ML17345A420

From kanterella
Jump to navigation Jump to search
Reactor Vessel Heatup & Cooldown Limit Curves for Normal Operation, Ltr Rept
ML17345A420
Person / Time
Site: Turkey Point  NextEra Energy icon.png
Issue date: 08/31/1988
From: Meyer T, Ray N, Schmertz J
FLORIDA POWER & LIGHT CO., WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17345A419 List:
References
MT-SMART-116(88, MT-SMART-116(88), NUDOCS 8809300063
Download: ML17345A420 (33)


Text

Letter Report MT/SMART/'ll C (8 Sp FLORIDA POWER AND LIGHT UNITS 3 & 4 REACTOR VESSEL HEATUP AND COOLDOWN LIMIT CURVES FOR NORMAL OPERATION August 1988 Prepared by:

ay Verified by: ~ C.'

~ c mel 2 Approved by: 7 A

'yer, anager Structural Materials Engineering Work Performed Under Shop Order No. FWCJ-106 Prepared by Westinghouse for the Florida Power & Light Company Although information contained in this report is nonproprietary, no distribution shall be made outside Westinghouse or its licensees without the customer's approval. ~ls ~>/Rlz~ ~y y~ gE~gsE~ p~

Govt ooN EpjsoN(/'e) Co~u~urio/ ~'rr/ "~'o'r/V. y/pR/ltr WESTINGHOUSE ELECTRIC CORPORATION Power Systems Division P,O. Box 2728 Pittsburgh, Pennsylvania 15230-2728 311 3e-001004:10 8809300063 8805'21 PDR ADOCK 05000250 P PDC

TABLE OF CONTENTS Section Ti tie Page

1.0 INTRODUCTION

2.0 FRACTURE TOUGHNESS PROPERTIES 3.0 CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS 4.0 HEATUP AND COOLDOMN LIMIT CURVES 5.0 ADJUSTED REFERENCE TEMPERATURE

6.0 REFERENCES

3113e 0410bb:10

LIST OF FIGURES Figure Title Page Fluence Factor for Use in the Expression for hRTNpT 9 Turkey Point Units 3 and 4 Reactor Coolant System Heatup Limitations Applicable for the First 20 EFPY (60'F/HR) 10 Turkey Point Units 3 and 4 Reactor Coolant System Heatup Limitations Applicable for the first 20EFPY (100'F/HR)

Turkey Point Units 3 and 4 Reactor Coolant System Cooldown Limitations Applicable for the First 20 EFPY 12

$ 113s 05)06':10

KEATUP AND COOLDOWN LIMIT CURVES FOR NORMAL OPERATION

1.0 INTRODUCTION

Keatup and cooldown limit curves are calculated using the most limiting value of RTNDT (reference ni 1-ducti i ty temperature) for the reactor vessel 1 ~ The most limiting RTNDT of the material in the core region of the reactor vessel is determined by using the preservice reactor vessel material fracture tough-ness properties and estimating the radiation-induced hRTNDT. RTNDT is designated as the higher of either the drop weight nil-ductility transition temperature (NDTT) or the temperature at which the material exhibits at least 50 ft-lb of impact energy and 35-mil lateral expansion (normal to the major working direction) minus 60'F.

RTNDT increases as the material is exposed to fast-neutron radiation.

Therefore, to find the most limiting RTNDT at any time period in the reactor's life, hRTNDT due to the radiation exposure associated with that time period must be added to the original unirradiated RTNDT. The extent of the shift in RTNDT is enhanced by certain chemical elements (such as copper and nickel) present in reactor vessel steels. Westinghouse, other NSSS vendors, the U.S. Nuclear Regulatory Commission and others have developed methods for predicting adjustment of RTNDT as a function of fluence and the copper and nickel content. The Nuclear Regulatory Commission (NRC) published these methods in Regulatory Guide 1.99 Rev. 2 (Radiation Embrittlement of Reactor Vessel Materials) . The value, "f", given in figure 1 is the calculated value of the neutron fluence at the location of interest (inner surface, 1/4T, or 3/4T) in the vessel at the location of the postulated defect, n/cm (E > 1 MeV) divided by 10 , The fluence factor is determined from figure I, 3113 I-OO10N: l 0

2.0 FRACTURE TOUGHNESS PROPERTIES The fracture-toughness properties of the ferritic material in the reactor coolant pressure boundary are determined in accordance with the NRC Regulatory Standard Review Plan . The postirradiation fracture-toughness properties of the reactor vessel beltline material were obtained directly from the Turkey Point Units 3,E 4 Vessel Material Surveillance Program.

3.0 CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS The ASME approach for calculating the allowable limit curves for various heatup and cooldown rates specifies that the total stress intensity factor, KI, for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be. greater than the reference stress intensity factor, KIR, for the metal temperature at that time. KIR is obtained from the reference fracture toughness curve, defined in Appendix G to the ASME Code The K curve is given by the following equation:

26 78 + 1 223 exp [0 0145 (T + 160) ]

KIR ~

RTNDT where KIR

= reference stress intensity factor as a function of the metal temperature T and the metal reference nil-ductility temperature RTNDT Therefore, the governing equation for the heatup-cooldown analysis is defined L'3]

in appendix G of the ASME Code as follows:

C KIM+ KIT K (2) where KIM

= stress intensity factor caused by membrane (pressure) stress 3113s 0$ 10M:10

K>T

= stress intensity factor caused by the thermal gradients K>R

= function of temperature relative to the RTNpT of the material C = 2.0 for Level A and Level B service limits C = 1.5 for hydrostatic and leak test conditions during which the reactor core is not critical At any time during the heatup or cooldown transient, K>R is determined by the metal temperature at the tip of the postulated flaw, the appropriate value for RTNDT, and the reference fracture toughness curve. The thermal stresses resulting from the temperature gradients through the vessel wall are calculated and then the corresponding (thermal) stress intensity factors, K>T, for the reference flaw are computed. From equation 2,.the pressure stress intensity factors are obtained and, from these, the allowable pressures are calculated.

For the calculation of the allowable pressure versus coolant temperature during cooldown, the reference flaw of appendix G to the ASHE Code is assumed to exist at the inside of the vessel wall. During cooldown, the controlling location of the flaw is always at the inside of the wall because the thermal gradients produce tensile stresses at the inside, which increase with increasing cooldown rates. Allowable pressure-temperature relations are generated for both steady-state and finite cooldown rate situations. From these relations, composite limit curves are constructed for each cooldown rate of interest.

