ML20059F017

From kanterella
Jump to navigation Jump to search
Lake Norman 1992:Summary Maint Monitoring Program Rept
ML20059F017
Person / Time
Site: Mcguire, McGuire  Duke Energy icon.png
Issue date: 12/31/1993
From:
DUKE POWER CO.
To:
Shared Package
ML20059F010 List:
References
NUDOCS 9401130115
Download: ML20059F017 (88)


Text

'O LAKE NORSIAN: 1992 SUS 1 MARY MAINTENANCE MONITORING PROGRAM McGUIRE NUCLEAR STATION: NPDES No. NC0024392 n n 4

q

'O O~-

DUKE POWER COMPANY 13339 IIAGERS FERRY ROAD IIUNTERSVILLE, NORTII CAROLINA 28078 F

DECEMIIER 1993

.O 9401130115 931229 PDR R ADOCK 05000369 PDR

. _ . . -- . -- . . - - --. - . - - - - - . . ~ . -

TABLE OF CONTENTS Page EXECUTIVE

SUMMARY

i LIST OF TABLES iv LIST OF FIGURES v CHAPTER 1: McGUIRE OPERATIONAL DATA 1-1 CHAPTER 2: WATER CHEMISTRY 2-1 Introduction 2-1 l Methods and Materials 2-1 Results and Discussion 2-2 Future Water Chemistry Studies 2-7 Summary 2-7  !

Literature Cited 2-9 CHAPTER 3: PHYTOPLANKTON 3-1 )

Introduction 3-1 Methods and Materials 3-1 -

Results and Discussion 3-2 O reture Phytopienk1oe Stedie 3-5 Summary 3-5 i Literature Cited 3-6  ;

CHAPTER 4: ZOOPLANKTON 4-1 l Introduction 4-1 Methods and Materials 4-1 Results and Discussion 4-1 l Future Zooplankton Studies 4-4 Summary 4-4 l Literature Cited 4-5 f

l CHAPTER 5: FISHERIES 5-1

)

Introduction 5-1 '

Methods and Materials 5-1 Results and Discussion 5-1 Future Fisheries Studies 5-2 APPENDIX. Progress report on summer habitat selection of striped bass in Lake Norman (Federal Aid in Fish Restoration Project F23-17) A-1 O

i EXECUTIVE

SUMMARY

OPERATIONAL DATA Both units were operational during July, August, and September, when discharge temperatures are most critical. The average monthly discharge temperature was below the permit limit for all months and use of low level intake water was not necessary for compliance with the thermal limit for MNS. This helped to conserve habitat for cool water fish in Lake Norman.

WATER CHEMISTRY DATA Temporal and spatial trends in water temperature and dissolved oxygen concentration (DO) data collected monthly in 1992 were similar to those observed historically. Reservoir-wide isotherm and isopleth information for 1992, coupled with heat content and hypolimnetic oxygen data, illustrated that Lake Norman exhibited thermal and oxygen dynamics similar to other Southeastern reservoirs of comparable size and trophic status.

Suitable pelagic habitat for adult striped bass existed in all months in Lake Norman in 1992. The pattern and degree of habitat reduction in 1992 was generally similar to historic conditions; it was also typical of striped bass habitat distribution and reduction patterns observed in other Southeastern reservoirs.

l All chemical parameters measured in 1992 were within the concentration ranges previously reported for the lake during both MNS preoperational and operational years.

PIIYTOPLANKTON DATA Higher phytoplankton standing crops (chlorophyll a, total densities and biovolumes) were generally observed at uplake locations, although the gradient of increasing standing crops uplake versus downlake was not as distinct in 1992 as in past years. Chlorophyll a concentrations at all locations during 1992 were generally higher than those observed during 1987 through 1990 but were similar to those observed in 1991. Total densities and i

1 O  !

i

biovolumes, however, did not show this same trend but remained similar to those observed in previous years.

Phytoplankton taxonomic composition during 1992 was similar to that observed during the same months of 1991. Diatoms, green algae and cryptophytes were the most numerically abundant classes of algae observed. Diatoms generally dominated the phytoplankton biovolumes in all months except August. Dinoflagellates were sporadically dominant in terms of biovolume at some locations during all months except November. Blue-green algae were not an important part of the phytoplankton community at any location or time in 1992.

ZOOPLANKTON DATA Zooplankton densities, in general, were slightly higher in 10 m to surface samples than in bottam to surface samples in 1992, especially during periods of lake stratification. Total zooplankton standing crops were generally highest in Febmary and May. The typical trend of increasing zooplankton densities from downlake to uplake was observed in 1992. The O evereii reege of zeo9enkton i densitie8 od8erved during 1992 was imiiar te the reeges observed since 1987.

Overall, rotifers dominated zooplankton standing crops in 1992, as they did in 1991, followed closely in importance by copepods. Major rotifer taxa observed in 1992 were Keratella. Polvarthra and Synchaeta. Copepod populations were dominated by immature forms (nauplii and cyclopoid copepodids). As in previous years, Bosmina was the most abundant cladoceran taxa observed at all locations. Overall, zooplankt'on taxonomic  !

composition in 1992 was similar to that observed in previous years.

l O

ii f

r , - . . , - + - - , . , . - - - - -

FISIIERIES DATA No striped bass mortalities attributed to thermal stress were observed in 1992.

The North Carolina Wildlife Resources Commission and Duke Power Company initiated the first year of a two year striped bass radio tagging study in 1992. Results for 1992 indicated that large striped bass (>4500 g) will briefly tolerate water warmer than the criteria used for suitable adult striped bass habitat in Lake Norman (water temperatures s260C with dissolved oxygen concentrations 22mg/l). The short duration of habitat stress conditions in 1992 prevents discussion of how striped bass may respond to a more protracted high habitat stress period. The striped bass tagging program will continue in 1993. ,

O i

1 l

^

O iii

LIST OF TAIlLES Page Table 1-1 McGuire Nuclear Station 1991 capacity factors 1-1 Table 2-1 Water chemistry monitoring program schedule 2-10 Table 2-2 Water chemistry methods and detection limits 2-11 Table 2-3 IIeat content calculations for Lake Norman in 1991 2-12 ,

Table 2-4 Comparison of Lake Nonnan with TVA reservoirs 2-13  !

Water chemistry data for 1991 for Lake Norman Table 2-5 2-14

)

Table 3-1 Mean chlorophyll a concentrations in Lake Norman 3-8  ;

Table 3-2 Phytoplankton identified from Lake Norman 3-9 l Table 4-1 Total zooplankton densities and composition 4-6  ;

Table 4-2 Zooplankton taxa identified in Lake Norman 1991 4-8 l

O J

i l

l l

O l 4 iv I l

l l

, , .- , . . .- -,,c- -- ,.- -e -- ,,

- . . . - . - - - ~ - - - - - - - -

LIST OF FIGURES Page Figure 2-1 Map of sampling locations on Lake Nonnan 2-17 Figure 2-2 Monthly precipitation near McGuire Nuclear Station 2-18 Figure 2-3 Monthly mean temperature profiles in background zone 2-19 Figure 2-4 Monthly mean temperature profiles in mixing zone 2-21 Figure 2-5 Monthly temperature and dissolved oxygen data 2-23 Figure 2-6 Monthly mean dissolved oxygen profiles mixing zone 2-24 Fjgure 2-7 Monthly mean dissolved oxygen in background zone 2-26 Figure 2-8 Monthly isotherms for Lake Norman 2-28 Figure 2-9 Monthly dissolved oxygen isopleths for Lake Norman 2-31 Figure 2-10 Striped bass habitat in Lake Norman 2-34 Figure 3-1 Chlorophyll a measurements of Lake Norman 3-12 Figure 3-2 Phytoplankton chlorophyll a euphotic zone 3-13 i Figure 3-3 Total phytoplankton densities and biovolumes 3-14 l

Figure 3-4 Class composition in euphotic zone 3-15 l

Figure 4-1 7ooplankton density by sample location in Lake Norman 4-9 O Figure 4-2 uke Normae zeepieekten density by groug 4-10 Figure 4-3 Lake Norman zooplankton densities among years 4-11 l

Figure 4-4 Lake Norman zooplankton composition in 1991 4-12 Figure 5-1 Hydroacoustic sampling transects in Lake Norman 5-9 Figure 5-2 Depth distribution of fish on August 5,1991 5-10 Figure 5-3 Fish densities in lower Lake Norman August 5,1991 5-11 Figure 5-4 Depth distribution of fish on September 9,1991 5-12 Figure 5-5 Fish densities in lower Lake Norman September 9,1991 5-13 Figure 5-6 Size distribution of fish in Lower Lake Norman 5-14 O

v

i CIIAPTER i McGUIRE NUCLEAR STATION OPERATIONAL DATA Both units were operational during July, August, and September, when conservation of cool water and discharge temperatures are most critical (Table 1-1). During these months the thermal limit for MNS increases from a monthly average of 95 F to 99 F. The average monthly discharge temperature was 90.5 F (32.5"C) for July, 94.7 F (34.8 C) for August, and 94.5 F (34.7 C) for September 1992. Use of low level intake water was not necessary for compliance with the thermal limit for MNS. This helped to conserve habitat for cool water fish in Lake Nonnan. The volume of cool water in Lake Norman is tracked throughout the year to ensure that an adequate volume is available to comply with both the Nuclear Regulatory Commission Technical Specification requirements and the NPDES monthly discharge water temperature limit.

Table 1-1. Average monthly capacity factors (%) calculated from daily unit capacity factors [ Net Generation (mw per unit day) x 100 / 24 h per O day x 1129 mw per unit] and monthly average discharge water temperatures for McGuire Nuclear Station during 1992.

CAPACITY FACTOR (%) TEMPERATURE Month Unit 1 Unit 2 Station Monthly Average -

Average Average Average OF OC January 50.6 25.5 38.0 57.5 14.2 February 31.0 0.0 15.2 56.7 13.7 March 97.9 32.1 65.0 67.8 19.9 April 99.0 96.7 97.8 73.4 23.0 May 11.0 64.5 37.7 71.1 21.7 June 34.3 15.3 24.8 72.9 22.7 July 87.6 100.3 93.9 90.5 32.5 August 96.0 80.1 88.1 94.7 34.8 September 97.1 98.9 98.0 94.5 34.7 October 98.6 100.8 99.7 83.5 28.6 November 100.1 101.7 100.9 77.9 25.5 December 100.5 102.1 101.3 73.8 23.2 ,

O 1-1 I

,m

O CIIAPTER 2 WATER CIIEMISTRY L INTRODUCTION The objectives of the water chemistry portion of the McGuire Nuclear Station (MNS)

NPDES Maintenance Monitoring Program are to:

1) maintain continuity in Lake Norman's chemical data base so as to allow detection of any significant station-induced and/or natural change in the physicochemical structure of the lake; and
2) compare, where appropriate, these physicochemical data to similar data in other hydropower reservoirs and cooling impoundments in the Southeast.

This year's report focuses primarily on 1991 and 1992. Where appropriate, reference to pre-1991 data will be made by citing reports previously submitted to the North Carolina Department of Environment, Health, and Natural Resources (NCDEHNR).

METHODS AND MATERIALS The complete water chemistry monitoring program, including specific variables, locations, depths, and frequencies is outlined in Table 2-1. Sampling locations are identified in i Figure 2-1, whereas specific chemical methodologies, along with the appropriate references are presented in Table 2-2. Data were analyzed using two approaches, both of which were consistent with earlier studies (Duke Power Company 1985, 1987, 1988a, 1989, 1990, 1991). The first method involved partitioning the reservoir into mixing, background, and discharge zones, and making comparisons among zones and years. In this report, the discharge includes only Location 4; the mixing zone encompasses Locations 1 and 5; the background zone includes Locations 8,11, and 15. The second approach emphasized a much broader lake-wide investigation and encompassed the plotting of monthly isotherms and isopleths, and summer-time striped bass habitat. Several quantitative calculations were also performed; these included the calculation of the areal hypolimnetic oxygen deficit (AHOD), maximum whole-water column and hypolimnion heat content, mean epilimnion and hypolimnion heating rates over the stratified period, and the Birgean heat budget.

2-1 l

l

-e-. ,- ,, ,

-- ~. . .- .- _. --. - - . - -- - . -

O RESULTS AND DISCUSSION Precipitation Amount ,

Precipitation in the vicinity of MNS measured about 49 inches in 1992, compared to 42 inches in 1991 (Figure 2-2.). The wettest month of 1992 was June in which 16.9 % (8.29 in.) of the annual precipitation fell.

Temperature and Dissolved Oxygen Water temperatures measured in 1992 illustrated similar temporal and spatial trends 'in the mixing and background zones (Figures 2-3, 2-4). Water temperatures in 1992 were generally equal to or cooler throughout the water column as compared to 1991 (Figure 2-3, 2-4). The greatest between-year differences (50 to 70C) were measured in spring and early-summer in the epilimnion. Despite being somewhat cooler than in 1991, 1992 temperatures were well within the historic range (Duke Power Company 1985, 1989, 1991). Temperature data at the discharge location in 1992 were generally similar to or slightly cooler than measured in 1991 (Figure 2-5) and historically (Duke Power Company 1985, 1987, 1988a, 1989, 1990, 1991,1992) . The warmest discharge temperature of 1992 occurred in August and measured 35.10C, slightly less than the August,1991 maximum of 36.30C.

Seasonal and spatial patterns of dissolved oxygen concentrations (DO) in 1992 were like the patterns exhibited for temperature, generally similar in both the mixing and background zones (Figures 2-6 and 2-7). Winter, spring, and fall DO values generally ranged from about 1.0 to 2.0 mg/l higher throughout the water column in both zones in 1992 than in 1991, and were well within the historic range (Duke Power Company 1985,1987,1988a, 1989, 1990, 1991, 1992). Similarly, summer DO values were also slightly higher (0.1 to 2.0 mg/l) in 1992 than in 1991 in both the mixing and background zones. These higher values in 1992 than 1991 may partially be related to the cooler water temperatures in 1992 which would increase oxygen solubility.

O The seasonal pattern of DO in 1992 at the discharge location was similar to that measured 2-2 l

1

)

l

.O l historically, with the highest values observed during the winter and lowest observed in the-summer and early-fall (Figure 2-5). Generally, DO values in 1992 were either equal to or l slightly greater than in 1991, regardless of the season. The lowest DO concentration measured at the discharge location in 1992 (5.0 mg/l) occurred in August and was slightly higher than the July 1991 low of 4.5 mg/l (Figure 2-5).

The monthly reservoir-wide temperature and dissolved oxygen data for 1992 are presented in Figures 2-8 and 2-9. For the most part, the temporal and spatial distributional patterns of both temperature and dissolved oxygen are similar to other cooling impoundments and hydropower reservoirs in the Southeast. During the winter cooling and mixing period, vertical rather than horizontal homogeneity in temperature predominated, with the shallower uplake ' riverine' zone exhibiting slightly cooler temperatures than the deeper downlake ' lacustrine' zone (Figure 2-8). These longitudinal differences in temperatures were clearly illustrated in January and February. The principal factors influencing this gradient in Lake Norman are thermal discharges from MSS and MNS, morphometric (depth) differences within the reservoir, and surface water inputs from the upper reaches of O the reservoir.

The heating period in Lake Norman generally begins in March, as more heat is gained at the water's surface than is lost at night. During the initial stages of the heating period, buoyancy forces " smooth out" the horizontal differences in temperature, thereby reducing temperature differences between up-reservoir and down-reservoir locations. Due to the vertical instability of the water column during this period, temperature increases are observed at all depths. These~ points are illustrated by contrasting the January and February temperature data with the March and April data (Figure 2-8). As solar radiation and air temperatures increase, heating occurs at a greater rate in the upper waters than in the mid or bottom waters. Eventually, differential heating at the surface leads to the formation of

the classical epilimnion, metalimnion, and hypolimnion zones. These zones are clearly depicted in the July,1992 data (Figure 2-8).  ;

In contrast to most natural lakes, but not unlike many reservoirs in the Southeast, a distinct thermocline within the metalimnion was not observed in Lake Norman in 1992. Rather, the metalimnion was more or less continuous with respect to vertical density differences within the lower water column. and even showed signs of merging with the hypolimnion, j 2-3 i l

i

-,- ,,.,,, ,, ,,-n, , , . - . , . , - . , .r- -, - -- - , ,

O as illustrated in the August data (Figure 2-8).

l

, Cooling of the water column began in early September as illustrated by decreases in surface temperatures compared to August data. Concurrent with decreases in surface temperatures were an increase in the depth of the epilimnion (caused by convective mixing) and a disruption of the horizontal homogeneity in epilimnion temperatures (caused by reservoir-wide differential heating and cooling, and advective inputs from upstream).

Continuation of these differential vertical and horizontal processes led to even more pronounced thermal differences within the reservoir. For example, by October the uplake riverine zone had already ' turned over', while the downlake lacustrine zone was still

~

strongly stratified. Not until early November was Lake Norman completely mixed vertically throughout the reservoir.

Distributional patterns of dissolved oxygen in 1992 were similar to but not identical to temperature (Figure 2-9). Generally, dissolved oxygen concentrations were greatest during O the winter cooling and mixing period when biological respiration was at a minimum and atmospheric reaeration was at a maximum. The highest reservoir-wide mean concentration of dissolved oxygen (10.7 mg/l) occurred in February when the reservoir exhibited a mean temperature of 8.80C (Figure 2-8). Unlike the thermal regime, no major longitudinal differences existed in dissolved oxygen within the reservoir during the winter. Not until i the lake became stratified, thereby isolating the metalimnion and hypolimnion from atmospheric reaeration, were uplake-to-downlake gradients in dissolved oxygen observed, i Longitudinal gradients in metalimnetic and hypolimnetic dissolved oxygen in 1992 were first observed in May. Differential dissolved oxygen depletion and eventual anoxia were first observed in the transitional zone (Locations 15 through 62) where hypolimnetic volume is small, water column and sediment organic matter high, and advective mixing l minimal. By August, the complete hypolimnion throughout the reservoir below elevation i 219 m was anoxic. This represents approximately 22% of the entire volume of the lake at i full pond.

Reaeration of the water column started in September concomitantly with the cooling and mixing of the reservoir. Decreasing air temperatures cooled the surface waters resulting in a convective deepening, aided by wind-induced mixing, of the epilimnion. As the 2-4

O oxygenated epilimnion eroded progressively deeper into the water column, the width of the anoxic zone decreased. Longitudinal differences in reaeration were also observed and apparently were related to differential mixing caused by MNS and MSS, upstream advective inputs, and horizontal gradients in photosynthesis (Chapter 3). Reaeration of the reservoir was essentially complete by early November, except for the bottom waters in the downlake " lacustrine" zone.

Table 2-3 presents some common quantitative limnological calculations for the thermal environment in Lake Norman. Few comparable calculations exist in the literature for reservoirs, but these data are generally within the "ballpark" of those presented by Hutchinson (1957) for natural lakes at similar latitudes throughout the world.

Table 2-4 presents the 1992 AHOD for Lake Norman compared to similar estimates for 18 TVA reservoirs. The data illustrate that Lake Norman exhibits an AHOD that is similar to other Southeastern reservoirs of comparable depth, chlorophyll a status, and secchi depth.

O Striped Bass Habitat Suitable pelagic habitat for adult striped bass, defined as that layer of water with temperatures s260C and DO levels 22.0 mg/1, existed in all months in Lake Norman in 1992 (Figure 2-10). The temporal and spatial pattern and degree of habitat reduction m 1992 was generally similar to historic conditions; it is also typical of striped bass habitat distribution and reduction patterns in many other Southeastern reservoirs (Coutant 1985).

4 Minimum striped bass pelagic habitat existed in the reservoir from late-July through early-August or about 2 weeks. Most of the habitat that existed over this period was restricted to the uplake riverine reaches of the reservoir just below the Lookout Shoals Hydroelectric facility. Complete habitat elimination reservoir-wide did not appear to occur in 1992. j Physicochemical habitat was observed to expand appreciably in mid-August apparently in response to changing meteorological conditions (Figure 2-10 ). No mortalities of striped bass were reported in 1992 by local fishermen or observed during weekly habitat assessments by DPC personnel in the summer.

I Turbidity and Specific Conductance 2-5

O Annual mean turbidity values near the surface were low (2-4 NTU) at the MNS discharge, mixing zone, and mid-lake background locations during 1991 and 1992 (Table 2-5).

Annual mean near-bottom turbidity values ranged from 3.5 to 10.3 NTU over the two-year period, well within the range of values previously reported (Duke Power Company 1989, l 1990, 1991, 1992). l l

Specific conductance in Lake Norman in 1992 ranged from 57 to 95 umho/cm and was l similar to that observed in 1991 (Table 2-5) and historically (Duke Power Company 1989,1992). Specific conductance in surface and bottom waters was generally similar  !

throughout the year except in late-fall at severa' of the deeper locations when bottom waters averaged about 20 to 40 umhos/cm higher than surface values. These increases in conductance were related to the release of soluble iron and manganese from the lake '

bottom under anoxic conditions (Table 2-5).

pH and Alkalinity During 1992, pH and alkalinity values were similar among MNS discharge, mixing, and mid-lake-lake background zones (Table 2-5); they were also similar to values measured in i 1991 (Table 2-5) and historically (Duke Power Company 1989, 1992). Individual pH values in 1992 ranged from 5.9 to 7.2, whereas alkalinity ranged from 11.3 to 21.5 mg-CACO3/1, l

l Major Cations and Anions l

The concentrations (mg/l) of major ionic species in the MNS discharge, mixing, and mid- l lake background zones are provided in Table 2-5. The overall ionic composition of L,ake i Norman during 1992 was similar to that reported for 1991 (Table 2-5) and previously (Duke Power Company 1989, 1992). Lake-wide, the major cations (descending order as eq/l) were sodium, calcium, magnesium, and potassium; major anions were bicarbonate, sulfate, and chloride.

