.

6.

Ichthyoplankton lossos to entrainment at McGuire will be primarily shad eggs and larvae.

Due to the rapid rate of reproduction of shad, and the presence in the lake of many areas more suitable than the intake for tneir spawning, losses are not expected to have a measurable effect on the standing crop of shad.

7.

Most other fishes in the lake spawn in shallow shoreline areas and pro-duce eggs which are both demersal and adhesive. As the larvae develop they tend to move from the shoreline to the open water areas of the lake.

Both these factors will serve to reduce entrainment losses.

S.

During. the summer the low level pumps will provide about 45% of the station's cooling water, thus reducing epilimnetic withdrawal by a similar amount.

Entrainment losses will be reduced proportionately.since the density of plankton in the hypolimnion is very low.

l 2.

CHAPTER II INTROCUCTION LEGAL BACKGROUND The 1972 and 1977 amendments to the Federal Water Pollution Control Act (PL 92-500) address the environmental effects of the cooling water systems of steam-electric generating stations.

Section 316(b) of this Act states that I

the location, design, construction and capacity of intake structures must reflect the best technology available for minimizing adverse environmental impacts.

Part III E (1) of the McGuire Nuclear Station NPDES Permit, issued 28 March 1978 by the North Carolina Department of Natural Resources and Com-munity Development, requires that the effectiveness of the design of the intake structure in reducing impingement and entrainment be supported by an acceptable predictive study.

t' OEFINITIONS There are two principal ways in which cooling water intakes can harm.

aquatic life.

The first, impingement, occurs when fish enter the intake bay and become trapped against the screens which protect the tubing and pumps of the cooling water system.

Those unable to escape may die from asphyxiation, exhaustion or staavation.

Impinged organisms and debris must be removed periodically to ensure a steady, uninterrupted flow of cooling water to_ the plant.

The second major impact on aquatic life occurs by the entrainment of plankton and of fish eggs and larvae in the water which enters the condenser cooling water system.

Entrained organisms are subjected to mechanical and thermal stress before being discharged; they are not generally killed 3

w

l instantly, but some may suffer delayed mortality or impaired reproductive ability.

McGUIRE NUCLEAR STATION The 2360 MWe McGuire Nuclear Station is located approximately 17 miles north-northwest of Charlotte, North Carolina, on the south shore of Lake r

Norman (Figure 2-1).

The 360 MWe Cowans Ford Hydroelectric Station lies approximately 1000 yards west of the McGuire site (Figure 2-2).

Construction at McGuire began in the spring of 1971.

Each of its two generating units is rated at 1180 MWe and powered by a pressurized water reactor.

Lake Norman is the source of recirculated condenser cooling water for both McGuire Nuclear Station and the coal-fired. 2025 MWe Marshall Steam Station, located on the i

west shore of the lake, approximately 11 miles north of the dam (Figure 2-2).

i LAKE NORMAN i

Lake Norman, the largest (32,510 acres) impoundment in North Carolina, was formed in 1963 when Duke Power Company constructed Cowans Ford Dam on the-i Catawba River.

The lake has a full pond surface elevation of 760 feet mean sea level (msl), a shoreline of approximately 520 miles, a mean depth of 33.7 feet and a volume of 1.1 x IOS acre-feet.

A drainage area of roughly 1800 t

i square miles yields e mean annual flow of 2670 cubic feet per second (cfs) at l

the dam, resulting in an average retention time of 207 days.

The present I

maximum allowable drawdown is 25 feet, or 735 feet msl (Reference 1); when McGuire becomes operational this will be reduced to 15 feet (745 feet ms1).

However, since the completion of the hydroelectric station in 1964, the actual l

recorded maximum drawdown has been 12 feet.

1 4

Thermal stratification in Lake Norman usually begins in early April and lasts until late October, which is typical of the warm monomictic lakes of the region. Mixing during the winter is complete, with thermal minima of-approxi-mately 5 C occurring during January and February.

Surface temperatures as high as 30 C have been recorded in June and July in the McGuire intake area.

The thermocline typically lies between 20 and 50 feet (Appendix Figures 1 -

13).

A submerged skimmer weir is located in front of the intake at the Cowans Ford Hydroelectric Station.

During periods of lake stratification this struc-ture retains the cooler, hypolimnetic water in the lake below a full pond depth of 35 feet, while allowing passage of warmer, epilimnetic water through the hydroelectric station.

OBJECTIVES No practical design for the intake structure of a steam-electric generat-ing station can assure the total elimination of impingement or entrainment if an adequate and reliable supply of cooling water is to be provided.

Therefore the purpose of this predictive study is to show that the environmental impacts of impingement and entrainment when McGuire becomes operational will not be detrimental to the Lake Norman ecosystem.

Chapter III of this document describes the location, design and operating characteristics of the cooling water intake structure, including those features which reduce impingement or:

entrainment.

The two' final chapters relate intake design to four years of ecological data on lake stratification and the abundance and distribution of fish, fish eggs and larvae, and plankton near tne intake site.

This infor-mation is evaluated _with respect to impingement (Chapter IV) and entrainment (Chapter V).

5 j

i

s s

w a,

+N%

N g

. r N

RA v

E i

L t4 C

C c 4~

5,s U

y 0

n 7

EN o

5 RO i

t II t

UT r

GA a

I CT c

MS r o

i l

r o

f l

m '"

w a

e n

u c

t*

o

=~

w 5,

a j

l 9

a r

)

e r

0o.

c w

R z.

o s

f N

g 1

  • .J*

7' 2

e

=

r nn c

W i

_n F

We AN SP Oy E

r e

i M

0 7

R

't O

d 5

' (.

f e

e k

.A g'N s

A tE L

E T

0 1i

/~

0 S

/

=

Rc l

A r

f f_

e

<q's m

c

=

g M

~

hg@_$

sE.

2g 'r.PWb g

g@

f.

tI1 Il\\:

llI i

~~ ='- \\

g b

~~

'si?+

)},w g%

'N l

N tx

$f

\\

- hykut)

  • %q=f&,~f

~

-.~

f^

r

'd/f d

p py Th? '

3d Af

~

f~ )

2. x.'n-- ""

S

\\yL (

y...

\\

p%

T 'd) d 3'

')c.5o'&&hb'

". T :

,,~.:: "l<<h*' h

=

\\

$,3
i. ;M
    • E*-

-,. g. ;

i

(

t w In::

t Figure 2-2.

Lake Noman r

1 7

}t 1

i

CHAPTER III THE CCNDEN5ER CCOLING WATER SYSTEM GENERAL DESCR!pTION The concenser cooling water (CCW) system for McGuire Nuclear Station incluces two intake structures (Figure 3-1).

The uoper intake, whicn contains the CCW pumps, is located in a man-made embayment apcroximately 300 yards east of Cowans Ford Dam.

The low level intake is located near tne base of the cam at a cepth of approximately 100 feet wne, the lake is at full pend.

This structure was built during the construction of Ccwans Ford Dan in the early 1960's to serve a future thermal station. Water is perced at a maximum rate of 2000 cfs frcm the low level intake to the forecay of the ucper inta<e,

.here it mixes with upper intake water.

This mixture is then pumped into the CCW system at varicus fica rates uo to a maximum of 4525 cfs.

Concenser cooling water is discharged back to Lake Norman thrcugh a 0.6 mile discnarge canal (Figure 3-1).

Inis canal has an average depth cf 30 feet when the la<e is at full pond.

Heated ef fluent from the canal mixes initially with surface waters Of the main lake before stabilizing eertically and spreading Over the lake surface, ultimately dissipating excess heat to the atmosphere.

Each generating unit has four CCW pumps at the upper intake structure (Figure 3-2).

Three additional pumps pe" unit draw lake water tnrough the icw level intake.

Since the 2000 cfs proviced by the lower intake cannot support the total CCW needs of McGuire, it is used only to provide su plemental cooling water during periods of high surf 3ce temcerature.

The cuantities and sources of cooling water used are determined by the tercerature of tre surface inlet water and the r.eed to centrol the Oiscnarge tem;erature.

Frca late fall t: early 50 ring sur# ace waters will su ply the 5

entire condenser cooling water demand, and only two upper intake CCW pumps will be operated per unit.

As inlet temperatures increase, first three, then all four, pumps will be em91oyed on each unit.

During the warmest months hypolimnetic water will be drawn through the low level intake at the rate necessary te maintain the average monthly discharge temperature within permit specifications.

The maximum CCW flow rate will, however, remain at 2263 cfs per unit even when the low level intake is in operation.

Condenser cooling water flow rates for various pump operating modes are presented in Table 3-1.

THE INTAKE STRUCTURES The low level intake structure has three openings of 535 square feet each, located between elevations 654 and 670 feet msl.

Each of these openings is covered by a trash rack of 1/2 inch bars spaced 4 1/2 inches on center.

The upper intake draws surface water between 715 and 745 feet msl (Figure 3-3).

There are sixteen openings (2 per CCW pump, 8 per unit) of 336 square feet cach.

The upper intake is also protected by trash racks of 1/2 inch bars placed 4 1/2 inches on center.

Approximately twenty feet behind the upper level trash racks are traveling screens with 3/8 inch openings.

Water from the low level intake is introduced between the trash racks and traveling screens through a dispersion box, where it mixes with surface water before being pumped into the CCW system.

INTAKE VELOCITIES Table 3-1 shows calculated intake velocites through the trash racks and screens for various modes of pump operation.

The maximum design flow rate is 713 cfs per CCW pump, which occurs when.two pumps are operating per unit.

This will create an average calculated velocity of 1.06 feet per second (fps) 9 I

r L

through each intake opening.

It is'important to note that there are two openings per pump bay and four bays per unit (Figure 3-2).

Model tests (Reference 2) conducted in 1971 and 1972, using preliminary design data almost identical to those in Table 3-1, showed an instantaneous velocity distribution over the face of tne screen which ranged from 0.7 to 1.2 fps with two pumps in When all eight pumps are operating on a unit, the maximum design flow use.

rate is 557 cfs per pump and the average calculated velocity is 0.8 fps.

1 Under these conditions model tests indicated an instantaneous velocity range of 0.7 to 1.1 fps.

Low level water is ejected from the dispersion box at velocities of 4 to 5 fps at right angles to the flow of epilimnetic water passing through the trash racks.

1 i

f-t I

T l

c l

10 o

e-

..ec-m n

8.

u I

.~

(/

\\

i l

LAKE NORMAN ttu ew.t it peo-

~

}

l f

l' j

It

/

I.lld pts

[ [,7,*,I '

ar -

StAhe ar.go eq a L""""c]

'b #

g y *.e n:.e w,--

2 sma s.

f,,,erw.u,,w,mg 3

o

'"5'*"'"

M ym

\\

  1. .NETsi u,,
  • 1 %

,ci.

N

[~,i.

= m, w

7e

, =,, =,..

\\

M OJnl tAK. LEAR ST A Tsors

\\.

T

\\.

259

._____m_,

c*****'"

s p""

\\N-c.,,,

~ ~---.

w$,

e-M

.=__o,,,,

s y=='

[F Figure 3-1.

General arrangement of McGuire Nuclear Station CCW intake and discharge structures.

FLOW T

q. INTAKE STRUCTURE PLAN AT ELEVATION 76 0 + 0 _

i T

r T 3

r 'i

,r 3

r 3 r 3 r 3

).

Ti T

.1..

- G m,

.~

.t.

n 7,

s

.5.,

s

.N,'

w

.s. /

ts y

~._.

O o

O O

I I

i

/T.),

e T..,

,^,

e P, l

y

<s' a.'

u s,'

i

_7 3

3 l

l l

l E

A C:

i C PUMP G PUMP G PUMP g PUMP

_16*. O'4"_ _ _29'- 9 "

29'. 9 "

29'.9" 18 '. O '/4" Low Level

~

~

~

CCW Pipe 12 3 '. 3'/ " (UNIT I) 2

(

I Figure 3-2.

Plan view of the upper level intake at elevation 760' mst.

l t

t 12

I

( LOW LEVEL COOLING WATER PIPE l

C. TRAVELING SCREENS k PUMPS C TRASH RACK SLOT-r DRA!NAGE OITCH i

TOP EL. 770.0 3

.+: 0M ' ', "

i g

n 3 :.

i FULL P0fC EL. 760.0,

r 4

1 i

MAXIMUM DRAWDOWN 8'-O" f.D D

WITH M GUIRE OPERATING vl,

1 PIPE EL. 74 5. 0 m.

.2a:

i

te

,; r o

OlSPERSION BOX

/_

i e

i

//

FLOW l

y i

BOTTOM OF INTAKE

.:.(:: 'j CHANNEL EL. 715.0 3 O,

" $i:

i:r.i

i*f l

~

C DISPERSION BOX 18' 4'4"] 10*10 4"5'-Il'/2" 18'- 2 " _

6 3 '

4 '/4" '

6'-(

^

Figure 3-3 Upper level intake:

transverse section 13

P i

TABLE 3-1 McGuire Nuclear Station CCW Flow Rates and Intake Velocities Under Different Operating Conditions i

t f

Total CCW Calculated i

Probable Number CCW Flow Rate Flow Rate.

Maximum Velocity 1

Season of Pumps in Use per Unit (Both Units) at Screens I

Winter 2

1425 cfs 2850 cfs 1.06 fps j

Early Spring, Late Fall 3

1931 cfs 3862 cfs 0.97 fps Late Spring, i

Summer, 4

2263 cfs 4526 cfs 0.80 fps Early Fall i

t I

i l

d e

l i

t I

k l

l 14 l

CHAPTER IV EVALUATION OF IMPINGEMENT INTRODUCTION The impingement of fishes at the DcGuire Nuclear Station intake screens is expected to be low for all species except shad (Dorosoma spp.).

No significant adverse environmental effect on the Lake Norman ecosystem is anticipated as a result of the operation of the McGuire condenser cooling water intake, although the number of impinged shad may be large during the winter months.

No rare or endangered fish species have been collected from Lake Norman.

FACTORS AFFECTING IMPINGEMENT Fish impingement at McGuire heclear Station will be dependent on several factors, the most important of which ai? intake velocity, intake design, fish swim speed, and fish distribution and abundance in the intake area.

Intake velocities that fishes would encounter at the upper intake screens (Table 3-1) are determined by pumping rates of condenser cooling water and the area of the r

screens.

Fishes are most likely to be impinged on the upper intake screens when the intake-velocities exceed their swimming capabilities.

As noted in Chapter III. intake velocities are expected to reach a maximum of 1.06 fps-(32'

~

cm sec ) during two pump per unit operation (Table 3-1).

During operation of three and four pumps per unit, intake velocities at the screens will be lower.

4 One pump operation will not provide sufficient cooling water for McGuire and will not be used.

Two pump operation per unit and, consequently, maximum intake velocity, is expected to. occur only during the cooler months, from late i

l -

fall to early spring.

Four pump operation is expected to occur during the-

. armest. months, from June through October.

w L

15

Since the lower intake is located near the bottom of Lake Norman and has only trash racks, fish impingement will not be a factor there.

During the period of lake stratification, it is unlikely that fish enter the cold, oxygen-poor water of the hypolimnion.

For the remainder of the year, the low level intane is not in use.

The second important factor affecting impingement is the design of the l

intake structure.

The physical configuration of the structure and the asso-ciated currents can create eddies which may hold fish.

For those reasons it i

is expected that impingement will be greater on the screens for Unit 1 than for Unit 2, as shown by Edwards et al. (Reference 4).

Mathematical (Reference 1) and physical (Reference 3) models have been constructed to simulate the thermal discharge from McGuire.

Neither model predicts substantial recirculation of warmed effluent water from the discharge to the intake of McGuire.

Therefore, the location of the McGuire intake structure s?ot.1d discourage the thermal attraction of fishes to the intake area.

A third factor influencing impingement is the swim speed of fishes.

This is a function of water temperature and of their species, size and overall condition.

Generally the larger, more healthy individuals can swim faster.

Swim speed also increases directly with water temperature.

Burst swim speed is the maximum speed a fish can attain, and determines whether a fish could escape a given intake velocity.- Burst. swim speeds of fishes commonly collected from Lake Wylie, a reservoir on the Catawba River downstream from Lake Norman, were studied over a wide variety of temperatures (Reference _5).

These same taxa are also commonly collected from Lake Norman.

Burst swim speeds of six species of fish are summarized in Table 4-1.

Under certain operating conditions (Chapter III), the calculated average intake-16

velocity may exceed the burst swim speeds of threadfin shad (Dorosoma petenense), yellow perch (Perca flavescens), largemouth bass (Micropterus salmoides), golden shiner (Notemiconus crysoleucas) and bluegill (Lepomis macrochirus) (Reference 5).

However, model studies (Reference 2) show that, due to expected turbulence, intake velocities will vary continuously at all points over the face of the intake screens.

The range of variation covers values both above and below the burst swim speed of the species noted.

Threadfin shad are an introduced, but prolific, species in Lake Norman.

In tne winter, however, they are generally in poor physical condition when temperatures drop below about 9'C-(Reference 6).

Indigenous species are not severely stressed by normal winter water temperatures and therefore are not as susceptible to_ impingement.

Over 95% of threadfin shad mortalities at Allen Steam Station on Lake Wylie were attributed to low winter temperatures rather than impingement (Reference 4).

Similar results regarding the impingement of L

threadfin shad are expected at McGuire.

In general, large fish are not as susceptible to impingement as smaller fish of the same species, since larger fishes have higher burst swim speeds.

i In water warmer than about 10*C, the break-even length between intake velocity and burst swim speed of largemouth bass is about 14 cm.

At that water temper-ature this length is about 9 cm for bluegill, 6 cm for the golden shiner, 5 cm for the whitefin shiner (Notrocis niveus), and 5 cm for the satinfin shiner (Notropis analostanus) (Reference 7).

Although these values were obtained in a laboratory study, similar results are expected for fishes occurring near McGuire's upper intake.

The fourth major factor affecting fish impingement is the distribution and abundance of fishes in the intake cove.

Duke Power Comoany has concucted ecological studies'on Lake Norman since 1973 (Reference 1) in order-to estab--

17

1 i

lish the baseline data needed to assess the impact of the operation of McGuire.

The area around the intake cove (Location 1.2) was studied as part of this

_r program. A synopsis of methods and sampling locations are given in Appendix Tables 1 and 2 and Appendix Figure 1, and the results are described in more detail in the following section.

Three additional factors may affect impingement rates during the summer when the low level intake is in use.

The first is the turbulence created when epilimnetic and hypolimnetic waters are mixed between the upper trash racks and traveling screens.

As noted in Chapter III, hypolimnetic water is expelled f

at right angles to the incoming flow of epilimnetic water through a series of dispersion boxes (Figures 3-2 and 3-3).

Velocities from these dispersion boxes will reach 4 to 5 fps (122 to 152 cm sec

).

While the turbulence created may make escape difficult for some of the fish caught near the screens when the low level pumps are on, it is possible that some fish will be det. erred from entering the zone of turculence.

A second factor which may afiect impingement when the low level pumps are in use is the reduced oxygen concentration of the hypolimnetic water.

At full pond this water will be drawn from depths between 90 and 106 feet.

During the f

summers of 1968 through 1977 the lowest average monthlj oxygen concentration f

.1 recorded at these depths near the low level intake was approximately 0.5 mg 1 (Appendix Figures 7 - 10).

This water mixes immediately with epilimnetic water drawn from full pond depths of 15 to 45 feet; the average monthly oxygen

.t content of this water during the same period was approximately_6 mg 1 l

While oxygen stress to fish caught near the traveling screens would result, this may be partly offset by the avoidance behavior fish would display on approaching a region of reduced oxygen concentration.

[

The third complicating factor affecting impingement during the operation of the low level withdrawal in the summer is reduced temperature.

The minimum monthly average temperature expected in the water withdrawn from the hypolimnion in summer is approximately 12'C (Appendix Figures 7 - 10).

The corresponding temperature of the epilimnion is 19 C.

Therefore fish near the dispersion boxes may be subjected to reduced temperatures, which would reduce their swimming abilities. On the other hand, as with turbulence and reduced oxygen concentrations, cool water may deter fish from approaching the intake structure altogether.

i ANALYSIS OF BIOLOGICAL DATA t

Larval fish collections were made in the intake cove (Location 1.2) in

.1974 (Reference 1) and 1975 through 1977 (Appendix Tables 3 through 42) as an indication of adult fishes which might enter that area during the spawning season. These collections shewed that larval fishes in the intake cove were primarily shad, yellow perch, bluegill and crappie (Pomoxis spp.).

Other larvae collected included darters (Etheostoma spp.), largemouth bass, cyprinids, catfish (Ictalurus spp.), white bass (Morone chrysops), and carp (Cyorinus carpio).

i Adult fish were collected using rotenone from 1973 through 1977.

No collections were made in the McGuire intake area because no coves suitable for rotenoning exist in this part of Lake Norman.

Collections made in other areas of the lake, however, give an indication of the kinds and numbers of adult fish which might move into the intake area. -Data collected during 1973 and 1974 are published elsewhere (Reference 1).

Data for 1975 through'1977 are presented'in Appendix' Tables 43 through 51.

Summary data for 1973 through 1977 are given in Tables'4-2 through 4-6.

This information indicates that the j'

19

coves in which rotenone was applied have similar standing crops.

Differences reflect characteristics of the coves such as substrate, cover, food avail-ability and bottom morphology.

Year-to year fluctuations were most likely caused by. meteorological and hydrological differences, water level at the time of sampling, and actual variations in fish abundance or distribution.

No substantial changes in the fish community have occurred during the five year monitoring program at these locations.

Collections of adult fish were made in the McGuire intake area during 1974 using electroffshing (Location 1.2) and gill net (Location 2) techniques (Reference 1).

The results of additional collections, from 1975 through 1977, are given in Appendix Tables 52 through 58.

Gizzard shad (Dorosoma ceoedianum) were common in gill net collections (Table 4-7), althougn the nets were not fished directly in the intake cove.

Bluegill and redbreast sunfish (Lecomis l

auritus) were common in electroffshing collections from the intake cove (Table 4-8).

Differences in community composition determined by these collections are probably attributable to habitat differences between Locations 1.2 and 2 and to gear selectivity.

COMPARISON OF McGUIRE WITH MARSHALL STEAM STATION The operating characteristics of McGuire and Marshall are similar in

)

several respects with regard to factors affecting impingement.

Both generat-ing plants withdraw condenser cooling water from Lake Norman.

Both also have the same numoer of intake screens, which are of approximately the same size.

l McGuire and Marshall have similar intake structures which may result in increased impingement on certain screens due to formation of eddy currents.

A study (Reference 4)' conducted at Marshall Steam Station on Lake Norman from April'1974 through Maren 1975, indicated that impingement varied season-20 l

=.- _.

_. _ ~ ~

4 ally.

The greatest impingement rates (1518 fish / screen / day) occurred during i

the cool months, November througn January.

The lowest rates (6 fish / screen / day) occurred during the warmest months, July through September.

This study also showed that impingement is, to some degree, species specific.

During February 1975 electrofishing in the Marshall intake cove revealed sport fishes comprised 39.5% of the catch, threadfin shad 52.7%, and carp 7.6%.

Threaofin shad, however, accounted for 99.9% of the total fishes impinged that month.

During the year-long study, shad comprised about 99% of all fishes impinged.

