ML20248F744

From kanterella
Jump to navigation Jump to search
Reactor Vessel Working Group,Response to RAI Regarding Reactor Pressure Vessel Integrity
ML20248F744
Person / Time
Site: Davis Besse, Peach Bottom, Oconee, Arkansas Nuclear, Surry, Turkey Point, Crystal River, Crane  Constellation icon.png
Issue date: 05/31/1998
From: Devan M
FRAMATOME
To:
Shared Package
ML15113A495 List:
References
BAW-2325, NUDOCS 9806040402
Download: ML20248F744 (140)


Text

BAW-2325 MAY 1998 pm,gly,nm:

g

--% ?,' ;n 3, j?

ji

= OWNERS GRbNP f pyypr Reactor Vessel Working Group Response to Request for Additional Information (RAI) Regarding Reactor Pressure Vessel Integrity I

l l

l l

1 I

[

mas 1

M F R AM ATO M E 98o604o4o2 esosaa TECHHOL0GlES PDR ADOCK 05000171 l

P PDR

BAW-2325 May 1998 Response to Request for Additional Information (RAI)

Regarding Reactor Pressure Vessel Integrity B&W Owners Group - Reactor Vessel Working Group Prepared by:

M.J.DeVan FTl Document No. 43-2325-00 (Section 6 for document signatures.)

Prepared for B&W Owners Group Reactor Vessel Workina Group l

Commonwealth Edison Company Duke Energy Corporation Entergy Operations, Inc.

Florida Power Corporation Florida Power & Light Company GPU Nuclear, Inc.

Toledo Edison Company Virginia Power l

Wisconsin Electric Power Company Prepared by Framatome Technologies, Inc.

3315 Old Forest Road P. O. Box 10935 Lynchburg, Virginia 24506-0935

?M?HRYA

Table of Contents 1.0 l n t rod u ctio n....................................................................................

2.0

- O rg a n ization of Respo n se........................................................................ J& 1 3.0 Request for Additional information Regarding Reactor Vessel Integrity Assessment of Best-Estimate Chemistry........................

......................3-1 3.1 Weld Wire Heat Copper and Nickel Chemical Composition Analyses for High-Copper Linde 80 Weld Metais.............................................. 3-1 3.2 High-Copper Linde 80 Weld Wire Heat Best-Estimate Copper and Nickel C hemical Compositions......................................................... 3-2 3.3 Assessment of Linde 80 Weld Wire heat Best-Estimate Copper and '

Nickel C hemical Com positions........................................................... 3-9 4.0 Request for Additional Information Regarding Reactor Vessel Integrity Evaluation and Use of Surveillance Data........................................................ 4-1 4.1 Surveillance Data Credibility Assessment.......................................... 4-1 4.2 C red ible Su rveilla nce Data................................................................ 4-2 4.3 Non-C redible Su rveilla nce Data......................................................... 4-3 4.4 Use of Weld Wire Heat Surveillance Data........................................... 4-3 4.5 Assessment of Weld Wire Heat Surveillance Data.............................. 4-5 4.5.1 Weld Wire Heat Number 299L44 (U se of B&W N SSS Data O nly)................................................. 4-6 4.5.2 Weld Wire Heat Number 299L44 (Use of Westinghouse NSSS Data Only)................................. 4-8

4.5.3 Weld Wire Heat Number 299L44 (Use of All Surveillance Cata)................................................... 4-10 f}

s rnAu Arou:r ll ec=aosoo s

Contents (Cont'd) 4.1.4 Weld Wire Heat Number 406L44 (Use of B&W N SSS Data Only)................................................ 4-13 i

4.1.5 Weld Wire Heat Number 406L44 (Use of Westinghouse NSSS Data Only)............................ 4-16 4.1.6 Weld Wire Heat Number 406L44 (Use of All Surveillance Data)............................................... 4-18 4.1.7' Weld Wire Heat Number 61782 (Use of Westinghouse NSSS Data Only)................................ 4-21 4.1.8 Weld Wire Heat Number 61782 (Use of All Surveillance Data).................................................. 4-23 4.1.9 Weld Wire Heat Number 71249 (Use of Westinghouse NSSS Data Only)................................. 4-25 4.1.10 Weld Wire Heat Number 72105 (Use of B&W NSSS Data Only)............................................. 4-27 4.1.11 Weld Wire Heat Number 72105 (Use of Westinghouse NSSS Data Only)......................... 4-30 4.1.12 Weld Wire Heat Number 72105 (Use of All Surveillance Data)............................................ 4-33 4.1.13 Weld Wire Heat Number 72442 (Use of B&W NSSS Data Only)............................................... 4-36 4.1.14 Weld Wire Heat Number 72445 (Use of B&W N SSS Data Only)........................................... 4-38 4.1.15 Weld Wire Heat Number 72445 d

(Use of Westinghouse NSSS Data Only).............................. 4-40 4.1.16 Weld Wire Heat Number 72445 (Use of All Surveillance Data).................................................. 4-42 4.1.17 Weld Wire Heat Number 821T44 (Use of B&W NSSS Data Only)............................................. 4-45 4.1.18 Weld Wire Heat Number T29744.

(Use of Westinghouse NSSS Data Only).............................. 4-48 4.1.19 Rotterdam Dockyard Fabricated Weld:

Weld Wire Heat Number 0227..............................................4-50 5.0 R efe re n ces............................................................................................

6.0 C e rtifica tio n............................................................................................

iii fMWNRM l

Contents (Cont'd)

Appendix A:. Best-Estimate Copper and Nickel Contents for High-Copper Linde 80 Welds Used in the Reactor Vessel Beltline Regions of the B&W Reactor Vessel Working G rou p........................................................... A-1 Appendix B: Base Metal Surveillance Data Used in the Reactor Vessel Beltline Regions of the B&W Reactor Vessel Working Group........................... B-1 List of Tables 3-1.

B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds..... 3-4 3-2.

Best-Estimate Copper and Nickel Chemical Compositions For B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds.................. 3-5 4.4-1.

Summary of Surveillance Data Assessments for tha B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds.................................. 4-4 4.5.1-1. Surveillance Data for Weld Wire Heat Number 299L44 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Ve s se l I nteg rity.......................................................................................... 4 -6 4.5.1-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vesse l I nteg rity......................................................................................... 4 -6

. 4.5.1-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 Using B&W NSSS Surveillance Data Only............... 4-7 4.5.2-1. Surveillance Data for Weld Wire Heat Number 299L44 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity.......................................................... 4-8 4.5.2-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity........................................................ 4-8 4.5.2-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 Using Westinghouse NSSS Surveillance Data Only... 4-9 4.5.3-1. Surveillance Data for Weld Wire Heat Number 299L44 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel integrity. 4-10 4.5.3-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity. 4-11 4.5.3-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 Using All Surveillance Data............................. 4-12 iv IIMNM

L8st of Tables (Cont'd) 4.5.4-1 Surveillance Data for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Inieg rity...............................

.....................................4-13 4.5.4-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Ve s s e l I n teg rity.................................................................................. 4-14 4.5.4-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only.......... 4-15 i

4.5.5-1. Surveillance Data for Weld Wire Heat Number 406L44 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity.........................................

......... 4 -16 4.5.5-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel integrity.................................................... 4-16 4.5.5-3. Weld Wire Heat Number 406L44 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556 F) Using Westinghouse NSSS Surveillance Data Only...

..............4-17 4.5.6-1. Surveillance Data for Weld Wire Heat Number 406L44 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity. 4-18 i

4.5.6-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity. 4-19 4.5.6-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire 3

Heat Number 406L44 Using All Surveillance Data........................

.... 4-20 4.5.7-1. Surveillance Data for Weld Wire Heat Number 61782 Using j

Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI j

Regarding Reactor Vessel Irogrity...................................................

. 4-21 4.5.7-2. Credibility Assessment for Weld Wire Heat Number 61782 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity........................................

..4-21 4.5.7-3. Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Point Beach Unit 1 Cold Leg Temperature at 542*F) Using Westinghouse NSSS S u rveilla n ce Da ta O nly........................................................................ 4-22 4.5.8-1. Surveillance Data for Weld Wire Heat Number 61782 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity. 4-23 4.5.8-2. Credibility Assessment for Weld Wire Heat Number 61782 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel intogrity. 4-23 MMM v

List of Tables (Cont'd) 4.5.8-3.

Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556'F) Using All Surveillance Data........................................................... 4-24 4.5.8-4.

Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Point Beach Unit 1 Cold Leg Temperature at 542*F) Using All Surveillance Data....... 4-24 4.5.9-1.

Surveillance Data for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity.......................................................... 4-25 4.5.9-2.

Credibility Assessment for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity......................................................... 4-25 4.5.9-3.

Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data Only........................................................................................................4-26 4.5.10-1. Surveillance Data for Weld Wire Heat Number 72105 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vesse l I nteg rity............................................................................... 4 -2 7 4.5.10-2. Credibility Assessment for Weld Wire Heat Number 72105 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel i nte g rity.................................................................................... 4-2 4.5.10-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72105 Using B&W NSSS Surveillance Data Only.............. 4-29 4.5.11-1. Surveillance Data for Weld Wire Heat Number 72105 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity......................................................... 4-30 4.5.11-2. Credibility Assessment for Weld Wire Heat Number 72105 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity.......................................................... 4-31 4.5.11-3. Weld Wire Heat Number 72105 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556'F) Using Westinghouse NSSS Surveillance Data Only...................... 4-32 4.5.11-4. Weld Wire Heat Number 72105 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Turkey Point Unit 4 Cold Leg Temperature at 546 F) Using Westinghouse S u rveilla nce Data O nly........................................................................... 4-3 2 4.5.12-1. Surveillance Data for Weld Wire Heat Number 72105 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel i n teg rity.......................................................................................... 4 -3 3 vi

~ @^ MM

List of Tables (Cont'd) 4.5.12-2. Credibility Assessment for Weld Wire Heat Number 72105 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel I n teg rity................................................................................................ 4 -34 4.5.12-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72105 Using All Surveillance Data.................................... 4-35 4.5.13-1.' Surveillance Data for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel i nteg rity...................................................................................... 4 -36 4.5.13-2. Credibility Assessment for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel I nteg rity................................................................................ 4 -36 4.5.13-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data Only.............4-37 4.5.14-1. Surveillance Data for Weld Wire Heat Number 72445 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor

{

Vesse l I nteg rity.................................................................................. 4-3 8 4.5.14-2. Credibility Assessment for Weld Wire Heat Number 72445 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Ves sel I nteg rity.................................................................................. 4 - 3 8 4.5.14-3. Weld Wire Heat Number 72445 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at

' 556'F) Using B&W NSSS Surveillance Data Only.................................... 4-39 4.5.15-1. Surveillance Data for Weld Wire Heat Number 72445 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity...................................................... 4-40 4.5.15-2. Credibility Assessment for Weld Wire Heat Number 72445 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity...................................................... 4-40 4.5.15-3. Weld Wire Heat Number 72445 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Surry Unit 1 Cold Leg Temperature at 542*F) Using Westinghouse Surveillance D ata O n ly................................................................................................ 4 -4 1 4.5.16-1. Surveillance Data for Weld Wire Heat Number 72445 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel I n teg rity.................................................................................................... 4 -4 2 4.5.16-2. Credibility Assessment for Weld Wire Heat Number 72445 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel.

I n teg rity.................................................................................................... 4-4 3j l

4.5.16-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire l

Heat Number 72445 Using All Surveillance Data..................................... 4-44 vii MWM I

1 m______.__________

List of Tables (Cont'd) l 4.5.17-1. Surveillance Data for Weld Wire Heat Number 821T44 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Ve s sel I nte g rity............................................................................ 4-4 5 4.5.17-2. Credibility Assessment for Weld Wire Heat Number 821T44 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Ve s se l I nteg rity.................................................................................. 4 -4 6 4.5.17-3. Weld Wire Heat Number 821T44 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556*F) Using B&W NSSS Surveillance Data Only............................. 4-47 4.5.18-1. Surveillance Data for Weld Wire Heat Number T29744 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity.................................................... 4-48 4.5.18-2. Credibility Assessment for Weld Wire Heat Number T29744 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity......................................... 4-4 8 4.5.18-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number T29744 Using Westinghouse Survei!!ance Data Only...... 4-49 4.5.19-1. Surveillance Data for Rotterdam Dockyard Fabricated Weld:

Weld Wire Heat Number 0227 (Table 2 of the RAI Regarding Reactor Ve s sel I nteg rity........................................................................... 4-5 0 4.5.19-2. Credibility Assessment for Rotterdam Dockyard Fabricated Weld:

Weld Wire Heat Number 0227 (Table 3 of the RAI Regarding Reactor Ve s se l I nteg rity.......................................................................4-50 4.5.19-3 Rotterdam Dockyard Fabricated Weld: Weld Wire Heat Number 0227 Chemistry Factor Calculation for Assessment of Surry Unit 2 Reactor Ve s s e l.......................................

...............................................4-51 A-1.

Copper and Nickel Contents Source Means for Weld Wire Heat Number 299L44............................

............... A-2 A-2.

Copper and Nickel Contents Source Means for Weld Wire Heat N u m ber 4 06 L44.................................................. A-6 A-3.

Copper and Nickel Contents Source Means for Weld Wire Heat N u m be r 617 82....................................................... A-8 A-4.

Copper and Nickel Contents Source Means for Weld Wire Heat Number 71249..................................................... A-10 A-5.

Copper and Nickel Contents Source Means for Weld Wire Heat N u mbe r 7210 5............................................................. A-13 A-6.

Copper and Nickel Contents Source Means for Weld Wire Heat Number 72442.....................................

... A-20 viii f "<^ MM

List of Tables (Cont'd) l l

A-7.

Copper and Nickel Contents Fource Means for Weld Wire Heat N u mber 7244 5..................................................... A-22 l

A-8.

Copper and Nickel Contents Source Means for Weld Wire Heat N umber 821T44..................................................... A-24 A-9.

Copper and Nickel Contents Source Means for Weld Wire Heat Number T29744....................................................... A-25 A-10.

Copper and Nickel Contents Source Means for Weld Wire Heat N umber 1 P0661....................................................... A-26 A-11.

Copper and Nickel Contents Source Means for Weld Wire heat N umber 1 P0815......................................................

. A-27 A-12.

Copper and Nickel Contents Source Means for Weld Wire Heat N umber 1 P0962.................................................... A-28 A-13.

Copper and Nickel Contents Source Means for Weld Wire Heat Number 8T1554............................................... A-29 A-14.

Copper and Nickel Contents Source Means for Weld Wire Heat Number 8T1762...........................................

. A-30 A-15.

Copper and Nickel Contents Source Means for Weld Wire Heat N u m be r 8T3 914...................................................... A-31 B.1.1-1.

Surveillance Data for Base Metal Heat Number C5114-1 (Table 2 of the RAI Regarding Reactor Vessel integrity)................................................. B-3 B.1.1-2.

Credibility Assessment for Base Metal Heat Number C5114-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity....................................... B-3 B.1.1-3.

Table Chemistry Factor Non-Conr~vatism Assessment for Base Metal i

Heat Number C5114-1............

.B-4 i

B.1.2-1.

Surveillance Data for Base Metal Heat Number C4344-1 (Table 2 of the I

RAI Regarding Reactor Vessel Integrity)........................................... B-5 l

B.1.2-2.

Credibility Assessment for Base Metal Heat Number C4344-1 (Table 3 of the RAI Regarding Reactor Vessel integrity..................................... B-5

)

B.1.2-3.

Base Metal Heat Number C4344-1 Chemistry Factor Calculation for Crystal River Unit 3 Reactor Vessel....................................................... B-6 B.1.3-1.

Surveillance Data for Base Metal Heat Number SP4086 (BCC 241)

(Table 2 of the RAI Regarding Reactor Vessel Integ;ity)............................ B-7 B.1.3-2.

Credibility Assessment for Base Metal Heat Number SP4086 (BCC 241)

(Table 3 of the RAI Regarding Reactor Vessel Integrity......................... B-7 B.1.3-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat N umber S P4086 (BCC 241 )........................................................ B-8 j

B.1.4-1.

Surveillance Data for Base Metal Heat Number C3265-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity).................................

...........B-9 i

IMTNAM ix l

List of Tables (Cont'd)

B.1.4-2.

Credibility Assessment for Base Metal Heat Number C3265-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity........................................... B-9 B.1.4-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat N u m be r C 3 2 6 5-1........................................................................... B-10 B.1.5-1.

Surveillance Data for Base Metal Heat Number 3P2359 (AAW 163)

(Table 2 of the RAI Regarding Reactor Vessel Integrity)........................... B-11 B.1.5-2.

Credibility Assessment for Base Metal Heat Number 3P2359 (AAW 163)

(Table 3 of the RAI Regarding Reactor Vessel Integrity........................... B-11 B.1.5-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat N umber 3P2359 (AAW 163)....................................................... B-12 B.1.6-1.

Surveillance Data for Base Metal Heat Number 522314 (AWS 192)

(Table 2 of the RAI Regarding Reactor Vessel Integrity)........................... B-13 B.1.6-2.

Credibility Assessment for Base Metal Heat Number 522314 (AWS 192)

(Table E d the RAI Regarding Reactor Vessel Integrity............................ B-13 B.1.6-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number 522 314 (AWS 192)....................................................... B-14 1

B.1.7-1.

Surveillance Data for Base Metal Heat Number 522194 (ANK 191)

(Table 2 of the RAI Regarding Reactor Vessel Integrity).......................... B-15 l

B.1.7-2.

Credibility Assessment for Base Metal Heat Number 522194 (ANK 191)

(Table 3 of the RAI Regarding Reactor Vessel Integrity........................ B-15 B.1.7-3 Base Metal Heat Number 522194 (ANK 191) Chemistry Factor Calculation for Oconee Unit 2 Reactor Vessel........................................ B-16 B.1.8-1.

Surveillance Data for Base Metal Heat Number C2789-2 (Table 2 of the RAI Regarding Reactor Vessel Integrity).................................................. B-17 B.1.8-2.

Credibility Assessment for Base Metal Heat Number C2789-2 (Table 3 of the RAI Regarding Reactor Vessel Integrity......................................... B-17 B.1.8-3.

Table Chemistry Factor Non-Conservatism Assessment for Base Metal i

Hea t N u m be r C 2 7 8 9-2............................................................................ B-18 B.1.9-1.

Surveillance Data for Base Metal Heat Number A9811-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity).............................................. B-19 B.1.9-2.

Credibility Assessment for Base Metal Heat Number A9811-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity......................................... B-19

.B.1.9-3.

Base Metal Heat Number A9811-1 Chemistry Factor Calculation for -

Point Beach Unit 1 Reactor Vessel........................................................... B-20 B.1.10-1. Surveillance Data for Base Metal Heat Number C1423-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)................................................. B-21 B.1.10-2. Credibility Assessment for Base Metal Heat Number C1423-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity........................................ B-21 NN x

l i

List of Tables (Cont'd)

)

B.1.10-3. Base Metal Heat Number C1423-1 Chemistry Factor Calculation for Point Beach Unit 1 Reactor Vessel...................................................... B-22 B.1.11-1. Surveillance Data for Base Metal Heat Number 123V500 (Table 2 of the RAI Regarding Reactor Vessel Integrity)................................................ B-23 B.1,11-2. Credibility Assessment for Base Metal Heat Number 123V500 (Table 3 of the RAI Regarding Reactor Vessel Integrity......................................... B-23 B.1.11-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal H eat N u m be r 12 3V500..............................................................

B.1.12-1. Surveillance Data for Base Metal Heat Number 122W195 (Table 2 of the RAI Regarding Reactor Vessel Integrity).................................................. B-25 B.1.12-2. Credibility Assessment for Base Metal Heat Number 122W195 (Table 3 of the RAI Regarding Reactor Vessel Integrity...................................... B-25 B.1.12-3. Base Metal Heat Number 122W195 Chemistry Factor Calculation for Point Beach Unit 2 Reactor Vessel.................................................... B-26 B.1.13-1. Sunteillance Data for Base Metal Heat Number C4415-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)............................................... B-27 B.1.13-2. Credibility Assessment for Base Metal Heat Number C4415-1 (Table 3 of the RA: Regarding Reactor Vessel Integrity..................................... B-27 B.1.13-3. Base Metal Heat Number C4415-1 Chemistry Factor Calculation for S u rry Unit 1 Reactor Vessel.................................................................... B-2 8

' B.1.14-1. Surveillance Data for Base Metal Heat Number C4339-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity).............................................. B-29 B.1.14-2. Credibility Assessment for Base Metal Heat Number C4339-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity........................................ B-29 B.1.14-3. Base Metal Heat Number C4339-1 Chemistry Factor Calculation for S urry U nit 2 Reactor Vessel.................................................................... B-30 B.1.15-1. Surveillance Data for Base Metal Heat Number 123P461 (Table 2 of the RAI Regarding Reactor Vessel Integrity)................................................. B-31 B 1.15-2. Credibility Assessment for Base Metal Heat Number 123P461 (Table 3 of the RAI Regarding Reactor Vessel Integrity...................................... B-31 B.1.15-3. Base Metal Heat Number 123P461 Chemistry Factor Calculation for Turkey Point Unit 3 Reactor Vessel...................................................... B-32 B.1.16-1.. Surveillance Data for Base Metal Heat Number 123S266 (Table 2 of the RAI Regarding Reactor Vessel Integrity).................................................. B-33 B.1.16-2.' Credibility Assessment for Base Metal Heat Number 123S266 (Table 3 of the RAI Regarding Reactor Vessel Integrity.....................................

.. B-33 B.1.16-3. Base Metal Heat Number 123S266 Chemistry Factor Calculation for Turkey Point Unit 3 Reactor Vessel......................................................... B-34 m

1

List of Tables (Cont'd)

B.1.17-1. Surveillance Data for Base Metal Heat Number 122S180 (Table 2 of the RAI Regarding Reactor Vessel Integrity)................................................. B-35 B.1.17-2. Credibility Assessment for Base Metal Heat Number 122S180 (Table 3 of the RAI Regarding Reactor Vessel Integrity......................................... B-35 B.1.17-3. Base Metal Heat Number 122S180 Chemistry Factor Calculation for Turkey Point Unit 4 Reactor Vessel......................................................... B-36 l

I I

xii fM E^?R M

-c

__m

_m_

1. Introduction This report provides responses to requests for additional information (RAl) issued by the U. S. Nuclear Regulatory Commission (NRC) regarding reactor pressure vessel integrity.

Risponses are provided for the following B&W Owners Group (B&WOG) Reactor Vessel Working Group (RVWG) plants:

Plant Owner Arkansas Nuclear One Unit 1 Entergy Operations, Inc.

Crystal River Unit 3 Florida Power Corporation Davis-Besse Toledo Edison Company Oconee Unit 1 Duke Energy Corporation Oconee Unit 2 Duke Energy Corporation Oconee Unit 3 Duke Energy Corporation Point Beach Unit 1 Wisconsin Electric Power Company Point Beach Unit 2 Wisconsin Electric Power Company Surry Unit 1 Virginia Power Surry Unit 2 Virginia Power Three Mile Island Unit 1 GPU Nuclear, Inc.

Turkey Point Unit 3 Florida Power & Light Company Turkey Point Unit 4 Florida Power & Light Company l

l l

l/

l IMTNRM 1-1 b

l l

l l

l l

l l

2. Organization of Response The requests for additional information regarding reactor pressure vessel integrity were uniformly drafted for the RVWG plants. There were some variations from letter-to-letter depending upon some differences in plant-to-plant information requests; however, the information requests generally included the fdiowing:

?

Section 1: Assessment of Best-Estimate Chemistry

1. An evaluation of the chemical composition data provided by letters from Mr. Matthew J. DeVan (FTI) to Mr. Barry J. Elliot (NRC) dated June 6,1997 l

(INS-97-2262), June 19,1997 (INS-97-2450), and July 10,1997 (INS I '

2741); and an assessment of their applicability to the determination of the best-estimate chemistries for the reactor vessel beltiine region welds. Based or: the reevaluation, supply information necessary to complete the requested j

data in Table 1, addressing the predicted adjusted reference temperature (ART) and/or the pressurized thermal shock reference temperature (RTpTs).

in addition, provide a discussion for the copper and nickel contents used in the detennination of the best-estimate values including what heat-specific j

data were included and excluded in the analysis, and the analysis method

. used to determine the copper and nickel content best-estimate values.

Section 2: Evaluation and Use of Surveillance Data 2.- Provide (1) information requested to complete Table 2 and Table 3 in order to calculate the chemistry factor from surveillance data for each weld wire heat where surveillance data is available and a revision in the reactor vessel integrity analysis (i.e., current licensing basis) is needed, or (2) a certification i

that previously submitted evaluations remain valid.

i I

i i

i 2-1 IWNM

Section 3: PTS /PT Limit Evaluation

3. If the limiting material changes or if the adjusted reference temperature for the limiting materialincreases as a result of the above evaluation, provide revised RTpTs value for the limiting reactor vessel beltline material in accordance with 10 CFR 50.61. In addition, if the adjusted RTuor value increased, provide a schedule for revising the pressure-temperature (P-T)

I and (LTOP) limits.

Section 3 of this document provides the applicable information requested in item 1 above for the RVWG reactor vessels. In this section an assessment of best-estimate copper and nickel contents for high-copper Linde 80 welds is described along with the data necessary to complete Table 1 for each of the RVWG reactor vessel beltline materials.

The information requested in Item 2 above for the RVWG reactor vessel beltline materials are presented in Section 4.' Table 2 and Table 3 are completed for each weld wire heat for the high-copper Linde 80 welds located in the RVWG reactor vessel beltline regions, in addition, an assessment of the available high-copper Linde 80 weld metal surveillance data in accordance with 10 CFR 50.61 and Regulatory Guide 1.99, Revision 2 is presented.

The utility owner that holds the nuclear power plant-operating license will provide the response to item 3.

2-2 fMTNRY.5

l i

l

3. Request for Additional Information Regarding l

Reactor Vessel Integrity Assessment of Best-Estimate Chemistry The standard welding practice used by the Babcock & Wilcox Company (B&W) to fabricate reactor pressure vessels included the automatic submerged-arc (ASA) process with copper-plated manganese-molybdenum-nickel (Mn-Mo-Ni) filler wire and

)

Linde 80 flux. The composition range (weight percent) of the filler wire was as follows:

Carbon (C) 0.10 - 0.14 Silicon (Si) 0.10 max Manganese (Mn) 1.75 -2.25 Nickel (Ni) 0.50 - 0.70 Phosphorous (P) 0.020 max Molybdenum (Mo) 0.35- 0.55 Sulfur (S) 0.020 max The copper plating was used to promote electrical conductance during welding and corrosion resistance during storage. The copper concentration in the as-deposited weld metal results from the combination of the copper plating and the base filler wire alloy copper concentration. However, the principal source is the copper plating.

Thirty specific copper-plated wire /Linde 80 flux combinations were used in the fabrication of the RVWG reactor vessel beltline regions. These combinations were produced using 15 different heats of filler wire and 19 separate lots of Linde 80 flux.

I Table 3-1 presents the listing of the RVWG reactor vessel beltline region weld metals fabricated using copper-plated wire and Linde 80 flux sorted by wire heat number.

3.1 Weld Wire Heat Copper and Nickel Chemical Composition Analyses for High-Copper Linde 80 WeldMetals j

Over the years, extensive chemical analyses have been performed on available as-deposited weld metals fabricated with copper-plated filler wires and Linde 80 flux.

3-1 I!MTNRM

These data have been reported in BAW-1500, " Chemistry of 177-FA B&W Owners' Group Reactor Vessel Beltline Welds,"* BAW-1799, "B&W 177-FA Reactor Vessel Beltline Weld Chemistry Study,"* and BAW-2121P, " Chemical Composition of B&W Fabricated Reactor Vessel Beltline Welds."* The sources for these weld metals include weldments in the form of nozzle belt forging dropouts, Midland reactor vessel beltline region cutout, surveillance program test blocks and test specimens, weld qualifications, and reanalysis of original weld qualification chemistry samples. An NRC Inspection of Framatome Technologies, Inc. (Inspection Report No.: 99901300/97-01 dated January 28,1998) identified additional data relevant to the determination of the best-estimate copper and nickel chemical contents for the high-copper Linde 80 weld metals during the review process. However, in the Inspection Report, it was determined that the best-estimate copper and nickel chemical contents previously used were conservative in most cases because either (a) the licensee's copper and nickel data were conservative relative to the raw data or (b) when included in the calculations, the formerly unconsidered data had a negligible effect. The listing of the raw copper and nickel chemical composition data for the high-copper Linde 80 weld metals is presented in Appendix A.

3.2 High-Copper Linde 80 Weld Wire Heat Best-Estimate Copper and Nickel Chemical Compositions The best-estimate copper and nickel chemical compositions for the high-copper Linde 80 weld metals were determined by first establishing the mean for each particular material source (i.e., nozzle belt dropout, Midland reactor vessel beltline region cutout, surveillance block / specimen, weld qualification, and weld qualification retest). These material source means were then used to calculate the mean for the weld wire heat (e.g., mean-of-the-means).

For certaia weld wire heats, individual measured copper and/or nickel chemical compositions are considered suspect and are not used in the determination of the best-estimate chemical compositions for that weld wire heat. These data are identified with shaded cells in the weld wire heat copper and nickel chemical composition tables presented in Appendix A. The basis for excluding the individual measured copper and/or nickel chemical compositions in the best-estimate calculation are based on one or more of the following criteria:

3-2 IP W M

The suspect composition data point is lower / higher than the expected range based on other measured data points from the same particular weld wire heat; a chemical analysis retest on the sample yields a chemical composition

' that is more representative of the expected range.

~ The suspect composition data point is lower than the expected range based e

on other measured data points from the same particular weld wire heat; chemical composition data point not used for conservatism.

The suspect composition data point falls outside the expected range based on other measured data points from the same particular weld wire heat; the chemical analysis may have been performed in the base metal region of the sample.

Further information for excluding the individual measured copper and/or nickel chemical contents are provided in Appendix A.

Table 3-2 summarizes the bestestimate copper and nickel chemical compositions for i

the high-copper Linde 80 weld metals. In addition, the individual copper and nickel

' chemical compositions for each of the weld wire heat sources are also presented.

I I

i I

i

)

//-

i fMTNRM 3-3

i l

Table 3-1. B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Wire Weld Metal

' Flux

~

Reactor Vessel Heat Designation tot 209L44 SA-1526 8596 Surry-1, TMl-1 WF-25 8650 Oconee-1, Oconee-2, TMI-1 406L44 WF-112 8688 ANO-1 WF-154 8720 Oconee-2 61782 SA-847 8350 Point Beach-1 SA-1135 8457 Oconee-1 71249 SA-1101 8445 Point Beach-1, Turkey Point-3, Turkey Point-4 SA-1229 8492 Oconee-1 SA-1769 8738 Crystal River-3 72105 WF-70 8669 Crystal River-3, Oconee-3, TMI-1, Turkey Point-4 72442 SA-1484 8579 Point Beach-2, Turkey Point-3 WF-67 8669 Oconee-3, Turkey Point -4 72445 SA-1585 8597 Oconee-1, Surry-1, Surry-2 SA-1650 8632 Surry-1 821T44 WF-182-1 8754 ANO-1, Davis-Besse WF-200 8773 Oconee-3 T29744 WF-233 8790 Davis-Besse 1P0661 SA-775 8304 Point Beach-1 1P0815 SA-812 8350 Point Beach-1 1P0962 SA-1073 8445 Oconee-1 8T1554 SA-1494 8579 Surry-1, TMI-1 WF-169-1 8754 Crystal River-3 8T1762 SA-1426 8553 Oconee-1, Point Beach-1 SA-1430 8553 Oconee-1 SA-1493 8578 Oconee-1 SA-1580 8596 Crystal River-3 W F-4 8597 Surry-2 W F-8 8632 Crystal River-3, Surry-2, TMI-1 WF-18 8650 ANO-1, Crystal River-3 8T3914 WF-232 8790 Davis-Besse 3-4 f!%TNPM

Table 3-2. Best-Estimate Copper and Nickel Chemical Compositions For B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Weld Wire WeldID Flux =

Source of.

No. of Observ.

Source Mean Heat Number Number LotNo.

. Weldrnent -

Cu Ni Cu Ni 299L44 SA-1526 8596 Weld Qualification 1

1 0.46 0.60 CR-3 Nozzle Dropout 13 13 0.37 0.70 Surry-1 RVSP Weld 11 11 0.23 0.64 WF-19 8650 Weld Qualification 1

1 0.29 0.72 WF-25 8650 Weld Qualification 4

3 0.32 0.71 TMI-1 RVSP Weld 10 9

0.33 0.67 ONS-3 Nozzle Dropout 2

2 0.36 0.70 TMI-2 Nozzle Dropout 122 121 0.33 0.67 Weld Wire Heat Best-Estimate 0.34 0.68 (Mean of the Sources) 406L44 WF-112 8688 Weld Qualification 3

3 0.30 0.58 ONS-1 RVSP Weld 22 23 0.32 0.59 WF-154 8720 Weld Qualification 3

3 0.26 0.59 WF-183 8754 Weld Qualification 1

1-0.21 0.59 WF-193 8773 Weld Qualification 2

3 0.28 0.60 ANO-1 RVSP Weld 9

9 0.27 0.58 Point Beach-2 RVSP Weld 1

1 0.25 0.59 Weld Wire Heat Best-Estimate 0.27 0.59 (Mean of the Sources) 61782 SA-847 8350 Weld Qualification 1

0 0.20 SA-848 8373 Weld Qualification 1

1 0.22 0.49 SA-948 8408 Weld Qualification 1

1 0.18 0.55 SA-1014 8436 Weld Qualification 1

1 0.23 0.46 SA-1036 8436 Weld Qualification 1

1 0.31 0.64 ONS-1 Nozzle Dropout 12 12 0.20 0.49 REG RVSP Weld 10 10 0.24 0.52 SA-1118 8443 Weld Quakfication 1

1 0.22 0.52 SA-1135 8457 Weld Qualification 1

1 0.17 0.50 ONS-2 Nozzle Dropout 29 29 0.27 0.59 SA-1346 8504 Weld Qualification 1

1 0.20 0.51 SA-1779 8738 Weld Quahfication 1

1 0.28 0.45 SA-1788 8754 Weld Qualification 1

1 0.29 0.47 Wold Wire Heat Best-Estimate 0.23 0.52 (Mean of the Sources) i s.s m--

1 i

I Table 3-2. (Cont'd) Best-Estimate Copper and Nickel Chemical Compositions For B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Weld Wire Weld ID Flux -

Source of '

No. of Observ.

Source Mean Heat Number Number Lot No.

Weldrnent Cu Ni Cu Ni 71249 SA-1094 8457 Weld Qualification 1

1 0.23 0.55 TP-4 RVSP Weld 4

1 0.29 0.60 SA-1101 8445 Weld Qualification 1

1 0.21 0.57 ONS-1 Nozzle Dropout 37 36 0.19 0.59 TP-3 RVSP Weld 6

1 0.33 0.57 SA-1229 8492 Weld Qualification 1

1 0.20 0.57 SA-1344 8504 Weld Qualification 1

1 0.21 0.62 SA-1706 8669 Weld Qualification 1

1 0.21 0.55 SA-1769 8738 Weld Qualification 1

1 0.19 0.66 W Surv. Weld 41 36 0.28 0.62 Weld Wire Heat Best-Estimate 0.23 0.59 (Mean of the Sources) 72105 WF-70 8669 Weld Qualification 3

1 0.31 0.58 i

MD-1 Nozzle Dropout 78 78 0.39 0.58 MD-1 Beltline Weld 54 54 0.28 0.57 WF-113 8688 Weld Qualification 3

3 0.29 0.60 WF-209 8773 Weld Qualification 2

1 0.37 0.59 WF-209-1 8773 Weld Qualification 3

2 0.37 0.59 ONS-2 RVSP Weld 7

7 0.35 0.58 CR-3 RVSP Weld 4

4 0.36 0.61 ONS-3 RVSP Weld 53 53 0.29 0.56 MD-1 RVSP Weld 12 12 0.36 0.59 ZN-1 RVSP Weld 19 19 0.25 0.54 ZN-2 RVSP Weld 22 22 0.25 0.55 Weld Wire Heat Best-Estimate 0.32 0.58 (Mean of the Sources) 72442 SA-1450 8467 Weld Qualification 1

1 0.25 0.60 SA-1484 8579 Weld Qualification 1

1 0.25 0.64 CR-3 Nozzle Dropout 18 18 0.26 0.59 WF-67 8669 Weld Qualification 4

3 0.32 0.58 MD-1 Nozzle Dropout 27 27 0.22 0.60 Weld Wire Heat Best-Estimate 0.26 0.60 (Mean of the Sources) l l

i 3-6 IMMRM I

Table 3-2. (Cont'd) Best-Estimate Copper and Nickel Chemical Compositions For B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Weld Wire Weld ID Flux

. Source of '

No. of Observ.

Source Mean Heat Number Number Lot No.

Weldnient Cu Ni -

Cu.

Ni l

72445 SA-1263 8504 Weld Qualification 1

1 0.24 0.47 PB-1 RVSP Weld 2

2 0.23 0.62 SA-1471 8578 Weld Qualification 1

1 0.18 0.54 SA-1582 8596 Weld Qualification 1

1 0.25 0.49 SA-1585 8597 Weld Qualification 1

1 0.25 0.51 L

ANO-1 Nozzle Dropout 32 32 0.22 0.59 SA-1650 8632 Weld Qualification 1

1 0.20 0.47 WF-9 8632 Weld Qualification 1

1 0.17 0.60 WF-101 8688 Weld Qualification 0

1 0.60 Weld Wire Heat Best-Estimate 0.22 0.54 (Mean of the Sources) 821T44 WF-182 8754 Weld Qualification 3

3 0.26 0.61 WF-182-1 8754 Weld Qualification 5

4 0.22 0.63 TMI-2 RVSP Weld 4

4 0.28 0.63 DB-1 RVSP Weld 6

6 0.22 0.63 WF-195 8773 Weld Qualification 1

1 0.18 0.63 WF-200 8773 Weld Qualification 1

1 0.26 0.64 Weld Wire Heat Best-Estimate 0.24 0.63 (Mean of the Sources)

T29744 WF-233 8790 Weld Qualification 4

3 0.25 0.63 KORI-1 RVSP Weld 13 10 0.21 0.67 WF-282 8806 Weld Qualification 1

1 0.16 0.66 Weld Wire Heat Best-Estimate 0.21 0.65 (Mean of the Sources) 1P0661 SA-775 8304 Weld Qualification 1

1 0.19 0.63 SA-1060 8446 Weld Qualification 1

1 0.14 0.65 j

Weld Wire Heat Best-Estimate 0.17 0.64 (Mean of the Sources) i l

3-7 I!MNRM l

i

Table 3-2. (Cont'd) Best-Estimate Copper and Nickel Chemical Compositions For B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Weld Wire -

WeldID Flux ~

Source of No. of Observ.