Nutrients O Nutrient concentrations in the discharge, mixing, and mid-lake background zones of Lake 2-6

.- . - . .- . .. . _ , . . . ~

O Norman are provided in Table 2-5. Overall, nitrogen and phosphorus levels in 1992 were similar to those measured in 1991 and historically (Duke Power Company 1989, 1990, 1991, 1992); they are also characteristic of the lake's oligo-mesotrophic status (Rodriguez 1982). Ammonia nitrogen concentrations increased in bottom waters in each of the three l zones during the summer and fall, concurrent with the development of anoxic conditions.

Total and soluble phosphorus concentrations in 1992 were appreciably lower than those l measured in 1991 but well within the historic range (Duke Power Company 1989, 1990, 1991, 1992).

Metals Metal concentrations in the discharge, mixing, and mid-lake background zones of Lake Norman for 1992 were similar to that measured in 1991 (Table 2-5) and historically (Duke i Power Company 1989, 1990, 1991, 1992). Iron concentrations near the surface were generally low (< 0.2 mg/l) during 1991 and 1992, whereas iron levels near the bottom t

were slightly higher especially during the stratified period. Similarly, manganese  ;

concentrations in the surface and bottom waters were generally low (< 0.1 mg/l) in both 1991 and 1992, except during the summer / fall when bottom waters approached or became anoxic (Table 2-5). Manganese concentrations near the bottom rose above the NC water quality standard (0.5 mg/1) at various locations throughout the lake in summer and fall of both years, and is characteristic of historic conditions (Duke Power Company 1989, 1990, 1991, 1992). Heavy metal concentrations in Lake Norman never approached NC water ,

quality standards, and there were no consistent appreciable differences between 1991 and 1992.

FUTURE STUDIES No changes are planned for the Water Chemistry portion of the Lake Norman maintenance monitoring program during 1993.

SUMMARY

Temporal and spatial trends in water temperature and DO data collected monthly in 1992 1 were similar to those observed historically. Most temperature and DO data collected in 2-7  !

~. - ~ - - - -. . . -. .- - -

0 1992 were within the range of previously measured values.

Reservoir-wide isotherm and isopleth information for 1992, coupled with heat content and hypolimnetic oxygen data, illustrated that Lake Norman exhibited thermal and oxygen dynamics similar to other Southeastern reservoirs of comparable size and trophic status.

Suitable pelagic habitat for adult striped bass existed in all months in Lake Norman in 1992. The pattern and degree of habitat reduction in 1992 was generally similar to historic conditions; it was also typical of striped bass habitat distribution and reduction patterns observed in other Southeastern reservoirs. No mortalities of striped bass were observed or reported in 1992.

All chemical parameters measured in 1992 were within the concentration ranges previously reported for the lake during both MNS preoperational and operational years. As has been observed historically mnganese concentrations in the bottom waters in the summer and fall of 1992 often exceeded the NC water quality standard for these elements.

LITERATURE CITED Coutant, C. C.1985. Striped bass, temperature, and dissolved oxygen: a speculative hypothesis for environmental risk. Trans. Amer. Fisher. Soc. 114:31-61.

Duke Power Company.1985. McGuire Nuclear Station,316(a) Demonstration. Duke Power Company, Charlotte, NC.

Duke Power Company.1987. Lake Norman maintenance monitoring program: 1986 summary. Duke Power Company, Charlotte, NC.

f Duke Power Company.1988a. Lake Norman maintenance monitoring program: 1987 summary. Duke Power Company, Charlotte, NC.

Duke Power Company.1988b. Mathematical modeling of McGuire Nuclear Station thermal discharges. Duke Power Company, Charlotte, NC.

Duke Power Company.1989. Lake Norman maintenance monitoring program: 1988 summary. Duke Power Company, Charlotte, NC.

O Duk'e Power Company.1990. Lake Nonnan maintenance monitoring program: 1989 2-8 i

i

. . - - . - - - . . ~ .-

summary. Duke Power Company, Charlotte, NC Duke Power Company.1991. Lake Norman maintenance monitoring program: 1990 sununary. Duke Power Company, Charlotte, NC. '

i Duke Power Company.1992. Lake Norman maintenance monitoring program: 1991 summary. Duke Power Company, Charlotte, NC.

Higgins, J. M. and B. R. Kim.1981. Phosphorus retention models for Tennessee Valley Authority reservoirs. Water Resour. Res., 17:571-576.

Higgins, J. M., W. L. Poppe, and M. L. Iwanski.1981. Eutrophication analysis of TVA  !

reservoirs. In: Surface Water Impoundments. H. G. Stefan, Ed. Am. Soc. Civ.

Eng., NY, pp.404-412.

Hutchinson, G. E.1957. A Treatise on Limnology, Volume I. Geography, Physics and  ;

Chemistry. John Wiley & Sons, NY. Hydrolab Corporation.1986. Instructions for operating the Hydrolab Surveyor Datasonde. Austin, TX.105p.

Rodriguez, M. S.1982. Relationships between phytoplankton growth rates and nutrient O dynamics in Lake Norman, NC DPC DUKEPWR/82-01. Huntersville, NC 39p.

Ryan, P. J. and D. F. R. Harleman.1973. Analytical and experimental study of transient cooling pond behavior. Report No.161. Ralph M. Parsons I2b for Water l

Resources and Hydrodynamics, Massachusetts Institute of Technology, Cambridge, MA.

Stumm, w. and J. J. Morgan.1970. Aquatic chemistry: an introduction emphasizing  ;

chemical equilibria in natural waters. Wiley and Sons, Inc. New York, NY 583p.

~

1 o +

2-9 '

'l

O O O Table 2-1, Water chemistry program for the McGuire Nuclear Station NPDES long-term maintenance monitoring on Lake Nonnan.

McGUIRE NPDES / LAKE NORMAN Sample Collection Schedule for 1993 PARAMETERS LOCATIONS 1.0 2.0

  • 4.0 5.0 8.0 9.5 11.0 13.0 14.0 15.9* 69.01 16.0 DEPTH (m) 33 33 5 2k) 32 23 27 21 10 23 7 3 SAM CODE In. situ Analysis Temperature in. situ measurements are collected quarterly at the above locations at I m intervals from Dissolved oxygen 0.3 m to 1 m above bottom.

pH Specific Conductance Nutrient Analyses Ammonia AA_ NUT Q/T.B Q/T.B Q/T Q/T.B Q/T.B QT.B Q/TB Q/TB Q/T Q/T.B Q/T.B S/T '

Nitrate + Nitrite AA_ NUT Q/T.B Q/T.B Q/T Q/T.B Q/T.B Q/T.B Q/T.B Q/T.B QT Q/T.B Q/T.B S/T 4 Orthophosphate AA_ NUT Q/T.B Q/T.B Q/T Q/T.B Q/T.B QT.B Q/T.B Q/T.B Q/T Q/T.B Q/T.B S/T Total phosphorus AA_TP/DG_P Q/T.B Q/T.B Q/T Q/T,B Q/T.B Q/T,B Q/T.B Q/T.B Q/T Q/TB Q/T.B S/T Silica AA_ NUT Q/T.B Q/T.B Q/T Q/T.B Q/T.B Q/T.B Q/T.B Q/T.B Q/T Q/T.B Q/T.B S/T Chloride AA_ NUT Q/T,B Q/T.B Q/T Q/T,B Q/T.B Q/T,B Q/T.B Q/TB Q/T Qfr,B Q/T.B S/T TKN AA_TKN S/T.B S/T B i Chlorophyll 2 N/A S/T B S/T.B 5 Elemental Annivses Aluminum ICP_24 S/T.B S/T Q/T.B Q/T B Q/T.B Q/T.B Q/T Q/T.B Q/T.B S/T Calcium ICP_24 Q/T.B Q/T3 Q/T Q/T,B Q/TB Q/T,B Q/T.B Q/TB Q/T Q/T.B Q/T.B S/T 1 Iron ICP_24 Q/T.B Q/T.B Q/T Q/T.B Q/T.B Q/T.B Q/T.B Q/T.B Q/T Q/TB Q/T,B S/T Magnesium ICP_24 Q/T.B Q/T.B Q/T Q/T.B Q/T,B Q/T,B Q/T.B Q/T,B Q/T Q/T.B Q/T.B S/T Manganese ICP_24 Q/T.B Q/T.B Q/T Qfr.B Q/T.B Q/T,B Q/T.B Q/T,B Q/T Q/T.B Q/T,B S/T

, Potassium 306_K Q/T.B Q/T.B Q/T Q/T.B Q/T.B Q/T,B Q/TB Q/TB Q/T Q/T.B Q/T.B S/T Sodium ICP 24 Q/T.B Q/T.B Q/T Q/T.B Q/T.B Q/T.B Q/TB Q/T.B Q/T Q/T.B Qff,B S/T l

Zine ICP_24 Q/T.B Q/T Q/T.B Q/T.B Q/T.B Q/T.B Q/T Q/T.B Q/T.B S/T Cadmium HGA CD S/T.B S/T S/TB S/T,B S/T S/T.B S/T Copper HGA_CU S/T.B S/T S/T.B S/T.B S/T S/T,B S/T Lead HGA_PB S/T.B S/T S/T.B S/T B S/T S/T.B S/T Additional Analyses Alkalinity F_ALKF Q/TB Q/T.B Q/T Qfr.B Q/T.B Q/T.B Q/T.B Q/T.B Q/T Q/T.B Q/T.B S/T Turbidity F TURB Q/T.B Q/T.B Q/T Q/T,B Q/T.B Q/T.B Q/TB Q/T.B Q/T Q/T.B Q/T.B S/T Sulfate UV_SO4 S/T,B S/T S/T.B S/T S/T,B S/T Total solids S TSE S/T.B S/T S/T.B S/T S/T,B S/T Total suspended solids S_TSSE S/T.B S/T S/T.B S/T S/T.B S,T Secchi Disk Dept.h N/A S/*/1 S/*/1 i CODES
Frequency Q = Quarterly (Feb, May, Aug, Nov) / Depth Interval T = Top (0.3 m)

S = Semi. annually (Feb, Aug) B = Bottom

  • = Secchi Depth (m.)

i

_ _ - - - - - - - - -a- , -,.-- , , ws -.w. a a ,- - - - m, , , , , _ , . , . _ ,

O O l

Table 2-2. Water chemistry methods and analyte detection limits for the McGuire Nuclear Station NPDES long-term maintenance program for Lake Norman.

Method Preservation Detectfen Limit Vartables A lita l t ni ty . total Electrometric titration to a pH of 5.I' 4*C Ing-CACO, l*** ,

' Atomic emission /ICP-direct injection' O.5% HNO, 0.3 mg 1 8 Aluminum Automated phenate' 4*C 0.050 m gl-'

Amonium Cadmium Atomic absorption / graphite furnace-direct injection' O.5% HNO, 0.1 u9 1-8 Atomic emission /]CP-direct injection' O.5% HNO, 0.04 mg 1-'

Calcium Automated ferricyanide' 4*C 1.0 mg 1-'

Chloride Conductance, specific Temperature compensated nickel electrode' In-situ 1 umho cm-**

Copper Atomic absorption / graphite furnace-direct injection 8 0.5% HNO, 0.5 u9 1 8 Potentiometric' 4'C 0.10mg.1-'

Fluoride Atomic emission /ICP-direct injection' O.5% HNO, 0.1 mg 1-8 t Iron i

Lead Atomic absorption graphite furnace-direct injection' 0.5% HNO, 2.0 99-1-'

Atomic emission /ICP-direct injection' O.5*4 HNO, 0.001 mg 1 '

Magnestum Atomic emission /ICP-direct injection 8 0.5% HNO, 0.003 eg 1-8 Manganese Automated cadmium reduction' 4'C 0.050 mg.1-'

Nitrite

  • Nitrate

- Ortberhosphate Automated ascorbic acid reduction, 4*C 0.005 mg.1-'

0xygen, dissolved Temperature compensated polarographic cell' in-situ 0.1 me 1-'*

Temperature compensated glass electrode' In-situ 0.1 std. units' pH I

Persulfate digestion followed by automated ascorbic acid 4*C 0. 005 mg 1 - 8 "

i Phosphorus, total

  • reouction' O . 015 mg 1 - "

, Potasstum Atomic absorption graphite f urnace-direct injection' O.5% HNO, 0.1 eg 1 , .

Auto. sated molydostlicate' 4*C 0.5 mg 1.

Stitca Sodium Atomic emission /ICP-direct injection' O.5% HNO, 0.3 m gl '

Turbidtmetric. using a spectrophotometer' 4*C 1.0 mg 1-'

Sulfate

' Temeerature The rmi stor/thermomete r' In-situ 0.I'C' t

Turbidity Nephelometric turbidity

  • 4*C 1 HTU*

Zinc Atomic emission /ICP-direct injection 8 0.5% HNO, a ug l '

' United States Environmental Prottetton Agency 1979. Methods for chemical analysis of water and wastes.

Enytronmental Monitoring and Support Laboratory. Cincinnati, OH.

'USEPA. 1982..

'USEPA. 1984

  • Instrument sensitivity used instead of detection limit.

" Detection Itmit changed during 1999.

O Table 2-3. Heat content calculations for the thermal regime in Lake Norman in 1992.

Maximum areal heat content 26,828 g cal em-2 .

l Maximum hypolinmetic (below 11.5 m) 13,424 g cal em-2 areal heat content s

Birgean heat budget 18,177 g cal cm-2 Epilimnion (above 11.5 m) heating 0.099 C/ day rate Hypolimnion (below 11.5 m) heating 0.064 C/ day rate i

O l E

I d

1 O l 2-12 l

1

O Table 2-4. A comparison of areal hypolimnetic oxygen deficits (AIIOD), summer chlorophyll a (chi a), secchi depth (SD), and mean depth of Lake Nonnan and 18 TVA reservoirs.

I AIIOD Summer Chl a Secchi Depth Mean Depth Reservoir (mg/cm 2/ day) (ug/L) (m) (m) l

~

Lake Norman 0.040 5.0 3.0 10.3 TVA a Mainstem Kentucky 0.012 9.1 1.0 5.0 i Pickwick 0.010 3.9 0.9 6.5 Wilson 0.028 5.9 1.4 12.3 Wheelee 0.012 4.4 5.3 Guntersville 0.007 4.8 1.1 5.3 Nickajack 0.016 2.8 1.1 6.8 Q Chickamauga Watts Bar 0.008 0.012 3.0 6.2 1.1 1.0 5.0 7.3 Fort London 0.023 5.9 0.9 7.3 Tributary Chatuge 0.041 5.5 2.7 9.5 Cherokee 0.078 10.9 1.7 13.9 Douglas 0.046 6.3 1.6 10.7 Fontana 0.113 4.1 2.6 37.8

IIiwassee 0.061 5.0 2.4 20.2 i '

Nonis 0.058 2.1 3.9 16.3 South IIolston 0.070 6.5 2.6 23.4 Tims Ford 0.059 6.1 2.4 14.9 i' Watauga 0.066 2.9 2.7 24.5 a Data from Higgins et al. (1980), and Iliggins and Kim (1981)

O '

2-13 l y - . - . , . . ,-~n n

Tao e 2-5. Quanerly surface (o.3 m) and bottom (bottom mitr s I m) water chemistry for the MNS discharge, mixing zode, and background locations on Lake Norman during 1992 and 1991. Values less than detection were assumed to be the detection limit for calculating a mean.

Miimg Zcre MW Zn MNS Dwtey MW Zre 541 pre Saoyase LOGaTCN 10 20 40 50 80 11 0 CEPN S#sco Bcm Str' ace Boaom S# ace $#sce ScCom S.r' ace So m a

$# ace Bonom

, c4 4 WF?F8t3

  • EAR T 91 W 11 92 31 12 it 92 11 92 11 92 4t 12 11 92 st 12 11 T2 St
Jr wry m f et 2 4 3 8 3 4 3 8 3 6 2 4 4 8 2 NS 3 9 4 4 10 ve, NS 2 6 7 4 3 6 8 NS 4 NS 2 6 NS 8

4 2 8 11 NS 2 10 1$

a.S 2 2 1 10 2 2 2 3 2 S 2 2 4 3 12 2 2 4 15 3 2 4 13 N:s 3 3 4 5 2 3 7 7 3 3 2 4 4 6 2 4 10 4 2 5 12 S Nvtef Meen 2 33 2 75 35 82" 2 TS 3 43 7 2 67 4S 2 3 $ 2 7 2 67 6 25 9 75 3 3 25 9 10 3 l kWx Cs=mwe N i .M Fee 59 $4 50 $4 $8 *s2 el St $9 SS 57 SS 57 S4 64 $4 37 SJ 67 53 68 S2 Way 60 43 60 49 61 48 60 49 61 49 60 49 60 49 60 48 61 48 61 48 61 48 Aq 60 SS 78 67 60 SS 77 65 61 SS 60 55 73 67 60 64 74 66 61 $4 74 65 Nm 59 33 9$ 106 59 33 09 102 60 $4 59 S3 59 53 58 $3 62 99 58 S4 61 M Amet Mesa S95 S25 73 3 69 $9 3 $2 71 a f68 60 3 S33 $9 558 S3 62 3 60 $ S23 63 5 E6 S 61 8 $18 66 SS 3 p** r W15 )

Fee 59 65 66 67 68 67 69 69 68 69 67 67 7 7 7 64 7 6.7 7 69 69 66 May 68 68 66 65 67 69 66 65 66 66 68 75 66 ag to 69 75 67 65 69 77 67 64 u 7 63 63 62 7 63 63 6.3 66 62 7 63 64 63 54 64 Nw 66 7.2 63 72 64 63 63

, 6S 64 65 67 65 63 64 66 64 68 6$. 64 64 68 66 J 2, 64 69 66 6I ES

, 8mw Weea 6 54 66 6 48 6 49 68 66 6 33 6 55 669 6S 6 88 6 7$ 66 6 45 6 99 6 83 6 58 6 48 7 69 6 53 6 45 4Aewy n CaCOM; Fee 12 9 It 13 11 2 12 8 11 1 13 113 12 8 11.2 12 6 11 12.7 11.1 13 1 NS 12 7 11 3 13.3 11 1 13 6 11.3 usy NS 10 7 12 9 10 8 12 8 10 6 12 8 10 8 NS 10 7 NS 10 7 12 S 10.7 NS 10 6 12 8 10 8 NS 10 8 12 8 10 9 y  % 11 3 12 15 4 16 12 2 12 16 7 13 12 12 12 12 16.5 18 12 12 '66 18 12 S 12 16 N:w 12 7 13 2 16 6 i

21 $ _?_9 12 S 13 3 14 9 29 9 12 6 32 12 4 13 4 12 6 13 3 12 5 13 3 J1, 13 2 12 3 13 3 11 9 13 3

{ Wce t~9%

amw we,, il 3 11 7 iS 7 16 8 12 6 it s to 4 56 12 S 11 8 12 4 11 6 13 7 13 3 12 5 12 13 6 13 3 12 7 11 6 13 7 13 4

! Fee 46

' S S4 48 57 47 6 45 64 44 64 49 S4 48 Way 7 46 53 45 68 5 72 $

NS 41 79 42 52 41 $4 41 NS 4 NS 41 $1 4.1 NS 41 $7 41 4 S2 38 NS $6 41 4 6 41 S2 45 59 41 6 4 $2 4 66 48 $6 Nw 47 44 46 61 41 $6 26 58 43 3 4S 47 49 36 44 49 44 47 46 48 36 An et Wee 9 4 97 423 4 44 52 45 64 47 S' 47 6 06 44 S2 4SS 5 73 4 25 6 77 42 $1 44 5 49 4 36 S4 4 43 S $8 4 38 6 27 4 08 6 06 4 S3

, bre'e i 99 Fm NS NS NS NS 6 NS $9 65 $9 NS NS NS NS N3 7 a.;g NS NS NS 53 NS NS NS NS d$

NS NS NS 1 NS JS, 13 NS NS NS NS 16 vnet vees 1 NS NS 28 NS NS NS NS 6 1 59 3 75 S9 13 7 16 53 28 ce w t.99 Fee 26 26 26 25 27 27 26 27 26 26 2.7 17 2.6 26 2_7 2.7 2.7 28 27 26 27 28 Woy NS 26 NS 28 NS 27 NS 28 NS 26 NS 27 NS 28 Aug 25 26 NS 2.7 NS 2$ NS 27 NS 29 29 3 25 25 3 27 25 26 25 26 3 25 31 31 Na 25 28 3 2.5 26 27 31 32 31 36 26 28 26 36 27 28 26 28 25 28 27 28 23 27 26

&n* Mee, 2 53 26 23 26 2 65 2 87 30S 26 268 2 73 2 95 26 2 65 26 27 27 2 83 26 27 20$

2 68 2 63 27 27 2 68 V s ,7vsu, W4

  • Fee 12 12 13 12 13 12 13 12 1.3 12 1.3 12 t.3 12 1.3 1.2 1.3 12 13 12 13 12 May NS 11 12 12 11 12 't1 12 NS 12 NS 11 12 12 NS 12 1.1 12 NS 11 12 12 Aug 12 11 13 13 12 11 14 12 12 1.1 1.2 1.1 13 12 12 11 14 13 12 12 14 to New 13 13 14 1S 13 13 13 15 13 13 1.3 13 13 13 13 13 Ame: M*ea 13 13 13 13 13 13 1 23 11S 13 13 1 23 12 12S Ti' 1 27 12 1 27 12 1 29 _. 123 127 12 1 29 1 25 1 27 12 13 1 29  !