Impingement of threadfin shad began occurring at rela-tively high rates in November, when water temperatures had dropped to about 13 C.

A similar pattern of impingement is expected at McGuire.

However, the two generating plants differ in several important ways.

McGuire will have a greater pumping rate and slightly higher intake velocities than Marshall, depending on number of pumps operating.

Both factors will tend to increase impingement at McGuire.

On the other hand Marshall, having only a low level intake due to its skimmer wall, has lower summer mean intake water temperatures than are expected at McGuire.

This factor may tend to reduce impingement rates at McGuire relative to Marshall, since fish have higher swim speeds in warmer water.

[

CONCLUSIONS

_ Based on the previous discussions of factors affecting impingement and the comparison of Marshall and McGuire, impingement at McGuire is expected to

~be similar to that at Marshall.

The fishes impinged at Marshall were mostly threadfin shad. This is an introduced and very prolific species-whose mortal-l ity has been shown to be due primarily to low winter water temperatures and i

not to impingement.

Their loss at Marshall had no apparent impact on the Lake 21

Norman fishery (Reference 4),

It is expected that most of the fishes impinged at McGuire will also be threadfin shad.

Even in combination with losses at Marshall, impingement at McGuire should not adversely affect the Lake Norman f i f.he ry.

l l

22 l

i

I

[

q.

Tabic 4.1 Sunnary of burst swim speed data for field acclimated Lake Wylie Fish.*

All swim speeds are in centimeters per second.

Honth Species Jan Feb Har Apr May Jun Aug Oct

- Nov Threadfin shad 14.9 44.0 Golden shiner 31.5 37 5 44.0 44.0 44.0 Satinfin shiner 36.0 42.0 60.0 55.0 55.0

~

Largemouth bass 32.0 50.0 44.5 28.8 BluegTI1 32.0 33.0 35.5 26.2 Yellow perch 23 5 36.0 Estimated Hean-4

Temperature c' 9.5 10.7 15.2 13.1 24.2 26.9 28.8 23 1 15.6
Observed minimum, 70 7.0 95 14.5 19 5 24.5 20 5 18.0 13.0 maximum,-c' 13.0 14.0 22 5 25 0 30.5 30 5 32.0 29 0 20.0
  • From Re ference, 5, p. 710. Maximum intake velocity at McGuire upper intake structure is 32 cm.sec~I.

4 1

1

-y y

.4-c

-,y, y

r,.

_...no

~~.,

J T a b l e ' is - 2.

Species conposition of fishes collected using rotenone at Locat ions 1.0, 6.5, 4

and 10.0.during June l 'J 7 3.

t lEil% U taration 63 tocatinn 10.0 Species eso/ba 1

r.,/ha t

is. /ha t

kg/ha t

iso /ha t

Eq/tia 1

tur.c e s c y c.fi w e,.

266 5.38 34.913 60.87 1999 1.13 121.285 53 18

. 10608 52.42 19.185 6.92 1774 6.30-129.157 46.61 ter e* t g etceme 1770 25.(8 1.162 2.02 IIR31 10.37 49 577 24.74 Cyprinidae

&c6 12.25 0.674 I.87 114 1.03 0.417 0.18 1283 6.34 3.377 1.22 t't<ryiwac enric 2

0.04-1.l69 2 90 34 0.20 31 345 13.74 18 0.38 76.101 27.k?

Natc sigyms esynt*7Iness 2

0.04 0.002

<0.01

.'actrerie Indsonius 178 3 60 0.362 0.63 letalser7es estus 136 2.75 0.202 0 35 53 0 32

,5.244 0.54 217 1.07 0.515 0.18 7dah.no r litge; tutus 44 0.83 1.433 2.49 211 1.26 1.562 0.68 579 2.66 6.449 2.33 Gtducir affinia 27 0.16 0.028 0.01 68 0 30 0.0h0 0.01 g

M rena cin*,ner s 8

0.16 1.588 2 76 92 0.45 1.478 - 0 53 z.-

f(;'imis eeritut.

. (68 - 13.50 4.327 7.52 589 3.50 4.401 1 93 517 2.55 4.684 1.69.

larmis pilf <ws 32 0.65 0.059

.0.10 2

P 41 0.011 0.01 51 0.25 0.572 0.21 tel. min guiseus l6 1.33 0.877 1 52 152

0. <.'O 0.627 0.27 225 8.18 1.327 0.48 let<-sie nicawAines 1076 21.*75 5.428 9.44 1828 10.87

'8.715 3.82 4116 20 34 26.G47 9.40 1:f ra. :r f *1 1 l'"i < f"f' 142 2.87' 2.507 4.36 177 1.05 6.501 2.85 416 2,06 3.564' I.29 Tc~ris niger,rs litus 38 0.77 0.027 0.05 4

0.02 0.004 0.01 fr8Patt<.** cl-stadi 2

0.0%

0.002

<0.01 9

0.05 0.003

<0.01 4

0.02 0.004 0.01

. Fcrea fl.nvecen:

410 8.29 2.173 3 78 526 3.13 2 344 1.03' 709 3 50 4.570

1. 6 5_,

Mg Total 4946

.99 93 57.485 99 99 16812 99 98 228.066 99 98 20234 99.98. 277.075 99.93 C3 La E?Pe) e a

y

%2)

J y,..

E'l. EED t

n w

s

-w w

w

, ww w

+--n

-e ew-

i -

4 e

w.

+...-

n.-

.n

.a..

b

~

-I s

1 4

i I

b i

a3 @

eA sm N

.m e. N

- e ce en e==

A.

e.

A

@ O.

M.

C. O.

O. O.

. to. O. O. N. a=% e do. @.

O.

i 4

O n=%

OO O,

O O.=. O - m on.

O, e

1 m.O seg.

p d

i,

+

e

h O. n eo N= O mh **% e to O a*c

=

en e

N &

@ m C cc e=

o *==

I NN O

e O **

s.

t/.%

C. w O. O.

O. O.

e. O. O. d.==. @. w. @. en.

O.

h.

  • =.

a

@ O.

e^

O e

m te O CO O O O O O ettc C @ @ O O

s ac

. %O 8

=

a

.o.

% m

% e e e e m ee m e e es e

-t no @

e m @e.

O e'

.C OO O

OO.

m. o.
m. %. N. cn. e. en. ew tlh. O.

e.

as ap =.

4 c.

4 vM

=**%

= O d d.= O ee @ sn o m

a o

e l

C

'e O

i

~

?

,e, m

,e. a.. % c N O.*e rw a0 a

m e.

n, m =

%m s

e e

m=~N e

y

=

m C

Q j

e4 2-m O

i M

s e

r a es.= e

-.- e as m@

O = O e 65

-O O.

1 1

@ s.o o

  • "'t OOO

-OOO

-m. O. **. O. M.

C.

C. =e.

i

m. h. O. m.

O. O.

O.==.=.O.

e g #

OON4 O

O==

e ee ed A w w

w v

@C O

=

~

e% @ m e

~ O. ~O.a O,m es e N e. % C C e-e.

ce 8

ee N

O a nO =

me O

OC C

=

j U

& O. O. e.

C. O. @.

ce. an. sh. o.

O. O. en. ab. h.

C.

C. a.

m..e a m o c.

O me OOO mOOO 4 C O.a m O

C4 a-

~

==

6 E

Omme mem d--e em-me

-O.

O sa.

m.

se

)j

~

no a2 0. *. O.

c. O. @.
m. O.

c, o. m. O. m.

E

.=

yeq sMD C O OO=. OOOC

    • % O O n C O

O n*%

C%

w m

L

.e N

o" 3

e c.e,==

O N @ N.

- J mA O,e*

8'

@ e= O ce

.n

-e c:

.~e

@ GA.

.e4 N

.:- ee ~ -

e m

.V

.9 ee tA

&#%==

W 4D 8'4 m

t f'.

"O"'

p d

4 a

W% e O @ m N.

O i

    • N.

= N # c.n..cee.=.

m.

e. r. e. e.

e.

o.

O. O. O.

g l

m. e.

see

%4 OOOOO ew e3

=Omm. N I

E C

O 4

g

' es se

@ m en ew O 4 @

e 2

4 es C - en ew m o

==e=.

ee-m=

s d

N4AC%

C C

y %

O s%

C". %.

O. O. O. a*%.=

a.

ao.

O. G3. O. N. N.

O.

m 80 C"

N M

Om COOOO.

N OmmO@

m e

'w..O.

W

  • A O

5 o

.=

.F O 8m %i$ F" m. %

==N.N.

e O.==. =. N.

gl C.'

m ej seg gg eg g N e

K,,.g 1

D. O.

N.==.N. = =. =.

.=.

y a t.

.,-)

or =

O O O re==

4 o

=m ee e M O *

==

.e e4 ew O

= ca.

  1. E g

me

-O%% %-

m N

~

emeNe s

9.-

x

- e.n O.

m

~

+

,e

. a.m.

8

., ~

,u s

e o. O

~

c C j

O '3 V-C'

+UC E

E v

e

' I a

gT 2 e-

c. c F-

.b 2.

4 *y

- F. 4 T f **.

to f0 2 t

..a.

$ *g.

t = g.c %

= e; O.

= *t t-p C.e,.t.

e.

. *=,

t *:l; 73 rL MN l'a..=.

v.

m b.

t-F

"(

  • I I ** F

~2 4 *D?

("

$.. ;.p t=t; p* e*. 2 C I p.

. f.e = ~ A %= ~C e.

Q

,S'%.h i,r" c.;*4*-%CL2 ta m.

t~

t.i tw ie..

4

. t e :- :

b t a

'"o

, se

  • c e, e t t, 6 "t4 p f. *. $. x$'

is 3~

  • .,e y t*
  • t ee a:- e

=

0 Ce

  • * $, =e= t -

t t t t

r t i..% % % p;Ep?

=e e

s' tru t t E 5 *. g g g

e r. { i, ;. m== m. *= = t..m. % - %.~

C

-=.

.. 3

[2~%

a t-L' L L ** * ? C 4 [> 5, [e C

E f p%h Ot"

==-

t b=w y t * }%% $

--R

.C f' = sstil T et re ~ ~ ~ ~ ( t. ~7 i..s~ts.k ;; M.