Source Mean Heat Number Number Lot No.

. Weldment Cu Ni Cu Ni

~

1P0815 SA-806 8304 Weld Qualification 1

1 0.25 0.48 SA-812 8350 Weld Qualification 1

1 0.12 0.52 SA-1366 8544 Weld Qualification 1

1 0.13 0.57 Weld Wire Heat Best-Estimate 0.17 0.52 (Mean of the Sources) 1P0962 l SA-1073 l 8445 Weld Qualification l

1l 1

0.21 0.64 Weld Wire Heat Best-Esthnste 0.21 0.64 (Mean of the Sources) 8T1554 SA-1174 8479 Weld Qualification 1

1 0.19 0.60 SA-1413 8504 Weld Qualification 0

0 SA-1494 8579 Weld Qualification 1

1 0.14 0.45 WF-69 8669 Weld Qualification 1

1 0.15 0.61 WF-169-1 8754 Weld Qualification 3

3 0.16 0.61 Weld Wire Heat Best-Estimate 0.16 0.57 (Mean of the Sources)

BT1762 SA-1426 8553 Weld Qualification 1

1 0.18 0.61 SA-1430 8553 Weld Qualification 1

1 0.16 0.60 SA-1493 8578 Weld Qualification 1

0 0.22 SA-1580 8596 Weld Qualification 1

1 0.22 0.60 W F-4 8597 Weld Qualification 1

1 0.17 0.53 WF-8 8632 Weld Qualification 1

1 0.20 0.61 WF-18 8650 Weld Qualdication 0

1 0.45 Weld Wire Heat Best Estimate 0.19 0.57 (Mean of the Sources) 8T3914 WF-232 8790 Weld Qualification 2

3 0.18 0.66 WF-252 8806 Weld Qualification 0

1 0.59 Weld Wire Heat Best-Estimate 0.18 0.62 (Mean of the Sources) 3-8 II W M

3.3 Assessment of Linde 80 Weld Wire Heat Best-Estimate Copper and Nickel Chemical Composi' ions Based on the evaluation of the raw data fcr the high-copper Linde 80 weld metals and the establishment of their best-estimate copper and nickel chemical contents, these data have been used to complete " Table 1" of the request for additional information for the RVWG reactor vessel beltline materials. The following tables provide the RVWG plant-specific information requested in " Table 1" of the request for additional information regarding reactor pressure vessel integrity.

" ^ " * *

"E 3-9 l

I

T nO 4 0 5 5 1

8 5

8 5

R T E6 2 5 1

5 2 4

6 4

A Rt 8

4 2 4 3 9 9

3 9

1 1

1 1

1 1

2 1

a D

I

,.J i

_n i8 0 0 0 0 3 5

5 5

g r4 4 4 4 4 8 8

8 8

_ a6 3 3 3 3 4 6

6 6

.M 0

0 0 0 0 0 0

0 - 0 a

c7 7 7 7 7 4 8

8 8

1 1

1 1

1 1

2 2

2

/

s la r 0 0 0 0 0 7 7

7 7

o 0 0 0 0 9 9

9 9

n i

1 r

e

~

3 1

1 1

o 1

t i

a s

)

M l

nn e

s l

it e n 3 0 0 0 0 5 5

5 5

u a

a e

inR Te +

1 1

1 n

c T

x s

s i

R 1 o i

s l

D

(

c i

e itnWV n

g o

t U

f e

oin~

t i

a a

e&

a t

e r

dn2 e le le le u

omF le lb b b b b

b lb s

H D

le le e

i i

b nk s

hrC a

a a a a y a

a a

o Oc s

et u

p e

e T

T T T T t

T T

T r

o r

e Me S

r c

a r

D m

i le W

b P o

a u

o dl yF C

d 1

cB r

)

r e N :r nis( 0 8 6 8 6 0 4

8 4

l l

eat C t

e ri a

c W

gemo 0 2 5 2 5 0 2

2 2

c r

l e

a b

s t

i 2

2 0 2 0 6 5

8 5

saet r

i 1

1 1

1 1

1 1

1 c

a u e

sMhc m

h A Ca T

st R nc

. F e

c aa n

h a

..'D c ")

C E

kf o

e r u 0

1 1

8 8 0 7

5 6

r I

n0 9 7 7 5 5 9 0

3 0

i An d

.Le1 7 8 8 8 8 7 6

8 6

e o

a e

Ou f

x0 0 0 0 0 0 0

0 0

k t

elf (

yM s

~- -

e t

e ic d

l N

s l

i iis u

tae) ei 5 2 5 2 3 7

9 7

d U

cs q

smk%0 5 5 5 5 6 5

5 5

n t

eict 7 as e

i 0 0 0 0 0 0

0 0

a Fe R Bts N (w 0 a

t V

E a

r n

e D

o l

p e

d r

i t

t

. a e) o e i p% 3 7 5 7 5 4 9

7 9

n t

a smp 0

1 1

1 1

2 1

2 1

o t

m Bt ow0 0 0 0 0 0 0

0 0

C a

sC(

d r

E o

e o

f t

n l

d a

h t

m e

i le lo W

h M

i S

t r

c s

E s

g e

i d

r n

n p

d C

le t

i o

ig p

le l

W s

y s

r U

ign o W

le eof o

S e

B n

l h

e a

Ri t

t t )

t t

t i

g al e

le% g c e t

te te e e

r t

a a

n e

n n oB l

P P P L e P la l

la B0 o

t A

0 o ilt w

e1 L L) a f

o l

lz l

l l

l lz(

l

)

e le%L lle%

e 3 o 4 B

z le le le le zd o

h h h h ol h0 o h 0 H

N S S S S Ne S 0 S 0 n

n n

t rWr r%

1

)

1 r

r r

r r

r io o

o e

r eh e eh e

e e e e e.

pt p0 wt i

t i

it w

p p w w we o p0 o

c s

c o

p p o o oi p

r B

1 oB W

e s e L

U U L L LC U( U( L(

S u S U.

d c

e l

e s

e s

t i

)

1) e r

M a

3 2 2 1

1 2

)

41 28)

WS i

e e

VeWt 1

)

D S 2

6

- - - - 48 28 de01 0 4 0 4 41 61 41 61 PRel H 3N 2 1

2 1

T -

7 - L -

7 -

so 1

1 1

1 F

F 1

6 F F

8Y 1

1 aW 2A 2WTW0WTW 5 5 5 5 B

~

5( C C C C 8( 8( 4( 8(

l

\\'

l

.Y TP RF9 6 6 1

2 2 5

0 4

AE 2 4 0 4 0 0 3

1 3

T2 8 2

1 2 2 7 7

1 7

1 1

1 1

1 1

2 1

3 n

i8 0 0 0 0 3 5

5 5

g r 4 4 4 4 4 8 8

8 8

a6 3 3 3 3 4 6

6 6

M l

a0 0 0 0 0 0 0

0 0

c7 7 7 7 7 4 8

8 8

1 1

1 1

1 1

2 2

2 s

0 0 0 0 0 7 7

7 7

m1 0 0 0 0 9 9

9 9

la 3

1 1

1 1

n ire o

t

)

is n

a r n 5

M

.la s

i eTe3 0 0 0 0 5 5

5 u

it T

+

1 1

1 InR T c

R s

e x

s i

it

(

1 o s

D ilc e

.gn a

n f

oi t

e e

o nWV a

t n

D le l

a di e

e le le e

omCa le lb b

b b

b lb i

U Flb b

h a a a a y a

a a

t e

e&

r i

re-T T T T T r

T T

T u

et u

s H

t nk s

Me S

o D

e Oc s

p r

o

)

r e

m i

c W

d a

r b

y )F o

e P

dl

't lcB r

a eat C n

r nis( 0 8 6 8 6 0 4

6 4

C ld ri r0 2 5 2 5 0 2

2 2

o u

o gemo2 it 2 0 2 0 6 5

8 5

l e

t saet 1

1 1

1 1

1 1

1 a

c N :r c

F i

W sMh c A Ca c

(

e a s r 1

a u e

m h

Y' e

c e

st R nc e P )'

h a

lb aa n

c F" 6

5 5 7 7 6 6

3 5

E 7

2 2 1

1 7

6 0

6 C

a kf o

TnE0 e

1 4 5 5 5 5 4 3

5 3

l o

r u

%u2 T

r x0 0 0 0 0 0 0

0 0

An d l 3 e

a e

Fg(

k f

M s

l i

d t

c y

e N

s t

e e l 5 2 5 2 3 7

9 7

i l e

u tae) l cs q smk%07 5 5 5 5 6 5

5 5

d U

t i

eicti 0 0 0 0 0 0

0 0

n a

as e

Bts N (w 0 a

t F e R E

a V

r n

e D

o e

p d

r t

it a e) 7 5 7 5 4 9

7 9

p a

s m p% 3 n

t ei pt 0 1

1 1

1 2

1 2

1 o

ow0 0 0 0 0 0 0

0 0

a m

BtsC(

C r

E d

o e

o t

f a

h n

d t

m e

I le l

le M

h W

it S

Es s

r c

r n

g e

i d

s i

n p

le le W

d C

l t

o ig p

l e

s y

ignr U

W e

a l

eo o o

S s

h B

n RiF t )

t t

te% rg r

alt e e e l

g e

e ta la l

B0 ce A

t t

t n

e n

t n oB l

l a

a o

0 o li L P P P P w

L) f a

e e1 L) lt o

l e 3 o 4 e

lz l

l l

l lz(

le%

lle%L B

z le le le le zd o

h h h h ol h 0 o h 0 H

N S S S S Ne S 0 t

S 0 n

n n

r e

o rWr e%

eh eh r

io o

it

)

1 1

r r

r r

r r

e e e e e e.

pt p0 wt i

t is c

w p p w w we o p0 o

c oB W

e s

e o

p p o o oi p

r B

1 L

U U L L LC U( U( L(

S u S d

c e

e s

l l

e e

e e

la ir

)

WS i S t

)

1 D

1

)

VeWt 2

)

P M a

3 2 2 1

1 2

)

41 28

- - - - 48 28 e01 d

0 4 0 4 41 61 41 61 Rel H6 so 3N 2 1

2 1

T L 1 1

1 1

F F 6 F F

1 1

1 8Y aW 2A 2WTW0WTW 5 5 5 5 B

5( C C C C 8( 8( 4( 8(

M

- Y TP I

RF6 5 9 1

6 0 0

5 0

AE 6 2 2 2 2 9 6

3 6

T2 7 9 8 9 9 2 3

6 3

3 1

1 1

1 n

.ig9 0 0 0 0 3 5

5 5

r 2 4 4 4 4 8 8

8 8

a6 3 3 3 3 4 6

6 6

M

a0 0 0 0 0 0 0

0 0

c7 7 7 7 7 4

8 8

8 1

1 1

1 1

1 2

2 2

s

-,0 0

a

. 0 0 0 7

7 7

7 l

e1 0 0 0 0 9

9 9

9 i

3 1

1 1

1 r

n e

o t

,)

i a

m s

M l

r ai e., 3 s

0 0 0 0 5

5 5

5 t

u iT

+

1 1

1 InR T l

s R

c e

x s

(

1 o i

s lc D

it i e

g f

UWV n

a n

oi' n

ta din e

le le le le D

le le le o

t e

Flb b b b b b

b b

a omCa i

e&

r t

h a a a a y

a a

a e

r i

u t

nk e e T

T T T T r

T T

T s

H t

u s

Me S

o Oc s

D o

p e

)

r e

m ir c

d a r

W b

yF)

't lcB r

nis( 0 8 6 8 6 0

4 6

4 C

d e

P dl r C o

a eat n

ri o

u o

gemo2

. 5 2 5 0

2 2

2 l

r 0 2

it 2 0 2 0 6

5 8

5 l

c Nr saet t

e a

2 1

1 1

1 1

1 1

1 c

sMh c

(

W e

1 s

a A Ca c

1 a u e

F r

i m

h 3

a st R b

nc Y

e c

l ePcF93 h

a aa n

a kf o

TnE0 7 9 9 8 8 7 3

b 3

C E

1 1

8 8 3 3

3 3

T r u

%u2 e

1 1 1

1 1

1 1

1 1

1 r

An d l

3 l

x0 0 0 0 0 0 0

0 0

e o

a e

Fg(

f k

t yM s

t e

ic de e

u e l N

ili l

s tae) cs q smk%0 5 2 5 2 3 7

9 7

d U

t as e

eict 7 5 5 5 5 6 5

5 5

n F e R Bts N (w 0 i

0 0 0 0 0 0

0 0

a a

t V

E n

r a

o e

D i

e p

r d

t ta e) p a

te i p% 3 7 5 7 5 4 9

7 9

n mp s

0 1

1 1

1 2

1 2

1 o

m Bt ow0 0 0 0 0 0 0

0 0

t a

o C

r sC(

d E

e o

f t

n a

h t

l ld i

m e

l e

it e

W M

hS E

s s

r c

n g

e ir i

n p

le l

e d

s p

C ld o

ig t

ignr U

eo o W

l W

ly s

e o

e a

RiF te% g g

h t

t S

i B

n c e t

e e

l

)

t t

e alt e

t a la n

A i

e le P

la te t

B0 e

n t

r ni oB l

P Pl P a

o o

l L e1 L w

a f

0 lt L

o l

)

e 3 o 4 l

)

l l

lnd B.

n u

l le le

(

le%L le%

e le o

h h h h ol h0 o h0 H

t S 0 n

n n

N S S S S Ne S 0 rWr r

e io o

it 1

)

1 o

r r

r r

r e%

reh r

e e e e e e. eh t

i w

p p w w we pt p0 wt c

s c

i o

p p o o oi p o p0 L

U U L L LC U( U,1

o. B(

W e

s e

r o

B S

u S l

d c

l l

e e

l e

)

e e

is a

e r

VeWt

)

1 WS D S t i 1

1 P M a

3 2 2 1

1 2

)

41 28 2

)

de01 0 4 0 4 41 61 41 61 6

- - - - 48 28 Rel H 3N 2 1

2 1

T -

71 F-L F-F 7 -

se 5

1 1

F 8Y 1

5 5 5 2WTV 0WTW 1

aW 2A 1

6 1

B 5( C C C C 8(

8^

  • (

8(

R TE2 4 5 7 2 3

/

5 5

2 0

A Rt 6

5 9 0 6 2 N

1 1

3 1

a1 1

1 1

1 2

2 2

2 2

0 1

n ig 7 0 0 0 0 0 A

5 5

0 5

r 0 7 4 4 4 6 8

8 6

8

/

a7 1

3 3 3 5 N

6 6

5 6

M 1

0 5 0 0 0 0 0

0 0

0 0

a 7 8 7 7 7 8 8

8 8

8 8

o 1

1 1

1 2

2 2

2 2

2 s

la

~

i i

0 0 0 0 0 0 7

7 7

0 7

r e

0 0 0 0 0 9

9 9

0 9

n 1

e 3

1 1

1 1

o t

i a

s M

l r ui s

)

l i on u

a e

it n e 3 0 0 0 5 0 5

5 5

6 5

c T w

+

2 2 1

4 1

2 x

InR T

+ +

- + +

s is s

o

.R c

D

(

l e

i n

WV g

3 e

oi ta io t

f n

a a

r n

e le ib lb lb b

b lb b

i H

D l

e e e

t di le F

b

. b b

le le e

le e

it u

omC s

nk h

a y a a a a a

a a

a a

s re T

r T

T T T T

T T

T T

o Uc s

et u

t e

Me S

p e

o r

r c

D m

i e

r b P W

v i a o

1 RB r

y )F C

l dl d

o r

eat C e

la :r l

t nis(

0 8 8 6 6 6 9

4 4

3 4

a e

ri c

gemor 4

5 1

2 2 7 3

2 2

9 2

W l

t e

a saet 9 1

4 8 8 6 4

5 5

9 5

b s

c it r

i c

yu e

sMh c 1

1 1

1 1

1 1

1 A Ca m

h T

r R

F t

Cc e

c a

n h

a e

C E

f o

yu Dc9 6

6 6

6 0

r t

I n0 0 6 6 6 6 i n d 6

l 0

A 9

9 9

Le1 ia e

Ou 8

0 0 0 0 8 N

9 9

0 8

e o

/

l f

1 1

1 1

1 x 0 0

0 0

0 k

c t

elf (

c d

cM s

Fl e

e i

e u

N s

e s

q t l d

U ae) s e

smk%2 5 5 5 5 5 5

5 5

5 5

n t

4 4 8 8 9 7

7 7

8 7

eict 7 a

e R Bts N (w 0 i

0 0 0 0 0 0

0 0

0 0

a t

V n

E r

a o

e D

p i

e d

t r ')

p t

e a

t a

n m

e :m p % 3 s

p 0 0 2 2 3 6

9 9

2 9

o t 1 2 2 1

1 2

1 1

1 3

1 a

r Bt ow0 0 0 0 0 0 0

0 0

0 0

C sC(

d o

E e

o f

t n

l a

h t

i le ll m

e e

d h

h le S

S W

i M

t g

e e

d d

s r

r n

n p

p le l

c E

s p

p i

d i

e r

.io ig r

U U

W W

C le t

s W

s y

gno

)

n

. eof to) o%i.

t t

l t

e e

a

%t 0 g ig h

t Ri t t e

tte0 le6 n n

S g

B n

i t

te e te ale e

t in cB la la l

P eD o

l B 4 B D L L

e o

t a a o

o r

n A

e P P P I

ltl L lz n

l l

l lz(

eO l

w L

a f

z(

II le o

l

)

l

.e

. z e le le le zd zd le%

e 3 o 4 e

L B

o h h h h ol ol h h

h 0 H

N S S S S Ne Ne S S

o S 0 n

n n

rWrWr%

)

)

t )

1 r% e% eh r

r r

r r

e e

io o

o r

r e. e e

e e e e e w

p p w w wc we. p0 p0 p0 wt i

t i

it r

o o

p p o o oi oi p0 p0 p0 r

r c

s c

oB W

e s

e 1

1 1

L U U L L LC LC U( U( U( L(

S u S d

l c

la

)

1 0

e

)

l e

e r

)

s e

. t i 0) e i

e 9

VeWt WS D S 9

)

1 2

1 2

6 46

2) 28
0) 2 M

s94 8

P 7

5 d o1 9 4 4 7 7 9 51 68 61 57 6 1

Rel HVJ 4 4 4 4 4 -

1 5 7 -

0 - 7 so F

F F

F 3Z 3 3 3 3 2A A

1 1

1 1

1 aW 2A( CC C C 7(S TWTWTW2WT S 4 4 4 4 1

B 8( 8( 8( 7( 8(

1 l'

RF2 7

1 4 4 7 A

3 3

9 AE 0 4 9 9 4 6

/

3 3

3 8

T5 3 1

4 7 3 6 N

6 6

6 5

1 1

1 1

1 1

1 1

1

%1@

n g7 0 0 0 0 0:

5 5

0 5

i A

- r 0 7 4 4 4 6

/

8 8

6 8

1 3 3 3 5 N

6 6

5 6

a7 M

ca0 5 0 0 0 0 0

0 0

0 0

o7 8 7 7 7 8 8

8 8

8 8

1 1

1 1

2 2

2 2

2 2

s

- n0 0 0 0 0 0 7

7 7

0 3

l o1 0

0 0 0 G 9

9 9

0 9

a i

- 3 1

1 1

1 n

re o

i t

' -)i a s

a la r

s s, n 3 0

0 0 5 0 5

5 5

6 5

M it u

i T a+

2 2

1 4

1 2

i

+

+

InR T

- + +

R c

le s

x s

(

i o

s D

c i

e

- g l

f n

a n

WV o i t

t a

e mCa b b b le le le e

e o

3 e

o in-e d

D le le le lb b

b b

lb lb i

a Flb r

y a a a a a

a a

a a

t e

r h

i T T T T T

T T

T T

it u

e e T

t ru s

H nk s

M e' t

S o

D e

Uc s

p e

m ir o

)

r c

)

W d

e r

. yF o

b P dl

't v

r C ia ea t s( 0 8

8 6 6 6 9

4 4

3 4

C d

n RB r

ni imo9 r

ge r 4 5

1 2 2 7 3

2 2

9 2

o la :r t

sa et 1

1 1

1 1

1 1

1 l

l o

it 1

4 8 8 6 4

5 5

9 5

e sM h c a

c W

c A

yu e

.Ca c

(

t e

a F

s i

r 1

m h

r e

R Yi e

c t

Cc lb a

n

.e P ")

h a

c F 8

1 1

1 1

8 3

3 1

3 E

A 8

8 0

5 C

c f

o Tn E0 2 0

0 0 0 2

/

2 2

3 2

r T

yu

%e 2

3 3 3 3 2 N

1 l 5 u

l it x0 0

0 0 0 0 0

0 0

0 n d

- F e

o 1

l a

e

$(

k f

icM t

a s

i d

c e

Fl e

e le)

N s

e u

ta 4

4 8 8 9 7

7 7

8 7

s q smk%2 5

5 5 5 5 5

5 5

5 5

d U

teict 1 i

0 0 0 0 0 0

0 0

0 0

n a

s e

Bts N (w 0 e R E

a ta V

r n

e D

o e

p r

d t

i a e) p 0 0 2 2 3 6

9 9

2 9

p t

s m p% 3 2 2 1

1 2

1 1

1 3

1 o

t n

a t 1 ei ow0 0 0 0 0 0 0

0 0

0 0

a m

BtsC(

C r

E d

o e

o t

f l

a h

n le l

d t

m e

i h

le M

S h

le t

i r

S e

W s

p e

E s

r n

g p

p d

d i

d is e

n r

io i

U p

le le C

le t

W W

l W

ly g

gnr o

U s

eo o t )

)

t e

a Rt F le0 to%

t h

t le

%t i

t 0 i i

B n

alt e e e e ce B4 le6 g ig S

g e

A oB t

t t

t n

n n

n t

a l

l la B D o o

e o

r a a iUL lP P P P le3 a

eO L L

w L) f e

1 le lz t

l l

l z(

l e 3 o 4 lz(

l l

o le%

B z

fe le le le zd ol zd le le L

ol h h

h 0 H

o h h h h Ne S) S)

S 0 n

n n

No o

N S S S S rWrWr% e% te% eh r

it i

it e

o o

o

)

1 r

r r

r r

r r r e. e. e e

e e e e w

p p w w wc we p0 p0 p0 wt i

c s

c r

r p0 p0 p0 o

W e

s e

o p p o o oi oi oB L

U U L L LC LC U1 U1 U1 L(

(

(

(

S u S d

c e

e

./ i l

e e

s

.la ir

)

t

)

1

)

WS i

e e

9 0

D S VeWta0) 9

)

1 2

1 2

6 M

46

2) 28
0) 2 8 de949 4 4 7 7 9 51 68 61 57 6 P

7 5

Rel H1 1

1 se VJ 4 4 4 4 4 -

5 -

7 -

7 7 -

F F

F 1 F 3 3 3 3 2A A

1 1

1 aW 3Z 1

4 4 4 4 1 S TWTWTW2WT S 2 A B

1 (

C C C C 7( 8( 8( 8( 7( 8(

RF 4 3 6 9 9 A 2

8 8

6 4

t d u AE 9 7 5 9 4 /

8 7

7 6

4 luo T5 0 8

1 5

1 N

1 2

2 1

2 oht 1

1 1

1 1

1 1

1

%1 wi w

.G s

id s e yt

'n 4

la a nlu ig7 0 0 0 0 A 5

5 5

0 5

aa

+

r 0 7 4 4 4 8

8 8

6 8

/

v 1

1 3 3 3 N 6

6 8

5 6

i s k

a7 s e

.M r i c e it r

is u a0 5 0 0 0 0 0

0 0

0 0

i t l

a br a7 8 7 7 7 8 8

8 8

8 8

1 1

1 1

2 2

2 2

2 2

ae b p o m s

pe r

l

',0 0 0 0 0 0 7

7 7

0 7

t ic a

a1 0 0 0 0 0 9

9 9

0 9

e f

i i c r

i 3 1

1 1

1 c n n

e e e pr o

t se is a

i f

t e

u n

M it l

r t

a s

r a o e3 d

0 0 0 5 0 5

5 5

6 5

lpe u

u T

+

2 2 1

4 1

l inR T

+ +

- + +

. 2 t

e as c

s I:

R x

f u

(

oj s

o d

s tsa iD lc lu e i

e

- g sh n

WV f

n a

t oi~

t

'e le e

e i

e fo o

t n

a r

3 e

di le D le le le le le le l

a r

omF u

hrC a y.

b b b b b

b b~

b lb h n t

b e

it a

a a a a

a a

a a

t io i

H t t s

s 1st

. T ru nk t

e T

T T T T

T T

T T

aa o

Uc s

8 e S

hlu o

D' c

p e

t e

hl r

)

c ca m

d e

r

- yF i

uc W

b P

't v

)

s e o

ia dl n

RB r

eat C eh r

1 C

d r t 0

8 8 6 6 6 9

4 4

3 4

a o nisr i (

o r4 5

1 2 2 7 3

2 2

9 2

gem o9 st l

l c lar t

e 1

4 8 8 6 4

5 5

9 5

it 1

1 1

1 1

1 1

1 iet a

(

c saet u

r F

pi i

W sMh c t p c

t e

a A

r s

a en yu e

C 1

m h

ois e

r t

R r

l Cc r

h a

a pi e

c b

Y f

o cF? 7 7

7 itse a n eP

)

ta c

dm C

E 9 9 9 9 3

3 9

2 T

yu T n E'0 0 0 0 0 A 2

1 0

0 0

8

/

8 9

n r

t e

i n d

%. lu5 0

1 1

1 1

N 0

1 1

1 0

1 a e l

c t

0 h h e

o x0 0 0 0 0 0

aM s

' $(:

0 0

l a

e F

t 0

1 f

i u e, k

g or c

d Fl e

no e

i e e N

s f

e u e'l )

we t

r emk%

loh d

U s

q ae 2

4 4 8 8 9 7

7 7

8 7

t eict 7 5 5 5 5 5 5

5 5

5 5

is s e T

n a

e R Bts N (w 0 i

0 0 0 0 0 0

0 0

0 0

a t

V E1 st d n a

e r

n les e

D o

we p

r i

e d

r lep p

t t

t a e) p 0 0 2 2 3 6

9 9

2 9

se n

a n m p% 3 2 2 1

1 2

1 1

1 3

1 e

a t 1 sb o

m Bt ow0 0 0 0 0 0 0

0 0

0 0

v o ei C

r sC(

nd d

t E

i e e

o o

f lar t

n ted a

h e

t i

le le le do i

M m

e l

l mis d

n h

h t

S S

W lec ws s

r r

e a

E s

g e

e d

d la w ).

is n

n p

p l

lo i

le ilpa e s

la o

r d

p p

c 4

t io ig r

U U

W W

C

)

l W

y gno eof o) o%i it.

le yt t e c t

n e

e e

t %t t

Ame B n

Ri t

0 g g

h t

te e t

e0 lte6 n

n S

it t tale g

f r

e t

n od e in cB la la l

P lz(

o la B 4 B D L L

e o

ee e a

o o

r A

l f

t e

P P P eD z(

ll w

L) cwR a

f eO l L lz l

l le le zd zd L

lte' le le e

ll o

l l

I l

l nl e 3 o

le%

eae z

e B

o h h h h ol ol h

h h 0 r ice H

N S S S S Ne Ne S:

S o

rupS n

n S 0 rWrWr% e% e% eh ct.

r it i

)

)

t )

1 r

r r

cy(

e o

o r

r r

r r

e. e. e e

e e e e oAla i

c s

w p p w w we wc p0 p0 p0 wo t

p0 p0 p0 o

p p o o oi oi r

r t

f W

e e oB o

1 1

1 L

U U L L LC LC U( U( U( L(

h e

s tyt m S

u i f l

blyle ld li i d c

l e

e

)

at s

a ir t

)

1

)

b n w e

e i

i WS D

9 0

o al VeWt 0) 9

)

)

r c a 1

2 1

2 6

8 fa pfic M

a94 46

2) 28 0 2 P

de1 9 4 4 7 7 9 51 68 51 57 6 c

7 5

inp Rel H VJ 4 4 4 4 4 -

1 1

0 -

7 e

5 7 -

y A

so 3 3 3 3 F

F F

F p

h igt 3Z 2A 1

1 1

1 1

aW'2 A C C C C 7( 8( S( 8( 7( 8( A S TWTW1 W2WT S ty TsA 4 4 4 4 1

B 1 (

A R nO 1 T E6 3

0 2

/

3 7

7 9

4 N

9 A Rt 1

1 1

a 0'

,n ig1 5

4 5

A 0

/

r 3 6

0 8

8 a1 2

2 6

N 2

M

~ 0 0

0 4

0 0

ie7 7

7 8

8 4

1 1

1 2

2 1

l s

a r 0 0

0 7

7 0

i e 0 0

0 9

9 0

n r

1 1

e o

t i

a s

-)

M lae w s

r 0

0 0

5 5

2 u

n it T e 5 2

5 l

i

+

c o

e InR T

+

+

+

ix a

s

. : R s

s t

o i

(

D t lc e

Si n

rWV J

g t

f a

o oin t

a e

e a

i r

din' le le le lb b

b b

b

e e

w&

t e

D.

omF i

u s

H hrC a

a a

a a

y ok s o

e T

T T

T T

r t

Pc s Me S

p e

et u

o r

e D

r m

c i

a r

W b

le P

o a

)

1 cB r

dl yF C

d r

u o

eat C l

t nis(

0 0

0 3

3 0

e l

e N :r ri c

gemr 6

4 0

7 2

0 a

W o 2 2

2 5

7 6

c l

it e

b er a

saet 1

1 1

i sMh c c

su e A T

st R Ca m

h F

ec e

c h

a Ba n

e)

C E

f o

D c "0 0

su 7

7 5

A 7

r I

n 5

in d Le1 1 l

0 0

1

/

0 e

o v

1 1

0 N

aa e

Ou 1

f x0 k

t elf (

DM s

ic de e

N s

le u

el

y t

7 1

2 5

3 d

U ae) s q

l smk%8 7

8 6

6 6

n a

t t

eict 6 is e

ie R Bts N (w 0 i

0 0

0 0

0 c

a t

aV E

a re D

n F

o p

it

- te p

r d

a e) 4 2

8 1

4 n

a s m p% 40 0

0 1

2 2

o t

eipt a

m Bt ow0 0

0 0

0 0

r sC(

C E

d o

e o

n d

a h

f t

t m

e i

lo W

it M

l l

e s

E s

n le le ir i

C o

h h

s ign S

S l

t

)

le s

y r

r%h e

a eo l

Ri g g

g e) e n

n p1 S p% p9 r t n ig ig p

B n

ai e

c g U9 U e

n r

r A

l or t

o o

o D

t i L F F

F I(

(

l l

l toD oO w a

t o

L e

3.

f e-B lt le le lt lt o 4 e

ed eld B

Be Be o?

H h

h l

n n

n S

S t

eWle W r )%

e o

z p

w zc ze p0 r i o

o e

r r

z. z. e l

iz e

e o

p o

oi oi p0 i

t i i t

c s

c r

r W

e s

e N

U L

NC NC U1

(

S u S I

d c

e e

e l

Is i 3

3 e

is

)

e r

t

)

)

1 e

)

WS D S VeWt 1

)

M a

0 4 4

2) 3

- 2 7 2 4 3 6 2 43 43 48 P

1 de 3 2 2 8 1 2 42 41 Rel H YB XJ 0C 9 -

7 - T -

so 3D 3K 4C 3 F 9 F F

1 aW 2A 2A P B TW2W2W

.B 1 (

1 (

5( 8( T( 8(

rf1i i'

1 6

6 8

N 5

T1 1

1

%2 3

nig5 0

4 A

5 0

/

r 0

5 8

8 N

6 2

a8 2

1 A

R s -

=a0 0

0 0

0 0

c7 7

7 8

8 4

1 1

1 2

2 1

s

, m' 0 0

0 0

7 7

0 l

0 0

9 9

0 a

i 1

1 r

n e

o t

)

i a

s a

la e

r i

m s

M it s

e0 0

0 5

5 2

n Ts 5 2

5

+

u T

n I R R+

c

+

+

le o x s

_ (

s it i

o s

a c D

t l

e gn a

Si f

n rWV o in e

le le le le t

a t

o d

D.

a imFlb b

b b

b e

e o

i rC a a

a a

a y

it e

w&

r h

e T

T T

T T

r u

s u

s H

t ok s

t A e R

S o

Pc s

D

)

r e

p e

o r

c m

i d

a r

)

W b

r C e

P dl yF o

't lcB r

nir imo6 6

0 7

2 0

a ea t n

s(

0 0

0 3

3 0

C d

go r

o u

o iso et 2 2

2 5

7 6

l t

l e

c N :r t

a e

A Ca c

W c

sM h c 1

1 1

(

1 er a

F i

su e

m h

e st R

,Y e

c lb ec eP) 5 h

a a Ba n

c F" 7

7 5

3 3

A 1

3 C

E 7

1 f

o TnE0 6 6

T su

%u1 e

1 0 4

4 N

0 4

r

/

l in d

- F v

2 r0 0

0 0

0 e

o aa e

l 9(

k f

t DM s

c d

e i

e N

s e-l le u

tae) ys q smk%8 eict 6 7

8 6

6 8

d U

7 1

2 5

3 t

tis e

i 0

0 0

0 0

n a

l Bts N (w 0 ie R

.E a

t cV a

r a

n e

D F

o e. -

p r

i t

d a e) t p

4 2

8 1

4 p

s m p% 40 0

0 1

2 2

o t

n a

t ei m

Bt ow0 0

0 0

0 0

a sC(

C d

E ro e

o f

t n

a h

d t

i l

m e

o M

i W

ts n

le e

i E

s c

l n

r i

C s

o h

h ign S

S ll ts y

eo r

r) e e

la p% h B

n Rig g

g e

e t

e am o

m p)

S 1

p% p9 r n cg g

g A

U9 U e

t ior r

eL o o

ro D

F F

F oD oO w a

f le t

e e

t (

(

o e 3 o 4 t I t

B t

R n

ted leld t

L h

h l

H e

B Be Be o n

n n

S S

t eWleWr%

e o

z. z. e r

io o

it

)

le r

r l

z e

e o

p o

oi oi p0 i

t is c

z p

w ze zc p0 c

W e

s e r

r 1

N U

L NC NC U(

S u S d

c t

l e

s e

l e

e a

)

e e

r

)

)

1 WS iD S VnWt

)

)

1

)

3 2

t i 3

s a

0 4 3 7

4 2

2 4 3 6 2 43 43 48 PI de13 2 2 8 1 2 42 41 Rel H YB XJ 0C 9 T -

so 3D 3K 4C 3 F 9 F F

aW 2A 2A( S( 8( T( 8(

1 P B TW2W2W B

1 (

1

{

5 4

7 7

T1 N

7 1

1

%2

_3 n

ig8 4

3 A

6 0

r 3

0

/

0 8

a4 N

5 2

1 1

M 1

l

~

0 0

0 0

0 0

i e7 7

7 8

1 4

1 1

1 2

2 1

~

s i

0 0

0 7

7 0

la e 0 0

0 9

9 0

i 1

1 r

n e

o t

is

)

a l

r nn M

it s

e 0 0

0 5

5 2

a et s

InR Ti 5

2 5

+

u i T n

l

+

+

+

R c

o e

ix s

s

(

t o

a s

iD t lc

~

g e

Si foin a

rWV n

t a

din' le ie e

le le o

t D.

e omF b

t lb b

b e&

a i

w hrC a

a a

a a

y it r

e u

e T

T T

T T

r t

t u

s H

e ok s

Me Pc s

D S

o e

p e

o r

)

r c

b

.'y F m

d a

r

)

i r

W e

P dt

't lcB r

nlri a

eat C o

n s(

0 0

0 3

3 0

C d

o u

o gemor l

6 6

0 7

2 0

il l

c N :r saet 2

2 2

5 7

6 e

t a

c sMhc W

(

1 1

1 e

A Ca c

1 er a

su e

F i

m h

e st R b

ec

.Y-e c

l eP) c Ba n

c F" 9

9 3

h a

3 9

C E

2 5

5 A

2 f

o TnE0 2

/

2 5

T su

%u1 0

1 1

N 0

1 r

e 1

in d

- F l

v 2 x0 0

0 0

0 e

o aa e

l $(

f DM s

k t

c d

e e

i y

ae)

N s

e le u

t l t s q smk%8 t

7 1

2 5

3 eict 6 7

8 6

6 6

d U

is e

l Bts N (w 0 i

0 0

0 0

0 n

a ie R

E a

t cV a

a n

re D

F o

e p

r i

ta e) d t

4 2

8 1

4 p

a s m p% 40 0

0 1

2 2

o t

n eipt m

Bt ow0 0

0 0

0 0

a sC(

C E

r d

o e

o f

t n

a h

d t

i l

m e

o M

W its n

le i

E s

l e

r n

i e

C s

io h

h l

t Ri g g

g e

e%h e

ly gn S

S le s

eo r

r) a t

n i

n n

p) p1 S

B n

an i

i p% p9 ei cg g

g r

r r

U9 U A

l or lt L o o

o D e t

.F l

n toD oo w a

f F

F I

t o

e 3 o 4 e

(

t (

B lt le e

tted teld H

L e

h h

l B

Be Be o n

n n

S S

t eWleWr%

e o

o o

)

e r

r lz e

e z

p w

zc ze.

e r

it i

it lz.

z p0 i

c s

c W

e s

e p0 o

p o

oi oir r

N U

L NC NC U (1 S

u S l;-

d c

i e l

e e

e s

a

)

e e

r WS D S

)

)

1 i

t i 3

M a

0 4 3) 1

)

)

2 VeWt 7

4 2

3 e1 2 4 3 6 2 1 2 42 41 P

43 43 48 3

2 2 8 t

RekH YB XJ 0C 9 -

7 - T -

se 3D 3K 4C 3 F 9 F F

aW 1

2 A 2A P B TW2W2W B

1 (

1 (

S( 8( T( 8(

ll l

R.

ro ~

?

sl T ro 5 5 8 3 1

1 1

8 8

/

2 0

2 2

A 0

0 3

3 R eT E7 2 7 5 6 6 7 1

22 N

0 8

0 0

2 6 2 4 3 3 0 1

A Rt 2

2 2

1 2

2 a1 1

1 1

1 1

1 D

I n

.ig 7 6 6 6 6 6 3 5

0 A

5 3

5 5

r 0 3 3 3 3 3 8 8

6 8

8 8

8

/

a7 6 6 6 6 6 4 6

5 N

6 4

6 6

,M 0

0 0 0 0 0 0 0

0 0

0 0

0 0

ac7 7 7 7 7 7 4 8

8 8

8 4

8 8

1 1

1 1

1 1

1 2

2 2

2 1

2 2

s l

i0 9 9 9 9 9 7 7

0 6

7 7

7 7

a e1 6 6 6 6 6 9 9

0 0

9 9

9 9

n ir 3

2 2 2 2 2 1

1 2

1 1

1 1

e o

t i

a s

)

M l

r m s

a e

3 1

1 1

1 1

5 5

0 7

5 5

5 5

u l

itiT e+

+ + +

+ + -

1 c

e InR T

+

x R

s s

1 o

s i

(

it c D

l e

niUWV

. g n

f t

n a

a o

oi t

t i

e e

a a

a n

e le le D

le le le le n

r di e

le le lb b b b

b b

b b

b i

H o&

D le le t

Flb b b u

omC h

a a a a a a y a

a a

a y

a a

s k

s it r

t e

T T T T T T ru T

T T

T ru T

T o

a c et o

Me S

S p

e s

t m

ir Sc e

D r

W rb P o

aa

)

n r

dl yF C

l i leB d

r o

eat C nis( 3 5 0 0 5 5 4 6

6 6

4 3

4 4

e 9

l la c :r t

ri L

u c

gemo1r9 4 5 3 4 4 1

7 0

2 2

2 2

a W

it e

0 6 8 7 7 4 7

6 2

5 4

5 5

c 1

b Nr a

saet 1

1 1

1 2

1 1

1 1

i sMhc1 3

e u

e A Ca m

h F

et R T

ec e

c na n

h a

C E

e of o

D c ") 8 6 4 4 8 8 8 8

6 3

8 9

9 cu I

n0 1

9 0 0 6 6 1

2 9

A 2

6 2

2 r

On d Le1 1 7 9 9 8 8 1

6 7

N 7

8 7

7 e

o l

/

a e

Ou f

l x0 0 0 0 0 0 0 0

0 0

0 0

0 k

t E F(

M s

c y

e i

d e

N s

ti le u

e l l

s q

t

. ae) 0 0 0 3 3 2 4

9 8

7 4

7 7

d U

ic smk%5 5 5 6 6 6 5 6

5 6

5 5

5 5

n a

t 6

s e

eict c e R Bts N (w 0 i

0 0 0 0 0 0 0

0 0

0 0

0 0

a t

F V E

a r

n e

D o

a r p

i d

t t

-t a e) p s m p% 6 p

5 0 2 1

1 3

1 3

4 9

2 9

9 n

a t 1 1

1 1

1 1

2 2

2 3

1 2

1 1

o m

Bt ow0 0 0 0 0 0 0 0

0 0

0 0

0 0

ei a

r sC(

C E

d o

e o

f t

n a

h d

d d

t m

e I

!e le le le it d

W M

m W

W W

s t

e E

s e

g r

ig i

C le C

ld ld n

n r

c te) n C

ir d

r i

o ig e

s i

e e

t In% o l

l W

le ign r t

o la 0 L le le l

W W

s y

eof P

t 1 le S

S i

S g

g B

n o

l 0

l h

h h

t i

t l

e g

i t

e a

Ri t

e alt l

e t

te te lt (

h r

r c e e

t a

d e

n h

l l

la la Bl S -

p p

n n

n ioB a

e e

r A

S e

o e

o o

t l L e P P P P L

w L

L a

f e

e) p p

t lzWta%U U

te-lz e

l l

l l

)

l l

e3 o4 le% o le le B

z t

le le le le z.

l L

a i0

)

o i h h h h oe d 0 o) 0 h

h H

to%h d

r S 0 o

~

N e S S S S Ni e

t. %

9 1

tr%) S) S) n n n 1

rC mh m1 m3 mr e% e%

e io o o r

r r

r r

r r

e e e e ell rt r 6 r

e eh e 0

0 r

r o

t p p w w we eo t D teD pt p0 w0 w0 p p o o oh p

i t

i it w

e e

o p0 o o 1 Wc s c t

L I

U U L L LS InB InI( InO( U( U( L( L(

B n

1 1

e s e

(

S uS d

c

/

e e

e l

lar e

s e

t i

)

5 3

9) 3 5

6 0)

WS D S e

)

)

)

)

)

VeWt i

P M a1 4 2 1

1 1

2 3 2 7 2

)

2 2

2 9

8 2

3 7 5 8 0 0 2 6 0 2 45 4

5 4

4 de65 1

9 42 6 5

6 6

Rel H8 R 9 6 7 0 0 8 -

se 2

9 1 1

1 1

1 1

1 4 -

L - 7 7

7 1 1

F 1

2 2 6 8 7A 0A 2A 9 H

A 4A A

A 1

aW V A C C C C C 6( 1 (

7( 2( 8( 7( 8( 8(

S P S S 9WT S 2S T S T S 2 3 3 2 2 1

1 B

Z(

8.