NS e Not Saaped

. t l

3 1

. _ _ . . _ _ _ _ . _ _ . _ . . . . _ _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ ___ . _ _ _ _ _ _ _ _ _ _ _ _ , _ . .-- - . , , ~_

a u #_ _._.,.m.. _m.__. m m m.s_._, , _ - - m - -- __ ,_. _ _ _

l

'l I

a O Nnee.

e w e ze m. .. M. us g nNemm oooz o

..me oowo o

O

.gmeNN o-h-ooe o o

mm zZ em zz em zz onomo

-" z' l

l ebb. e ummm m .nmNom gge- ls e ml .c . M wlm o m o mlo

- e e e

[ .e

e. N. .g{g a z o i" o ococo zz -z e "zz 1

4 .m.m 2 NNamN eeee e - e w nl 8 em mm me ooomo ho* ---z e m . M.o. s. oooz o0o zz zz zz *- z' oo oo-1 o anooo g7ap k

.m.-- .m.-. nm,m- ----- ,m em .m. ~~~ omomo e ze e e mzen. Ozczo Ozoco u.

-g m ud zz *ze "z"2" p o ooo 4

H..m

---z Q e. .u n m.g Nnnem oooz o NnHng oo-o ggg;.g e-.e oo g unn ooomo

---z -

?P e eje o-zm o elo ocoog gog - e. nly

. N a .ls n m e n clN - - n =le -me n ein


e . n. N.I.,

azozo g ozo -e- r-

.nne m ooom D e-e z y

-e O.%P .

. m NNneN ocoz o we-e d o o olg- o e

g-g ens n. g nsa o e , ooooo o 2 .,g e i e

e um.s~*

szee

-e.b

. zee ~. nenen ozoz o eme-azooo

- -m

.ozgeg o em-dzo Nep*

e-nam omoeo "z z "

y

- . ooo -

ne,m m ..~. - numm~ --~-. genn . mm em em ooom o s--z e .. .  ; oooz o aosoo ogs;; zz zz zz ---z -

P g amomo oooo; ng..

.n,-~

---s g ... neuem --en. - em eme nun e

. e ,

ozoz o go ;; zz sz - -z-z -

E i

~

p m e M ~n . g

.meu e NNamm -e-e me em ocomo yog_ gegk

- u e

e--z ,

oooz o ooooo ,g,;g zz ,, zz ---z -

keyr zz 4

.m.n m menen em-- na m em amo men om co e

-z--

  • e. zm m. n. . e ozoz o ozooo gzggg ,, zz or o z-z -

w

...m . ~~~m~ ----

g--ng ... ... ~~~ ooomo p _

---z e .~....

. .. . ooor o oooo .- ,gog , oo g s-* ---z -

t P

h8

  • a,),

m.

z e

.m.s

-z--

m

~z

.~

m.

umec~

ozoz o

-m---

ozooo U, " E "z,gg S o"*

-z . "**

  • -z-* * "z -

s g_

er

~meme

---z - .. e.

.. . e e

nunm oooz m

o nunm.

ooooo ng;.

g,~;;

ooo nnu ooom

-- z o

neum~

n. . g ggen

.~~.o - --n. ~ ~ -- - -.. enu omoco


~ .n ,

azoz o oooo. ,,-g o az o ao -z-z - ,

e E

~

.... m nune ~ neene .. n. una ooom, Io

e - - --z a e

.~.

. .A w

ooor o ooooo ooo-ooooo o ooo n

- --z -

anyr A

4 onnn e m meg nmnen -ee- - n -me no, nON omom o g ozoz ooooo gogoemg g ozo -z z

-e- -

.c ,

o ,

r s m me

-e -.mA; o..e unNe o ne.e g .h e . em em cooeo g_ z ..  ; oooz o ooom _ gg_. . zz zz zz ---z -

a gr

.~~.~ n ~. . ~m-m~ ---. . g ,g m- - em ame ~~~ omom o

]a ,

- -- - - . ..  ; ozoz o oooo  ; go o zz cz e -z z -

g e

r

.C b 2 M N C

o f yo g_

he.w e --z m

e eMn. m.

MNum oooz N

o e e e ee ooooo goggg e-Mm zz Mm zz em zz ooom-

-* z o

Q 1 e z

.m.~, ... ~m-m~ -m-- -

-mug mm -m, an~ omom o

-z- * ~ z c

.a~ ozozo azooo gzg,~g zz -z s -z z -

" I 6

v3 er E. . . e

. .e U. b 6  %

,, s . .

h

  • I I 2 I 2 2 2 2 3 O 7

[ f 4 - I  % t h i i ]

% -tat 5 ft,f}f ?t e f 2 L,C 2 5 s' TE h' t f j }tyf 5 g y p 2 4'1,C g p p- 2 $z g .t2* 4 2 ym _

pt f <5 9.t t2f2j

e. :a  : -

8 r

- A.

E  :

u 2 a = 2 o 3 . .e 4 ,

t15

e. - - . - - - - - . , .-m ___ ,- , , - g -

, _ _ ~, - m - - m-m ., -. -, , -

O O .

Table 2-5. Continued.

V LC047CN wn 2,.

10 m z- uNS om ww zo - s.mm 20 40 $0 80 w rN $<u. sn., we=. w- sau. S<n. w un, w 11 3 cARavE* Ens *EA9 92 1T $2 11 $2 11 12 31 32 11 $2 $1 11 uc. w

%r e te iur,9

?? 72 11 72 $1 72 11 72 Si F ee 177 2 s4 189 290 174 253 203 2 72 180 281 160 268 154 253 219 264 158 264 246 241 uny NS 264 229 3E9 219 ISO 293 Its 266 395 N$ 283 NS 273 220 351 Ag NS 299 247 3 76 256 2 *3 366 127 123 335 23 150 2S8 309 2ft 211 208 1$3 104 227 212 127 133 298 63 4,

% tM m 8? $0 137 112 163 136 99 37 90 91 98 136 94 M 87 113 77 299 t$ ,

settni vee- 137 178 145 1 36 '!? 132 its 2 *0 222 170 225 235 254 163 202 134 184 176 2 38 141 195 220 210 153 178 M,3 2t3 A-rvsve 99

  • *o 50 50 50 50 50 72 50 75 $0 75 50 57 50 $0 50 58 50 65 50 Mey NS 50 SO SC 50 SC 50 50 NS 69 7e *2 ,

SC N$ SO 50 SC NS $3 50 50 50

aug 50 50 SO 50 50 50 61 50 09 50 SC 50 50 150 E3

% 50 74 251 4?1 82 55 176 479 50 "A 60 74 184 69 50 111 110 50 So n 91 62 S3 50 50 112 51 50 50 A.wei ueen 50 56 101 '* 3 $6 57 88 tw NwuMtg 64 3 164 56 3 "A 5 53 3 798 64 3 Y 56 3 52 60 8 69 50 54 8 71 3 ~M$ 50 A Fee N$ 5 NS 10 NS 6 N$ 10 NS 8 NS 6 NS $ N3 12 NS wey NS T NS 14 14 N3 11 NS 10 NS 7 N$ S N3 9 NS 7 NS 9 N3 7 4 9 50 N3 9 NS 13 NS 14 6 (C 7 53 7 52 7 $4 11 $1 to

% SS e $ e $8 5 *> 3 60 9 33 7 51 9 37 19 44 _ 7 37 W U+e, 8 37 12 39 7 _ 38 22 40 6 49 23 40 9 23 8 65 33 6 8 25 8 125 28 5 f

  • 7 27 95 253 11 2S 5 75 15 5 15 30 3 55 31 15 5 31 y

Wuvrwe's n99 Feo NS S NS 5 N$ $ NS $ N$ S N$ $ N3 5 NS S NS 6 NS Wey NS S NS 10 NS 6 N3 12 N3 9 S NS S NS S NS S NS 6 NS -6 NS A.s 11 130 8 20 5 15 6 S N$ 9 19 9 18 5 21 7 26 3 21 No. s 21 9 5 21 6 19 7 21 20 8 19 13 20 10 18 10 19 11 17 11 18 12 18 13 it 11 19 Avvei wer 95 55 3 e 13 e 65 12 95 12 3 95 11 5 F.5 12 5 9 13 3 8 12 5 85 12 e 95 Mts 179 53 5 e 14 5 IJ Fee $3 45 St 43 51 46 $2 47 $1 48 5 46 5 44 54 47 at 48

j. way N$ 44 5 $1 49 43 $

S3 43 $$ 46

! N3 45 N$ 43 5 46 NS 43 $ $ NS 44

@ aug 37 44 49 $2 37 44 38 $1 $

5 46 44 38 S.2 48 58 36 43 51 S1 36 43 49 Nov 4 48 49 54 42 47 47 $5 5.2 i 39 48 39 49 42 49 38 47 48 45 41 53 Awei wee, 433 4 53 4 99 5

  • 49 45 4 96 - 4 95 5 52 l 4 27 4 6J 4 23 4 75 4 75 4 94 4 27 45 4 95 4 63 4 33 4 58 5 13 5 '

NS

  • Nct SpW i

l I

I I

i i I f

> +

i '

b i

i l

___ __._ _ ____ _ __ _ _ _ _ _ ~ __ __ - -~ --- --- - - -- ~- - ~ ~ ' ~ - -

' ~ ~

O s 5 g-

_ 1 a

= 4 s ss\ 4,\,

%' u,,

<<~w

?

v gjj b

a ,

- . )$w$

, g s

?%.c g

(.. 9 ,

/

' khj!;. Nib!!

r; g "% -__._

i

$ $. .p 4

\+ o o dg#.gk

.#.6..

  1. y!gg'

( \

,_s

  • T~ !L 3 . .,lF:ip. , . p>

^^ N o%o fB a :

  1. ,c o

~

A A

~

. . . .s;

.?N- n

/j@.db 97 n' sy .

w7 d El -

' :l .

O 2};[

, . .$ j

'I 25 F>

  • b5

\y f

in ng EIS , a f k%

  • Ja .\s.

s

%,sf z

~

o ,

o z ~

o. -

i .

d *N s n

r \ :!'  :

1

i l

i 5

<, o d

 % sa \

%7 ,

x )

. i N x

a k gN NNg

~

O Sampling locations on Lake Norman, North Carolina during maintenance Figure 2-1.

monitoring program for McGuire Nuclear Station.

2-17 l

O McGuire Rainfall 9-l /

O .- , I 7-6-

0 5-A-

3-l p_ -

1991 JAN'FEB' MAR'APR'MAY'JUN'JUL AUG'SEP'OCT'NOV'bEC' Montti Figure 2-2. Monthly precipitation in the vicinity of McGuire Nuclear Station. ,

2-18 l

! I;;i  :> .T i ,

5

,3 5 d 3

t e

t

,3 0

0 o

3 d

(

5 2

,2 9

'H C' 5

2 9 C e C

1 R , 0 r E A ,

u N , 0 e d _

, 2 t . r n

M ,

a r

e U

J

. l ! ., ,

2 t u

a a _

=. r )

p ,

5 pe ne

,5 _

.: 1 m ~- _

f e  : 1 mi T e l _

,t o ,

T d

, 0 -

e

, 1 il o

s

,5 (

, 5

, 1 9

, 0 9 0 0 0 0

, 0 1 0 o 1 2 3 4 0 t

0 2

0 3

0 4 i n _

E 6&o e E 6c$ t n

o z

d -

n

,5 ,5 u

, 3

, 3 o r

, g

,0 i 0 k

, 3 g3 c Y

a -

R

, b

, 5 A ,2 O g2 5 n U

, ' Y ,

C o R ,

e A ,

i t

,0 r u M , 0 'e r t a

, 2 ,2 t

a . :.* j:

t u S r

e a

r r .

,5 p

, 5 e p

a e

~~

, 1 m T

e

, 1 m c e u l

, 0 j1 g0

, 1 T N .

e .

, ir .

,5 g

. 5 u -

G c 0

0 0

0 0

0 0

0 0

- - . 0 M 1 2 0 0 e 3 4 1 2 3 4 ht E 6&a

.E 6o O r f

o -

s l

e

- i f

o r

p

,5 e r

- 3 5 i t3 t t

, a r

- ,0

, 3 j3 0 e p

+

+

Y i

, m R . 5 32 L 5 e A C I

2 t

,

  • R ,

C n U e P a

N 30 r u A 0 e

r e

- A , 2 t i2 u J , a r

i t

a m

e r y

,5 p e l

, ,5 p

, 1 m 1 ht e .;*; .

m .

n )e

.l:t..

T . e o

i

  • - [:.;:l . , 0 .

!!:.j. .

0 T n .

,1 _

_ Mi

. 1 l

5 j5 .

. 3

- 0 2 O _

0 0 0 0 0 0 0 0 0

t e

r 2 3 4 Pv 1 1 2 3 S~ u s

= ig

- E Eea g- {eO F g-t n

, j , 1

t AU -

SEPTEMBER ~

i JULY 0- ,

0- .

0- .

10-10-  :

10- *

.=

g ..-

g .

g 6a 20- .-

5a 20-Ea 20- [ o -

o a  :

, e o a '

30- 30-  :

30- l 40 40 ,,,,g...,g.,,,,,, ,3,, ,,,,,,,,, ,g 40 .g. gite,g ..gi,,,g ,,,,,,,,,,,,,,,,,,,j,,,,j,,,,,,,,,g

.g. .g,i, 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 to 15 20 25 30 35 Temperature 'C Temperature 'C Temperature *C to NOVEMBER DECEMBER ,

OCTOBER h t t

0- 0-0- .

[ '

.I a

.= .

l 10- ,: 6 10- l 10- .

a:  ;

- n:

E -

E ,;

E  : .- .

5a 20-  ; 5a 20- *:

Ea 20- l o i.

o '

a e.

o o ,

a  : s' 30- ,-

30- 4 30- J 40 40 ,,,,j,,,,,,,,,,,,,,3, ,,j. ,,g , 3 40 ,,,,g,. .,,,,,,,,,,,,,,33 ,,,,,,,,,

i;....;i,i.g.ii g ,4 .g, .,g,,,,g 0 5 to 15 20 25 30 35 0 5 10 15 20 25 30 35 0 $ 10 15 20 25 30 35 Temperature 'O Temperature *C Temperature *C Figure 2-3. Continued.

_ - - _ _ _ _ _ - _ _ _ _ _ _ _ _ _ - _ _ _ _ . _ _ _ .. . .- . a.-. . -..- -.- -

l f ,l lI1 ll lI O d

_ ;5

,5 3

t e

t 3 o

, ,0 d

(

0 3

3 2

,5 9 H C 91 2 '

C 5

, 2 e R r A C E

,:: 0 u d M N ;2 t n

,0 2

'e r U /

  • a r a u J e t

a r

fl* ,5 1

p m

)

e n

,5 e

, e i

, 1 p , T l m

, e j1 0 d

.- ,0 T il 1

, s o

,5 (

,,5 ,

1 9

. , 0 9

- - - 1

- - 0 O 0 0 0 0 0 0 0 0

0 1 2 3 4 i

n 1 2 3 4

_E 5@a e

-g ESo n o

z g

n i

x -

5 ,5 j3

, , 3 i

m

, 0 g . 0 n

, 3 g3 i

o Y ,

4 t

a R ,g 5 5 t A , 2 O 32 C S

" 'e r

'e

, 0 r a P~ ,2 u Y , 0

,2 r

u e E , t a A l a cu t

F ,

r M ,

r e ,

e N

, 5 3

, 1 p

m

,.:::l/: ,

,5 1

p e -

m T

T e er

, 0 ,

,0 i

1

. 1 u h

G c _

, 5 3

. 5

, M _

, e _

, 0 4 ht

- - - - - - - - 0 0 0 0 0 0 0 0 0 0 0 r 1 2 3 4 1 2 3 4 f

o

-E 5& -E E@a s e

l i

f o

r p

e r

5 5 33

, g3 u' t

i a

r 30 i 0 j

e p

. 3 , 3 C

me g5 e . 5 g

t

. 2 r , 2 Y u , n R

t a L a A > 0

2 r

e I

R . 0 C

  • e U i p P g2 e m N i m A i r u y A i 5 e g5 t

a l J j 1 T r ht i

i 1 e .

p

[

g0

:= '- j

(

0 m n o )e n e

O Mi

.l:;.  : 'i: : 1 ;1 T l i

,5 j5 4-

- 0 ,O 2

0 0 0 0 0 0 0 0 0 0 e r

2 3 4 1 1 2 3 4 u ig

== E5 a6~

t E 5@a F 1l\' ,1lIl,lllIl l lil lll l 1,Ill1\1ll

o u. i m.. . u - . .

f AUGUST

' JULY 0-0- g 0- -

^ 10- .

t 10- ,.

10- .! l E ..-

7 E ...

  • Ea 20- {o 20- ,.

./

{e 20- l O

O $

30-30- 30- l i

40- is ij is j. 4 14 i- >t-2 1- t 4J ,,g, 40 10 15 20 25 30 35 i.g, ig. l . g.,,,gi,,,g.,,,g,4 .;

.g. .,. ,,g. ,,,,3 ,,,g. 0 5 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 Temperature *C Temperature 'C i

Temperature 'O DECEMBER OCTOBER NOVEMBER rai ta tv 0- ,

0- .

0- .

j

. 10-  :

!* 10-10- .

E

E *

.c I Ea 20- .

Ea 20- .

o '

6a 20- -

.I o  : O i

e o o .

' o

  • 30- i 30-30-40 ,,,,g... g.. g... g. .;. ..,. g 40 ,,. .g.

..;.. g., .g.,i,g.i ,i 40 , ,,,g.,,,g...,gi,,,g....g.i.ig....g 0 5 10 15 20 25 30' 35 10 15 20 25 30 35  !

0 5 10 15 20 25 30 35 0 5 Temperature *C Temperature 'O Temperature 'O  !

i i Figur:. 2-4. Continued.

1

_. . - . ~ . .. ..,m . _ s .

.m . . - _.

O 8

S i!1 C) o aia\ a

(

N da e $ '

NN r

u \ \1- m &a t

a r

e o c. a\a\ m )

p U,

( O.

m e

T o m

o 1 n b r a

r p

y n lu g p t c v c -

a e a u J u e o e J F M A M J A S O N D

,!7 C

O l)

\

g 8 aI

\a

(

m a\ -

n o a e c g

y s a & .$

x )

c O .

d e

v s

/u ]

[ &. -

lo s

is w D

o n b e

r a

r p

y n lu g p t c v c a a u u e o e J F M A M J J A S O N D i7 8 '? u' 99 gB7QE"" i 9srdc OwEa gI .D9a&8F5 EO=. T m E _.

n@C m=I*$-

O su

l  ! l r 1 '  :

. , . . . . . . .~= -. . . - ... . - . - - . . . .. , - - . - - . . .

l

[

t

.. N

" _v e-N N

- . tM

- Os P

6 pO gW

- _ . - - _ w - E - E- t r

o -m

= tu

~.

.- .. . c.

c e

., -m m e m # a

  • 0 o =8
. 5.

. -e y .

. .o y ,

2 ....... , -. ....

> =y 0

  • ,t

. o O Q s

-9 y&

a 6 -.

Os

  • N -N 0%

o '"

a i i e i , o o o o o o o o e

o i

- N n ,o, - cu o o,

, 8 o

(w)yidoO (W)yldog eo

.C_

.x-E e

0

=

n

- , 5

- m w

.N

.- EN h i g - o

- - . . . . . . . . . . . . . . . . . . . .- o g gaZ 3

g

.g .e , ,.

E -*--......, C ,w 1

f. -m a il;: a

-. o, g gy 2 .

.... -. i

u. -m u - -- ,

-e y a

= .

2 2 o O

- ,e o .g

.n--

.- ,e

.n  %

o -

o o

-N - cy w 1 0

o c

i > > . i i -o 8 o ,o- o o ,o* o o i

o o Q, N co e N c) ,ot c

(m)yldoO (w)yldou - N x

K o

D.

U

  • O m

, r .c N

t

- a >

N

" e& hx c-a a -E e EOc

-m x=

3 m .......,,,,................... o g g . ... . . . , , -

g g -

g ..............., -w a g, ,g z

q -m o, O O e q g- -w g 4-

-w 2

v. o .

2 ~ '$

o .& \O,

,-O

-, a o n 6 -m e

~N w i

00 i , e i - -o u.,

-o o o o o o i , , , - m n y O O O O O

- N- o "

(w) q1doo l (w) todoo 2 24

. . . . , ._ _ m. -- -

e . _ . _ _ , - ..a . . _ ~ . -

_ ct =t w- -

N .. N

- e-t- t-th th

-S E E tij

-S

  • E "g g ..... . -

g ,

m -m m e e ....

tu g

................. -m o  !

^ tLi H

L

  • -m u a

o - to u e

W 1 2 o . o

~4 -M O .

Q

-N -N I i i i o . i i a o

o o o o o o o o o o

  • e- N n 4 - N c9 Y (w)yideo (w) ytdoo i

N

_ cv p Q - "

M Cn ^

D O

-S -

E m o E

- E f D C e

Lij

  • C

-m cn m. .

e (=

- ... # u; .. -m O > ~~__

-m m o -- . O e z .

. -w v

. 2 .

. e

  • o .

2

.1 . -.* -$ *". -v o ,

. a .

o

. -N .