I I I I E t

"I

-.1 % =. 6. =I I

- c-

~~~~~-

e f

i 1.-

[

D # "D T(

R.

25I

.ow

.a

m___

m

._m.

1 4

a1 esa # % *** O es eJ

== e

.A e

=A ** e4

== w% e.A J.==. ew Q O. O. O. no.

e.

1

m. e.
4. O. =e3 a.
m. eu. e.
o. O.

g

%O in O==

O O *** O O = O *== *s.r O O O O es l

am

=

ew e

F* 88* M f%== e..C **= d or

%s en es =^

es #

===8%

N.O

==

O se e 89

==-==ee

== A e ce #

SA C *= em J

a

    • m.

ev. C. 47%

ee.==. ce.

m. e* .' e.s a. or. O. O. O. O. or.

a.s O,

=>4 Lf*.

JO OOO O.

O ** O O to O - *A N O O O O==

s Od eo

==

en e

8, e

-N.

O og -

e m m e c a m e.

I

,, 0 m.

N

. =..

  • ,o

.===w at et== saa O

sw4 e= m *=s - g ce P=

4, W a

0 O to

==

  • ===d 5% % O== *n O O O O O e 3

C.

g -

O=

4A O

C me 4

g ee eeO s.A O io m mA O m e - e e==

m e m.o.t e C== =A tak e m== et% re Q C

4

- =e3

- ce.

====== we

==

ee== en

=C em

- c.

e%

-ce w

j-l C

m m.r %

%e.-

Om.r-mO-_

_e.

a es. th. e. e.

O. O. O. O. m. O.

en. ce. o. e.% J. G. O. O.

O.**. e.

,e r

w ee ** O d O O O O== O O ne O==== at O O O ce e

==

w w

e%

e q

b g

cd-m

-me%em

-mme-@-O mm O

4.

ew em ma rs sA C so = sO ee C -

OO O

e%=eso es,sn m

  • =. c. c. ea.

O..= O. C. a, O.

c. as. C. e.
r. m. O. O.

O..A.

e.

C w

e ym gm

%D, 0"

am 85== O m3 OOOO-O O ** O ** # to O O O *"s e

(

ga em

==

s a.o

=

E 6

    • i m ie C e c%m so m.r O et r so O w%.es m.=

- en e

g

%.3. eo. m%..

tA. ew W =O. et.4 em.

em.==. 0. ID. a. a. O.==.

  • ==.s. e.

D y Je C

em 4A d O O==== 0 O O C ** O - #== O O O==== c%

.E.

. = = = =

ew m

==

4 W

i e

  1. ** % C m **== =O C%==

ses J 4 - V% e5 ** e3 e3 J a:

i 4

e C ee==

se e% e a a=t to ed

      • % O ca e

D eA== 88%

em ew==

==

W rw

== cm se N

Q c

a=

2 e,

V O

e m ee a se e% ce es%== ew sus a3

  • ==

e= c%

e3

.===m O

in..r.

sa.

O. O. =.

c. a.A. so. O.

-in.

O. O. e.. e. O. O.

cn.

eq U

M

  • J OOO OO OO se O *A 4 O O O O -r et a

w

==

== v e

d f

y e

.e

.: Ln

  • ! Oe o

s-e

== s in O in

,o.o ce e-a m ce m

c es o r=%

C ce %G A e m% 2 en, O O e O.

C;%

N em e3

-Ok sa d e n*s

      • O.

,y ' g m e.-

W%

O. O.==.==. cr.

C

=

O. O. ew

m. e.

8%.O.

a3 4.=

so 4

=A OOO OO OO N

O so e3 O ** O O -r O

C

==

N i==.,

c

[

C k

1l e @ht iO fu es es

@ %O 8*% GA O

es che %^ c4== w% che M e i

O 7 vs or e*

Q*

-O==

Q--

dO-m

- * * * - + -

  • e C l ed O

O O es

e. -

OO O W% h== % C or O e==

C.in, - C.c O O c.=e e

e, e%

ed C1

[

a-e :

e es e so

-%O in O

- =A e.

c. O a: - m ie O ew 0

@%==

d O

O -=== to d as

. 6

-.O

==

.F

=

or

)

O ***

4

=

ce

= *

m m-or ~

a.=.

4O aeg l

D 5

-o e

  • l

.C C e

e p

a p

4

~-

=,, '. =.

C

(~

=,

f.
  • e D

2 of

'3

'd

-z 3

~3 c

- ~ -

~

c. =

e w ~N *e = b.,.4 s

- ** S

-g c 7 g t2 es

.v.4

~, e to

.e %

a u% w

  • E
  • .8
    • ' $,2
  • 3 ** T

.m*=

2 E 2.~

"I $ r. E *

h. 4 ***s. 2 *o== (u
  • =

T*

  • j 63
3. * *. $

f,.

Q ). CLc.*~.'.==-?)'.a*A c, CL.

.~.3%.

k.

y '.

u =.-

  • 3 1.* =.

a4 2

w h

i..E = en *, C eg e%,

==

c On Cs a - : -. = -.

.a.s - = ; 7 2 f. 6 ~7 e

= e.

w

~

=

9 2'a

.=,,n

.c,.

t

<=. - - >,

s 8s

( ( **

.:,. ~

es. 3. %e n,.

en gp g e

m. %.

een

=.

a. :. :

}

o

.c.

2 7 *v.;F, h N A ~ '.' **.*. "m" ~2 E I I I I I "3 > D D. 9 ~es%b**

9 "n"

pe

- ~ ~

e r e y e v se a-*=.****,*****'.**,.

$?

?!="."**.=***=%*5.5.*.**.

O (g

.',*?

m s

ta a=

-. %e 4 g g at as sa = - - d.,,.y =. -. ~ R % ~ e a o

g t

b '

I-

e o a.- =a.3 c. e.==

.c

,,o e3 m aa a. 6 - c.

..,,, m - ee o.,

-, =w J J - J e G J

-?

q *ini# J O = D' rs e J a2 O vs e1 J6 *-.seoooooo

    • o o.A c o esa ce
e o o sa c.=

ce

.t

- g

%.r. e. e a

    • o. a..e,. ee.

4

.e ce es c.

e e.,o e,..e== u

a. 2 e.

.c e em g.

.a.i - e Ln J

so c **

ac ej%

=.a as. 30 4. J. 43 o.F. ) o.

r.* od t".s o. es. *

c. o. o J N. s. t.

e e

a 4

.w i =

~ o -r o o o o e o o - o o a o o.e c o o s o es e.

em en m

9 Q

l 8

o as e o es e o m

= o m as.a e. # o

- -= % v=

, eo 0.% %r.) 4A.G. ee.==.. @.

. UJ.

ee.==i.p*. o. J. e. e.

ce. e. c's o e.

cr.*

1 e

i,,

== ** o o o - o =^ - o

  1. - o a3 o o - ce oN - o o.

.c 4

==

m e

p e

C

.C z

- o a..n m

.a. c

,n

~ c e.; m.r

.r.

- e - m e.

e m

~

or es -

ce e=

.r.=

e-

- reu m

ee 4

a2 -

-= =

.- au. m

- w== e i

.n C

3 U

O

=J

-e e

w n

.e e so in s,.)

r:

o.

e.

~. o. m.

es..e.

..o.r.

ce. so as.

oooC=

e a

c e so o

o ooM

= o *** o ** e o en d

. ew o. o.

e.

.se m

m 0%

Q CO

-s

=

m eo

== o me

, e ~ m o -e

-o so co

.c., ee.r,

e%

.o - -

e ew - es so o a o-ce g

al c

=

o, o. o. e. '

. o. e. o. #. N.

@. o. @

.o. rs I O.

=. c. s.

ew e

mO am o

o coo ooc oos o no eoc-e w

.2 p

.- l

.p in a o se e o es m%o cee e%eo as

=

y"# ;

O.

w; ev. o.

e. ea. ' ' ' = * * *.

se, er e.

m. Q. o.

.,. e.

=

0 o

e'6

-- o c2 2,c o - N o ee

-e,.=

.- ce o e. i I

- m 6

1

=PN 1

m

%.=

ce sa - ED o se o c= m b

l4

s. Jan m e.a i ce y

d a'>*=*"*

e - %G d-e* to 0% c 43

  • =

se ce

.w a

m c

s e

e as ew

  • n o

l' O

g o e. e Ne%a 66 ee

    • c2

%e% oe

-o. o. =^.

m.

=%

es

. ce. e.

m. o. o. es.

as.

".o.

3.

. %G. 4. sc.

'ee a)

== ew %

oCoo o

ew o 40 o an - o A-Coa ew

- co e

g

.A %C 1.

o sn no e,

e e ce

- eee~

.n o e i a C..y so.em so s o

@.e m e em e

OG c c% @ oc o-e

%= _D

e.. a.

. o. o. d.

o.

a.

ce. =.

ce. ~~. ew s.

e. o. na } -sn.

a 1 --

Ce o o cie '

-to

<W o-a

  • =

oo o N===.

Ow 0,

CDCe o

g,,

Sg g

- t.

.C.n e e c ~ e.

ee o

km a.*

n re - o.r.c

  • % c.

e d**

=*.*Pe.

C'.te. J.

"4 sp N.

. O. M.P. es. e;.

8"%. #. e.

m.

Q O si O ggJ

.e

. ~

~'

o no o

-ooG

= **

e"

  • =

m3 4

==

u** =. o **

O o...

e%,

e=s g

l l5

.a # 4=

- e e-e ce es G e o., an e m

- N ce ce 0.C-N G3 o - e.

m ce m==

e

=.=***% ee =0 e

wo n a

2 N

    • i ce N

o es C"

g; Q

38 g

O' wT O N es v *C 6A LA C

.- cc e"

e, o2 m

y m

to 0,

c e

. M E

1

?%

4 ~:

  • i.e

= '. ~

p-s-

m 5%

=.*

~~

mm e=. ;- n

= t%

is :

t.

e 4.s.

L t1 m

ew '

%-~-

t

..7

%=-.

n "2

'm

'*. * = = *; 7

t) t

e. J***

Z te E"===

g3 L**= ;.'. (i I g

  • e.

? *3 L.

2

    • E g L E L,, an

~ ?%

a d 63 %.

, = * * ** O et LA'

'S

g P'

wa

=%==.

L h

  • j s ah ;

.,.,.6.

L 4

m.**

L w e C t.

e'.m %

  • N 8"'8 '.* N.* 7. e.

I.

=,,,

W

=

a..'e l

M 2 L.c ' w 4

7

=

,'. aw = "

  • vv

..= = s.s

  • a.t.i. e.m..o.

a g. ; ~O -y =4 %

L L.4

., n ~

.n., & r r m:..

d

$4 c> t.a L - ce c r n e.

u==

C=

4 s g

'..f. ;7 e ". *

,n v.

e

. a2..'-*4 C L C i..

-.e n 9. **

-as

~+-

~ =c.a m % - =

o f's Q+

% % ?

u i.e u e : y

'; - e c

-s..

..-.:yr

,.s es w c e....

u,

m. " " i; -

c e ;

e*

'..=.Tks dl1,% 4'3 t*

=y b b.,., * * *.. ;.

% 3

- he 1

a w

P'"

== 4.%

. 2 as be==.

6.**

- * * * * * * = *= ** =.*.m

=>=====6 i

f I

g

i, T

t Table'h-6.

Species composition of fishes collected using rotenone at Locations 4.0, 6.5, and 8.5-

-durIng August 1977 i

WUIMIO Location 6!5 L oc a tir.m B.$

p.,j i.a F

raono g

gg f,4 T~

$gn i,cs '

T/iu

~ I~ii/ia F

T/s.a

[

j

~

' lbevr. m4 cep c.li.wn 6

0.03 0.001 0.02 214

'2.65 43.524 58.43 13 0.03 2.761 5.7) r h so eti i r r e n. n.w 4

0.05 0.00 ).

0.01 1400 9.59-2.1)$

4.16

i

. q;rema carg io -

6 0.03

(. 246 18.90 4

0.05 3.604.

4.84 8

0.05

9. 4 ti9

'19.61 '

Ap l c3.r.it 8u. i r. gint 3

0.04 0.002 0.04 4

0.05 0.001 0.01 13 0.0) 0.000 0.02 I

//at.nigenuo cajuoletoes

)

0.04 0.004 0.01 IS 0.19 0.025 0.0) 4 0.0) 0 005 0.08 J d r :ps. chiart;rius 11 1.15 0.102 0.31 -

191 2.44 0.235 0.32 365 2.50 0.434 0 00 pe n s is h..f.:enius

.23 0 31 0.031 0.09 13 0.03 0.088 0.04 Litn p.is nius.s 46 0.69 0.120 0 36 204 2.51 0.319 0.4)

'279 l.91 0.467 0.91 4

0.0) 0.510 1.(6 1.*t ein.sws 2 rioters.s

)',

141Tusws c:ta.s 156 5.30 0.295 0.09 1108 I).6s 1.998 2.68 18) 1.25 0.114 0.40 I.'t sl*.n..s n.+ulu nes 46 0.57 0.122 0.16 w

I. r.e's.... g l it y.vi >ulus 244 3.63 2.2) 6.15 1182 2.26 I.145 1.54 293 2.01 2.662 5.52 tr..evns c8st y:.i s in 1.10 2.812 8.51 54 0.67 0.039 0.05 518

}.96 0.24) 0.50 CD

' 0.11 0.035 1.7) d leg ewit I.,1rld 9

0.8) 0.059 0.18 12 0.15 0.388 0.52 16 -

I,gme r: <surs ts.s 168a 25.01 6.332 19.16 l2 16.52 5.041 6.71 1586 -I0.81 4.405 9 14 L.g m sa nillecus 12 0.21 0.110 0.11 le). wit gefess.a 50 0.7% 0.246 0.74 34) 4.25 2 371 ~).12 330 2.26 1.819 1.11 4 t rimit e. ro-4in.s 1028 15.20 3.801 .II.50 2818 35.69 11.180 14.91 3119 22.7% 11.}04 23 A6 tri n preiws s a! 5.i.fes 99 1.41.6.109 20.30 100 1.24 2.265 3.04 199 1.36 3.3;9 1.08 .r..~ n a amn.12ris II 0.1% 0.008 0.08 44 0.30 0.031 0.c6 l'e ria emigrinseietatus 15 0.22 0.20J 0.6) 21 0.26 0.019 0.02 48 0.31 0,. 30 ) ' O.64 irls.esti. a fusil. w e 10} 15) 0.022 0.01 154 1.98 0.011 0.04 681 4.71 0.450 0.11 f i Ns* set clerofi ' 11 0.55 0.089 0.06 11 0.14 0.004 0.01 769 5.21 0.174 0.36 l h 1.w fl eu vens '28pA 42 69 3 801 II.50 1155 14.32 2.154 2.8) 4444 30.45 6.840 14.,11 - ,b) .tnial 6118 99 91 33.046 99 99 8064 100.00 74.494 100.00 14595 100.00 48.194 99.9) g we) s . h. Eso F=' f s

Table 4-7 Species composition of fishes collected using gill nets at Location 2.0 during 1974 and 1975 Years 1974 1975 Soecies No. No.

cpisos:eus osseus i

0.5 Doroso':: cepediante-131 62.4 45 66.2 Cyprir.us carpio 5 2.4 1 1.5 Carpiodes cyprinus 6 2.8 N:w s:om: spp. 1 0.5 '4::oe::ma robua:um 1 1.5 Ictalurus spp. 3 1.4 Ic::iurus brunneus 1 0.5 1 1.5

urus cc:us 8

3.8 3 4.4 Ic ::urut p:::ycepha us 22 10.5 5 7.4 Morane airysops 8 3.8 .6 8.8 H:r:ne s::::ilis 15 7.1 4 5.9 zoomis auritus 2 1.0 1 1.5 cpomis mac.~3:h.irus 1 0.5 Micrcp:erus salmoides 1 0.5 1 1.5 Po m :is annularis 2 1.0 ?: orie nicro-acu!.::us 3 1.4 To ta l 210 100.1 68 100.2 SC s a

Table 4-8. Species composition of fishes collected using electroffshing gear at Location 1.2 from 1974 through 1977. -Years 1974 1975 1976 1977 Soecies No. No. No. No. A Dorosom: cepediar.:c-21 3.5 15 9.3 14 2.8 5 1.6 Doroso m rever.cr.se 1 0.6 1 0.2 Caprir.us 'c:rpio 1 0.2 Hybogr.::hus regius 2 0.3 No emigor.us crysoleucas 1 0.2 1 0.2 l No:ropis spp. 2 0.3 l Norr:pis ar icstanus 10 1.7 No:ropic chloris:ius 2 0.6 Notropie r.iveus 6 1.0 6 3.7 24 4.7 8 2.6 Mo:cstoma robuer.c-1 03 Ic:: urus brun.r.cus 10 1.7 1 0.6 5 1.0 2 0.6 Ic::I:cas cams 7 1.2 Ic:: te us p;::peeph:Ius 6 1.0 4 2.5 3 0.6 1 0.3 Morar.e chrysops 1 0.2 Novor.a ca.:::f!is 2 1.2 !,cpomis hybrid 7 1.2 15 30 2 0.6 Lepomis auri:us 273 46.0 50 31.1 200 39.6 116 37.9 Lepcmis gibbosus 1 0.2 !,epomis gulosue 2

0. 3 5

1.0 2 0.6 Lepomis macrochirus 152 25.6 42 26.I 179 35.4 106 34.6 Micr:p: crus s ;noides 62 10.4 22 13.7 40 7.9 38 12.4 Po s %e :n.r.uiaris 1 0.2 1 0.6 .bmaria r.igramacuL::us 15 2.5 6 3.7 14 2.8 19 6.2 I:hececom: olestedi 3 0.5 3 0.6 Fere: cavescens 12 2.0 11 6.8 4 1.3 Total 594 100.0 161 99 9 505 100.0 306 99.6 l l' l I l l 30 i I l

CHAPTER V EVALUATION OF ENTRAINMENT i INTRODUCTION No significant adverse environmental effect on the Lake Norman ecosystem is expected as a result of the entrainment of aquatic organisms during oper-ation of the condenser cooling water system at McGuire Nuclear Station. No rare or endangered' species have been collected in Lake Norman. FACTORS AFFECTING ENTRAINMENT Entrainment is dependent on a number of factors. The most important of these are the mesh size of the screens, flow rates of water within the intake 1 cove, standing crop of phytoplankton and zooplankton within the intake cove, and density and susceptibility to entrainment of fish eggs and larvae. Because of the depth ofsthe lower intake (90 to 106 feet at full pond), expected low dissolved oxygen concentrations during the summer, and the known vertical distribution of these aquatic organisms, it is unlikely that substantial entrainment will occur except at the upper intake. The three-eighths inch mesh size of the screens is too large to prevent - fish eggs and larvae from entering the cooling water system. Flow rates of water within the intake cove will decrease rapidly with distance away from the screens. Most entrainment of fish eggs and larvae will occur during spring and summer, although intake velocity at the screens will be less then than during other seasons. Aquatic life of the intake area was studied by Duke Power Company as part of a program to provide baseline data prior to the operation of McGuire. A l synopsis of methods and sampling locations is given in Appendix Tables 1 and 2 and Appendix Figure 1. .31

ANALYSIS OF PHYTOPLANKTON AND ZOOPLANKTON DATA The phytoplankton community in the intake area was dominated during fall, winter, and early spring by diatoms and green algae. In late spring the blue green algae became the dominant class. During the summer, the phyto-plankton community was dominated by dinoflagellates, green and blue green algae. Estimates of phytoplankton standing crop in the euphotic zone of the intake area ranged from about 500 to 2500 units m1' throughout the year. The standing crop was low during late fall and winter, increased rapidly during spring,and peaked during the summer. Data on the vertical distribution of phytoplankton showed much higher standing crops of phytoplankton in the surface waters during late spring, summer, and early fall than in bottom i waters during that period. During other seasons, standing crops were not substantially different between surface and bottom. Bottom waters were always dominated by diatoms (Reference 1). The zooplankton community in the intake area was dominated by rotifers during most of the year. Standing crops of ratifers' generally peaked in the winter and early spring, decreased markedly in the early summer,.and increased again in early fall. Crustaceans were occasionally dominant during the winter,- and were abundant only during that-season. The total zooplankton standing ~ crop was generally lower in the area of the McGuire intake than in other parts-of Lake Norman. Throughout the year zooplankton were more abundant in the upper 10 m of the water column, although this distribution was not as pro-nounced during mid-winter (Reference 1). The impact of entrainment on the pnytoplankton and zooplankton communi-- ties of Lake Norman is expected to be minimal. -This-is due in part to their relatively short reproductive cycles and the ability of. plankton populations o recover from stress. Numerous studies on Catawba River phytoplankton and '32 l

.:ooplankton have reported little impact on these communities as a result of entrainment (References 8 through 12). ANALYSIS OF ICHTHY 0 PLANKTON DATA The fish species known to spawn in the McGuire intake cove are primarily shad, yellow perch, bluegill and crappie; other species are listed in Chapter IV. Yellow perch, collected at a water temperature of 14 C, were the first larvae to appear in yard net samples. These larvae were followed by crappie at 15 C, shad at 16 C and the sunfishes at 22*C. Shad were the most abundant larvae in Lake Norman, occasionally reaching densities as high as 3400 larvae 1000 m' of water filtered (Reference 1 and Appendix Tables 3 - 42). The eggs of most fish reproducing in Lake Norman will not be particularly susceptible to entrainment. This is due to both the spawning habits of the fish and the characteristics.of their eggs. Sport fishes in Lake Norman, with the exception of striped bass (Morone saxatilis), spawn in or near shoreline areas. Their eggs are deposited in nests, over rocky substrates, or among plant material. The eggs are demersal and, in cost cases, adhesive. Since the eggs of most sport fishes are seldom present in open water they are not expected to be affected by entrainment. White bass eggs are released near the surface, usually in the shallow water of lake tributaries, and are fertilized as they sink. The fertilized eggs are adnesive and tend to stick to the l substrate. Therefore no substantial entrainment of white bass eggs-is expected. ~ Stripe) bass are stocked; they do not reproduce successfully in the lake. Threadfin shad release eggs from the surface to a depth'of about 5 m. l Eggs are released in both shoreline and open-water areas (Reference 13). Since spawning of threaafin shad occurs throughout the lake, the eggs will be 1. more susceptible to entrainment than eggs of other species. 33

Edwards et al. (Reference 15)-also found that, of,three locations examined 4 in Lake Norman, the McGuire upper intake cove was'the least suitable area for l the spawning of shad. They attributed this to habitat. The upper intake cove has steep, rip-rapped banks, very little shallow water and a lack of cover such as brush and aquatic macrophytes. Many other coves in Lake Norman are i much better suited for the reproduction of shad. Threadfin shad reproduction is based primarily on a single year class (age 1), allowing rapid repopulation (Reference 13). CONCLUSIONS f The impact on aquatic organisms entrained through McGuire's condenser cooling water system is expected to be relatively low. The principal organisms likely to be entrained are phytoplankon, zooplankton and shad eggs and larvae. J In consideration of the reproductive cycles of these organisms, low densities and favorable distribution in the intake area plus the presence of a curtain. wall on the intake, entrainment at McGuire is not_ expected to adversely affect j the aquatic ecosystem of Lake Norman. I I i l 35

TEMPERATURE (C) 15 20 15 20 TRASH CURTAIN TRAVEUNG DAY NIGHT RACK WALL SCREEN (FULL POND) 0 ,s j 'f ::.- l 'Z: 1 y I I $5 I I . i $[i ~ 5 ) ) a g / / a, / / ri. x I / / 2ll:. na / O / / / 10 [ [ INT. [@ I i -/ PUMP ( t,}! / w* I l e.nti[bb 1 / .c bMiE4@l'86?.T.':h .J'.n D R *.* I / ~ -O'** I e i / i e u 500 0 500 500 0 500 3 DOROSOMA LARVAE /lOOOm CROSS SECTION OF MNS INTAKE STRUCTURE A B Figure 5-la. Day and night distribution of larval shad (Dorosoma spp.) and associated water temperatures (dashed line) on 19 May 1975 at Location 4, Lake Norman (modified from Reference 15 on the advice of the authors, who have informed us that the range of larval densities shown in the original figure should be corrected from 200-200 to 500-500 as shown here). Figure 5-lb. Cross section of McGuire Nuclear station intake structure, showing re-lationship of Intake opening to vertical distribution of larval shad (f rom Reference 15).

/ / / /- f / t52 //pl/ hll / / // ~ / / / in / $ '. E .// /// / 25l e* ',/ /p / / - -u l / / 5T1 / / p //p 2s / ~ g =0 / s-i5 /p/ ,,,e* / / / / / /,/ 'k $ / ~ / 6*e / / s / ,./ / / E 3m;f C / Y / // 2 e o h p O / / / E~5 Y e* / / C a / Z / W / / / p ** ,s / s- / $$] ' {N ~2 e e / / / /

  • z

^ / 2 ** >= ) b $3 \\ ,./ W /l /' / k \\P p ,f /y/ i lill Z ** / W / o \\e**[ /- / = ,s ?t' .:il ! O \\s** / / G / 8 EE25 f f/' e o ,e l / / e* '/ / ss r,- !p/ / \\ge / \\^ ** l,- l Q , / / .? / / / e / ,, e y p / ,s ~ \\ *#,e / / t /p / A o / s \\ \\e \\e\\ N T go**.N / so + / N s / / Af*~ v .s ej f e h/ / Af

  • n.e Aa hffb

%n a '. 1 t*T g i m;;f g,,,i JU tn 3 a 37

f f P / / .Af f. / / \\ / / il , 6 3, /

c. -

f yE= / / / '/,/ / / / / / m 8.= s p- .. = u i /} / / / / a, 8 / / / l/ N8 / / /D / / / / e /q / + e* [ l .m

,- l lt jp/ ;e m

e . - l F;; p*,k f'f, ,/ g4i e',l -r 2 (/y/ '/ e =- / ^s'.e/h V /,l -,/ 5 ib / .e / / / 2< \\ / =- 6 f / bE$ f/ / / f'/[/ / \\/ / -n.: = !, j l r f' //,.-

  • ' l

/ / =e / /- e ,f /, / / 8 E$$ I p* / / cie; e// l'-ll/ / e I, I', $ ~e a E e i O **f/ ? }',;, -ft,/- i21i e**'/ ,l/ E4:= ~ \\/ p / ,/ e / / / l / ,,/ e m /,- 6 s / Oe p / \\s f I / s' / l / { ssh's / f ,/ o .=' / / / ,,/ \\ / / / w a ' / / / / A

  • e#

/ / / / ,Aa l, /,,,, 'f i l[ / , ){:', f

  1. S/

,,l . / / / ss M1 / 9

  1. l
  2. %s

/j//Af' I /b An. l f ;/ / x.,,,-lA *X

    • ~l

/ / j i g ( s#[/ A3 I m dj' ~ e i D )i 1 ~ ~

0 l // l' l o / / / / l i ~ = / / o j/, E;- / /,/ 222 / / o -E. / / /' I 5=5 / // / \\ f . 3 _z //// / / / v / / is=i a<f /' -./ / / s / .=c .s*,// / / /q r / ?5, m g / /l' \\ / L / ~i2 ' e/ ',g b 'y gi' i jji /i i .o** '<///p/ ~ i rs ,i //f~qOy' E S'" 3

,. 'f/

/f Gi / I // 554 ir'/ /l e ,c / //: > :n a le*,/// /q/ / / fE .i / \\, / / / f/ 8 =?? / / f;l / / 5 ..,/ = m-5 Ei I ///,

    • f/

/

vfi//Ts/ //

Eiis /,/ / / = = ~ / / / / o* / /

,-%g i #/ g g/

/ -r// /gI / / / / / / / / I /'// f*l/ './ g*T / /./ / / ./ / / / / l/ / / / / O*e/ / / / / / / / / / / / / / f / I / / / / /*/ / / / .Ae /l/ /p p1 / i / c'p/ //l/ s' [ l / / l f l / e,/ e / / /. /fi,f,gl // . p s,eQ* n /w -i m,,, ! i.f

  1. Npi i*lgr' pyg mmL s

i I

LITERATURE CITED 1. Duke Power Company. 1974. McGuire Nuclear Station Units 1 and 2 Environ-mental Report Operating License Stage. Vol. 1 and 2. Revision 6, February i 9, 1976. -Duke Power Company, Charlotte, N.C. 2. Colon, F. P. 1972. Condenser Cooling Water Intake Structure - Model Study, McGuire Nuclear Station, prepared for Duke Power Company. Alden .Research Laboratories, Worcester Polytechnic Institute, Holden, MA. 12 pages. 3. Colon, F. P. and J. W. Leavitt. 1973. Progress Report Number 1. Lake Norman Hydrothermal Model Study for Duke Power Company. Alden Research-Laboratories, Worcester Polytechnic Institute, Holden, MA. 31 pages. 4. Edwards, T. J., W. H. Hunt, L. E. Miller, and J. J. Sevic. 1976. An evaluation of the impingement of fishes at four Duke Power Company steam generating facilities. pages 373-380. In: G. W. Esch and R. W. McFarlane (ed.). Thermal Ecology II. Technical Information Center, Energy Research and Development Administration, Washington, D.C. 404 pages. 5. Rice, J. O'H., J. F. Krueger, and R. G. Otto. 1974. Laboratory fish studies. pages 678-743. In: Industrial Bio-Test Laboratories, Inc. Final Report to Duke Power Company, Charlotte, North Carolina, Baseline / Predictive Environmental Investigation of Lake Wylie September 1973 through August 1974. Vol II. Industrial Bio-Test Laboratories, Inc., Northbrook, IL. 743 pages. 6. Strawn, K. 1963. Resistance of threadfin shad to low temperatures. Proceedings of the Annual Conference of Southeast Association of Game and Fish Commissioners. 17: 290-293. 7. Industrial Bio-Test Laboratories, Inc. 1973. Fish physiological studies. Progress Report for June 1973. Project V, IBT No. 643-03710. Industrial Bio-Test Laboratories Inc., Northbrook, IL. Cited in: Duke Power Company. 1974. McGuire Nuclear Station Units 1 and 2. Environmental Report, Operating License Stage. Vol. 2, Revision 6. February 9,1976. Duke Power Company, Charlotte, N. C. 8. Gurtz, M. E. and C. M. Weiss. 1972. Field investigations of the response of phytoplankton to thermal stress. Department of Environmental Science and Engineering School of Public Health, University of North Carolina, Chapel Hill, N.C. 152 pages. 9. Knight, R. L. 1973. Entrainment and thermal shock effects on phytoplankton numoers and diversity. Department of Environmental Science and Engineering, School of Public Health, University of North Carolina, Chapel Hill, N.C. 73 pages. l l i 40 l l