The use of the composite curve in the cooldown analysis is necessary because control of the cooldown procedure is based on the measurement of reactor coolant temperature, whereas the limiting pressure is actually dependent on the material temperature at the tip of the assumed flaw.

31138 081Nb:10

Ouring cooldown, the 1/4 T vessel location is at a higher temperature than the fluid adjacent to the vessel IO. This condition, of course, is not true for the steady-state situation. It follows that, at any given reactor coolant temperature, the hT developed during cooldown results in a higher value of K at the 1/4. T location for finite cooldown rates than for steady-state operation. Furthermore, if conditions exist so that the increase in KIR exceeds KIT, the calculated allowable pressure during cooldown will be greater than the steady-state value.

The above procedures are needed because there is no direct control on temperature at the 1/4 T location and, therefore, allowable pressures may unknowingly be violated if the rate of cooling is decreased at various intervals along a cooldown ramp. The use of the composite curve eliminates this problem and ensures conservative operation of the system for the entire cooldown period.

Three separate calculations are required to determine the limit curves for finite heatup rates. As is done in the cooldown analysis, allowable pressure-temperature relationships are developed for steady-state conditions as well as finite heatup rate conditions assuming the presence of a 1/4 T defect at the inside of the wall that alleviate the tensile stresses produced by internal pressure. The metal temperature at the crack tip lags the coolant temperature; therefore, the KIR for the 1/4 T crack during heatup is lower than the KIR for the 1/4 T crack during steady-state conditions at the same time coolant temperature. Ouring heatup, especially at the end of the transient, conditions may exist so that the effects of compressive thermal stresses and lower KIR's do not offset each other, and the pressure-temperature curve based on steady-state conditions no longer represents a lower bound of all similar curves for finite heatup rates when the 1/4 T flaw is considered. Therefore, both cases have to be analyzed in order to ensure that at any coolant temperature the lower value of the allowable pressure calculated for steady-state and finite heatup rates is obtained.

3113 s M1088:10

The second portion of the heatup analysis concerns the calculation of the pressure-temperature limitations for the case in which a 1/4 T deep outside surface flaw is assumed. Unlike the situation at the vessel inside surface, the thermal gradients established at the outside surface during heatup produce stresses which are tensile in nature and therefore tend to reinforce any pressure stresses present. These thermal stresses are dependent on both the rate of heatup and the time (or coolant temperature) along the heatup ramp.

Since the thermal stresses at the outside are tensile and increase with increasing heatup rates, each heatup rate must be analyzed on an individual basis.

Following the generation of pressure-temperature curves for both the steady-state and finite heatup rate situations, the final limit curves are produced by constructing a composite curve based on a point-by-point comparison of the steady-state and finite heatup rate data. At any given temperature, the allowable pressure is taken to be the lesser of the three values taken from the curves under consideration. The use of the composite curve is necessary to set conservative heatup limitations because it is possible for conditions to exist wherein, over the course of the heatup ramp, the controlling condition switches from the inside to the outside, and the pressure limit must at all times be based on analysis of the most critical criterion.

Finally, the 1983 Amendment to 10CFR50 [4] has a rule which addresses the metal temperature of the closure head flange and vessel flange regions. This rule states that the metal temperature of the closure flange regions must exceed the material RTNDT by at least 120'F for normal operation when the pressure exceeds 20 percent of the preservice hydrostatic test pressure.

Table 1 indicates that the limiting RTNDT of 44'F occurs in the vessel flange of Turkey Point Unit 3, so the minimum allowable temperature of this region is 164'F. These limits are less restrictive 'than the curves shown on figures 2, 3, and 4.

$ 113I-MlON:10

4.0 HEATUP AND COOLDOMN LIMIT CURVES Limit curves for normal heatup and cooldown of the primary Reactor Coolant System have been calculated using the methods discussed in section 3, and the procedure is presented in reference 5.

Transition temperature shifts occurring in the pressure vessel materials due to radiation exposure have been obtained directly from the reactor pressure vessel survei 1 lance program.

Allowable combinations of temperature and pressure for specific temperature change rates are below and to the right of the limit lines shown in figures 2, 3, and 4. This is in addition to other criteria which must be met before the reactor is made critical.

The leak limit curve shown in figures 2 and 3 represents minimum temperature requirements at the leak test pressure specified by applicable codes The leak test limit curve was determined by methods of references 2 and 4.

Figures 2, 3 and 4 define limits for ensuring prevention of nonductile failure for the Turkey Point Units 3 and 4 Primary Reactor Coolant System.

5.0 ADJUSTED REFERENCE TEMPERATURE From Regulatory Guide 1.99 Rev. 2 the adjusted reference temperature (ART) for each material in the beltline is given by the following expression:

ART = Initial RTNDT

+ hRTNDT + Margin (3)

Initial RTNDT is the reference temperature for the unirradiated material as defined in paragraph NB-2331 of Section III of the ASME Boiler and Pressure Vessel Code. If measured values of initial RTNDT for the material in question are not available, generic mean values for that class of material may be used if there are sufficient test results to establish a mean and standard deviation for the class.

$ 1130-Obl 058:10

hRTNpT is the mean value of the adjustment in reference temperature caused by irradiation and should be calculated as follows:

RT [CF] f (0. 28-0. 10 log f) (4)

NDT To calculate ART at any depth (e.g., at 1/4T or 3/4T), the following formula must first be used to attenuate the fluence at the specific depth.

~ 24x

( )

(depth X) surface (5) where x (in inches) is the depth into the vessel wall measured from the vessel inner (wetted) surface. The resultant fluence is then put into equation (4) to calculate hRTNDT at the specific depth.

CF ('F) is the chemistry factor, obtained by multiplying each measured hRTNDT by i ts corresponding fluence factor, summing the products, and dividing by the sum of the squares of the fluence factors. Capsule data from reference 6 was used.