- cv i . . i o .

o o o o o i i i i o

- N n v o o o o ,oe

- N n (w)y1ded (w) ytdoo n

- _n .

N N M

o h a o E$-o5 y - E tu - m. '

4 a m g o 3, s g =a ,

' .** .. <> -m o, e i Q g O

-m o

u

. ~..... .~....,

-m o

u u

e *. G

. 2 -

2 .

o *

, o C

  • T *

-V

. O.

o

. .. .. ... . ..,. .m

-m a u w

a L o i t i i i , , , -( - - o o o o o o o o c, o o v- N (') 1 r N O 't.

(tu) yidoO (tu) todog

j r i I [  !  ;'  : = ,

,4 1

,4 1

,2 ,2 d 1 1 n _

)

ng

)

M a _

h: '

,0 g )

,0

E 1 m E 1 m e H  :" (

N

..* ( n _

C n U

. n i l

R e .

' e .

,8 g J ,8 g d A y y i M x . x l -

O .,* ,' O os

,6 d ,6 d (

e . e .

v ., v 1 los l.  : ,..I lo 9 4 s ,4 s s 9 i " . i. 1 D iD i

n

,2 ,2 e

n .

o 0 - - - - 0 z .

0 0 0 0 0 0 o 0 0 0 d 1 2 3 4 t 2 3 4 n u

g6?a E 6&o or g

k .

c a -

b n

i o

t

,4 t a

,4

. 1 1

S r

.,2 a

.2 1 1 l e

t) ) c

/ ng u

.:l g Y

. 0

, 1 (

m

,0 1

(

m N R n ,.l*

n er -

A ,8 e

g ,I.. ,8 e i g u y y ov x G x Y ,:.:.

G O A .,! .

O c F ,6 d e

M t

,6 d e

v M

v e l

o los ht

,4 s ,4 s s r iD iD o f

,2 ,2 s l

e .

i f

] - - -

0 - - - - 0 o r .

0 0 0 0 0 0 0 0 0 0 p 1 2 3 4 1 2 3 4 n

e ng 6?o E 6ao g y

x o .

d e

l v _

o s _

,4 s

,4 i 1 . 1 d )e n ni l _

.2 2 a 1 1 ed e _

l) )

n mt t 0

/ ,0 g yo .

mlh (d l: 1

(

m  :

. , 1 (

l:

Y I.: : :; n n t R e e g o9 n2 _

g ,8 A ,8 9

U N O y

x L I

R O x

y M1 _

A i6 d P ,6 d J e A e . _

v v lo io 7-i4 s ,4 s 2 O

s is iD D er i2 ,2 u

g i

F

,0 ,0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 1 2 3 4

~& E?O  :- ego abCh t

;' i
  • i  ;,f r  :[rI;e t

,4 1

,4 -

1

,2 1

,2 )

1 M

) g Ag R ,0 1 m R ,o E .;: .{:

.}.i.:

(

E t

(

m B {) - n B M e n E ,8 g M e y .

E ,8 g C x .

T y E O P x D E .l- O ,6 d e .

S ,6 d v

  • .* e v lo

,4 s los s

,4 s iD

- i

- D ,2

,2

- - - - 0

. ..
: : 0 0 0 0 0 0

- - - - 1 2 3 4 0 0 0 0 0 .

2 3 E- {.O 1

4 E 6?a

,4 4 1

1

,2 2 1

1 l)

/ l) g / .

,0 g T 1 m R 0

(

E 1

(

m n B n e e

,8 g y

M b g E .** y A .:. x V 1 f: x O 0 I

l.'l .* O -

,6 d 4 h d

. e f

., e

. v *

^ v lo . l o

. ,4 s s

. is 4 -

is D D

,2 r

- *- :: : 0

- - _ - - 0 0 0 0 0 0 0 o 0 1 2 3 4 j 0 0 .

2 3 4 nE ESa ^Ekaa

,4 .

1 +41

,2 2 1

61 l)

/ l) .

g R /

g d

,0 Y 1 m E 0 m

e L (

B a1 u U ,'

n e O

(

n i n

J g T e t

,8 y C +8 g n x O  :

'..* : $.j-y x o O O C

,6 d .

e

  • i6 d v
  • e
  • v lo - l o 7

,4 s s s -

64 i

. s 2 D .

i D

l

. e r

2 - u

..:: , - 62

- ig

).( .

F

- O 0

0 0 0 0 0 0 0 1 2 3 4 0 0 0 1 2 3 4 gES- F- {aC a ,w tg

,  : l

I i

E fB O 8- u u.,

m 87 g.

u.

] u

o. S N
sE Lt u -

- e- V - -a-p 2 ta g' e I g<  :

t 4,- N bg b t- N Eg U c -

c c -

t 34- I No 3 Q- I Ro a 8  : LL a  ; LL e - e ' ~

o * } -

e u .* -

w 0 m' 0 m'

8co 8e 9 '

J " d " . $  :

n T-  : 2 , T- M  :

0 2

l 3 l . :8 5  : N

- ./ -

E nm ',  : E a n. b <

$~  : 2o $~  : Ro l M  : h *  : h l E e.

E e.u l

-
o  ;- l  :

1 9 e  : s $ l  : e$o

(- -)  : -  :

-  : 3 --

.: *o

=o ret 3

initivt teiniiiiiiiiiiiiiiiiiiiiiiiiiirinni If , iniervT t in iili iiiiiiiiiiiiiiiiiiiiiiiiiiir, "

  • E '

3 B B E E E E E E E E B B E B E E E E E

(; sw aw ) uoigonegg ( t ow w ) uoilone13  %

O Z.

O g 6

O m
g. O  :

B

g. -

O  :

o

{ r n-

@ E 3E Q ,f $ 8 E '

,  : - n- - -

.n k  :  : y *E o n "  : g *E "f L -

6 4- O 6m r

0 o

bv O

0 3 2 7 t- .,, Ee E e

m L e O

mL o 2 Q- % -

Ro 34- ' -

no G s  : k a

  • k $
o @.  : :o + l  : o J
  • eg
A e.

o J -

6- i E

R.eo t

'N I

m. -

2 m. -

2 $

l 00 8 O d,  !

5 e -

0 5 .

I

gU 'g

~

E  :

aoE &

n. Ie-n. [
aoL F -

y g -

om

f , L

.  : 5- B

  • /  : 2e 3 e N T  :
e
-  :- 3  : .;o ge a

1 s  :

1 -

a O

  • O E O "'

b 2

80 t .: "O

\ l:

nmn au u iiiiiiiiiiiiiiiiiiiiiiiini r, m3 r i s i i ii ni . i i n , i i i i i i i iil e n i n i t i :

r, oo O k b b b b b

( i nw w ) uo) 1 o^ n l3 b b b k h b b (isw w) voll ^*13 b $ $ $ k E c"

DfJ W

l 1

2-28  ;

1 1

aA-.5- m ms-- k. A -- 1.4veme,- u _: .A. _,J.,aAan - s4 2.,.-J-AM-L L-e 44 6- m.k_.-, s1s

,1

-g CB j u

.O 5., / -

o g.

n g

gn

$ 5 V' R- u

~$

- p C 5> 3 g 4

'g g"  : E r ,  : o

'e, W [ g b E' t. N b 7 l

. ~  : u  : 'tX  :  ? '

$ q.

  • Mo k g e e.~
t3-E *u;-

a- '

l c

i i ME.

j d' k 't / 5 2

l I -

3 p - -

"~

in. l 5

No U

, E RO '

E Em

, f

E k, f ,h , .

gb t.

o I4 e i i

AoL
f. D*

V)

/u '

I

- g.

o l

k 3 :_ m ENg j 2 [- m- e i l l l e- - -o e -

u l \

o

)i  : -

l 3 .

  • . ,f." N f -: *j C e'

l I f ~ ~S 0

s" t o f I

, :*O

\

{ - mo (e a s 1 j l .- ,

ll!kl k kI g m an1 Tit eei n'a . e n n's t s t a n n a s a a r t s i t ,, I g g g g g e

~

2 g g E I nE n6 g

e

& nE -

o a* = ) uon *^* G

~

a g m.m 3 u o n o" . a i

O l l

0  ; $

2 0 g.f o  : -l E- 3  :

-g  : n * (- $g

. n '

>- I ,:

f g -

A d .

,E E

m - e $ m  : o E'

  • 5 7 0 g, g 90 c -

a v . c.

RO g. 8 %0 l' D* ' ~

6- 5 ~. 1 1  ?  ? E i

a e-n.

a. 3,g-s a:
$ .. N' .
y 9- { /2 r N a o
goo Mu -
E S

1

'[ -

g

E p "-

o

\ l ad\

goL I n.

E - '

N QfI jff  :

- go L -c W ~ S.O

- s. o 7

_ 5-8 I

gi i - , p e

., k f b~ .h

- ~,

at [ c \ .f .

e c y$ o

- e o

.. 20 t

$ i j .

- "s y

4
  1. g. 1
    • m P -

~

\ .\ \ imb f h *b .

....an a==m ~h , ..........a;, m /, ,, , ,a,,,{, ,,j,,\,,, L ,,,,,, E , 3 O xnann: o - ~ > -- e

nar x n a o_n._n , ._.e n  : nie e a

E 2-29

l i

i

. /

8- O i E- U N

i -

B ^E a N.

o -

2 ^E a, m -

H- v

- U- n  : - l O  :

h$

O

in v

a, O p "E 'E Q

w n o b c) o -

0 0

%- - t- -

7 t- t-3 7

. N -

u . -

m C g, c Fg ," L 33  : no 3 ft- - o -

f, to Lt s

o uN  :-

e a

,* ' ' - - ~ ~

w u% u Nc o j $'  : 8eo

- J o d' n -

- o 3

o $~  : 3 a T* ci  :

o 5

it i gOa 5 ~ N E gU g 3 0 n.

. e,

- E a n-

- E L-go E - - go S f E E E / 5A b Io 5 5e

uc , ci  : uc

-' e

- c - oo

.. 1 I( -

s e ..

..  : ~ "a.

j -: 50 -: mo m }i  :  :

  • innin g u iniinni... iisist... iiiiiiiiii r, inimisti,.i uiiiiiiiiiiiiiiiiiii sinisie w I ,

I b b b b b 5 k k E I U b U U E $ $ E I

( l ow w ) uoi g o^ o lg ( t ow w ) uo)1one13 O

8  : $  !

& O E g- O i

" $ I EE *$  :

3E l w n  : - n-g  : in '

ui E

E o N - o n -

0 g. g 90 "o- 'S >- [

7 n . -

m L

  • L no C

34- -

Ro 34 sn k

s

k s c -

o -

- W.

u $ U / - # a $ 1I

  • kC iD*

b ke 3 ip*

O J -  : o o, o 2

9-  : 3 o f- l 0

o c 14 / f.; IQU0 c -se -

@U -

-  : a n. E n- - E _

go E

i ga t.

d

,i e t

E - o

-: Eo  : Be @

-  : oc . ,i, 7-  : uc

.c c

" g!, / -- go

  • e s - oo a o

' h  : ; 9

.- a  !

= 5 3 ..

i  : =O  : mo

/ [i 2

5 auurh _inuu2nunuuuuuuuunt

, o n ari muosoionisi.' inimi ir. A O 4

( i sw w ) uo11oan;3 3 b (isus w ) uoiaoanig

[. A $ $  ! 8 a

.cc 2-30

4 s :n t

n .

O E-p-

C g

y m,

g

.- v am0 E-U-

V m

- W N

04 3E

-t []

m  : r e 3 (( 4-

_ i.n " ..

1 o - c o, e o e o {

' m -

o o c

s- .Ns  : e v

t c

t wA s Ev v

L j u- i Rd 3 E nd a .  :  : .  :

a-

d- -

A.eo a 4'

.J -

.% :8 c

o 3 m. -'

3 o s.o. -

3 E Nd 3 ., ) , E Md a n. . E a n . - E e -

o 3o E -

c -

8o 1 w  : ,c = '

_ .e 3

I u ~

u

. , ~ -

c

c i

i

~ec

- "a

a
  • D &

m

- E3 --  : 3 e  :

o  : mo e m a i i mmu i s i t i n i m i i n i n ' i n i s i i n i t i i ' ' ' ' ' 'r , iiiiivtt>>i>>initiisi.. iinimiinisaninin r, g I n5 n5 E E E E E~ I nB B B E E E k E E 1

( l ew

  • w } uo)1OAol3 ( ) ow "W ) u o) 'n D AO l] o Z

v O e v1 M-I N

g --

{g O.

f 0

g.  : a- 2 3 1

5n $

R-q@

o

El

~ R-

[3 E 6 co E. 7 w L T - u N' w 4 -

y w -

if g h -

E  : E o 8 {v 1

8m  : e

vo  : ae v  !
-  : v t-  : e v 4 e

c ~

L o 33-  : RoL 34-Ro Ul

-  : t -  : a y

. s. w  :

R.e  :. .

.o o d*

J

  • d

_ o ) e- m*

8 c o

c s

. 5  : 2 . j  : 2 I e -

R0 e -se -

M" J.

w n n.

E

- "E a n.

i

- E s t E - -

go E - .

go C o - e .

g U w  : ,5 =  : + e

- e u -.

~

u x

.c G

- 3" so
  • < \  : #. -

. s ..s 4

"O  : "O iiii mti iiiiiiiritiiC h innininininaisini , M an o n i i n i n
  • i n iuu s ii n i n i a n o 'i t . 6 k h b b b b k b b k k b b It $ b b k O h

( ; sw

  • w ) u o) 3 n e, a i 3 ( ; sw w ) uollo^n13 E

c

.t 0 2-31 l l

= _ .- _._ . . _ . . ~ _. .-. .

l

s ts f

O u.

f=

t k$

p f 82 m ,*

g k$

t1D -

8e T

O g  % O h hT . E O N -

r O v -

o "c 0" 3  :

e 2 7 t- 30

u
  • % " u =

c e a g c .., -

I J

34- I" 2 No 3 %-  : g (t5 s '

to o ..,.
.  : .  : , ( i  ;

1 f o / b 5 o -,

5 2 .

2  :

3 ' - er l '

N 5 i
Rd d  : E f -

p e- 0 - n n. E M

o I ,  : 30' o

$~ d j

2oL
  • ~

~

T ,

[ u_ .

o

u

,  :- j O e  : *  : -:

e~

s e

}  : - s.

. - e. -

- - a

- o"  : 0 sininit si \i ,i.iiiiiiiii.iin... ii

, i i i i ivt . i . , . . /, , , , , , , , , , C . , , , , f, 3 0 .0 0 6 E E E E E I B B B B E E E E E

( I ow w ) uol t o ^e lg ( l ow w ) voigonejg y O .

S- g. b ,

=

sR  : 37 qg  : s?

E$ b C d b C w

b (UD y

E A w

I f -

w E

I  : 0 e M6

  • 8 o, I 2 9 0 o i 7  %-

j ()

2 s- lw  : n8 s2 "a N [ nb ,

s e U  : LL -

tt o

,. - e

(

N.c n o

] $. o ~ 1

  • E

] T- 'j  ;

8 g o 3 . e- E E Kd 5 E j ad g e. ~  : e

80 2 n. I/  : e M

o , $~  ; +', e  : MoL

\  : & M n - .

  • u 5

o  :.

I.'

e.u a; c

  • 0 c  : o o c .g <

a e

  • e. er- \

l-

=0  : 0 M [d M1lj$1 ,Ii1 $$iIljTIlI$1III ,f3,(Tf ggggg gggl ggggggggggg gggggggg[

! I N O $ 0 0 E E

( l ** ' W ) uo)3o^al3 E E E $ d $ d

( t sw .w ) voj)oael3 B E E E E E 8

m

.W u.

l 2-32  !

j

~- ,- ,_ . .

- . ~ _ . . - . , .~ _ . . . - - _. .-. -. .- -

"E  :$

O g.

p.

Cs mN

$ ^E g.

u

+.

N W

2 OJ g&

I gmE 1

l j

pg _

g g .

- U O

ig " u hl

~

w"

O o E 0

o  : 'E O (D -

0 M -

o '

%~ s

9 0  %-  : gO j

. m .

m e m i c r e c -

t 3 4+ 1  : go 32- I go I

.>  ; LL s  : LL l o - e I o .*

a u

  • j m

jU [ N* $. [ $  ;

o r- ,  : 2 .

2 Q

~

N 6" N E

a es

E a a-  : E o>

$~  : RoL $~  : RoL (n .

w

~ -

l m m

~

[ ~$c  :. [ e )

eo

. . i r e

"a

~o  ;

e. . e e.

3  : am 1

i a -

"O l

50

) .

E,

.w i rrt i . n i n i i i i i n . . . . n . . . . . . . . n i i ar ,

t i i n n i e n m i n i i n i s i i i rri . . . . E , i

$ U k b k 3 $ E k $ 1 5 U b b $ 3 E k $

( l ow uJ ) uo11one13 ( t aw aw ) uoilo^e13 O

E  :$
g.  : 2-N-

Io @ 2 33 E $ 2 3 E

- H a -

E, n  : m E >  ; ,-

w g .

9 - Q -

y i O E O

^

E Om - 0 0 W -
- [ ,C t-E

,f m = -

m

  • ~ * ~

3 'J- , b[ 3 2 Ro L

32- '

2 Ro L

a o

f 2  : k s 8

k o , 1

. o .. 1 .

39 *-

i

[

8 g 3 5' Q  : A.g o I  : a . 5-  : 2  !

5 * '  : N0 5  : Md -

l g a."

)

f -

- E a a re  :

. E l

l o

vi -

,7  ;

1 ,,

I 8o L v>

! ~. "  ; Mo L

l j

, e4 ,

o  ; w y y'

. e m u

'} l

. -o .

. -e y C* l l  : 0  ;-

o c;

'l P3.

. a

.. ~/- / E s3 .U a

i

50 '
*O

% I l,. I k

  • s i iini iniininiti. niiiiiiiiinisiniini r, sin ari t ani.iiiiiiiiii,,,, in iii. , i[i o r , g O X M 5 M

( t sw w )

u 11 E E

^"13 E N E Z B B d B

( l ** ' * ) uo11 E E

^"13 M A $

8 0

3f) a.

2-33

- ----- - . . - --w-, , - , . - ~ - , , , , . . - - , ,

r .[ i

. s is -

s y

, o l 5

~

u

, i

, i

? ^6 ,

, 7 2 i

i o)

J b 2 e 9 '

j&' ,

s )m ' s m e

h, 9

?

?

f4,w* ,

t 2

7 L '

' t n i

L U u T /2* ' U s.

(

T J

' s(

4 J A 7 ,

m A '

m T

- 9 o T I

3 2

i o i n

I '

eD

&x:m.' ~

9 ?6 e. D B ?*

n s

A e A '

H a H

[ d r

d n

ir r

i r

m s o S

, i S ?6 ,

a S V i sa o r S

A F A i

F o m @M-

, i B ,

B ' i N

D s

'c $p e e sn D 5/

i i

i s

an s

e E i , e E ' i e k P s. d 6% ,

w P  ?' i w a _

I 1 so I i so R + Ms- ,

C R i
C L

$p4A i .

T 2 ,

T S f g-j

, S i

i n _

N '

?

gsp ,

, e mo m

N '

? i i e o 2

m i

)

A gm,<

d i

r A i i r l M ,

M f / _

,R Mgg& s jf ,

, s f R i

. g _

O N ', -

?

j- p ,

, i e O

N i s i i . m _

E ' g  %

c n E '

i e

n 0 _

, i a

, se e I

K A dM%a E f ,' ,

t A iso i

t 2 L da ,

L i s

g e '

1 i

g 9 i

, t ' t gg< ,' o , sD ,

sO b

, n N54:;. ~ gr_;3nw

,, 2) l - 3
E::?~

1 e

g e , e e

'

  • e s ' ,e y 3

4

  • 2 5

2 2

1

= w e m 42 ' "2 6

2 2 2' 2' M w z

, x 2 2 2 2 2 2

  • 2 ,

o

, aE'Em cO sl* w ?E

. $*E t d

e l

v o

s i

s d

d n

a s C 7

o t k

, s

, i , 6 .

N

^

? 2 2 -

$e 2 ,

?he kW@%-

9 e) 9 , e) k s m i

F sm 2 N .

7, L .

7 hpf-

%; U .

. (

t U

, (

t s

s T

A gg< - J .

.

  • T A

J ,

m e

r m

T I yEyy- 8 1

. o T

I 6

1 o u t

eD 4

S;r ,

a .

  • D B? 9 76 ,

6 t fg .

r2 .

F d F ,

d e9 p

h r r 9 S S so m1 S 9 '-; . s o S y I ,

A ,

aF A F e r N' (t e B '

. B t s e s o s b b

'f f D5 E

1 Qp -

W .

. sn Ds E '

, a n t am -

. e $ ,

e it e P 5, P s $

@ts .

w u t

i b

a p I I

- ( .

so so R

T

$i ,

C R T
C h e S S T' -

. S

. m  ?$ . m sd m? 1

,w$_ .

oo N t e

2 o s a n M m

. r  %

r

, r b a f R , f R

~ . ,

s d ts O ~

s O ,

eu t - . i e F

, ie

" c p c f ig E ' s: E i - ,

oon n

K A $- z

[- .. ee K

A SA r u t

L 9

% .> E .- i s t s

L e

, t t

s

- i, , i

{y: p l _ ,

y, , sD 0

{wngo , , sD ,

1 f,ajp[:. N-

, c ,

O.