10. Smith, R. A., A. S. Brooks, and L. O. Jensen. 1974 Primary production. pages 139-147. In: L. D. Jensen (ed.) Environmental Responses to Thermal Discharges from Marshall Steam Station, Lake Norman, North Carolina. Report Number 11. Electric Power Research Institute, Psio Alto, CA. 235 pages. 11. Davies, R.M. and L.D. Jensen. 1974. Zooplankton entrainment. pages 152-172. In: L. D. Jensen (ed.). Environmental Responses to Thermal Discharges from Marshall Steam Station, Lake Norman, North Carolina. Report Number 11. Electric Power Research Institute, Palo Alto,_CA. 235 pages. 12.

Restaino, A.L., K. E. Bremer,'C. L. Brown, D. G. Redmond, D. L. Wetzel, and P. A. Jones.

1974 Entrainment studies at the Allen Station. Pages 617-677. In: Industrial Bio-Test Laboratories, Inc. Final Report to t Duke Power Company. Charlotte, North Carolina, A Baseline / Predictive Environmental Investigation of Lake Wylie September 1973 through August 1974. Volume II. Industrial Bio-Test Laboratories, Inc., Northbrook, IL. 743 pages. 13. May, 8. 1968. Biology of the threadfin shad. Final Report. Job X-A and X-8, Project F-16-R. North Carolina Wildlife Resources Commission, Division of Inland Fisheries, Raleigh, North Carolina. 13 pages. 14. Shelton, W. L. 1972. Comparative reproductive biology of the gizzard shad Dorosoma cepedianum (Lesueur), and the threadfin shad, D. petenense (Gunther), in Lake Texoma, Oklahoma. Ph.D. Dissertation. The University of Oklahoma, Norman, OK. 232 pages. 15. Edwards, T. J., W. H. Hunt, and L. L. Olmsted. 1978. Density and distri-bution of larval shad (Dorosoma spp.) in Lake Norman, North Carolina - entrainment at McGuire Nuclear Station. Pages 143-158. In: L. L. Olmsted (ed.). Proceedings of the First Symposium on Freshwater Larval Fish. ' Southeastern Electric Exchange, Atlanta, GA. 251 pages. 41 L'

APPENDIX FIGURES i ? i 42 8

A ,~~x i ev ] i

  1. Ysf"ssg V" 4 % U A

i v i gp .P l t q m g~ % I ] "'Ene ~[33 g, j t ? Q$h v % r, - TrgA r \\ ~d. rs p1 \\ 3 3as ? } Y ] 1 l [ g'N @f i gg 4

e. s m<

I co.aus remo cau ~' -f l. { LAKE NORMAN ig.,c, ,j g )i s-~ 1 Accendix icure 1. Lcca: ion of saroling staticns used in ga:he-Ing ecciogical data. " ~{ " Ps)W a n d =l ?

4 ...e. e.............. . - - =

  • i

-.. J 4 k Y . t b .m L. e ~ f ^f s T G G S ? + 9 9 ,s m D " ?.4 e Q&A I'- l =CN i - a cn O e k, V z g, 4 O C L C. I O - o o o CO e 4 i C C to G C Cn O CD-t-- hv i x hCC i __. z L 5 e mv= CCC C >0 m-= eA > o e mQ Lu,# Qmg ""g* m i 3.c. rg y 3 MMJ w L s > Co ,9 3 < Q* .--,, g *. sW i 3 e-I 9 c C b- -g ap e= k X " o i G e C h a O C. 6 A 1 C 4; s. C s. -t. s q W w - G3 T ^% mY = ~ ne ~ .c .c C ig ?

1 0

-s ~ .b. e$ I: . -n-~- 3 I i c e h4 k C ~~ 9(

ssaan mn

........................................................g. gg...g u, 8,

7 .) J m + .a e if W. O, c, O A- -A e e a .\\ - - i. C s l s l A 4. G- -e l i e n l A -- A G-e a 10 e e e l h---- - - - - -6 --e s e D 6 g5 A_. _6 g_ l I E e a A_ .-._A 3_ _.. e 4 $ 20

3. __

-a a__ 4, n l A - -A G. 0 I as s a _.... .g e. e i s 30 A -- -a G c e e i 0- -6 e A_. __._a e )$ It)TJ p lov!?ohlft t.!NES DCe Ort $1tepwo L(VIt1 TION. M, .l. .k_ _ _.I _. ! _ _... k .[. _._ [. - I --. k, -[ b } I. _I Q O 2 4 6 6 10 12 14 16 18 P0 22 24 26 2u kJ Y[ uiTHH h*E ( C" ] O 1 2 3 4 5 6 7 8 9 10 11 1? I3 14 1 '> DISSOL%f D OXWit N (eg, L J 6 4 4 l W Appendix Figure 3. Average February temperature and dissolved oxygen profiles for Lake Norman (1968-1977)

7 ____.-.-.) s. S s 1E nd '. O, 0. O "- h. __x g g n -_a ..e s _a 3 .e h- .-_---[, g. ..g g 10 a... c,.._ is p 3 _. e s a y,, 3_ .___n 3_ . _e l t 3y y A-.. .-. - A e _.._ __ .. e l E 8 a _.. .. a e .._.e s f 3_. 3___. 4 e._ 3._. . _ __ a e._ .e e a -- t e-e 33 r-m4' eincia unes sec. ac si,<owo const rcn. i i 1 1 1 1 1 1 1 I I I i 1 J O 2 4 6 8 10 12 14 16 18 20 22 24 26 2ts O l 9 k TLwYRATWE (C*) e 0 1 2 3 4 s t, 7 8 9 10 11 1? 13 14 15 i DlL50L VED 0x rGCit (eg.'t ) l esa 3 Appendix Figure 4. Average flarch temperature and dissolved oxygen profiles gd bg for Lake Norman (1963-1977

  1. .h can il

N 1 1 - - - 5 $ T 4 t ~ k f J . cs bO ra e nu t CM k O Q Q Q 3 Q Q 3-e 4 Q 4J *w N N j 4 [ W_ l f Q _, O O i C l.>. N O t i 'a % QO (' I C I f Q6m i j j R& I e e 3 3 l o c lo 6 0 0' i u om 7 )M g 8 - x l ^ i L O C 3 l j d l 1 c .5 3 m <= E O i 0 L q - dd 3 i O > O j E e-= w o mO 7 b M C = e oMa 1 >-c 4 a <VJ ,P w 3 l - e3 M i i w l O e a ~ C LO c i I h i L l 4 ~~ U J = g 4 4 en y 1 d X 4 e -a o 4 ut e 5 i n a 4 i h 4 ? 4 3 . 1 9 ll id) 1 --. 4 m a 6 b l t 1 P - T oJ 2 I Y:k~N i 4

2. 2 4

7 -m Q Q e-- ag D C qi "A e= e r q s . Qd CSe3.3C N d30 ~ [

o. a.g,

c................................................ I I i e . +m. t ? : I h i i t s .4 l ~.* f I -7 ) i L ~ t a = mmW O c-Len Q __. 9 o =4N a M Om )@ m L e-. L C. t w } .g C CO Q C. C c &OO

d. '

_ e i Q -- g c7-C- G 4.J hv l I Q X i l hoc ^ i d e c I i 3 D 2% @ p i m. ? s W Q j - f S m. d r c>o ,p i W 3. 3-O i mo 4 k $ 7 L mW '~ c., C A-4 l l 5 >- 7 a i ,W w <54 - 3 ^ >. i a 3 4 i m k i 8 l C I s A a 9 c i di e -i e 3 1 u o i r. i .~

  • U x

4 4 _O f ~ "O .r* 5 C 4 y v I d! E-c. C. ? CC w -n v 9* i = 5 e 5 = 9 l a M -e m 5 i 6 M 4 1 ., lk ~ '- " w - e t & f I i 8 e o i 9 i e a 1 = e. .+ % g r' ) " { lt CSe3.3a7 Me30 e. u..................... 6 +. -- i'

g.................. e I e e e i -- e : t I i e

.o

,g . OJ e ~ ~ L ~ ca t C ~ - C% 'C r; g 4 OO t

  • C 3"** N e

ao o e 4.2 % N 5% to o CD i L Lm O C. e C. CD a=e OOO T W 4 _m e e u m-g e w l cx .c l B m C OC "J V E d. e a' s oy Q 40 g oy o F mm =- i W 3 to o k 3 Q bM O c oea .c e y

  1. 3 W

+ &V"d 2 ,9 -3N> 9 W T.., l .e t. S N a 0 e t q g e = C cn i T 4 X

  • y C

o t, p, in e O A C) O. '3' O O C. 3 ? ct 3 -m e c hn tif t 3 ,. - a ~

  • 5

=95

  • .-. v ra s

C. O a f';: P. - ~ - .m, e- - El i .L' 'I r I i 1 A_ d._ o o O k Q O + es m m w u3c C, p.......J l r,

l.. $ee l.iee,, tie.9e * .'sl.lil;.,l l,4-Iiio i lilii ll i'll ! 'K 13 t 9 1 4 l 2 A o., A 6 3 c

l. 2 t

A A p, 4 21 2 r 2 1 do A I 2 1 nf a s ee d. rl) ui7 tf7 A 1 0 0 2 1 ao9 rr1 ep - A p 8 mn6 0 ee9 1_ l 9 e t g1y( yx e + A ) l on L u a A / g Jd m ) a er 1 1( ( bC evo 8 o. N gl { t E o f ao G RU M rse A esk TA C H D via c A - 4w 7V AdL t E i a J1 d. a T R E [ S S e 6 8 I D e G r 2 1 6 u 6 1 g A A i F A k x s A i I 0 e, . 1 5 dn ru e O t p i e t, e e ] p A 6 O 1 8 4 6 [ O W O e a H 15 3 6 f 1 t f O e G G C+ n u HL S I 4 2 G t r I L P' G G N r t it rt 0 . 2 1 1 e_ Z 't_ I 1 H fC f H 6 [i ~ 0 0 5 1 5 0 M b 0 1 2 2 G6 -. 2E'8 ]b"}(<._ "* 9_mP)w-Qw$@p j + ..-I +s ..el. eii.8.l.*el.li l.l.l.4s4eesa. r X~ = u t - E

p...............................................................................- 6 a I 1, w m -t i e j t OJ _T, r S i t C L @ O _ ~m a L m i t U U i 4-^ i l r3

  • N I

7' C L%N r2 N QO@ t' O. L, 4 gg O CC 4 =O n C) C\\ M E t " e i 4 O r-. mw r i ax ) m i OO C \\ d 3 D i - p ca <t p i ~ A 5 $8 z~ O>O A cn - = 4 O tu 3 eo i O Y L M C t

a o m.:z

>*d Y C 47J i 4 i y 4 v 9 i w a .g M r + 0 4 i N O C 0 l e L m t y s S .O i e i 4 u. 4 i X O p i" s D .t. C I e Q c. d' Q ~2 S e c W r I x i.0 m ,i O t a S s v3 l s i A At N w + i .A n 5 t .,5,~- w - l e, 2, % 4 I i e e ,O t i i 1 4 ,i 1 A .g g O e ? k A s t t O bd 3 f((~ 9, h , D ~ [.I [ I b ) ) ,1 q> CJ 4%, O' E

p....................................................................... o t b mes O t i ~ 4 e E T s 9 I 4 I I gs a _.A -s e g .g .5

  • =

t

    • i -J F.J T

3 I e f of &W f L o c4 e e gre A a *e N l 1%N i 6 o cn o6-aat l _; o o y CO + vcc i a O CN o g l CD - L w I W X e .c o C - f 7 e E o u onc o 4 a G) C CL > 0 "d l @ m -l" r mo e e M CJ o 9 - f d 2.,. O@J S i i 4 en.- m 2 o S S. 'g ~ I i 174 m L I - o l ca t L a 1 - > co 4 ~ 9 -,3 N a ,F C < "J 4-t 9 Q i .i i e g q e o I o G 4 l 0 _ m a e L 4 t 3 e r O ~ .e Y I ..K O p e D c I. U i a 4 C-m a< T r a 5 h W D $~ 1 ) i D e 3 i e.4 T 4 y + +. .4 Q t '8 l ., E. - m l s-i "Si ! l g b t o. o p o 2 s e i4 (553i3n Mid30 e< (1 + ...........................................4.i03N-,a' '>. f~"', {} q. u\\ g J.. J= O

o c. r(#. 3-o 3 1 e i 3 -_.e 3 _a i s IM- ~ ~Q .I d 9 i p. -e A. __.._.g io.. i 7 e 1 C . _ -.- o A_.___,,___._.._._4 t n; 3 _. e 3._ _ _ _ _6 t ,r_, 3_ .._-_e 3_. _ __ g L. t a) a _ _. a s. _ 4 5 i p-e 3 .. a at 1 j. _e 3_ _ _ op _e 3 -. _ _a e l i h. s g A_ .._....f e 4 ... u. i } .u ur.us s ns us. a. a.u n<u ir. w, ncr,. caf,) e 4 +. ~ e I i i i 1. I i i 1 (2 i4 u ce 3 3 c, u w w <c : c_ r 3 U_.- 0 T ? i 4 5 e 7 s 9 t if 11 12

}

t4 )s p:_r:3 c:sss.i:2 ena 3.;- o tCJ M_ t

l__3_,

YRJ Appendix figure 11. Average October temperature fd 2 and dissolved oxygen profiles for Lake flortaan (1968-1977) M b

i s a u,.

o. a e,

se + e a l l c, e 4 b~ D '-k 9 in .+-e s., t n s -e l s, ._3.. _ _ --_ a, ?. ..a - 3 ._._y, P., e _. .- 3 _.. e l c, a.-+, ,a a y. s - e. e [4 rm. s..> ...afac,. ines uu u. u,<oya a a,a ut,. '~~5 29 I i 1 i. I t t 1 i 1 ~)> a 4 e i4 a w

c 4

a

~

o n u, wn. w < c > $?420 o i 4 m m.7 a te n 1., ti 1. .. o m,m.. o Ed c-Lace y Appendix Figure 12. Average flovember temperature and dissolved oxygen profiles for Lake fiorman (1968-1977) b

p................................................... 1 6 4 4 0 4 a -,e,- 4 [ -s I e y i f4 m DQ - e. L-e rs )W b w%N 9 OO L Le 9 T 4 9 I' T g C C. e l i G _. p o l' l } ~ - a c0 Ed c to i t OoO s I a me [ 5#' hw a i L x I t o m 1 e o + ooe 1' 1 e 6 "z e 'g 3 e m 6 sE t E ,d oDL a U > O d C-Z e i OO e c; .Ju m* o.m. a Z m. m 6 5 C7J L r i A 3 OV L 1 > = o a_ < m% ~,N_3 w O s* d' I [ Q I -2 4 l = .c m e. x ~o y e k C e A e c.) 4 .g a a + u m3 T Y I t 4 .-.e f 9 Y ,? 5. f .=.T 84 3 O T O = C. e ~ Z-f C C O A ? ?. cs=3.w sa; .........,.......................................------..--. ~ L ia

4 I i k 6 i P f v I f f l ,t I i r f i APPENDIX TABLES f i i b I l i l f I e i 4 t F i l ? I 0 I t L . ' I J i. N3C i t T-t 9

  • *'4 g--

- r.,.

~ __. _ _. ~ Page 1 of 3 APPENDIX 1ABLE I BIOLOGICAL DATA COLLECIING MEll10DS,1973111R00Gli 1977* FISil MONITORING Sampling Sampling Variable Time Period Locations frequency -Analyzed Methods January 1974 through

1. 2 Monthly Adult fish species Electrofishing at 400 to 800 volts December 1974 composition and abundance 4

I January 1974 th' rough '2.0 Monthly Same as above Gi11 netting with 1, 1.5 and 2 in December 1974 har mesh panels January 1975 through 1.2 Quarterly-Same as above Electrofishing at 400 to 800 volts July 1977 January 1975 through

2. 0 Quarterly Same as above Gi11 netting with.1, 1.5 and 2 in bar December 1975 mesh panels June 1973, June 1974

-4.0,6.5,10.0 Annually Same as above Rotenone application to one acre cove August 1975-August 1976, 4,0,6.5,8.5 Annually Same as above Rotenone application to one acre cove -August 1977. - October.1977 through

1. 2 Monthly same as above Electrofishing at'400 to 800 volts December 1977-Larval fish season 1.2 Biweekly-Larval fish. species Filtration through 794 pm mesh net-1974 through 1977 composition and abun-dance i

L -l

Page 2 of 3 APPENDIX _iABLE I (Cont'd) PHY10 PLANKTON MONITORING Sampling Sampling Variable Time Period Locations Frequency Analyzed Methods March.1974 through 1.0,2.0 Monthly Chlorophyll, filtration, acetone extraction, . february 1915. Species Compo-fluorometric analysis. Van Dorn, sition sedimentation, microscope counts. - March'1975 tbrough

1. 0,2. 0 Monthly Chlorophyll Same method as above December 1975.

1.0 Weekly Species Compo-Same method as above, sition January 1976 through 1.0,2.0 Monthly Chlorophyll Same method as above September.1977 Species Compo-Same method as above sition October 1977 through ' December 1977 1.~ 0,1. 2,2. 0 Monthly Chlorophyll Same method as above Species Compo-Same method as above sition i' l. t

Page 3.of 3 APPENDIX TABLE 1 (Cont'd) 200PLANKION MONIl0 RING Sampling Sampling Variable fime Period Iocations Frequency Analysed Hethods January 1974 through 1.0,2.0 Monthly Species Composition filtration through 80 pm mesh net, micro-July 1975 and Abundance scope counts May'and December 1974 1.0 Biannually Vertical Migration Pump (May), whole water sampics (Dec.) filtered through 80 pm mesh net, micro-scope counts . January 1974 through 1.0 Monthly Vertical Distri-Pump (through April), Clarke-Bumpus samples July 1974 L bution filtered through 80 pm mesh net, micro-scope counts November'1974 through 1.0 Monthly Vertical Distri-Whole water samples flltered through 80 July 1975' bution pm mesh net, microscope counts ation through 80 pm mesh net, micro-August 1974 through 1.0 Weekly Species Composition Filt:4 December 1976 and Abundance scope counts October 1977'through 1.0,1.2,2.0 Monthly Species Composition Filtration through 80 pm mesh net, micro-December 1977 and Abundance scope counts October.1977 through

1. 0.1. 2 Monthly Vertical Distri-Whole water samples filtered through.80 December. 1977 bution pm mesh net, microscope counts
  • Methods used were part of an overall monitoring program on Lake Norman to provide baseline data to help assess the impact of the operation of McGuire Nuclear Station. Changes made to the methods, frequency or sampling locations of this monitoring program reflect the use of improved methods or changes in the objectives of the program.

APPENDIX TABLE 2 DESCRIPTION OF SAMPLING LOCATIONS ON LAKE NORMAN Location-1.0 - Forebay of Cowans Ford Hydroelectric Station at center gate of spillway, 10 m from the dam; depth of 36 m. This location is adjacent to the McGuire Nuclear Station lower level intake I structure on the bottom of Lake Norman. It is on the lake side ~ of the skimmer weir of Cowans Ford Hydroelectric Station. The shoreline is riprap on a steep bank. Location 1.2 - In the McGuire Nuclear Station upper intake area, 50 m from the center of the lakeside of thu intake structure, depth of 15 m. This sampling location is the one closest to the upper intake 7 structure at McGuire Nuclear Station. The shoreline is riprap bank. The bottom of this intake area has been dredged to remove debris. Location 2.0 - Midway between Channel Marker'1 and the northernmost point of the peninsula to the east-southeast in the Catawba River channei; -depth of 34 m. This sampling location is 1.1 km uplake from 1 Cowans Ford Dam. Location 4.0 - Fifty meters northeast from the mouth of McGuire Nuclear Station discharge canal;. depth of 8 m. Location 6.5 - In the cove-northwest of Ramsey Creek Access' Area, 10 m north-west of the midpoint of a line connecting the points of the mouth of the cove; depth of 8 m. Location.S.5 - Ten m southeast of the midpoint of a line connecting the points .of the' mouth of the covefsouth of Catawba River Channel Marker 5; depth'of 10 m. ! } ' 1 -~4 1 e w y r

Location 10.0- In Davidson Creek arm, third cove north-northeast of Channel Marker D-7, 60 m north of the midpoint of the line connecting the points of the mouth of that cove; depth of 8 m. t

Appendix Table 3 Larval fish collected using a towed circular yard net on Lake florman at Location 1.2 on 9 April 1975 3 Larvae /1000 m Surface Shoreline Surface Channel 5 tieter Channel Species Replicate i Replicate 2 Hean Replicate i Replicate 2 tiean Replicate i Replicate 2 Hean l'? c.: flervese',rin 0 22 Ii 19 36 28 0 0 0 Total 0 22 Ii 19. 36 28 0 0 0

Appendix Table i. Larval fish collected using a towed circular yard net on Lake flornno at Location 1.2 on 16 April 1975 t 3 Larvae /1000 m Surface ShoreIine SurIace Channe1 5 iteter Channel Species Replicate 1 Replicate 2 lican iteplicate I Replicate 2 fican Replicate i Replicate 2 fican Icaur flancoe,ma 71 7's 73 17 29 23 0 0 0 Total 71 714 73 17 29 23 0 0 0

Appen<lix Tatile 5 Larval rish collected using a towed circular yarti net on take florm.in at Location 1.2 on 21 April 1975.. Larvae /lOOO m Surface ShoreIine Surface Channei S tteter Channei Species Replicate i Replicate 2 tiean Ileplicate i Replicate 2 fican Replicate I Replicate 2 fican I e r,,1 fl<meneena 63 162 113 80 90 85 0 5 3 Total 63 1722 113 80 90 85 0 5 3

. _ ~ ' Appen<lix Table 6. Larval fish collected'using a towed circular yard net on Lake Norman at Location 1.2 on 30 April 1975 3 Larvac/1000 m Surface Shoreline Surface Channel 5 Meter Channel . Species-Replicate la Replicate 2_ Hean RepIlcate I Replicate 2 Hean-Replicate 1 Replicate 2-Hean l&nsm(vrn 0 0 0 0 0 0 . l2 6 14 14-0 0 0 0 0 0 un nris 42 42 33 52 43 60 73 67 l'crea flaimoenna Total 56-56 33 52 43 60 85 73 'A Suple'not preserved { w svv v -e* -v e v ww-e er,- m n w*-w-- -*w w wwr w. ,v w +-w-w wem= ww---++tv-w-wwi=ww*- -e- ,+v-v w= em - - - w w i-w*w,- T

Appendix Table 7 Larval fish collected using a towed circular yard net on Lake teorman at Location 1.2 on 7 May 1975 Larvac/1000 m Surface Shoreline Surface Channel 5 ileter Channel _ Species Replicate i Replicate 2 flean Iteplicate i Replicate 2 fican Replicate i Replicate 2 Hean it inin,=r : 9 22 16 0 38 19 0 55 28 l'. ru wis ile 26 20 0 0 0 0 6 3 l'en a florescenn 88 88 88 52 58 55 6 6 6 total 111 136 12fs 52 96 71: 6 67 37

Appendix Table 8. Larval fish collected using a totved ci rcular yard ne t on Lake t1orman at Location 1.2 on 13 May 1975 3 Larvac/1000 m Surface Shoreline Surface Channel 5 tieter Channel Species Replicate 1 Replicate 2 Hean Replicate I Replicate 2 fican Replicate i Replicate 2 tiean l'. > r em 14 278 146 74 195 135 45 52 48 lepvnin 0 0 0 0 43 22 0 0 0 l'< wxin 5 42 23 0 83 42 0 10 5 l'en a flarmacenn 4 18 11 4 8 6 10 18 14 Total 23 338 180 78 329 205 55 80 67

Appeniliar-Table 9 Laival fish collected using a towed circular yard net on Lake tiorraan at Location 1.2 on 21 May 1975 3 Larvac/IO00 m Surface ShoreIine surface Channe1 5 Heter channei Species Replicate IA Replicate 2 Hean Replicate l Replicate 2 ftean Replicate 1 Replicate 2 Hean Porunomr 1517 1517 266 655 461 264 335 299 regvmin 5 5 0 0 0 0 0 0 lliewpt.n un nairwiden 0 0 0 4 2 0 6 0 l'ormrin 0 0 0 24 12 0 4 2 Ft / mon tm r 0 0 0 0 0 0 5 3 l'ouv:s flavencenn 0 0 0 0 0 0 4 2 jotal 1522 1522 266 683 475 264 348 30F A Sample not preserved

I Appendix. Table.10.~ tarval fish collected using a towed circular yard net on Lake Noeman at Location 1.2 on 4 June 1975 i 3 j Larvac/1000 m Surface Shoreline Surface Channel 5 Meter Channel - Species Replicate i Replicate 2 Hean Replicate I Replicate 2 Hean Replicate I Replicate 2' Hean-16eosem2 473 967 720 381 463 422 16 70_ 43 Cyprinidae 8 38 23 0 0 0 0 0 0 I.cpmiin 4 24 14 0 10 5 0 0 0 'Mierepterwr calmofilen 0 4 2 0 0-0 0 0 0 )'crea flaveneens 'O O O O O O O 5 3 4 .5 A 'b a P t Total 485 1033 759 381 473 427 16 75 46 p-e-, .,,,q- ~ - - - - -, - - e -- - .n -w----- -.v. m ,e -nv .v,-.- ,e,--,,.,e,,

Appendix Table 11. Larval fish collected using a towed c i rcu l a r ya rd ne t on L ake flo r m.m a t Location 1.2 on 18 June 1975 Larvac/1000 m Surface Shoreline Surface Channel 5 Meter Channel Species Replicate i Replicate 2 Hec a Replicate I Replicate 2 Hean Repilcate I Replicate 2 Hean lorosmu 71 205 138 89 194 142 43 135 89 Ictaluridae 0 4 2 0 0 0 0 0 0 Total 71 209 140 89 194 142 43 135 89

Appendix Table 12. Larval fish collected using a twed circular yard net on Lake Norman at Location 1.2 on 24 June 1975 3 Larvae /IOOO m Surface Shoreline Surface Channel 5 Meter thannel hicc ies Replicate i Replicate 2 Itcan Replicate i Replicate 2 Hean Replicate i Replicate 2 Hean ib n w nus 44 62 53 249 310 280 145 335 240 Cyprinidae 0 5 3 0 0 0 0 0 0 le; orrin 53 69 61 0 0 0 0 0 0 Filv'ont m i 0 5 3 0 0 0 0 10 5 Total 97 141 120 249 310 260 145 345 245

Appendix Table 13 Larval fish collected usino a towed circular yard net on Lake florman at Location 1.2 on 7 July 1975 3 Larvae /1000 m Surface Shoreline Surface thannel 5 Meter thannel Species Replicate i P.cplicate 2 fican Replicate la Replicate 2 fican Replicate 1 Replicate 2 flean Ion u m 33 75 54 44 44 112 392 252 Cyprinidae 0 5 3 0 0 0 0 0 1,.romis 19 59 39 o o o o o lotal $2 139 96 44 44 112 392 252_ A' Sample not preserved

Appendix Tal>le i ts. Larval fisti collected using a twed circular yarel net on Lake florman at Location 1.2 on 16 July 1975-3 Larvac/1000 m Surface Shoreline Surface Channel 5 Meter Channel Species Replicate i Replicate 2 flean Replicate i Replicate 2 itean Replicate 1 Replicate 2 #1can lB 123 86 forusonu 5 9 7 15 20 18 i Is't >omic 0 18 9 0 0 0 7 12 10 Total 5 27 16 15 20 18 55 135 96

Appernli x Table 15. Larval fish collected using a towed circular yard net on Lake florman at Location 1.2 on 23 July 1975 Larvae /1000 m Surface Shoreline Surface Channel 5 tieter thannel Species Replicate I Replicate 2 #1can Replicate 1 Replicate 2 ttean Replicate i Replicate 2 fican Ibr onorn 0 0 0 5 10 8 0 23 12 Total 0 0 0 5 to 8 0 23 12

Appendix Tatsle 16. Larval fish collected using a towed circular yaed net on Lake florman at Lacation 1.2 on 30 July I')75 3 Larvae /1000 m Surface Shoreline Surface Channel S tieter Channel Species Replicate i Replicate 2 fican Replicate l Replicate 2 ttcan Replicate i Replicate 2 flean l'. in >nena r 5 11 8 0 0 0 0 6 3 Et hvans t on t 0 0 0 0 0 0 0 6 3 Total 5 11 8 0 0 0 0 12 T

Appentlix Tatste 17 Larval fish collecteti usinti a toweti ci rcular yarti net on Lake llurman at Location 1.2 on 12 August 1975 t Larvac/1000 m Surface Shoreline Surface Channel $ Heter thannel Sl$cies Replicate i Replicate 2 Hean Replicate i Replicate 2 Hean Replicate I Replicate 2 11can livm::< c s 0 14 7 0 4 2 17 57 37 Icrcnic 15 23 19 0 0 0 0 6 3 Total IS 37 26 0 4 2 17 63 40

Appen.fix Table 18. Larval fish collecteil using a towed circular yard net on Lake florman at Location 1.2 on 3 Septerilier 1975 3 Larvae /1000 m Surface Shoreline Surface Channel 5 Meter Channel Species Replicate i Replicate 2 flean Replicate 1 Replicate 2 Itcan Replicate i Replicate 2 fican l'o rv:tm, 0 0 0 4 17 11 0 10 5 Total 0 0 0 la 17 11 0 10 5