At the vessel inside radius, the calculated neutron fluence for 20 effective full power years (EFPY) is 2.022 x 10 n/cm at the critical weld, For the limiting circumferential weld, the chemistry factor is 200.5, based on ref. 1. From equation (4), the ARTNDT at the inner surface is equal to 239'F (200.5 x 1.192). Regulatory Guide 1.99 revision 2 provides a formula and rules for establishing margin:

2 Margin = 2 a + a 2 a>

= O'F for measured value of initial RTNDT a

A

= 28'F for welds (critical material) - This value is cut in half'to take credit for credible surveillance data used to calculate CF.

Margin = 2 ~

0 + (14) 2 = 28'F

$ 113 ~ -M)OM:10

ART = 10 + 239 + 28 = 277'F Using the vessel thickness of 7.75 inches at the beltline, Equations (3), (4),

and 5 are used to calculate the ART at the 1/4 and 3/4 thickness locations.

These are 252.5'F and 200.4'F respectively.

The above analysis was used to develop the Turkey Point Units 3 and 4 heatup and cooldown curves shown in figures 2, 3 and 4 respectively, 3l 1ls~10bb:10

Figure 1. Fluence Factor for Use in the Expression for hRT NOT 3 I 13s-ODIN:lO

MATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL }tELPi i INITIAL RTNPT 10 F o [I]

RTNDT AFTER 20 EFPY: 1/4T, 252.5'F 3/4T, 200.4'F CURVES APPLICABLE FOR HEATUP RATES UP TO 60'F/HR FOR THE SERVICE PERIOD UP TO 20 EFPY. NO MARGINS ARE GIVEN FOR POSSIBLE INSTRUMENT ERRORS.

2500 2250 Leek Test L1IIt 2000 1750 Ilnacceptab1e Operation 1500 IL 1250 IIeatup Ates gp to

a. 1000 50 FIIIr Acceptabl ~

Q

~ Operatloa 750 IIILIIIII 0 Crl tlcal it@

X LIalt Iased on-Inservlce H7d 500 static Test Teeperature (380'F) for the ServIce 250 Perfod up to 20 EFPT 0 50 100 150 200 250 300 350 400 450 500 INOICATEO TEIIPERATURE (OEG.F) 1 F)gure 2. Turkey Po)nt Unjts 3 5 4 Reactor Coo1ant Syltea Heatup L)aftatlons Appl)cab1e for the First 20 EFPY

[1] See reference 6.

sl 1 ~loss:10 10

MATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL MELD INITIAL RTNDT'0 F RTNDT AFTER 20 EFPY'/4T 252 ~ 5 F 3/4T, 200.4'F CURVES APPLICABLE FOR HEATUP RATES UP TO 100'F/HR FOR"THE SERVICE PERIOD UP TO 20 EFPY. NO MARGINS ARE GIVEN FOR POSSIBLE INSTRUMENT ERRORS.

2500 2250 <eel Test ie<t 2000 1750 UNcceptebIe Operllt'IM 1500 geetup Rates ep to 100'P/Hr 1250 1000 lccepteb1 e Operet)on u 750 CritTce11tg Lfa1t N sed on Inservkco HQ stet$ c Test 500 Teptreture (350'F) for the Service Per1od up to 250 20 EFPT 0 50 100 150 200 250 300 350 F00 450 $ 00 INOICeTEO TEMPERATURE (DEC.F)

Figure 3. Turkey Point Units 3 4 I Reactor Coolant Systea Heatup Lkmltat)ons Appl)cable for the F)rst 20 EFPY

[1],See reference 6.

N>~>oeL>o

~ ~

I ~ ~

~

I

~, ~

~ 'I I~ ~

'a.

I I

II ~

I ~

~ ~

I ~

~

II ~

~ EEEEENRNEENEEENNENNNNENSENENEENNEEEEERNIINEEEERESS

~ NNNNNNENENEEEENNEEBNENENEEENEEREEEEEENENRNESNENE

~ Ekkakkkkakakkrkkkrrkkakkkkkkkkkkkkkkbkk>krkkrkkkk

~ Nkkakkkkakkkkakkkkbkkrkkkkkkkkrkkkkakkbkkrkkkkkkk

~ NENRSNEESSRkNNESRNERNEE'NSSSEESNESEEENEREEEESSEEEE

~ NNNNNNEEEENNNNNNNNEENENNNNEERENENNNNNNIJEERNNNENSE QNNQNNNEENQBNNNNQEQQEQQNENQQEENRQQENN NEENNENRNENENEQaakbkkkkrkakkakaakakaarbbkbkkkkkkk

~ aaakraarrarkarrarakararaaaaraaarkaaaaaaarakrakakk ESNSENNEEENRkkaSNRSSSNENNNSNSNNRNNENNNRNSERNRRNNSN

~ QEQQNQRNNBNHHEQQEENNQNBENEUNBRQEEEEE

~ EEQNRNQBQBNNHNNEEENQNEQEQEQ'>ESHQEQEE QQNNEENQEQNNQNBNEQEQQENNQNNEBQEHHQN ENNNNEENENHEENNNNENEEENENNHNENHREENNNNEQNEENE

~

QQNNEBEEEQNENNNBEENNNENENQENNNEEEQNBQNQN NENNNNENNNNENNERENNENNENNNENNNENNNQNHarrrkkQNNN

~ ENEENSRNENBEENSaakrkkkkkbkarkkkkakbrrrkkbrkkkkkk

~ NQNNEENNEHEE ~ RENEEEEREENREQEENN

~ ENSNNRSENNRNES ~ SkkSRakarkkbkkkkkkk

~ SESEEEEESNRENN " >. . NNNNEFakrkkkbkkrkkak

~ Nkkkkkrkkkbkak

~

NEENENEENEENRNESEENN ENNESNERENEEEEN ~ kSkEREENEEERNNENSNE

~ ENNEEESNNEEEESENNENEE ~ kkEKkkErkkkbkkkkkrk QNBEENNNEQENQNHENEEENENNQNNEEQHNNEREQNSNN

~ ENNNEEEENEEENNHHEEEEEEESNEENENNNNBNNNNRENNEEEN

~ NNNEENNNEERENNESENEENEEEEEENNEEEENNERRNNEEENNNNEE

~NEBNREENEENNNNENNENNEEENENNNNNNNNNNNEHENENNENNN QNHNNHNNREQNNNHNNENENENQHEEREENBNBEHEEQ

~ Nkrkkkbaaakkrkkarrbkkkkkkakkkkrakrkkkbakkrkrkkkkk Nrkkkkaakkkkkkkkbrkkrkkakkrakkk~lrkakkbkbkkakkkkkkk rk