$:h$4Q,a L9

5 k
:.:$ 3 ,e EEh l E: 2 _

8 2'

e 2

2 s

2 2

e 2

2 5,

2 2' =

e m

u z * " s:

r s

1 2

1 2

s m mg ,

e r

u m wE i - cbs$* ,w ?E $eG i g _

F _

','ta. A

i

)

3
sw  : B

%y; e: .

w: -

E- del -

E- tfia nan. m  : gn cn W ..

3mE

'7  :. m -

E g a. -

g- r s. -

V- g% g  :

p. <

' in " p (,  : th

< c

  • MMt E E Z s y I o C W% n I o m e..
7 O tu 4 **.
eO x m.4g -.. _

q

_ y I -

y U- n NO $ U- 80

m.  : - ,  :

O a-W -

o 8e O d-W
  • 1ra 5

R.co S T-  : 2 b T- .

i  : 2

% j  : NU  % fd 2 2 0 m -

m a  :

l asL ,- i ntL L  ;

v a  ?

a?  : *- k i  : b 3  : Te 3 )  : Te w  :-  : ; w ;- 3

.. - .lo j
"s
3

) -

~ d

(-  : "O ,$j

"O

[  : , . . . . . . b' - l:

,,,,.st, .....Tri c.... ...... ........

,,..............................r. r.

I D k b 6 3 3 $ $ E $ b k b b $ $ k k b

( i ew

  • w ) uo)go^olg ( t sw a w ) uo)1o^olg
ci
3 .y-:; , .  :$.

8-  : 2- /4Q  :

[$k m

3E Ih/4t; g  ! 3E t-R- 4iPI e

g S J  :

m o

p R- Mjf.

seg g  :

m y

_ N W;f <. -

h O

'E g gig;_ g  : E

g. A. "

E

v

,6 g. sph "

E ,6 1 t .. %  : m

,e  : L  ;'

.j 4.  : L

$g P _

go g g. 4 g l'o

< d '  : l' < i -- 4  :

cn * -

- e m e i a

gf  : 8c g p- "

- n  : 8e

a. m.  : y o_ .n.

@~ i na n w

n.

E

@~

m I E

na.9o

, i _ n c - E o Q'

k "

f 80 E

{ ". l:#  : ND $

' d ,E E ;t Q

~ ~

s

-o Q

~

m O w-

, . -e Q u :-

E -

E h b 0

3 -

t  !  : 3 .

=O 1 - s  : =O 9'

-  : et .

i 111.LJ Nj. .J.J h 1i..a,,,,si,,, s,s,,1.

r, ,jgggQ tjligjjg 5 2

, e , , , ,11ggg132fjij ,f g  !

$ b k b b $ $ k $ $ 1 N b d Il $ $ $ k  ! $

( t sw w ) u o) g o n a 13 (i$* * ) uoll ^"t3 9 L.:

l i

l 2-35 i

O CiuertR 3 -

I J

PIlYTOPLANKTON INTRODUCTION Phytoplankton population parameters were monitored in 1992 in accordance with the l NPDES permit for McGuire Nuclear Station. The objectives of the phytoplankton section for the Lake Norman Maintenance Monitoring Program are to: ,

1) Describe quarterly patterns of phytoplankton standing crop and species composition throughout Lake Norman; and 2.) Compare phytoplankton data collected during this study (February, May, ,

August, November 1992) with historical data collected during these months.

Previous studies on Lake Norman have reported considerable spatial and temporal variability in phytoplankton standing crops and taxonomic composition (Duke Power Company 1976, 1985; Menhinick and Jensen 1974; Rodriguez 1982). Rodriguez (1982) classi5ed the lake as oligo-mesotrophic based on phytoplankton abundance, distribution, O and taxonomic composition.

METHODS AND MATERIALS Quarterly phytoplankton sampling was conducted at Locations 2.0, 5.0, 8.0, 9.5, 11.0, ,

. 13.0,15.9, and 69.0 (Figure 2-1). Duplicate composite grabs from 0.3, 4.0, and 8.0 m l (i.e., the euphotic zone) were taken at all locations. Sampling was conducted on 21 i February, 28 May, 27 August, and 5 November 1992. Phytoplankton density, biovolume and taxonomic composition were determined for samples collected at Locations 2.0, 5.0, i 9.5,11.0, and 15.9. Chlorophyll a concentrations and seston dry and ash-free dry weights l were determined for samples from all locations. Chlorophyll a and total phytoplankton densities and biovolumes are used as estimates of phytoplankton standing crop. Field sampling methods, and laboratory methods used for chlorophyll a, seston dry weights and population identification and enumeration were identical to those used by Rodriguez (1982). Data collected in 1992 were compared with corresponding data from quarterly monitoring beginning in August 1987.

O 3-1 i

. _. i

l l

O unso'Ts ^"o oiscussio"  !

Standing Crop l

Generally, highest standing crops of algae were observed at uplake locations in Lake Norman in 1992. For example, total phytoplankton density and biovolumes (except May) were generally higher uplake than downlake. The highest chlorophyll a values observed were found at uplake Location 15.9 in Febmary and November (Figure 3-1). This sampling point (15.9) is located in the transition zone of the reservoir between the 1

' riverine' Location 69.0 and the ' lacustrine' zone down reservoir. Transition zones tend to !

be the most fertile areas of reservoirs due to advected nutrients and increased light penetration and water residence time (Thornton et al.1990). While not as pronounced as in past years, this longitudinal gradient with highest standing crops observed uplake has been reported in past years (Duke Power Company 1988,1989,1990 and 1991). As in ]

past years, seston dry weights were highest at uplake Location 69.0 due to higher suspended sediment at this riverine location.

Chlorophyll a values ranged from a low of 4.4 mg/m3 found at Location 13.0 in August to a high of 14.7 mg/m3 observed at Location 15.9 in February (Table 3-1). However, even l the maximum value for the year is well below the N. C. Water Quality Standard of 40 mg/m3 for chlorophyll a. Total phytoplankton densities in 1992 ranged from 879.0 I units /ml at Location 5.0 in February to a high of 4,142 units /ml at Location 15.9 in l August. Total phytoplankton biovolumes ranged from 641.7 mm3/m3 at Location 5.0 in August to 3,088 mm3/m3 at Location 2.0 in May. Both phytoplankton maxima were below that considered as algae blooms by NCDEHNR (1991),10,000 units /ml for density or 5000 mm3/m3 for biovolume.

Lakewide, chlorophyll a values for 1992 and 1991 were higher than those observed in previous years starting in 1987 (Figure 3-2). Lake means of chlorophyll in 1991 and 1992 by quaner were in the 8 to 10 mg/m3 range compared with the 2 to 7 mg/m3 range observed in 1987 through 1989. This increase in the lake wide average by quarter is due primarily to increased chlorophyll concentrations at downlake locations (Figure 3-3). Note that this was observed in background (Locations 8.0, 9.5,11.0 and 13.0), as well as O ,

3-2 I

l 1

l l

O mixies zoee ioc iio# . uve" taoeau me>o caioronarii veiece aeve iacre sea ia take Norman during 1991 and 1992 they are still not outside of values observed prior to 1980 (Rodriguez 1982) and are still in a mesotrophic range. Curiously, the trend of increased )

standing crops reflected in chlorophyll values was not seen in phytoplankton densities or J biovolumes (Figure 3-4). Since chlorophyll is a gross measure of standing crop one would expect phytoplankton densities and biovolumes to mirror changes in chlorophyll values.

Early indications are that a species shift may be occurring that alters the historical  ;

chlorophyll / density and biovolume relationships.

Community Composition Eleven classes comprising 104 genera and 260 taxa of phytoplankton were identified from samples collected in Lake Norman in 1992 (Table 3-2). The distribution of taxa within '

classes was as follows: Chlorophyceae (Green algae),130; Bacillariophyceae (Diatoms),

49; Chrysophyceae, 21; Haptophyceae, 1; Xanthophyceae, 2: Cryptophyceae, 7; Myxophyceae (Blue-green algae), 23; Euglenophyceae, 9; Dinophyceae, 14; Chloromonadophyceae, 3; and 1 Unidentified taxon (Table 3-2). Seven taxa were O identified in 1992 which were not previously recorded in the Maintenance Monitoring Program. However, all but two of these taxa have been listed in previous studies in Lake Norman (Rodriguez 1982).

Phytoplankton class composition in 1992 was similar to that found in 1991 (Duke Power Company 1992). Diatoms dominated both densities and biovolumes at all locations during February, followed by cryptophytes with dinoflagellates also being important in terms of biovolumes (Figure 3-5). In May, cryptophytes were codominant with diatoms in terms of density with dinouagellates remaining important in the algal biovolume. Dinoflagellates in May were most abundant at Location 2.0, which accounted for the maximum recorded biovolume in 1992, to practically undetected at locations uplake of 9.5. In August, green algae dominated phytoplankton assemblages at all locations (except Location 15.9) followed by diatoms and cryptophytes. With the exception of Ixcation 5.0, dinouagellates comprised more than 20% of the total biovolume at all locations in August. Blue-green algae comprised more than 5% of the total density at all locations and about 15% of the density at Location 15.9 in August. Blue-green algae were not the dominant class of algae O

3-3

O et 'ocetio" 25.9 ie ^=8" t ee ie 9 't ve><s coe'e eo cr com9eer 1989.1990.1991).

Diatoms dominated the biovolumes in November, comprising more than 40% of the total I

j biovolume at all locations.

l The seasonal pattern of phytoplankton species composition in samples collec'.ed during 1992 was generally similar to that observed during 1991 (Duke Power Company 1992). In February, the diatom Tabellaria fenestrata dominated the biovolume comprising mare than 18% of the total at all locations. Melosira ambieua (formerly called Melosira italica), the' perennial early spring dominant in Lake Norman (Rodriguez 1982), comprised over 10%

of the total biovolume at all locations in Febmary, Several dinoflagellate species, especially Peridinium pusillum. were important in terms of biovolume at downlake locations in February. Rhodomonas minuta dominated the total density at Locations 11.0 and 15.9 in February comprising more than 20% of the density at these locations. It was also the numerical dominant at all locations in May when it comprised greater than 15% of the total density at all locations. Diatom species Tabellaria fenestrata and Melosira ambigua generally dominated the biovolume at background Locations 9.5,11.0 and 15.9 in  ;

May. At locations in the mixing zone, the large (35,737 um3) dinoflagellate Peridinium umbonatum dominated the biovolume, comprising 30% of the total biovolume at location 5.0 and 69% of the total biovolume at Location 2.0.

In August, green algae increased in abundance and diversity as has been observed in past years. Coccoid greens comprised more than 10% of the total densities at all locations ,

except 15.9 in August. At Location 15.9, phytoplankton density was dominated by unidentified flagellates while Cryptomonas erosa comprised 25.2% of the total biovolume.

The blue-green taxa Anaevstis incerta and Lynebva limnetica comprised more than 5% of the total density at Locations 15.9 and 11.0, respectively, in August. These were the only instances of blue-green taxa comprising over 5% of the phytoplankton community at any location during quarterly monitoring in 1992. Synedra spp. comprised more than 5% of the total density and biovolume at all locations in August and Melosira ambieua remained important in the biovolume at downlake locations. Dinoflagellates (mostly Peridinium -

umbonatum and Peridinium spp.), were also important in terms of biovolume at all locations except Loc. 5.0 in August.

O 3-4

.e-- n

-- - -. - .-. - = _ ___ - ___ _ . _= - . .

O In November, Melosira ambieua generally dominated the biovolume, comprising more than 20% of the total biovolume at all locations except Location 15.9 where Tabellaria fenestrata made up 25.9% of the total. Rhodomonas minuta dominated the total density downlake in November where it comprised over 15% of the total density at Locations 2.0, 5.0 and 9.5. Unidentified flagellates dominated the total density at Location 15.9 in November and Cryptomonas erosa was also important there in terms of biovolume.

Dinoflagellates were not an important part of the phytoplankton community in November.

Other taxa comprising greater than 10% of the total densities during 1992, all commonly observed in previous studies, were: Franilaria crotonensis, Melosira distans, Actinastrum hant7schii, Asterococcus limneticus, Coelastrum cambricum, Dinobryon bavaricum, Chrysochromulina parva, and Peridinium wisconsinense.  :

FUTURE STUDIES No changes are planned for the phytoplankton portion of the Lake Nonnan maintenance monitoring program during 1993.

SUMMARY

Phytoplankton sampling was conducted at Locations 2.0, 5.0, 8.0, 9.5, 11.0, 13.0, 15.9, and 69.0 on Lake Nonnan in February, May, August, and November 1992. Chlorophyll a analyses and seston dry weights were performed at all locations, while phytoplankton standing crops and taxonomic composition were determined at Locations 2.0, 5.0, 9.5, 11.0, and 15.9.

Higher phytoplankton standing crops (chlorophyll a, total densities and biovolumes) were generally observed at uplake locations although the gradient of increasing standing crops uplake versus downlake was not as distinct in 1992 as in past years. Chlorophyll a -

concentrations at all locations during 1992 were generally higher than those observed during 1987 through 1990 but were similar to those observed in 1991. Total densities and i

biovolumes, however, did not show this same trend but remained similar to those observed in previous years.

1 0

3-5

I O ru rt 9 ex' 1 " texo" mic c -n siti # a"ri"8 1992 wa imilar to that ob erved during the same months of 1991. Diatoms, green algae and cryptophytes were the most numerically abundant clas es of algae observed. Diatoms generally dominated the phytoplankton biovolumes in all months except August. Dinoflagellates were sporadically dominant in terms of biovolume at some locations during all months except November. Blue-green algae were not an important part of the phytoplankton community at any location or time in l 1992. I Major taxa observed in 1992 were also similar to those observed in 1991. The diatom taxa Melosira ambicua and Tabellaria fenestrata dominated the algal biovolume at the majority of locations in all months except August. Rhodomonas minuta was the most frequent numerical dominant during 1992, as in previous years.

LITERATURE CITED Duke Power Company.1976. McGuire Nuclear Station, Units 1 and 2, Environmental Report, Operating License Stage. 6th rev Volume 2. Duke PowerCompany, O Charlotte, NC.

Duke Power Company.1985. McGuire Nuclear Station, 316(a) Demonstration. Duke Power Company, Charlotte, NC.  ;

Duke Power Company.1988. Lake Norman maintenance monitoring program:1987 summary.

Duke Power Company.1989. Lake Norman maintenance monitoring program: 1988 summary. Duke Power Company, Charlotte, NC.  ;

Duke Power Company.1990. Lake Norman maintenance monitoring program: 1989 summary. Duke Power Company, Charlotte, NC.

Duke Power Company.1991. Lake Norman maintenance monitoring program:1990 summary. Duke Power Company, Charlotte, NC.

Duke Power Company.1992. Lake Norman maintenance monitoring program:1991 summary. Duke Power Company, Charlotte, NC.

f O -

3-6 r- - - ---e e y n- .r- p

l Menhinick, E. F. and L. D. Jensen.1974. Plankton populations, p. 120-138 In L. D. l Jensen (ed.). Environmental reponses to thermal discharges from Marshall Steam l Station, Lake Norman, NC. Electric Power Research Institute, Cooling Water i Discharge Project (RP-49) Repon No.11. Johns Hopkins Univ., Baltimore MD. l 235 p.

North Carolina Department of Environment, Health and Natural Resources, Division of Environmental Management (DEM), Water Quality Section. 1991.1990 Algal Bloom Report.

Rodriguez, M. S.1982. Phytoplankton, p. 154-260 ID J. E. Hogan and W. D Adair  ;

(eds.). Lake Norman summary, Technical Report DUKEPWR/82-02 Duke Power  ;

Company, Charlotte, NC. 460 p. 1 Thornton, K. W., B. L. Kimmel, F. E. Payne.1990. Reservoir Limnology. John Wiley  ;

and Sons, Inc. N. Y. 246 pp.

1 I

O i

i l

l l

O '

3-7

i l

l 1

O Table 3-1. Mean chlorophyll a concentrations (mg/m')in samples collected from i locations in Lake Norman, N. C. during 1992.  !

1 Chlorophyll.a concentrations Location Feb May Aug Nov 2.0 5.37 11.19 8.59 8.74 5.0 8.54 6.94 7.91 5.47 8.0 10.30 10.63 11.59 8.36 9.5 7.20 10.25 11.21 8.33 11.0 8.87 13.60 5.70 10.12 13.0 8.82 10.58 4.37 11.48 15.9 14.69 8.49 9.61 13.88 69.0 4.63 9.35 10.95 5.26 O '

l l

1 I

1 0

3-8

1 1

Table 3-2. Phytoplankton taxa identified from Lake Norman samples collected in August and November 1987 and February, May, August, and November 1988 through 1992 (*= tar.on not recorded before 1992). ,

i Cl!LOROTHYCEAE Pandorina charkowiensis Korshikov Acanthosphaera rachariani Lemerman

  • f. morum (Huell.) Bory Actinastrum bantrachil Lagerheim Pediastrum biradiatum Heyen Ankistrodesmus Latcatus (Corda) Ralfs f. duplex Heyen
6. falcatus v. mirabills (Corda) Ralfs f, obtusum Lucks
3. falcatus v. tumidus (West & West) G. S. West E. tetras (Ehrenberg) Ralfs
6. fusiformis Corda sensu Korshikov Z. tetras v. tetraodon (Corda) Ralfs ,
6. spiralis (Turner) Lemerman Pediastrum n Hayen 6nkistrodesmus spa Corda Planktosphaeria relatinosa G. H. Smith Arthrodesmos incus (Brob.) Hassall Quadrimule lacustris (Chodat.) G. H. Smith Asterococcus linneticus G. H. Smith Scenedesmus b3 undens (Kirchner) Chodat

, BetrYococcus !!raunti Kuetzing g abundans v. esvmmetrica (Shroeder) G. H. Smith Carteria f ritsch11 Takeda S. abundans v. brevicaude G. H. Smith G. spp. Diesing 1. acuminatus (Lagerheim) Chodat Characium spp. }. armatus v. bicaudatus (Gugliell-Prints) Chodet-Chlamydomonas spp. Ehrenberg 3. bijuga (Turpin) Lagerheim Chlorotonium spp. Ehrenberg E. bijur.a v.. alterans (Reinsch) Hansgirs closteriensis lonmissima Lemermann 1 tenticulatus Legerheim C lonmissima v. f,foplea West & West E. dimorphus (Turpin) Kuatzing Closterium incurvum Brebisson }. incrassulatus Closterium spp. Nitzsch g. craedricauda (Turpin) Brebisson Coelastrum cambricum Archer Scenedesmus spp. Heyen G. rroboseideum Bohlin Schroederia setimerum (Schroad.) Lem. <

g. sthaericum Naegell Selenastrum Kracile Reinsch
  • Coelastrum n Naegeli E. minutum (Neageli) Collins Cosmarium enrulosum v.concinnum (Rab. ) West. & West 3. westii G. H. Smith
q. aspheerosporum v. strirosum Norstedt Schearoevatie schroeteri Chodat g, syntractum Kirchner Sphearotosma granulata Roy & Bliss G. polygonum (Naegeli) Archer Staurastrum americanum (West & West) G. H. Smith G. rer.nesi Reinsch E aniculatum Brebisson C. tenue Archer 1. brevieping Brebisson
g. tinctum Lundell
  • g. chaetoceras Schroeder g spp. Corda E. curvatum v. elonRatum G. H. Smith Crucimenia crucifera (Wolle) Collins E. cusmidatum Brabisson G. fenestrata Schmidle 1. detectum Brobisson G. trree.ulaJa Wille E. dickett v. rhomboideum West and West 2, tetrepecia (Kirchner) West & West }. leptocladum v. sinuatum Wolle Dictytsphearium ehrenberrlanum Nesselt }. msnfeldtii v. fluminense Schumacher Q. pulchellum Wood 2. metacanthum Lundell Elekatothrix relatinosa Wille }. paradorum Heyen i Euastrum app. Ehrenberg }. paraderum v. cintulum West, & West kdorina eierens Ehrenberg 1. paradorum v. parvum W. West Franceio droeschert (Lemerman) G. H. Smith 1. suberuciatum Cooks & Wille

[. ovalis (France) Lemerman 1. tetracerum Ralfs Gloeocystis planktontea (West & West) Lemerman 1. turrescens Denot

9. Rigas (Kuetzing) Lagerheim Staurastrum app. Heyen 9 4pp. Neagell Tetraedron erthrodesmiforme v. contorta Wolosz, Gotenkint a pjaucispina West & West. I. caudatum (Corda) Hansgirs G. radiat a (Chodat.) Wille I, caudatum v. lonRispinum Lemerman Gonium sociale (Dujer. ) Warm.
  • I, limneticum Borge Kirchneriella centorta (Schmidle) Buhlin I minimum (A. Braun) Ransgirg
5. lunaris (Kirchner) Hoab. I. muticum (A. Braun) Hansgirg K, obesa (W. West) Schmidle I. rerulare Kuetting K. subsolitaria G. S. West I. regulare v. Ln3n Telling K. spp. Schmidle I. trieonum Kust. zing Lanerheimia ciliata (Lagerheim) Chodat
  • L trigonum v. Eracile (Reinsch) Detoni L. lone t seta (Lemerman) Prints Tetraedron spp. Kuetzing
k. ausdri seta (Lem. ) G. H. Smith I d ras gum heterocanthum (Nordst.) Chodat

(, subsal3 Leme rman Truebarie setttere (Archer) G. H. Smith Mesostlema viride Lauterborn Weste11a linearis G. M. Smith Micractinium pusillum Fresenius Monoraphidium contortum Thurst BACILLARIOPifYCEAE M pusillum Printz Achnanthes microevohala (Kuetzing) Grunow Moutectie elone sta ( Agardh) Wittrock 6. spp. Bory Mauteotia n (Agardh) Wittrock Anomoeonels vit ree (Grunow) Ross Nersbrocyt ium ar.ardhi anum Naegeli A, spp. Pfits.