A RF 1 7 9 3 0

AE9 8 2 6 9 9 5 4

4

/

7 7

8 8

0 3

1 2

1 1

8 7

8 N

6 4

6 6

T1 1

1 1

1 1

1 1

1 1

1 1

1

%2

. 8 n

~

ig7 6 6 6 6 6 3 5

0 A

5 3

5 5

r 0 3 3 3 3 3 8 8

6

/

8 8

8 6

a7 6 6 6 6 6 4 6

5 N

6 4

6 6

M

.~

a0 0 0 0 0 0 0 0

0 0

0 0

0 0

o7 7 7 7 7 7 4 8

8 8

8 4

8 3

1 1

1 1

1 1

1 2

2 2

2 1

2 2

s 0

9 9 9 9 9 7 7

0 6

7 7

7 7

mf 6

6 6 6 6 9 9

0 0

9 9

9 9

l a

3 2

2 2 2 2 1

1 2

1 1

1 1

n ir o

e i

t

.)

s m

s a

l r

a or M

it uo3 1

1 1

1 1

5 5

0 7

5 5

5 5

u T n

+

+ + + + -

1 in T+

+

c l

i R x

- R s

e i

(

s D

io s

t c l

e g

ini o i e

le lb lb b b b

b lb b

b b

t n

a a

n f

UWV t

t D

le le o

a a

d ;nJ e e D

le le e

le n

r h mC l

b le le i

e o

F b v

a a

a a

a a a a y a

a a

a ru o&

i T

T T

T T

T s

r u

e e T

T T T T T t

ru t

ik s

M e S

S o

s D

p ta co

)

t d Sc e

m r

4,l y )F o

't rb P r

n a a a t C C

ir is( 3 5

0 0 5 5 4 6

6 6

4 3

4 4

r eB I

mro9 4

5 3 4 4 1

0 7

0 2

2 2

2 e

o lc :r l

c t

t

sa et 1 0

6 8 7 7 4 7

6 2

5 4

5 5

a 1

1 1

1 2

1 1

1 1

(

u c

sM hc1 e

A a

c n Nr a

C F i

e et R m

u e

i e

ec Y

h l

e P 4

5 8

F94 b

na n

c C

8 5 5 0 0 6

0 9

9 4

9 9 8 8

7 4

A 8

1 1

1 1

c of o

Tn E0 5 5

1

/

13 3

3 3

u 0

3 3 3 3 3 0 2

3 N

0 0

0 T cu

%e l

2 x0 0

0 0 0 0 0 e

On d l 1 0

0 0

F a e

~ $(

k t

M s

c i

y e

N e

it l l

e u

t lo) a ct 6 5

5 6 6 6 5 6

5 6

5 5

5 5

d i%5 0

0 0 3 3 2 4

9 8

7 4

7 7

t is q sm r

c s e

Bt 0 0 0 0 0 0 0

0 0

0 0

0 0

n ei iN (w 0 a e R E

ra s

F V n

e o

e p

r t

it a e) a sm p% 6 5 0 2 1

1 3

1 3

4 9

2 9

9 p

t ei pt 1 1

1 1

1 1

2 2

2 3

2 1

1 o

1 m

Bt ow0 0 0 0 0 0 0 0

0 0

0 0

0 0

C sC(

r E

o e

t fn a

i ld m

o d

d d

W le le t

i l

W W

s e

.c m

W i

c E

r n

g re) ig l

C le C

le le s

n C

a d

i d

d e

t r

t io ig ta e

ti% n e

lle n

l gnr 0 o h

W l

W W

e eo o l

RiF P

o le B

0 L t

l e te t

te tt (

l S

h h

t ig t

t t

1 S

ig S

g alt c e le e

le r

e e

e r

n n

n t

in oB h

t a

l l

Bld h p

e r

dL S la l

P P a a e S o

e o

o a

e p

p e

P P L

w L

L lzWe%

p l

l e3 lei lz t

l l

l U

U n%) o le le H

)

e B

z a le le ll le h h h h oe. ta o

e L

e z

i 0

)

o%h0 h

h n

o eS t, )

S S S Ni d0 S 0 o r

t S) S) e o N

m%

rC e1 t )

r6 r

eh e% r% e%

r i 9

1 m3 mh r

r r

r r

r r

r 1

e me e e e en e

w e p p w w we teo e eD pt p0 w0 w0 i

t 0

0 r t o

c t

p p0 o1 o 1 We D

t t

p p o o oh L

I U U L L LS InB InI InO o

n B

1 U( U( L( L(

(

(

(

S d

l e

la i

)

5 3) 9 3

5 6) 0)

WS

/

e e

e r

t

)

)

)

)

VeWt M

a1 4 2 1

1 1

2 3 2

)

7

2 9

8 2

3 1

0 2 45 2 2

2 P

de65 4

5 4

4 7 5 8 0 0 2 6

9 42 6 5

6 6

Rel H8 R 9 6 7 0 0 8 -

1 1

1 1

1 1

1 so 2

9 4 - L - 7 7

7 1

2 2 8 8 7A 0A 2A 9 F A

A 4A A

H 1

1 1

aW V A C C C C C 6(

S 9WT S 2 S T S T S 2 3 3 2 2 S P S( 7( 2( B( 7( 8( 8(

1 1

B Z(

1

A AE7 3 5 5 0 0 4 4

/

6 3

1 3

3 5

1 2

1 1

8 1

9 0 0 0 6 3

N T1 1

1 1

1 1

1 1

1 1

1

%2 3

n i0 6 6 6 6 6 8 5

A 5

5 3

5 5

g

_r 5

3 3 3 3 3 5 8

8 8

8 8

8

/

,a6 6 6 6 6 6 4 6

N 6

6 4

6 6

M

' 0 0 0 0 0 0 0 0

0 0

0 0

0 0

3

' 'o7 7 7 7 7 7 4 8

8 8

8 4

8 8

1 1

1 1

1 1

1 2

2 2

2 1

2 2

s l

0 9 9 9 9 9 7 7

0 6

7 7

7 7

a a

i.

1 6 6 6 6 6 9 9

0 0

9 9

9 9

ir 3

2 2 2 2 2 1

1 2

1 1

1 1

n e

o t

i a

,.')

s m

M it u o 3 1

1 1

1 1

5 5

0 7

5 5

5 5

u r

laor s

iT u +

+ +

+ + +

l 1

InR T

+

c e

x

~ R s

s 1

s

.'(

o iD t c l

e

' g ini UWV n

a a

n foi t

ta o

t n

a e

di e

le le e

n r

omF le le lb b b lb b

b b

b b

b is H

D le le le le D

le le a

i o&

t b

b e

u hrC a a a a a a y a

a a

a v

a a

ik s

e e

.T T T T T T t

r T

T T

T r

T T

u u

t t

s S

S a c Me o

s D

p e

o

)

t r

d Sc e

m i

r W

't rb P

. y' o

)

n aa dl F

r r

eat C C

ld eB nis(

z lc :r 3

5 0 0 5 5 4 6

6 6

4 3

4 4

c o

ri gemor l

9 4 5 3 4 4 1

0 7

0 2

2 2

2 e

t it u

c saet 1 0 6 8 7 7 4 7

6 2

5 4

5 5

a

(

W e

sMhc 1

1 1

1 1

2 1

1 1

1 c

a Nr a A Ca i

F i

u e

m h

le et R e

c ec Y -

h a

b na n

. eP) c of o

cF" 6 4 4 8 8 6

5 8

6 6

C E

7 7

8 8

8 9

A 2

1 3

1 1

T cu TnE0 2 4 4 3 3 1

1 9

/

l r

e On d

%u1 0

1 1

1 1

1 0

0 N

1 1

1 1

1 1

2 x 0 0 0 0 0 0 0

0 0

0 0

e o

a e

Fl 3(

k 0

0 f

t M

s e

y e

ic d

N t l ie u

e l d

U l

tae) is q

c smk%

5 0 0 0 3 3 2 4

9 8

7 4

7 7

t s

e eict 6 5 5 6 6 6 5 6

5 6

5 5

5 5

n a

a e R Bts N (w i

0 0 0 0 0 0 0 0

0 0

0 0

0 0

a t

F V E

r a

n e

D o

p i

e d

r~

t ta e) p 5 0 2

1 1

3 1

3 4

9 2

9 9

a e i p% 6 tsmp o

t 1 1

1 1

1 1

2 2

2 3

1 2

1 1

m Bt ow0 0 0 0 0 0 0 0

0 0

0 0

0 0

C r

sC(

d o

E '

e o

f t

n a

h t

m i

d d

d le l

W le it M

e m

W e

W s

r c

E g

r ir i

m d

le t

C d

i n

n te) it C

i d

e o~

ig t

n l

le C

le In%g l

le W

l W

W s

l igno la r

0 o le h

eof P

o l

e e

0 L h

S t

h t

t t

Ri t t le e

e l

1 le l

t l

S ig S

g ig

(

r r

B i cB h

t te te t

e ale r

e) n n

n e

d l

o S la la la l

Bl h d

p o

e o

o t

A n

a r

p%

e S p

e P P P P L

w L

L a

f e

p tt L lz t

l l

l l

9 lzWe%U U3 e

)

)

l e3 le% o l

le e

z.

t l

L le B

o ia le le le le z

h h h h oc ia oD 0 o) h 0 h

h H

r r

r r C

t. O S 0 o d

r d 0 w

e r t r 6 rd eh e%) S) S) n t

N e S S S S Ni e1 e e e e eti mh m% m(

t 1

e% e%

e it i

o mr 1

r r

r r

re r

p p w w we eo e el pt p0 w0 w0 r

o p0 o1 o1 i

e p 0

0 Wc D

t p p o o oh t

t t

o L

I U U L L LS InB(

InI( InWU( U( L( L(

B n

1 e

S d

ll l

e e

e a

)

3) 9 L

3 5) 6 0)

WS I r

e

)

)

)

t i

)

2 1

1 1

2 3 2 eWta1 4 7

2

)

9 8

2 3

5 V M 45 2 2

2 de65 P

7 5 8 0 0 2 6 0 2

4 5

4 4

1 9

42 6 5

6 6

8 Rel H R 9 6 7 0 0 8 -

1 1

1 1

1 1

1 so 2

9 4 -

L -

7 7

7 - -

7A 0A 2A 9 F 1

2 2 8 8 H

A A

A 4A 1

1 1

aW V A S P S 1 S 9WT S 2S TS T S 2 3 3 2 2 1

B Z( C C C C C 6( 1 (

7(

2( 8( 7( 8( 8(

r s /L 5

0 4 0 6 6 7 8

6 A

0 4

5 R nO 9 T T E7 4 8 6 7 7 5 3

5

/

6 1

4 4

1 6 2 4 3 3 9 2

N 0

8 0

0 1

A Rt 2

O 2

2 1

2 2

a1 1

1 1

1 1

I.

'n L

.i 7 6 6 6 6 6 3 5

3 A

5 3

5 5

g r 0 3 3 3 3 3 8 8

6

/

8 8

8 8

N 6

4 6

6 a7 6 6 6 6 6 4 6

5 AR 0

0 0 0 0 0 0 0

0 0

0 0

0 0

7 7 7 7 7 7 4 8

8 8

8 4

8 8

ac 1

1 1

1 1

1 1

2 2

2 2

1 2

2 s

la r 0 9 9 9 9 9 7 7

0 6

7 7

7 7

o1 6 6 6 6 6 9 9

0 0

9 9

9 9

n ir 3

2 2 2 2 2

1 1

2 1

1 1

1 o

e i

t s

a s

)

n M

it e

a+

+ + + +

+

mn3 u

la 1

1 1

1 1

5 5

0 7

5 5

5 5

c T,

1 l

in R T e

+

s x

s R

i i

io

^

.(

l e

i D

s t

c i

ni n

UWV g

t a

o n

a t

it f

o im "F l

lb lb lb lb lb t

e a

aD le le D

le e

e e

n e

e e e e e

n r

d o&

i u

h rC a a a a a a

v.

b lb lb lb b

b i

b s

H o

a a

a a

y a

a ik s

e T

T T T T T

r T

T T

T T

T o

t r

t u

a c e

u S

p t

s d

e S

t o e

i D m

i Sc W

r b P o

raa

~

)'

C l

r dl yF d

b eB r

o ea t C b Nr a

ige is( 3 5 0 0 5 5 4 6

6 6

4 3

4 4

l 1

lc :r t

ni 7

0 2

2 2

2 a

r 0 6 8 7 7 4 7

6 2

5 4

5 5

c W

r 9 4 5 3 4 4

1 0

mo1 e

u c

t e

ss et 1

1 1

2 1

1 1

1 i

l sn hc1 1

u e

AI Ca m

h F

c et R e

T ec na n

hC E

e) 6 5

4 4

9 7

7 of o

D 6

8 2 2 0 0

c "0 8

8 cu n

3 3 3 3 3

5 4

A 9

9 6

6 le I

7 7

On d L

e1 u

0 8 9 9 9 9 0 8

N 7

8 7

7

/

6 a

e O

l x0 0 0 0 0 0

0 0

0 0

0 0

k f

0 t

E F(

c d

M s

i

y e

t l N

ie u

e sm k%5 0 0 0 3 3 2 4

9 3

7 4

7 7

d U

l t te)

- a is q

t c s e

6 5 5 6 6 6 5 6

5 6

5 5

5 5

n t

c,w 0 0 0 0 0 0 0 0

0 0

0 0

0 0

a t

ei a

i e R Bt N(

s F V E

r n

e D

o p

e d

r i

a e) p t

3 4

9 2

9 9

t 5 0 2 1

1 3

1 p% 6 t

a sm p 1

1 1

1 1

2 2

2 3

1 2

1 1

o 1

t ei m

BsC(

ow0 0 0 0 0 0 0 0

0 0

0 0

0 0

C t

d r

~

e o

- E.

t f

in a

h t

d d

d m

lo le le le i

d m.

W W

W W

s t

e t

c E

ig i

i d

i d

d g

re) n C

C le C

le le t

r r

e n

n i

r e

tn% o io ig t

W W

s W

n n

r a

gn I 0 L e

e o

l 0

ll S

S i

S ig ig B

n eof P

o l

t h

h h

t.

t.

e e

Ri t

e l

1(

t t

e t

n al e te t

e h

r r

g c e e te ta la l

Bl S 1 p

p e

n n

n d

e e

r h a A

in oB S

l l

a o

e o

o t

e B'

le P P P P L

L w

lle le L

L a

lt leWta%U U

e) p p

o l )

l e 3 e

to z

t n n l

l le%

z o

ia e e le le z.

L z

i0

)

N e S S S S Ni e1 to) o% h0 h

h H

h h h h oe d 0 d

r S 0 o S) S) n t

9 1

t )

C mh m1 m3 o

r% e% e%

e i r

mr r

r r

r r

r r

e r

e e e e en r eh e

r 6

r 0

w e p p w w we eo t D teD pt p0 w0 w0 t

re o p0 o1 o1 t

p 0

iWc t

p p o o oh nB B

t L

I U U L L LS i(

InI InO( U( U1 L( L(

o n

e

(

(

S t

d e

i e l

a e

e r

t i

)

5 J

9) 3)

5) 6)

0)

WS I

)

)

s VeWta1 4 2 1

1 1

2 3 2 7 2

)

2 2

2 9

8 2

3 d

7 5 8 0 0 2 6 0 2 45 4

5 4

4 PR e65 - - - - -

1 9

42 6 5

6 6

Rel H8 R 9 6 7 0 0 8 -

1 9 1 1

1 1

1 1

7 7 7 - L 2

se - V A CC C C C 6( 1 ( 7( 2( 8( 7( 8( 8(

F 1

2 2 8 8 7A 0A 2A 9 A

1 A 4A A

H 1

1 aW S 9WT S 2S T S T S 2 3 3 2 2 S P S 1

1 B

Z(

l

Y TP f

RF 1 0 6 8 6 6 1

3 1

6 3

1 1

AE8 0 9 4 7 7 4 1

3

/A 5

2 4

4 0

5 1

3 2 2 8 9

0 N

8 6

8 8

T3 1

1 1

1 1

1 1

2 1

1 1

1

% @3

.n ig7 6 6 6 6 6 3 5

0 A

5 3

5 5

r 0 3 3 3 3 3 8 8

6 8

8 8

8

/

a7 6 6 6 6 6 4 6

5 N

6 4

6 6

M a0 0 0 0 0 0 0 0

0 0

0 0

0 0

c7 7 7 7 7 7 4 8

8 8

8 4

8 8

1 1

1 1

1 1

1 2

2 2

2 1

2 2

s la es 0

9 9 9 9 9 7.

9 0

0 9

9 9

9 7

0 6,

7 7

7 7

1 6 6 6 6 6 9 i

n r

3 2 2 2 2 2 1

1 2

1 1

1 1

e o

t

-)

i a

s l

n M

ia nn s

l it s

m a

3 1

1 1

1 1

5 5

0 7

5 5

5 5

u T

inR T.

+

+ +

+ + + -

1

+

c e

x R

o is s

1

(

s it c D

l e

UWV 1 g ni n

f n

a a

oi t

t o

t a

a e

din le le le le le le D

le le le le D

le le a

i n

r onF b

b b b b b b

b b

b b

b i

H o&

t e

u h nC a

a a a a a v a

a a

a y

a a

e<

T T T T T T r

T T

T T

r T

T s

t ik s

et u

u t

o a c Me S

S s

o D

p e

)

t e

r d Sc m

i r

)

't rb P

. yF o

W n

aa dl r

r eat C C

d e

lc :r eB nis(

ri 3

5 0 0 5 5 4 6

6 6

4 3

4 4

c o

gemo 9

4 5 3 4 4 1

0 7

0 2

2 2

2 e

3 r

l l

t t

i

(

1 0 6 8 7 7 4 7

6 2

5 4

5 5

a saet u

c W

2 e

sMh c 1

1 1

1 1

2 1

1 1

1 b Nr a

A Ca ic u

e F

3 i

m h

la et R

~

e c

ec Y -

h a

b na n

eP) 6 6

1 7

7 7 7 0

2 A

1 6

4 4

C E

a of o

c F" 8 6 6 5 5 5

2 8

8 T

cu TnE0 4

4 e

/

9 5

7 7

r On d

%u3 0

5 5 5 5 5 0 4

5 N

4 5

4 4

1 l

3 x 0

0 0 0 0 0 0

0 0

0 0

0 e

o l g(

k a

e

.F 0

f t

M s

y ic d

e e

it l N

s l

e u

e l tae) 5 0 0 0 3 3 2 4

9 8

7 4

7 7

d U

is q

c smk%

t 6

5 5 6 6 6 5 6

5 6

5 5

5 5

n s

e ei:

t a e R BtsN (w I

0 0 0 0 0 0 0 0

0 0

0 0

0 0

a a

t F V E

a n

r o

e D

it

- e p

r d

t

. ae) p a

5 0 2 1

1 3

1 3

4 9

2 9

9 n

e i p% 6 tsmp o

t 1 1

1 1

1 2

2 2

3 2

1 1

a m

1 1

Bt ow0 0 0 0 0 0 0 0

0 0

0 0

0 0

C r

sC(

d E

o e

o f

t n

a h

t I

m e

d d

l d

l e

le it M

e W

W s

c g

r W

i c

E s

m r

C i

d r

r e

. n i

e n

e) t l

C le C

le le t

i t

g i

d d

s o

g t

in% n l

l W

l W

W s

y igno la r

e 0 o h

le l

o eof P

t 1 l

S h

le 1

0 L e

a Ri S

t h

t t t i

e e lt le g

S ig 3

B n

e ale te te te t

t e

(

re-r n cB h

la la la l

Bl d h p) e n

n n

a A

r o

S e

p% p o

e o

o t

e S iit L lz t

le le le le e

P P P P

)

p L

w L

L a

f lzWe%

e z.

t U1 U l )

l l

e 3 o4 te l

l l

l le% o le le a

6 z

a L

h h h h oe i0 o

)

h0 h

h B

o D o%

H sS r

d 0 t.

I S 0 o S) S) n n n N

S S S Ni t

n rC e1 t )

9 1

mh m( m3 e% e%

e*

r it i

it 4

e o o o r

r r

r r

r r

r r

rd eh e

n e e e e eG r

t r

pt p0 w0 w0 i c s c 0

0 w

e p p w w we o

t p p o o oh te o ele eD o p0 t

p We tnO( U( U( L( L(

o1 o1 L

I U U L L LS InB( InWI B

n 1

s e S

uS l ~

d c

l e

e e

l a

s

)

)

)

e r

t i

)

5) 3 9

3 5) 6)

0)

WS DS e i e VeWta1 4 2 1

1 1

2 3 2 7 2

)

2 2

2 M

9 8

2 3

de65 P

7 5 8 0 0 2 6 0 2 45 5

4 4

1 4

9 42 6 5 1 7 -

7 -

6 6

8 Rel H R 9 6 7 0 0 8 -

1 1

1 1

1 1

se 2

9 - 2A 9 F 7

4 - L 1 2 2 8 8 7A 0A H

A 4A A

A 1

1 aW V

1 A

S P S 1 S 9WT S 2 S T S T S 2 3 3 2 2 1

B Z( C C C C C 6(

1

(

7( 2( 8( 7( S( 8(

A AE6 2 2 2 7 7 2 8

/

5 6

4 4

4 8

2 0 1

0 0 6 4

N 8

4 2

4 4

T3 1

1 1

1 1

1 1

1 1

1 1

%33 n

8 6 6 6 6 6 4 5

A 5

5 3

5 5

4 ilg4 3 3 3 3 3 5 8

/

8 8

8 8

8 a6 6 6 6 6 6 4 6

N 6

6 4

6 6

I

.I i

.:a0 0 0 0 0 0 0 0

0 0

0 0

0 0

o7 7 7 7 7 7 4 8

8 8

8 4

8 8

^

~

1 1

1 1

1 1

1 2

2 2

2 1

2 2

s 0

9 9 9 9 9 7 7

0 A

7 7

7 7

la m1 6 6 6 6 6 9 9

0 0

9 9

9 9

n i

3 2 2 2 2 2 1

1 2

1 1

1 1

r

~

o e

i t

_-)

s a

n s

M la or u

r n l

it a o3 1

1 1

1 1

5 5

0 7

5 5

5 5

i c

T a +

+ + + + + -

1 e

nR T

+

s x

s R

I i

1 o s

-(

D t c l

e n

ini g

UWV

.f n

a a

oi t

t o

a a

i D

le e

le e

D le e

e

.dn*

e lb b b lb lb b

lb b

lb b

lb i

i b

le le e e e

t n&

omFl r

hrCa a a a a a y a

a a

a v

a a

s io u

T T

T T

T T

e>

T T T T T T ru u

o k

s ot r

t t

s e~

S S

p a c s

I

)

t o D

d Sc e

m r

't rb P

. yF Co

.)

n aa d lat C r

r e

eB o

n is(

lc :r ri 3

5 0 0 5 5 4 6

6 6

4 3

4.

4 t

4 5 3 4 4 1

0 7

0 2

2 2

2 la c

u c

ig emo9 r

a i

t

(

s aet 1 0 6 8 7 7 4 7

6 2

5 4

5 5

c 1

1 1

1 2

1 1

1 1

e s Mhc1 b Nr a

A C F u

e m

i et R e

e b

na n

Y :

h ec l

6 6

7 0

8 2

2 2

C e P ")

c of o

. cF 8 9 9 9 9 7

7 T

cu T n E0 8 0 0 0 0 4

A 9

7 0

7 7

1 1

/

l a

e lu3 0

1 2 2 2 2 0 N

1 1

2 0

1 1

1 e

On d

% e 1

3 x0 0 0 0 0 0 0

0 0

0 0

$(

k 0

t F

M s

ic

y e

~

N t l e u

e i

t d

l t

is q

ae) 0 0 0 3 3 2 4

9 8

7 4

7 7

- mk%5 t

c s e

s ict 6 5 5 6 6 6 5 6

5 6

5 5

5 5

n a e R B s N (w 0 e

t i 0 0 0 0 0 0 0

0 0

0 0

0 0

a F V E

r n

e o

p i

i p

e t

t r

a e) 5 0 2 1

1 3

1 3

4 9

2 9

9 o

am p% 6 0

0 0

0 0

t ipt 1 1

1 1

1 1

2 2

2 3

1 2

0 s

m 1

1 C

e ow0 0 0 0 0 0 0 0

t r

B sC(

e o

E t

f a

n m

i d

ld d

e i

le W

le t

n r

t.

r i

W s

m W

c c

E r

g i

C le C

le le c

e t

g l

d i

d d

io in e) i C

le r

ts In% n ll h < W le t

g r

t 0 o e

l W

W e

gno laP o 0 L h

S i

h t

B eof lle t

t t

te lt t

ll S

Ri t

i 1

(

r -. g S

g ig t

t e e e e

ale e

e r

e) n n

n t

d h e

in cB h

l la l

la Bl a

a r

p%

p o

e o

o o

S e S p

a l

le P P P P L

L 9 t) w l

le H

leWe%U l

L l

l e3

)

p t

U3 e

l l

l le% o le e

z t

n le le le zz ta z

a e L

h h h h o e.

i0 o) oD B

o h 0 h

h n

eS S S S Ni e1

t. % t. O S 0 o r d 0 S) S)

N o

e it t )

rC 1

e n e e e e el r t m1 m(

r% r% r%

i l

mh r 6 r

r r

r r

r r

rd eh e

e e

iWc 0

e el pt p0 w0 w0 w

te p p w w we teo t D e

o p0 o1 o p

0 t

o p p o o oh e

B InWU( U( L( L(

L In U U L L LS InB( InI 1

1

(

S d

l e

v :e e

e a

r

)

)

)

)

)

WS e

5 3

9 3

5) 6)

0 VmWt i

t i~

)

2 1

1 1

2 3 2 a1 4

)

9 8

2 3

7 2

45 2 2

2 1

4 P

e65 7 5 8 0 0 2 6 0 2

4 5

4 6 9

42 6 5

6 d

8 Rel H 1

1 1

1 1

1 1

so 2 R 9 6 7 0 0 8 -

9 4 -

L -

7 7 7

1 2 2 8 8 7A 0A 2A 9 F A 4A A

A H

1 1

1

" aW V A C C C C C 6( 1 (

7( 2( 8( 7( 8( 8(

S P S 1 S 9WT S 2S T S T S 2 3 3 2 2 1

B '

Z(

T rO1 R eT E4 1

9 7

7 A

6 7

5 3

7 Rt 2

2 I

_a1 D

.. n' ig7 7

5 5

5 r 0 5

9 8

8 a7 2

1 6

6'

. M 0

0 0

0 0

3e7 7

7 8

8 1

1 1

2 2

s l

i e, 0 0

0 7

8 a

1 0

0 9

0 n

r 3

1 2

e o

t l

i a

s

)n s

M la e r n l

it e

o 3 0

0 5

7 u

iT u

+

2 2

c e

InR T

+

+

s x

s R

2 o i

(

s D

t c

l e

ini n

iWV

- g t

oin o

f l

a e

i n

r din' le le le lb b

F b

b b

le t

e e

o&

i u

omC s

H h

a a

a a

a ik s

r e t T

T T

T T

o t

t e

a c e

D -

p e

s M e 't o

r tSc m

i r

W b P o

r i

a a

)

r dl yF C

ld c

eB r

o eat C i

lc :r nis( 0 0

0 6

6 e

l t

ri r 5 6

0 2

0 a

e u

c gemo9 Ca i

W e

2 2

8 2

c it b Nr a

saet l

1 2

sMhc

=

m h

c u

e A

F et R T

ec e

c na n

l h

a e

C E

of o

Dc92 I

n0 4 5

1 2

9 7

9 cu r

4 1

l On d Le1 8 9

9 8

9 e

o a

e Ou f

x0 0

0 0

0 k

t elf (

M s

c d

y e

N se i

it l l

e u

e l t

5 0

9 8

d U

ae) i s q

c smk%6 t

s e

eict 7 7

8 5

6 n

a a e R Bts N (w 0 a

t i

0 0

0 0

F V E.

r a

e D

no p

e r

d i

t p

t

- a e) 4 2

7 4

n e i p% 3 t

a smp 1

0 0

2 3

o m

Bt ow0 0

0 0

0 C

t a

sC(

d r

.E o

e o

f t

n l

d a

h t

i le l

m e

eW i

M h

S t

r c

s s

g e

n n

p ir E

i p

C io ig U

ll t

s o

e s

ly gnr o

h e

eof g

g t

Ri t )

S a

alt n

n t

B n

e%

c e ig ig t

.e r

n r

r B0 e l

oB o

o t

A i L e F

F 0 w-e1 a

lt lz te le zd L e 3 o

4.

o f

e t

l lz(

B z

o h

h oi o

H N

S S

Ne n

n n t

rWr%

e io o o

)

r r

r e. e e

e e

w p

w we p0 i

t i

it r

p0 c

s c o

p o

oi r W

1 L

U L

LC U(

e s

e S

u S d

c ll e

e e

le s

a

)

)

r e

3 4

e t i

)

)

WS D S V e W

't i

M s 27 6

6 4

.)