Appendix Table 19. Larval fish collected using a towed circular yard net on Lake flornan at Location 1.2 on I April 1976. Larvae /1000 m Surface Shoreline Surface Channel 5 Meter Channel Species Replicate I Replicate 2 Hean Replicate I Replicate 2 Hean Replicate i Replicate 2 Hean l'e'r *a flavene.,rta 0 0 0 0 4 2 0 0 0 Total O O O O 4 2 0 0 0

Appendix Table 20. Larval fish collected using a towed circular yard net on Lake teornan at Location 1.2 on 14 April 1976. Larvac/1000 m Surface ShorcIine Surface Channe1 5 Heter Channe1 Species Replicate i Replicate 2 Mean Replicate i Replicate 2 rican Replicate 1 Replicate 2 Hean / e rs.sai r 5 5 5 0 5 3 0 0 0 n > u i:- 0 5 3 0 0 0 0 0 0 h...i f/,ne:cerm 0 18 9 II 20 16 0 5 3 Total 5 28 t/ 11 25 19 0 S 3

1 4 1 Appendix Table'21. Larval. fish collected using a towed circular yard net on Lake Norman at Location 1.2 on 29 April 1976. i 3 Larvac/1000 m Surface Shoreline Surface Channel - 5 Meter Channel -Species ^ Replicate i Replicate 2 #1can Replicate I Replicate 2 #1ean Replicate I Replicate 2 fican luruscas 46 104 75 662 1024 843 158 274 216 j ltietopterna valividen 0 0 0 0 4 2 0 0 0 lbr10.rin ~ 275 389 332 94 116 105 9 11 10 Perva flavescens 15 57 36 30 40 35-32 60 46 i t e i i. l

fotal 336 550 443 786 1884 985 199 345 272.

i l l ~. .m. .m.. -,.

Appendix Table 22. Larval fish collected using a twed circular yard net on Lake florman at Location 1.2 on 18 tiay 1976. 3 Larvae /1000 m Surface Shoreline Surface Channel 5 tieter Channel Species Replicate i Replicate 2 Hean Replicate 1 Replicate 2 Hean Replicate 1 Replicate 2 Hean Ibmaeu 122 176 149 50 53 52 15 49 32 liienq te:uc satruidaa 0 5 3 0 0 0 0 0 0 Anva flar'ecc.rna 5 15 to 0 0 0 0 0 0 Total 127 196 162 50 53 52 IS 49 32

Appendix Talile 23 Larval fish collected using a towed circular yard net on Lake Norman at Location 1.2 on 26 flay 1976. 3 Larvae /1000 m SurIace Shore 1ine Surface Channe1 5 Heter Channei Species Replicate I Replicate 2 Hean Replicate i Replicate 2 fican Replicate i Replicate 2 Hean Int on w 699 826 763 429 739 584 192 466 329 Cyprinidae 0 5 3 0 0 0 0 0 0 I4 Tecri.; O O O O 4 2 0 0 0 hvno.ric 0 0 0 0 4 2 0 4 2 !vtv.i flav.>nivns 0 0 0 0 0 0 0 9 5 0 Total 699 831 766 429 747 588 192 479 336

.~ .. ~. - h Appendix Table-24. Larval fish collected using a towed circular yard net on' Lake Norman at Location 1.2 'on 9' June 1976. i-3 I Larvae /1000 m Surface Shoreline Surface Channel 5 Meter Channel Replicate la Replicate 2 Mean Replicate i Repllcate 2 Mean Replicate I Replicate 2 Mean ,$pecies 861-861 45 72 59 -. 442 442 4 nnscom lLeportin ' ~~ 4 k 4 -4 0 0 0 a N 5 4 i. 1 865-865 45 72-59 .lotal 442 442 A Sami le not preserved L =.a.

1 ( Appendix Table 25.. Larval fish collected using a towed circular yard net on-Lake florman at location.l.2 on 23 June1976. Larvae /1000 m Surface Shoreline Surface Channel 5 Meter Channel Species Replicate i Replicate 2 Hean Replicate I Replicate 2 Hean Replicate I Replicate 2.Mean . Isroc<ni 116 188 152 39 121 80 6 14 10 'lefvxnis-0 0 0 11 -15 .13 0 .4 2 E'th mstoma 0 5 3 o 0 0 0 0 0-Perca flan'eneens. 0 0 0 10 10 10 0 0 'J i 4 Total 116-193 155 60 146 103 6 18 12 + ,I ~ t+

Appendix Table 26. Larval fish collected using a towed circular yard net on Lake tiorman at Location 1.2 on 8 July 1976. Larvac/1000 m 5 tieter Channel Surface Shoreline Surface thannel Species Replicate i Replicate 2 stean Replicate 1 Replicate 2 fican Replicate i Replicate 2 Hean t wo::c w u 4 10 7 32 89 61 106 211 159 Iqmin 0 28 14 0 0 0 4 13 9 Total 4 38 21 32 89 61 110 224 166

Appendix Table 27 Larval fish collected using a towed circular yard net on Lake Norman at Location 1.2 on 22 July 1976. 3 Larvac/1000 m Surface Shoreline Surface Channel 5 Meter Channel Species Replicate i Replicate 2 fican Replicate I Replicate 2 tiean Replicate I Replicate 2 itean l'or< >ct s : 5 33 19 12 I fe 13 32 64 38 Iq wric 5 5 5 0 9 5 o o o Total 10 38 214 12 23 18 32 44 36

Appendix Table 28. Larval fish collected using a towed circular yard net on take Norman at Location 1.2 on 28 July 1976. Larvac/1000 m Surface Shoreline Surface Channel S tieter Channel Species Replicate i Replicate 2 liean Replicate I Replicate 2 Hean Replicate 1 Replicate 2 #1can Is. i n >c< m 0 4 2 5 10 8 11 73 42 I..p e:in 0 0 0 0 16 8 0 5 3 Total 0 4 2 5 26 16 ll /0 G

Appendix Table 29 Larval fish collected using a towed circular yard net on Lake Norraan at Location 1.2 on 12 August 1976. 3 Larvae /1000 m Surface shoreline Surface Channel 5 tieter Channel Species Replicate i Replicate 2 Hean Replicate i Replicate 2 tiean Replicate I-Replicate 2 Hean T'er onma 9 17 13 0 8 4 10 24 17 Cygir i n i dae 0 4 2 0 0 0 0 0 0 f.cremis 0 4 2 0 0 0 5 5 5 Total 9 25 17 0 8 4 15 29 22

Appendix Table 30. Larval fish collected using a towed circular yard net on Lake florman at Location 1.2 on 25 August 1976. 3 Larvae /1000 m Surface Shoreline Surface Channel 5 fieter Channel Species Replicate i Replicate 2 fican Replicate i Replicate 2 Mean Replicate I Replicate 2 Hean lo n>n m r o !4 7 5 5 5 0 10 5 total 0 14 7 5 5 5 0 10 5

j-- I -Appendix Table'31. ~ Larval fish collected using a towed circular yard net on Lake Norman at-_ Location 1.2 on 13 September.1976 3 Larvae /1000 m Surface Shoreline Surface Channel 5 Meter Channel Species Replicate 1 Replicate 2 Hean Replicate I Replicate 2-Hean Replicate I Replicate 2 Hean lomsom - 0 0 0 0 0 0 7 'l3 10 1 l i - 1 i . t j j . 1 b t Total 0 0 0 .0 0 0 7 13 10 1 ~.. -.. - . _. _.., _..,, ~ _ - -. _ _.

Appendix Table 32. Larval fish collected using a towed circular yas d net on Lake florman at Location 1.2 on 7 April 1977 3 Larvae /1000 m Surface Shoreline Surface Channel S tieter Channel Species Replicate i Replicate 2 flean Replicate I Replicate 2 fican Replicate i Replicate 2 fican

1.. r flarv.mynn 4

4 4 0 4 2 0 4 2 Total 4 4 4 0 4 2 0 4 2

0 Appendix 1 Table 33 LarvalfishcollectedusingatowedcircularyardnetonLakeNorman'atLocation[l.2on:21 April 1977, Larvac/1000 m Surface Shoreline Surface Channel 5 Meter Channel.

Species

-Replicate i Replicate 2 Hean Replicate I Replicate 2 Hean Replicate-I Replicate 2-Menn (Presen2 0 9 5 4 18 il o-o. o Qil'rinuc' muria. O o o o 4 2 o o o Awxia 37 7I 54 3 9 6. 0 0 0-1 2 47 65 56 11 35 23 7 .l6 : 12 . rciv a flavescens l b 4 e 1 Total 84 -145 Ils -18 66 42 7 16 12 ,.m.- e

Appendix Table 34. Larval fish collected using a towed circular yard net on Lake Norman 'at location 1.2 on 5 May 1977 I Larvae /1000 m Surface Shoreline Surface Channel 5 Meter Channel t-Replicate i Replicate 2 Hean Replicate i Replicate 2 tican Replicate i Replicate 2 ttcan, Species } Ioros%: 41 53 47 83 105 94 to 32. 21 J/ twrin 102 113 108 95 121 108 9 23 ' 16 'l*6tva flaveneena O h 2 0 0 0 '9 Ik^ l2 1 1 I i ? I 1 . Total-143 170 157 178-226 202 28 69 49 -n=- -r e n + .H -, - = S er 4 e --e a = 4

A Appendix. Table 35.. Larval fish collected using a towed circular yard net on Lake Norman at Location ~ .2 on 23 May 1977. l w Larvae /1000 m t Surface Shoreline. Surface Channel 5 Meter channel Species Replicate i Replicate 2 Hean -Replicate i Replicate 2 Hean Replicate 1 Replicate 2 Mean s Ibi osme 1977 3411 2694 726 1718 1222 269 2335 11302 Cyprinidae: 0 9 5 0 0 .0 0 0 0 .Itarwte cittcycopa 0 0 0 .0 4 2 0 0 0- . lepc mrin 4. 4 4 13 19 16 0 12 6 files optensa calmitten O' O O O 4 2 0 0 0 l'ompris. 0 0 0 0 0 -0 17 .27 22 t

F;tirvantomt-0 4

2 4 7 6 0 6 3' l'etva flaveneena 3 9' 6 0 0 0 0 4 2 1 t Total 1984 3437 2711 743 1752-1248 286 2384 1335 n.. -

7.. m ~ Appendir Table' 36. - Larval fish. collected.using a towed circular yard net on Lake Norman at Location l'.2 on 3 June 1977.' Larvae /1000 m Surface Shoreline Surface Channel 5 Meter Channel Species Replicate I Replicate 2 Mean Replicate i Replicate 2 Hean Replicate l Replicate 2 Hean-Ierononu 60 66 63 121 121 121 359 369. 36fi 'lgperin ' O le 2 0 0 0 0 5 3 , Et heon terru ' O O O O O O O II 6l l / 4 'l t' 1 i - Total 60 70 65 121 121 121 359 385 373 _,.7, ,.7 n,, ,n .---.,y y ,.-,~,,-#,

4 .AppendixLiable '37. Larval fish collected using a towed circular yard net on Lake Norman at locat. ion 1.2 on.16' June 1977 3 Larvae /IO00 m Surface Shoretine Surface Channel 5 Heter ChanneI- ' Species-Replicate i Replicate 2 Hean Replicate i Replicate 2 Hean Replicate 1 -RepIlcate 2-Hean lwonier - 32 60 46 315 477 396 232 317 275-cyprinidae 7 7 7 0 0 0 0 0 0 O lepomin -7 21 14 0 8 4 0 0 Et hcostom 0 0 0 0 0 0 4 15 10. T 4 h 4 L . Total 46-88 67-315 485 400-236 332 285 W 4-4 --.-.=,m__-. ._.,.._,,-,....,.m._., ..,.._._.,4_--.., ....,e ~ _.,, - f,.._,~._<.

Appendix Table 38. Larval Iish collected using a towed circular yard ret on Lake florman at Location 1.2 on 30 June 1977 Larvac/1000 m Surface Shoreline Surface Channel 5 tieter Channel Species Replicate l Replicate 2 fican Repiicate i Replicate 2 itean Repticate i Replicate 2 tiean l'ar w. n r 13 19 16 4 10 7 31 59 45 Im >mic 7 51 29 0 5 3 15 15 15 I intai 20 70 45 4 15 10 46 T4 E

Appendix Table 39 Larval fish collected using a twed circular yard net on Lake floirnan at Location 1.2 on la July 1977 3 Larvac/1000 rn Surface Shoreline Surface Channel 5 tieter Channel Species Replicate i Replicate 2 fican Replicate I Repilcate 2 fican Replicate i Replicate 2 flean /\\>roavm 0 10 5 0 18 9 123 292 208 Cyprinidae 0 4 2 0 0 0 0 0 0 I.cromin 61 71 66 4 8 6 5 21 13 Total 61 85 73 4 26 15 128 313 221

_~ Y ' Appendiac Table 40. Larval fish collected using a' towed circular yard net on Lake Norman at Location ~l.2 on 28IJuly 1977 i 3 Larvae /1000 m .i Surface Shoreline Surface Channel S Meter Channel _ Species Replicate i Replicate 2 Hean Replicate I Replicate 2 Hean Replicate I Replicate 2 Hean t

Dmucorn 0

8 4 4' 4- '4 25 41 ~- 3 3 'lepomin 8 12 10 0 0 0 0 182 9 i Total-8 20 14 4 4 4 25 59 42 l

Appendix Tabic 41. Larval fish collected using a towed circular yard net on Lake Norman c.: ' acation 1.2 on 11 August 1977. Larvae /1000 m Surface ShoreIine surface Channe1 5 Heter Channei Species Replicate i Replicate 2 fican Replicate i Replicate 2 tiean Replicate l Replicate 2 Mean loivaunu 4 4 4 0 8 4 0 0 0 fq,,mi c 8 18 13 0 0 0 0 0 0 Iotal 12 22 17 0 8 4 0 0 0

m_ I . Appendix Tabih.42. Larval fish collected using a towed circular yard net on Lake florman at Location,1.2 on 25 August'1977.' 3 'Larvac/1000 m SurIace Shore 1ine Surface ChanneI $ Heter Channei .5pecies Replicate I. Replicate 2 Mean Replicate i Replicate 2 fican Replicate i Replicate 2 -Hean Eu ron< ma r 0 8 4 0 8 4 0 . 12 6' i Isromin- '4 7 6 0 0- -o 0 o -0 l 1 l 1 l 6 i-,._ Total-4 15 10 0 8 4 0 12 6 ? a 6 ,r....~

4 O ~ l I ~, #.* A n 0 ee &. o. Jo. =. ec n, x y o m O m oo o o - ol' O. SR3ap o C,L.M S :l, 9 +N +*O d e24n a ) eA i R 8 8 m u o el e pur;-u e.i:.:20:: ~ ~ 7 i eth N

  • n Nm*

E 888 m o e m ooo e SM,.. S..... ..w,e g t'.3M :( 2 hhN ~ $C ~ C. i-12 4 C 2 .O R u o 0 E:M.2]Ctf.Z: 9 O em:!:.-a:C 2 d ei e C h 5 e m a ,O i VM tf gd yl tmg :!:qey 5 ~ 0 ~ J I O I am 2 mwn + 0 -4.

e. m. m.

~en e e. y --s + 01,. :C Oc l 3% kt d(" y NNN .c 0 i 1 i O t. l. C*1 g ameoe#% je .c k: t -m=m%ce o. . 4. e. m - o. e 2;ooooooo o osusur:ej l

-;g:J:"

9 h-4+@me pr> m = e-o U ) o y u U C = '9 m @ b *.= W c o - e A = a o C C %) 7 h'

  • n. o. 8. m* ~m. a*. m" h em m.

~, e ~ c r s w c ooene%emeem J'21f3d9: h

:r:ao*-

9 + ~ ++ oco~mo~* Im,- am = mDNmm%N - ~ l W t 4 .4 O 4 _2 m SU S $ $ j y C

    • 2et!f,td37 9

c ~ c <e N 4 4 @.o n a + m o n a a n c eos s e c.,a t w o m a s u y an-at m .m em - - N.

    • 'd,

+ &. m,t4f@@%N-N N N N A

  • m

-.r m a ( p .' j g y g w = y , e.. v,

a. e, w w y

4 w = w

  • .. v.

a. m C 4 8 9 a. , e e e 4 4 e o' N' e 4 e o n d 2 M o N a m e C m d 4 e.o,,% d, 4 E., o N o [ 3 s--w C' o v., - - - - - ~ ~ ~ ~ ~ m.- m - m om y e

A O N l c 2 to N b or 4 I N f# API rian r. 1 2 Z T'

  • dds t'P :::C; y

N ~ Z - o o ce N s', %J ew

o. o. o. o.

. o. = =. * *. N = oooooo oo o. e ,,. j,,, g m e ~ e. o e en -o a v :*r:c;

e N

m8 m N M Cn&:ln:O'4 ev e r::: 1 -N b

  • d ii l

o + c + o.e -y e -== h - co K o. . o. o. o. o. Np 4 oooooo o Sns:C b + !'*w $W* C:C*' M

h. @ 4 4% % *.

= = lh - m -e e 2 +l -e e \\ D E $nPWo.M Q Gr i'.* ?: s'.*

  • 1 e

4 = PN !i i t t 9 I = I ~e i m e F T$[N 's l' e m

J:S:::X 2R n

v O f 3 ~ C 8 e snu tinc y si::.f =;': ~ s .2a m 4 l h 2 a-s rt g atD!utsCA* 9 i X N ea G $Y ,C, i C n e w t o n2 4.a3o+es.a m o Na k e oe*A 4 { 2 I .e. #.#. 4, @ #.e e. 4 Pe #. 4.e...=.==.=N. N. m. c. M, e, am as 7 =* e.- e e, - - a v. l eas. { .i,-- o e..e e e o. e. 4 e e o. e~. s. o e. o a. e o e,e,c. e, o e., o.e,. -e l : ..... +........ o


e e ~ e -----

o.-

Appendix Table 43. (con t inued) Page 3 of 4 Syn ics ' n g I 9 ., 1 or M U {.8) [h )! fh f Ol b l'a hi E.h ienaih f, Rl1 NE Yi Rii .9I $E ( c a.) h/Ha 3/gs Na/Ha Eq /H_n h/H s K /H.e No/h Eg/Ha h/H4 Eg/Ha M/Ha kg/H4 h/Ha kg/H4 h/Ha Kg/H4 h/HJ Kg/H7 9 0-<2 2 0.008 2-*4 225 0.115 864 0.276 2 0.001 4-6 275 0.545 1518 3.203 34 0.044 6-8 482 2.284 1232 5.494 18 0.056 B-alo 5 0.091 205 2.045 495 4.880 16 0.105 to-al2 II 0.133 5 0.030 84 1.641 2 0.046 164 3.404 12 <14 23 0.435 25 0.878 27 0.829 2 0.051 14 2 0.096 2 0.130 2 0.066 16-< l8 '2 0.176 7 0.353 18-<20 1 0.536 20 <22 2 0.2}2 22-2h 9 1.261 24.26 26-28 5 1.054 28-<30 9 2.507 30- 32 32-<34 5 1.866 34 < 36 36 38 38-*40 40 <42 kt.4k 44-<46 46-.48 88 50 50- 52 52 - 54 54-*56 Go al 41 S 115 5 0.030 8302,_,JJIS 2 0,0M__ 3300_JL p0L 118 8 W 1_

Appendix Table 43. (continued) Page 4 of 4 species 3!; P

  • 1 P-p J[

M ., y

)

u 1. .nl S l en'lt h 'I *., 'li I.s U 'I EN O, - "ti a n. os s. =w 's3 Csand EIdu ), [ ), d,'* '.E..,} 'h. 2n '.N..S.

n. 3,.

t i,,i,, n ,,,,,i h ea) ETHa kg/li-Ho/H4 ag/ eta EJila kg/sta iG7pta Kg/Ha No/fla kg/tta No/lfa Fg/Ha tio/fla Kg/Ha 0-<2 5 0.001 20 0.005 2-<4 25 0.083 4-<6 5 0.003 1/3 0.150 20 0.048 575 0.668 6-8 2 0.008 123 0.125 Ill 0.200 8-<10 9 0.034 220 1.453 10- 52 193 1.955 12-<l4 2 0.045 20 0.418 36 0.635 14-.16 2 0.058 16-<l8 2 0.091 2 0.143 18-<20 20 1.785 20-<22 41 4.858 22 <24 21 k.l88 24-<26 26-<28 5 1.182 28-<30 30-<32 32-<34 34-<36 ye,- < 38 33-<40 40-<42 k2-<k4 44-<46 'k6-<k8 48-<50 50-<52 52-<54 54-<56 'Toia IT 7CTTI liWITE56 T 0.00: E5 6.'D23 [r17 4 962 9Et./ 120.07K

S as O d a3.- N o y n m=h4 g, =

c. o.

a. g s

re oooo o

A h

  1. ':7.1
  • u gyd:JJ e'r o

e

m. eo e e z

e -%m w w ee i mno ~ as o ee==

o. o. o.

o. Is

== ooo o x w sn;:<:tpry N ry:ato. n ~ m ew m. t'h = ce T C e-ce e, o. e

8. o. ~.

o. -r x o s A e ooo o u C tR

  • 2 8 NO 40

.o ys::a: =- e %mm e M ) m = IC i V C J cee e e ee-se =

o. o. o.

u Q c ooc S e d g CCCn9l CG MC M fnZd' 30:/' "I mom E u 3 0 2 = 0 A i C e se J v m, d C 5 V" C y any'r.d:qi.y s Q F C A OCg 4%- o E" m ee es c

==. @.== d-Y. C ~ m

e. c. e m Le-'

m C' C** nsT..O c?;.y:%~ 3 C s l# y ~a f

o. se= o N

O q e m R f' w o e or uc y ooo- ~ 9t'or<2:Si I,,

  • o

-- g,,a a e ao n i ~OM ,~ Q .N 4N 00 e + e o Lt= 9 s e 1 N. m. 7 i s l e o C o u S em.?$fef h $h t l i r :t.u:c - m m s d O i c 9 K N o a Snats: 9.e s:nt:r h:

  • z C-

) I d

Ii 196 oced 4 T o % 4 4 93 o N & Q t o % & 4 & o ee.F 4q L

e e.enmm ee # @ E3 ** - em -== es ew N Po es e8u% m - 8'*d. 4 d er d @ g/% @ C1==. e % e %.

,

s, ,e s l T. g sg

  • E

'e. = v. w e e. e e e b e o v v e a. e, v v g e e s e e ee. s. e e a e t,== ~ w o ** A @ ac c N d 4 e o *e # J eb C N # 4 e o ew J @ ar o e 410 m 8"% M m M J d 4 d s ads eJN w]** W imp as I ---====es ce m eu eu

w 0 N 8 0 1 e Z G T A 3.g.*% N#* T}IT4 $R ,= w 'dds t'an*C*GJ e =}i O so a ce s 4 e m k g -O-Aomo e 0. . O. O. ew e. o. a. = w 2 OOOOOOO O 6'* ?"* $80 $$ C* $ l L ordn*::c** e -aemma~ m = e ao -n -b N 2 2< 7 m snac:nzra t.:n:::c: 2 C. t om A g

== m -M = 00 C. %e OO O I l# FCCC b j =w 2*Jn* T;f *' 9 Oe M w 12 = cm e '1 2 s R 7 E CRO%'.4 J{ Y ser ::::: 3 C P 9 2 C ^ e "r ; J E .rz t *.:e: e 3

::s:::;; =e C

s c Ov v 9= le e a $4 em $ L = styc7 :: -.: d ~ .c e 1 i= x 2 h 3 avo!utadA2 o e Z C. f s 1 e \\ d z e o e..e s e O ~ s o m O ~ e m m e n.r a m C ~ a e - e

a. -

ew4 @ m - - - - - ewew m N e * * * - e e d 4 a a e e e # Pe* E

  • * * *
  • w w w
  • v v

w e.

  • v. v.
v. v. v. v... < a v v
v. v.

1 c1 ew 6~~w O N o t eo O N a s e O no 4 4 m O m * @ m O re a w m o ee d =* w.e = - - - - ce es ce ~ ee * *

  • m m a d 4 a # e e ess=

e

eQ* ta= 0 m e H U e. eem-w% Ne m e - e m e. - -.e e c e o .e ooe e 9 f5 Z o.O.==.==.==..==. ce. es. m. C. N. e. s, 4 b ed OOOC0CO COO e. d { m

== 09*tC%c*:S r r. mee m m m =% e i se.ts;j;J;p* 9 es e e e.p==. e e e z ees=. N ) t 2 se d 'Gol suedn 2< e5 6 C C ec C '.y S. ee o. ~ o. 9 se OO O O 4 9lbGNU ~ 6? n h n ) i Z

==. tt.% es%. N. e.==. -e e % e N e% 3 4 @ a eem e A N. %e O - e. N O O O a 2?'el;'yCCJ0*1= t7 cdr~* 2 .C a N e' co a +ce h C 's N 's.

8. e %

o. s e Coo o ens::*3 = ma% a .= sue:r* v 2 mm te ( l in 5 I l '2<e e.s:g?;! r; :1n g >k e e. N e n % e e. l= e e m e. ~o. ~. %. <" l.

o. n. e.

ce n, s "e Co--Opo w sv.1: :': =,l e e a m % e - c u a,cdn 6 a-aa w -e.~- s Ecu w 9Zs e 3" m .:r s;;;::::= sie,;a:,e 0 2 T i r3 >= K 2 't T e C si:t % Z O C. Su:d:N c. D d o c. s d e o e. s e e e a. e o e o ~ s a a e ~ e 4 2-1* e -- A en.- ce 4 e g3==== = === eg ee % ee % e *

  • m e # d # er, o e e e em u.
  • e e

e w w e 1 y v v w W w w v v v v v e v

  • C 1 4 E.

.. * = e e e e e * *

  • 4 a s * *
  • v e

e e. * *

  • e
6. =.a

0 em a s e o *e d 4 e O % c 4, eo C ** 2 4 e C ee n 4 e C *e a

========= em M ew e eu m*r5*"%m e 4 eor d # e e eta

t

7 e C c 0 C C. g

== s E t/4 N 9

  • 3 -
  • N

-4 C 9 E i 85 m j em C 6 2 E S., z g e~eeo~ o 9 -- - @ c e @ e 9

m. m. 4. m. ee. o.

e4 l %e oooooo ( a e Cu3cOOm*** =cass =9 ,.-cem N m m m e. m i lN ce== i Gi i 6 0 5 l .cos I i l r :: :rgs: g s N 9 C.* Z Q o. c N I e oc o l *I s i6

  • r pa r: "C l w+

7.:*.F:74Jj

== @ gg ~ m a 2 ( i. i. I mN A g 88 8; o 4 y oo a 5 s t:;.:sn;

7. css ay:; 2

.e a 4 ~ ~ C I j o i V I v t e-eeNm e ev e e e., lE 9 o== cp%vQ

====N e di

o. o.

ee. #.1D. e. O. N. @. M l 4 e ao e-oo a-o o ,a .:e se:r:.cr c.isr l -4 s :: w* e e, @ c - ee-m a, - 0 3 4 .m= N

==. A m >= t ee m a. 9 X i, l* C h b m I J

6. o.

h. e. 7 .e oo o o O r~t~:~uu: C-e.::.:i -~ .e a <s c. 'C 2 A i 1 o N e e m o N o s e ored d e o N & 4 e oae24 2*=+,= es a 4, e -.=== a,= m

  • m *
  • d # #.

.r v. 1 - N ce me N eu .r # e e.% e v y v w w V v.

v. v. s. v.

t

    • e.=

g w w s w v

v. v. s.

v. e. E9 ew . e. i e e e e e s l o co d w e c re a d e C, en a 4 e o e. o 4 e o em 2 4 e 3 N o 6=-*=

========-e ce ce ce N e **

  • e m 4 # # 4 4 e e ee

== ar w me

a a. o O e l' =. tme 8. e # I .s ce c.

o. o.

s o G 'l .e. - eooo c. c'B.4 }% s e.1:.a::. 2 - ~ m. e. e - a 62 e e_. -r g -a. o. o. = s o M oo a re;:. ,-ek N esi:a:::; e ee m 2 = r s ~ c. ~ -e o

  • ~

o. =t

c. a.

si C C V oo l

    • sepas
      g:

g ~ .O t;i:a:: e+ s e. u e C 1J O w .,J c 9 o f. n .M o

  • I'"

C m t'.*.:!,* D::ll l1 r b 4-m A O= m e. u 9 O 8 A' M i) m o o a .2 ! o p s.:.'s; 5 7 sq:.~ !:d- !s [ j v fi s c C !. I C e a: ha g 9 3 m W M 1l e- 'e-IN O 'el e.- m b M f,*.InnT: cn M W.* $ .C {s i 3 af. T 3' .a !j j = euc 2 Ot;s941:32

== y ~

s
a::

O U 3 i 2 .e I 8 8 1 = o A o e W i l =Tdh[Id8 i e 4 %:s:a

  • 3 e

j tqd 4 In. - .c". l 4 l2 l x e h, T 8'8##' 1 Cg er.r:r:e:is: g I i c. l ,2 o c.,e er.e

e.,e m e ~ e e e e e.

,c m o ~.,e.*s= = o

e. #.e

.s 8'"' N. N. e.s e.o**a."**. .................. J d. J. #. d. e eA e. a e.a w;a.. e WP =.= =,= =.

f. J

.e ec-6= .=t c e. a e e o e. s e e o en 4 e e C e. e e m o a e e e o c. e = -m to ed I -== === = em N N es es

  • 88**'*a*# d # # d e eete-6 I

i

r O N o I m e f = c e i ap;/j = ? t'iK <z w 2 .x se"

  • cos tv.m :c:o; 3

54

e. e.n - e e.

., ~ e o. 3 - - - ~ e.e e ., e

o..... a.

. +. Q s-e cocooo e ao ,,1 l sm:-.<dsc4:::d I ser:::c; =, .n. e,a e.. c 1 e e -. c \\ ~ E 'eJ se.se:qsa sr.m:::c; g N l4 i l o @ e.e ~ l eo o a

e. nem O

2

o.. o. o. o.

e. w l e oooCo a i ~ }; e-::: r-tre ::::: -3 ae.- .g* -oe y j D N" ,, J kW' k i ,= Ne as I58'I Em. 8'.R**:C: f f lI 8 f 4 *I= xl m [ O .r.' :'9 ;s 3 M:e:.N:; -2 C \\ o U V l 4 e-u yP.: i

    • 'cl ~': :

y ic i. l c,1 4 >= I .N Iy 1 'l t 7 C l 2 o i sessujacA) C f O. l ,D C j li I e.ese m.c. - - - - e. ~ e.se e. - - - - -,o ~,e,o.e o.n.e @

e..r a e o m e o e. e so e
e..

-..,( e v. e i w w w w e a y e. e...e o + v e 0 ~e e.s-1 e # **

v. v.

.e v v .b - ** k) o e. d d e o eJ. @m. m o e. # @ e3 o e* J 4 e o.e. # *a e o M # C 9 9 e e s e e e. e ... e e e e. e s + e l is ed w g

==m a - esc. m e. N - M m M - d PJdd # eA esem t

=7 h O m U $d i O a e,,o.= 4% 4 ev -e g me wo a e. C d O. O. O.

e. 4 N.

e. O. i = g se OOOO OO e* a sp;o <* re ' m smassi:as;H g age 4 )d 2 N d

  • CCS 9* Cl>~

E %a$ e.- et g es e f *N O. O. IC se OO IC-s m 9 l 404 j l t;, is: 2 11 ee%,eoo 1 CNe-0Ne CE O. O..#% %. %. e. 1 8E8 i s l

n OOO-OOO f

X8'I3y*CJCZb f** ~. . ~ e, ~ e. e m a %. e e e4 %c m 5 O! 7 I e m e e. 3 %%mm de. 4 OOOO es N bbb0 0 a e-a:.3 3

  1. *ach7'**

e4mm v i m-e l 6 f i t + t l i A A T" ses:;;:! a; cir~ _-) i i e e O e. .e e 4 c. i~ fg O e m e== m e e s. m a

c. m. %. %.

=

m. O. 4. =.$ c.

_q 5 q e COO---OOO 4 O f * * }JT .C 3..,,t i.* *

e. % e e - e e= 4 m c'cO M

e e@ %m+ 4mm=- 4 8 1 U w 4 s.:n.:;:an; e n s: 2 y C .0 4 i 6-em X e,, I g .%== en. N# D, ? e5 es:e'.r.c " 3:. 4.*,.~ _$ +F A -+ N D d e s 4 e

c. s o. e.- e. a. #. 4, e, e e. #.a e o e. < 4 e e e., 4 O.

C e cw c e e maemm444a##eoeW .7 A.as e ew ew. =$ w w w w w w e w w o*

  • v w w w w v

e ow ee 1 ,. e. .e = .e C 9 $ s s s e e e e * * * * * + t O % & 4 nD C em 4 4= e o, e 4 4 e. 8"'e m *% *"* m d 4 d J dO % d 4 e O N & 4 M.D e. d 6 mm ow a es %#.sf aum = = === e e e c h 4 #se= s

=l7 h C .t U Cl f3 C EI = s 9= T cga q e-8 =0 20! eJ >- 9 = N %a 4 i men @+do a,, o o -n+oe+3 =

o. o.

. e. o. o. eD. ccl w Cmo00oo m cus:59.1 *. a g:J p*> m' cc e 4 % m m m e-ncee 4 w 1 s 4 cJ l m I t l 6 2 l C ? i l, 'C's

::s:ry:

2 3 5 l l,i i +a c- = oo + + l j r oo I *j d .s 1 p r 9,0 I ^3 #:#' ] e !w r e 9 N e y } Al l 4 e, I 1 e. e., c- .=, o. ^ l w.

  • 'p")

e o c' l1 >":h t's l ~ .i C ] -g

::sco1:1,,;

u 1 O l v j e og e 'e em n o.l I o. e.4 i s Go o o m ,e j <.:r:.::-cat,v -r i e ~ EP: :1 2 l l$ S od' et >= l t x l I I 7e i a v l 2 :C**:au' b h F 7J = 1 i,I b-li i I ee s d e.e. m e 4 e o, e. a. 4. e, o ~ s w e o s. a e m o e s,a===mmeoe.aa++++ -l o


e

e. e e e

+-- .v. =.

v.,v
v. v. v. v.

.a . i

  • i w.., +

w w. 1,, s v v W e w * < < w 6

    • == 3 a
  • 9 9 s g

.t=== i ew w e e,. ONameoms4eONedeCN #4CcN#42ONJ

  • -j w-