~ Nkkkrkkrkkrkrkkkkrkakakkkakakyrk

~ NNNNENEENEENENNNNRENNEENNEENF >kk -- ~N

~ Nkrkakkkkrakakrkrakakkkkkbka~(.REN ~ i. . Nk NEEHNNNENNENENNENEENNENENEW)/)Nrk

~ NEENNNESNEENNNENEEENNEENEF /i/irk%a ~ Nk SNEER%EN%EN%EN%SERA/ikkrrrksa Nkk

~ Nabkaakrkkrkkbrrr/irkkkrkkbkkbbkkakkkkkrkk EEEEEEEERRRSaarrir~jbkakaakkraraaaaakaakarkk EkkbkrkkaiPiiiCkkbkkkkkrEERNENENNERQEEENN alirr~grleitr>~Jar>rkarkaakkrakaakkbkkkkkkkk aeir Ir1ERRENNNENQENSENERNNEENNNNSEE CRFaesiiK'orb'EQSEEEEEREEREESEEEEEEEESNSEEES

~ ssaakkkaai~iikrrkkakakkkrkkbkrkarkaakkkkSNE

~ Is>b aaSEEEEHESSHEENENREHHHEQEQQ

~ NNEENNNENNENEHNHENEENNNNEENNNENNNNENNNN

~ ESEEEEEEEEEEENNREEENNENNEEEEENEEEQNENENN

~ Rk ~ ENEEEENEEEEEEEEEEEEEENNNENHNEERENRERNEENEE EN%SEE%%%%%%%RE%%%REER'ESNE%%%%%%%%%%%%%%%%%%ENSE'EE

~ ENENNEENENRENEBEEREEEENEHEENENNEENEEENERNNNNENE

~ ENNEQEEEEENEENENENEEEEEEENNENNQRNNEENNEEQEENNN

P TABLE 1 TURKEY POINT UNIT 3 REACTOR VESSEL TOUGHNESS DATA (UNIRRADIATED)

Material Cu Ni(d) P NDTT RTNDT(a)

~Com onent ~Te ~F Cl. Hd. dome A302 Gr B 0.010 0 0 Cl. Hd. fl ange A508 Cl 2 0.72 0.010 44(a) 44 Ves. Sh. flange A508 Cl 2 0.65 0.010 -23(a) -23 Inlet nozzle A508 Cl 2 0.76 0.019 60(a) 60 Inlet nozzle A508 Cl 2 0.74 0.019 60(a) 60 Inlet nozzle A508 Cl 2 0.80 0.019 60(a) 60 Outlet nozzle A508 Cl 2 0.79 0.010 27(a) 27 Outlet nozzle A508 Cl 2 0.72 0.010 7(a) 7 Outlet nozzle A508 Cl 2 0.72 0.010 42(a) 42 Upper shell A508 Cl 2 0.68 0.010 50 50 Inter. shell A508 Cl 2 0.058 0.70 0.010 40 40 Lower shell A508 Cl 2 0.079 0.67 0.010 30 30 Trans, ring A508 Cl 2 0.69 0.013 60(a) 60 Bot. hd. dome A302 Gr B 0.010 -10 30 Weld (inter to lower shell girth weld) SAW(c) 0.26 0.60 0.011 0 10(b)

Xl00e-00100&10 13

TABLE 1 (Cont'd.)

TURKEY POINT UNIT 4 REACTOR VESSEL TOUGHNESS DATA (UNIRRADIATED)

Material Cu Ni(d) P NDTT RTNDT(a)

~Com anent ~Te ~X ~X ~X ~F ~F Closure head dome A302 Gr B .008 "20 30 Closure head flange A508 Cl 2 .72 .010 -4(a) -4 Vessel flange A508 Cl 2 .68 .010 -1(a) -1 Inlet nozzle A508 Cl 2 .08 .71 .009 60(a) 60 Inlet nozzle A508 Cl 2 .84 .019 60(a) 60 Inlet nozzle A508 Cl 2 .75 .008 16(a) 16 Outlet nozzle A508 Cl 2 .78 .010 7(a) 7 Outlet nozzle A508 Cl 2 .68 .010 38(a) 38 Outlet nozzle A508 Cl 2 .70 .010 60(a) 60 Upper shell A508 Cl 2 .70 .010 40 40 Inter. shell A508 Cl 2 .054 .69 .010 50 50 Lower shell A508 Cl 2 .056 .74 .010 40 40 Trans. ring A508 Cl 2 .69 .011 60(a) 60 Bottom head dome A302 Gr B .010 10 10 Weld inter. shell to lower shell girth weld .26 .60 .011 10(b)

(a) Estimated values based on procedures listed in U.S.NRC Standard Review Plan, NUREG-0800, Rev. 1, July 1981.

(b) Actual value I/

(c) Wire heat No, 71249, L'inde 80 flux lot 8445.

(d) From material certified test report 14

6.0'EFERENCES

1. Regulatory Guide 1.99, Revision 2, "Radiation Embrittlement of Reactor Vessel Materials," U.S. Nuclear Regulatory Commission, May, 1988.
2. "Fracture Toughness Requirements," Branch Technical Position MTEB 5-2, Chapter 5.3.2 in Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants, LWR Edition, NUREG-0800, 1981.
3. ASME Boiler and Pressure Vessel Code, Section III, Division 1-Appendixes, "Rules for Construction of Nuclear Vessels, Appendix G, Protection Against Nonductile. Failure," pp. 559-564, 1983 Edition, American Society of Mechanical Engineers, New York, 1983.
4. Code of Federal Regulations, 10CFR50, Appendix G, "Fracture Toughness Requirements," U.S. Nuclear Regulatory Commission, Washington, D.'C.,

Amended May 17, 1983 (48 Federal Register 24010).