91 51 45 45 do87 P

so T X 3W88G 41 42 3

5 Rel H L -

L W6 F 9 F 3M 2A 1

aW 2A P A P A 0W( 9W B

1 (

3( 4( 4 2(

RF 1 AE9 7

8 9

9 3

5 4

8 1

T91 1

2

%1

' 9

'n i7 8

2 5

5 g

r 0 8

4 8

8 a7 1

1 6

6 M

a0 0

0 0

0 e7 7

7 8

8 1

1 1

2 2

s

'i0 0

0 7

6 -

la e1 0

0 9

07 i

3 1

2 n

re o

t i

.)

r i s

a l'

a a

otr s

M

.i T u+

2 2

n o3 0

0 5

7 u

l it e

I R T

+

+

c n

x R(

is s

2 o s

D it c l

e g

ni f

n n

UWV o in e

le le le le o

t d

a e

imFl i

o b

b b

b b

t e

n r

h o&

rCa a

a a

a i

u e

T T

T T

T s

H te ik s

M e o

t ta c s

D p

e o

r

)

t d Sc e

m i

W r

. )

't rb P d

l'1 yF o

n aa ea rC r

ni is(

C d

t eB o

lc :r 0

0 0

6 6

r o

ge mo5 6

0 2

0 l

le r

c t

isa et 9 2

2 8

2 a

t

(

e a

c W

u c

sMhc 1

2 0 Nr a

A C F i

u e

m h

1 et R

. Y ec e

c e

b na n

eP) h a

l C

E c F" 2

6 1

2 1

c of o

TnE0 2 6

5 2

5 T

cu

%u9 3

3 3

3 3

r e

1 l

On d l $(

k x0 0

0 0

0 e

o 1

a e

F f

t

M s

c d

y e

N se i

ti l e-l 5

0 9

8 d

U l

e u

tae) is q smk%6 t

c s e

eict 7 7

8 5

6, n

a Bts N (w 0 i

0 0

0 0

a e R a

t F

E a

V r

n pe D

o e

d i

r ta e) p t

4 2

7 4

n a

s m p% 3 0

0 2

3 o

t ei pt 1 a

m Bt ow0 0

0 0

0 C

sC(

d r

E o

e o

f t

n a

h t

m e

d i

l lo le i

M W

t h

S s

n g

e i

E s

r c

r i

s n

pp C

t io ig l

s y

gnr U

l e

a l

e eo o o

h RiF g

g S

B n

c e ig in t.

t n

)

alt r%

e e

r t

A g

n oB r

o B0 e r

o 0 w a

f liL e F

F e1 e 3 o

4.

t l

o o

'z l

l lz(

L B

z le le zd H

o h

h ol o

n n

n N

S S

Ne e o o

o t

rWr%

)

e. e r

it i i r

r r

t e

e e

w p

w wc p0 iW e s

e c

s c

p0 r

o p

o oi L

U L

LC U (1 S

u S t -

d c

4 e

is e

e l

l e

e

,a ir '

3)

)

WS D S e t

)

)

)

27 6

6 VSWta87 91 51 45 45 z

4 PI de3 5

Rel HTX 3W88G 41 42

- L -

L W6 F 9 F no aW 3M2A( 3( 4( 4( 2(

2 A 1

P A P A 0W9W B

1

,l

1 4

3 4

6 Tt 1

1 1

%g i

n ig7 4

3 5

5 r 0 2

8 8

a7 9

1 6

6 M

'a 0 0

0 0

0'.

c7 7

7 8

8*

1 1

1 2

2 s

l t

0 0

0 7

6 a

e 1

0 0

9 0

i 3

1 2

e n

r o

t i

)n s

a l

r a

m M

it s

e 3 0

0 5

7 i e s

T u

InR T, +

2 2

l

+

+

R c

e x

s s

(

2 o s

D i

it c l

e

,L g

ni foin' n

UWV n'

e e

le o

t e

omF le le lb lb b

i e

di a

b b

n r

o&

t hrC a

a a

a a

i e

T T

T T

T s

H u

et t

ik s

Me o

ta c s

D o

p e

)

t r

d Sc e

m r

i

't b P dl y )F W

r o

n aa eat C r

r nis(

0 0

0 6

6 C

d eB lc :r ri c

o gemo5 6

0 2

0 r

l it l

e t

saet 9 2

2 8

2 1

2 a

(

u c

sMhc W

n Nr a

' - Ca c

e A

F i

u e

m h

i e

et R l

ec Y

e c

eP) h a

h na n

c F" 7

3 8

7 8

E 1

3 2

1 2

C c

of o

TnE0 e

1 1 1

1 1

1 r

T cu

%u9 On d l 9(

k l

x0 0

0 0

O F

e o

1 a

e f

t M

s c

y e

i d

e ie u

tae)

N s

el t l l

t 5

0 9

8 is q smk%6 7

8 5

6 d

U eict 7 c s e

Bts N (w 0 i

0 0

0 0

n a

a e R E

a t

F V r

a n

e D

o t

e) d i

. e p

r t

a 4

2 7

4 p

a s m p% 3 0

0 2

3 o

t n

ei pt 1 m

Bt ow0 0

0 0

0 a

sC(

C E

d r

o e

o f

t n

a h

d t

I l

l m

e le o

M i

W4 h

t S

s n

g e

i E

s r

c r

i n

p C

s o

ig l

t p

ignr U

le s

y eo o l

h e

a o

RiF g

g t

S B

n t

n lt )

att i

n e

o r

e% r ce g

ig oB r

o B0 e t

A in l L 0 w a

f lt e

F F

e1 o

e 3 o 4 e

lz l

iz(

B z

te le Ad L H

o h

h Ol o'

n n

n N

S S

Ne t

r W r )%

e w

p w

we p0 i

t i

io e. e r

io o

r r

r e

e e

t c

s c

W e

s e

c oi p0 o

p r

1 L

U L

LC U(

S u S d

c e

e l

l s

l e

e a

)

)

e e

r 3

4

~

WS D S i

t i

)

V e W't

)

a27 6

6 4

)

P M e87 91 51 45 45 d

3 5

8 Rel H TX 3W8 G 41 42

- L -

L so W6 F 9 F 3M 2A 1

aW 2A( 3( 4( 4( 2(

P A P A 0W9W B

1 r

o s L 5

7 8

5 R nO 9 T T E3 0

8 6

4 6

7 5

3 7

A Rt 2

2 a1 ID

~

ng7 2

4 5

5 i

r 0 5

9 8

8 a7 2

1 6

6

- M

- 0 0

0 0

0 a 7 7

7 8

8 c

1 1

1 2

2 s

l 0

0 0

7 6

a m1 0

0 9

0 n

ir 3

1 2

e o

i ta s

)n s

M l

nn u

a i

u n3 0

0 5

7 c

T u+

2 2

l it e

s x

s In R T

+

+

2 o s

R i

it l

e D

(

c ni n

UWV

. ~g t

n o

f a

o in' lb lb b

b b

e i

e e

e t

e imF le le l

i n&

r do s

H o

u rC a a

a a

a h

k s

e T

T T

T T

o it t

a c e

e t

s M e p

r o

t e

D Sc m

i W

r b P L

o ra a o

ea t C C

d y )F b

r dl i leB r

l nis( 0 0

0 6

6 e

l c :r t

ri a

r 5 6

0 2

0 W

gemo9 b u c

t 2

2 8

2 c

i e

b Nr a

saet 1

2 i

c sMh m

h u

e A C Fa c

et R e

c T

ec C

na n

h a

E e

8 of o

Dc95 2

3 5

0 r

cu I

n0 3 0

9 3

7 l

On d Le1 8 9

8 8

8 e

o a

e Ou f

x0 0

0 0

0 k

t elf (

M s

i d

c e

y e

N s

t i

l l

e u

e l

5 0

9 8

d U

tae) is q

c smk%6 7

8 5

6 n

a t

s e

eict 7 a e R Bts N (w 0 i

0 0

0 0

a t

F a

V E

r n

e D

o p

e d

r ')

p i

t t

e a

4 2

7 4

n a

e m p% 3 0

0 2

3 o

t ei pt 1 a

m Bt ow0 0

0 O

0 C

sC(

d r

E e

o o

f t

i l

d a

h n

lo t

m e

le W

M h

i S

t r

e s

n n

p i

E s

g e

r i

C o

i p

l t

s g

U le s

ly ignro o

h e

a eo g

g t

RiF ig g

te%

B n

S t

n n

)

t al i

t e c e r

o r

n oB o

r B0 e,

t A

0 w i L lz t

le zd L e 3 o

4.

lt l

e F

F lz(

e l

e1 a

f o

B z

le o

h h

ol o

H N

S S

Ne n

n n

t rWr%

e o

o o

)

r r

r e. e e

e e

w p

w we p0 ir it i i t

c s

c p0 r

o p

o oi W

e s

e 1

L U

L LC U(

S u S d

c

'e e

s

/

e l

la e

)

)

t i '

3 4

e e

r VeWta27 6

6

)

WS iD S

)

4

)

M 91 51 45 45 de87 P

so T X 3W88G 41 42 3

5 Rel H

- L -

L W6 F 9 F 3M 2A 1

aW'- 2A( 3( 4( 4( 2(

P A P A 0W9W B

1

AE1 3

3 2

4 5

6 5

1 4

T3 2

2 1

%3 8

n a

ig7 8

7 5

5 r 0 1

6 8

8 a7 2

1 6

8 M

s i 0 0

0 0

0 e7 7

7 8

8 1

1 1

2 2

s a

i 0 0

0 7

6 l

o1 0

0 9

0 i

3 1

2 r

n e

o t

)

is a

l r m a o r s

M it n o3 0

0 5

7 iT u

2 2

u InR T+

l

+

+

x R

c es s

(

2 o i

s D

it c l

e g

ni f

n UWV oi n

d i

. e le le le e

o t

n e

om Flb b

b b

lb i

a n

r hr Ca a

a a

a it e

c&

u et s

H t

e T

T T

T T

k s

Me o

ita c s

D o

p e

)

t r

d Sc e m

i r

't rb P dl y)F W

o r

n aa eat C

r nis 0

0 0

6 6

C d

(

eB a

lc :r ri c

o gem o5 6

0 2

0 r

l it l

e t

saet 9 2

2 8

2 1

2 a

(

u c

sMhc W

e A Ca ic b Nr a

.F u

e m

h i

et R e

ec Y

e c

l eP) h a

b na n

c F" 6

7 2

6 8

E C

c of o

TnE0 5

5 1

3 T

cu

%u3 e

1 5

5 5

5 5

r On d l 3 x0 0

0 0

0 le o

a e

F e(s f

M s

k t

ic d

y e

e e

t l N

s ti le u

ae) l s

q smk%6 5

0 9

8 t

eict 7 7

8 5

6 d

U ic s e

Bts N (w 0 i

0 0

0 0

n a

a e R E

a t

F V a

r no e

D i

te p

r t a e) d t

4 2

7 4

p a

s m p% 3 0

0 2

3 o

n ei pt 1 m

Bt ow0 0

0 0

0 a

sC(

C r

.E d

o e

o f

t n

a h

t I

l d

le l

m e

o M

i W

t hS E

s s

r c

. 'n g

e ir i

n p

C s

io i

p l

t g

s y

gnr U

le eo o l

e a

o h

RiF g

g t

n n

S B

n talt i

lt )

e ce ig r

e%

g r

A in oB o

o B0 e t

r lt L 0 w a

f e

F F

e1 le lz l

l lz(

o e 3 o 4 L

B z

le le zd H

o h

h ol o

n n

n N

S S

Ne t

rWr%

e i i

io o

o

)

r r

r e. e r

e e

e t

t w

p w

we p0 i

c s

c W e s

e o

p o

oi p0 r

L U

L LC U (1 S

u S d

c l

a e e

s e

w ee e

)

t i.

3) 4

)

WS D S r

i V e W t'

)

5 6

M s 27 8

51 45 45 4

)

91 do87 PRel H TX 3W8bG 41 42 3

5 L - L -

so W6'F 9 F

- aW 3M( 3( 4(

2A 1

9W B

2A P A P A 0M2(

1 4

11 l

l

AE6 9

2 4

4 6

8 T3 1 1

1

%3 n

ig 7 9

4 5

5 r 0 4

1 8

8 a7 1

1 6

8 M

g0 0

0 0

0 o7 7

7 8

8 1

1 1

2 2

s 0

0 0

7 6

r l

o1 0

0 9

0 a

3 1

2 i

n re o

i t

s

)

a

r s s

a M

laete3 0

0 5

7 u

it l

i Ti s

2 2

n T+

+

+

c iR e

s 2o s

l R

i x

(

s D

t lc e

- g n

ini UWV oi~-

f n

o t

n e

le e

le e

a e

do i b

b lb b

l it e

hmFlrCa a

a a

a b

n r

io&

u i

e e T

T T

T T

s H

t k

s o

t ta c s

D p

e Me r

)

t o e

m W

i d Sc r

't rb P o

)

d yF n

aa r

e latrC C

d eB n is(

o lc :r 0

0 0

6 6

l ri o

g emo5 6

0 2

0 e

r l

c t

is awtc 1

2 c

W 9

2 2

8 2

a t

(

u c

As M 'C e

b Nr a

a i

F u

e m

h 1

et R h

a e

c e

ec Y

lb na n

e P ')

.cF" 8

2 1

8 5

C E

a of o

TnE0 8 0

0 8

9 r

T cu

%u3 e

1 1 2

2 1

1 l

d 3x0 0

0 0

0 e

o On

' lF f

a e

k

.$(

t c

d

M s

~

i e

y e

N s

t l ie u

e l

ae) 5 0

9 8

d U

l t

is q

smk%6 t

c e e

eict 7 7

8 5

6 n

a a e R Bts N (w 0 i

0 0

0 0

a t

F a

V E

r n

e D

o p

i e

d p

r t

t 4

2 7

4 n

a e) a s m p% 3 t 1 0

0 2

3 o

t p

a m

eiBt ow0 0

0 0

0 C

r sC(

d E

e o

o t

fn a

h t

m e

d i

l le le i

M W

t hS s

n n

p i

E s

r e

g e

r i

s C

t p

io i

U l

e a

gnr l

s y

g l

e o

o eo g

g t

h RiF ig ig S

B n

t n

n t )

t al e%

t e ce t

A r

n B0 e ioB ro ro 0 w a

f mL le F

F lz(

e1 o

z l

l o

e 3 o 4 B

z le le zd L H

o h

h ol o-n n

n N

S S

Ne e

o o

o t

Wr%

)

e r

it i

it r

r r

f w

p w

w e. p0 e

e e

i c

s c

W e

s e

p0 r

o p

o oi L

U L

LC U (1 S

u S d

c e

e s

.r le ie

)

WS D S e e

a

)

i r

.t i f 3

4

)

o

)

6 6

VnWta27 4

)

P e87 91 51 45 45 d

3 5

so T X 3W88G 41 42 Rel H

- L -

L 3M 2 A 1 W6 F 9 F aW 2A P A P A 0W9W B

1 (

3( 4( 4( 2(

R E4 9 3

4 8

/

T 60 7

9 3

N A Rt 1

1 2

a1 ID

_ nig7 0 9

3 5

0 r 04 6

8 8

6

.a7 3 1

4 6

5

.M

^

00 5

0 0_

0 ac77 8

4 8

8 1 1 1

2 2

s l

00 0

7 7

0 a

i a

i 1 0 0

9 9

0 n

r 3

1 1

e o

t i

a s

)n s

M l

er r n ia u

3 0

5 5

6 l

it e

e +0 InR Te 4

4 T

2 c

e

+

+

R is x

s 3 o s

(

D it c l

e ni n

UWV g

t a

a a

o foin t

t t

it a

e n

a a

a le le e

n r

di le o&

D D

C F

b u

omC w.

y a

a s

H r

b b

h a v ru k

s it T

T o

a c ete T

t r

r s

Me S

S S

p e

u u

o r

t e

D Sc m

i W

r rb P s

1

)

o aa

' yF C

d s

eB r

dl r

o eat C nis(

00 4

0 0

3 l

l i

lc:

t e

ri r66 7

0 0

9 a

gemo93 e

u c

r 1

6 8

9 c

W it e

b Nr a

saet l

sMh 1

1 1

i c

u e

A Ca m

h c

et R

_F e

c T

ec h

a na n

. : e C

E of o

D c ") 69 1

6 1

cu I

n0 23 0

2 0

A r

l On d Le1 89 9

8 9

N e

o

/

a e

Ou f

x00 0

0 0

k t

elf (

M s

c d

y e

N s

i e

t l ie u

e l 7

d U

l s

q tae) 3 6

3 0

8 i

smk%1 t

c s e

i 7

6 6

5 n

a 97 eict a e R Bts N (w 0 0 a

t 0

0 0

0 F V

' E r

a n

e D

o

- ~

p e r d

i a e) p t

t a

s n p% 31 2

4 6

2 n

t ewpt 1 0 0

2 2

3 o

a m

Bt ow00 0

0 0

0 C

sC(

d r

E o

e o

f t

d a

h n

l l

d t

m e

i le o

le i

M W

h t

S W

g e

r s

r e

.n' n

p i

c E

s i

C i

r io i

p l

C t

s g

U le le e

a o

l s

y gnro eof g g

t l

h Ri S

h al in n

t t )

le%r S

B n

t

_n c eg ig ei oBo o

B0 e r

r r

0 w e

t A

l L lzl le zd t

l l

le1 w

a f

t eF F

o o

z(

o e 3 o 4 L. L)

B z e oh h

ol o) o%

H NS S

Ne n

n n

rWr%t t

5 o

o r2 e i o i e. e5 r r r

e ee e

wp w

w e p7 pD r

t op o

oipD pO i

t is c

c r

W e

s e

LU L

LCUI U(

(

S u S d

c l

l e

e e

s la e

)

e

.. t ir e

)

2 i

WS D S 1

)

VeWt 9

M s

9 0

_7 0

)

)

41 41 40 P

do Rel H S 9 4226 57 1

K T - 4 0

03 1

se 82W2N F 4 F F

1 1

aW 62A 2A 2W2W2W B

4 5( 5( 8( 7( 7(

AE1 3 5

6 5

/

4 9 6

5 9

N T1 1

1 1

%2 nig7 7 7

3 5

0 r 06 2

8 8

6 a72 5

6.,

1 4

M

00 5

0 0

0 ao77 8

4 8

8 1 1 1

2 2

s s

l s 00 0

7 7

0 a

o1 0 0

9 9

0 3

1 1

n ir o

e i

t

)

a a

s r n M

l ot s

a u o30 0

5 5

6 it i T u+ 4 4

2 u

x s

- R l

I R T

+

+

c n

e s

(

3 o s

D i

it c

~-

l e

g t

t n

a f

n a

a t

e lb it e

niUWV o in-e a

a a

t d

D D

l e

o d

a imFl e

o b

b n&

r h

C a y.

v.

y a

a i

r T

T s

H e

T t

r r

r o

u e t u

u u

c k

s M e S

S S

o it e

a c s

D p

r

)

t o

e m

i d Sc W

r

)

't rb P dl yF o

r n

a a ea t C o

ge is( 00 4

0 0

3 C

d r

nir c leB o

r c:

t sa et 93 1

6 8

9 l

l mo66 7

0 0

9 e

it a

W

(

r c

sM hc 1

c 1

1 u

a e

A; C, F a Nr a

i et R J

m h

u e

i ec Y'

e c

e eP h

a l

cF985 b

na n

0 8

0 E

a of o

TnE0 4 9 8

4 8

A C

/

e 1 33 3

3 3

N r

T.

cu

%u1 le o

2 (x 0 0 0

0 0

d On lF f

a e

9 k

t

M s

i d

c e

y e

N s

e:l ti le u

tae) 3 6

3 0

8 i

7 6

6 5

d U

l s

q smk%1 t

i 97 c

eict 0

0 0

0 n

a s

e Bts N (w 0 0 a e R E,

ra t

F V a

n e

D o

e p

d r

t it

- ae) 2 4

6 2

p e i p% 31 n

tsmp a

t 1 0 0

2 2

3 o

m Bt ow00 0

0 0

0 a

s C (~

C d

E ro e

o f

t n

a h

t d

m e

i l

le le i

M le d

/

h t

S V.

W s

n g

e ir E

s r

e i

n p

c s

io i

p C

i t

r gmo l

C s

y g

e r

U le ll e

la o

RtkF g g

t h

e B

n S

h alt m n

t )e%r S

e ceg g

i l

A n

B0 e r

t oBo o

r r

i L 0 w e

a f

lt eF F

e1 w

e 3 o 4 t

- lzn l

lz(

o o

o L

B ze le zd L)

H oh h

ol o) o%

n n

n NS S

NeWr%t t

5 e

o o

o ee e

e. e5 r2 r i i i r r r

r 7 e wp w

wep pD i

t t

c s

c op o

oipD pO W

e s

e r

LU L

LCU( U(

I S

u S d

c a

e is e

e l

le e

ie

)

)

M s

9 0

.)

)

WS D S r

2 t i 9

1

)

VeWto 41 41 40 7

0 P

d Rel H 1 S 9 4226 57 K T - 4 F-0 -

03 1

so 82W2N F

F 1

4 1

aW 62 A 2A 2W2W2W B

4 5( 5( 8( 7i 7(

AE85 6

0 6

1 7 5

1 5

2 T1 1

1 1

1

%2 1

n ig78 4

3 5

0 r 07 8

8 6

a7 8

1 4

6 5

A I

~

a00 5

0 0

0 c77 8

4 8

8 1 1 1

2 2

s l

i 00 0

7 7

0 a

e 1 0 0

9 9

0 i

3 1

1 r

n e

o t

,)

i a

s s

M l

nn a

t s

i e 30 0

5 5

6 iTe e.

t

+ 4 4

2 u

InR T

+

+

l c

e R

x s

s

< (

3 o i

s D

it lc e

g' ni f

n a

a a

n UWV

. oi t

t t

o t

a a

a e

din le D D

D l

e a

e o

F b

b lb i

hmC v.

y a

a it n

r o&

a v e

re T r r

T T

u et u

u ru t

t s

H ik s

Me S

S S

o a c s

D

)

t o

p e

r

'd Sc e

)

m i

W r

t rb F dl yF C

d o

r n

aa eat C r

nis( 00 4

0 0

3 o

eB ri gemo 66 7

0 0

9 r

o l

c lc :r it l

e saet 93 1

6 0

9 t

a

(

u c

sMhc W

1 1

1 e

A Ca c

a Nr s

F i

u e

m h

i e

et R ec i Y e

c P) h a

lb na n

'c F " 64 8

6 8

3 E

c of o

TnE0 2 4 3

2 3

3 C

e 1 1 1 1

1 1

1 r

T cu

%u1 l

On d l 9(

k 2 x00 0

0 0

0 F

e o

a e

f t

M s

c d

y e

i e

t l N

s e-t l l

e u

i ae) i s q smk%1 97 7

6 8

5 d

U 3

6 3

0 8

t c s e

eicti 0

0 0

0 n

a Bts N (w 0 0 a e R E'

a t

F V r

a n

e D

o e

p r

s e) d i

t t

p 2

4 6

2 p

s m p% 31 0

2 2

3 o

t n

a t 1 0 e

m BsC(ow00 0

0 0,

0 a

u r

E C

d o

~

e o

f t

n a

h t

N m

e I

ue d

M i

W le t

hS W

s n

D e

i e

is r

c E

r n

p s

C i

t r

io i

p gnr U

p C

s y

g l

eo o o

n e

a o

h e

Rift i ig g

g t ) S h

B n

tal n n

t e

e%r S

l c eg n

r r

B0 e r

t A

ioBo o

eL 0 w e

a f

eF F

e1 w

e 3 o 4 le~

lzn n

lz(

o o

B z e e

zd L L)

H oh h

ol o) o%

n n

n Ne NS S

rWr%t t

5 e

o o

o ee e

e. e5 r2 r

it i

it r r r

e wp w

w e p7 pD c

s c

i op o

oipD pO W

e s

e r

LU L

LCUI U(

(

S u S d

c e

e l ~

l laf

)

)

WS is e

e e

e 2

t i 9

D S o

1

)

VsWt a 9

0

)

)

41 41 40 7

0 PI de 9

4224 57 Rel H S

1 K T - 4 0

1 03 so 82W2N F 4 F F

1 1

- aW 62 A 2A 2W2W2W B.

4 5( 5( 8( 7( 7(

)

T tO98 6

7 8

A R pT E38 3

3 5

/

60 7

9 3

N A Rt 1

1 2

a1 0

.1 n

ig7 0 8

3 5

0 r 04 6

8 8

6 a7 3 1

4 6

5 M

00 5

0 0

0 ac7 7 8

4 8

8 1 1 1

2 2

s l

i00 0

7 7.

0 a

c1 0 0

9 9

0 n

ir 3

1 1

e o

t is a

)

r tn s

M l

o re 0

5 5

6 u

ia e30 u

x s

I R Ti + 4 4

2 c

l it T s

e n

+

+

R i

3 o s

D

(

it lc e

ni n

UWV g

t n

a a

a o

f a

o i e

n a

t t

t e

i a

a D

D D

le le n

r d imC y.

v.

b b

it e

o&

o Flb h

ay a

a s

H u

ik s

e T ru r

ru p

e r

t T

T o

ta c e

u t

s M e S

S S

r o

tSc e

D m

i W

r rb P o

a a r

dl yF C

l

)

d b eB r C o

ea t i

lc:

t nir is( 00 4

0 0

3 e

l r 66 7

0 0

9 a

1 1

1 i

W e

u c

gemo93 r

it 1

6 8

9 c

e b Nr a

saet l

c sMh u

e A Ca m

h c et R F

T ec e

c h

a na n

. e C

E of o

Dc97 0

8 7

9 cu I

n0 09 8

0 5

A r

l On d Le1 88 8

8 8

N e

o

/

a e

Ou f

x00 0

0 0

k t

elf (

c d

M s

i e

y e

N s

it l l

e u

e l 3

6 3

0 8

d U

tae) is q

smk%1 t

c s e

97 7

6 6

5 n

a eict a e R Bts N (w 0 0 i

0 0

0 0

a t

F a

V E

r o

e D

n i

te p

r -

d a e) p t

2 4

6 2

n a

s m p% 31 0

2 2

3 o

teipt 1 0 a

m Bt ow00 0

0 0

0 C

sC(

d r

E o

e o

f t

n l

ld a

h t

m e

I le o

le it d

W M

h S

W r

c s

g e

i c

E s

r n

m C

i t

p i

r p

s io U

l C

g o

h l

s y

gnr le le e

a o

eof g g

t l

Ri S

h alt i n

n t

)

e%r S

B n

t c eg ig l

en oBo o

B0 e r

r r

A 0 w e

t eL eF F

e1 w

a f

o le lzll l

lz( L o

e 3 o 4 B

z e le zd L) oh h

ol o) o%

H Ne n

n n

NS S

rWr%t t

52 e i o o o

5 r

r r r

ee e

e. e e

wp w

w e p7 pD op o

oipD pO i

t i

it r

c s c r

I W

e s e LU L

LCU( U(

S u S d

c f

e e

s ie le e

)

r e

2 e

)

t i 9

i P M a

9 0)

WS D S VeWt 1

)

)

4 41 40 7

0 1

de Rel H S 9 4226 57 1

K T 0 -

03 1

so 82W2N F

F F

1 4

1 aW 62A 2A 2W2W2W B

4 5( 5( 8( 7( 7(

j il l

ll

6 N

T3 1 1 1

2

%3 G

nig7 0 5

3 5

0 r 00 4

8 8

6 a73 1

4 6

5 R

R 1."

00 5

0 0

0 3

e7 7 8

4 8

8 1 1 1

2 2

s 0

,00 0

7 7

l e1 0 0

9 9

0 a

i 3

1 1

r n

e o

t

.)

i a

s s

M l

r m s

a e e3 0 0

5 5

6 itiT T+4 4

2 u

t n

+

+

iR e

R c

x

(

s s

3 o i

s D

it c l

e g

ni f

n a

a a

n UWV oi' t

t n

a a

ta

~

o t

D D

D le le di e

e om a

Flb r

b b

i n&

r h

C a y.

v y

a a

it e

o u

e T ru ru u

s H

t r

T T

et ik s

Me' t

S S

S o

a c s

D o

p e

)

t m

ir d Sc e

)

r W

't rb P dl yF o

r n

aa eat C r

nis ri 00 4

0 0

3 C

d

(

eB lc :r c

o gem o66 7

0 0

9 l

l r

it e

t sae t 93 1

6 8

9 a

(

u c

sMh c 1

1 1

W a

c e

A C F i

b Nr a

u e

m h

1 et R b

ec Y

e c

eP h

a b

na n

cF990 c

of o

TnE0 95 4

9 3

A C

E 9

9 2

/

e 1 45 5

4 5

N r

T cu

%u3 On d l 9(

k l

3 x00 0

0 0

F e

o a

e f

t M

s c

d

y e

i i

l e

. e l N

s t

l e

u tae) is q

snk%1 3 6

3 0

8 97 7

6 6

5 d

U t

c ek ict s

e 0

0 0

0 n

Bts N (w 0 0 a

a e R E

a t

F V a

r n

e D

o e

i t

p r

t a e) d t

p 2

4 6

2 p

s m p% 310 0

2 2

3 o

n a

t 1 ei m

Bt ow00 0

0 0

0 a

sC(

C r

E d

o e

o f

t n

a h

t d

m e

i n

lo d

e M

i W

le t

h S

W s

r c

E s

n g

e i

e r

i n

p C

i s

o ig l

t r

p ignr U

l C

s y

eo o e

te l

o h

t e

a RiF g g

t B

n t

t in n

S h

)

e al te%r S

c eg ig l

r r

B0 e r

t A

in oBo o

L 0 w e

a f

l lt eF F

e1 o

w e 3 o 4 e

lzl l

lz(

l L

o B

ze le zd L)

H oh h

ol o) o%

n n

n Ne NS S

rWr%t t

5 e

o o

o r r r

ee e

e. e5 r2 r

it i

it e

wp w

w e p7 pD c

s c

i op o

oipD pO W

e s

e r

LU L

LCUI U(

(

S u S ld c

e e

t e

e s

le i i 2

)

)

J WS iD S L

aW 62A 2A 2W2W2W e

e t r

)

s 9

VeWt 1

a 9

0 ' 7 0

)

)

41 41 40 PR de Rel H S 9 4226 $7 1

K T 0 -

03 1

so 82W2N F 4 F F

1 1

B 4 5( 5( 8( 7( 7(

1

,f

{ll

2 8 5

,T3 1

1 1

1

%3 3

n ig7 5 9

3 5

0 r 00 8

8" 6

a72 9

4 6

5 M

J 00 5

0 0

0 ac7 7 8

4 8 - 8 1 1 1

2 2

s 00 0

7 7

0 m1 0 0

9 9

0 l

a i

- 3 1

1 n

r o

e i

t

)n s

a 1,

r n s

M it ia ov uo30 0

5 5

6 T

u+ 4 4

2 u

n l

i R T

+

+

c e

R x

s is

(

3 o s

D it c l

e gn a

a a

n f

niUWV o i t

t t

a a

a t

D D

D le e

o d n - e a

Flb b

lb e

o imC y

y a

a it e

n r

h o&

a y i

r T

T s

H u

e

- T ru u

u t

e r

r t

ik s

M e S

S S

=

o t

e a c s

D' p

r o

)

t e

m i

d Sc r

W

)

't b P dl yF o

r r C n

a a ea t r

ni 00 4

0 0

3 C

d o

ge is(

eB r

I r

l t

it mo6 6 7

0 0

9

'c lc :r e

l sa et 93 1

6 8

9 a

W

(

u c

sM h c 1

1 1

b Nr a

F ic a

e A

C et R n

h e

i u

ec Y

e c

e eP) h a

lb na n

cF" c

of o

TnE0 80 9

8 9

9 C

E 1 0 9

1 3

3 e

1 1 2 1

1 1

1 l

o T

cu

%u3 r

x00 0

0 0

0 d

l 3 On e

F a

e 9(

k t

f M

s i

d c

e y

e e l t

N s

ti l li e u

ae) 97 7

0 6

5 d

U 3

6 3

0 8

s q

smk%1 t

c s e

Bts N (w 0 0 eicti 0

0 0

0 n

a a e R E.

1-ra t

F V a

n e

D o

e p

d r

t i

. a e) p 2

4 6

2 p

t s m p% 310 0

2 2

3 o

t n

a 1

t m

Bt ow00 0

0 0

0 a

ei sC(

C d

E r

o e

o t

f a

h n

t d

m e

I l

lo i

i M

le k

W e

t hS W

s o

in p

ir E

s r

c n

g e

i c

s C

i t

r p

g l

C s

y g' n r U

le n

e a

i l

eo o o

h e

Rift n ig g

g t ) S h

B n

tal i n

te%r S

e l

ceg A

n r

B0 e r

t i oB r o

0 w e

a f

o lt L eF F

lz(

o le lzl l

e1 w

e 3 o 4 o

l L

B z e le zd

~

L)

H oh h

ol o) o%

n n

n Ne NS S

rWr%t t

5 e

o o

o r2 ee e

e. e5 e ir i

i it r r r

7 t

wp w

wep pD c

s c

op o

oipD pO W

e s

e r

LU L

LCU( U(

I S

u S d

c e

e l

'e

)

)

l e

s la e

e i

WS D S iri 2

t 1

)

VeWt M

a 9

0

)'

9

)

41 41 40 7

0 P

de Rel H S 9 42 26 57 1

K T -

4 03 1

so 82W2N F

1 4 F F

1 aW 62A 2A 2W2W2W B

4 5( 5( 8( 7( 7(

o L

f s

T rO 0 3 3 0 6 8 1

0 6

6 A

R eT E0 9 9 1

2 0 7

8 1

1

/

0 6

6 6

N A

2 1

1 4 3 1

2 2

2 2

Rt a1 1

1 1

1 2

D I

e h

g7 6 6 6 6 0 5

5 5

5 A

r 0 3 3 3 3 6 8

9 9

9

/

a7 6 6 6 6 5 6

6 6

6 N

.M l

J 3 0 0 0 0 0 0 0

0 0

0 0

c7 7 7 7 7 8 8

8 8

8 8

1 1

1 1

1 2

2 2

2 2

2 ls i 0 9 9 9 9 0 7

6 6

6 7

a a1 6 6 6 6 0 9

0 0

0 9

3 2 2 2 2

1 2

2 2

1 ir n

e o

t

)

i a

l t p n.

s M

itia s

ere3 6

5 7

7 7

5 1

1 1

1 u

+

+ + +

+ 2 T

InR T l

R c

e x

s s

(

o i

s c

D li e

. g f

WV oin n

1 Flb b b b le le e

le le o

t din e

le le le lb lb b

b lb b

b it it e e e

a omCa n&

r e

T T T T T T T

T T

T T

i e

h a a a a a a

a a

a a

r U

u t

k s

Me s

H et o

d c s

D no p

e m

ir e

lac r

. )

W b

Is P

dl yF o

r a

eat C ri 0

0 0 0 0 3 4

6 6

6 9

C d

r nis(

1 eB o

gemo1r it 8 8 2 3 9 2

0 0

0 3

l l

a l

t saet 5 5 5 8 7 9 5

2 2

2 4

a e

i r Me c

sMh c W

1 1

2 2

2 1

l a

c a

A C F b

r i

c e

e u

m h

T et R e

c r

)

c Y '

h a

n DeP) h a

Tf o

8 6

3 6

6 C

E L n E"0 I

cF 8

6 6 3 3

1 1

8 0

0 A

1 1

1 8

8

/

l u

r e7 1 7 8 8 7 7 7 8

7 7

7 N

yn d O u 7. (x 0 0 0 0 0 0 0

0 0

0 e

o i a e

El f

t l

t F8~

k iM s

2 c

cl e

i d

(

e ee u

N s

e Fs q

t l d

U ae)

-smi%2 t

7 7 5 0 8 7

8 8

8 7

t s

e e

ct 7 5 5 5 5 5 5

6 6

6 5

n a

e R ui 0 0 0 0 0 0

0 0

0 0

a t

V B s N (w 0 r

a n

E,

e D

o p

i e

d t

r p

ta e) n a

ts m p% 8 9 9 2 1

2 9

4 4

4 6

o m

eipt 0 0 0 1

1 3

1 3

3 3

1 a

r Bt ow0 0 0 0 0 0 0

0 0

0 0

C sC(

e o

d E

o f

t n

5 a

h 3

t I

l 9

m e

le d

h le o

it f

M S

W y

s r

d d

t i

p i

e i

E s

g e

l le d

b c

li n

n p

le C

W W

le ia s

ly d

r i

U l

W la s

o~

g t

igno W

le it it r

o v

eof t )

t h

g g

it a

i e

a Ri t t te% g S

n n

g n

B n

e e e e ale l

i o la l

la la B0 n o'

o~

n a

en cB t

t t

t a

r o

t A

0 o e

L L ~

L n

l L e P P P P L) w l

l l

t l

l l

l le1 l

c l

le l

o a

f

.l lz le le le le zd e

z(

o h h i h ol h0 h

h.

e) d e3 o4.

z t

e%

e l

L B_

h e

H S) s S 0 o S

N S S S S Ne n

n n r) r%S rWr t )

3 a

1 e

e e e e e. eh e% e% e7 r6 b

e it i

t o

oio r

r r

r r

r e

w p p w w we pt p0 w0 w3 wD r

ir o

e o

p p o o oi p

p0 o0 oD oO a

r c

s c B

I We L

U U L L LC U( U (1 L (1 L( L(

s e s

e S

uS u

d c

l e

la l

e e

a s

v e

r t i 6 - 2 9

c e i e

)

)

)

e VeWt 4)

WS DS 6

4 5

- 2 1

1

)

2) 45 4 4

4 9

1

)

P M a

2 5

0 5

5 4

n de 4 9 9 7 1

57 68 42 4 4

5 Rel H SY 8 8 0 5 0 1

1 1

e L L

5 L

so-A lu 3R 7 7 3 2 F

F F

1 1

9 9A 9A aW 2A 1

2 2 3 3 2WTW9W9 S 9 S T S F

B C C C C 7( 8( 2( 2( 2( 8(

1 (

l 1ll l,lll l

il llI l

Y s

g P

e.

t n

nisF esiE 2

s 1

r n a7 m.

r 2

uecB7 CiL' 1

m YP T F 0

7 7

4 3 0 6

4 4

4 R E 7 4

4 0

4 1

8 2

7 7

A A

0 0

0 2

1 6

6 1

0 0

/

1 1

1 1

1 1

1 2

2 2

N 7

.T 7

%i n 5 6

6 6

6 0

5

5. '

5 5

A ig

/

r 0

3 3

3 3

6 8

9 9

9 N

a 7 6

6 6

6 5

6 6

6 6

.M 0

0 0

0 0

0 0

0 0

0 0

ac 7 7

7 7

7 8

8 8

8 8

8 1

1 1

1 1

2 2

2 2

2 2

s l

i 0

9 9

9 9

0 7

6 6

6 7

a e

1 6

6 6

6 0

9 0

0 0

9

n i

3 2

2 2

2 1

2 2

2 1

r o

e i

t s

)

a n

M l

r p.

s a or u o 3 1

1 1

1 6

5 7

7 7

5 u

i T w +

+

+

+

+

2 l

it c

InR T e

R s

x s

i

(

o s

D lc i

e g

n iW V f

n t

oi o

n e

a it e

di le le le le le le le le lb b

b o

F b

b b

b b

b b

b le le i

t e

n&

r hmC i

a a

a a

a a

a a

a a

a e

T T

T T

T T

T T

T T

T s

H U

u r

t k s et o

e d c Me p

s D

r no e

m i

)d ac r

W b P o

't lS

)

a dl yF n

r eat C C

d r

I e leB o

nis(

0 0

0 0

0 3

4 6

6 6

9 l

ri 1

8 8

2 3

9 2

0 0

0 3

e e

l r

gemo a

i:

t c

it W

3 Me c saet 5

5 5

8 7

9 5

2 2

2 4

r c

1 1

2 2

2 1

(

sMhc a

A Ca s

i r

1 e

e m

h F

u o et R e

c l

r c

Y h

a b h a

n

  • P C

E e Tf o

eF) 5 4

4 1

1 5

4 1

4 4

T u

Tnc E"0 8

2 2

1 1

8 2

1 8

8 A

r l

d

%e71 2

3 3

3 3

2 3

3 2

2 N

e o

/

yn f

lu7x 0 0

0 0

0 0

0 0

0 0

k t a e

t F@(

1 c

d i

M s l

i e

i cl e

N s

ae u

Fs q

e l.

d U

t 2

7 7

5 0

8 7

8 8

8 7

n a

ae) s e

smk% 7 5

5 5

5 5

5 6

6 6

5 a

t t

e R eict 0

0 0

0 0

0 0

0 0

0 0

a Btis N (w V

r n

E e

D o

p d

it p

n a

e r o

t p

8 9

9 2

1 2

9 4

4 4

6 a

a e) m s m p% 0 0

0 1

1 3

1 3

3 3

1 d

C t

t ei ro Bt ow 0 0

0 0

0 0

0 0

0 0

0 e

o sC(

t E

5 a

h f

n 3

t m

e i

9 f

M d

o t

i l

l y

s le e'

h W'

i E

s l

i S

b r

c' s

g e

ir la t

d d

ia s

y n

n p

d C'

d le le a

l v

.i. o 'n i

U le e

a p

le l

W W

W n

B n

g g

r W

le eo o

o h

a Ri F

t S

t t

t t

A t )

t i

g g

n t

i g

i i

e a tt e%

g r

n e~

n n

n o

a f

e e

e e

l c e t

t t

t n

e 3

o 4

lt la a

a l

E0 i o B

a 0

o o

o o

d e1 L) w L

L L

e H

l L e P

Pl Pl P

l o~

le l

t s

n n

n l

l l

l lz(

.e lz le le le l

zd le%

L l

le te) a b

e o

o e B

z e

o h

h h

h ol h0 o

h h) h%

r it i

t N

S S

S S Ne S0 t)

S)

S%

S e

rW 3

i c

s c

1 r

r%

r%

r7 r6 a

W e

s e

r r

r r

r r

e e

e3 e

eh e

e e

e e

e.

pt p0 0

w p

p w

w we o

w wD s

o p

p o

o oi pB p0 w0 oD oO e

s u s r

o1 I

u d

c 1

L U

U L

L LC U(

U(

L(

L(

L(

la l

e e

s v

e e

e i

WS D s t,

e a e c

l n

t ir

)

)

)

6 6

4 e

VeWt 4)

P M a

9 1

2 1

1

)

)

2 2

4 lu 9

0 2) 45 4 5 4 5 5 5 de 4

9 9

7 1

57 68 42 4

4 5 4 F

1 Rel H SY 8

8 0

5 0

1 1

5 L -

L -

L -

7 -

3R 7

7 3

2 F

F 9 F 9A 9A se A

1 1

1 aW 2A C

C C C 7(

8(

2(

2(

2(

8(

2 2

3 3

2W TW 9W 9S 9S T S B

1 (

1

N T

1 1

1 1

1 1

7

%1

.~ @

. "n i7 9 9 6 8 0 5

5 5

A 5

g 8

r 5 9 9 3 2 6 8

9 9

/

a6 5 5 6 6 5 6

6 6

N 6

M 3

_ a0 0 0 0 0 0 0

0 0

0 0

e7 7 7 7 7 8 8

8 8

8 8

1 1

1 1

1 2

2 2

2 2

2 s

0 9 9 9 9 0 7

6 6

6 7

l a

M1 6 6 6 6 0 9

0 0

0 9

i 3

2 2 2 2 1

2 2

2 1

n re o

t

.)