N. limneticum (G. H. Smith) G. H. Smith Asterionella formosa Bassa11 Oceystis ellyptica W. West Attheva rachariasi J. Brun i

9. lact st ris Chodat Coccone Q placentula Ehrenberg '

Q. parva West & West. Cyclotella comta Doeystis n Naegeli C m meneehintara Kuetzing l 3-9 i

.. . _ . ._ _ . _ . _ _. - _ ..m..m . - - .. - ; __ _

q, pseudestellipara Hustadt, Rhodomones minuta Skuja C. stellitera 1Cleve) Van Huerck Cymbelle minuta Hilse ex. Rebenhorst HYXOPHYCEAE

q. Lurnida Gregory Armene11um ausdriduplicatum Brabisson Cymbelle app. Agardh Anabeena w},gconsinense Prescott gj, planets app. Ehrenberg A. app. Bory EunctB raruminensis (Cabejr.rekowna) Koerner Anaevstis incette Drouet and Daily Framilaria crotonensis Kitt.on Anaevstis spp. Meneghint Frustulta rhomboideg (Ehrenberg) DeToni Chroococcus limneticus Lemmerman Gomphonema spp. Agardh E. minor Kuetting Matostra ambimus (Grunow) O. Huller q. spp. Neageli U. distap,s (Ehrenberg) Kuetzing Coelosphaerium kuetringianum Naegeli d, distans v. alpetina Grunow D a c tyloc oc cors_(.1 irreRularis
d. nranulata (Ehrenberg) Ralfs Gomphesobearia lacustris Chodat
d. tranulate v. annustissima Mueller Lyptbva J.}jgnetica Lemermann
d. Italica (Ehrenberg) Kuetzing L. subtills W. West  !
d. varians Agardh Lyngbyg spp. Agardh d app. Agardh Microcystis aeruminosa Kuetzing ,

Nay(cula spp. Bory Oscillatoria Reminata Meneghini

!!.ltischia acicularis (Kuatting) W. Smith Q. limnetic a Lemerman L egnite !?ustadt 9. spp. Vaucher H. holsatica Bustadt Phormidium anmustissimum West and West N. pales (Kuetzing) W. Smith Phormidium spp. Kuetzing N. subinnearis Bustadt Raphidtoog.1,s curvete Pritsch & Rich H. spp. Hassall Synechococcus 11neste (Sch. et Lauterb. ) Komarek Rhitosolenia oriensis H. L. Smith Unidentified blue green filaments Rhitosolenia spp. Ehrenberg Skeletonema potamos (Weber) Hasle DINOPHYCEAE Sterhanodiscus spp. Ehrenberg Ceratitru hirundinelle (Mueller) Schrank Synedre jteus, Kustzing Glenodinium borget (Lemerman) Schiller

1. planktonica Ehrenberg 2. Kymnodinium Penard
3. rumpens Kuetzing 2. palustre Schilling .
g. rumpens v. frarilarioides Grunow g. cuadridens (Stein) Schiller  !
g. r mens v. ,scotica Grunow Glenodinium spp. Stein E. uh (Nitzsch) Ehrenberg Gymnodinium spp. Stein ,
1. spp. Ehrenberg Peridinium aciculiferum Learnerman i Tabe11eria fenestrata (Lyngby) Kuetsing f. inconspicuum Leannerman  !

I. flocculose (Roth) Kuetzing f. pusilium (Penard) Lensnerman Unidentified Centrates E. umbonatum Unidentified Pennates E. wisconstnense Eddy  !

Peridinium spp. Ehrenberg CHRYSOPHYCEAE Unidenti!!ad dinoflagellates Chromulina spp. Cienkowski Chrysospheere11e solitarig Preisig and Takahashi EUGLENOPHYCEAE l Dinobryon bevaricum Imhof Euglena 3stis, Ehrenberg

' l

2. .Elindricum Imhof I. spp. Ehrenberg Q. sertularia Ehrenberg Lepoeinclus spp. Party <

D. spp. Ehrenberg

  • Phaeus orbicularte Hubner fr)enta subaecuiciliata Skr*a
  • f. tortus (Lem.) Skvartsow Kephyrion rubi-klaustri Conrad Trachelomonas acanthostoma (Stokes) Deflandre i Kephyrion app. Pascher I. pulcherrima Playfair Mallomones caudata Iwanoff I. valvoeina Ehrenberg
d. pseudocoroneta Prescott I spp. Ehrenberg
d. topsurata Teiling d, spp. Party CHLOROtONADOPHYCEAE i Ochromonas spp. Wyssotzki Gonvestofgu!g depressum (Lauterborne) Lensnerman Rhirochrysis spp. Pascher 9 1stum Iwanoff Stelexomonas dichotoma Lackey 9. spp. Deising Synors spinosa Korshikov
1. gvi},lo Ehrenberg Unidentified flagellates E. spp. Ehrenberg Myer.lencesis amerleans (Cat.k) Lemarman Unidentified chrysophytes HAPTOPHYCEAE I Chrysochromulina perva Lackey l XANTHOPHYCEAE i

Dichotomococcus spp. Korshikpv l

  • Ophioevtium ceritetum v. lo.ngispinum g (Moeb.) Lean.

CRYPTOPHYCEAE Cryptomonas crose Ehrenberg G. marsonit Skuja Q. ovate Ehrenberg

q. itaseolus Skuja i
g. reflexa Skuja I Cryttmonas spp. Ehrenberg I

3-10 1 1

l l

mg/m3 No./mi 10 8,000 Chlorophyll a o Total Density 14 -

i.N

  1. \

12 -

i s 6,000 -

4t /

10

t

/

A

-. s y g [ .I e

-' ,hb' 4,000 -

2.000 ,

O ' '

0 2 6 8 9.5 11 13 15.9 69 2 5 9.5 11 15.9 mg/l mm3/m3 10 3,500 Dry Weight / 3,000 lgTotal Biovolume

~

/ ,

38.4 4 2,500 - ', P

~

2,000 - '

l

\

4 -

j- r 1.500 n 5

l A ,4 - ,, . g 2 L b.. .'~

    • * .. ~ 4' l 500 -

j 4'  ;, '

4:- 4:' *

' ' 4 ' ' ' ' '

O O 2 5 8 9.5 11 13 15.9 69 2 5 9.5 11 15.9

! Feb May Aug Nov !

[ - -i P. - - d.b- . -

Figure 3-1. Chlorophyll a, dry weights, total densities and total biovolumes for locations in Lake Norman, IIC during February, Hay, August and tiovember 1992.

1 0

3-11

O Chlorophyll a Lake Means by Year mg/m 3 12 10 * ._

m. . ~ . . .w.--s..._... . .__..'_

' - a r

' ~ .. s ,' '

8 -

'm

' . .A 6 -

.*s.'s..

p. ..