5. "Procedure for Developing Heatup and Cooldown Curves," J. C. Schmertz, GTSD-A-1. 12.
6. Surveillance data for Florida Power 5 Light Company. Letter and attachment (JNS-MCI-88-084, May 4, 1988) from R. S. Boggs to J. C. Schmertz 15

APPENDIX A HEATUP COOLDOMN DATA POINTS 311 ij 0010M:10 A-1

FPL100F/HR HEATUP CURVE FOR FPL, NRC 1.99 REV. 2 WELO 08/10/88 THE 'FOLLOWING OATA WERE CALCULATEOFOR THE INSERVICE HYDROSTATIC LEAK TEST.

h

-i' 7"":: -'-." - '. ':"'. MINIMUM INSERVICE LEAK TEST TEMPERATURE. f 20.000 EFPV)

" g'."-'".".'1 "'., '"","'~;."~;..""",~o"'"."'RESSURE-(PSI) TEMPERATURE (OEG.F) 2000 358 380 '-

g(/'-g '4'~'""g

~ A tl(+ gl)) PghV( Pgg (PAL (

'"'N'~~Miihc<~'5"wq'~

iY"-'c

'4 pl*

~

~ 2485

~~z .. k. "'g "..)->I.4;;" ~A:% (~:" Pp':F.'~ "j;.."g gc'~~ << "'"g 4 p

  • '","'"'"". - PRESSURE (PSI) -'-

. PRESSURE

{PSI)

STRESS 1.5 KIM (PSI SO.RT.IN.)

2000, 21 1 12 s.

. 84324

~'

p) ~. g e "'",W p . '+'%ca ':)

.",'-,'".>;.'-.-"'.'..>."'.>a~-:'."':", , ~- ."~'-, 2485,'- -" ':: .26282.~'- . 105679 ( J ) f

  • rr 5 7

C A-2 FPL 60F/HR HEATUP CURVE FOR FPL, NRC 1.99 REV. 2 WELD 08/10/88 COMPOSITE CURVE PLOTTED FOR HEATUP PROFILE 2 HEATUP RATE(S) (DEG.F/HR) + 60.0 IRRADIATION PERIOD' 20.000 EFP YEARS INOICATEO , INOICATEO INDICATED INDICATED IND I GATED INDICATED TEMPERATURE '"'PRESSURE TEMPERATURE PRESSURE TEMPERATURE PRESSURE (DEG.F) (PSI) (DEG.F) (PSI) (OEG.F) (PSI)

a-.

1 2 85.000 477,25 , 90.000 -:--,,- '88'4>:.".2~~',w: "-'l , 23 195.000 '00.000 - 543.02 "- 532.84 45 305. 000 310. 000 961.21 996.90 3 '*4' 5,. .,:

95. 000 100.000, 105.000,,

'=,': 461 . 90 ... 457i42%%%MS~i>>26 454,68, , ..., 27 25 '.. 205.000 -210.000 -'. 1565.75 215.000 553.92 578.52 47 48 49 315.000 320.000 325. 000 1035.22 1078.61 1 120. 88 " --:-' "'-'- '-110.000 >:.~~"".~453't3'-P'4>'~~">28 220i000 - 592.24 50 330. 000 1168.46 7 115.000,, 452,78, , '~;~'" 9'-~';:;"- 't20.000, ~YA"";.:453.24'~%~4:..-- " 29 30 225.000 ... 606.92 ."-4 230.000 '>: 622.$ 3 51 52 335. 000 340. 000 1219. 52 1274.21 9 '" . 125.000, . 454,58 , 235.000 . =." 639.94 "- .-'- 53

.40; f30:000,>:~~"'.458'.52~.."'V~"-- 32 31 240.000" 858.21 345. 000 1323. 17 '-'"

11, 350.000 1375.50 - = .' 54 135.000,. '..~if'-'12'. >~-". 140; 000" ~ 4j 459. 15 33 482"29 4-"~Y- .:- 34 "~~ 245.000 250.000 "';~ 678.02 899.06 55 56 355. 000 360.000 1431.54 1491.55 .. 13, 145. 000,. 466. 02,,, 35 , 255.000,, 715,32 57 365. 000 1555.62 i.-'<<t4 ='-'-;" 150;000,~':.'..-";-. 470:22'>>"-':.;.-.== 36 280.000 "".-~ 732.77 '-'. -5S 370. 000 .-" 1624.77 'e.:." 15 18>>'~'"160.000 155.000 474.98 ~'i.:,",4'480;21 '"'-,,i';-'," 38 37 265.000,'~'71.57 '70.000'->'i, , 751.38 '." 60 59 375. 000 380.000 1698.28 1777.59 '"'l 17 . 165.000 ' 120;.000'-"'<~'.:492'0 486,00 ~<'",',~'-. 39 275.000 . ',- 2SO 000 ',".< 816.39 793.05 61 62'- ": 385. 000 1862.13 , 19 175.000,,499. 18,, 20<4-"".. 180.000 ..-."""a~'508;55>>'~.~ ~"','- 40 41 42 285.000, -';~- 290.000 > '-;, B68. 17 841.23 * ."~ ~ 63 -64." 390.000 395. 000 400.000 1952.64 2049.30 2152. 71 21 , 185.000 , 514.64 190 000'-~"t '-':523 38 "" '443 .....295.000