i a

lae e3 s

i w

s M

v 1

1 1

1 6

5 7

7 7

5 u

t l

iT

+

+ + + + 2 InR T c

es R

x s

(

is olc D

i e

iWV 2

g n

f n

~

o oi t

t e

din - e le le le le lt b

b lb b

b t

e e

a Flb b b b b le l

e le le i

e in&

r om h

C a a a a a a a

a a

a a

i U

u k

s e e T

T T T T T T

T T

T T

s H

r t

d c Me o

t s

D p

e no r

e

)d lac r

.)F om i

W b P y

't IeB s a dl n

r eat C

C d

r nis 0

0 0 0 0 3 4

6 6

6 9

(

o ri l

l gem o1 8 8 2 3 9 2

0 0

0 3

e r

c li:

t it Me c

sae t 5 5 5 8 7 9 5

2 2

2 4

a r

W

(

sMh c

c 1

1 2

2 2

1 a

A a

e e

.C F 1

r i

u m

h e

et R e

c l

r c

.Y h

a b h a

n

  • P c Tf o

eF94 C

E T

u 8 8 3 3 4 8

3 3

3 T cE 1

1 1

1 0

1 1

0 A

0 r

00 yn d %n e7 1 1 1

1 1

1 1

1 1

N 1

le o

/

1 i a e

lu7 x0 0 0 0 0 0 0

0 0

0 f

t k

l t

F1

(

iM s

c d

i cl e

e N

s ce u

Fs q

e l d

U tae) s e

7 7 5 0 8 7

8 8

8 7

n smk%2 t

a e R eict 7 5 5 5 5 5 5

6 6

6 5

a t

V Bts N (w 0 i

0 0 0 0 0 0

0 0

0 0

a r

n E

e D

o p

d it p

r n

a e

o ta e) 9 9 2 1

2 9

4 4

4 6

a mt e i p% 8 smp C

0 0 0 1

1 3

1 3

3 3

1 t

d ro Bt ow0 0 0 0 0 0 0

0 0

0 0

e o

sC(

f E -

5 s

h t

n 3

t m

e i

9 f

d M

i l

l o

t le o

ty s

W l

E s

h S

i i

b i

s r

e la t

g e

i d

le le a

r n

p le l

e e

ly n

d C

l d

d ia s

io ig p

v a

gnr U

eo o W

l W

W W

B n

e n

o a

h t

t

.RiF t

A t

S t

i i

a f

t t

t )

t al e e e e le% g g

g g

n e ce t

t t

t B0 r

n e

n n

n o

n oB l

la la la a

o o

o d

e3 o4 0 o i L e P P P P e1 L) w L

L L

e H

lt f

l o

l l

s e

lz l

l l

l lz(

n n n le%L ll le le) a B

z le le le le zd e

b e io oio o

h h h h ol h 0 o: h h) h%

N S S S S Ne S 0 r

S) S%S 3 r

Wc t

e r

r7 r6 i

t it rWr e% e% e3 e a

)

1 s c r

r r

r r

r e

e e e e e. eh 0

e s e w

p p w w we pt p0 o

w0 w wD s

o p p o o oi p

p0 o oD oO B

1 I

e S

uS r

u d

L U U L L LC U( U( L (1 L( L(

la l

c e

s e

v e

e e

WS IDS v.

e e

c a

r n

. t i

)

)

)

YeWt 4) 6 6

4 e

P M a

9 1

2 1

1

)

)

2 2

9 lu 5 5 0 2) 45 4 5 4 5 4

F 4

de 4 9 9 7 1

57 68 42 4 4

5 Rel H SY 8 8 0 5 0 _

1 1

1 L - L - L -

5 so 3R 7 7 3 2 F

F 9 F 9A 9A A

1 1

1 BaW 2A( C C C C 2WTW9W9 S 9 S T S 2 2 3 3 1

7( 8( 2( 2( 2( 8(

R eT E28 1

8 4

/

3 2

5 5 0 9 2

N 7

2 A Rta1 1 1

1 2

2 2

0' 1

.n ig04 4 5 5

5 0

3 r 4 6 6 8 8

8 6

8 a35 5 6 6

6 5

4 M

I

- 05 5 0 0

0 0

0 ae78 8 8 6

8 d

4 2

2 2

2 1

1 s

la i

09 9 7 7

7 0

7 ir a 06 6 9 9

9 0

9 n

e 2 2 1

1 1

o t

1 i

a s

M l

r n u

)n s

a r

l i u n 01 1

5 5

5 0

5 c

e M T u 5 + + -

1 ix s

InR T

+

+

s io s

- - R t

i l

D

(

nc e

UiWV n

g o

t t

f n

a a a

n e

oi t

t t

i a

a&

n a a di D D le le le le a

t e

ru omF le D

i hrC a

y.

y a a

a a

y.

s H

b

. b b

b b

lP k ss e

r T

T T

T r

o c

e T ru u u

t r o p

e t

a c e

Me S G S

r D

m i

r W

eb P

~

o lca C

d r

)

1 uB dl yF la N:

o r

eat C l

t nis(

03 3 4 2

6 6

6 e

e r

c ri 25 c

W gesr 7 9 l

2 8

7 7

7 h e a

t o 77 b

isaWt 3

5 6

5 cr i

sR c

1 1

1 1

1 c

au e

T et R s

Ca m

h AR F

e c

Bc h

a a

n

~

t f o

- e)

C E

D c'0 nu n'

0 0

r 5

1 3

I 6

6 A

1 3

l ion d 4

6 e

o Le1 8 4 6 8

/

Pa e

Ou 62 N

2 1

f 2

1 k

t E F(

c d

M s

l x0 0

e i

e yl N

s i e u

t e l d

U t

l s

q ae) is e

smk%26 0 5 5

6 5

5 n

a 7 7 2

4 9

2 t

80 c

eict e R Bts N (w 0 0 i

0 0 0

0 O

0 a

t aV E

r a

F no e

D p

e r' d

i t

a e) p t

n a

s m p% 1 2 1

1 1

1 2

2 a

p 0 2 9 7

7 3

3 t

o m

ei 1

t Bt ow00 0 0 0

0 0

0 C

r sC(

e o

d E

o f

t n

a h

t h

ld d

m e

i ne M

e le l

it S

. n' -

t W W le s

e h

E s

e ia t t S

le t

d i

d g

g r

s

.o~

ta e

n n

e ign l

m L

L o

o w1 W

s y

eogP r

l L% g B

n l

e) t e

a o)

Ri nn tn%n le t

e aie e e

g t

h h

o0 n n cr h iooS la i0 A

t 0 o t

l LF P o0 S S

t 1 e1 L a

f tt e

e e

tad le e 3 o 4

(

(

l o

lt t

n lted ia ia) t t

B' eia e eW m% m% i l H

Be d) d do h h

Bd l

e S m W S) e n

n n

e e3 e

lz r w ze e eD e e. e%

e it i

it mr o

o o

r 7

z. r 2 r 7 l

e ot o oi tnI( InO r

0 r

ze w0 ir Dt t

i r

c s

c o

W e

s e

InC L(

n 1

NI L NC I

(

S u S d

c l

la i 7

6

)

)

0 7

e l

r

)'

e s

e e

t

)

e e

YIsWta3 1

)

WS D S i

1 1

- - 2 5 2 5

2 1

PR e21 3 6 1

6 4

1 7

1 4

d 1

7 9 2 8 Rel HP1 2 7 8 8 6 4 1 so 2 8 4 1 A 0A0A 2A 7A aW 2 9 1

T S P S P S 1 S S

1 B

A C 8(

1 ( 1 (

7( 6(

^

1 i

R E34 6 1

8 A

7 4

A 24 9 4 9

/

4 9

5 N

2 1

T 1 1 1

1 3

%2

=

3 a.

ng04 4 5 5

5 0

3 i

r 4 6 6 8 8

8 6

8 o35 5 6 6

6 5 e4 e

R c

  • a05 5 0 0

0 0

0 e7 8 8 8 8

8 8

4 1

2 2

2 2

1 s

l a

'r 09 9 7 7

7 0

7 o06 6 9 9

9 0

9 n

ire 2 2 1

1 1

1 o

t is a

)n s

M l

ma u

a l

it i m5 0 1 1

5 5

5 0

5 c

iT i

+ + -

1 e

inR T+

+

s 1 x s

R i

t o nli e

D s

(

ic n

UWV

' g t

a o

f n

a a c

t oi a

t t

t e

i a

n a a n

r di e D le le le t

e e

la&

D b

D.

lb b

b b

s H

omFl i

u hrCa r u

v y a a

a a

v k

e T

o Pc s

et u

r T

T T

T ru t

s Me S S S

p e

r o r

)

e D

m i

d ac W

r eb P o

't lc a

)

yF d

n r

d lat C C

l o

uB r

e o

n is(

0 3 8 4 2

6 6

6 e

l c N:

t is r i r g

a emo7 9 5 2 8

7 7

7 r

c aet 7 7 3 5 3

5 6

5 c

W t

(

h e a

s Mhc 1

1 1

1 1

i 1

cr e

A.Ca m

h e

au et R F

e c

l c

h a

b Ba n

Y>

a f

o P -

C E

t T

nu ecF) 6 6

8 0

l r

n d T n E "0 5 5

2 A

5 2 5 6

e o

io e

%e51 1 4 3 3

8 f

/

1 9

N a

u 1

1 1

k P

t l 3 x0 0

0 0

M s

F2(

c d

yl e

$e e

i t e u

N s

l s

q d

U i

ic s e

. e l n

a tae) a e R smk%26 0 5 5

6 5

5 a

7 7 2

4 9

2 a

t t

80 FV eict r

n Bts N (w 0 0 i

0 0 0

0 0

0 o

- E e

D i

p d

t p

n a

t C

e :

o r

a mt a e)

-o n p% 1 0 2 9 7

7 3

3 o

ok pt 1 2 1

1 1

1 2

2 d

r Bt ow00 0 0 0

0 0

0 e

o t

f s C, (

E a

h n

t m

e I

M l

it le d

d s

h le le E

W W e

E s

S i

te h

s t

e ia t

S d

t s

y n-io d

g ig r

le gn la e

n n

e e

la t

o o

w-W B

n eogP m

L L

o) r L%

e t

A Rinn t

cr h te te) H n

t l

ooS l

In% e e

g eieg e

a 0 h h

o0 n a

f n

t 0 o e 3 o 4 i LF P o0 S S

e (1 L t 1 H

tt e

e e

t o

t t H

(

n B

eia e ft t

t iad e n

n n

ed ia ia) l o

Bd Be d) d% do h e io o

it h

l m W. S )

e S e

eWm7e%m7 e3 r

e t

i r%

mr lz r e

i c

s c

l ew0 W

e s

e z.

r 2 r r

0 ot o

oi te eD e c ze w ze t ir Dt r

NI L NC In1 InO o1 S

u S InC L(

d n

(

(

c e

s e

le e

e l.

WS D S i

e la

~t ir -

)

)

V0eWt 7

6

)

1

)

a 1

1 2 5 2) 5

- 1 4

0 7

3 - - 2 1

P0 de 21 3 6 1

6 7 4

1 8

6 7 9 2 8 Rel H P1 2 7 P@P 1

1 8 -

so 2 8 4 1

0 0A 2A 7A A

aW 2

9 1

T S S

1 S S

1 B

A C 8(

1 1 (

7( 6(

L 1

1 i

i

02 8 8

1 6

5 N

T 1 1 1

1 2

1 3

%2 9

i n

ig24 4 6 5

5 0

3

- r 7 6 6 6 8

8 6

8 a2 5 5 6 6

6 5

4

.M a05 5 0 0

0 0

0 c7 8 8 8 8

8 8

4 1

2 2

2 2

1 s

l a

i i 09 9 7

7 7

0 7

r c06 6 9

9 9

0 9

n 2 2 1

1 1

1 e

o t

i a

s

)

M lae"r i

w su 01 1

5 5

5 0

5 l

it s e5 + +

T 1

c e

InR Ti +

+

ix s

' R is s

o t

(

ic D

nl e

i n

UWV g

f n

a a a

o t

e oi t

t t

i t

a n

a a a

r din e

la&

D D le le le le t

D e

Flb u

om i

h Ca y y.

b b

b b

s H

r a

a a

a y

k Pc s

e T ru u S

p e

t T

T T

T r

o r

e t

u s

r o Me S S d

ac e

D

)

m ir r

W eb P o

't lc a

- yF) n r

dl r C C

d uB eat o

nis

(

l c N:

ri 03 8 4

2 6

it 6

6 e

l t

r

(

c gem o7 9 5 2

8 7

7 7

a r

W sae t 77 3 5

3 5

6 5

c h e a sMh c

1 cr 1

1 1

1 1

i e

A Ca m

h e

au F

et R c

e c

lb Ba n

h a

Y-c f

o eP C

E t

T nu cF) in d

T n E"0 7 r

1 5 2 1

A 3

2 9

l 4

6 3

e o

o e

%e51 0 6 6 7

/

u 0 0 0 N

0 0

0 k

Pa f

t l 3 x0

M s

F2(

c d

yl e

i e

it e u

N s

i s q

d U

l e't n

c s e

tae) c e R snk%2 6 7 7 2

4 9

2 a

t et ict 8 0 0 5 5

6 5

5 a

t FV r

0 0 0

0 0

0 r

a n

Bts N (w 0 0 o

E e

D i

p t

d p

a e

n o

r' mt ta e) a e i p% 1 0 2 9 7

7 3

3 C

smp t 1 2 1

1 1

1 2

2 d

ro Bt ow00 0 0 0

0 0

0 e

o f

sC(

t E

n a

h t

i m

e M

n i

e d

d t

h le le l

s S

le E

s W W i

n te t

S d

h s

t t

io te ia ig ig r

le ly d

s gn l

e n

n e

a o

o w-W e

a eo P

m L

L o).

B n

Rig r

l L%i t

t nn e) le tn%

l le A

e cg h te aie g

t iooS l

i0 h

h o0 n a

f n

r a

t 0 o B'

lt te l

to0 S S

iLF P

e( L e 3 o 4 1

tt 1(

t t

e e

t l

H l

e le lted ie%m%

iad le n

n n

a l

d) d do h h

ia) a ei Bd Be e

e it i

it o

o o

e S m W S) e3 eW m7 mr r

e z e w ze e eD e e. e%

lz r r

. r 2 r 7 lz i

e c

s c

r w0 W

0 e

s e

r ot o oi t Dt r

t NI L NC InI InO i o n

InC L(

S u S 1

(

(

d c

l e

is e

e e

l e

l e

WS D S a

)

)

r t i 7

6

)

5 0

7 VeWt

- 6 1

)

1

)

1 1

2 5 P M a3 26 2

1 7 1

4 Rel H P1 2 7 8 8 6 4 -

8 -

de21 3 4

1 7 9 2 8 1

so 2 8 4 1 A 0A0A 2A 7A aW 2 9 1

T S P S P S 1 S 1

S C

A C 8( 1 ( 1 (

7( 6(

1 I

T E89 A Rt 3 4 1

5 8

1 1

1 2

D;a1 I

n f

ig 00 0 5 5

r 4 4 7 5 8

a33 M

6,.

4 1

6 m

i

,00 5 0 0

a77 8 8 8

g 1 1 2

2 n

s ir l

e a i0 0 0 0 7

e r

o0 0 0 7 9

n i

n e 1

1 o

ig a

s t

i nE M l

s

)

rm0 u

a e

0 0 6 6

l i

c n e inR T + + +

is t

T 4 4 4 5 2

o s I

R it it s

ns e D

(

n Uu V

, g o

b t

nm e

.f t

a a

oin~

t i

a e

t e

n l

D le l

i r

di

- ee a o.

u Fib b

. b b

s H

omC l

PC s D

m i

h aa v a a

T T

o re T T ru t

r s

M e' S

p e

et a&

e r

r W

lexo P o

c 1

ul r

')

C d

c dl yF i

o r

l eat C NWt l

e e

nis( 00 8 5 0

a ri h

gemo7r68 2 0 0

c W

c lb c&

a it 5 4 7 8

saet i

1 1

c a

e sMhc m

h k R

. Ca A

T e c F

e c

Bo n

.D' e)

C E

h a

t c o

nb c

0 0

r ia d

I n "0 7 2 5 7

l 7

o Le1 5 1 6 5 5

e o

P B e

Ou 3 2 0 f

2 k

x0 t

El s

c d

ye e

..F(

iN s

r e

t r u

ei t l d

U u

q i

ae) l t

e smk%30 7 7 6

n 2 0 0

t icc 77 eict a

aa R Bts N (w 0 0 r

a i

0 0 O

a t

Ff n

e D

E un o

p i

e d

a t

t e' p

r n

m o i p %'

a a

1 9 5 8 6

o M

tomp t 1 0 0 1

2 a

Bt ow00 0 0 0

C l

r sC(

d e

o E

e o

s f

ta h

s n

l m

e t

e i

V le it h

ie s

S t

M n

i S

E s

e h

g ta i

n ig d

r s

o r

e e

t ign o

y m

w.

s la o) e eo0 F g r )

Ri nl ig t

l n te% L%

B n

e aie c g n

r h r

h0 o0 A

l ooS o t 0 t

i LF F o0 1

te(

a f

t l

t 1 lt e

iad e 3 o

4.

(

o tee le lted B'

l l

Bd Be do H

h l

e n

n n

e S eW mW e mr r i o

o e

o l

lz r e

z.

r.

z e wze ee i

t i

it r

r ot o oi t i W

e s

e c

s c

InC n

NI L NC S

u S d

c fie e

s e

l e

e r

)

t i -

5 4

e e

VeWt 20 9 1

4 WS iD S

M o50 8

P 1

do35 5

2 Rel HVV W3 4 -1 so 33 2 9 4A aW'22 2 1

2S B

1 1 1

2 7(

R E68 3 5 A

1 3 0 0 5

5 1 1 1

1 2

T 3

1

,%2 9

nig00 0 5

5. J 8

r 44 7 5 1

6 8"

.' e33 II f00 5 0 011 o7 7 8 8 8

1 1 2

2 g

~

i' in s

r l

f' e

a i 00 0 0 7

o00 0 7 9

n e

r 1

o i

n e

./

1 i

ig a

.e s

t s

)

nE M t

nn u

e l

tt i n0 0 0 6 6

a iT a4 4 4 5 i + + + -

c n

e InR T s

2o t

s lR D

it i s

(

i n s e

n Uu V

~

g t

n a

o b

foi a

t nme

. d in>e le t

a e

t e

i D le l

i r

Flb b

.b b

omCa lao u

a y a a

s H

h r

P C s

s eJ T T ru t

T T

o e

t e e S

p s

r R

e D

r m

W i

)d a x r

e o P o

't lcc r

eet C

.)

n dl yF

~

C d

r o

uli o

nt is( 00 8 5 0

le r

l NWt gamo68 2 0 0

a r

c W

it c

sset 75 4 7 0

c

(

hc&

a sA hc 1

1 i

A Ca m

h B

1 e

F e

ak R e

c ec l

h a

b Bo n t eP-C

- Y' E

a c o t

T ioB e

%e51 1

< cF) 6 nb T n E"0 r

6 5

l 7 5 4 3 3

e o

a d 9

9 1

f u

1 1

1 k

s l 3 x0 0

P t

- F2(

c d

e i

r ye e
79. ~

N s

t r u

i u q

d U

l e:"

n a

i t

e c c t

l ae) 2 0 0

a t

R omk%30 7 7 8

a t

a a 77 oict r

Ff u n

Bts N (w 0 0 e

D i

0 0 0

n o

E p

J d

i a

t p

n a

o a

M e

mt re )'

p 9 5 8 6'

C t

- a o m p% 1 0 0 1

2 d

l r

e t 1 e

o oi o

Bt ow00 0 0 0

s f

sC(

t a

h s

n

- E m

e t

e I

V M

it ne s

s h

l E

S le s

i e

h t

g t

S s

y n

n a

i i

l g

d r

e a

io ro e

e m

w?

B n

gn eogF g n e) t A

o) r Ri nN ig n% L%

a f

t i e t

a

- e cg h r Io0 e1 H

o0 l

ooS o t0 e 3 o 4 i

0 n

r lt LF F

t 1

(

n n

n oi t te l

t(

tiad Bi eia le ed o

o o

h l

de e i i

it l

Be

.Bd S e

r le W m W. Wc t

e i

s c

e n r lzn e e

s e z. r z e w ze e c ot o oi t h S

u S r

r NI L NC nC d

c n

I e

s e le e

e i

.r WS D S e

e r

)

, t i~

s 5

4 VeWt 20 9 8

a 50 PR de 35 1

4 5

2 Rel H VV W3 4 -1 so 33 2 9 4A

- a W' 22 2 1

2 S B

1 1 1

2 7(

L.

02 9 7 1

5 T

1 1 2

3

%2 G

n

[

i00 0 5 5

7 g

r 4 4 7 5 8

..' a33 M

4 1

6

~

'a 00 5 0 0

e77 8 8 8

g 1 1 2

2 n

s i

l re a

i>00 0

0 7.

e r

  1. o00 0 7

9 i

n 1

1, n

e o

ig a

. J.

t is n

l r n E M it i 4 4 4 5

c s

3 a w e00 0 6

5 u

r l

.iT n

e InR T + + +

2 o s

R s

i it it s

(

D n s e

Uu V

.- g n

b f

n a

o t

oi t

tnm e

a a

din - ee om Fbb D le le it e

r l

l b

b lao u

i Caa y a

a s

H hr P C s

ete TT r

T T

o t

u s

Me S

p e

a&

r e

D r

)

m i

d x

r W

e o P o

't lcc dl yF

)

n r

r eat C C

d o

uli o

nis( 00 8 5 0

le NWt gemo68 ri l

r c

it 2 0 0

a c

saet 7 5 4 7 8

c W

(

hc&

a sMhc im h

1 1

1 A Ca e

F e

ak R ec e

c lb Bo n

Y h

a cFT C

E c

c o

eP t

T nb

~

97 2 9 2

r ia d

TnE 0 06 6 0 6

e o

l oB e

%e51 f

u 00 0 0 0

k P

t

.lF2(

c d

3 x s

ye e

. g-i e

r N

s t r u

e ;:

d U

il u q

i t e

tae) n a

c c l

R emk%30 7 7 6

t 2 0 0

a t

a a 77 eict a

Ff u n

Bts N (w 0 0 i

0 0 0

re D

n o

E 1

p d

a t

p i

n a

o M

e r ')

a mt t

e p

9 5 8 6

C a

s m p% 1 l

t 1 0 0 1

2 d

r e

ei o

Bt ow00 0 0 0

e o

s f

sC(

t a

h E

s n

t e

I m

e V

M i

t n

t e

.. ^

I s

h S

Ie E

s i

e h

s g

t t

n ig ia S

n s

y r

d r

o l

e e

e a

ign o

m w>

B n

eogF g r )

o)

Ri nn ig n

A e% L%

t t

i e a

t

$e cg h r

i0 o0 a

f n

n r

iooS o t 0 t LF F o0 e 3 o 4 e (1 l

e l

t 1 H

t

.le~

(

,B lt t

le lt lad n

n n eia ed l

o o

o Bd Be do e

it i i h

l e S o

leW mW r

t e mr i

c s

c lz z. r.

W e

s e

e z e w ze e e r

ot o oi t

r r

InC S

u S i

n NI L NC d

c e

s e le 3

. l e

e WS D S i

e la r

t i

)

5 4

VeWt 20 M

a 9

8 50 P

de 35 1

4 5

2 Rmlo VV W3 4 -

H 1

33 2 9 4A W

22 2 1

2 S 1 1 1

2 7(

11

T nO 5 6 6 9 0 6 8

2 A

6 1

R T E5 1

1 9

1 1

6 0

/

2 5

2 4 3 4 3 7 8

2 N

8 4

A Rt 1

1 1

1 1

1 2

1 2

a1 101 n

ig0 0 0 0 0 8 5

3 A

5 5

r 4 4 4 7 4 8 8

8

/

8 8

a3 3 3 1

3 6 6

4 N

6 6

M 0 0 0 5 0 0 0

0 0

0 0

ae7 7 7 8 7 8 8

4 4

8 8

1 1

1 1

2 2

1 1

2 2

d r

s a

l y a i

r 0 0 0 0 0 0 7

7 7

1 6

k r

e0 0 0 0 0 0 9

9 9

9 0

n c

e 2

1 1

1 1

2 o

o t

i D

a s

M

~ -

)

s n

ml l

n u

a e

i m n c

a t

e u0 0 0 0 0 0 5

5 5

5 7

i T 4

1 2

T

+

^

is InR d

s

~

R+

r s

e e

(

D t

n V

g o

t t

o f

n a

a a

a R

e oi t

t t

i d n' t

a a

a r

D D

le e

e e e le D le e

le Ca a a v a a a

y b

lb i

H i Flb lb b

.b lo b

y a

a d

u om s

1 n s

hr o

e-T T T ru u

u p

e t

T T T

r r

T T

a s

et itn x e

Me S

S S

r D

m i

r W

Uo P C

le c

o yl r

- ' yF d

)

i dl 1

rWt r

o r

eat C l

nis e

u c

1 5 5 0 0 0 9

4 4

9 6

a

(

ri l

S&

a W

gem o7 7 7 8 7 5 4

3 3

4 2

r6 3 3 5 3 2 3

5 5

3 0

c h

i t

sae t i

1 1

1 1

1 2

c k

e sMh c m

h a

A C T

yc R F

i o e

c t

l c

n h

a ib o

- e )

C E

c a D c" 7

7 0

0 0

r 3 3 3 3 0

A 4

4 I

n 0 0 0

0 aB d Le 3 5 5 5 5 3 6

2 l

F e

Ou 3 3 3 3 3

N 5

5 e

o

/

1 f

x0 0

0 0

0 k

t elf (

c d

r s

e e

i e

r N

s u

u e:

t l d

U t

q ae) c e

smk%47 5 5 5 5 1

5 5

5 5

6 n

a 5 5 0 0 0 7

4 4

7 8

t eict a R Bts N (w 0 i

0 0 0 0 0 0

0 0

0 0

a t

f a

E r

u n

e D

n o

p a

e d

i r

p t

M ta e) n a

1 1

1 1

3 6

2 2

6 4

o m

e i p% 1 tsmp t 1 1

1 1

1 3

1 2

2 1

3 a

Bt ow0 0 0 0 0 0 0

0 0

0 O

C le r

sC(

d E

s o

e o

s f

ta h

e n

l e

c t

r r

m e

V i le ld i

C t

h i

i e

C M

S n

t W

le le lo s

l l

d

?

e h

h le W

E s

a d

o e e i

it i

d g

S S

s t

i t

t gn la l

e n

a r

r o

e e

W s

y eog P P m

L w

w it it l

e a

r g

Ri ai l

l e) l o

o t n le le e e i oo S S l

la In% le L

L g

n B

n e cg h h t

t t

r a

0 h

)

n o

n A

l LF P P o0 S o) o% o L

t

%te0 l

le e 3 o

4.

t L

6 l

a f

le t

te t

l l

t 1 t

e e) e0

(

ta%t B

le ia ia le le lt t

i0 ia4 a

le h

eld iD h lz r

e w w ze eI eO S) S H

h h B d d Be d 0 dD d

e e S S n

n n

ewe 1 m( m( e%

)

r%

e o

o it e mmr mh e

o r

r l

z e r

e e r t ld d

z. e r

r le w0 o0 0 w0 r

it is c

e te e o o oi t o i

o t

t r

c tnWL( L(

o N

I i L L NC InB InWI W

e s

e n n 1

1

(

S u S l -

d c

l e

l e

e a

e s

r

)

)

)

)

)

t i.

4 5

0 4

6 e

e VeWt i

WS D S 9

1 2

1 2

9 8

5 9

2 M

a0 4

4 4 5 P

de1 6 6 5 5

7) 5 4 5

6 4

5 5

5 4

Rel HV 2 2 1

1 1 26 5 1

1 1

1 1

5 L - 4 -

so 2 3 3 4 4 0 1

7 A 4A 4A A 9A 1

aW2 2 4 4 4 4 5 T S 2S 2S T S 9S J

B C C C C 2( 8( 7( 7( B( 2(

1

A 1

3 2 3 2 5 6

0

/

6 1

6 1

1 1

1 1

1 1

2 N

1 2

T 9

%2 8

n A

5 5

ig 0, 0 0 0 0 8 5

3

/

8 8

r 4 4 4 7 4 8 8

8 N

6 6

a3 3 3 1

3 6 6

4 M

~

a0 0 0 5 0 0 0

0 0

0 0

.s7 7 7 8 7 8 8

4 4

8 8~

1 1

1 1

2 2

1 1

2 2

d r

s a

0 0 0 0 0 0 7

7 7

7 6 i l

y a n

c 0 0 0 0 0 0 9

9 9

9 0

k r

s 2

1 1

1 1

2 n

i c

e o

o t

is D

a

)n s

M it ml l

nm u

a iR T +

1 0 0 0 0

5 5

5 5

7 a

0 ie0 n

+

+

c 4

2 iT a e s

d s

R i

r s

D

(

e e

t V

- g n

t o

t f

n a

a a

o R

e o i 'J t

t t

a a

a a

i din-e le lb

.b b

lb y

a a

s H

D D

le le t

e D le le e

e r

omFl i

v a a

a v

b b

b b d

u hrCa a a ru u

u r

r T

T.

o e

T T T T

T T

n s

et t

1 e

a s

Me S

S S

p r

)

it d

n x e

D ~

m i

o W

r

't Uc P

)

o yF d lat C C

d n

yli o

n is(

r r

e rWt o

r l

ri 1

5 5 0 0 0

9 4

4 9

6 l

e g emro6 3 3 5 3 2

3 5

5 3

0 a

c u

c is eet 7 7 7 8 7 5

4 3

3 4

2 c

W t

(

S&

a s Mhc 1

1 1

1 1

2 i

1 A

Ca m

h k

e e

yc R F

i o e

c lb l

c n

Y h

a t

eP C

E a

ib o

cF)

T c a n E0 9

9 r

7 7

6 5

l 5 5 5 5 8

8 6

A 2

2 aB d T

N 3

3 e

o F

e %

e61 1 1

1 1

1 1

3 9

/

f u

2 2 2 2 1

t l 9 x0 0

0 0

0 k

e e

9 ic d

F2(

1 r

s e

N s

ru u

e :

d U

t q

c e

t l n

a ae) 5 5 0 0 0 7

4 4

7 8

a R smk%47 5 5 5 5 1

5 5

5 5

6 t

a t

f eict a

u n

Bts N (w 0 e

D i

0 0 0 0 0 0

0 0

0 O

r n

o E

p d

a it p

M a

o n

e r a

mt t e) 1 1

1 1

3 6

2 2

6 4

C a

l o m p% 1 e

r oi pt 1 1

1 1

1 3

1 2

2 1

3 d

s o

Bt ow0 0 0 0 0 0 0

0 0

0 0

e o

s f

sC(

t E

a h

e n

t V

m e

i M

e it n

e e

d i

i s

r r

h le C

C E

s S

W i

G B

t e

e d

s e

t n

ia t

h h

d lo s

y e

e l

e t

d g

S S

le W

e a

io ta la e

n W

B n

r r

gn l

m o

e e

eog P P r

L w

w it t

g t

t A

Ri n n n e ai e e te t

te) o o

ig n~

e oo S S la la In%n e

e L

L) n o

a f

g c r h h 0 h n

o) o% o L

e 3 o 4 i LF P P o0 S e%te0 le n

n n

t L

t 6 u l

H t 1 lt e e e) 0 n n

(

a%t i D h e i i

it B'

e ia tee e lt o

t t

t i0 ia4 a

e h

eld o

o o

h h B d d Be d 0 dD dos) S e e S S r

e1 et e(

r) eWmh r le ee w0 w0 t

e

(

md r% e%

i lz r t md mrn r

r c

s c

W e

s e

lz r

e w w ze eo e

e e r

r l

0 z e t

o o oir e

o1 o0 S

u S o

t t

t t

N i I

L L NC InB InWInWL( L(

d n n 1

(

c e

e s

le e

e v

i WS D S e

a r

)

)

)

)

.)

t i 9

V e W 't 4

5 0

4 6

1 2

1 2

9 8

5 9

2 M

a0 4

4 4 5 P

4 5

6 4

de1 6 6 5 5 7) 5 5

5 5

4 Rel H V 2 2 1

1 6 5 4 -

1 1

1 1

1 1

5

- L -

so 2

2 3 3 4 4 0 1

A 9A 7

A 4A 4A 1

aW 2 4 4 4 4 5 T S 2S 2S T S 9 S B

J C C C C 2( 8( 7( 7( 8( 2(

1 l

l l

T 6 N

1 1

1 1

1 9

1..

%2

~- $

+

' n

~

ig0 0 0 0 0 4 5

A 3 '

8 8

5 5

r 4 4 4 7 4 6 8

/

8 s3 3 3 1

3 6 6

N 4

6 6

I R

- 0 0 0 5 0 0 0

0 0

0 0

4' n 7 7 7 8 7 8 8

4 8

8 o

~

1 1

1 1

2 2

1 1

2 2

dr s

l a

l y a t 0 0 0 0 0 0 7

7

7. '

7 6

i e0 0 0 0 0 0 9

9 9

9 0

n k

r 2

1 1

1 1

2 c

e o

2 o

t i

D a

)

~

u s

M l

e m

n s

ml

! r a

a e

it s e0 0 0 0 0 0 5

5 6

5 7

c T

e 4 1

2 inR T+

+

+

s d

s

,i; -

.(R i

r s

e e

D t

V

.. g t

n o

n a

a a

o t

f R

e oi a

t t

t i

a a

a r

din e le le o

Flb b b

.b b

b D.

lb b

it D le le le e

e D

k d

u hm Ca a a v a a a

y y

a a

s H

in s

re r

T T

o t

a s

ot ' T T T r

T T T

r u

p e

u u

)

it s e S

S S

r d

n x e

I D m

i r

W

't Uo P

)

lc o

n yi r

dl yF C

d rWt r

o eat C r

l nis

(

l e

c u

ri 1

5 5 0 0 0 9

4 4

9 6

a gom o6 3 3 5 3 2 3

5 5

3 0

r c

t 7 7 7 8 7 5 4

3 3

4 2

c W

(

S&

t isae a

1 ssh c i

1 1

1 1

1 2

k e

AI C a e

yc R F

m h

t o e

c lb i c n

h a

Y a

ib o

eP '

C E

l T

c a cF97 7

r cB d TnE 0 6 6

2 2 2 2 6

7 3

3 l

9 9

0 0 0 0 3

A 2

2 2

e o

F e %ue6 1 0 8 8 8 8 0 1

N 7

1 1

k

/

f t

l 9 x0 0 0 0 0 0 0

0 0

0 r

s F2(

c d

e e

g e

i u

u N

s r

c e

e-d U

t q

n t l a

ae) a R 5 5 0 0 0 7

4 4

7 8

a t

smk%4 t

f eict 7 5 5 5 5 1

5 5

5 5

6 a

u n

Bts N (w 0 r

i 0 0 0 0 0 0

0 0

0 0

n o

E?

e D

p a

d it p

M a

n e

o m

t r -

C a

l

- a e) e r

s m p% 1 d

1 1

1 1

3 6

2 2

6 4

t eipt 1 1

1 1

1 3

1 2

2 1

3 e

o s

o s

f Bt ow0 0 0 0 0 0 0

0 0

0 0

t sC(

e n

E a

h t

V m

e i

M i

t l

c s

le d

h l

i I

E s

r S

e C

Ie i

W ll s

t e

h t

e s

y e e ia t

h S

d d

l n

i e

a io t

t d

g S

r le le L

gn la l

e n

e) o e

w% W W

B n

a r

eog P P m

L w

o0 l ig a

f t.

t A

Rnn H l

re) l o

L 4 vg e ai e le e e n

r S S la la In% le L

t c g t

t h h 0 h oD n n

e 3 o 4 oo o) t o

o lti LF P P o0 S e% eO L L

H t

t 1 e e e%t

)

(

n n

n g

le:

0

(

B lt t

t n n tted i0 ia4 n

n t

tad e e

e it i i e i ia e e l

a a

o o

o l

B d d Be d 0 dD do h h

h h r

e e S S e1 eI e

S) eWmh m( m W. S ) e%

W e

s e

t i

c s

c e mme e e%

r r

r r

iz lz r t e le t ir d

r r

r r

0 0

t e c z e e w w zc eo w0 w0 S

u S o

t t

o o oi t

r o1 o InWInC L( L (1 d

c N

I i L L NC InB n n

(

e s

e le e

e i

l,:

WS D S la ire J

t

)

)

)

)

6)

VAsWt 4

5 0

4 9

1 2

1 2

9 8

5 9

2 a0 4

4 4 5 PR de1 6 6 5 5

7) 5 4 5

6 5

5 5 4 4

Rel H V 2 2 1

4 0 1

6 5 1

1 1

1 1

5 L -

1 4 -

so 3 4 2

aWi2 A 4A 4A A 9A 1

1 7 T S 2 S 2S T S 9 S 4 4 4 5 2 3, C B

J C C 2( 8( 7( 7( 8( 2(

1

T E4 4 6 4 6 5

0 6

0 0

/

1 3

1 4 9 7 6

0 N

A Rt 1

0 0

N 1

1 1

1 1

2 2

2 2

D a1 I

7 n

mi0 0 0 0 0 8 3

5~

A 8

5 5

A g

r 4 4 4 4 7 8 8

8

/

8 8

8

/

. a3 3 3 3 1

6 4

6 N

4 8

6 N

M 0 0 0 0 5 0 0

0 0

0 0

0 0

' a c7 7 7 7 8 8 4

8 4

4 8

8 8

1 1

1 1

2 1

2 1

1 2

2 2

d r

s a

l y a 0 0 0 0 0 0 7

7 7

0 7

7 7

i i

k r

c 0 0 0 0 0 0 9

9 9

0 9

9 9

n 2

1 1

c e

1 2

1 1

1 o

t o

i D

a s

M u

s

)

r ml laer u

it e 0 0 0 0 0 0 5

5 5

0 6

5 5

c a

e i T 3

1 2 3 1

InR T + - - -

-(

is d

s R

r s

D e

e t

t V

- g n

o f

t a

a a

o oin t

t ta t

i e

R e

a n

a a

a a

D le onF le le le le r

d i D le D

D le le le t

d u

hnC a a a a v.

b b

b b

b is H

b b b b a

y a

v y

a a

a m

i 2 n s

e" T T T T t

r T

r T

T T

T o

r r

et u

u u

u a

s Me S

S S

S p

e it r

n x e

D r

W Uo P

. )

c o

yli r

dl r d

yF r

o eat C C

l 1

rWt nis( 8 0 4 3 2 5 4

4 4

5 4

4 4

e l

e ri l

u c

r 5 3 3 7 6 0 5

2 5

6 2

2 2

a gemo 1

1 1

1 1

1 1

1 1

i W

b S&

a it 7 8 7 0 6 6 3

5 3

2 5

5 5

c saet sMhc c

k e

A-Ca m

h F

T yc R e

c t o h

a ic n

- e ;

C E

l D c ")

ib o

c a I

n0 9 9

9 9

A 2

8 8

7 7

7 7

2 2 2 2

9 9

A r

cB d Le1 2 5 5 5 5 2 6

6 N

3 5

6 6

N e

o l

/

/

F e

Ou 3 3 3 3 0 0

0 0

0 k

f u 0 t

El F. (-

r s

c d

e e

N s

i e

r u

e l u

tae) 2 0 4 5 4 0 4

7 4

6 7

7 7

d U

t q

smk%

t c

e eict 7 6 5 5 5

1 5

5 5

5 5

5 5

n i

0 0 0 0 0 0 0

0 0

0 0

0 0

a a R Bts N (w E

a t

f a

u n

re D

n o

p e r' d

a i

t p

t

- a e)

M a

s m p% 1 p

2 1

5 1

5 2

9 2

9 9

9 9

n t

t 1 1

1 1

1 3

2 1

2 1

1 1

1 o

m Bt ow0 0 0 0 0 0 0

0 0

0 0

0 0

C ei a

le sC(

d r

E s

o e

o

~

s f

t e

n a

h d

m e

t V

i n

l d

ire e

d o

le C

M W

h le i

W W

t S

n s

n te it e

d d

E s

g i

h lo lo d

o e e ia it t

i o

L o

e d

g n

g S

W W

le t

s ign la la e

n o'

n t

t m

L l

L w

it W

s ly r

g e

a eo P P r

l le n

o i

B n

n l

n te) g it Rig le e te te t

t ai o S S l

l In% le h

e L

n n

g e

cg h

o o

n in or h h a a 0 h S

o L

L o

t A

l L F P P o0 S S

t e

t te e e

e e% le ll L

a f

e lt

)

t 1 (

l B'

le ia t

n u lt t

t t

a e e ed a ia t

e lle) e3 o4 i h h l

i ia) a0 h h

i S) h%

H B d d Be d d) d%d0 S.

n n n e e S S e) e% e0 e( r) r%S eW m% m0 m5 md e% e3 r3 e io oio 1

7 e mmr r

lz r

r l

e e e

z.