~~~~~mm-m

<<<<e+++

~7 C t e m e se em C o.o m o m fj

o. c. o. o.

e sp 0000 o g ,n,a r t *, dN i C 9 e o h ** M = e } ,A en s a m g moeC -m = 000.o. o. sm ooco o s LA en tucam\\ s' fx;c, N a -e - ~ ee a D s .c l =9 c 'm c cet:tH::4C O d ri ute:: g ~ 0 i uo .J sx u .el C 8:Cnr* C c'd: sv.a;; o::=; a M e rf e C Z U .4 ?! C rs y J .-{l F")88'l m C O 3, sny:.~af:: Ay y v 2 C A CC m e e, m. ,c c e c g 3 N. . se O s 6. e 4-e e M f}MI .c anu zia; 2 s c. N -o ? 3 I t D m.- e e U g 4m%J e, =g co o N m Q NI e, em oC=c y m 8F'.48*eF$ 8. " :f MO** j ~oAO A O em-~ .e m o = v s c ~ %4 ommedm-m 4 9 AdadN-#m g I C. o.

  • 4 4.

. 4. N. e. %. me - m MI&I..IMe8E bdbo h g h h# bN me"emmNma ~ u 2 C w 2 -a C W 9 X No t a C ensti.* i k er.o:s: spar: y c. o e. e e en o e..e e n o e. e e e o e. e.a ao o N e e

e. #.as = ce# 4, m =r== = = = rw es me es es e m

='"5 m

  • 4 d d a d e e A

=.%=9 r = g e e w e W e w w w w w w w w w w ge.ew b. e v w a. e. y ,e g g s e.,,,.. ., he d O es e d W O es J d e o ** * @ m o *** J @ e o N J @ e o *w #,0 = = am - - % c,eneo q m m m p'.m a a 4 g g a e e i

.T 4 O N G W -4 O - ee W t O. O. C. g,'J I ->d oo o or d $5st0 01390 #- g am -+ r ee ~ 2 e e g e = o. 4 %e O 'ddl FPl.in;r$3*7 g e N l l 1 ..e-o e m 66 ee ev .s 3 C. =. es. d. m. m. N. e o COCOOO FM; &,d30 Dr:d e aret =: *- g w e.. e., c. m z wnf 9= N P d f r:J O* 9 {71. sve* r:c.- g )2 i l 'l o m% q < -~ O. C. C. O. %q C oc c g Rn:CD .b. gr.ts: = :::** w n ce s, z .e 'a b e f e= we u in9'.6's?di

  1. P* '?*
  • T: ff j i

d I' '1 n, ~m g C .LD's t;.0 e . tC::N 9x ed C j Cu 9= N e 9 ~7 en;6%.L.!'.D e ODIO.%NO } y to P-i m.r % ~ L-O & @.*

  • r

..N. '.) O.. r.. w + D ? C000 o C 4-w Q } SfD]WSJdA) 1. I g e x -%#o le, a-~ c;. = N g } .4 .e - e # @ E ~.r.. e ~.e a e ~.e -. e ~.e - a ~.A =* # =. zA -e

== es ce ce ~ ew e m e *** m 4 4 4 # er A e -= q 8m e e w a g 5 w e w e e w w w w v w w .e.e i g a si...........

a. v. v. v. v. v. v. v.

v. j .s, - "t o ee n w oo o ee n a. m o. ee s. a m o n.r w e.o.*r.r.r a +o r o.en: wowm eu -e ee ~~mm-mm v .a

Appendix Tabic %. (con t inued) Page 3 of le species M ,Il w I'I J* .l;.,i. [y .(g$ .l, 'E 1 =;- -(, t [? .". 4 tengih r* ra g J:i $, %ll I cl ss ig 5.3 3: .t; ~l. .f, .a d i

  • I ;c t= g

.{"., it timias aE

4 en al
  • T =

= (cal h/H4_ h/Ha O/H.e F9/H.a~ m/tt.: Eg/HT No/H.s F.9 / H..a No/H.s Eg/Ha No/Ha kg /H.e W/Ha kg/Ha E6ta Eg/Ha W/Ha sq/Ha 0-<1 2-.4 221 0.41) 2 0.001 94 0.030 78) 0.251 II 0.001 46 240 0.4/5 21 0.554 585 1.234 28 0.036 6-8 470 2.227 21 0.100 521 2.323 8 *lo 9 0.029 110 1.693 2 0.020 32 0.373 266 2.621 10*<t2 19 0.124 109 2.836 2 0.037 39 0.758 215 4.474 12 84 9 0.004 32 1.126 17 0.632 75 2.294 44-<l6 2 0.108 16-<l8 9 0.541 2 0.055

18. 10 6

0.472 4 0.700 20 <22 4 0.472 6 0.445 72-<24 2 0.192 24 <26 k 0.52) 26-<28 28 <10 6 1.312 30 < l2 6 1 561 12 s)4 34-16 36-< 38 ' 38 <40 2 1.218 40- 42 42-.44 44 46 46-*48 48-<50 50- 52' 52-s5% $4-<56 Liial 174% 1.Ill 4 0.057 13.1 2.4l I._l72s 1Q68 28) 0.253 108 LB76_ ~ eyo -,

e7 6 C .:r O CD Q C.

  • =

4 s

  • S =

C M d N 3b - = C aw ^J 2 = s A a 5 o~ mece 9

== A ' ** O N 4 2 O. 4

e. N. *.* O.

.O A. w m OO =OOO M $*aB:3 50E*g. 4 rear *2 3l 4 en noen s m= eN-W l 4 ~ 7 ) {. s P" l aas w.cze:r4:3: .I 2 - c. 88

8.,.

s I r OO c e w .b, T.O P 2 I ". : t. .O -,s .+. sI 'i !=* i 0 4 C Y ~ 9 t:l}s%." r.:: cr< 1 w ~a E . O V s M Q .e. i O. O O i, e ,e O =7 F ".; ;' * ":SW.#1'w y a*:: :i ;

  • e s

O h c >= l .i ig q o ,3a.~ m,, i tF :!!; ~ ~ 1 h i

4 I

i

+

O m.rse ce<< ae ce.sw e O ~a mm oe.de g .e. = .v. < v. v, e ao d d e --==== === ee ce a. % cv e

  • a"t = e # # #.

A en e #, -1 dJ t 9 * $. 7t v w a e. v. e. 5

e. v.

- y w s v g e . i e.... en== = = 0Nd de oese o e O N s e e Oase J e 3as & 4 e o ce or d wa = = = = = H n n n n m m m *

  • d a d e d @ + +,n

o t T O ei in c ce e N o e,e em Q 2 O. m. a. c. g s p. P QQQO c w as C t FM P.", h i g3 a.t::" e - m m in ~ r %oe m' N m J d e, i 9 e m O. Ci %e o ci a

      • )h077F*-R N

ryd:as er* ox O N = m 2 e

e. e e

O 7-m = 00 C w e OO FM*.;E'27**qs C r ".d.*.!; 0*'- 9 m# .C e N e i U C J

  • 9 o

M- .=,,,..,~; c enuc!; 2:0:; y k I w d O 4 e-m U e o ev = m d em $ .. O. =. c .t= ge fpg e CCO as o =J vb . i..,. t. g ,e,e, m =t t%.,. v. C O I s } C C C O si me w C ? 0 %T.* cn reu zi'; 3 .C = C "3 Y { 9 0 =! w N. V [ O st:.s:.7:Ji

=:8. :'

~3 Cu j Z = h. 6

  1. ..'.Tir7d# *

.y =Jt:ac: ;; s. e Cr =( el e } ~, C.l X. C C m in9tS:, c geng y:j -l3t, m e v C. '. I C. i l

e. ene,. =

===== e oe.,e e o ~< e e e ~.aw 4 e eines=. e~, - = e= c, ew ew ew m e e m e J e ., e e e ~, e > v # e E, e !=a$wt...,, e. w w w w w

v. e.

. e e a d6 = w w w w w t. a. v.

v. v. = }.et w
  • w w

- - -i o c. 4 e ao o== a e e c % 4 e e o eu # 4 e o e. # 4 e c a. a t : f 6.s i a =s ( i -======ew me ew ee re e m '*t " *** d d a 4 e iA e p e= i l

C w C N -~o K-e 1 =A ~ J o. o. et es g e oo w a p ;,..: w

.sq:c m e. ee e

m on s 4 =z s Ci des svan~::: ,z 1 2 eJ l mo+ e+e-oem ~,eo

o. o. o.

o. = x, 7 Coo oooo o-

  1. M*!".edJO ds:* d er.m ::::

m tin a m - ao + ~ g = m-in o o e.. 1 ce 'l.o 2 o. s ? O so E SnB3*M;94 f,er

  1. P.m*:::*'

9 e -l = 6 I l l c as e o 6 %. 4 e o a e ce

o. o.==. o.

~,,! se Cooc c

89. ::

se . e. '-= f *"J* ;* 0 0 ' a' ed a fI e~ w ) N 9 Il i erI m i as Ing;s'.sM] a v.m. :::.- =e s f ."cl' .=e n = .-a. n x .5

::s:::;; :

44 ed C lj o l V w 0t c!

==r N is C 8".;e*415. R.*;:*.d.sT: ; y 7 .3 gs* C I K .m s. D C m-STC!W!JCA3 Q i 1 = 0. I aC 5 i r l i i e ce J J e o e. J J eD o es J @ oN#QeoasJ4,cc.meeeeJJe44, Jp e r A c # m-ee J @ S3== ** -==== es ce m e c l ee -

    • i i +
  • e i i,... > +

W v s w

  • w w e

,. w w 9#- S V a w t a w w

  • w w W e w y

e i e i 1 C t t +

  • o'NJ@sooeee@eo**44eOm#4eoe'**@eomJ' w

4 -.ms w e 4J t

.=====-et h N % N m a m e m e d 4 s # e c el

+ t P I

Appendix Table 47 (con t i nued) Page 3 of 4 ~ S w ies t I raq t ta f, f' "1 !;!? N! R.'t Rt .%i R0 Ri RI Ed _(cm) C/H.e 3 /Ha No/Ha y/H4 N4/H4 kg/Ha th/H4 kg/H4 mi/tt.: Eg/H4 No/6'a Dg/Ha No/H4 kg/Ha Nc/Ha Kg/Ha~ Na/Ha Eq/H4 0-*2 2 <4 241 0.126 24 0.080 1745 0.558 8 0.005 4-6 53 0.104 8 0.021 374 0.788 3 0.006 32 0.048 6-=8 164 0.8/3 45 0.285 163 0.728 5 0.023 37 0.113 8-.10 83 0.835 53 0.518 3 0.026 3 0.017 10-412 68 1.181 8 0.159 34 0.712 3 0.055 12-<l4. 18 0.368 5 0.196 28 0.640 14-*16 8 0.450 16 0.906 3 0.151 16 68 3 0.204 3 0.289 3 0.219 18-<20 20- 22 12 = 2h 24-426 3 0.511 26 r28 28 <10 30-<32 32-414 34-<36 36-<39 38-<40 40-<42 e JD 42-<k4 44-.46 46-.48 48-<50 50 52 52-<54 54-56 ToEl 656 4.202 20 0.$01 2 h L 5 06J 20 0.480 $3 J.631

4 se. O 4 0 C) 4c. 9 ) I i ^ g e. I T s e -3 = 7

  1. s
815 a 1

a- =s l 4 - c u e-9 N E ce d.,, sg fJ o m _ m.o. ~e O. 4. O. J. ew C. a s e e C00000 = ( [g4M[lMi" E CJB2 9 m 0 80 4 d. + a., z m ee Q 4 l o_ .e_ 2 o. io se C 10 d i 'Od1 l l .:*f Py*J y

  • (

l 'O ~ ~ 1 9 O. sZ O. C. t I +!, m O o 4 s f.61

  • ?O33**C O.
  • r:#:.3I y w'

m e=, 6: i j M t I. i l 4 ~ l - t e. m i l o. i o.g, e w -=ll; e, oo ! Ce y r ::l*.En] l ep 4, C Ca:scou.:1 ~_ -m M C 0v l g= 9 I*4 !** ". Cde:

      • .6 rp:.:d ;

G 2 l, ~ u .O 1 e X s .= m 2 C 2 *.en*'* *kk

  1. MO**OI $

a t

g e ~,e m e., o m c e.,,o o o e.