300.000

...,."'. 896.90 927.97 65 66 405. 000 410. 000 2263.24 23S1. 19 C ~ 7 A-3 . FPL100F/HR HEATUP .CURVE FOR FPL. NRC 1 '9 REV. 2 WELD 08/10/88 COMPOSITE CURVE PLOTTED FOR HEATUP PROFILE 2 HEATUP RATE(S) (OEG.F/HR) ~ 100.0 IRRADIATION PERIOD > 20.000 EFP YEARS r INDICATED INDICATEO INDICATED INDICATED INDICATED INDICATED TEIIPERATURE'-.PRESSURE .-  : " 'EMPERATURE PRESSURE , 'EllPERATURE PRESSURE (OEG.F) . (PSI) , (OEG.F) (PSI) (OEG.F) (PSI) 1 85.000 475.S4 ,,, '25'- 24 ,200.000 45S.60 46 310.000 890.67 . "'* 2 ' "'-. 90.'000" . 462.00 .<<.".~-<4,"~." 205.000 463.36 - , '. 47 ' 315.000 931.88 95.000 450.76 210.000 471.84 48 320.000 976. 16 ~'I<~~ 4 3 100;000<<<:~ 441 29"';"~~> , 26, .27""-. "'215.000 ~ - 481.09 ~ -: '-'9- -, '25.000 '023.58 5 105.000 433.54, 28 220.000 491. 13 50 330.000 1074.45 7,, '~=". 8,.'-<< ':.1 tO;OOO 'g~a~" 427". 115.000 ., 422.08 t3;:~<'kY,";<>w 29 "" . 225.000<-" 30 ....230.000 . 50t.95 5'l3.75 . ~' - 5l: 52 '; <<335.000-<<~ 340.000 -"'1128.85 1187.47 '120;000 '-- ',~:"418:09&X'~ ~<<" 31 ".;:.235.000 ' 8-:" .. ,415. 18.,,,.. 32.... 240.000, '<< 526..53 . - 53 345.000 1250.26 19, ..55. " 9 125.000 . 540.33 . 54 350.000 1317.24 '-10 '-- --. 130.000->.'.-";"- -.,413; t3:,.<<'<."::%P33"'=>"'; 245.000 "555. 355.000- '389.46 3" 11 <12-'. 135.000,,412.02 .,,,34,'<:,'- 140.000"'-<,"-'411.58.-"-'<<~'.~'.'-'35 250.000 571. <<'255.000'".""".'"'588.51 12 - 56, 57 360.000 '-'65.000 "". 1466.46 = 1535.99 13 145.000 411.88 36,<<285<000 260.000, 607.04 58 370.000 1596.96 "-t4 '-;."';-'150.000 .'";~~ 412.75.<r-<<5<<'~ '; 37 15 155.000 .. 414.36,38 15 .-" ~'160.'000".-",Ã~ 418.54 s< ~;~"., 39 165. 000 4 19. 35, 40 270.000 '>',:627.14 "'.:.,'> .. 648.62 -<<=:275.000 " '71.89 280. 000 696. 75 60: 59 61 62 75.000 380.000 385.000 390. 000 1662.18 1732.01 1806.82 t8 '"'VO:000 ",-: 422.V2".:" .'--'-4l '*'85.000 ':; " '.'- . 17 1886. 78 723.66 - -< "63 = '95.000 <<- 1972. l2 19,, t75,.000 426.70<< .,,, 42,,290,.000, 752.40 64 400.000 2063.56 "..'2" 20 '-~ ',. 180.000",7-'.431.25'i<-.="." 43;"'95.000:". .'. 65 2t61.'l 5;"> 21 t85.000 . 436,42,... 44 22 '.'."':r,,".190<<OOO.k",':,'>,-'"'442."t0:;~ >'!:xi'=< 45 '.<<.~< 300 000 ~ "305<000'~~",< 783.47 . 816.71, 852.37 ':.;.". '67<<< 66, . 405.000 410.000. ~ '415.000 ',, 2265.38 2376.73 23 195.000 448.54 r <<r rtr<:<< <<'<<a',<'P'< <"'~>..)'<V- '+~<<<+. r <<r<<<<"<<<<'r+).~'~ <<".'<<. ~r.><', "< <<;~<<.~'< ."~<<1 6~<o'<<;5i)>')~~<<<~',".V.-."" " '" r<<<< A-4 FPL COOLDOWN CURVES FOR , NRC 1.99 REV. 2 'WELD 08/10/88 THE FOLLOWING DlTi wERE PLDTTED FaR caoLoaw PRaFILE 1 ( sTEADY-STAT'E caDLaaw ) 1RRloliTIOH PERIoo 'cc, =20.000 EFP YEARs l INDICATEO INDICATED TEtiPERATUREXPRESSURE.,"- .-'-,-'. . " INDIGATED TEtiPERATURE INDICATED PRESSURE INDI CATEO TEMPERATURE INDICATEO PRESSURE .(OEG.F) (PSI) (OEG,F) (PSI) (DEG.F) (PSI) 85.000 503.06 504.'-SS"'c+., ." -"24: 23 195.000 200.000 580.67 588.'OO 45 305.000 961. 21 eee'.eo eO.'OOOh = 46 - 310.000 '3 5,,105.000 95.000 , '00.000 ' ~ 506. 15 , , 507c87':h".i;S.. 509.72..., 25 "~.'6 27, 205.000 210.000 215.000 '= 595.75 '604.22 613.33 47 48 '20. 49 " 315.000 000 325. 000 , 1035.22 1076.6t 1120.88 , ~c~p-:.'~ 110.000 "-": cc-;St 70 ZVgkY-"28h '20.000. '; '623.12 50 "330.000 *- '168.46 7, 1 15 000, 8 ~ ~cc,h520.000'.-,;i..r."- 513 5 84,,,,29 , 225 000, , 633 64 644.81 ' 51 '.- 335.000 1219. 52 <5~'. 558 c 54~:~(K'ZF.'--30. ".::~ 230,000:- ..'-'-:": r 52 340.000 t274.2t 125.000, 518,61,, 31 235.000 656.98 53 345. 000 1333.21 6 ."rto '";r r 130.000 ~ccio'.r.525c27" ~9:c4ri 32"" 240.000 " h ~ ',670.06 54 h 350.000 1396.39 -".11,,135.000, t2; r" 140;000 ~ 527:20'c; >".;'r.-" 524, 13 -".:@ <<~ 34 33 . ~"245.000,,684. 250.000 *:-'- '99.06 10 55 56" .'60.000355.000 1463.95 1538.81 35... 255.000, Ch ,, 13, 145,000...,530,50 'l4 ',~~rt50+000':C'Nr.'.'534;06 C~~W<C,h:,,'-.36 . ~260.000 ' 715.32 57 365.000 1614.70 732.77 58 - 370.000 ~ 1697.98 "- <54f.ee'4 '" 37 15 155.000 537.87 265.000 751.38 59 375.000 1787.80

" '6"'.. '<', 160.000 c~ C'h r h 38 '.'70.000 .'.-". '. 771.57 60
: 380.000 1883.56 17

-18 165.000 =:'"'70.000"'="cr--, 551.03"' 546.29 s+r 39 40 ' 275.000 280.000 -" '16 285.000, 841.23 '" 793.05 ~ 39 61 62 , 385.000 390.000 1985.97 2095.91 ~ 19 20 - .. 175.000 556. 13,., 180.000 r'-c,': Setc62 "".'cr '.'42 41

290.000 '.r'68; 17 ", 64"-.