,.* -__ s..)D..g

~

g ,

u _

4 y_' ,-

x../'

~~~.~g-

~

/

_(, . -

O 2 -

O Feb May Aug Nov I

j1987 1988 1989 1990 1991 1992 a _ 4_ _A__ . c.:. _a_ _>_

Figure 3-2. Chlorophyll a lake means by year for samples collected in Lake Norman, NC from August 1987 through November 1992.

O 3-12

O O O February May August November

'5 -

'5 Loc. 2.0 C a '5 'S '

c Loc. 5.0 A- - A O ~

tJ 10 13 10 in .

O,  ;,. i , m -

E s a x s ,/ a s .

g ,

, ,a r% e 4" , -

t

% u .4 ,o ,, u  % e. ., w si 42  % 6 i, se si e  % A a ,, 6 e

?s -

is -

Loc. 8.0 G-o c; Loc. 9.5 A- - A m 2

e ie .

a io .

,o .

A- ,,

r O r s t- ,

5 '

5 5 4__ .

,A" w a L 81 es b b di w si is (3 N b di Og'y gg g9 30 gi 92 0,, ,, ,, ,g 9, 1, w

o is is .

is .

is Loc.11.0 C n- +

o

- , Loc.13.0 A - A g 4 to io

," io ic 7

e o 1 s

A

/ /

e s e A. -s J s ,a -

x s . s A~ ,-

m i A, q s , .,

6 a _ n-O

'67 va es w 95 34 0,, g 3, gg g, f 0 ,) 3, ,, 4 g g 0,, g, ,, 4 g o is .

is .

is -

is Loc.15.9 C o

' 6 '

As >

o Loc. 69.0 A- - A , ,

a io .- ,A 'A '

A X o

io A-

=

io

- *, io s ,  %

r s s e a , .

m s

" s b*4 s , # s s

~'

g ,

1 d ~

o' -

's d '$' ~&

o O ~g

  1. U st es es 30 93 w 67 ev 83 30 si 12 'er se e3 90 $i 12 8'1 98 63 99 9i 94 Figure 3-3. Chlorophyll a_ concentrations (mg/m2 ) by location for samples collected in lake Nonnan, NC frcxn August 1987 through November 1992.

Density Biovolumo Unitsx 100 0/ml m m 3 y.10 0 0 / m 3 0 6 0 5 - -

5 -

r, l

4 -

4 -

.i . g Feb 3 4 j: f s 3 .

c. '

2 -

~s~ , j I's ,a 2 -

A, , ,

,, l 1 bh- ~

-4 1 -

-m Mu 0

87 88 8 90 91 92 87 88 89 90 91 92 6 6 S -

5 .

4 4

./

May 3

. g _ . -g.A. ~ 2 * ,

3

' ~

4 '

6q 1 1 h",M-[.A'T ..

0 87 88 89 90 91 92 87 88 89 90 91 92 l 16 16 14 14 -

12 -

12 -

10 -

10 -

1 Aug 8 -

8 -

6 h .

6 -

s 4 4, g I' 4 -

k.. .

2 ' M ",eh _- .4 el 2 r\b

- - J f__g,_

,.1.

g' M =~ ik, g , , , ,

o 87 88 89 90 91 92 87 88 89 90 91 92 6 6 s 6 4 -

4 -

Nov 3 3 .

.e

.-J ~; -

08'7 88 8'9 90 91 92 0 87 88 89 90 91 92 i

Mix nZone Loc.9.6 Loc. 1.0 Lo c. ._15.9 '

O

~

Figure 3-4. Total phytoplankton densities and biovolumes from euphotic zone composite samples collected at locations in Lake Norman, NC from 1987 through 1992.

3-14

units /mi Density mms /m3 Biovolumo 3.000 2.000 Mixing

' 2 ooo Zone -

E5 '-

a Loc. 2 & 6 _

' ' ~~~'

i,000 . C,. . c. .-

o a Feb May Aug Nov Feb May Aug Nov 2000 2.000 2.000 - - -

1 i 1

Loc.9.5 W 5

~

..' .-~

, o Feb May Aug Nov Feb May Aug Nov 6,000 3.000 4.000 -

2,000 --

~

1.000 --

Loc. 11.0 2.000 -

e 1.

m - -

M 1.000 -- -

t-'

Feb May Aug Nov Feb May Aug Nov E

E.000 3,o00 4,000 --

2 ooo -

5 2oco -

XX L o c. 15. 9 2' ' - '

I

  • d i

i,Ooo .

i . coo 9  !

- IT o o Feb May Aug Nov Feb May Aug Nov us Bacillarlophyceae G Chlorophyceae OChrysophyceae O 2Cryptophyceae C Other O Myxophyceae  ; Dinophyceae Figure 3-5. Class composition of phytoplankton from euphotic zone composite samples collected at locations in Lake Norman, NC from 1987 through 1992.

3-15

. = - . . .. . . _ - - . - -- -

L O cii^rren 4 ZOOPLANKTON INTRODUCTION The objectives of the Lake Nonnan Maintenance Monitoring Program for zooplankton are to:

1) Compare zooplankton data collected during this study (Febmary, May, t August, and November 1992) with historical data collected for this Program during the period 1987-1991 for these same months; and
2) Describe quarterly patterns of zooplankton standing crops at selected locations on Lake Norman.

Previous studies of Lake Norman zooplankton populations have demonstrated a bimodal seasonal distribution with highest recorded values occurring in spring and a less pronounced fall peak. Considerable spatial and year to year variability has been observed O in zoogieektoe ebeedeece in teke Normen (Duke rower Comgeny 1976,1985: namme 1982; Menhinick and Jensen 1974).

METHODS AND MATERIALS Duplicate 10 m to surface and bottom to surface net tows were taken at Locations 2.0,5.0, 9.5,11.0, and 15.9 in Lake Norman (Figure 2-1) on 21 February, 28 May, 27 August, and 5 November 1992. Field and laboratory methods for zooplankton standing crop analysis were the same as those reported in Hamme (1982). Zooplankton standing crop ,

data from 1992 were compared with corresponding data from quarterly monitoring begun in August 1987.

RESULTS AND DISCUSSION Standing Crop ,

In 1992. as in previous years. zooplankton densities were generally greater in 10 m to 4-1

I l

O eerfece ameice ina i tac bottom to 8erface eampies co#ke rower Com9a#x 1988.1989 1990,1991 and 1992). This phenomenon is probably related to the ability of zooplankton to move vertically in the water column in response to a variety of physical and chemical gradients (Hutchinson 1967). This vertical population stratification was generally more pronounced at deeper locations, e.g. Location 2.0, and more evident during May as the lake became stratified (Table 4-1; Figure 4-1).

Lakewide, total zooplankton densities in 1992 were generally highest in February and May. Spring is historically the time of maximum zooplankton standing crop in Lake Norman (IIamme 1982). The greatest observed zooplankton densities in 1992 for both 10 m to surface and bottom to surface samples were observed uplake at Location 15.9 in February (193,500/m3 and 127,000/m3, respectively). The lowest zooplankton densities for both 10 m to surface and bottom to surface samples were observed downlake in the mixing zone (28,300/m3 at Location 5.0 in February and 20,400/m3 at Location 2.0 in August, respectively). The typical trend of increasing zooplankton population densities from downlake to uplake was observed in 1992 (Figure 4-1).

Total zooplankton densities during February, May, August and November of 1992 were generally within the range of those reported for these months in previous years (Figure 4-2). Zooplankton densities in the mixing zone (Locations 2.0 and 5.0) in 1992 were quite  ;

similar to those observed in 1991 and past years. Densities from background locations  ;

(Locations 9.5,11.0 and 15.9) were generally higher than those observed in the same months of 1991 but well within the range observed since 1987 (Figure 4-2). Overall, total zooplankton densities were highest at uplake Location 15.9 in the transition zone of the reservoir. This is most likely due to the more productive nature of this zone in the reservoir (Chapter 3).

Community Composition Fifty-seven zooplankton taxa have been identified in samples collected since the Lake I Norman Maintenance Monitoring Program was initiated in August 1987 (Table 4-2). No new zooplankton genera were identified in samples collected in 1992. However, a new species of cladoceran (Daphnia lumholzi) was identified from Lake Norman in 1992. This O

4-2

O 89ecies. erevioeeir eerenortea <<om "ortu ^merice. -es rir81 renortea <<om 'exe wr iie ie July 1991. DL Lumholzi is becoming more widespread in North America and its ecological consequences are unknown at this time.

Rotifers most often dominated zooplankton assemblages in Lake Norman during 1992, followed closely by copepods (Table 4-1; Figures 4-3 and 4-4). Cladocerans were never numerically dominant in 1992 as they were in 1991. Rotifers were consistently more abundant at uplake Location 15.9 than other locations (Figures 4-3 and 4-4). Rotifers comprised more than 60% of the total zooplankton density in 10 m to surface samples at Location 15.9 in all quarters of 1992 and accounted for more than 85% of the total densities at Location 15.9 in both 10 m to surface tows and bottom to surface tows in November (Table 4-1 and Figure 4-3). Hanune (1982) also found that highest rotifer densities occurred at uplake locations.

During February 1992, Keratella. Polvarthra and Synchaeta were the major constituents of rotifer populations. Synchaeta was especially abundant at mid and uplake Locations 11.0 and 15.9 where it comprised more than 30% of the total zooplankton densities in both 10 O m to surface and bottom to surface tows. Keratella and Polvarthra were the dominant rotifers at all locations in May with Pleosoma also important at Location 15.9. In contrast ,

to 1991 when it was the dominant rotifer taxon at Locations 9.5 and 11.0, Asplanchna did not comprise over 5% of the total-density at any location in May of 1992. Keratella and Polvarthra were also the most important rotifer taxa in August of 1992. Conochilus was I

dominant in August of 1992 at Location 15.9 where it comprised about 30% of the total density in both 10 m to surface and bottom to surface tows. With this exception, Conochilus overall was a smaller component of the zooplankton community in August of l 1992 than in August 1989,1990 and 1991 when it was the dominant rotifer observed at most locations. As in November 1991, Keratella exhibited a distinct uplake downlake j trend ranging from about 3% of the total density at Location 2.0 to over 50% of the total density at Location 15.9. Polvanhra was a major constituent of the zooplankton at all locations in November. Major rotifer taxa observed in 1992 were also the most abundant rotifers observed in previous years (Duke Power Company 1988,1989,1990 and 1991; Hamme 1982).

O 4-3  ;

O Covered neveiatioes were domieeted by immeture forms (primeriiy eaegiii eed cyciogoid copepodids with some calanoid copepodids) during all sampling periods of 1992 as was the case in 1991. Mesocyclops spp. was the only major adult copepod taxon observed in 1992, comprising more than 5% of the total densities in the bottom to surface tows at all locations except 15.9 in May. No distinct spatial trend in copepod abundance was detected for samples collected in 1992 (Figure 4-4). ,

Bosmina was the most abundant cladoceran observed in samples collected in 1992, as in '

1991 (DPC 1992) and in previous years (Hamme 1982). In November of 1992, as in 1991, Bosmina comprised more than 20% of the total density in bottom to surface samples  ;

4 in the mixing zone. The only other major cladoceran taxa observed in 1992 were ,

Bosminopsis and Diaphanosoma at mid-lake locations in August. Cladoceran densities were within historical ranges (Figure 4-3). No distinct spatial trend in cladoceran abundance was observed in 1992 (Figure 4-4).

FUTURE STUDIES O No changes are planned for the zooplankton portion of the Lake Norman maintenance monitoring program during 1993.

SUMMARY

Zooplankton densities, in general, were slightly higher in 10 m to surface samples than in ,

bottom to surface samples in 1992, especially during periods of lake stratification. Total zooplankton standing crops were generally highest in Febmary and May. The typical trend  ?

of increasing zooplankton densities from downlake to uplake was observed in 1992. The  :

overall range of zooplankton densities observed during 1992 was similar to the ranges  !

obsen'ed since 1987. i i

l Overall, rotifers dominated zooplankton standing crops in 1992, as they did in 1991, f

followed closely in importance by copepods. Cladocerans were never dommant numerically in 1992. Major rotifer taxa obsened in 1992 were Keratella. Polvarthra and  !

t O i 4

4-4

~. _. - . .-. .. - - . - . . _ _ . .

O svec"ee'e. coveroo goveietio 8 -ere domi">teo er im=> tere torme <=>=viii cyclopoid copepodids). As in previous years, Bosmina was the most abundant cladoceran o

taxa observed at all locations. Overall, zooplankton taxonomic composition in 1992 was similar to that observed in previous years.

LITERATURE CITED '

Duke Power Company.1976. McGuire Nuclear Station, Units 1 and 2, Environmental Report, Operating License Stage. 6th rev. Volume 2. Duke Power Company, Charlotte , NC.

Duke Power Company.1985. McGuire Nuclear Station, 316(a) Demonstration. Duke Power Company, Charlotte, NC.

Duke Power Company.1988. Lake Norman Maintenance monitoring program: 1987 Summary. Duke Power Company, Charlotte, NC.

Duke Power Company.1989. Lake Norman Maintenance monitoring program:1988 Summary. Duke Power Company, Charlotte, NC.

O Duke Power Comveny.1990. take xermen uaieteeeece monitories presram: 1989 Summary. Duke Power Company, Charlotte, NC.

Duke Power Company.1991. Lake Norman Maintenance monitoring program: 1990 Summary. Duke Power Company, Charlotte, NC.

Duke Power Company.1992. Lake Norman Maintenance monitoring program: 1991 Summary. Duke Power Company, Charlotte, NC.

Hamme, R. E.1982. Zooplankton, In J. E. Hogan and W. D. Adair (eds.). Lake Norman Summary, Tecimical Report DUKEPWR/82-02. p. 323-353, Duke Power

  • Company, Charlotte, NC. 460 p.

Hutchinson, G. E.1967. A Treatise on Limnology. Vol. II. Introduction to Lake Biology and the Limnoplankton. John Wiley and Sons, Inc. N. Y.1115 pp.

Menhinick, E. F. and L. D. Jensen.1974. Plankton populations. In L. D. Jensen (ed.).

Environmental responses to thermal discharges from Marshall Steam Station, Lake Nonnan, North Carolina. Electric Power Research Institute, Cooling Water Discharge Rescarch Project (RP-49) Report No.11., p.120-138, Johns Hopkins University, Baltimore, MD 235 p. 1 4-5

Page 1 of 2 Table 4-1. Total zooplankton densities (no. x 1000/m'), densities of major zooplankton taxonomic groups, and percent composition (in parentheses) of major taxa in 10 m to surface (10-S) and bottom to surface (B-S) net tow samples collected from I2ke Norman in February, May, August, and November .

1992. >

Sample . Locations Date Tvue Taxon 2.0 5.0 9.5 11.0 15.9 02/21/92 10-S COPEPODA 51.8 12.2 43.1 13.8 51.2 (63.6) (43.0) (63.9) (16.3) (26.5)

CLAD 0CERA 20.5 4.0 6.3 7.6 23.8 (25.1) (14.1) (9.3) (9.0) (12.3)

ROTIFERA 9.2 12.1 18.1 62.9 118.4 (11.3) (42.9) (26.8) (74.6) (61.2)

TOTAL 81.6 28.3 67.5 84.3 193.5 '

B-S COPEPODA 25.0 14.3 37.2 8.7 27.9 (depth [m] (54.4) (44.2) (55.3) (12.6) (22.0) of tow for each CLADOCERA 7.0 3.3 6.2 10.7 14.7 location: (15.2) (10.2) (9.2) (15.5) (11.6) 2.0-29 5.0-18 ROTIFERA 13.9 14.8 23.9 49.6 84.3 9.5-19 (30.31 (45.7) (35.5) '(72.0) (66.4) 11.0-25 TOTAL 46.0 32.4 67.2 69.0 127.0 15.9-19) 05/28/92 10-S COPEPODA 20.9 25.6 37.0 35.8 28.6 (25.3) (42.0) (54.2) (42.5) (25.9)

CLAD 0CERA 7.8 7.1 7. 3 8.6 5.5 (9.4) (11.6) (10.7) (10,5) (5.0)

ROTIFERA 54.1 28.2 24.0 38.8 76.2 (65.3) (46.3) (35.2) (47.0) (69.1)

TOTAL 82.7 61.0 68.4 82.5 110.3 B-S COPEPODA 12.8 32.1 26.7 27.4 22.6 (depth [m] (30.4) (50.7) (58.9) (43.8) (33.0) i of tow for each CLADOCERA 3.5 5.9 4.2 6.1 3.7 location: (8.2) (9.4) (9.3) (9.8) (5.3) 2.0-29 5.0-19 ROTIFERA 25.7 25.2 14.5 29.0 42.1 9.5-20 (61.4) (39.9) (31.9) (46.4) (61.7) 11.0-26 15.9-20) TOTAL 42.0 63.2 45.4 62.6 68.4 O

u

- -. - . . - . . - _ . - . . .. . - - - - ~ - _ . . . .

1 1

O Table 1 (continued) Page 2 of 2 Sample Locations Date Tyne Taxon 2.0 5.0 9.5 11.0 15.9 ,

08/27/92 10-S COPEPODA 6.6 9.2 9.7 11.4 14.6 l (22.2) (25.8) (33.4) (36.1) (22.7)

CLADOCERA 3.4 2.6 3.1 7.0 10.4 (11.4) (7.4) (10.8) (22.4) (16.1)

ROTIFERA 19.6 23.7 16.2 13.1 39.6 i (66.4) (66.8) (55.9) (41.5) (61.2) l I

TOTAL 29.6 35.5 29.1 31.5 64.6 B-S COPEPODA 7.1 13.4 12.3 10.5 16,6 (depth [m] (34.6) (43.5) (38.0) (55.2) (30.3) of tow for each CLADOCERA 2.6 2.7 5.8 4.0 9.3 location: (12.8) (8.8) (18.0) (21.1) (17.0) 2.0-30 5.0-19 ROTIFERA 10.7 14.7 14.2 4.5 28.9 9.5-20 (52.6) (47.7) (44.0) (23.8) (52.8)  ;

11.0-26 O 15.9-20) TOTAL 20.4 30.8 32.3 19.1 54.8 11/05/92 10-S COPEPODA 18.6 15.1 12.3 23.4 14.5 (52.3) (46.6) (32.5) (38.0) (10.0)  :

CLAD 0CERA 5.2 7.9 1.1 1.7 0.9 (14.6) (24.3) (2.8) (2.7) (0.6)

ROTIFERA 11.8 9.4 24.5 36.6 130.2 (33.2) (29.0) (64.7) (59.3) (89.4) '

TOTAL 35.6 32.3 37.9 61.7 145.6 ,

B-S COPEPODA 17.5 13.0 17.2 22.1 11.3 (depth [m] (48.3) (50.9) (31.1) (41.9) (11.4)  ;

of tow for each CLADOCERA 11.8 5.9 3.3 1.8 1.6  ;

location: (32.5) (23.2) (6.0) (3.4) (1.6) 2.0-30 '

5.0-19 ROTIFERA 6.9 6.6 34.8 28.8 86.2 i 9.5-20 (19.2) (25.9) (62.9) L54.7) (87.0) 11.0-25 15.9-20) TOTAL 36.2 25.5 55.3 52.7 99.1 '

O l

l 4-7 .

I e- m--- .m o r, - - - , . - _ _ _ _ _____________.__._ _ _ _ _ ___

l O redie 4 ze vi "'to# texe ide=tirica rr m 8 = vies eoiteeted o" tete nor= =

quarterly from August 1987 through November 1992 (*= taxon not recorded in years prior to 1992).

l t

COPEPODA JL spp. Rouselet j Cvelons thomasi S. A. Forbes Keratella spp. Bory de St. Vincent C spp. Fischer Lecane spp. Nitzsch  !

Diantomus bircei Marsh Macrocheatus spp. Perty ,

E mississinniensis Marsh Monostyla stenroosi (Meissener)

E nallidus Herick E spp. Ehrenberg a spp. Marsh Ploeosoma truncatum (Levander)

Mesocyclons edax (S. A. Forbes) P spp. Herrick E spp. Sars Polvarthra eurvntera (Weirzeijski)

Tropocyclons nrasinus (Fischer) P vulcaris Carlin L spp. Kiefer L spp. Ehrenberg Calanoid copepodites Ptycura spp. Ehrenberg Cyclopoid copepodites Svnchaeta spp. Ehrenberg Nauplii Trichocerca canucina (Weireijski)

L cylindrica (Imhof)

CLADOCERA L spp. Lamark Unidentified Bdelloidea Bosntina loneirostris (O. F. Muller) ,

E spp. Baird INSECTA Bosminopsis dietersi Richard i Ceriodanhnia spp. Dana Chaoborus spp. Lichtenstein Daphnia ambicua Scourfield

  • E lumholzi Sars D parvula Fordyce D spp. Mullen pianhanosoma spp. Fischer Holonedium amazonicum Stingelin

}i spp. Stingelin j Leptodora kindtii (Focke)

Ilvoervetus sordidus (Lieven) l Sida crystallina O. F. Muller ROTIFERA Anuraeonsis spp. Lauterborne Asplanchna spp. Gosse Brachionus caudata Barrois and Daday L havanaensis Rousselet L natulus O. F. Muller Chromocaster spp. Lauterborne Collotheca spp. Harring Conochiloides spp. Hlava conochilus unicornis (Rousselet)

C spp. Hlava O Gastropus spp. Imhof Hexarthra spp. Schmada i<ellicotia bostoniensis (Rousselet) 4-8

Zooplankton Density No. x 10 O O/m 3

(]' 200 a 10m to Surf ace Tows 150 -

/

100 -

,- ,_ ', . .o 50 -

0-o.z .= . - - .n

.m . .To.'. ' . . . . . . . . o '

O 2.0 5.0 9.5 11.0 15.9 Locations No. x 10 0 0/m3 200 Q Bottom to Surf ace Tows 150 -

l l

\

1OO .-

/

gn - *~ 7,,.._-t~~~~~~1

,'* % / . l.'.' .e .

o.. . g.

O 2.0 5.0 9.5 11.0 15.9 Locations Feb Mg'f ,Agg Nov f

Figure 4-1. Zooplankton density (No. x 1000/m 3 ) by location for samples collected in Lake Norman, NC in 1992.

4-9

O O O Mixing Zone 200 - - - -

200 200 200 ,

Loc. 2.0 C D L o c . 5. 0 4+ - -

  • E 150 . _ _ _ _ _ _ . . _ _ _ _ 150 150 150 O i O

x 100 100 a

100  ;* 4 s 100 *

, s A s , g

~ '

h 50 SO ' 5y 50 50 0

- ~+ , ,

u 8

4.>

,Q.A 87 88 89 90 91 92 0 8'7 88 89 90 91 92 0 8'7 88 89 90 91 92 0 8'7 88 89 90 91 92 Background Locations 300 __ 300 300 300 Loc.9.5 e- e .

. 427,000 4 250 Lo c.11.0 s- u 250 ' '

t' 250 -

250 'i 23 i Loc.15.9 A L \ /it n L-.

E 200 j 200

%i 200 -

q 200 /

I * \

150 gl \ 150

\

s 150 -

I?

150 , F) k ,g x

\

[

j.: '\

l 8\ .\

~

o' 100 i f 'g \ / 100 /

e 100  ; ,\/L. .k 100 i.

0/ ^,

U l

  • Y, \

1, . -

Q>.:f.<" l.\ ,_a $ * ^ ~N y

50 T .- .1 50 -

50 'E 50

-kg., 3 9 /

m3* ' ' '

0 8'7 88 .89 90 91 92 O O8'7 88 89 90 91 92 87 88 89 90 91 92 O8'7 88 89 90 91 92 February May August November Figure 4-2. Zooplankton densities (No. x 1000/m ) frcm 10m to surface net tow samples collected at locations in Lake Norman, NC from 1987 through 1992.

No. x 1000/m3 Copepods 80 1989 1990 1991 1992 60

~

b.

40 -

1 N l' ~

.y /,, rs - .8" 'o N

/ ' .%

l' # l'\

20 -

lt N

A -/

7'I- .k. i

/ 'k .

-/ ..

/

g -

A

,y -

V y,

, , , , , , , , 9 , , , ,

0 ,.,. -., ... ~.. ... u.. ... ~.. ... e., ... ~.. ,.. m., ... . . . ,

No. x 1000/m3 CladOCeranS 80 1989 1990 1991 1992 60 -

k 40 -

./ \

/ \

20 - -

.. _, l' -\

b.g.- ^- .=

Q O ..

r m .. 4.

~..' ' r..

(_

~#

u.y

. ~*

4. ~.. r..

m.v ave " ' ~. .

r.. m.,

-- ao.

A . ".,. .

~

No. x 1000/m3 ROtif ers 140 1989 1990 1991 1992 120 --

100 -

k 80

\

./ .

\

6 '/

s0  :

\ k

./ \.

j ...

/ \ .

\ -l \

40 I \ / , % *y / A

/  ;

.\

.-/>

c -

,r.

20 -

\ -

,1. . - s' -

s+- ,4~ 2'

% .4.x _,"  %.$,

  • a

~g O ' ' ' '

' ' ' ' ' ' T ' ' '

s . e, u.. ao. ~.. ,.. u., ava ~o. , . . M., 4-a wo. , .o M., .uo ma.

l Mixing Zone Loc 9. 5 Loc.11.0

- a Loc.15.9 l 1 O Figure 4-3. Comparison of zooplankton density by group in 10m to surface net tows collected in Iake Normn, NC from 1989 through 1992.

4-11

O O O No. x 1000/m3 tio. x 1000/m3 200 200 February August 150 150 -

4 100 -

100 -

50 - -

50

} M

}  % ,w m 0 - -

0usuu M E- -

2.0 5.0 9.5 11.0 15.9 2.0 5.0 9.5 11.0 15.9 Locations locations No. x 1000/m3 No.x 1000/m3 200 200 1 May November 150 150 I

5 -

2.0 5.0 9.5 11.0 15.9 2.0 ~ ' 5. 0 9.5 11.0 15.9-E CopepodsEICladoceransO Rotifers Figure 4-4. Zooplankton composition by month for 10 m to surface samples collected in l

Iake Norman, NC during 1992.

._ - --_.. . .. ~ . .

. CIIAPTER 5 FISHERIES INTRODUCTION In accordance with the NPDES permit for McGuire Nuclear Station (MNS), monitoring of specific fish population parameters was continued during 1992. The objectives of the fish monitoring program for Lake Nonnan during 1992 were to: '

Continue striped bass mortality monitoring throughout the summer.

Collect striped bass distribution information required for the NPDES permit by radio tagging striped bass and tracking the striped bass during the summer period in cooperation with North Carolina Wildlife Resources Commission (NCWRC).

METHODS AND MATERIALS Duke Power Company (DPC) monitored the mixing zone for striped bass mortalities through the sununer, and NCWRC and DPC initiated the first year of a two year striped bass radio tagging study in 1992. Both NCWRC and Duke Power Company believe that this sampling program will identify critical summer striped bass habitat in Lake Norman.

See Federal Aid in Fish Restoration Project F23-17 report in Appendix 1 for the sampling methodology. l 1

RESULTS AND DISCUSSION No striped bass mortalities attributed to thennal stress were observed in 1992. See Federal Aid in Fish Restoration Project F23-17 report in Appendix 1 for results of the 1992 striped bass radio tagging program. These data indicated that large striped bass (>4500 g) will briefly tolerate water warmer than the criteria used for suitable adult striped bass habitat in Lake Norman (water temperatures _<260C with dissolved oxygen concentrations _>2mg/l).

O 4 5-1 l l

l

- .. = 1

The short duration of habitat stress conditions in 1992 (Figure 2-10) prevents discussion of I how striped bass may respond to a more protracted high habitat stress period. The striped ,

bass tagging program will continue in 1993.

FUTURE FISli STUDIES i

The 1993 fisheries sampling program consists of a continuation of the cooperative study with NCWRC to radio tag striped bass, and track their movement through sunmier 1993.

Continue striped bass mortality monitoring throughout the summer.

O  ;

i l

O 5-2

O. *PPeso,x 1

Progress report on summer habitat selection of striped bass in Lake Norman  !