,e m e ~,4* e ce # Q e me.== ===== N eu ce rw ew emmm*444F er### ? **.es = e e i e i e e,,... 1 w v v w w * * *

  • e w w w

=$ w e e .a v. ,e ',s v. v. w 4 w w e... w g g gw e==.=- o ce e e e o ao a e a2 o e. s e e 0 e. e e e o es e e as o e..r o as W.a -==== -==e eu ~ ce ce m e m e e d d d d e e e e,se i I

es* b O i m O a- # C g C-m-c:n =

o... o.

9 O m OOOO C-s i 4 m t sea.1 *.a i C*sbM C*; M h***** s =-e o i N 2 g Zsd e d r en p:r7en N esdu:::: e 3 C .O ~* m e - c. = N. O. . N. s c m oO 'c a g 80[ I,N=' kE _o sysx:Cr ed m

=='c e O I vo a- + a 9 O ev N =

0. C.

C. ed s rg OO C a e::ne:cei.w l C 4- 's m en;eC0.%B::ll n \\ b I O= M m 0 9 O 3 J = C-C. q s e o o y m IM *e del C yl o y sny:::.!: & y s 2 C C a a G 9 e o ee Z 4 O 'r m' m' N d C T ams"C CRM R* y 3 i 3 o N I ret seg .C lO o ci = O.

o. i me i

s V O o G

  • ==

9F*is7 J :7*. ~~ C.,C0 ML* 9 O 0 11 4e m - N @ es J 6 9 C % - N== N Ch. ew e. e. C. e. = s N h 8% N e .=4 s E

  • = = =

J Q aes? $ *mfO 05 -r - e ~ e -- r cex * =* ' ce 4 m e - f-U 12 =.c Q >= 9 ej a $n$$$? l 9 en?:c:e:.dr~ ; s Cm I* o N e @ e e e., e m e N e @

e. #

em # @ W e co s e e o N e e sa es e = -==== - N N ee N ew m 8=%

    • % m *** d d 4 4 4 et% @ @ #==4 e#- G*
  • * *
  • w e e v w w 4 w w w w w w

w e. w g w w w w g g I wi.. e, e e e e o e e e e...

v.,e

., e.. e e p== = M l O N d 4 es o es d 4 em o es e e e c N e @ e o e e @ ee C es a em-== = ** es ee N ew N 88% m m m m 4 d J J er @ ef% @m as gd ed e 9 I

e7 G PJ o I M 1 NAc lO m l z ce sia s . o. o. C" m L s ooc E }b }#..E <l

}e=; v:

3 ree N N 2 l 1 2<m 'dds gMn* ::e' g N h eoc -i N e ~. w ~ @- =

    1. 8 e

9 O. ~. ~. Q. N. ew ~1 N a ? OOOOOO C an.* n.b:4 =*.d I 3r4**

  • 0 04**

9 4 ev @ N e 4 4

    • t Z

eo 4 AI N f ** 2 c. e.,

q w

.N,, = 7 C O. ff"$C* n.] Sis s.:. n* e::*- e w. z a ze r of f i em el n nem w= e es. e. o.

e. N.

le. se oCO OC s Y$ $$ i6 grJn* c;;**

  • s 4 e e.

aa =i of s = ma m is N e- -i 6,e, 4 .2 1 a I z s $nOk%&$ en.n:::c a. i l A ~3 I o r_,,w: 3 g isC 3 *%:ii 2 lc 2

O I

u ( V 9 = N 7 I m' snu tfi: s er7:i! T: : 0 t l .c i e r= g* l ,N E %+ [ w t e i C SfDjW6ddA) o 6 e 1-Q c- 'C i

  • A
s. e es s J g.o. c e o e o, em ce e, m. m e aa = m #e a. s e e e N.e e e o

.r e.m .=. A

c. s o
  1. J J s

.% e e.% 0 6 &g ( v ',s b,., =

==e e I w w w 1 .e .d$.1. I W y W .a.# t. w w ,e w ... w . i, c e,s 4 e.o.e.4.* e e o N s 4 e o N 4 4 e o N.e J e o e.eb== - eg N es ce N * * *

    • 5 * =r # 4 4 er e A # se= l' I'

.s.s he w 0

=

.=

Appendix lable 48. (continued) Page 3 of is Species R 0. M .i 34 W ?$ f.. 0 f..$. [ $. f $. 0a k. $$1 ?ec I rwa t. t 1 1,, 9i %g 1.. 1 o4 1F 1E 1- .M,; '~ g Rl g c. cIau F9 tt.a~ No/H.a 79/Ha %/Ha Eg/Ha b>/Ha kg / H.a No/Ha Kg/Ha No/Ha Eg/Ha No/Ha. Eg/HJ _h m) h./ H.a F9/Ha 42/M.a Sg/Ha A/Ha / 0- 2 7 0.002 2-*4 504 0.257 425 0.136 14 0.003 4-6 343 0.679 132 0.353 1618 3.414 46 0.059 F48 350 1.659 18 0.094 161 0.173 557 2.485 4 0.086 in 0.044 8-'80 64 0.643 4 0.036 21 0.243 157 1.548 10 ' 12 39 0.76 7 18 0.359 96 2.006 4 0.074 7 0.079 12-<l4 18 0.627 7 0.217 4 0.0B0 14-416 1 0.407 4 0.214 7 0.410 16-<l8 1 0.373 II 0.894 4 0.298 18 < 20 4 0.281 20- 22 1 0.728 22~<24 2k-<16 26 28-<30 4 0.99s 30- 32 32-a 34 34 " 36 36-<38 38-<ko 40-*42 62-<44 44-<46 46-<48 48 50 50- s2 52-s4 54-<56 Eel iIJ2 5.04L _._ 22 0.130 _ 38 l.__.2.321_ _1518 II.110 JL__D.383 10 1.- 2.2b5. t

aill"

w. -

0 -7 Un tg C. e l. isi f N 9' = 4.4 3% si e C 9t h 9b$1 of +C = CC! ^$ 4 ha m~ e -~ @ o (e N @ m e. e 9 o. . o. e. m. . m. = C=O00 00 N: 8%3

  • 80 ^.C*4.

M +

JB2
  • 9' 4-eme ad 4===== a N

.e. o 2Ce

  • dds

} me:trag:2 2 5 a I i + .- m a gg R lo e oo el 4 Bat ** C W

    • R:

1. ,v 0.0:#JP*y:] i NJ fo .'g.s sj ee ~ l. n l em m ~e j \\ '=, CC C e ) d5 o 7 I ' e 9.et:]'.9%. = e i r.c:::sy:J =s gs ee m -p M g w U e. .e g Q = Q s C CO O

    • tar *C Noddth

.g- ,, s.n.c: 9 l ~ = ~ c D a== .0 i e2 >= RC l9 e lC E h. o. X O T C C t%T":Lh: I i g C. t.*

02

=. =. ~ = 4 e ~, w e e ~, w e o ~ s o m o ~ # e e o ~,.o. 4 e er A N & 4 e em o m

*e'

ee N N ee N MM*'**'t**A & & & 4 m*. et% @ w~ = en."*

  1. ==

v v w w w v , w e q .v v, v.

v. v. v.

v. v. e.

v. v. v.

v, a$. v v, w y a C*wa 4og O end 4 e o N

  • 4 e C N s 4 e c rw a 4 e O ema

=4 .s, = ~ "I .=

====s-

== ee N es ew N M m m ** M J # # d d a A e,* f ms W w

m. I

a7 h. C A.5 C Z ^+ C. O. 9 s w q 1 g 000 cl c. see.e p t r:J u:ct c* .e I = d- )4 3<e h m

  • Mper,q N

esdx;;r a m Z) .C O .t3 O e ~

.it
w2?t.t i

C tyd:d :: 3 0 q W .y O OO J 3 .I e= a, s C o., M 7 30.TPlCPUC C gnMf} 3:Cll ; u 2 M 0 U 2 .4 + Ce q 6 a

  1. MidAJ W

C 8'y s:*.sECC ?' R .3 I 0 j l C C l C C .m. h 2 E %N a GO F 4 n, O F 4 c.4 ld! c:f =.- >~l SM;d *.niUl 3 tt = s ~ e 3 T. lm=. eo-o% c,l ~e~,- C. O. O. C. C, 4% w w y O s ooooo j o, O ptheks:84 i = ,i p'- ..e %ed-m --,s me-- eV f .ce

== q m4Q 6 Z C C s 4 ? 6NA .r::;7oia: a T tusua: 3 ie ~ O d

== t 8U W 2 l' K m s'.968: C ver:s:e, sis: 3 9 .aC N 4 Q m =,=== - e a 4 e e, o, c. 2. e e c

  • 4 4 e o e. d 4 -

e~4eeo 3 eeoe444, A en #.er= N es me e a= aa. **

  1. =

e e e.= m { e. v.

e. v.

= 1

v.. w w s e
m. =.

6 w w w w w w w W w g g aw e 4 e O ** d @ e C *n d ; 6.s =.s C ** d 4 @ C % d d e O N 4 4 e O. ** *m a a d d d d J W

== - - - = eg ee ce e N ** e en @ eta * [ t

a h. O N I t 0 g

== su% s '5li l

  • *M. t E

O %..O le g Q C Cm .e OOO C S Ms..E t

snz e*

3 m~o Ao se N a -- + h 2se 'dds trD *C*Cf =e m m

  1. m m., ~

em o e.~e-e.m ma = c.o. o.o. m..e.e.

m. e.

m 4 0000OOOC 00 ~ Sn ' **dJ4 M O* d

  1. *J ** 0 ' c*'

1 e@meNm@e

      • m e

= e

== ~ N. = 5 e 1 2C 7 4 XM20* *tI.P14 S'*ml** T30.' 9 .2 l g ese O = -4m = O. . O. e. y a COO O d $"*!C te 'm .e e e, rep.:: =- g rae y = n-en Cmd e i 2c a9, anraaq t-c::::,;l 1 J& l 2 N h U . 3't a =9

  • m,h*r

== s l e's c ( C v w I x O a en snu :h.: er::ki. :: : o l5 T >= co-o O X = -#-N a; C. 4 m. M, 3 7 l w ooco ~ arD]w!ada) c G I meso ci O L = m # m et 4 g l N e c. ) e ~., e O ~.r.. e e ~. e e ~, e e ~.r e

  • me =
  1. %.P @ @==== *= = = es es ce ce ce m **% e *
  • J d J d or e e e e

= e.{*** ( e e += w v i V t w v w V s w w e w w a e e e e e i v, l 89 v, 'e v, C 9 W w e e e e e e e a e a y a v v v . e, e a e e i., b=*== 0 N d d e o es s 4 e C e, a e ao e ~ s e cc O es e e e e a. r t c em b) ed

== === = - es es es eu ce M m 8"% m 8 t 4 4 d er J # @ =%,s= t

4 w C m 0 ig k O, O. O.==. C. N. N. e. -N l @e J s 4.,e o,a -e ec e~ s cn .= L d C0000 CO 4 1, S N l en, ppe m o a e. @ 4m m 10 0 gegp;dyrg 4 NN-e O Z G .a r a g e m. g O C 'ddl

  • WN E

S S .O. .C= sg 3 92 %e 4 PjJQAW E M A!" 2 s a N e. e, N

  • m N e

!O q e e n o== a m

c..c le

- N e O. N. e.-.ce. . r. J er g. 7 N m M.= O re m Sr ity:C.i % f y. y. a - n a s m o. m m .s e een c e m c = t s O - 6 % ew - e. d - G } f:1 e O. N e e. m Le O. e. m e m a. m. d. e. m. le. ee te s e 4 OOCCOO

== + CMS

  • r,

2 e :2s* ~ o e. m.,,o mae e u = =

  • I

+ x 9 e %O le. -l: C m im c. s 1. p SR9:1. i jo m O OO 4 e, : ira 3 m ew se li s l =, - e e.8*a e. s - e4 -e C@ 5 C e ~, a N]@ N e 7 OO--=--O, k 4 o sr.:hi,a L,e

  • 49 o

a._ e esO-e~ ..c z e m e. - e m.- --e

o s

5

Oo w

e= se s O

  • t ** '1* ::' 2 4

r'.aN ;,' U 2il 2 C H e X (. 7 m u s.,:s r.t'o: 't s:aM:;i 3 %b< 'i l e,,aa.s.. ,.e e a s.e. c e s c e C.*.e d.e r. e O *.r 4 O *. e,a e O m 1 . e. ..... c. c. m,,* - m.m e. e r e. c. #.ei, ,e e,.- . <.a e O r t


c.e e.o.e.O %.e ae.oe..e.4er e ~.r.:.

e

6. w O e..e e e O c

c c mm= m r or c or eew

4 w C 4 0 CD C C. P l gg "3 - 7 e .d e, C gj = C aeu

9 69=

t

  • 1 4

ces

== Q = j CmeNC si N - eo# eu. gg ~ N. . m. m. o. T

  • oooo ruo: sac.c,;

t

.:sg

=, .,--o. @4 ~ac~ 4 2 w dds t.::tcr4*; k e l ) 12 i -o K O-o 4 l ) OOO '5' = l. C' b b 5 6,

1. =gg gf.g t

e = s t. 1 jv ! .i i. I I l t l l2 i n 1 NO m ~ O= lc CO D Q OO to .os se,. 0N,-. MS.$ t s J { y: ~.m m~ g E Ov v h C o 2 -g o. 'd m. =? t*:ra vr:.c. {t:. op ac; y y c .i m i l-l non t-m 858 .= '1 G' - 5 t\\

r. =- uu:

[, j-e.:: ci _- a-, M 4 e ~ s e e e a.,e e e ~ <.c e O a. 4 e e e ,e ~= *== mm - - N ce ce ce m e m ** m e 4 d 4 4 J e e e e-1 N d @ e -. er %..y e i i,.. i,,. e. b. v. y a. W w a *

  • f.l,

. e ee w v w w a w w w 7 W*= W W g 9 g ON*4m oN**m o***4.eend aeO*sa.aece.a 6==~

= = === eg es ce e ee e e e *** M d a # 4 4 e e e

4 W ee {

.-~ _. _..._. - m. P ? a '. Appendix: Table 50. Fish collected-using rotenone on Lake florman at Location 8.5 in 1976. Page.I of 4 ~ 4 Species .h. b S IE 5 m 4. c-i'.5 G e, p:.. .t. : a...L. ...s r..- u.- 7. i. a .1

i. g.

w . cia,, -.z E,. E.r. rd 4.g 4 'e ~ . to .p. - ti.4,5 3. . I !! P. IlM. C ;, @t 4 d-C f. e I; (c.) ' m/Ha ag/Ha M/Ha Eg/Ha w/Ha-Kg/Ha - m/na sq/Ha h/H4 99/i:7 ' m/pa Eg/Ha h/Ha_ kg/Ha No/Ha Eg/H4 U/Ha sg/Ha o-.2 J2-=4~ 324 0.227 5 0.005 134 0.055 4-6 324 - 0.337 5 0.004' 11 0.013 - 45 0.052 8 0.010 92 0.091. i ' 6-.8., 824 - 0.256 5 0.010 13 0.024 3 0.004~ 87- 0.202 8- < 10. 8 0.035 43 0.0% to-<I2 =g3.,34 L I4-16 ' 16-<l8 " 18-<20 20- = 2 2. ~ 12- < 2 4 ' 2 4 < 16 ': l3 : lS.182 + , 26k< 28 - - 24 3.964 , <30 31 L 1. 764 '30-<!2

26. 6.153 32-<34

/ II. 2.959 ^34-<36 36-<38 38-40 5 4.392 11 10,623' 442 5 6.121 - h2-* k4 ' 44-<46 Il 13.684.48 48. 50-<52' L

52-*54 i

. 54- % ~ total ITT~7TT,TT - zuo 0.BM~~~ ~TT~1C 8W 5 5.604 1h 0:D23 E F 5:081 ii. o.oTV 126

o. m A

-[ j -e .iny-MMTWe-m t*

  • a 4 -+

-gaw am yv-m ww w =+P-v-y-c qmrg-' m W .y p1mur*- 4 ?Nv'1 J' NP7-y m-e'.m n--Pw-1--=.5% gw.y ? 4 -vir+ tm r--f-Ts a ye&-Te- -1+- f -w t- -te a:

air w. C N O CD 4 C I F T. 9 w = i 9== e Ni C 9M N 9 I. m Q 'J

  • O h

C e m% ems % e 9 % C N N c0 @ M

53. A. N. m.

. O. N. 4 o we OQCOOO N 4 I'68E S $dI*g. .ts*i 9 m%s%-m

  • ^

2 emem- %e N % ce l f -e- ~ j 64

8. N ee
e.,
o. o.

-me QOO O E

  • cd5 l,*

r.:: :r4:3 =9 l"* j mes e -~ ,e D$ e. c. 9 C ,O C. C. w ? O C e, 4 i4

  • 8: Iss*,

I w;. T'd:#03ft:1 9 m v x C N .j. m l 8 l-w l 9 ed IN = c.

c.,

w 7 ..4 o O1 o= s i:;p-; c r ::s:sy:3 : C Cu w e. e.*. I

== O. g O. s T O O C w s'::77.C JJ.aFu o7:.cd 9 ~ 2 g i) =

==: 4 m t-t ! =- x is O T 5 Y 2 *d?

  • Y ta%?

a ' :.Jf 9 t' q l i i a:. as a. m e e. < a e o., o e o e. s e e e s e a3 o e., o e em o @ m e-

==.---e

e. ee m % e m m e m J er J 4 4 e e e #

-1 ?#- ( w v r = g w

  • e y a V w w w v v w w w e d e v 1r v w w w C 9 E w e

=

  • a..... e e e e e e e e * * *
  • e + e..

O ee.e e so O m 4 @ g3 0, es.e es PQa3Oe.#@*ECN#4eO**# C e te === w

= =

en e

c. ce m m m m
  • m d J d d er e e e=

ad end.e

Appendix Table 50. (' con t i nued) Page 3 of 4 5 ecles f = = 4 e a e Lea 9'h E. '"i h!: .I,.:: ( .k R .h.. [.. ,ts *. RP h,h j 6t h g Class u ia

n n.

.1 6, .1' f,a .1 d. .hA 4 .h 1. 11 - 6 A+* 6o P _ (E.m) N/H4 kg/HJ h/Ha ky /Hj %/Ha kg/Ha %/Ha kg/H3 b/HA Eg/Ha b/H4 kg/HJ M/Ha kg/HA ho/Ha Eg/Ha h/tta Kg{ 0-*2 1 0.001 2"4 11 0.019 191 0.121 86 0.009 4~6 53 0.804 841 1.189 14 0.034 ' 6-8 232

1. 0y3 3

0.014 16 0.016 311 1.655 26 0.098 8 80 84 0.842 5 0.061 834 1.322 5 0.052 3 0.011 10 ' 12 31 0.189 66 1.}68 11 0.249 12-<l4 l) 0.462 3 0.098 il 0.320 84-I6 5 0.300 5 0.102 16-<l8 5 0.408 3 0.219 5 0.212 18-<20 1 0,201 20"22 5 0.536 22-424 8 l.095 24 26 26+<28 430 3 0.126 Jo-.12 12- * )4 34-= 36 36-.39 38-40 40-<42 62-.6% 44-al6 i %-. 8.8 68-so 50- 52 52 ". $ 4 54-56 f.Ja t 4 Q _3.951 3 0.014, 24 0.235 IF)I 6.923 19 0.Tio 143 2.3 1 .m w a* 4 w-

to. C -T y ea w _2 ~* C. O. PJ L 0C C a IN3r.I )#M.bv 1 N e, e. n .e - * =) I d g Z 7* 'ddl Cr.' trtl ?$Cl 3< E me e~oce e 1 Oe s e e m. m eo Cm. O @rg = o. O. m.

m. ew s

2 OO C000 OOC C? * ?Lr$3 EA ?* $ FrJM;;;#** g me A meemm e. = m N

== mm e em 4 e d snse nzo:- s.:':::c.' f 5 l In } ~.. g

== - Q ~} m Z C. C. O. C. F OOC C d IMEEJ t=, $ rJM] T;O*'

  • t N@m

= m-b i t, oee M f *l P:f.e"J { i .r't;r::: 3q i a I .$g t 2 O \\ R, h w ep: 5 c.cs a:::;; E ed 5* e v 1 Z l 'g .] l

  • e

,w w i h 09y: $d?: ," l 0 ~ 1 d A r; X o p ~ n o o O d C septwg20A3 C s m m l C. = 4 e i r I a o e. *.a e. o ~.e,a e o *e a w e o *. *.a e.7 o.4 e.% A

    • -r 4 z

a =a em ee # J m e. as. em -m ee N es ~ ew a **

  • m *** # d # J g 3 s e i e a

e . e e e e e e e e e e , e + + e e e, e.. .=1 E" *.me - ', C = $ s 4 w w w w e v e e a v v v sr y v v v v v v w e y e O N 4 4 en o ee a_ _D ec. ~C en a 4.w ~o O ~ d & C.C.*w&, 4, e,D C e,w &,e_;, 6==w t ~~ mmmmm j e~

s. Appendix Table 51. Fish collected using rotenone on Lake florman at Location 8.5 in 1977 Page i of 4 SJT._f _315 5 30 e .7 7. t; '4 .3 d ,, h !; E 3 - * *t ' h O0

  • s
  • E

't:y Jd I. '4 k !} 1y X P, .'t.'t 3 i,. vo t t. (lass

y. ;

a; y ( *g C' d, 'S

  1. " C,'

$l.'d h" n$ ;'I s 2 i;.iis a,, v a: (t m) En/H4 Pg/H4 b e/el.i py/N %/It.s E.3/H4 Ne s/It.n kg/Ha b/H4 Eq /lf a N/88.3 K y / H.n le i/Ha Kg /H.a b/Ha Ag/Ha . @tta k g/ H.s 0-

  • 2 2-- 4 0.00)

IF 0.016 22 0.009 4-+ 6 9JO 1.008 11 0.010 0.00$ 326 0.378 9 0.011 122 0.120 6-8 ))9 0.102 22 0.040 0.007 122 0.28) 8 " 10 %) 0.191 l) 0.05$ lo-< l2 35 0.202 87 1% 9 0.090 16 a. 18 IN-<20 20-<22 22 <2%. 3%-<26 26 <23 0.128 28--30 10- < }2 9 2.01] } 2 - < 14 34-<36 36 <18 38-40 60 = 42 42-.44 44-46 46-48 48 $0 50- 32 4 4.188 $2-.54 4 $.061 $4-.% 'iEJ-'~ ~~ 13 r/KT'7W 2.iWi-B ~9:Wi II 0.080 F 0.005 V,5 0.EB is 0.olB~ 211 0.44

7 O N Q J e + ee e"4 m l 9 co-C., .e ooo C' 81 %..: r:sys g ~,o. o ao ~ = ~ e e m e e )n Zs cos tr.tn:tsc: <z s 2

  1. _e_o~

,~ ~t f 9 _m M,- J. d, _@ 49 d@ = . o. . e. oo ce 1 e coooco.