63, 395 . 000 '00.000 2213. 23 2338.69 '"'22"-" 185.000. '"='"", 567.51 . ,, 21 , --'-'90.000 573.85' -'"'44 43 295.000 300.000 '.' 896.90 827.97 " ."': '" 65 405. 000 2472.58 hq~rhh'hXrhrP' ' -: ', > 'C r * .hh

  • h A-5

FPL COOLDOMN CURVES, FOR , NRC 1.99 REV. 2 MELD 08/10/88 """ THE FOLLOMINQ DATA MENE PLOTTED FOR COOLOOMN PROFILE 2 '20 OEG"F / HR COOLOOWN ) IRRADIATION PERIOD+', 20.000 EFP YEARS X INDI GATED INDICATED INDI CATEO I NOICATED INDIGATED INDICATEO TEitPEAATUAE PRESSURE .: .- . 'EllPERATURE PA ESSURE TEilPEAATUAE PRESSURE (OEG.F) , (PSI) , (OEG.F) (PSI ) (OEG.F) (PSI)

85. 000 464. 97, ,,18 170. 000 512.99 35 255. 000 685. 16

'.:90:000 . -": 488.'37~>.',iF::.'.";t9 ". 175.000 518. 25 36 260.000 703.47 ~, ',4

3. "-" .95.000 t00.000

,, 467.91, ,20, . 180.000 -";."",489',55:-zr .",',~'~...21" ='"-; '185.000' ' 523.90 530.01 ~ 37 .38 ~ 265. 000 270. 000 723.35 744.54-- , -'.:8 5 ".~ 105. 000 1 10.000 ? 47 1 . 35 "V"> '73i'28'- !4ÃvYi 23 ~ .198.000 22 . 190. 000 536.57 843.86 39 40 275. 000 280. 000 767.55 792.08 7 1 15.000 475. 38 , , 24 200.000 551. 17 41 285. 000 818. 71 .'~.'j'.8 '.. -'20.000.,~G 477 64Y'%.".".",wt:?25 '.'<!:-205.000 ~." -" = 859.39 42 280. 000 847. 1 1 9 125.,000 , 480. 10 .,,,,,26,, 210.000 ., 568.23 43 295. 000 877.84 -" <I- 10 "". ",'," ~,'130.'000 AY=~V~ 482.74 "'"-P'.i%~ 27 ('.~;: 215.000",". ',- 877.76 ~ 44 300. 000- 810.78 "'; 11 , t2:<<:"'" 135.000,,,, 485.61..., 28... 220.000 f40;000 ~."- l'488.69i" "':.. '. 29 "'1'"228.000' ~ 588.01 898.93 ~ 45 48 305. 000 310.000 '- 946. 11 984'.tt . 145.000 492.03 30 '" . 230.000 610.81 47 315.000 1025. 18 '3, .">",, t4. ~-.':-'150.000 '; ."7'495.62:.; -'. 31 '35.000

  • 623.81. 48 "

320.000 1069. t4 13,,'3 15 155.000,, . "it8.i".-'??:-t60;000'w;.~.:-: 503.601 -?'ii. 499.52 ,. . . 32 240.000. '~' '45.000 637.36 882.06 r, 4 49 50 ., 325.000 '... 330.000 1116.37 1 1 67. 1 3 -. - .:: ".. '; 7 165. 000 508, 34 250. 000 668.00 3 +i? 'Qq$ '.r' Q. @ r ~g 'rr + ir .g' *? '?r ? FPL COOLDDWN CURVES FOR , NRC 1.99 REV. 2 WELD 08/10/88 ':, THE FOLLO'itINQ DATA WERE PLOTTED FOR CODLDOWN PROFILE 3 (40 DEG"F / HR CDDLDOWN ) IRR40IATION.PERIOD ~" 20.000 EFP %EARS INDICATED INDICATED ' INDICATED INDICATED INDICATED INDICATEO TEMPERATURE',. PRESSURE '= TEMPERATURE PRESSURE TEMPERATURE PRESSURE (OEG.,F,) , (PSI) .. . (DEG.F) (PSI) (DEG.F) . (PSI) 2 -' 85.000 '0.000- "" 426,07 427=39-" s .". ,18 19 170.000 >;, 175.000 . 474.29 479.72 34 35 250. 000 255. 000 636.99 655.05 3 95.000 ,428,85 ..., ,20 180.000 485.57 36 260. 000 674.60 .- '4, , 100.000 .-,'- '30!43! '.-.': .""; 21 ~ . 'I85.000. 491.91 37= 265. 000 695.52 5 . 105.000 , 432. 18 . 22 190.000 498.72 38 270. 000 718. 19 --..'-). 5"-, '110.000 '~~'<-434;054";.':-~4.4'23"" .- 195.000: ,. 506.02 275.000 39 742.45 7 115.000 436. 13 24 200.000 513.96 40 280. 000 768.74 ."' '-'120 OOOY@>..-."",'438'r35" +3-'P<< "-.25. '>>.. 205.000:"'-'. 522. 56 41 285. 000 798.86 9, 125.000 , 440.80 .,26 210.000 ~ ,.'IO)~.:",: 130.000 '>;:~-.'".;443) 44>K~;.:0, ',"..:c 27 ~ '>~"215.000.'.'- 541.81= , 531.81 42 .43 ' 290. 000 295.000 827.27 859.80 135.000, ,,446.25 ,, 28 220.000 552.46 44 300.000 894.91 12.;..">>-140.000:-;.",:;:;;~i449.35'-."-".-' " '29 '-."-225.000 -."-" 564.09 45 305.000 - 932.81 13 ,, 145.000 " >", 14:.,'";-"1 452.74, 150;000 .~".)~; 458.39 '>> -, : " 31'35 30 ,. 230.000 , 576.58 OOO '90-09 " 46 47 310. 000 315.000 973.38 1017.05 15 155.000 >>> 460.36 , 32 , 240.000 604.48 48 320. 000 1063.97 -;-"..'-'5 % .""'60.000 ',,;'~"'. ~464.64.>-":.r:.'3 -. 245.000 -' 620:15 '-.-4$ 325.000 1114.49 ,,17, 165.000 469.29 +r>>) A-7 FPL COOLOOWN CURVES FOR , NRC 1.99 REV. 2 WELD 08/10/88 = THE FOLLOtIINQ DATA WERE PLOTTED FOR COOLOOWN PROFILE 4 IRRADIATION PERIOD '20;000 EFP VEARS. -'EG-F . (60 / HR COOLOOW )