(Federal Aid in Fish Restoration Project F23-17). A cooperative study between the North Carolina Wildlife Resources Commission and Duke Power Company.

a h

O .

I I

e l

l O

aa

NORTH CAROLINA WILDLIFE RESOURCES COMMISSION DIVISION OF BOATING AND INLAND FISHEIUES PIEDMONT FISHERIES INVESTIGATIONS Federal Aid in Fish Restoration Project F23-17 Project Type: Research Period Covered: 1 April 1992 - 1 March 1993 PROGRESS REPORT t

SUMMER HABITAT SELECTION OF STRIPED BASS IN LAKE NORMAN  !

I Scott Van Horn, NCWRC Jerome Finke, NCWRC O', Don Degan, Duke Power Compan'y '

i f

i O  ;

A-2 i

Abstract: Lake Norman is a 13,516 ha cooling pond for 2 Duke Power Company electric generating facilities. Company studies have shown that cool oxygenated water required -

by large striped bass (>4500 g)is sometimes absent in mid-summer. The objectives of this  ;

study are to determine the summer temperature and dissolved oxygen conditions used by  ;

, the lake's striped bass in 1992 and 1993. We tagged 29 striped bass (2300-7775 g) with temperature sensing radio tags (40-50 Mhz) in spring 1992. Ten of the tagged fish were obtained from a second large N.C. reservoir. We found 19 active fish and 5 immobile tags with a boat mounted yagi antennae from 8 July to 22 September. Tag frequency, tag temperature, location, and a water column temperature / dissolved oxygen profile were recorded with each tag encounter. Mean temperatures and associated dissolved oxygens

. were similar between smaller striped bass (<4500 g)(21.7 C and 2.3 mg/l) and larger striped bass (>4500 g)(20.5 C and 2.8 mg/l)in early July when water temperatures were rising. This period was followed by about 3 weeks when very little water <26 C and >2.0 mg/l dissolved oxygen was present. Tag temperatures of small and large striped bass remained similar (26.1 and 26.7 C) but associated dissolved oxygen differed significantly i (3.14 and 5.7 mg/l). There were no significant differences between small and large fish by tag temperature (26.0 and 26.1 C) or dissolved oxygen (4.4 and 5.7 mg/1) following the rapid mid-August cooling.

O l

\

O A-3  !

)

l l

Striped bass (Morone saratilis) have been stocked in southeastern reservoirs since the 1960s and early 1970s (Bailey 1974 and Axon and Whitchurst 1985) Matthew's (1985) did a survey of 80 reservoirs in the United States containing striped bass populations and found 27 impoundments had experienced some summer striped bass modality, especially among fish >5 kg. Coutant (1985) argued warm water temperatures and a preference for cooler water among striped bass >5 kg creates summer striped bass monalities in many  ;

southeastern reservoirs. l Lake Norman is a 13,516 ha cooling reservoir on the lower Catawba River in south  ;

central Nonh Carolina operated by Duke Power Company to serve 2 electric generating facilities. The lake has been stocked with striped bass since the late 1960s (Bailey 1974).

A stocking rate of 7.5 fingerlings per hectare has supponed an important regional striped bass fishery in the reservoir. Baker (1983) reported striped bass fishing effon was 37 hour4.282407e-4 days <br />0.0103 hours <br />6.117725e-5 weeks <br />1.40785e-5 months <br /> /ha in 1982 and the popularity of striped bass fishing on the lake remains high.

Few late summer striped bass mortalitie- (<30 fish annually) have been observed on Lake Norman in most years (Degan, pers. comm.). A kill of 163 fish did occur on the lake in

, 1983. Duke Power Company initiated studies to help define the relationship between power production and striped bass habitat in Lake Norman (Lewis 1983). The Company adopted water temperature <26 C and dissolved oxygen (D.O.) >2 mg/l as a minimum habitat condition (critical habitat) to sustain large striped bass (>5 kg). Their studies ,

(Duke Power Company, unpubl.) demonstrate that often little or no critical habitat is O present in Lake Norman in late summer. The few observed mortalities concurrent with the apparent absence of critical habitat suggests that either undetected thermal refuges (Coutant 1985) are present in Lake Norman or a better definition of critical striped bass temperature and dissolved oxygen requirements is needed.

Recent acquisition of additional striped bass production capacity by the NCWRC will give fishery managers some flexibility in setting stocking rates for the lake. If the volume of -

water currently supporting large striped bass in the summer is limited, raising stocking rates may increase the chances of incurring summer striped bass mortalities in the reservoir. The objective of this study is to determine summer water temperriture and dissolved oxygen concentrations used by Lake Norman striped bass >2 kg. ,

i METHODS Low frequency (40-50 Mhz) temperature sensing radio transmitters and portable receiving equipment were purchased by Duke Power Company. Temperature sensing for each tag was calibrated by comparing tag pulse intervals to known water temperatures (15-32 C).

Regression equations using natural logarithmic transformed temperature and pulse count data were developed for each transmitter tag and used to determine tag temperature from radio signals received from released fish.

O Strined bass w ere centered by hook end iiee eed eiectro11 hies derinsanrii eed u ey eed fish > 2 kg were fitted with temperature sensing radio transmitters. Transmitters were A-4

1 surgically implanted into the body cavity of each fish using methods described by Hart and Summerfelt (1975). All fish were released near the Cowan's Ford dam. ,

l We began tracking fish 8 July and concluded tracking on 9 September. A boat equipped with a yagi antennae was used to search the reservoir for tagged striped bass. Location, l tag temperature and and tag frequency were recorded for each fish encountered. A HydrolabR provided by Duke Power Company was used to collect water column temperature and dissolved oxygen profiles at each tag encounter location. Measurements  !

were taken at approximately 1 m intervals. Radio tag temperatures were compared with l their associated water column temperature and dissolved oxygen data to define summer striped bass habitat preferences. i Striped bass information was analyzed for fish <4.5 kg and >4.5 kg. The data were also j combined to represent 3 study periods based on water quality information provided by '

Duke Power Company (Duke Power Co., unpubl.). The first period (8-22 July) was  !

characterized by rising water temperatures (Figure 1). The second period ( 23 July - 12 August) had the warmest water temperatures observed during the summer (Figure 2).

Water temperatures declined in the third period (13 August - 9 September). The spatial l distribution of radio tag encounters are displayed on maps of the reservoir. We compared ,

mean temperatures and dissolved oxygens between the 2 size groups of striped bass withm l and among periods using Kruskal-Wallace and Friedman's nonparametric statistics.

RESULTS i

We tagged 29 striped bass between 4 April and 21 May (Table 1.). The range oflengths was 596 - 810 mm and weights ranged from 2460 - 7775 gm. All fish tagged and released on the 14 May were from Gaston Reservoir near the Virginia line. The Gaston fish were added to increase the number of tagged fish in Lake Norman for the summer. We found 19 active fish, 5 immobile tags, made 114 tag field measurements. No tagged fish were found above Duke Power State Park (Figure 3). Most fish were found in Davidson Creek or on the Catawba channel between Markers 3 and 13.

Mean temperatures (Figure 4) and associated dissolved oxygens (Figure 5) were similar between smaller striped bass (21.7 C and 2.3 mg/1) and larger striped bass (20.0 C and 2.5 mg/l) in period I when water temperatures were rising. Period 2 contained little water

<26.0 C and >2.0 mg/1. The tag temperatures of small and large fish were significantly different (26.1 C and 25.6 C)(P = 0.035) but associated dissolved oxygens were similar (3.1 and 4.0 mg/1). Again, there were significant differences (P = 0.015) between small and large fish by tag temperature (26.0 and 25.1 C) and no significant differences in dissolved oxygens (4.7 and 3.7 mg/l) following the rapid mid-August cooling in period 3.

DISCUSSION O The can-ecemretion of nsh ie th-er resm* (beiow chemeei merher wisere 6>

may have been a fimetion of the release site near the dam. There was no water quality A-5

basis for the distribution as habitat was plentiful in mid July (Figure 1). As the quantity of O' cool oxygenated water in the lake reached a minimum (Figure 2), it appeared that fish I moved closer to the deeper channels and away from the Ramsey Creek and Cowans Ford l dam areas (Figure 7). The hot water disch'arge from McGuire Nuclear Station is in l Ramsey Creek. When habitat was again plentiful, striped bass retumed to the Ramsey i Creek - Cowans Ford dam area and also became common above channel marker 7 (Figure 8). The fish may have been dispersing from their release point and their movements were interrupted by the poorer habitat conditions found in period 2.

The observed temperature selection differences between small and large fish were consistent with the literature. The lack of corresponding differences in associated dissolved oxygen concentrations may be a function of our methodology for determining temperature associated dissolved oxygens. Fish of both sizes were commonly located near the thermocline where rapid changes in dissolved oxygen are associated with small i changes in temperature. Our dissolved oxygen data for both sizes cover nearly the range of existing conditions in the lake-for periods I and 2. It is unclear why striped bass encountered in period I were found at such low dissolved oxygen conditions when better habitat was certainly present in the lake.

The mean temperature and dissolved oxygen concentrations we observed generally .

support using 26 C and 2 mg/l to define summer habitat conditions important to large  !

striped bass. However, period 2 information demonstrates that large striped bass will use O 27 C conditions and at least briefly tolerate dissolved oxygen conditions below 2 mg/1.

The number of large fish observed under these poorer habitat conditions when better ,

habitat were present suggests the 26 C and 2 mg/l criteria do not represent a critical short term barrier. The short duration of period 2 prevents us from discussing how striped bass may respond to a more protracted high habitat stress period.

l In summary, we found no isolated thermal refugia attracting and holding Lake Norman striped bass. The fish appeared to move along the deeper river channels through half of Davidson creek and the Catawba between channel markers 3 and 13 during period 2. The frequency with which we observed striped bass using water warmer than 26 C and below 2 mg/l dissolved oxygen suggests at least a short term tolerance to these conditions. This tolerance may explain the usual absence of striped bass mortality in past years when when no 26 C and 2 mg/l habitat was present in Lake Norman for brief periods in late summer.

I O

A-6

LITERATURE CITED Axon, J. R. and D. K. Whitehurst.1985 Striped bass management on lakes with emphasis on management problems. Trans. Am. Fish. Soc. I14:8-11.

Bailey, N. M.1974. An evaluation of striped bass introductions in the southeastern United ,

States. Proc. Annu. Conf. Southeast. Assoc. Game and Fish Comm. 28:54-68.  !

l Baker, K. B. 1983.1981-82 creel survey of Lake Norman, North Carolina. Research  !

report PES /83-33. Duke Power Company, Huntersville, NC. 49 pp.

Coutant, C. C.1985. Striped bass, temperature, and dissolved oxygen: a speculative hypothesis for environmental risk. Trans. Am. Fish. Soc. 114:31-61.

Hart, L. G. and R. C. Summerfelt.1975. Surgical procedures for implanting ultrasonic transmitters into flathead catfish. Trans. Am. Fish. Soc. 104:56-59.

Lewis, R. E.1983. Temperature selection and vertical distribution of striped bass during lake stratification. Proc. Annu. Conf. Southeast. Assoc. Fish and Wildl. Agencies.

37:276-286.

Matthews, W. J.1985. Summer mortality of striped bass in reservoirs of the United States. Trans. Am. Fish. Soc. I14:62-66t.

l O

A-7

Table 1. Length (mm), weight (gm), date tagged, and radio tag frequency of striped bass O- tagged at Lake Norman in 1992.

Lenuth Weight Tag Date Frequency 810 7170 5/21 40.402 812 6950 5/21 40.412*

705 4495 5/21 40.423*

680 4120 5/21 40.432 735 5125 5/21 40.442 732 4960 5/21 40.452 753 5140 5/21 40.462 850 7775 5/21 40.492 730 5155 5/21 40.592*

651 2965 4/07 40.602 710 4100 4/04 40.612 695 2300 4/07 40.623 616 2485 4/06 40.633 ,

600 2540 4/04 40.642 760 4900 4/14 40.652*

596 2460 4/06 40.664 605 2520 4/08 40.674 O 661 680 3060 2800 4/08 4/07 40.682 40.692 605 2480 4/04 40.703 680 3400 4/08 40.713 810 6860 5/21 40.722 612 2580 4/07 40.732 620 2520 4/08 40.743 740 5645 5/21 40.753*

736 4415 4/07 40.762 688 4000 4/14 40.772 i 784 3645 4/08 40.784 740 4650 4/04 40.794

  • Tags later discovered but fish apparantly had died.

O A-8

240 m.

g ,

235

_ LAKE NORMAN STRIPED BASS HABITAT  !

l 8 15 15.9 62 69

}, 1,1 1,3 4 8 4 4 72 80 .E_ @

n. ,

a o u

%wpte on-5 m 230 -

eg ,,

4, 1.

a gr a

AmR[+

%)t .l.$?~- g,pg vy Q;M q,g z. o O g' c,,

~ '

(f) c, .t' E 22s f; ggy;s

  • C: ~&g.

h . o@g%y? %

yy cm s

ws iD w ,

> =:26

? ,~'  ;' w ". c.

g %eres-3q wjn 26, E -

g - r,.,=. gg ,,,.

m v 220  ?"' DE!M Mi1@. N&ro. , 4%a%,g gr ; ~-lh

_ u,.

g;;q', ,, L ;;,~ o .t.,

%aw d a6 % + ,%, ,# i t

v'

  • pig.;

'a '

}:.5 c at,  :, sc 2 ~

-21 =

u.

m 3215 mj%j,

$ g ._

j J

J' %ktp~ 6%

Q fn Q Q

> 210 g g o-o --MD

  • p y - V T tQ LU 20s Fgi a 3Mf if 16 JUL 92 8 200 -W:, , v M;l o

n} r m

r 195 lIIlIIIIIIIIIIIIIIIIIi1III1iiitt i i i ci

iiiei;i,iii;i 0 5 10 15 20 25 30 35 40 45 50 55 D ts ten ce from Cowens Ford Dem ( k m) i

. . _ _ . _ _ __ ._________._.____.._________.__________._________________________m___ . _ _ _ _ _ _ _ _ _ _ - _ _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ .

o O O 240 -

m s

98

a 235 LAKE NORMAN STRIPED BASS HABITAT w

-1 8 11

-4 13 15 16.9 62 69 72 80 a tu 4 t 4 4 4 4 4 4 ED g-en g a E 225 -

f ~

- ff)N.

y 8.

?

220 2

_ ,N z.

c N > 0 215 - -

E "

g a _

27 7 '

J c -.

o y 210 - _

u G

- E.

i v

N W 205 - _

5

o i 200 -

4 AUG 92 s 3

F

~''''''''''''''''''''''''''''''''''''''''''''''''''

N 195 c.

0 5 10 15 20 25 30 [

35 40 45 50 55 g D ts ten ce from Cowens Ford Dem ( k m)  :

Figure 3. Distribution of striped bass tag encounters in 1992.

~ .

s v% ". )

~ v

^'~*' 5 g *,  % pd s?.  %, '

)' I N , ,,,!h Q $g

% ,)

y (3 Y% Q.%, )$.{ ..jsjh'} ffy-

>ff

]/ +4.1 Q;s.ss

~N * ,#^'

%h L.

u

",+

e; skg W, s' f u o.

, . . .,c ac o- y

- . ,r:3 y

v t

c. 5- .

a p .Le,

-' m' .,

g ms 4 /.. ;pu Qg/.e g f; 4 y #d% 1 M

. , Qf,hf. . %, g& n 'a's*.p,p

%-,.,V**pc:a%fg~

ogu."g p ) (M.. b y.j%'g %.7p r. "f- a..

r**t\_.p&-k y,

njy Uhf.

Y. - Yn 8 j c .

s , ,41

%$ %g-

  • p t. b.: p-

&.i ut .v .

Ad p. lm's -r ,. y m

,se , e g,f M Ek j g 3 hk a , W, h k't.h..n . I NM '#*

ts( 4

, } --n(), g, .C;"ff T T/Q , .-

% b;

/m k uP  %.w;v .M a w a[ s  %,,

1 %

- 6myb g/

e&+r -

.,t w w' p in x q u.

/ g '

tJ. '4 f ,f 4a j( n.

+ 3.., L e1,,.- n} Q,,::,cf

.,",#':1..cgg  ; 4 w w

g pm, ,s

-4 y.y m- ,

q ..og %v.4 wt

% M% ,

i 1*'M D:$ W % R$ 'b e ) ef,[gd

  • b,'c*..r^ ,a r

~8 v b w%# %

"q %  ;

q, .r' m-;. .s A J. W y%;hwp'<he.mC.%-A # ,.v Y 2 ig Q. ny . M, .

4:'g*yn - l Q

.Ow gy. t . A .]p.

g W *v - ;ys

~m.

.. o fns au.  % .y n yo..~q.

mm, T

&q[_ %m w s .s.j<dwm. n ,,r;T.*.SppM. ,gf j

=w j wi .im m, ,, ; p,.m, w s .

1 q*Jw ' l;;[  %.n J,y, 1

A w.,Ch 5./O.'

sc c. . .s . . .. . w sy: w 3 ws"EWN w s  %[- g I

2.0..-~" w-y

  • p 1 YCa. s.o.p.a= A- . Nyr L A

,.  :,.m- r p.,,,em m e,&,e . ..s.a a ;,n,,

a4 , 4., +)< q .

~a-

'.l aW aN.y@ayn 4 m o W .,% N , '

. . ..g,;I N .Y. fu,+ : +#,Y-'1;w.

, %, s;s, g',.g y m, %,.Y.

I . ' w - -

3 .E ' * .act; Y mo - :. g eg w,mn.%gpgag,  ;

%.h" ye,.+v

f's,%. %)b y Y^ a .. . .

A 6.

u . a ; n s .m w a2 e rw du. , e r4.n- S rw?cdxl&?,. ' -4 ': g6 ~'sll', ' $5

};$l:, , L l';.5,&'.) B ! M n.;'  : Q*5 $s <.;wnN *j$%g_ U"l" m

,r . . -  % n g ]?

y~ .. . , ./+k'ag ,.. .., , m,."y QSD.g

..e . . m, , n a +,

. mg , w c,., Aty_p

.s c y p+y gg g

q. M a s... T , ,.

.,M,.h%,.

s44**cw &V%

.-

  • y .f ry, j .sg> < qyjg ,q A,

w i m 4 . -._ w

- ;=yNa n y, y .,W 4

.w-L,. 5

.,0..:;

i 9" /*

[,, . _',[?

b, [, y. ..? ,.y , p.

f'y/

2 g 'h -i< y nrrYY ' )v.,6fthf f WlN,fg f.Ub fW d_fg .fer' e,. ~

..% m a. ,e,e-t. .. dM,,5, W a- .

?. y q. l *,

.h ,

,. , n..m~ .,M. -].,ee3

. .#,,.,y a#

s e :Gr ,.s, s= y q<,y (g q.g. ..

f ..

\

A-11

O O .

O FIGURE 4. SB TEMPERATURE BY PERIOD AND SIZb GROUP 32 30 - 10 3

26 21 28 - _

26_ 15 _

T -

$ E .

f

~

24 - _

3 _

i 0 22- -

20 -

18 - -

16 i i , , , , , ,

S L S L S L PERIOD 1 PERIOD 2 PERIOD 3

____________.-__.-__-________._-_._-__m_ _ _ - . - - . - . _ _ _ A -----S r -- w- - _y -_ _ _

i O O .

i O FIGURE 5. SB D.O. SELECTIGN BY PERIOD.AND SIZE 10 ,

13 12 <

8- -

9 -

6-

> M 7 b i L

4- 8 4 1

2- _

nemum S L S L S L l

PERIOD 1 PERIOD 2 PERIDD 3

4 i

l 1

i Figure 6. Distribution of striped bass tag encounters in period 1 (Declining habitat - July 8-22, 1992).

-l

Y.

.'f ,

i

...p- ,

l

-***%?.. g ,,g i

i

    • %g.. k ,#

O 1/ f. I A;% .Z rg~

-a +' i - y i l 3' :'

e f. v{ . *' ' *

-p +a&5" kA l ',s. a~ Wy } WN

,~~W c. -

~/. kA , % pn~.

,g.,--

(.

.- (l w dwlp/**

. s 1

i>'t*'r- J4ne ed &e .& v y

4c J .ra 1 n

.,,e I

r4J'

- n ._W. ,N%9

%.c.sm :Q ., Q*gr.v : .* W.4 7k p a .y %4-L.&, y

. 113 y a e -wf a Y,5 ,? W ~

)a v e - .

A( n k

f"nkm,j;sn;)v&&

g 7

v,y%..gxil:7+gd, sf y

,. 4  ?

j .

?rs[m-Q-4 g

.~

C

,hn.jd

} \'*

., d/.. mpy I

sN kmM r *%

l %L %uu

.sf

, .r*~l: ..-

}.g %n?g &,y$$v p$,jL m '9 f s%

,r . G ed g~ g ::m,AM.~Ly p,. g.u. .. -

g ;44f

  • % W. , g.7 ' i.s ,AMy c

e/ s y bd:56nh...JV@g%

WcdWE;d18% 3 34#e J m%

f'* g' 'd "'Mk 4 y .lgM+

5 r g:y f r.c

,,9)...3"' A- pf.04k.f**of,ly.- *'

w&[vA*aq!w kg k,5 .tsg%n[p+

v if '5% Mk&q .&)WQ 9

- ,!;*h o

p urh.wrrn o un w+

- ,.ta pu.a M*

-m~% n.n

\ rNQ. w" s,Q.,~k&mkd j M gg;cggg Y$y$;D+y ggg P.c

, ;p!$W" 4

(

4 y,:f. , p h n 1N

,9e g<,nceC,D [ A,ch w.Hg a:t,y<7

  1. < .f.a. . s ~-e m ._
    • W.
n a: man., s .i.nm,

~ EYh *gy>.,&DS1_ p. ,

.l .,

.g:~$Yo yfRy~E'ls m ysr_.

hi ff .fW 44 ,&,

,' q 1', pf[p.Mi[ s J.e'

,,*='

}

  • t**

,h.

T'g w%, Wah.

e-.+.<.a

@@T/h spur.V;;hyw m uo n ih.

g f ,.a es

- [p.

8 #

JNQ88 Ef3 3 ff**5-m7 AA

  1. O r?W:ff$$$p?$ U /

w.-uu&D $wnC rt:p vg c?  % C* .

. > N,,_c,,

A. N. N,.s  ; j$ '# - =

s ,1 g MW , '.'hg.oJ se n. C
.

p

- , 6- 4 p* wm-Q) "}": f,,,,q j &4Mdp Vg.l;

&Wun)&.

k

  • .: se ,, p&;&g/"

Mn}y %g(d.Oglgh@@Y

&yQy $

3 b_ 7 "4 P;{ .M,Mn, g, isp

~

-_s h' "-Ev.

s A-14

Figure 7. Distribution ofstriped bass tag encounters in period 2 (Low habitat - July 28 -

August 15, 1992).

i s4 l

.m I v ., ,

I v

t y,, t 4 Y a.'

Jy.

"f ,, &_i g,(%

f* \

w 5-J ,

tw t.

g.,.. m "r %*W Y,9 % I

. qT [J / [, Q / Yldf  ;

  • -% a -w ~f
    • '3.:~.,

-.e*y bs. a

/g n I

+w a . , s*

I%,

3 i,;s,a  :

f '. ,, '

~-~"

l q tp  %;& I

  • w.u pe. .:: ,': ""

i L:r.

w s#  %+&~

L e*

~

{

R ,p A'Ty ! f~ &..,.n s., $n $. .p .

h

+

eb 6

%d"= ~...%..,6.~W  :

y % ,,- 6* g i b

.,, , f . n t

  • 3

.%%Qm 9**=*

9 [' P-s

~

T 4 &-~"" <

,eM4 A-* .;g7,,} W"x% N em -

l ye 4 - e m :+ r.

w r..w b I"

,d wy 4 s s .w. gut.

e u/ 1*

NM (

,o ,

hk[.4'hN.h[ hw g a s k j

' s, -v i

%w~M._ >

&~g fs V Lw 'T %-pa. m

%/.  ?.. J 0

m

~

,e

[ 'a " jf 4 g

,,, y p., '

Qu .sk" t I.

,' },- v % # gh . ,1(J j

, sy ,f,8. Q -d.&.,.b n.

l.W aO.r,)9~~' ) )

r a8y ,I,..

me.,s q 1ea

.m.

, ,~. .a ,

%5+:v-V&n. 4 s

1 Y a l,ya, 9

. %,a. 1.h f %yc'.sf 6- 1

-c -

, r

  • w S w C[)W

- *'~ l

%-if&x * :9yQw -G {h'*' Jk,,MR vf.tyf'*~

g.

a**g"--Qx

); - fyj,.

w

  1. W.

~" -3 ms -  % . .e sdi, dy ,,, ., ,, ey

"%"h &*

, . 3;- W .t. , t ?_ g? 1:.: p .;;f%~

Q.
  • ,,"*Xn ?,#.. 3us :D. .=.taQ*~ . ' ?,;$_Q f"m-.Y'] ,
      • %..,<s ,
e. L.; **

%j\_ In gf. e.. .;jd#Qgf

{.%f A  % s ^ T.a. uj d -

N4 h ciM h

"J 'a W n:M y % 9'

_6%#MNl!i _ _ .m e p e % W % # e,,,,67?

n

r 4 'Wg< @6

% $k_h

~.,tu_.=~w, n. .m;%.v .e%,,&u.m K ae np wh .>

?

,.en* TW:wjh f.~ ~y f.rwF 9 '

, &t]"'

s4 - .p!;&%s vs..g e. . . ...,, , .$ ,

8 m >, ? + +<is #MP ~

sd 25 M ,:+. 1 ww.~,

a+p@r.. , sAf4

.g .+ w:

,/4

. . . . . <-- m  % i N '

1' 4

g. 4 e h., ef.

a s -#.aI ." %). ,*,g + .

y/"A

_$. , ir ./ ._e s o t,

    • .4 .r,,,,+.,. p w
w. u.. :c , e as , $ ,m 4 .$ gn.4 e 44 g,,,4

e~

eW Ni' A i Y

"'l 1 . -Y K, m llb .nhew~-. &. , - 'n ' (&',j!.*

w=f f t ' " 2. Y d. ? '".-W

. - v't' Y. 'n'-r I:j, i y.J;p't' t4 ,***

4f a a

<.[h y : ;',)f.,.n, r .

4

).h,j.{_--

.p. -M)$9Mb,D_.,[;, M -

Q* yy
  • l c; QAy, s.m.%;f 8: J e_
  • w }_ , m

' " *R -~ y' L r);

JG.* *S) y A-15

Figure 8. Distribution of striped bass tag encounters in period 3 (Expanding habitat -

s August 17 - September 10, 1992) y,.

o

 ; . ce s M_--

. ,9 *J s

'3-'

p a na'n a f .c sp l. &

4'

(

e....

g I.M %J 4

, , _g. ' ~ ],

y..

+

.7,, j ff#[(%

tp . ,ys s

as. nt

  • ! %,l/ *"*'

k N

.+ < c., s:# gL ,

E,i

> , k}.3,, Ar f N/*

w

'd

n. er;s.~,,

' rEk::W, g% b2"  % -  %

4 jy 5

j,3 wOWe;*37?fifM.'Y..

4 .

%g

~ '

, %c ,

b

.$~.0. .f*uh.4f. g;r'f"Ep h]*

Zhh ?Le D h~

m

p Ym.

( 1 ja A /y'j g whaph._,

wi :d r r s.-l,\,4, b L. sL_ A r .%. f. f a.nlQJ.,.aW~%j- .$,,ya

. vOuur g.s )if

< w

  1. iG S 1 41

\ ., f~4X.v

e. . L&q .}f g. + 1:

a /#$s 9[ **"**-

%~j?., Y.~ Y A Y W

/ ef i ,f%

C M4 f

%, 6~j.yM,L.

."d' ye*<@

p*Ug]

ny .h p*

.. e MS ,la< r

'=QL,, W:y -)

g, M. '

.p sh '-*'%w,t.$& [% h

% pu;gsse an

.rawm. w w ..

.. ac

h. %
M:=

np- > q~9-y@ n .

s.a.

g ,p'p p, s .) ,.

,.f' h[f,w a.,

y, ,:m s ny, yR y, 'y"&wg;."p*?1Y,*fg e

_.t jaf6 4.w. A..g--

ge me

&w ,,QIYm%tc4a;47,Af;m%r#

  • .,- asime w

-+.d."s  : A m mx3- .

A yyp ,#' {

9 wiyz.%y A b N&; Bn%y:lJ5?g."'rd -

p% .

,f

%gg! (f-d BWfA b,y pyg#f&eMQMMiy%gputy gampsg $"

jh $7 Q ;a,w. n es; Mmp;n m. v .ym., a p .e mm' R A.,.c. yj y +

~, -[". W ,,' a'.;fjl$.w.fy*QQ)? %k } ,,

.3 w '} : .,_ .

z .n. 1 g} -

mbr' 8 qj y'R?!?$1*,4J .w:cc&:m-nm -~

.. A E- m u .y.>  %

    • v e 0, All + (

w e>rn .-:e:5 %

gfp

- " ' ' *. -,;% ^

.a a.,  %.QyGfm map p@.n sphn ;

4./n, "Ult ;fWgn  %+ g(fypr& ed~&

& ,rmo n.gpr.ft..

l-  ;,,,w;yy:+;p::w@gML W w,,

9

^ -t;$ y 1 33*;*. s ;aT+Zf;pt ,

(;,17*" M EiW h D 8

{;; . g~Wa%  %

(

A-16 .

,