  1. .~.

1-s e s*::qdscur:d l ee -4 a m :::::

c. # e ~.

.e s n, x

  1. -<P e

n= 2 M ens::n pu er.in:r:c: 2 -,~. I e ~ S. o. e = o. o i s I e coco e l{ t'"? TC ,.:

  • e: *-

-4~, )w Z @ @ es col fh D 12 j e b e o_.. 1, Re o e M f"f'.dM".I { sr.m:ts:: 2 lK n l2< 7 m C u ..r*:t*.:.r 3 ..C.

.2$t ::X 9

q 8v w 'T= s e 4 8 %*mdddi 89,?C}$.i?l 9 0 m 2 e >= 2 .K_ ~ m eeptutadA3 [ E C. s J f ~,.. _e ~_ _ e_._ ~. ~. ~< ~ ~e o~,.. e~,ee.e,,~,o.e, ~o~,4._ e ~ t ." ", _ 5 t = = *

  • w
  • , w - <

< -. * = - $ .{W

4. _$ -$

1W 5 5 a D 9 4 5 5 4 f 9 9 8 8 9 E F 9 ew %d.=. o N # 4 e0 o. em J_ V._ es ~e. # J.4 w O e O N # 4 etl' O *= # O e C ~ # 1 Pe ce * - ** - M # # # # # e 0 e. 0= a _== eg

e .R %= 0 m C l i Cecm-N @ m e Cf p it' -ee#ee c6 C Ch N 2

7. Q. =. **.. C.
e. d.

=. =. 4 - f.= T1 t'ooOoo Co-m u sor=.C.c::t er.:s:i:ac= * - e ~oNN~*- e* -r v M z - %eN-s =e i ez w d "ddl 9}.n dB: y s S ONom m g eaee m =

o.. N. m.

cc. we oooo o 6 914444 t'.6Cic: 2 4 hi w$msme~% b o mNeNem o m= .,. m.

e. m. e..

m., I s _-v ONN-ooom s 1*;.i".Q: Ja%' g g dy. 1 c % e m e % A.N e -M e mm%ed. =N = d=d-h mee%O g

== m o e -e E . o. d. d. m. qn. %e coCCo CR8:* *A + N t *.;.:d?" n m m - ee % o w a =

m e m

m. g ) m-7 i 9 1 Sn8:((*.S 3.*S C 3$ .i - N e e m a.e m o g d 4.==. %. e.==. N d. . 4 cm%eome - ao ei .= 4 C d ~: ,T ^Co=OC00 4+ u .m OR *E C t* :i3 9 4Ne*4dd .-d 4 = o ee d N N e w ) e"N e 8.- o I w _g I D I u m t;;pe::s sw::: : I- , o q

=

~ - m. ' >= 'K' ~ Y I C-ti:tk&C c . c. 7: 4:A' J C 4 - gr,= - ]i e &N&Y dYeDN#Oe N&Yeo SY e' s a @' l. - as e as = e==. v =v= =v= N ee ce ce N m m m m m o a d 4 a e e @

== i. .,.~7 S@ - I w w e e v v v v ew e w w S_w y

  • a a w w=w v v T F -

' t== = w C 1 E *

  • * - i *- e * *
  • 'e
  • 3 e *
  • -e e

e..i e e a i e

  • e e-*

= QNd4eONdJeCNd@eDCN&QeCesa@eCNd m

========== N ce ce N N m m m e m 4 a e 4 4 m m miaO. as W e g -.

4 w C 4 O 7, 4Q A g u-T-e 2 C Cid $5 ^ a !?a

  • ~

ed sO%% N or O - ec s== o e J g

o. m. O.

. m. e T ORO=O00e ps,. se .s M e tk b: C 9.* **w ?;JD* o m e e. 0 s e's m 0%4

  • =

%e a-es = 04 a e4 5 2 1 ce d

  • CCI b*030741I 9

b e5 en e d q e-i ,= . O. 'l-. e CC ,O , e\\ m i ..s, t, 1.:913d1C NN 1m 1 yi f.018:83 II =1 f e -- y .b

N N

N te i 6 OO O e le t; = . O. xq CO 3 i ^ n e ~3 PJ.*;%C's N O C:3071#.11 J AN A s m krJ C N d

  • ~

W CO +c .e e v 1 e Om O w =

0. C.

en. =. l %e .. O O O O l f*:?O*%T=@JEth e a c+ sy: y =, >r m .i O

  1. D e e.

~O Ce H g= C. O. { X e CO c i e

  • P*

l 8.*eed *ENhw v MWh4* u - = D . On I C 4 n e~-r--e~ ..O~---O~ .e~.ro -eea ee J @.==== - -== m N es ce rv eme**4##aJ e e e ee== a, ' e. 1 61== { b w w w W w w

  • v er V W 4

y e w y M J4 v w s y v, e. e e e..., e +. +. y e s O N J 4 e O ** # J CD C es J Q CO O em # l c en # Q - O ee J @ &-== ======== - ee ce N es em ""* m **'s

  • m o =F d d # e A 4em

.w W.s

4 i-Page I of..4. - Appendix Table 52. Fishes collected using electrofishing gear on Lake Norman at Location 1.2 during 1975 Fish collected /152 m of shoreline - January

Species Replicate 1 Replicate 2 Replicate 3 Replicate 4 Hean Ibrwoomt patenense-0 0

1 0 0.2 Notropis nivete 2 1 0 0 0.8 'Is?lvmia ntesvchit=tw 0 0 ~ l 0 0.2 ~ Micrwintes un calmaides 1 0 0 0 0.2 Total -3 . ) 2 0 1.4 ? t y .m, y a m .e--, w we :-.

E ~ Appendix Table 52 (continued) Page 2 of.4 Z Fish collected /152 in of shoreline - April Species RepIIcate 1 ReptIcate 2 Replicate 3 ReptIcate 4 Hean 4 Ib>vaam cepedianiet 3 0 0 0 0.8 Nott'opin nivette 0 1 0 0 0.2 ^ Legumic_autitua 1 0 1 0 0.5-latiumia messchirnto. 7 .0 0 .O I.8 Microptesuso caltroides 12 .0 3 0 3.8' Pom ria annularin 0 0 l 0 0.2 ~~ Pciva flaucacens .O II O-0 2.8 Toral' 23 12 5 0 10.1 +n N r -QQ e r,- ,z~ +, ,,Y' 4

y..

. ~ - _. .~ - _ _.. _ _ _ _ _. _. =. -. _ _ _ . Appendix Table 52..(continced) Page _3 of 4 FT 4 -ollected/152 m of shoreline - July Sp,,,,. Replicate i Replicate 2 Replicate 3 Replicate 4-Hean Ibranorrn cepedianwn 3 2 3 2 25 Notropia nitwun - ,1 ~0 0 0 0.2 -Lepcmia auritus-16 13 6 5 10.0 sq cmic tvernehirus 9' 2 3. 8 '5.5 Micropterus salmoides 2 0 0 3 I.2

  • Pomaxie nigromaculatuo 1

0 0 0 0.2' ' Total-32 17 12 18 '19.6 L. b r

+ 1 1.. Appendix-Table 52. (con't inued) Page 4 of 4 4 Fish collected /152 m of shoreline - October Replicate I-Repticate 2 ReptIcate 3 Replicate.4 Hean llos acons hepedianten i I O O. 0.5 Notutspia nitreun 'O O i 0 0.2 Tetsisa us bu=tusncus 1 0 0 0 0.2 1ctatuunsa platyeephalua 3 '0 1 0. l.0 . Notenc - inixa tilia. 0 2 0 0 0.5 Lepomic aur>itus 3 0 3 2 2.0 Lepomic in2crochirua. 8 'O 3 i .30 . Mict'optatssa calmoiden 1 0 0 0 0.2 Pomoria nigtemaculatus 2 l 2 0 I.2 Tota 1 19 4 10 3 8.8 U ..:-3 ~., _ _.

i Page 1 of 4'- - Appendix Table 53. Fishes collected using electrofishing gear on Lake Norman at Location l'2.during 1976. 4 Fish collected /152 m of shoreline - January Species l Replicate 1 Replicate 2 RepIIcate 3 Replicate 4 - Hean i-lbroconi patencnoc 0 0 0 1 0.2 Ict.alurua platyeephalus I O O -0 0.2' IApomis auritna I I I 6 2.2 lepomic macrochirun 1 7 .2. 3 3.2 .Micropteruc salmoides 1 0 . 0 0 0.2 ^ Total-4 8 3 to ' 6.0 t 4 .-.7 -,,.~.,, - -. - -. -.. - - - --%..i,--v.. ..-.-me,.-,-- m - + ..g ,e-y y -.e.e

W E 1 Appendix Table'53.- (continued) Page 2 of 4 i Fish collected /152 m of shoreline - April 3p,cy,, Replicate i Replicate 2 Replicate 3 Replicate 4 .Mean " lNatertigontts etyaoleneas 0 0' 1 0 0.2 '.Nottopin niwun 0 0 2 1 0.8 . 1ctaturun brunnaua 0 0 0 1 0.2 . icportin auritun 42 24 24 7 ,24.2

Espctnia gulocua 0

0 -2 2 -1.0 lepomia nnarveisivun 22 11 12 7 13.0 Iepocria hybrid ' 5 1 0 0 1.5 blicrvpterus 'salmoideo 2 0 3 5 2.5 Pomoria nigronmulatus 0 0 2 0 0.5 i Total 71 36 46 23 43 9 M 4 g w st-e- T -4 g --e q r 'w r mr-M -v-r

Appendix Table 53 (continued) page 3 orza-4 fish c Ilected/152 m of shoreline - July Species Replicate l Replicate 2 Replicate 3 Replicate 4 Hean. . Doronorn ecpedianwn. I 2 0 II 3.5 1 0 0 0 0.2 Cyprinna carpio 10 9 I l 5.2 Nctropia niveus. Ictalunna brunneus 2 1 0 0' O.8 Ictalutna platycephaluc 0 0 1 0 0.2 Irgmin auritus - 3 8 4 11 .6.5 .Leivmis mdevehirwa -8 II II I7 II.8 -Lepomis liybrid-O I I 3 1.2 - .Micropterunisalmoidea 0 2 ~6-2 2.5 Pomoxis nigrornaeulatua' 3 .0 2 0' I.2' - Ethcootenu olmstedi ' O O I O 0.2 . Total -28 34 27 45 33.3 J b t.. = 6 Pg w k. -.,a

~~ 1 1 - Appendix Table 53 (continued) rage 4 of h ~ Iish collected /IS2 m of shoreline - October gp

gg.

Replicate 1 Replicate 2 Replicate 3 Replicate 4 Hean Jetalut,so lotwineua I. 'O O O 0.2 letalutua platyeephalua 0 0 0 l 0.2 - lepomia ara stua 20 19 19 10 17 0 Irpomia gulocua 1 0 0 0 0.2. l.cromia twictvchit us 20 1,7 I5 15 16.8 I,c;vania hybrid 0 0 0' 4 1.0 Mict'opterno calmoiden 1 2 Ih 2 h.8 Pomoxia nigtunaculatus ' 1 I k l 1.8 - Etheostonn olmatodi 2 0 0 0 0.5 Total 46 39 52 33 42.5 1.

Page i of 4 Appendix Table 54. Fishes collected using electrofishing gear on Lake florman at Location 1.2 during 1977 fish collected /152 m of shoreline - January 3 Replicate i Replicate 2 Replicate 3 Replicate 4 Hean Icportin vnwrwhit sm 1 0 0 1 0.5 Total 1 0 0 1 0.5

Appenilix Table 54. (continued) Page 2 of 4 Fish collected /152 m of shoreline - April g y, Replicate 1 Replicate 2 Replicate 3 Replicate 4 Hean .Not.rupis nivcus 0 0 1 0 0.2 Lepania autit.ua 0 0 15 0 3.8 Lepomis mer*ochines 3 7 3 0 32 Micrvptenen cainvides 2 1 2 2 I.8 Total 5 8 21 2 90

... -.. -... ~. v' (continued) Page 3 of 4.~ ' Appendix Table-S's. 4; Fish collected /152 m of shoreline - July Replicate i Replicate 2 Replicate 3 Replicate 4 Heate lbrunonn cepediantert 0 1 1 0 0.5 Nottvpia chloriatius 2' 0 'O. 0 05 .Notropia nipeus 3 1 0 0 1.0 .Ictatutua bumnneuo-1 0 1 0 0.5 Ictalunta platyeephalua l 0 0 0 0.2 Legwrio auritua 0 .2 9-0 2.8-Lapomia mamuchinto; 7 3 4 2 4 ^. 0 Ecpomia hybrid. 0 -O l. 0 0.2 Microptensa calmoides 3 0 3 4 2.5 Pomoxia nigromaculatua 8 0 1 0 2.2 fotal 25 7 20 6 14.4 9 4 s

_= 4 4 4 Appendix-Table'54. (con t inued) page 4 of g. a Fish collected /152 m of shoreline - October 3' Species Replicate l' Replicate 2 Replicate 3 Replicate 4 Hean ~ Notnipis nicetts O' O I O 0.2 legwia[atwittoa 3-2 17-5 6.8 Lepomic gistoniss 0. 0 0 1 0.2 - Lepontia rwwochinaa ' 5 5 9 I3 8.0 ' lepomia hybrid-0- 0 1 0 0.2 blicrcpt. crus calmoides .I I O 2 I.0 Pomoxis nigntnietolatus' -5 1 2-2 2.5' i Total 14 9~ ' 30 23 18.9 i 9 9 P 1 4 ./ ,.-[ -,rr 1 -ee ew i t w 7 e'- 1-+ -t -, +- t-~'

._ ~ r

  • N f

s . Page i of 12 . Appendix Table 55.. Fishes collected using. gill nets on Lake Norman at Location 2.0 during'1974. .c fish collected / gill net set * - January Replicate i Replicate 2 Replicate'3 Mean Dorv60r51 cepedlamon ' 5. 3 2 33 let.alta na. spp. 0 0 2 0.7 'Marcna clisyaops 0 0 1 0.3 Total 5 3 'S 4.3

  • approx. 17-18 hrs.

i I L 9 i _,. _ _.,i,,., ,_J,.. r...,_ m. ... _, _.,,..., _... ~,,.. ...m. ....,...~,..

2 1 f o 2 ega P n 3 3 a e 0 0 H y rau 3 r b e e t F ac O O i l p t e e R s ten 2 t e l i t g a / c O O d i e l t p c e e R l l oc h 1 s i e f tac I i i l pe R ) de sr un h i 8 tn p 1 o p s 7 c 1 ( n e n x 5 u o l l r 5 a a p t t p e c o a l I T ba T x i d n e p p A

Appendix Table 55: (continued) Page 3 of 12 Fish collected / gill net set * - March Replicate I Replicate 2 RepiIcate 3 Mean torosormi cepedianwn h 3 5 4.0 Ictalurua catua o i 1 0.7 latalitt'uc plat!jeephalua 1 0 2 I.0 Namne anxatilin 2 0 l l.0 l'omoxia nigreuculatuo 1 0 1 0.7 Total 8 4 10 7.4

  • approx. 17-18 hrs.

9 ' Appendix Table 55. '(continue'd) Page 4 of-12 .e fish collected / gill net set * - April Replicate i Replicate 2 Repticate'3 Mean Ibrvoo"az cepedianum 2 1 3 2.0 ' Cypt>intea carl o ' O 0 I, 0.3 ii l Catq>imica cyprinus 2 3 0 I.7 -letalurwr brunneus 1 0 0 0.3 ' lataitorua calun 0 1 I 0.7 Iotstlurua julatyeephalun i I 2 I.3 . Morona chrysops. .I 1 -0 'O.7 . Mmnte :an.ratiZia .1 0 1 0.7 1,sqvmic.inuritus I_ ^ 0 0 l0.3 'Pomoxia annularia 0 -l 0 0.3 . Total 9 8 8 8.3 1

  • app'rox._17-18 hrs.

Appentlix Tabic 55. (continued) Page 5 of 12 1 fish collected / gill net set * - tiay Replicate 1 Replicate 2 Replicate 3 fican Ibsvarms cepedianum 5 3 9 57 Cyprinna cat'pio 2 1 0 I.0

  1. ?xoatoms spp.

1 0 0 0.3 letalutina catt<c 0 2 0 0.7 letalutusa platycephalua 1 1 0 0.7 /Divne ca.ratilis 2 1 3 2.0 il 8 12 10.4 Toul n pprox. 17-18 hrs. a

-/,g d Appendix Table 55 (continue'). Page ' 6 ~ of.12 'l d s Fish collected / gill net set * - June Replicate-1 Replicate 2 Replicate 3 Mean . 1.ppiccatcoun osseus 0 0 1 0.3 Dorvsom ecpediamen 4 '7 II 73 . 1ctaturua platyeephaluo 0 0 1 0.3 . l.cpomic auritus 0 0 1 0.3 l.cIv>t:ria marochirua 0 0 1 03 i . Total 4 7 15 8.5

  • approx. 17-18 hrs.

1 t F 1 e' v. 1 y 1 = y-s.- w ..-m,t,- y +m -e+v .-%-4 e

c 2 1 fo 7 eg a P n 303 6 a e 920 1 H 1 3 y l e u t J a 6 c 4I 1 i l p t e e R s t en 2 l l e i t g a O / c 31 0 h d i 1 t e l t p c e e R l l oc h i s i e F tac ih0 5 i i 1 lp e R nu l a ) d ae nhd e w ri s un nea ri aem i l i yl t dt a 8 no eac 1 l'l c eps 7 ( c u 1 or ,s e mt t x 5 5 nup o nl e r l e vat a p t t c t p l b Uei o a [ lM T a T x i dne p p A

Appendix Tabic 55. (continued) Page 8 of 12 1ish collected /qill net seta - August Replicate 1 Replicate 2 Replicate 3 ftean lurancva ect,ediames 3 5 6 te.1 letaltunes g>latyeeg'isaltas 1 0 2 1.0 ffarone chrpscps 1 0 0 0.3 Ik>sune canztilid 3 0 0 I.0 Total 8 5 8 7.0

  • approx. 17-18 hrs.

Appendix Table 55 (continued) Page 9 of 12 Fish collected / gill net set * - September Replicate i Replicate 2 Replicate 3 Mean th>r' acorn cepeiliamart 3 1 3 23 Cyprinun carpio 0 0 1 03 Or pinlas cyprinna 1 0 0 03 letaluetw platysephaluo 0 0 1 03 Morana chrynops 1 0 1 07 Pomoxia mutularia 1 0 0 0.3 Pomoria nigrxx.1reulatus 0 1 0 0.3 l.5 Total 6 2 6 i

  • approx. 17-18 hrs.

Appendix Table 55 (continue <l) Page 10 of 12 Fish collected / gill net set * - October Replicate i Replicate 2 Replicate 3 Hean IVtvnonut cepediannet 2 0 1 1.0 Ictalstrun eatua 1 0 1 07 Maranc santtilis 0 0 1 0.3 Total 3 0 3 2.0

  • approx. 17-18 hrs.

t

Appendix Table 55. (continued) Page 11 of 12 Fish collected / gill net set * - November Replicate i Replicate 2 Replicate 3 11can 1Orvuorin ocpediantes 0 1 2 I.0 /famne ehrysopa 0 1 0 0.3 Total 0 2 2 1.3

  • approx. 17-18 hrs.

Appendix lable 55. (continued) page 12 of 12 fish collected / gill net set * - December Replicate I Replicate 2 Replicate 3 Hean Ibrosoma ecpedianten 5 1 3 30 letaluvun platyeephalua I 1 0 0.7 Mn*ona chrynopa 1 0 0 0.3 Total 7 2 3 4.0

  • approx. 17-18 hrs.

4 f Page I of 4 Appendix Table.56. Fishes collected using gill nets on Lake Norman at Location 2.0'during 1975 4 w-fish collected / gill not set * - January Replicate I Replicate 2 Replicate 3 Mean Ibranoin carediaritet 0 0 h I.3- -' Total 0 ~ O 4 I.3

  • approx.:17-18 hrs.

L' i m ,,n6 .,-,-,-c yc, w., 6 s --y.-- b, ,,r~ -, ~,..., -

4 %. tk "Qf> t 2 $4 /////, /$lq? f//5'$p,,,, N f %'M+@ %d 4 ,MAeE E A<eA1,e~ TEST TARGET (MT-3) l.0 e EH El ' P EE d a m l,l f_ U bb \\ M l.25 1.4 !.6 6" MICROCOPY RESOLUTION TEST CHART

  1. [8*'

A+t4% W $e w v f <v(b Szzzzz/

'j.; - i k...--..,

>x ;.. -- E 06 a. --._:_:

Appendix Table 56. (continued) Page 2 of 4 fish collected / gill net set * - April Replicate i Replicate 2 Replicate 3 Nean ihn oconn ecpediame., 11 7 4 7.3 ?!.mmtorn s obustwit 0 0 l 03 Ictalunta eatus 1 0 0 0.3 Ictalus,tn platyeepivilun 0 0 1 0.3 !!anma cln ysopa 0 0 1 03 !!orvmc carat.ilin 2 0 0 0.7 Igg'ornia aus'itus 0 0 1 03 Total 14 7 8 9.5

  • approx. 17-18 hrs.

Appendix Table 56. (continued) Page 3 of 4 fish collected / gill net seta - July Replicate I Replicate 2 Replicate 3 Hean var oncen ecpediarnen 6 4 8 6.0 Cyprinna carpio 0 0 1 0.3 letaluvun brurmeun 1 0 0 03 letalutun catus 1 0 0 0.3 letaluvun platyecphaluo 0 l 3 l.3 If.mme chrysops 0 0 1 0.3 Hieropterus cale:oiden 0 0 1 0.3 Total 8 5 14 8.8

  • approx. 17-18 brs.

Appendix Table 56. (continued) Page 4 of 4 Fish collected / gill net set * - October Replicate i Replicate 2 Replicate 3 liean Ibranom1 cel,aclianten 1 0 0 03 latalurita catus 1 0 0 03 Mn o>ia chr'ysopa 3 0 I I.3 Mnune caxatilia 1 0 1 0.7 Total 6 0 2 2.6

  • approx. 17-18 brs.

APPENDIX TABLE 57 CCNVEP,510N OF ENGLISH TO METRIC UNITS To Convert Multioly By To Obtain 1 acres 4.047 x 10' hectares ac re feet 1.234 x 10' cubic meters cubic feet 2.832 x 10 cubic meters inches 2.540 centimeters miles 1.609 kilometers scuare -iles 2.589 scuare kilometers 1 yards 9.144 x 10' meters i l 1 I l I l l l t9 l - -. - - - -. - -.... - -,}}