0 e eD e le o0 oD oO i

t it r5 r

r w0 w6 wD r

e e w w ze re z

t t

0 t D d

o o o oir t

c s c t

t L L NC In1 InI InO 1

I We InWL( L( L(

N i In n

s e

(

(

(

S uS c

l ie ie e

s e a

r a 3 2 2 2 1

8 e ie t i '

)

)

WS DS VeWt 5

5 P M 8

)

de0 5

8

2) 2) 2) 2)

3 1

9 8 9

)

5 5

64 5 0 64 64 68 Rel H V 3 3 0 3 5 7 1

1 7 -

4 - 70 7 7 -

3 4 -

se 3 3 2 3 7 F

F F

F 7 4A 3

4A 23 1 1

- aW 2 4 4 4 4 2 L 2S TW2S 2R TWTWTW 1

1 B

C C C C 4( 7( 8( 7( 0( 8( 8( 8(

1 l

R E5 4 2 3 6 6 6

9 A

1 9

9 A

A 0 2 0 3 8 5 4

7

/

0 7

7

/

1 1

1 1

1 1

1 N

2 1

1 N

T 1 0

.%3

+@

'n 4

i0 0 0 0 0 8 3

5 A

8 5

5 A

g

.r 4 4 4 4 7 8 8

8 8

8 8

/

/

a3 3 3 3 1

6 4

6 N

4 6

6 N

M

)YP F

a0 0 0 0 5 0 0

0 0

0 0

0 0

E

(

e7 7 7 7 8 8 4

8 4

4 8

8 8

2 2

2 s

1 1

1 1

2 1

2 1

1 d

rae r

s

' 0 0 0 0 0 0 7

7 7

0 7

7 7

l y

a r

y a r

0 0 0 0 0

9 9

9 0

9 9

9 e

o0 w

n i

k r

2 1

1 1

2 1

1 1

o c

e p

o o

t

~

lu s

l i

D a

)n s

f M

i n ml l

r a ev u

a or 0

0 0 0 0 0

5 5

5 0

5 5

5 it e3 t

c i +

1 2 3 1

i T c

a e

InR T e

s R

f i

d s

f

(

r s

e D

e e

8 t

8 n

V g

t t

t 2

o f

a a

o t

n a

a t

t e

le g

t e

oi h

a R

e a

a a

a i

r din' e

lb b b b

b v.

b b

u i

D le D

D le D

le Flb le le e

W omC t

a a a a v a

v a

y a

a a

o s

H d

u h

r r

T T

T h

o e

T T T T r

T T

ru u

2 n s

et u

u t

r r

d n x e

D 5,

p e

a s

Me S

S S

S t

)

it r

m i

8 o

W r

5

't Uc P

)

o 1

l d

yF A

C d

n yi r

e lat C r

S rWt 8

0 4 3 2 5

4 4

4 5

4 4'

4 le r

o n is(

l l

r i r d

e gemo5 c

u c

3 3 7 6 0 5

2 5

6 2

2 2

a W

i t

saet 7 8 7 0 6 6 3

5 3

2 5

5 5

(

S&

a s Mh c 1

1 1

1 1

1 1

1 1

w c

i a

1 A

C F la k

e i

m h

t e

yc R e

e c

n l

t o r

h a

b lic n

Y :

fe e

m C E

c ib o

P cF)

T c a n E"0 2

5 5

5 5

u r

2 aB d T

8 8

2 2

A 5

5 5 5 5 2

2 A

le o

c F

e % e11 1 1

1 1

1 1

4 4

N 2

1 4

4 N

ic

/

/

r f

t lu 2 2 2 2 F3(

l k

0 x0 0

0 0

0 0

e e

le i

d c

r s

h e

N s

r s

u u

re d

U t

q e l w

c e

.tae) o n

a t

0 4 5 4 0 4

7 4

6 7

7.

7 l

a t

a R smk%2 6 5 5 5 1

5 5

5 5

5 5

5 o

eict 7

. 0 0

0 0

0 0

0 0

l e

D f

a t

u n

Bts N (w 0 r

i 0 0 0 0 le n

o Ei

~

h p

a i

s d

e p

t M

a t

o n

ea e) ia r

a mt t

d C

l s m p% 1 p

2 1

5 1

5 2

9 2

9 9

9 9

e r

e d

1 1

1 1

1 3

2 1

2 1

1 1

1 t

m e

o ei s

o Bt ow0 0 0 0 0 0 0

0 0

0 0

O 0

r t

e n

.Es C. (

t a

h s

f e

n t

V I

i m

e l,

l c

ia i

M r

t le d

d i

t E

s r

e s

h le le C

m a

S W

W ll d

lo d

i d

g n

t h

l d

s te t

e t

n ia t

ig ig S

W W

le it e

ly g

o n

s e

o t

te ign la la e

n o

n r

W i

a l

r l

L w

it.'

t im o

L o

e ig eog P P m

L le le L

n n

it l

B n

Ri g

A e cg h h te t

te) l i

o t n l

le e

g i

t i oo S S l

la In% le h -

h o

o n

i e3 o

ai le a

t r

a 0 h S) o L

L o

n f

n l LF P P o0 S S

e t

te e l

l t (

t te%

te) l l

l U

L lt H

t 1 e

0 te ta%l l

le e

e y

n n

a5 t

B le a ia le le led ia a

i) i 0 h h

h) r e

it i

id D d%d0 S'

u o

o r

i h h l

B d d Be d S) e e S S e) eI r%S 7

S r

e0 e(

leW m% m( m5 md 1

)

e r% e3 r3 mmr i

r c

s e

e n

lne r

e e We rd e w w n e.

r r

l w0 w6 wD o

r r 0 s

te0 el eD t WL( L( L(

e d

e o

t r e o0 oD o

t t

o o oi n n r

tInWInO I

1 I

oO d

S u

N I

I L L NC In1

(

r c

(

s e

l a

e s

b e

l WS ID e

e la i -

)

)

la r

t u

VeWta0 2 2 2 1

8 3

5 5

P M 8

)

2) 5 8

2) 2) 2)

V d e3 5

1 9 8 9

)

5 64 5 0 64 64 68 Rel HV 3 3 0 3 5 7

1 1

F 70 7 7 -

7 3 4 -

so F

F F

3 3 3 2 3 7 4A 23 1

7 4A 1

1 1

aW 2 4 4 4 4 2 L 2S TW2 S 2R TWTWTW B

C C C C 4( 7( 8( 7( 0( 8( 8( 8(

1

/

4 8 0 8 0 6 2 1

/

1 6

4 T 1 N

1 1

1 1

1 1

1 N

1 0

%3 9

A n-i g0 0 0 0 0 1

3 A

3 8

5 A

5 r 6 4 4 4 7 8 8

/

8 8

8

/

8 a2 3 3 3 1

6 4

N 4

4 6'

N

~M

)

6 Y

P 0 0 0 0 5 0 3

0 0

0 0

0 0.

F i

E "a7 7 7 7 8 8 4

8 4

4 8

8 8

(

s 1

1 1

1 2

1 2

1 1

2 2

2 r

d a

r s

~

e y

a l

i.0 0

0 0 0 7

7 7

0 7

7 7

0 r

y a k

r

'e0 0 0 0 0 0 9

9 9

0 9

9 9

e i

w n

2 1

1 1

2 1

1 c

e 1

o o

t p

o l

i D

a t

lu s

u s

M ia f

ml l

r r

e e, e 0 0 0 0 0 0 5

5 5

0 5

5 5

v u

t InR Ts 3 1

2 3

1 it c

i T c

a e

+ - -

e e

e is R

fe d

ss

.(

f D

r 8

t V

- g 8

n to foi t

t t

t 2

n a

a a

a t

o R

e h

a n

a a

a a

e le le g

it di

. e le le le D le i

D le r

D D

l b

b u

e o

Flb b b b

d u

hm C a a a a

v.

b b

y a

a a

r o

b o

s H

a v

a v

ru r

2 n s

et - T T T T ru u

t e

T r

T ru T

T T

h a

s Me S

S S

S t,

p e

)

it d

n x e

D 5

r m

r 8

i W

o 5

't Uc P yF A

C d

o 1

)

i dl S

n yl r

r eat C Wt o

o nis 8 0 4 3 2 5 4

4 4

5 4

4 4

le r

(

ri i

r l

gem o5 3 3 7 6 0 5

2 5

6 2

2 2

a r

d e

c u

c sae t 7 8 7 0 6 6 3

5 3

2 5

5 5

it W

(

S&

a sMh c w

c 1

1 1

1 1

1 1

1 1

1 A C F la a

i k

e i

m h

e yc R t

t o e

e c

n lb c

n

- Y r

h a

i e

c ib o

. eP -

f l

.cF 7

7 m C E

)

T c a TnE"0 9 9 9 9 8

8 9

8 8

7 u

r 7

9 9 9 9 5

A 5

9 5

A 5

c cB d 6

6 le o

F e

%ue1 1

/

/

0 7 7 7 7 0 1

N 1

7 1

N 1

ic r

f r

s

.F3 (

l k

t l 0 x0 0 0 0 0 0

0 0

0 e

e 9

0 le 0

c d

i h

e N

r s

u u

s re d

U t

q r

e l )

7 7

lo n

a c

e tae w

a R smk %2 0 4 5 4 0 4

7 4

6 7

t a

t i

7 6 5 5 5 1

5 5

5 5

5 5

5 o

f t

eic u

n Bts N (w 0 0 0 0 0 0 0

0 0

0 0

0 0

l r

a t

n o

E le e

D h

p a

i s

t d

r t

p M

a e

ia o

e n

mt ta e) a l

p 2

1 5

1 5

2 9

2 9

9 9

9 d

C s m p% 1 e

r 1

1 1

1 1

3 2

1 2

1 1

1 1

e d

t ei s

o Bt ow0 0 0 0 0 0 0

0 0

0 O

0 0

m e

o s

f sC(

e t

r E

V I

i a

h e

n tn t

l, m

e l

c ia i

M r

t le d

r e

s h

le ld ld i

t E

s e

e C

a S

W W

W m

i n

n te t

t.

h lo d

lo d

d s

e t

e i

it g

W it e

ly a

n s

io e

t d

g ig ig S

W le t

gn la la e

n n

n i

a o

o o

e W

m r

eo P P m

L L

L w

it it l

B n

Rig le e ta la i0 h

h h

o n

o a

f g

g i

r )

l l

l o

A te% le le le L

n it t

n l

n 1

t ai e e g

n e cg h h l

t l

U n

t i LF P P o0 S S

S o

L o

L it n

r S S n

oo e3 o4 lt le l

l t 1

)

l L

le ry n

n e

l H

e e e

e e

te%l

(

l B

lt t

t le le lt t

t ta) e ia a

eld ia a

i ia0 h e

h) r lz r

e w w ze e S%

u e o oi i h h i

h)

B d d Be d d) d%d0 S - S%

e e S S e) e% e0 e(

)

r7 S

r it i

eW m% m0 m5 1

e r% r3 e3 n

mmr md i

r c

s e

l We e e w0 e6 z.

r 0 re 5 r

r r

w wD o

s D teD e le z e r

0 o0 oD oO d

S uS o

t t

o o oi t

L L NC In1 InI( InotnWL( LI L(

e d

t n

N I

In

(

(

I 1

(

s c

l e

e a

e l

t b

e s

e WS DS i

a r

)

)

lu t i -

5 5

)

2) 2) 2)

V VeWt 3 2 2 2 1

8 8

a M

a0 2)

P 5

8 de3 1

9 8 9

)

5 7 5 64 5 0 64 64 68 Rel HV 3 3 0 3 5 3 4 1 1

4 - 70 7 7 -

so F

F F

F 3 3 3 2 3 7 4A 23 1

7 4A 1

1 1

a W" 2 4 4 4 a 2 L 2S TW2S 2R TWTWTW B

C C C C 4( 7( 8( 7( 0( S( 8( 8(

1

o L s

T nO 2 5 2 4 6

R T E6 5 1

8 8

A Rt 3 7 0 8 7

I

- a1 1

1 2

D

.n i0 0 0 5 0 ^

g r 4 7 7 8 6

a3 1

1 6

5 M

'a 0 5 5 0 0

7 8 8 8 8

c 1

2 2

s l

a r

n 0 0 0 7

0 i

e0 0 0 9

0 n

e o

1 t

i a

s M

lae m0 0 0 5

0

)

s n

r t

u l

it e

1 c

e iTe a5 4 3 InR T+

+ +

+

s x

s R

i o

s l

e

~

D

(

c i

n WV

g o

t f

n a a 3

e oi t

t i

a r

dn e

D D le le t

a a e

t i

i Flb u

om ink s

hr C a y.

v.

b b

s H

a a~

u r

T T

o Uc s

et t

e T

r u

e Me S S p

e o

r t

c D

m i

n r

W ib P

o oa 1

PB r

C d

)

dl yF o

r e

y:

t nis( 2 6 7 0 6

l l

eat C e

r ri a

e c

W gemo7r5 4 2 0 7

l r

1 1

ic e

a b k it 1

4 8 6

seet r

c e

sMhc T

uu A Ca m

h t

R

.F Tc e

c a

n h

a De99 C

E f

o yu c

9 r

t 4 4 4

l I

n02 2

n d i

Le1 3 7 7 3 7

e o

l i a e

Ou f

2 2 2

k x0 0

c t

El aM s

Fl e

F(

c d

i e

N e

u s

e l s

q tae) d U

s e

smk%8 t

0 7 0 9

eict 6 7 6 6 5

n a

e R Bts N (w 0 r

a i

0 0 0 0

a t

V n

E e

D o

p e

d it r

p ta e) n a

m e i p% 1 6 8 6 3

tsmp o

1 0 0 2 2

a t

Bt ow0 0 0 0 0

C r

sC(

e o

E d

o f

t i

l a

h n

t le m

e h

l i

M S

le ts e

h o

ig d

r is g

n n

t S

E a

i r

e e

t s

ign o

n w.

e ly s

. eog F g r r

o)

Ri a

t n le in e) L%

B n

ai l

tn%

n r

g

.e cg h r

Io00 o0 A

ioo S o t 0 t

l LF F

B lt t

l t 1 e1 a

f t

e

(

le le lted

(

tiad e 3 o 4 e ia l

l B d Be de H

h e S e

n n

n leW mW.

e io o

o e mr lz r

e z.

r r

z e w ze e c i

t i i t

r r

o t

o oi t

i c

s c

InC W

e s

e n

N I

L NC S

u S d

l 'e

)

1 l

c a

e e

le s

r

)

t i -

4 e

e V eWt 6 1

6 WS D S i

M a4 6 6 8

0 P

4 1

de1 4 2 2 9

Rel HS P S 4 1 1

so 2 3 3 4A 2A aW' 2 2 2 2S 1 S B

1 1

1 7( 7(

j

TRF 1 1

5 4 7

P 1

2 7 4.

AE9 1

7 9 4 4

T0

'%2 1

1 2

. G nig0 6 0 5 0,

r 4 5 7 8 6

a3 1

1 6

5 M

0 5 5 0 0

no7 8 8 8 8

1 2

2 s

l i 0 0 0 7 0

a i

'e0 0 0 9 0

r 1

n e

o t

i a

)'

s M

.l n u s

aiTs n0 0 0 5 0

u i a t

a n

Ts 5 4 3

1 c

l

+

+

+

x s

. iR R+

iD e

s

(

o s

lc i

e WV

. '- g n

f n

a a

o oi t

t n

a ta D D le le a

3 e

di le o m 'F b y a a

i

.b b

t e

r i

hrC a y r

T T

s H

it u

e-T r

t nk s

et u

u T

o Me S

S Uc s

D p

e o

m ir e

)

t c

d n

r

-.)

W ib P

oa dl yF o

't r

PB r

eat C C

le n

d nis( 2 6 7 0 6

o o

r i r l

gemo5 c

y:

t 4 2 0 7

it

(

e c

saet 7 1

4 8 6

a r

W c

1 1

c sMh e

a A Ca k

i 1

r R

..; F m

h r

e e uu Y;

e c

t Tc l

h a

b a

n eP) f o

c F' 7

7 C

E a

7 7 7

T yu T n E'0 2

2 2 2 2

r i n d %e t

1 1 1

l 2 x0 0

e o

a e

lu0 1

1 1

l f

Fg(

k ic t

c d

aM s

i e

Fl e

N s

e u

e l.

tae) 0 7 0 9

d U

s q

smk%8 teict 6 7 6 6 5

n a

s e

e R Bts N (w 0 i

0 0 0 0

a t

V E

a r

n e

D o

d i

. e ~

p r'

t t

p a e) n a

s m p% 1 0 0 2 2

o 6 8 6 3

t eipt 1 a

m Bt ow0 0 0 0 0t C

r sC(

d E

o e

o f

t n

a h

t l

m e

I le i

i h

le s

M S

l t

n n

a S

E s

e h

g t

i i

s io ig d

r t

e e

s y

r gn o

m w.

e a

l eog F g r

L%

B n

o)

Ri n le ig t

l n

te) h r

n%

e ai c g l

i0 o0 i oo S o t 0 t

A n

r lt LF F o0 e(

a 1

e~-

l t 1 lad e

3.

f e

(

t B

lt t

le tted l

o 4 e a l

B d Be do H

i h o

n n

n e S e W m W.

e lz.

r r

io o i e

o t

lz r

e mr z e w ze ec i

t it i

c s

c r

o t

o oir tInC W

e s

e n

N I

L NC S

u S y.

d c

e s

e a e le t ir :

)

)

e e

WS D S i

VeWt 6 1

4 1

6 M

a4 6 6 8 : 1 0

P d e1 4 2 2 9

4 Rel H S P S 4 1 1

so 2 3 3 4A 2A aW 2

2 2 2 S 1 S B

1 1

1 7( 7(

RF 1 AE4 3 1

3 1

9 6 8 1

0 T0 1

2

%2

' 3 nig0 8 0 8 0

r 2 1

7 5 8

a2

^

1 1

6 5

M t.'

ta0 5 5 0 0

e7 8 8 8 8

1 2

2 s

l

' 0 0 0 7 0

a c0 0 0 J 0

i i

n r

i e

,F o

t i

a

)

s e

M i T i5 4 3 1

m s

l r

a e m0 0 0 5 0

u l

it i

InR T+

+ +

+

c e

x

- R

(

is s

o s

D c

li e

WV

,ff g oin t

t n

a a i

a a o

t 3

e dn-e r

on FW D D le o

a i

d t

e t

. b t

it u

hn Ca v.

y a a

i Uc s

Me

- T r

r T T_

s H

nk s

te o t

u u o

S S o

D p

e r

c e

)

t m

i d

n r

W

't ib P

)

oa dl

,F o

n PB r

ea^_C C

d ni. (

2 6 7 0 6

x y:

o go.

r l

r l

o5 4 2 0 7

e t

it

(

e c

so

_t 7

1 4 8 6

a r

W c

1 sM"F 1

c e

a k

A a

1 i

r r

e t

R m

h e

uu e

c Tc lb

.Y a

n eP.

h a

c f

o cF31 C

E 1

1 1

1 Tn 0

0 T

yu

%eE0 0 0 0

5 5

r t

n d lu0 0 5 5 0 5

1 l

2 x0 0 0 0

e o

i l

a e

F f

0 i

aM s

_ - 9(

k c

t c

d Fl e

e i

N t

s e

u e l

)

0 7 0 0

d U

ae) s q

o m k % 'E 7 t

oict 6 6 5

n s e i

0 0 0 0

a e R Bts N (w O a

t V

E _:

r a

n e

D o

p d

i e r' t

.t e) p a

6 8 6 3

n a

o m p% 1 t

oipt 1 0 0 2 2

o m

Bt a

ow0 0 0 0 0

C r

sC(

d o

E e

o f

t n

a h

t l

m e

I le i

M h

le s

S l

t n

i ia S

E s

e h

g t

n i

s io g

d r

t r

e e'

s y

gn o

v m

u!

l eog F g o*

e a

r Ri n u e e% L%

B n

)

tai e

t g

e cg h r

n i0 o0 A

n r

l oo S o t 0 t

i LF F o0 e1 a

lt t 1 e

(

f o

t n

t (

tiad e 3 o 4 B

e tee ted h

l do H

l B d Be n

n n e S e

e W m W.

e io o

o lz re w ze e e i

t i

it e mr lz e

r r

z i

c s c r

o t

o oi t

r InC We n

N I

L NC s e S

u S d

c f

e l

o e

s e e

l t ir*

)

)

e e

WS D S i

VoWt 6 1

6 4

1 8

0 M

s4 6 6

. 1 P

do1 4 2 2 9

4 Rel HS P S 4 - 2A 1

1 4 -

oo 2 3 3 4A

- aW 2 2 2 2S 1 S S;

1 1

1 7( 7(

T rO4 4 7 4 A

6 R eT E6 6 3 8

/

8 2 2 5 8 N

7 A Rt I

2 a1 1

1 D

nig0 0 9 5 A

0 r 4 4 8

/

6 o3 3 6 6

N 5

e R

0 0 5 0 0

0 ac7 7 8 8 8

8 1

1 2

2 2

s la

- 0 0 0 7

0 0

r m0 0 0 9

0 0

n i

e 1

o t

i a

s M

l e

)m s

r a

u l

it s m0 0 0 5

6 0

a4 c

e inR T+

+ +

+

s e

5 4 2

1 T

x s

I R

o i

s lc D

(

i e

WV n

gn a

o t

f 4

e oi t

i a

r aD le e

le t

e din e le it i

u om Flb b nk s

hr C a a y.

b lb b

s H

a a

a t

T T

T o

Uc s

e e T T ru p

e t

o e

e S

r e

R t

c D

m i

n r

W ib P

o oa yF C

d 1

PB r

)

4is(

l le o

lat C r

e y:

t 5 4 4 0 3

6 a

r ri n

c c

W r5 3 5 0 9

7

.emo7 lb k e a

- Mhc m

h r

- t 3

8 9

6 aet i

1 1

1 ruu e

c Ca

^

T t

R

.F e

c Tca n

h a

f o

~ e -

C E

yu D c ") 9 9

r t

4 4 I

n0 2 2

A 4

l n d 7

e o

i Le1 3 7 7 3

/

l a

e Ou 2 2 N

2 k

f i

x0 0

c t

elf (

c d

cM s

Fl e

e iN s

e u

e t l d

U s

q ae) s e

omk%0 6 7 6 5

5 n

8 4 0 8

9 t

oict 7 a

e R Bts N (w 0 i

0 0 0 0

0 a

t V

E r

a n

e D

o p

i e

d r

t t

p a e) n a

o m p% 1 0 0 2 3

2 a

p 5 6 6 2

3 t

o m

oi t 1 Bt ow0 0 0 0 0

0 C

r sC(

d o

E e

o f

t n

a h

t m

e i

n n

e e

h h

l i

M S

S le s

t g

te te h

g i

ia S

E s

a i

n w

io r

d d

r s

e t

e e) y gn o

m) m% w.

s la eog F g r

o) e t

n n in e% e3 L%

B n

r Ri ai e

7 t 3 n

r g tn6 n o0 e cg h r

i A

l F oD I D t 0 t

ioo S o oO e(

a f

pLF 1

t I t

e t te t

n t( t(

led e 3 o 4 Bt e ia e ed eld l

- B d Be Be do H

h l

e S e

n n

n eWleW mW e mr z. z.

r e

o o

o lz re w ze ze ee r

it i

it l

e z

ir i

o oi oir t

o t

r c

s c

InC W

e s

e n

~

N I

L NC NC S

u S d

l c

l s

l

. t ir e

s e a

e

)

e e

e 9

1 0

1 VeWts0 8 8 7

0) 0 WS D S i

)

PR do3 4 1

1 26 57 9 Rel HS P S 4 4 - 1 so F

F 2A 4 3 2 4 1

aW 2 2 2 2W2W1 S B

1 1

1 7( 7( 7(

TP RF 5 2 4 8 8

A AE8 9 1

5

/

2 0

1 5 4 N

4 T01 1

1 2

%2G n

ig0 0 7 E A

0 r 4 4 8

/

6 a3 3 6

N 5

5 M

f 0 0 5 0 0

0 o7 7 8 8 8

8 1

1 2

2 2

s l

i 0 0 0 7 0

0 a

e0 0 0 9 0

0

n i

1 re o

i t

s a

ia m,M 0 l

s M

0 0 5 6

0 u

tiT 4 5 4

2 1

c l

inR T + +

+

+

e R

s x

s

(

i o

s D

lc i

e

, g n

WV foi te n

t o

D le e

le a

a n

le omCa le 4

e d i Fb b

. b lb b

t e

i r

i n

a v a a

a it

e. e T T r

T T

T s

H u

r nk s

Me S

o u

t e

Uc s

D p

o r

e c

m i

)

t W

d n

r ib P

yF o

)

't oa

d. lat C C

d r

n PB r

s(

. iri 5 4 4 0 3

6 o

o

emo5 l

3 5 0 9

7 e

r l

c y :r

(

e c

aet 7 3 8

9 6

a t

t W

c 1

1 1

c Mh e

a ^

C Fa i

k r

1 e

u u e

m h

r t

R

.-Y h

a e

c Tc lb a

n eP T

yu TnE0 2 2

A 2

C E

f o

- cF92 a

2 2 2 2 2

/

2 r

t e

1 1 in d

%u0 1

N l

x0 0

e o

1 1

1 l

l $(

k f

2 ia e

F cM t

a s

c de i

Fl e

N s

e u

e l 8 4 0 8

9 d

U t

ae) s q

smk%0 teict 7 6 7 6 5

5 n

a s

e e R Bts N (w 0 i

0 0 0 0

0 a

ta V

E.

r n

e D

o p

d i

e r p

t ta e) 5 6 6 2

3 n

a s m p% 1 0 0 2 3

2 o

t p t 1 a

m Bt ow0 0 0 0 0

0 C

ei r

sC(

d E '

e o

o f

t n

a h

t m

e i

l n

le e

h h

l' i

M t

S S

le s

o g

i a

S E

s g

te e

h t

i a

i s

n ni d

d r

t m) m% w :-

s y

e r

e e) ign o

l o) e a

eog F g Ri n n n e% e3 L%

B n

r r

t i

t 7 t 3 ai e g e cg h r

in6 In o0 A

in r

D t 0 t

oo S o e

toD oO e (1 a

f F

I t

l LF lt tlad e 3 o 4 B

lt ta le leld lt (

e t

t (

eld e i h B d Be Be do H

l o

n n

n e S eWle W m W-e it i

it o

o o

e mr lz l

e z.

z.

r r

z e wze ze e c r

i c

s c

o oi oir t ir r

o t

InC W

e s

e n

N I

L NC NC S

u S d

c f

le s

e e

e ia i '

)

e e

r t

WS D S i

V eWt 1

9 1

0

)

)

0 P M a0 8 8 7

0 d e3 4 1

26 57 9 1

Rel HS P S 4 4 1-so F

1 F 4 3 2 4 2A aW 2W2W1 S 2 2 2 B

1 1

7( 7( 7(

,v i

AE3 3 8 A 7

9

/

8 0 4 N 8

9 T0 1

1

%2

- 8

. n ig6 6 3 A 0

0 r 1 6

/

6 6

4 N 5

. a2 2

. M 5

a0 0 5 0 0

0 o7 7 8 8 8

8 s

1 1

2 2

2 l

0 0 0 7 0

0 a

n c 0 0 0 9 0

0 i

n r

1 e

o t

i a

)

s n.

M l

r p s

a eT s

i l

iTe e0 0 0 5 6

0 u

it s

4 5 4 2

1 c

InR T + + +

+

e x

. R s

s

(

o lc D

i e

g WV n

f n

a oi t

o t

n a

4 e

di le le D le le le a

i r

omF b b

.b b

b t

e it u

hrC a a y a a

a i

e T T r

T T

T s

H t

nk s

et u

o Uc s

Me S

o D

p e

r c

e oa dl r W

)

t m

i d

n r

't ib P

'yF o

)

n PB r

eat C C

le d

nis(

o o

5 4 4 0 3

6 ri gemro5 3 5 0 9

7 l

c y :r t

it

(

e c

saet 7 3 8

9 6

a W

sMh c k e a

A Ca c

1 1

1 1

r i

e F

r R

m h

e uu t

Tc e

c lb Y

f o

cF91 h

a a

n eP C

E c

1 1

1 1

8 T

yu TnE0 8 8 A 8

8 4

/

4 r

e it n d

%u0 0 4 4 N 0

4 1

l 0

e o

2 x0 0 0 l

ia e

lF 0

f

$(

k c

t cM s

Fl e

ic de N

s e

u e l tae) 8 4 0 8

9 d

U s

q smk%0 6 7 6 5

5 n

t eict 7 s

e i

0 0 0 0

0 a

e R Bts N (w 0 a

t V

E a

r n

e D

o p

i e

d r

t ta e) p 5 6 6 2

3 n

a s m p% 1 0 0 2 3

2 o

t eipt 1 a

m Bt ow0 0 0 J 0

0 C

r sC(

d E

o e

o f

t n

a h

t l

l m

e I

le le it S

S l

M h

h le s

e n

n ia te h

E s

g t

a S

i s

io ig d

ic r

t e

y r

e e) m% m% w' s

la gn o

eog F g o) e r )

r Ri n t

n t

i t 7 te3 L%

B n

e a

r te g

3

.e cg h r

In6 n o0 A

n r

l iD t 0 t

i oo S o lt LF F oD toO e (1 a

f e

l t I B

lt te le led led e a t (

t (

tad e 3 o 4 i h l

l i l lz r

e B d Be Be do H

e n

n n

e S f

eWleW mW e

e z. z. r.

r io o

o mr l

z e w ze ze e c i

t i

it ir c

s c

o t

o oi oi t

r r

InC W

e s

e n

N I

L NC NC S

u S d

c t

e e

t e

~

l e

is a

e r

e t i 9

1 0

)

WS D S VeWt 1

)

)

M a0 8 8 7

0 0

P de3 4 1

26 57 9 1

Rel H S P S 4 4 -

1 so 4 3 2 4 F 1 F 2A aW 2W2W1 S 2 2 2 B

1 1

1 7( 7( 7(

4. Request for AdditionalInformation Regarding Reactor Vessel Integrity Evaluation and Use of Surveillance Data Both Regulatory Guide 1.99. Revision 2*) and 10 CFR 50.61 ) require that surveillance 8

dita (if available) be considered in evaluating reactor vesselintegrity. The best-cstimate copper and nickel chemical compositions for both the weld wire heats and their weld metal sources are used in the evaluation of the surveillance data. The process of evaluating surveillance data includes a credibility assessment against five criteria and the calculation of the chemistry factor based on the surveillance data.

4.1. Surveillance Data Credibility Assessment For the RVWG reactor vessels, numerous surveillance data are available for evaluation of irradiation embrittlement. Each plant has their own plant-specific reactor vessel surveillance material. However, these plants also participate in the B&WOG Master Integrated Reactor Vessel Surveillance Program (MIRVP) established in 1980, making l

weld metal surveillance data available from several sources. The reactor vessels 1

p:rticipating in the MIRVP include reactor vessels with B&W-designed nuclear steam supply systems (NSSS) and Westinghouse-designed NSSS.

(

)

When assessing credibility for surveillance data from several sources, the capsule data may have to be " adjusted"to accc 7t for the irradiation environment and chemical composition differences. Because of the irradiation environment differences between the B&W-design NSSS and the Westinghouse-design NSSS, the capsule data are

' normalized"using the mean irradiation temperature of the surveillance specimens.

f. -

l

The " normalized" temperature adjusted ARTuor is determined using the following equation:

Temperature Adjusted ARTar,,,,,,,, = AR Ta r,,,,,,,, + t.0 * (T,,,, - T,,,,,,,,, )

in addition, if the surveillance data are from multiple sources, it is necessary to adjust the capsule data for chemical composition (copper and nickel contents) differences.

For the credibility determination, the surveillance data are " normalized"to the mean copper and nickel contents of the surveillance materials using the following equation:

Ratio Adjusted hRT

~ ' CFr,ua, s.n. m. ac=..

  • ARTar,,,,,,, ras e r.,~ nue CF,ua, s.n. aen r

i A best-fit line (least squares regression) is then determined from the adjusted ARTwor capsule surveillance data as a function of the capsule fluence factor.

The data are considered credible if the difference between the adjusted ARTuor (i.e.,

. temperature adjusted and/or chemistry adjusted) and the predicted ARTuor (from the best-fit line) for all the data are within i28 F for weld metals and 17*F for base metals 4.2. Credible Surveillance Data in accordance with Regulatory Guide 1.99, Revision 2 and 10 CFR 50.61, credible surveillance data are used to determine material-specific chemistry factor values for use in reactor vessel integrity assessments. The chemistry factor is determined from a best-fit line through the surveillance data adjusted to account for differences in chemical composition (i.e., copper and nickel coritents) and irradiation environment (i.e.,

irradiation temperature) between the capsules and the vessel. The surveillance data are adjusted in the same manner as for the credibility determination except that the 30 ft-lb transition temperature values are " normalized"to the best estimate copper and nickel contents and the irradiation temperature of the y_essel being assessed.

4-2 f<MNAM

4.3. Non-Credible Surveillance Data If the surveillance data are determined to be non-credible, the chemistry factor value is calculated from the generic Tables in 10 CFR 50.61 and Regulatory Guide 1.99, Revision 2 unless the chemistry factor determined from the surveillance data is significantly areater than that from the generic Tables, indicating that the Table chemistry factor is non-conservative. To determine if the generic Table chemistry factor is non-conservative, the following steps are performed:

1.

Determine the chemistry factor from the generic Tables based on the surveillance specimen chemical composition; use this chemistry factor to determine the predicted ARTuor for each capsule:

(Predicted ARTuor = CFraste. swv. Ave. chem.

  • Weapsure) 2.

Determine difference between the predicted ARTuor and the measured ARTuor.

If the difference between the predicted ARTwor and the measured ARTuor alues v

exceeds 2 standard deviations (i.e.,56 F for weld metals and 34*F for base metals),

the Table chemistry factor is considered non-conservative. When the Table chemistry factor is determined to be non-conservative, the chemistry factor determined from the "non-credible" surveillance data is used in the assessment of reactor vessel integrity using the " full" value of o3 n calculating the Margin term.

i 4.4. Use of Weld Wire Heat Surveillance Data Based on the best-estimate copper and nickel chemical contents of the high-copper Linde 80 weld wire heats and their weld metal sources, the high-copper Linde 80 weld metal surveillance data have been evaluated in accordance with Regulatory Guide 1.99, Revision 2 and 10 CFR 50.61. Table 4.4-1 summarizes the results of the surveillance data evaluations for the RVWG reactor vessel beltline welds.

4-3 I "<^ # 7 R M

Table 4.4-1. Summary of Surveillance Data Assessments for the B&WOG Reactor Vessel Working Group Reactor Vessel Beltline Welds Surv. Data Table Chem. Factor Plant (NSSS)

Method of Weld Wire Available Surveillance

' Credible Conservative.

w/ Wold Chemistry Determining Heat Data

' (Y or N) -

(Y or N)

Wire Heat Factor Chem. Factor 299L44 B&W NSSS N

Y ONS-1 220.6 Table ONS-2 TMI-1 Westinghouse NSSS N

Y S-1 220 6 Table 220.6 Table All(Both B&W and Westinghouse)

N Y

406L44 B&W NSSS N

Y ANO-1 182.6 Table ONS-2 171.2 Sury. Data Westinghouse NSSS Y

4 182 6 Table All(Both B&W and Westinghouse)

N Y

61782 Westinghouse NSSS Y

PB-1 157.6 Sury. Data All(Both B&W and Westeghouse)

Y ONS-1 141 4 Surv. Data 71249 Westinghouse NSSS N

Y PB-1 167,6 Table TP-3 TP-4 ONS-1 CR-3 a.

Y CR-3 199.3 Table 72105 B&W NSSS ONS-3 TMI-1 Westinghouse NSSS Y

TP-4 203.4 Sury. Data All(Both B&W and Westinghouse)

N Y

199 3 Table 72442 B&W NSSS N

Y PB-2 180.0 Table TP-3 TP-4 ONS-3 72445 B&W NSSS

/

ONS-1 142.3 Surv. Data Westinghouse NSSS Y

S-1 136.2 Sury. Data S-2 All(Both B&W and Westinghouse)

N Y

158.0 Table 821T44 B&W NSSS Y

ANO-1 160.0 Surv. Data D-B ONS-3 T29744 Westinghouse NSSS N

Y D-B 172.3 Table S-2 126.5 Sury. Data 0227 Westinghouse NSSS Y

(RDM) t l

l

?."MNRM 4-4

4.5. Assessment of Weld Wire Heat Surveillance Data The following tables provide the surveillance data evaluation of the weld wire heats used in the RVWG reactor vessel beltline region. The data contained in these tables provide the information requested in " Table 2" and " Table 3" of the request for additional information regarding reactor pressure vessel integrity in addition to the determination of the chemistry factor for the weld wire heat.

Because the Linde 80 weld metals are most limiting with respect to irradiation embrittlement, an evaluation of the base metal surveillance data is not require in cccordance with the requests for additional information regarding reactor pressure vesselintegrity for the RVWG plant. However, the evaluation of the base metal surveillance data is provided in Appendix B for completeness.