=

INDICATED TEKPERATURE.. PRESSURE INDICATED

'-, INDICATED TEKPERATURE INDICATED PRESSURE-INDICATED TEKPFRATURE INDICATED PRESSURE (OEG.F) (PSI) , , (DEG.F) (PSI) (DEG.F) (PSI) 1 85.000 ,386.31 , 18 170.000 434.89 34 ,250.000 605.99 r

SO.OOOS<<. "~.387.'55'(;'.R'"".'9 '.175.000: "'. 440.52 , . 35 '."~>>'55.000.' 625.29 "

3 95.000 388.94 20 180.000 446.51 36 260.000 645.89

--100.000 -;-. 'SO:46."'"'- "~ 21 c, >><<' , "

"-'. 185.000 453. 10 37 265.000

  • 668.30

, 105.000 392. 15 22 190.000 460.21 38 270.000 692.24

-:::-;..;=.6 '!;:-",.'"ttO.OOO .";-,.-&3S3;SS -"4:w-".~ 23  : 1S5.000 467.93 -

39 275.000 ..: 718.26 -,-'.'-

. 7. ': 115.000 ,, 396.03, , 24 200.000 476.24 40 280,000 ... 746.05

',:->>120.000 '4-';N.-388.24:W'i'",='---," 25 -: '05.000 "-,'85.25 ,

4t 285.000 VV6.22 9 125.000 , 400,68, . 26 . , 210.000 494.96 42 290.000 808.49

!'iVtO <<"<~>>130;OOO 'F'~V~'.403.'32'";~~~-"'-.'.l,':27 ='~ 215.000' i '505.39 "43 295.000 i 843.2V 11 135,000 406,23,,,. 28 220.000

'25.000 .-:"-'28.96 516. 71 44 300.000 880.85

~"=;- 12 '.<<-=::.140.000 7<<--~.-409.37-'>> ..>'- 29 45 305.000 921.1S 3P, -

13 ,, 412.75.,

.>>',>>'g.t4 "'>>. '>".1'50.000'.": 8'"418'.47-'~ ~"'~'."- 3t ' 230.000,, 542. 15

.'235.000 '*;-: 556.31

'145.000 46 47 310.000 3 15.000 964. 57

~ ~ 1011.2V 15 "" 155. 000 420. 54 32 240. 000 571. 67 48 320. 000 1061 . 44

ccj6 -

160.000.",'.=.-'~~ 424:83>>i'<<':~'w 33 '= 245.000'l".; '88.26 '.-'8 325.000 1115.44

>> 4 17 165.000,,429. 72 lc>> << i ~~, g-. >c.

$ -p>>N ray~. ~, 3>"->>'. >>

A-8

FPL COOLOOWN CURVES FOR , NRC 1.99 REV. 2 WELD 08/10/88

'THE FOLLOWINQ DATA WERE 'PLOTTED FOR COOLDOWN PROFILE 5 ( 100 OEG-F/HR COOLOOWN )

.'IftRAOIATXON PERIOD 4"h:20.000 EFP YEARS r

INOICATEO, INDICATED, -'.'i'.~'-"

. INDICATEO INDICATEO INOICATEO INDICATED TEMPERATURE,"" PRESSURE - TEltPERATURE -PRESSURE TEMPERATURE PRESSURE (OEG.F) , (PSI) .. .

(OEG.F). .. (PSI) (DEG.F) , (PSI)

. 1

":."'.""-.;~ ,, 85.000 90.000'*';:

303.97

'i'=305:05554:~"'w'~-18 '"

17 ,

165.000 ,,

170.000 .

348.28 353.85 33 34 --?

245.000 250.000 524.81 545.01 3 , ,95.000 306,32,, , ,,19 175.000 359.95 35 255.000 '-- 566.76 4; "'.""':ifOO:000 '..-g.";307 12P&a '8 20'-- '. 180.000 '. "66;55 s<<; "'.:: 36".r "

260.000 590.32 kV~'8-':, 5 105.000 309.33,

<<~-' 1 0.000~:-" ""<<>.31 1 .CIQ <<~~% ?."."-'-22 '-;

21 185.000 190.000'.':w-'. 381.$ 2 373.72 37, 38 .',

265.000 270.000 "a,"'43.07 615.66 7 1 15.000,, 313,09, 23 195.000 390.03 -" 39 275.000 ,, 672.59.,

P~:.i'. 8~', "'~r 120.000 ".-??': ".-8f 5 "28'-i~P~+kD-.=24,~X 200.000. -.."X= . 399.2 f

'-j,,"i 40; . 280.000 =- '

125.000,, , 317,74, 25... 205.000, 409. 21 704.34'1 285.000

,9 135.000 323.41 27

<<"" rfO'~ i -130:000 (<~"'<<<NO;42K?',@~~r28" r"" 210iOOO'.-"."'.-"~'419.94 215.000, 431.67

1, 43,

42. ~ "

280.000 295.000

'-'75.7f , 738.75 815. 56

~A+~'f0 ";-.:;-.140;000:~K""".'(~.328:68'.1-.;;,.:"-A "~28"" - 220'00,- . l "~444.32 "

44 300.000 -

858. 43 13 145.000 ,330.22 29 225.000 457.98 45 305.000 904.65

":".'- r'f4'"'150.000:=~!i'<<334..14 'h-"";"=.."'0 """ 230.000 "..='." 472.79 "- 46 ": . 310.000 - ." . 954. 39 r?

15 155. 000 338. 45,

-"-~f'f8 "<<?"-<<r t60.000 "'~ -; 343'13 r.',~,?'-", 32 '='- 240.000 -" "'06.06 31, 235. 000 488. 84 47 48 << ,:

315. 000 1007 . 97 320.000 ~'- t06$ .55

  • '. <<, c:i 0

".'r-'h "rhr -. I <<+"?h<<r".."? '<<'iN  ? '. "<<'"' ": ' '"> ~ <<? .o i'-'" yh rex

,",.C ~

g h<<P?m'...~??hh'(r'%&'. 1?s<<P ., r ' +; '- r'~'v'*r<< ~i ',"; =

.c. = = <<" ~',",;,. jL <??.,'r r" r, j = ';r r

~

herr ~ )q, g ~<r C. ~r~~~ rr? P. hh?rh<(r'.;?hr<<r:"h ?'-

r r,h A-9