NOTE: The original Charpy V-notch impact data are be; ed on hand-fit Charpy curves using engineering judgment; these data were re-evaluate J using a hyperbolic tangent curve fitting program to achieve consistency in the interpretation of the available surveillance test data.

l l

l 4

4-5 I I< W M L

4.5.1. Weld Wire Heat Number 299L44 (Use of B&W NSSS Data Only)

Table 4.5.1-1. Surveillance Data for Weld Wire Heat Number 299L44 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel integrity)

Irradiation Measured Data Used in Cap' ule ID

. Cu Ni Temperature Fluence ARTuor Assessing Vessel s

r (including source)

Wt%

Wt%

(*F)

(x10" n/cm )

(*F)

(Y or N)

TMI-1: Capsule TM11-E 0.33 0.67 556 0.107 74 Y

WF-25: Plant-Specific RVSP Material TMI-1: Capsule TMll-C 0.33 0 67 556 0.866 166 Y

WF-25: Plant-Specific RVSP Material B&WOG: Capsule TM12-LG1 0 33 0.67 556 0.968 226 Y

WF-25: TMI-2 Nonle Belt Dropout Matl.

B&WOG: Capsule TMl2-LG1 0.37 0.70 556 0.830 216 Y

SA-1526: CR-3 Nonle Belt Dropout Matt B&WOG: Capsule CR3-LG1 0.36 0.70 556 0.779 205 Y

WF-25: oNS-3 Noule Belt Dropout Matl.

Table 4.5.1-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Chem.

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTuor from Predicted)

Capsule

.Cu Ni Chem.

Temp.

Fluence ARTuor ARTuor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

TMi-1: Capsule TM11-E 0.33 0.67 215.2 556 k431 74 76 90

-14 WF-25: Plant-Specific RVSP Matl.

TMI-1: Capsule TM11-C 0,33 0 67 215.2 556 0.960 166 171 201

-30 WF-25: Plant-Specific RVSP Matl.

B&WOG: Capsule TMl2-LG1 0.33 0.67 215.2 556 0.991 226 233 208 25 WF-25: TMI-2 Nonle Belt Dropout Matt.

B&WOG: Capsule TMl2-LG1 0.37 0.70 234.0 556 0.948 216 205 198 7

SA-1526: CR-3 Nonle Belt Dropout Matl B&WOG: Capsule CRJ-LG1 0.36 0.70 230.5 556 0.930 205 198 195 3

WF-25: oNS-3 Nonle Belt Dropout Mati Sury. Avg 0344 0682 222 1 556 a

where Predicted ARTuor = (Slopesestnd *(Fluence Factor) and

.Slopesestat = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., 209.4)

These data are not credible since the scatter is greater than 28 F for one surveillance capsule data point.

l 4-6

(?MNM

Table 4.5.1-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 Using B&W NSSS Surveillance Data Only

. Table Capsule Chem.

(Adjusted -

Capsule Chem. Factor Fluence

. Adjusted Predicted Pretticted)

Designation.

. (Surv. Avg.) '

Factor '

ARTwot (*F)

ARTuot (*F)

ART ov ('F)

N TMI-1: Capsule TM11-E 222.1 0.431 76 96

-20 WF-25: Plant-Snecific RVSP Matt.

TMI-1: Capsule TMl1-C 222.1 0.960 171 213

-42 WF-25: Piar,t-Specific RVSP Matt.

4 B&WoG: Capsule TMl2-LG1 222.1 0.991 233 220 13 WF-25: TMI-2 Nozzle Belt Dropout Matl.

B&WOG Capsule TMl2-LG1 222.1 0.948 205 211

-6 SA 1526: CR.3 Nozzle Belt Dropout Matt.

1 B&WOG: Capsule CR3-LG1 222.1 0.930 198 207

-9 WF-25: ONS-3 Nozzit Belt Dropout Matl.

l where Predicted ARTuDr = (Table Chem. Factor) * (Capsule Fluence Factor)

}

J Since the scatter for all data points is less than 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel contents is used in the assessment of l

reactor vessel integrity.

l l

l 1

4-7 I'"<M M M L

4.5.2. Weld Wire Heat Number 299L44 (Use of Westinghouse NSSS Data Only)

Table 4.5.2-1. Surveillance Data for Weld Wire Heat Number 299L44 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID Cu-Temperature Fluence '

ARTwor Assessing Vessel Ni~

(including source)

Wt%

Wt%

(*F)

(x10" n/cm )

(*F)

(Y or N)

Surry Unit 1: Capsule T 0.23 0.64 538 0.281 171 Y

SA 1526: Plant-Specific RVSP Material Surry Unit 1: Capsule V 0.23 0.64 538 1.94 250 Y

SA-1526: Plant-Specific RVSP Material Surry Unit 1: Capsule X 0.23 0.64 538 1.599 234 Y

f SA 1526: Plant-Specific RVSP Material l

Table 4.5.2-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor ARTwor Best Fit Line ARTwot Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

Surry Unit 1: Capsule T 0.23 0.64 175.8 538 0.653 171 142 29 SA-1526: Plant-Specific RVSP Matt Surry Unit 1: Capsule V 0.23 0.64 175.8 538 1.181 250 256 6

SA-1526: Plant-Specific RVSP Matt.

Surry Unit 1: Capsule X 0.23 0.64 175.8 538 1.130 234 245

-11 SA-1526 Piant Specific RVSP Matt Surv. Avg 0 23 0 64 175 8 538 where Predicted ARTuor = (Slopeseat1;() * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 216.7)

These data are not credible since the scatter is greater than 128 F for one surveillance capsule data point.

4-8

(."MNRM

1 I

l Table 4.5.2-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 j

l Using Westinghouse NSSS Surveillance Data Only l

Table -

Capsule

. (Adjusted -

Capsule Chern. Factor Fluence

. Measured Predicted Predicted)

Designation (Surv. Avg.)

- Factor ARTwot (*F)

ARTwot (*F)

ARTwot (*F)

Surry Unit 1: Capsule T 175.8 0.653 171 115 56 SA-1626: Plant-Specific RVSP Matl.

Surry Unit 1: Capsule V 175.8 1.181 250 208 42 i

SA-1526: Plant-Specific RVSP Matl.

l Surry Unit 1: Capsule X 175.8 1.130 234 199 35 SA-1526: Plant-Specific RVSP where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

I 1

)

Since the scatter for all data points does not exceed 2 standard deviations (56*F), the l

l Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel conter'. is used in the assessment

{

of reactor vessel integrity.

l l

1 l

1

)

l i

f l

l 4-9 I'"*D'aD

4.5.3. Weld Wire Heat Number 299L44 (Use of Al! Surveillance Data) i Table 4.5.3-1. Surveillance Data for Weld Wire Heat Number 299L44 i

Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity)

. Irradiation:

Measured Data Used in Capsule ID l Cu._

1 Ni Temperature Fluence ARTuor Assessing Vessel 2

(including souroe)

Wt%

Wt%

(*F)

(x10" n/cn )

(*F)

(Y or N)

TMI-1: Capsule TM11-E 0.33 0.67 556 0.107 74 Y

WF-25: Plant-Specific RVSP Material TMI-1: Capsule TM11-C 0.33 0.67 556 0.866 166 Y

WF-CS: Plani-Specific RVSP Material B&WOG: Capsule TMl2-LG1 0 33 0.67 556 0.968 226 Y

WF-25: TMI-2 Nozzle Belt Dropout Matl.

B&WOG: Capsule TMl2-LG1 0.37 0.70 556 0.830 216 Y

SA-1526. CR 3 Nozzle Belt Dropout Matl.

B&WOG: Capsule CR3-LG1 0.36 0.70 556 0.779 205 Y

WF-25: ONS-3 Nozzle Belt Dropout Matl.

Surry Unit 1: Capsule T 0 23 0.64 538 0.281 171 Y

SA-1526: Plant-Specific RVSP Material Surry Unit 1: Capsule V 0.23 0 04 538 1.94 250 Y

SA-1526: Plant ;pecific RVSP Material Surry Unit 1: Capsule X 0.23 0.64 538 1.599 234 Y

SA-1526: Plant-Specific RVSP Material j

I 1

l l

1 l

l l

l 1

4-10 f." M N R M l

Table 4.5.3-2. Credibility Assessment for Weld Wire Heat Number 299L44 Using All Available Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTwot from Predicted)

Capsule Cu Ni ~

Chem.

Temp.

Fluence ARTwor ARTwot Best Fit Line ARTwor Designation wt%

wt%

Fac'or

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

TMi-1: Capsule TMl1-E 0.33 0.67 215.2 556 0.431 74 77 94 17 WF-23: Plant-Specific RVSP Matt.

TMI-1: Capsule TM11-C 0.33 0.67 215.2 556 0.960 166 164 209

-45 WF-23: Piar.t. Specific RVSP Matt.

B&WOG: Capsule TM12-LG1 0.33 0.67 215.2 556 0.991 226 222 216 6

WF-35: TMI-2 Nozzle Belt Dropout l

Matl.

B&WOG: Capsule TM12-LG1 0.37 0.70 0

556 0.948 216 195 206

-11 SA-1526; CR-3 Nozzle Belt Dropout Matl.

B&WOG: Capsule CR3-LG1 0.36 0.70 230.5 556 0 930 205 188 202 14 WF-25: oNS-3 Nozzle Belt Dropout Matt Surry Unit 1: Capsule T 0.23 0 64 175.8 538 0.653 171 186 142 44 SA-1536: Plant-Specific RVSP Matl.

Surry Unit 1: Capsule V 0.23 0 64 175.8 538 1.181 250 278 257 21 SA-1526: Plant-Specific RVSP Matl.

Surry Unit 1: Capsule X 0.23 0.64 175.8 538 1.130 234 259 246 13 SA-1326: Plant Specific RVSP Matl Surv. Avg 0.301 0 666 204 7 549 25 s

where Predicted ARTuor = (Slopebest nt) * (Fluence Factor) and Slopesestnt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., 217.7)

These data are not credible since the scatter is greater than 128 F for two surveillance capsule data points.

4-11 f ="'W D'S I

1 Table 4.5.3-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 299L44 Using All Surveillance Data

. Temp. &

Table ~

. Capsule Chem.'

(Adjusted -

Capsule,

' Chem. Factor Fluence Adjusted Predicted Predicted)

Designation (Surv. Avg.)-

Factor -

ARTuor ('F)

ARTuor (*F)

ARTuor (*F)

TMI-1: Capsule TM11-E 204.7 0.431 77 88

-11 WF-25: Plant-Specific RVSP Matl.

TMI-1: Capsule TMl1-C 204.7 0.960 164 196

-32 WF-25 Plant-Specific RVSP Matt.

B&WOG: Capsule TMl2-LG1 204.7 0991 222 203 19 WF-25: TMI-2 Nozzle Belt Dropout Matl.

B&WOG: Capsule TM12-LG1 204.7 0.948 195 194 1

SA-1526: CR-3 Nozzle Belt Dropout Matl.

B&WOG: Capsule CR3-LG1 204.7 0.930 188 190

-2 WF-25: ONS-3 Nozzle Belt Dropout Matt.

Surry Unit 1: Capsule T 204.7 0.653 186 134 52 SA-1526: Plant-Specific RVSP Matl.

Surry Unit 1: Capsule V 204.7 1.181 278 242 36 SA-1526: Plant-Specific RVSP Matl.

Surry Unit 1: Capsule X 204.7 1.130 259 231 28 SA-1526-Plant-Specific RVSP where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points is less than 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

l l

f."<M ATR M 4-12 w__

4.5.4. Weld Wire Heat Number 406L44 (Use of B&W NSSS Data Oniv)

Table 4.5.4-1. Surveillance Data for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARrway Assessing Vessel (including source) wt%

wt%

('F)

(x10" n/ctn )

(*F)

(Y or N) 2 ANO-1: Capsule AN1-E 0.27 0.58 556 0.0727 99 Y

WF-193: Plant Specific RVSP Material ANO-1: Capsule AN1-A 0.27 0.58 556 1.03 144 Y

WF-193: Plant Specific RVSP Material ANO-1: Capsule AN1-C 0.27 0.58 556 1.46 173 Y

l WF.193: Plant Specific RVSP Material Rancho Seco Unit 1: Capsule RS1-B 0.31 0.59 556 0.399 114 Y

WF-193: Plant Specific RVSP Material Rancho Seco Unit 1: Capsule RS1-D 0.31 0.59 556 0.660 146 Y

WF-193: Plant Specific RVSP Material Rancho Seco Unit 1: Capsule RS1-F 0 31 0 59 556 1.42 164 Y

WF-193: Plant Specific RVSP Material Oconee Unit 1: Capsule OC1-E 0.32 0.59 556 0.150 80 Y

WF-112: Plant Speci'ic RVSP Material Oconee Unit 1: Capsule OC1-A 0.32 0.59 556 0 895 173 Y

WF-112: Plant Specific RVSP Material Oconee Unit 1: Capsule OC1-C 0.32 0.59 556 0.986 188 Y

WF-112: Plant Specific RVSP Material B&WOG: Capsule DB1-LG1 0.32 0.59 556 0.821 191 Y

WF-112: ONS-1 RVSP Material i

I l

r l/-

\\

f." M N R W.

4-13

Table 4.5.4-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp l Fluence ARTNov.

ARTuor Best Fit Line ARTwor l

l Designation.

wt%'

' wt%

Factor

. (*F) '

Factor

(*F)

(*F)

(*F)

(*F)

ANO-1: Capsule AN1-E 0.27 0.58 181.1 556 0.356 99 106 60 46 WF-193: Plant Specific RVSP Matl.

ANO-1: Capsule AN1 A 0.27 0.58 181.1 556 1.008 144 154 169

-15 j

WF-193: Plant Specific RVSP Matt.

ANO-1: Capsule AN1-C 0.27 0.58 181.1 556 1.105 173 184 185

-1 WF-193: Plant Specific RVSP Matt.

Rancho Seco Unit 1: Capsule RS1-B 0.31 0 59 196.7 556 0.745 114 112 125

-13 WF-193' Plant Specific RVSP Matt.

Rancho Seco Unit 1: Capsule RSI-D 0.31 0.59 196.7 556 0.884 146 143 148

-5 WF-193: Plant Specific RVSP Matl.

Rancho Seco Unit 1: Capsule RS1-F 0.31 0.59 196.7 556 1.097 164 161 184

-23 WF-193: Plant Specific RVSP Matt.

Oconee Unit 1: Capsule OC1-E 0.32 0.59 200.7 556 0.503 80 77 84

-7 WF-112: Plant Specific RVSP Matt.

Oconee Unit 1: Capsule OC1-A 0.32 0.59 200.7 556 0.969 173 166 162 4

WF-112: Plant Specific RVSP Matt.

Oconee Unit 1: Capsule OC1-C 0.32 0.59 200.7 556 0.996 188 181 167 14 WF-112: Plant Specific RVSP Matl.

B&WOG: Capsule DB1-LG1 0.32 0.59 200.7 556 0.945 191 184 158 26 WF-112 ONS-1 RVSP Matt.

Surv. Avg 0.302 0.587 193.1 556 where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebestnt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,167.5)

These data are not credible since the scatter is greater than i28 F for one surveillance capsule data point.

4-14 f"MNM

Table 4.5.4-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 406L44 Using B&W NSSS Surveillance Data Only Table Capsule Chem.

(Adjusted -

capsule Chem. Factor Fluence Adjusted Predicted Predicted)

Designation (Surv. Avg.)

Factor ARTwot (*F)

ARTwot (*F)

ARTwor ('F)

ANO-1: Capsule AN1-E 193.1 0.356 106 69 37 WF-193: Plant Specific RVSP Matl ANO-1: Capsule AN1-A 193.1 1.008 154 195

-41 WF-193: Plant Specific RVSP Matl.

ANO-1: Capsule AN1-C 193.1 1.105 184 213

-29 WF-193: Plant Specific RVSP Matt.

Rancho Seco Unit 1: Capsule RS1-B 193.1 0.745 112 144

-32 WF 193: Plant Specific RVSP Matt.

Rancho Seco Unit 1: Capsule RS1-D 193.1 0.884 143 171

-28 WF-193 Plant Specific RVSP Matl.

Rancho Seco Unit 1: Capsule RS1-F 193.1 1.097 161 212

-51 WF-193: Plant Specific RVSP Matt.

Oconee Unit 1: Capsule OC1-E 193.1 0.503 77 97

-20 WF-112: Plant Specific RVSP Matl.

Oconee Unit 1: Capsule OC1-A 193.1 0 969 166 187

-21 WF-112: Plant Specific RVSP Matl.

Oconee Unit 1: Capsule OC1-C 193.1 0996 181 192

-11 WF-112: Plant Specific RVSP Mati.

B&WOG: Capsule DB1-LG1 193.1 0.945 184 182 2

WF-112: ONS-1 RVSP Matt.

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points is less than 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

4-15 I"<WM

I l

1 l

4.5.5. Weld Wire Heat Number 406L44 (Use of Westinghouse NSSS Data Only) 1 Table 4.5.5-1. Surveillance Data for Weld Wire Heat Number 406L44 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID.

Cui Ni Temperature Fluence ARTuor Assessing Vessel (includin0 source) wt%

wt%

('F)

(x10" n/cm')

('F)

(Y or N)

Point Beach Unit 2: Capsule V 0.25 0.59 542 0.650 167 Y

WF-193: Plant Specific RVSP Material Point Beach Unit 2: Capsule T 0 25 0.59 542 0.861 153 Y

WF-193: Plant Specific RVSP Material Point Beach Unit 2: Capsule R 0.25 0.59 542 2.20 223 Y

WF-193: Plant Specific RVSP Material Point Beach Unit 2: Capsule S 0.25 0 59 542 3.10 224 Y

WF-193: Plant Specific RVSP Material l

i Table 4.5.5-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor ARTwor Best Fit Line ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

('F)

Point Beach Unit 2: Capsule V 0.25 0.59 174.6 542 0 879 167 155 12 M!F-193: Plant Specific RVSP Matl.

Point Beach Unit 2. Capsule T 0.25 0.59 174.6 542 0958 153 169

-16 WF-193: Plant Specific RVSP Matl.

Point Beach Unit 2: Capsule R 0.25 0.59 174.6 542 1.214 223 214 9

WF-193: Plant Specific RVSP Matt.

Point Beach tait 2: Capsule S 0.25 0.59 174.6 542 1.298 224 229

-5 WF-193: Plant Specific RVSP Matl.

174 6 542 Surv Avg 0.25 0 59 where Predicted ARTuor = (Slopesestnd *(Fluence Factor) and Slopesest et = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,176.3)

These data are credible since the scatter is less than 128 F for all surveillance capsule data points.

4-16 f."<MNEdA

Table 4.5.5-3. Weld Wire Heat Number 406L44 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556 F)

Using Westinghouse NSSS Surveillance Data Only arrad.

Meas.

Temp. & Chem.

Capsulo.

Cu

- Ni.

Chem..

Temp.

Fluence ARTwor Adjusted Designation wt%

wt%'

Factor

(*F)

Factor

('F)

ARTwer (*F)

Point Beach Unit 2: Capsule V 0.25 0.59 174.6 542 0.879 167 160 WF-193: Plant Specific RVSP Matl.

Point Beach Unit 2: Capsule T 0.25 0 59 174.6 542 0.958 153 145 WF-193: Plant Specific RVSP Matt.

Point Beach Unit 2: Capsule R 0.25 0.59 174.6 542 1.214 223 218 WF-193: Plant Specific RVSP Matt.

Point Beach Unit 2: Capsule S 0.25 0.59 174.6 542 1.298 224 220 WF-193 Plant Specific RVSP Matl.

Vessel Best-Estimate CFsurv. sata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CFSurv. data = 171.2) t l

l 4-17 f="<MNM

4.5.6. Weld Wire Heat Number 406L44 (Use of All Surveillance Data)

Table 4.5.6-1. Surveillance Data for Weld Wire Heat Number 406L44 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation '

Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTwor Assessing Vessel (including source) wt%

wt%

t*F)

(x10" n/cm')

(*F)

(Y or N)

ANO 1: Capsule AN1-E 0.27 0.58 556 0.0727 99 Y

WF-193: Plant Specific RVSP Material ANO-1: Capsule AN1-A 0.27 0.58 556 1.03 144 Y

WF-193: Pl ant Specific RVSP Material ANO-1: Capsule AN1-C 0.27 0.58 556 1.46 173 Y

WF-193: Plant Specific RVSP Material Rancho Seco Unit 1: Capsule RS1-B 0.31 0.59 556 0.399 114 Y

WF-193: Plant Specific RVSP Material Rancho Seco Unit 1: Capsule RS1-D 0.31 0.59 556 0.660 146 Y

WF 193: Plant Specific RVSP Material Rancho Seco Unit 1: Capsule RS1-F 0.31 0.59 556 1.42 164 Y

l WF-193: Plant Specific RVSP Material Oconee Unit 1: Capsule OC1-E 0.32 0.59 556 0.150 80 Y

WF-112: Plant Specific RVSP Material Oconee Unit 1: Capsule OC1-A 0.32 0.59 556 0.895 173 Y

WF 112: Plant Specific RVSP Material Oconee Unit 1: Capsule OC1-C 0.32 0.59 556 0.986 188 Y

WF-112: Plant Specific RVSP Material B&WOG: Capsule DB1-LG1 0.32 0.59 556 0.821 191 Y

WF-112: ONS-1 RVSP Material Point Beach Unit 2: Capsule V

(,.25 0.59 542 0.650 167 Y

WF-193: Plant Specific RVSP Material Point Beach Unit 2: Capsule T 0.25 0.59 542 0.861 153 Y

WF-193: Plant Specific RVSP Material Point Beach Unit 2: Capsule R 0.25 0.59 542 2.20 223 Y

WF-193: Plant Specific RVSP Material Point Beach Unit 2: Capsule S 0.25 0.59 542 3.10 224 Y

WF-193: Plant Specific RVSP Material i

1 4-18 f."MNRM'i

l l

Table 4.5.6-2. Credibility Assessment for Weld Wire Heat Number 406L44 Using All Available Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity) l l

j Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTwar from Predicted)

Capsule.

Cu Ni Chem.

Temp.

Fluence

. ARTuor ARTwor Best Fit une ARTwot Designation wt%

wt%

Factor

- ('F)

Factor '

('F)

('F)

('F)

(*F)

ANO-1: Capsule AN1-E 0.27 0.58 181.1 556 0.356 99 107 61 46 WF-193: Plant Specific RVSP Matt.

ANO-1: Capsule AN1 A 0.27 0.58 181.1 556 1.008 144 154 174

-20 i

WF-193: Plant Specific RVSP Matl.

ANO-1: Capsule AN1-C 0.27 0.58 181.1 556 1.105 173 184 190

-6 WF 193-Plant Specific RVSP Matt Rancho Seco Unit 1: Capsule RS1-B 0.31 0.59 196.7 556 0.745 114 113 128 15 l

WF-193: Plant Specific RVSP Mati Rancho Seco Unit 1: Capsule RS1-D 0.31 0.59 196.7 556 0.884 146 144 152

-8 WF-193: Plant Specific RVSP Matt.

Rancho Seco Unit 1: Capsule RS1-F 0.31 0.59 196.7 556 1.097 164 161 189

-28 WF-193: Plant Specific RVSP Matt.

Oconee Unit 1: Capsule OC1-E 0.32 0.59 200.7 556 0.503 80 79 87

-8 WF-111 Plant Specific RVSP Matt.

Oconee Unit 1: Capsule OC1-A 0.32 0.59 200.7 556 0.969 173 166 167

-1 WF-112: Plant Specific RVSP Matl.

Oconee Unit 1: Capsulo OC1-C 0.32 0.59 200.7 556 0.996 188 180 172 8

WF-112: Plant Specific RVSP Matl.

l B&WOG: Capsu!a DB1-LG1 0.32 0.59 200.7 556 0.945 191 183 163 20 WF-ilt ONS-1 RVSP Matl.

Point Beach Unit 2: Capsule V 0.25 0.59 174.6 542 0.879 167 169 152 17 WF-193: Plant Specific RVSP Matl.

Point Beach Unit 2: Capsule T 0.25 0.59 174.6 542 0.958 153 154 165

-11 WF-193 Plant Specific RVSP Matl.

Point Beach Unit 2: Capsule R 0.25 0.59 174.6 542 1.214 223 230 209 21 WF-193: Plant Snecific RVSP Matl Point Beach Unit 2: Capsule S 0.25 0.59 174.6 542 1.298 224 231 224 7

WF-193: Plant Specific RVSP Matt.

Sury. Avg 0287 0 588 188.2 552 where Predicted ARTuor = (Slopebest nc) * (Fluence Factor) and Slopesestat = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,172.3)

These data are not credible since the scatter is greater than 128 F for one surveillance capsule data point.

l l

1 1

4-19 h" M D

Table 4.5.6-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 406L44 Using All Surveillance Data Temp. &

'. Table Capsule Chem.'

(Adjusted -

Capsule Chem. Factor Fluence Adjusted

. Predicted Predicted)

(Sury. Avg.)

Factor ARTum (*F)

ARTum (*F)

' ARTum (*F)

Designation ANO-1: Capsule AN1-E 188.2 0.356 107 67 40 WF-193: Plant Specific RVSP Matl.

ANO-1: Capsule AN1-A 188.2 1.008 154 190

-36 WF-193: Plant Specific RVSP Matt.

ANO-1: Capsule AN1 C 188.2 1.105 184 208

-24 WF-193: Plant Specific RVSP Matl.

Rancho Seco Unit 1: Capsule RS1-B 188.2 0.745 113 140

-27 WF-193: Plant Specific RVSP Matl.

Rancho Seco Una 1: Capsue RS1-D 188.2 0.884 144 166

-22 WF-193: Plant Specific RVSP Matl.

Rancho Seco Unit 1; Capsule RSt-F 188.2 1.097 161 206

-45 WF-193: Plant Specific RVSP Matt.

Oconee Unit 1: Capsule OC1-E 188.2 0.503 79 95

-16 WF-112: Plant Specific RVSP Matl.

Oconee Unit 1: Capsule OC1-A 188.2 0.969 166 182

-16 WF-112: Plant Specific RVSP Matt.

Oconee Unit 1: Capsule OC1-C 188.2 0.996 180 187

-7 WF-112: Plant Specific RVSP Matt.

B&WOG: Capsule DB1-LG1 188.2 0.945 183 178 5

WF-112: ONS-1 RVSP Matt.

Point Beach Unit 2: Capsule V 188.2 0.879 169 165 4

WF-193: Plant Specific RVSP Matl.

Point Beach Unit 2: Capsule T 188.2 0.958 154 180

-26 WF-193: Plant Specific RVSP Matt.

Point Beach Unit 2: Capsule R 188.2 1.214 230 228 2

WF-193: Plant Specific RVSP Matt.

Point Beach Unit 2: Capsule S 188.2 1.298 231 244

-13 WF-193: Plant Specific RVSP Mati where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points is less than 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

l

]

~

4-20 f."<^ TNR M

I l

4.5.7. Weld Wire Heat Number 61782 (Use of Westinghouse NSSS Data Oniv) l Table 4.5.7-1. Surveillance Data for Weld Wire Heat Number 61782 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity) i irradiation Measured Data Used in Capsule ID '

Cu Ni Temperature

~ Fluence

'ARTwor Assessing Vessel (including source).

wt%

wt%

(*F)

(x10" n/cm')

(*F)

(Y or N)

R. E. Ginna: Capsule V 0.24 0.52 545 0.556 146 Y

SA-1036; Plant Specific RVSP Material R. E. Ginna: Capsule R 0.24 0.52 545 1,15 167 Y

SA-1036: Plant Specific RVSP Material l

R. E. Ginna: Capsule T 0.24 0.52 545 1.97 169 Y

SA 1036: Plant Specific RVSP Material R. E. Ginna: Capsule S 0.24 0.52 545 3.87 222 Y

SA-1036: Plant Specific RVSP Material Table 4.5.7-2. Credibility Assessment for Weld Wire Heat Number 61782 Using Westinghouse NSSS Surveillance Dats Only (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Measured.

Irrad.

Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwo7 ARTwot Best Fit Line ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

R. E. Ginna: Capsule V 0.24 0.52 161.4 54 5 0 836 146 133 13 SA-S036 Plant Specific RVSP Matl.

R. E. Ginna: Capsule R 0.24 0.52 161.4 545 1.039 167 165 2

SA-S036: Plant Specrfic RVSP Matt.

R. E. Ginna: Capsule T 0.24 0.52 161.4 545 1.185 169 188

-19 SA-1036: Plant Specific RVSP Matl.

R. E. G nna: Capsule S 0.24 0.52 161 4 545 1.349 222 214 8

SA-S036: Plant Specific RVSP Matl Surv. Avg 0 24 0 52 161.4 545 where Predicted ARTuor = (Slopebest nt) * (Fluence Factor) and Slopebest n = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,159.0) l These data are credible since the scatter is less than i28 F for all surveillance capsule dsta points.

4-21 h"N'M

l Table 4.5.7-3. Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Point Beach Unit 1 Cold Leg Temperature at 542 F)

Using Westinghouse NSSS Surveillance Data Only Irrad.

Meas.

Temp. & Chem.

Capsule.

'Cu

. NI.

Chem.

Temp.

Fluence ARTwor

' Adjusted Designation wt%

wt%

Factor

' (*F)

Factor

(*F)

ARTwor (*F)

R. E. Ginna: Capsule V 0.24 0.52 161.4 545 0.836 146 145 SA-1036: Plant Specific RVSP Matt.

R. E. Ginna: Capsule R 0.24 0.52 161.4 545 1.039 167 166 SA-1036: Plant Specife RVSP Matl.

R. E. Ginna: Capsule T 0.24 0.52 161.4 545 1.185 169 168 SA-1036: Plant Specific RVSP Matl.

R. E. Ginna: Capsule S 0.24 0.52 161.4 545 1.349 222 219

., SA-1036: Plant Specific RVSP Matl.

Vessel Best-Estimate 0.23 0.52 157.4 542 CFsurv. sata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CF urv. data = 157.6)

S l

l l

/e f."MNRM

~

4-22

4.5.8. Weld Wire Heat Number 61782 (Use of All Surveillance Data)

Table 4.5.8-1. Surveillance Data for Weld Wire Heat Number 61782 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID Cu N1 Temperature Fluence ARTuoy Assessing Vessel (including source) wt%

wt%

(*F)

(x10 n/cm')

(*F)

(Y or N)

B&WOG: Capsule DB1-LG1 0.27 0.59 556 1.03 141 Y

SA-1135: ONS-2 Nozzle Belt Dropout Matl.

R. E. Ginna: Capsule V 0.24 0.52 545 0.556 146 Y

SA-1036: Plant Specific RVSP Material R. E. Ginna. Capsule R 0.24 0.52 545 1.15 167 Y

SA-1036: Plant Specific RVSP Material R. E. Ginna: Capsule T 0.24 0.52 545 1.97 169 Y

SA-1036: Plant Specific RVSP Material R. E. Ginna: Capsule S 0.24 0.52 545 3.87 222 Y

SA-1036: Plant Specific RVSP Material Table 4.5.8-2. Credibility Assessment for Weld Wire Heat Number 61782 Using All Available Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor ARTuor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

('F)

('F)

('F)

R. E. Ginna: Capsule V 0.24 0.52 161.4 545 0.836 146 147 131 16 SA-1036: Plant Specific RVSP Matt.

R. E. Ginna: Capsule R 0.24 0.52 161.4 545 1.039 167 169 163 6

SA-1036: Plan' Specific RVSP Matt.

R. E. Ginna: Capsule T 0.24 0.52 161.4 545 1.185 169 171 186

-15 SA-1036 Plant Specific RVSP Matt.

R. E. Ginna: Capsule S 0.24 0.52 161.4 545 1.349 222 225 211 14 SA-1036: Plant Specific RVSP Matt.

B&WOG: Capsule DB1-LG1 0.27 0.59 182.6 556 1.008 141 136 158

-22 SA-9935: ONS-2 Nozzle Belt Dropout Matt.

Surv. Avg 0246 0 534 165 4 547.2 4

where Predicted ARTuor = (Slopeseat ri() * (Fluence Factor) and Slope, trit = best fit line relating Adjusted ARTuor to the Fluence Factor se (i.e.,156.5)

I These data are credible since the scatter is less than 123 F for all surveillance capsule t

data points.

4-23 E"< N ' M o

Table 4.5.8-3. Wold Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556 F)

Using All Surveillance Data irred.

Meas.

Temp. & Chem.

. Capsule Cu

' Ni..

Chem.

Temp.

Fluence ARTwor Adjusted Designation wt%

wt%

' Factor

(*F)-

Factor

(*F)

ARTwor (*F)

R. E. Ginna: Capsule V 0.24 0.52 161.4 545 0.836 146 132 SA-1036: Plant Specific RVSP Matl.

R. E. Genna: Capsule R 0.24 0.52 161.4 545 1.039 167 152 SA-1036: Plant Specific RVSP Matl.

R. E. Ginna: Capsule T 0.24 0.52 161.4 545 1.185 169 154 SA-1G36: Plant Specific RVSP Matl.

R. E. Ginna: Capsule S 0.24 0.52 161.4 545 1.349 222 206 SA-1036: Plant Specific RVSP Matt.

B&WOG: Capsule DB1-LG1 0.27 0.59 182.6 556 1.008 141 122 SA-1135: oNS-2 Nozzle Belt Dropout Matt.

~

Vessel Best'-Estimate ~

CFsun. cata = best fit line relating Adjusted ARTror to the Fluence Factor (i.e., CF urv. data = 141.4)

S Table 4.5.8-4. Weld Wire Heat Number 61782 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Point Beach Unit 1 Cold Leg Temperature at 542 F)

Using All Surveillance Data Irrad.

Meas.

Temp. & Chem.

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Adjusted Designation wt%

wt%

Factor

(*F)

Factor -

(*F)

ARTwot (*F)

R. E. Ginna: Capsule V 0.24 0.52 161.4 545 0.836 146 145 SA-1036: Plant Specific RVSP Matt.

R. E. Ginna: Capsule R 0.24 0.52 161.4 545 1.039 167 166 SA-1036: Plant Specific RVSP Matl.

R. E. Ginna: Capsule T 0.24 0.52 161.4 545 1.185 169 168 SA-1036 Plant Specific RVSP k ati.

R. E. Ginna: Capsule S 0.24 0.52 161.4 545 1.349 222 219 SA-1036: Plant Specific RVSP Matt.

B&WOG: Capsule DB1-LG1 0.27 0.59 182.6 556 1.008 141 134 SA-1135: ONS-2 Nozzle Belt Dropout Matt.

Vessel Best-Estimate 0 23 0.52 157.4 542 CFsurv. sata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CF ury. data = 153.4)

S 4-24 E=" M ' M

4.5.9. Weld Wire Heat Number 71249 (Use of Westinghouse NSSS Data)

Table 4,5.9-1. Surveillance Data for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID Cu Ni Temperature Fluence ARTway Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm )

(*F)

(Y or N) 2 Turkey Point Unit 3: Capsule T 0.33 0.b7 546 0.739 166 Y

SA-1101: Plant Specific RVSP Material Turkey Point Unit 3: Capsule V 0.33 0.57 546 1.53 180 Y

SA-1101: Pts it Spectfic RVSP Material Turkey Point Unit 4: Capsule T 0.29 0.60 546 0.708 211 Y

SA-1094: Plant Specific RVSP Material Table 4.5.9-2. Credibility Assessment for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrart.

Meas.

Adjusted ARTwot from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor ARTwot Best Fit Une ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

Turkey Po A Unit 3: Capsule T 0.33 0.57 201.3 546 0 916 166 163 172

-9 SA-1101: Plant Specific RVSP Matl.

TurkIy Point Unit 3: Capsule V 0.33 0.57 201.3 546 1.118 180 177 210

-33 SA-1101: Plant Specific RVSP Matl.

TurkIy Point Unit 4: Capsule T 0.29 0.60 191.0 546 0.903 211 219 170 49 l

SA-iO94: Plant Specific RVSP Matt.

Surv. Avg 0317 0.580 1980 546 where Predicted ARTuor = (Slopesestnt) * (Fluence Factor) and Slopesestnt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,187.7)

These data are not credible since the scatter is greater than i28 F for two surveillance capsule data points.

fMYNRM f

4-25

Table 4.5.9-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 71249 Using Westinghouse NSSS Surveillance Data

. Table Capsule Temp..

(Adjusted -

Capsule '

Chem. Factor Fluence

. Adjusted

. Predicted Predicted)

Designation (Surv. Avg.)

Factor ARTwor (*F)

ARTuor (*F)

ARTwot (*F)

Turkey Point Unit 3: Capsule T 198.0 0.916 163 181

-18 SA-1101: Plant Specific RVSP Matt.

Turkey Point Unit 3: Capsule V 198.0 1.118 177 221

-44 SA 1101: Plant Specific RVSP Matt.

Turkey Point Unit 4: Capsule T 198 0 0 903 219 179 40 SA 1094 Plant Specific RVSP Matt.

where Predicted ARTucr = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for ali data points does not exceed 2 sMndard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel contents is used in the assessment of reactor vesselintegrity.

4-26 IIMA'M

4.5.10. Weld Wire Heat Number 72105 (Use of B&W NSSS Data Only)

Table 4.5.101. Surveillance Data for Wald Wire Heat Number 72105 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation s Measured Data Used in Capsule ID.

Cu.

. Ni -

Ternperature Fluence -

ARTuor Assessing Vessel (including source).

wt%

wt%

  • (*F)

(x10" n/ctn )

(,F)

(Y or N) s Oconee Unit 2: Capsule OCil-C 0.35 0.58 556 0.102 46 Y

l WF-209-1: Plant Specific RVSP Material l

Oconee Unit 2: Capsule OCll-A 0.35 0.58 556 0.337 107 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 2: Capsule OCil-E 0.35 0.58 556 1.21 174 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 3: Capsule OClli-A 0.29 0.56 556 0.081 15 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 3: Capsule OCill-B 0 29 0.56 55G 0 312 70 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 3: Capsule OCill-D 0.29 0.56 556 1.45 145 Y

WF-209-1: Plant Specific RVSP Material B&WOG: Capsule TMl2-LG1 0.39 0.58 556 0.585 125 Y

WF-70: MD1 Nozzle Belt Dropout Matl.

B&WOG: Capsule DB1-LB1 0.39 0.58 556 0.663 137 Y

WF-70: MDI Nozzle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 0.39 0.58 556 1.19 126 Y

WF-70: MD1 Nozzle Belt Dropout Matl.

I I

l l

l l

I l

i I

I 4-27 I'" N 7 M l

1

Table 4.5.10-2. Credibility Assessment for Weld Wire Heat Number 72105 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Ragarding Reactor VesselIntegrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor ARTwoT Best Fit Line ARTwot Designation =

wt%

' wt%

Factor

(*F)

Factor

(*F)

( )

(*F)

(*F)

Oconee Und 2: Capsule 0C11-C 0.35 0.58 209.5 556 0.421 46 e1 57

-12 WF-209-1: Plant Specific RVSP Matl Oconee Unit 2: Capsule OCll-A 0.35 0.58 209.5 556 0.701 107 10t 95 11 WF-209-1: Plant Specific RVSP Matl.

Oconee Unit 2: Capsule OCil-E 0.35 0.58 209.5 556 1.053 174 172 143 29 WF-209-1: Plant Specific RVSP Matl Oconee Umt 3: Capsule OCillA 0.29 0.56 185.6 556 0.376 15 17 51

-34 WF-209-1: Plant Specific RVSP Matl.

Oconee Unit 3: Capsuls OCill-B 0.29 0.56 185.6 556 0.680 70 78 92

-14 WF-209-1: Plant Specific RVSP Matt Oconee Unit 3: Capsule OCill-D 0.29 0.56 185.6 556 1.103 145 162 150 12 WF-209-1: P1nt Specific RVSp Mat!

S i

B&WOG: Capsule TMl2-LG1 0.39 0.58 224.6 556 0.850 125 115 115 0

WF-70: MD1 Nozzle Belt Dropout Matt.

B&WOG: Capsule DB1-LB1 0.39 0.58 224.6 556 0.885 137 126 120 6

WF-70: MD1 Nozzle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 0.39 0.58 224.6 556 1.049 126 116 142

-26 WF-70: MD1 Nozzle Belt Dropout Matl.

Surv. Avg 0343 0.573 206 7 where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebest11 = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,135.8)

These data are not credible since the scatter is greater than 28 F for two surveillance capsule data points.

4-28

??MNRM

Table 4.5.10-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72105 Using B&W NSSS Surveillance Data Only Table Capsule Chem.

(Adjusted -

. Capsule Chem. Factor Fluence

_ Adjusted

~ARTe (*F)

ARTe (*F)

Predicted Predicted)

Designation (Surv. Avg.)

Factor ARTc (*F)

Oconee Unit 2: Capsule OCll-C 206.7 0.421 45 87

-42 WF-209-1: Plant Specific RVSP Matl.

Oconee Unit 2: Capsule OCil-A 206.7 0.701 106 145

-39 WF-2091: Plant Specific RVSP Matl.

Oconee Unit 2: Capsule OCll-E 206.7 1.053 172 218

-46 WF-209-1: Plant Specific RVSP Matt.

Oconee Unit 3: Capsule OCill-A 206.7 0.376 17 78

-61 WF-209-1' Plant Specific RV5P Matl.

Oconee Unit 3: Capsule OClli-B 206.7 0.680 78 141

-63 WF-209-1: Plant Specific RVSP Matl.

Oconee Unit 3: Capsule OCill-D 206.7 1.103 162 228

-66 WF-209-1: Plant Specific RVSP Matl.

B&WOG: Capsule TMl2-LG1 206.7 0.850 115 176

-61 WF-70: MD1 Nozzle Belt Dropout Matt.

B&WOG: Capsule DB1-LB1 206.7 0.885 126 183

-57 WF-70: MD1 Nozzle Belt Dropout Matl.

B&WOG: Capsule CR3-LG2 206.7 1.049 116 217

-101 WF-70: MD1 Nnzzle Belt Dropout Matl.

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

The above assessment results indicates that the generic Table chemistry factor for the B&W NSSS surveillance data arossiv over-predicts the adjusted measured data.

Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of rrctor vesselintegrity.

4-29 f="MM i

L_________-_____________

4.5.11. Weld Wire Heat Number 72105 (Use of Westinghouse NSSS Data Only)

Table 4.5.11-1. Surveillance Data for Weld Wire Heat Number 72105 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiat6on '

Measured Data Used in i'

Capsule ID

- Cu.

Ni Temperature Fluence ARTuot Assessing Vesse!

(including source) wt%

wt%

-(*F)

(x10"' n/cm')

(*F)

(Y or N)

Zion Unit 1: Capsule T 0.25 0.54 529.4 0.310 108 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 1: Capsule U 0.25 0.54 529.4 1.02 190 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 1: Capsule X 0.25 0.54 529.4 1.26 194 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 1: Capsule Y 0.25 0.54 529.4 1.56 201 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 2: Capale U 0.25 0.55 529.4 0.270 138 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 2: Capsule T 0.25 0 55 529 4 0.779 179 Y

WF-209-1: Plant Specific RVSP Material Zeon Unit 2: Capsule Y 0.25 0.55 529.4 1.46 226 Y

l WF-209-1: Plant Specific RVSP Material l

l l

I j

fMWNRM f

4-30 1

____________________j

Table 4.5.11-2. Credibility Assessment for Weld Wire Heat Number 72105 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTuor from Predicted)

Capsule Cu Ni.

Chem.

Temp.

Fluence ARTuor ARTwor Best Fit Line ARTwor Designation wt%

wt%

Factor

('F).

Factor

- (*F)

(*F)

(*F)

(*F)

Zion Und 1: Capsule T 0.25 0.54 167.6 529.4 0.679 108 108 128

-20 WF 209-1: Plant Specific RVSP Matt.

Zion Unit 1: Capsule U 0.25 0.54 167.6 529 4 1.006 190 191 190 1

WF-209-1: Plant Specific RVSP Matt.

2.lon Und 1: Capsule X 0.25 0.54 167.6 529.4 1.064 194 195 201

-6 WF-209-1: Plant Specific RVSP Matl.

Zson Und 1: Capsule Y 0.25 0.54 167.6 529.4 1.123 201 202 212 10 WF-209-1: Plant Specific RVSP Matl.

Zion Und.2: Capsule U 0.25 0 55 169.0 529.4 0.643 138 137 122 15 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 2: Capsule T 0.25 0.55 169.0 529.4 0.930 179 178 176 2

WF-209-1: Plant Specific RVSP Matt Zen L.,nd 2: Capsule Y 0.25 0.55 169.0 529.4 1.105 226 225 209 16 WF-209-1: Plant Specific RVSP Mati.

Sury. Avg 0.25 0 544 168 2 529 4 where Predicted ARTuor = (Slopesest110 * (Fluence Factor) and Slopesestrit = best fit Ilne relating Adjusted ARTuor to the Fluence Factor (i.e.,188.8)

These data are credible since the scatter is less than +28 F for all surveillance capsule data points.

i f"M7M I'

4-31 l

L

Table 4.5.11-3. Weld Wire Heat Number 72105 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556 F)

Using Westinghouse NSSS Surveillance Data Only irred.

Meas.

Temp. & Chem.

Capsule Cu

, Ni.

Chem.

Temp.

Fluence ARTwor Adjusted Designation'.

wt%

wt%

Factor

(*F)

Factor

('F)

ARTwot (*F)

Zion Unit 1: Capsule T 0.25 0.54 167.6 529.4 0.679 108 97 WF-209-1: Plant Specific RVSP Matt.

Zion Unit 1: Capsule U 0.25 0.54 167.6 529.4 1.006 190 194 WF-209-1: Plant Specific RVSP Matt.

Zion Unit 1: Capsule X 0.25 0.54 167.6 529.4 1.064 194 199 WF-209-1: Plant Specific RVSP Matt.

Zion Unit 1: Capsule Y 0.25 0.54 167.6 529.4 1.123 201 207 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 2: Capsule U 0.25 0.55 169.0 529.4 0.643 138 131 WF-209-1: Plant Specific RVSP Matt.

Zion Unit 2: Capsule T 0.25 0.55 169.0 529.4 0.930 179 180 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 2: Capsule Y 0.25 0.55 169.0 529 4 1.105 226 235 WF-209-1: Plant Specific RVSP Matt.

Vessel Best-Estimate 0.32 0.58 199.3 556 CFsurv. sata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CFSurv. dat, = 191.2)

Table 4.5.11-4. Weld Wire Heat Number 72105 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessel (Turkey Point Unit 4 Cold Leg Temperature at 546 F)

UsinD Westinghouse NSSS Surveillance Data Only irrad.

Meas.

Temp. & Chem.

Capsule Cu Ni Chem.

Temp.

Fluence ARTucy Adjusted Designation wt%

wt%.

Factor

(*F)

Factor

(*F)

ARTwor (*F)

Zion Unit 1: Capsule T 0.25 0.54 167.6 529.4 0.679 108 109 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 1: Capsule U 0.25 0.54 167.6 529.4 1.006 190 206 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 1: Capsule X 0.25 0.54 167.6 529.4 1.064 194 211 WF-209-1: Plant Specific RVSP Matl.

Zeon Unit 1: Capsule Y 0.25 0.54 167.6 529.4 1.123 201 219 WF-209-1: Plant Specific RVSP Matt.

Zion Unit 2: Capsule U 0.25 0.55 169.0 529.4 0.643 138 143 WF-209-1: Plant Specific RVSP Matt.

Zion Unit 2: Capsule T 0.25 0.55 169.0 529.4 0.930 179 192 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 2: Capsule Y 0.25 0.55 169.0 529.4 1.105 226 247 WF-209-1: Plant Specific RVSP Mati Vessel Best-Estimate 0 32 0.58 199 3 546 CFsurv. data = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CFSury. data = 203.4) 4-32 h"MNM

4.5.12. Weld Wire Heat Number 72105 (Use of All Surveillance Data)

Table 4.5.12-1. Surveillance Data for Weld Wire Heat Number 72105 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measumd Data Used in Capsule ID Cu Ni Temperature Fluence ARTNot Assessing Vessel (including source) -

wt%

wt%

('F)

(x10" n/cm )

(*F)'

(Y or N) 2 Oconee Unit 2: Capsule OCll-C 0.35 0.58 556 0.102 46 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 2: Capsule OCal-A 0.35 0.58 556 0.337 107 Y

WF-209-1: Plant Specific RVSP Material Oconee Unst 2: Capsule OCll-E 0.35 0.58 556 1.21 174 Y

WF-209-1: Plant Speorfic RVSP Material Oconee Unst 3: Capsule OCall-A 0.29 0.56 556 0.081 15 Y

WF-209-1: Plant Specifr: RVSP Material Oconee Unit 3: Capsule OClli-B 0.29 0.56 556 0.312 70 Y

WF-209-1: Plant Specific RVSP Material Oconee Unit 3: Capsule OClli-D 0.29 0.56 556 1,45 145 Y

WF-209-1: Plant Specific RVSP Material B&WOG: Capsule TMl2-LG1 0.39 0.58 556 0.585 125 Y

WF-70: MD1 Nonle Belt Dropout Matl.

B&WOG: Capsule DB1-LB1 0.39 0.58 556 0.663 137 Y

WF-70: MD1 Nonle Belt Dropout Matl.

B&WOG: Capsule CR3-LG2 0.39 0.58 556 1.19 126 Y

WF-70: MD1 Nonle Belt Dropout Matt.

Zion Unit 1: Capsule T 0.25 0.54 529 4 0 310 108 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 1: Capsule U 0.25 0.54 529 4 1.02 190 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 1: Capsule X 0.25 0.54 529 4 1.26 194 Y

WF-209-1: Plant Soecific RVSP Material Zion Unit 1: Capsule Y 0.25 0.54 529.4 1.56 201 Y

WF-209-1: Plant Specific RVSP Material j

Zion Unit 2: Capsule U 0.25 0.55 529.4 0.270 138 Y

WF-209-1: Plant Specific RVSP Material Zion Unit 2: Capsule T 0.25 0.55 529.4 0.779 179 Y

WF-209-1: Plant Specific F. VSP Material Zion Unit 2: Capsule Y 0.25 0.55 529.4 1.46 226 Y

V F-209-1: Plant Specific RVSP Material l

4-33 IME*MM l

___-_____________L

Table 4.5.12-2. Credibility Assessment for Weld Wire Heat Number 72105 Using All Available Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

trrad.

Meas.

Adjusted ARTuor from Predicted)

Capsule Cu Ni Chem.

. Temp.

Fluence ARTuor ARTuor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

Oconee Unit 2: Capsule OCll-C 0.35 0.58 209.5 556 0.421 46 52 70

-18 WF-209-1: Plant Specific RVSP Meti.

Oconee Unit 2: Capsule OCil-A 0.35 0.58 209.5 556 0.701 107 107 117

-10 WF-209-1: Plant Specific RVSP Matt.

Oconee Unit 2: Capsule OCil-E 0.35 0.58 209.5 556 1.053 174 168 175

-7 WF-209-1: Plant Specific RVSP Matl.

Oconee Unit 3: Capsule OClll-A 0.29 0.50 185.6 556 0.376 15 27 63

-36 WF-209-1: Plant Specific RVSP Matt.

Oconee Unit 3: Capsule OClli-8 0.29 0.56 185.6 556 0.680 70 83 113

-30 WF-209-1: Plant Specific RVSP Matl.

Oconee Unit 3: Capsule OClli-D 0.29 0.56 185.6 556 1.103 145 160 184

-24 WF-209-1: Plant Specific RVSP Matt.

B&WOG: Capsule TMl2-LG1 0.39 0.58 224.6 556 0.850 125 115 142

-27 WF-70: MD1 Nozzle Belt Dropout Matl.

B&WOG: Capsule DB1-LB1 0.39 0.58 224.6 556 0.885 137 126 147

-21 WF-70: MD1 Nozzle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 0.39 0.58 224.6 556 1.049 126 116 175

-59 WF-70: MD1 Nozzle Belt Dropout Matl.

Zen Unit 1: Capsule T 0.25 0.54 167.6 529.4 0.679 108 105 113

-8 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 1: Capsule U 0.25 0.54 167.6 529.4 1.006 190 198 168 30 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 1: Capsule X 0.25 0.54 167.6 529.4 1.064 194 203 177 26 WF-209-1: Plant Specific RVSP Matl.

187 24 Zion Unit 1: Capsule Y 0.25 U.54 167.6 529.4 1.123 201 21'.

WF-2091: Pla it Specific RVSP Matt.

Zion Unit 2: Capsule U 0.25 0.55 169.0 529.4 0.643 138 138 107 31 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 2: Capsule T 0.25 0.55 169.0 529.4 0 930 179 184 155 29 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 2: Capsule Y 0.25 0.55 169.0 529 4 1.105 226 237 184 53

, F-209-1: Plant Specific RVSP Matl W

Sury. Avg 0.303 0561 189.7 544 4 where Predicted ARTuor = (Slopebestnd * (Fluence Factor) and Slopebestat = best fit ilne relating Adjusted ARTuor to the Fluence Factor (i.e.,166.6)

These data are not credible since the scatter is greater than i28 F for several surveillance capsule data points.

4-34

?."MNM

Table 4.5.12-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72105 Using All Surveillance Data.

_ Temp. & -

' Table /.

Capsule

Chem.

'(Adjusted -

, Capsule ;

Chem; Factor '

Fluence

? Adjusted

. Predicted Predicted)

Designation' -

(Sury. Avg.)U Factor ~

ARTuo,(*F)

' Artier (*F)

ARTwor (*F)

Oconee und 2: Capsule OCll-C 189.7 0.421 52 80

-28 WF-209-1: Plant SpecMc RVSP Matt.

j Oconee Una 2: Capsule OCll-A 189.7 0.701 107 133

-26 l

WF-209-1: Plant Specific RVSP Matt.

j Oconee Unit 2: Capsule OCll-E 189.7 1.053 168 200

-32 WF-209-1: Plant Specific RVSP Matl.

I Oconee Unit ; Capsule OClli-A 189.7 0.376 27 71

-44 WF-209-1: Plant Specific RVSP Matl.

Oconee Unit 3: Capsule OClli-B 189.7 0.680 83 129

-46 WF-209-1: Plant Specific RVSP Matt.

Oconee Unit 3: Capsule OClli-D 189.7 1.103 160 209

-49 l

WF-209-1: Plant Specific RVSP Matt.

{

B&WOG: Capsule TMl2-LG1 189.7 0.850 115 161

-46 J

WF-70: MD1 Nozzle Belt Dropout Matl.

B&WOG: Capsule DB1-LB1 189.7 0.885 126 168

-42 WF-70: MD1 Nozzle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 189.7 1.049 116 199

-83 WF-70: MD1 Nozzle Belt Dropout Matt.

Zion Unit 1: Capsule T 189.7 0.679 105 129

-24 j

WF-2091: Plant Specific RVSP Matt.

l Zion Unit 1: Capsule U 189.7 1.006 198 191 7

WF 209-1: Plant Specific RVSP Matt Zion Unrt 1: Capsule X 189.7 1.064 203 202 1

i WF-209-1: Plant Specific RVSP Matl.

Zion Und 1: Capsule Y 189.7 1.123 211 213

-2 WF-209-1: Plant Specific RVSP Matl.

Zion Unit 2: Capsule U 189.7 0.643 138 122 16 WF-209-1: Plant Specific RVSP Matl Zion Unit 2: Capsule T 189.7 0.930 184 176 8

WF-209-1: Plant Specific RVSP Matl Zion Unit 2: Capsule Y 189.7 1.105 237 210 27

{

WF-209-1: Plant Specific RVSP Matl.

where Predicted ARTuDr = (Table Chem. Factor) * (Capsule Fluence Factor)

The above assessment results indicates that the generic Table chemistry factor for the B&W NSSS surveillance data over-predicts the adjusted measured data for one data point, and the rest of the surveillance data are less than 2 standard deviations (56 F).

Because the Table chemistry factor over-predicts the adjusted measured data and the remaining data are within 56*F, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of reactor vessel integrity.

4-35 h"< M ' M

4.5.13. Weld Wire Heat Number 72442 (Use of B&W NSSS Data)

Table 4.5.13-1. Surveillarae Data for Weld Wire Heat Number 72442 l

l Using B&W NSSS Surveillance Data 1

(Table 2 of the RAI Regarding Reactor Vessel Integrity)

irradiation,

Measured Data Used in Capsule ID :.

Cu,,

~ N!

Temperature

. Fluence

~ ARTwor Assessing Vessel (including source) wt%

wt%

- ('F)

(x10 n/cm')

(*F)

(Y or N)

B&WOG: Capsule CR3-LG1 0.22 0.60 556 0.609 168 Y

WF-67; MD1 Nonle Belt Dropout Matl.

B&WOG: Capsule CR3-LG2 0.22 0.60 556 1.95 139 Y

WF-67; MD1 Nonle Belt Dropout Matt.

Table 4.5.13-2. Credibility Assessment for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

~

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTuor from Predicted)

Capsule Cu

' Ni Chem.

Temp.

Fluence ARTuor ARTwor Best Fit Line ARTwor Designation -

wt%

wt%

Factor

('F)

Factor

-(*F)

('F)

('F)

('F)

B&WOG: Capsule CR3-LG1 0.22 0.60 167.0 556 0.861 168 124 44 WF-67; MD1 Nonle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 0.22 0.60 167.0 556 1.182 139 171

-32 WF-67; MD1 Nonle Belt Dropout Matt.

Surv. Avg 0 22 0 60 167.0 556

)

where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor 1

(i.e.,144.4)

I l

These data are not credible since the scatter is greater than 28 F for both surveillance i

capsule data points.

l l

I 4-36 I"'MNRM

Table 4.5.13-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72442 Using B&W NSSS Surveillance Data Table.

Capsule Capsule Chem. Factor Fluence Measured (Adjusted -

Predicted

. Predicted)

Designation

. (Surv. Avg.)

Factor ARTwor ('F)

ARTwor ('F)

ARTwot (*F)

B&WoG: Capsule CR3-LG1 167.0 0.861 168 144 24 WF-67: MD1 Nozzle Belt Dropout Matt.

j B&WOG: Capsule CR3-LG2 167.0 1.182 139 197

-58 WF-67: MD1 Nozzle Belt Dropout Matl.

l l

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

The above assessment results indicates that the generic Table chemistry factor for the B&W NSSS surveillance data over-predicts the adjusted measured data for one data point while the other data point is within 2 standard deviations (i.e.,56 F). Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of reactor vessel integrity.

l l

l i

l l

4-37 I"<M M M

4.5.14. WeM Wire Heat Number 72445 (Use of B&W NSSS Data Only)

Table 4.5.14-1. Surveillance Data for Weld Wire Heat Number 72445 Using B&W NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation.

Measured Data Used in

. Capsule ID :'.

' Cu '

t Ni Temperature Fluence

' ARTwor Assessing Vessel (including source) wt%

wt%

-(*F)

(x10 n/cm*)

(*F)

(Y or N)

B&WOG: Capsule CR3-LG1 0.22 0.59 556 0.510 141 Y

SA-1585: ANO-1 Noule Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 0.22 0.59 556 1.67 156 Y

SA-1585: ANO-1 Nonle Belt Dropout Matt.

Table 4.5.14-2. Credibility Assessment for Weld Wire Heat Number 72445 Using B&W NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted.

Irrad.

Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwot ARTwor Best Fit Line ARTwor Designation wt%

wt%

Factor

('F)

Factor

(*F)

- (*F)

(*F)

(*F)

B&WOG: Capsule CR3-LG1 0.22 0.59 165.5 556 0.812 141 121.1 19.9 SA-1585: ANO-1 Nonle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 0.22 0.59 165.5 556 1.141 156 170.2

-14.2 SA-1585: ANO-1 Nonle Belt Dropout Mctl.

Surv. Avg 0.22 0 59 165 5 556 where Predicted ARTuor = (Slopebestnd * (Fluence Factor) and Slopebest at = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,149.1)

These data are credible since the scatter is less than 128 F for both surveillance capsule data points.

l?."MNRM

/

4-38

Table 4.5.14-3. Weld Wire Heat Number 72445 Chemistry Factor Calculation for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556 F)

Using B&W NSSS Surveillance Data Only irrad.

Meas.

Chem.

Capsule Cu-NI-Chem!

Temp.

Fluence ARTwor Adjusted Designation wt%

wt%

Factor

('F)

Factor

('F)

ARTwor (*F)

B&WOG: Capsule CR3-LG1 0.22 0.59 165.5 556 0.812 141 135 SA-1585: ANO-1 Nonle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 0.22 0.59 165.5 556 1.141 156 149 SA 1585: ANO-1 Nonle Belt Dropout Matt Vessel Best-Estimate Y

CFsurv. data = best fitline relating Adjusted ARTuor to the Fluence Factor (i.e., CF ury, data = 142.3)

S l

l 4-39 f="ATNM

4.5.15. Weld Wire deat Number 72445 (Use of Westinghouse NSSS Data Only)

Table 4.5.15-1. Surveillance Data for Weld Wire Heat Number 72445 Using Westinghouse NSSS Surveillance Data Only (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID '

Cu

~ Ni Temperature Fluence ARTwor Assessing Vessel (including source) wt%

wt%

(*F)

(x10" n/cm*)

(*F)

(Y or N)

Point Beach Unit 1: Capsule V 0.23 0.62 540 0.634 107 Y

SA-1263: Plant Specific RVSP Material Point Beach Unit 1: Capsule S 0.23 0.62 540 0.829 165 Y

SA-1263: Plant Specific RVSP Material Point Beach Unit 1: Capsule R 0.23 0 62 540 2.19 181 Y

SA-1263. Plant Specific RVSP Material Point Beach Unit 1: Capsule T 0.23 0.62 540 2.23 181 Y

SA-1263: Plant Specific RVSP Material Table 4.5.15-2. Credibility Assessment for Weld Wire Heat Number 72445 Using Westinghouse NSSS Surveillance Data Only (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor ArtTwor Best Fit Line ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)*

(*F)

(*F)

(*F)

Point Beach Unit 1: Capsule V 0.23 0.62 172.4 540 0.872 107 130

-23 SA-1263 Plant Specific RVSP Matl.

Point Beach Unit 1: Capsule S 0.23 0.62 172.4 540 0 947 165 142 23 SA-1263: Plant Specific RVSP Matl.

Point Beach Unit 1: Capsule R 0.23 0.62 172.4 540 1.213 181 181 0

SA-1263: Plant Specific RVSP M::tt.

Point Beach Unit 1: Capsule T 0.23 0.62 172.4 540 1.217 181 182

-1 SA-1263 Plant Specific RVSP Matl Surv Avg 0 23 0 62 172 4 540

/

where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebest at = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,149.5)

These data are credible since the scatter is less than 28 F for all surveillance capsule data points.

4-40 h"<WM I

Table 4.5.15-3. Weld Wire Heat Number 72445 Chemistry Factor Calculation for Assessment of Westinghouse NSSS Reactor Vessels (Surry Unit 1 and Unit 2 Cold Leg Temperature at 542 F)

Using Westinghouse NSSS Surveillance Data Oniy Capsule

.Cu Ni.

trred.

Meas.

Temp. & Chem.

Chem.

Temp.

Fluence ARTwor Adjusted Designation wt%

wt%

Factor

('F)

Factor

(*F)

ARTwor (*F)

Point Beach Unit 1: Capsule V 0.23 0.62 172.4 540 0.872 107 96 SA-1263: Plant Specific RVSP Matl.

Point Beach Unit 1: Capsule S 0.23 0.62 172.4 540 0.947 165 149 SA-1263: Plant Specific RVSP Matt.

Point Beach Unit 1: Capsule R 0.23 0.62 172.4 540 1.213 181 164 SA-1263: Plant Specific RVSP Matl.

Point Beach Unit 1: Capsule T 0.23 0.62 172.4 540 1.217 181 164 SA-1263: Plant Specific RVSP Matl.

Vessel Best-Estimate 0 22 0.54 1580 542 CFsurv. sata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CFsurv.eata = 135.4) 1

)

4-41 I "< W a W 'S J

l

4.5.16. Weld Wire Heat Number 72445 (Use of All Surveillance Data)

Table 4.5.16-1. Surveillance Data for Weld Wire Heat Number 72445 Using All Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation.

Measured Data Used in Capsule ID -

Cu'

- Ni?

Temperature Fluence ARTwor Assessing Vessel a

' (including source)'

wt%

wt*/s

(*F)

(x10 n/cm )

(*F)

(Y or N)

B&WOG: Capsule CR3-LG1 0.22 0.59 556 0.510 141 Y

SA-1585: ANO-1 Nozzle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 0.22 0.59 556 1.67 156 Y

SA-1585: ANO-1 Nozzle Belt Dropout Matl.

Point Beach Unrt 1: Capsule V 0.23 0.62 540 0.634 107 Y

SA-1263: Plant Specine RVSP Material Point Beach Unit 1: Capsule S 0.23 0.62 540 0.829 165 Y

SA-1263: Plant Specific RVSP Material Point Beach Unit 1: Capsule R 0.23 0.62 540 2.19 181 Y

SA-1263: Plant Specific RVSP Material Point Beach Unit 1: Capsule T 0.23 0.62 540 2.23 181 Y

SA-1263: Plant Speci6c RVSP Material i

l 4-42 f."MNRM'i l

l

Table 4.5.16-2. Credibility Assessment for Weld Wire Heat Number 72445 Using All Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predseted (Adjusted -

Irrad. -

Meas.

Adjusted ARTuor from Predicted)

Capsule Cu Ni.

Chem.

Temp, Fluence ARTuor ARTuor Best Fit une ARTuor Designation wt%

-wt%

Factor

('F)

Factor

(*F)

(*F)

(*F)

('F) t B&WOG: Capsule CH3-LG1 0.22 0.59 165.5 556 0.812 141 156 121 35 SA-1585: ANO 1 Nonle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 0.22 0.59 165.5 556 1.141 156 171 170 1

SA-1585: ANO-1 Nonle Belt Dropout Matl.

Paint Beach Unit 1: Capsule V 0.23 0.62 172.4 540 0.872 107 100 130

-30 SA-1263-Plant Specific RVSP Mati Point Beach Unit 1: Capsule S 0.23 0.62 172.4 540 0.947 165 158 141 17 SA 1263: Plant Specific RVSP Mati Point Beach Unit 1: Capsule R 0.23 0.62 172.4 540 1.213 181 173 181

-8 SA-1263: Plant Specific RVSP Matt.

Point Beach Unit 1: Capsule T 0.23 0.62 172.4 540 1.217 181 173 181

-8 SA-1263: Plant Specific RVSP Matl Sury Avg 0.227 0610 170 0 545.3 I

where Predicted ARTuor = (Slopebestnf * (Fluence Factor) and Slopebestnt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,149.1)

These data are not credible since the scatter is greater than i28 F for two surveillance I

capsule data points.

I

)

1 4-43 f!%TNRM'i a

Table 4.5.16-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number 72445 Using All Surveillance Data

. Temp.&

_ Table '.

Capsule

. Chem. '

(Adjusted -

capsulei.

Chem. Factor Fluence

' Adjusted.

. Predicted

. Predicted) 3..

- Designation ' ~

(Sury. Avg.)

e Factor.

ARTwot (*F)

ARTeer ('F)

ART,cy ('F)

B&WOG: Capsule CR3-LG1 170.0 0.812 156 138 18 SA-1585: ANO-1 Nozzle Belt Dropout Matt.

B&WOG: Capsule CR3-LG2 170.0 1.141 171 194

-23 SA-1585: ANO-1 Nozzle Esett Dropout Mati.

Point Beach Unit 1: Capsule V 170.0 0.872 100 148

-48 SA-1263: Plant Specific RVSP Matt.

Point Beach Unit 1: Capsule S 170.0 0.947 158 161

-3 SA-1263: Plant Specific RVSP Matt.

Point Beach Unit 1: Capsule R 170.0 1.213 173 206

-33 SA-1263: Plant Specific RVSP Matl.

Point Beach Unrt 1: Capsule T 170.0 1.217 173 207

-34 SA-1263: Plant Specific RVSP Matl.

where Predicted ARTuor n (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points does not exceed 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel contents is used in the assessment of reactor vesselintegrity.

l l

4-44 f."<MNRM

4.5.17. Weld Wire Heat Number 821T44 (Use of B&W NSSS Data)

Table 4.5.17-1. Surveillance Data for Weld Wire Heat Number 821T44 Using B&W NSSS Surveillance Data (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation Measured Data Used in Capsule ID Cu

. NI Temperature Fluence ARTwor Assessing Vessel (ine:uding source) wt%

wt%

('F)

(x10 n/cm )

(*F)

(Y or N) 2 Davis-Besse:: Capsule TE1-F 0.22 0.63 556 0.229 108 Y

WF-182-1: Plant Specific RVSP Material Davis-Besse:: Capsule TE1-B 0.22 0.63 556 0.592 110 Y

WF-182-1: Plant Specific RVSP Material Davis-Besse:: Capsule TE1-A' O.22 0.63 556 1.29 164 Y

WF-182-1: Plant Specific RVSP Material Davis-Besse:: Capsule TE1-D 0.22 0 63 556 0.962 142 Y

WF 1821: Plant Specific RVSP Material TMI-2: Capsule TM12-C 0.28 0.63 556 0.168 120 Y

WF-1821: Plant Specific RVSP Material TMl2: Capsule TM12-E 0.28 0.63 556 0174 110 Y

WF-182-1: Plant Specific RVSP Material 1

i l

l 4-45 fMTNPM

Table 4.5.17-2. Credibility Assessment for Weld Wire Heat Number 821T44 Using B&W NSSS Surveillance Data (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicteo (Adjusted -

Irrad.

Meas.

Adjusted ARTuor from Predicted)

Capsule Cu Ni Chem.

Ternp.

Fluence ARTuor ARTwor Best Fit Line ARTwor Designation wt%

wt%

Factor

(*F)

Factor

('F)

('F)

('F)

(*F)

Davis-Besse:: Capsule TE1-F 0 22 0.63 172.0 556 0.602 108 112 15 WF-182-1: Plant Specific RVSP Matl.

Davis-Besse:: Capsule TEi-8 0.22 0.63 172.0 556 0.853 110 114 136

-22 WF-182-1: Plant Specific RVSP Matt.

D;vis-Besse:: Capsule TE1-A 0.22 0.63 172.0 556 1.071 164 170 171

-1 WF-182-1: Plant Specific RVSP Matl.

Dais-Besse:: Capsule TE1-D 0.22 0.63 172.0 556 0.989 142 147 158

-11 WF-182-1: Plant Specific RVSP Matl-TMI-2: Capsule TMl2-C 0.28 0.63 191.7 556 0.529 120 111 85 26 WF-182-1: Plant Specific RVSP Matl TMl2: Capsule TMl2-E 0.28 0 63 191.7 556 0.537 110 102 86 16 WF-182-1: Plant Specific RVSP Mat!.

.^

Surv. Avg 0 24 0 63 1780 556 where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebestnt = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e.,160.0)

These data are credible since the scatter is less than 128 F for all surveillance capsule data points.

1 l

l l

l 1

l I

l 1

4-46 f."MNRM

Table 4.5.17-3. Weld Wire Heat Number 821T44 Chemistry Factor Calculation

{

for Assessment of B&W NSSS Reactor Vessels (Cold Leg Temperature at 556 F)

Using B&W NSSS Surveillance Data Only I

trrad.

Meas.

Chem.

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Adjusted Designation wt%

wt% -

Factor

(*F)

Factor

-(*F)

ARTuor ('F)

Davis-Besse': Capsule TE1-F 0.22 0 63 172.0 556 0.602 108 112 WF-182-1: Plant Specific RVSP Matt.

Davis-Besse.: Capsule TE1-B 0.22 0 63 172.0 556 0.853 110 114 WF-182-1: Plant Specific RVSP Matt.

Davis-Besse:: Capsule TE1-A 0.22 0.63 172.0 556 1.071 164 170 WF-182-1: Plant Specific RVSP Matl.

Davis-Besse:: Capsule TE1-D 0.22 0.63 172.0 556 0.989 142 147 WF-182-1: Plant Specific RVSP Matt.

TMi-2: Capsule TMl2-C 0.28 0.63 191.7 556 0.529 120 tit WF-182-1: Plant Specific RVSP Matl.

TMl2: Capsule TMl2-E 0.28 0.63 191.7 556 0.537 110 102 WF-182-1: Plant Specific RVSP Mati Vessel Best-Estimate 0 24 0 63 1780 556 MM CFsurv. sata = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CFsurv. data = 160.0) l 447 L"<MNRM l

l l

4.5.18. Weld Wire Heat Number T29744 (Use of Westinghouse NSSS Data)

Table 4.5.18-1. Surveillance Data for Weld Wire Heat Number T29744 Using Westinghouse NSSS Surveillance Data (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID Cu-

. NI Temperature

. Fluence ARTuor Assessing Vessel 2

(including source) wt%

wt%

- (*F)

(x10 n/cm )

(*F)

(Y or N)

KORI Unit 1: Capsule V 0.21 0.67 545 0.484 191 Y

WF 233: Plant Specific RVSP Material KORI Unit 1: Capsule T 0.21 0.67 545 1.158 187 Y

WF-233: Plant Specific RVSP Material KORI Unit 1: Capsule S 0.21 0.67 545 1.227 210 Y

WF 233: Plant Specific RVSP Matenal KORI Unit 1: Capsule R 0.21 0.67 545 2.704 237 Y

WF-233: Plant Specific RVSP Material Table 4.5.18-2. Credibility Assesstnent for Weld Wire Heat Number T29744 Using Westinghouse NSSS Surveillance Data (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irrad.

Meas.

Adjusted ARTuor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor ARTuor Best Fit Line ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

KORI Unit 1: Capsule V 0.21 0.67 175.6 545 0.798 191 156 35 WF-233: Plant Specific RVSP Matl.

KORI Unit 1: Capsule T 0.21 0.67 175.6 545 1.041 187 204

-17 WF-233' Plant Specific RVSP Matl KORI Unit 1: Capsule S 0.21 0.67 175 6 545 1.057 210 207 3

WF-233 Plant Specific RVSP Matl KORI Unit 1: Capsule R 0.21 0.67 175 6 545 1.266 237 248

-11 WF-233: Plant Specific RVSP Matl.

Surv. Avg 0 21 0 67 175 6 545 where Predicted ARTuor = (Slopebest nf * (Fluence Factor) and Slopesest at = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,195.8)

These data are not credible since the scatter is greater than 28 F for one surveillance capsule data point.

f i

4-48 I"<^ MMd j

Table 4.5.18-3. Table Chemistry Factor Non-Conservatism Assessment for Weld Wire Heat Number T29744 Using Westinghouse NSSS Surveillance Data Table Capsule (Adjusted -

Capsule Chem. Factor Fluence Measured Predicted Predicted)

Designation (Surv. Avg.)

Factor' ARTuor (*F)

' ARTuor (*F)

ARTuor (*F)

KORI Unit 1: Capsule V 175.6 0.798 191 140 51 WF-233: Plant Specific RVSP Matt.

KORI Unit 1: Capsule T 175.6 1.041 187 183 4

WF-233: Plant Specific RVSP Matl.

KORI Unit 1: Capsule S 175.6 1.057 210 186 24 WF-233: Plant Specific RVSP Matt.

KORI Unit 1: Capsule R 175.6 1.266 237 222 15 WF 233-Plant Specific RVSP Matt.

where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points does not exceed 2 standard deviations (56 F), the Table chemistry factor is conservative. Therefore, the Table chemistry factor based on the weld wire heat best-estimate copper and nickel contents is used in the assessment of reactor vesselintegrity.

1 l

1 4-49 fMTNRM L1- --- ----.-

4.5.19. Rotterdam Dockyard Fabricated Weld: Weld Wire Heat Number 0227 Table 4.5.19-1. Surveillance Data for Rotterdam Dockyard Fabricated Weld:

Woid Wire Heat Number 0227 (Table 2 of the RAI Regarding Reactor VesselIntegrity)

IrraSU.* '

Measured Data Used in Capsule ID Cu NI Temperature Fluence ARTwor Assessing Vessel (including source) wt%*

wt%*

(*F)

(x10" n/cm')

(*F)

(Y or N)

Surry Unit 2: Capsule X 0.19 0.55 537.5 0.302 96 Y

SA-1526: Plant Specific RVSP Material Surry Unit 2: Capsule V 0.19 0.55 537.5 1.88 142 Y

SA-1526: Plant Specific RVSP Material

  • Mean value based on two measurements,1) RVSP baseline chemistry and 2) surveillance specimen W14.

Table 4.5.19-2. Credibility Assessment for Rotterdam Dockyard Fabricated Weld:

Weld Wire Heat Number 0227 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Adjusted -

Irred.

Meas.

Adjusted ARTwot from Predicted)

Capsule Cu

' Ni Chem.

Temp.

Fluence ARTwor ARTwot Best Fit Line ARTwot Designation wt%*

wt%*

Factor

(*F)

Factor

(*F)

(*F)

(*F)

(*F)

Surry Unit 2: Capsule X 0.19 0 55 149.3 537.5 0.672 96 85 11 SA 1526: Plant Specific RVSP Matl.

Surry Unit 2: Capsule V 0.19 0.55 149.3 537.5 1.173 142 148 4

SA-1526: Plant Specific RVSP Matt.

Surv. Avg O 19 0.55 149 3 537.5

  • Mean value based on two measurements,1) RVSP basehne chemistry and 2) surveillance specimen W14.

where Predicted ARTuor = (Slopebest nf '(Fluence Factor) and Slopebestat = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,126.5)

These data are credible since the scatter is less than i28 F for all surveillance capsule data points.

I I

4-50 I!MTNRM

Table 4.5.19-3. Rotterdam Dockyard Fabricated Weld: Weld Wire Heat No. 0227 Chemistry Factor Calculation for Assessment of Surry Unit 2 Reactor Vessel Irrad.

Meas.

Capsule Cu Ni.

Chem.

Designation wt%*

.~wt%*

Factor

~ Temp.

Fluence ARTuor

(*F)

Factor

(*F)

Surry Unit 2: Capsule X 0.19 0.55 149.3 537.5 0.672 96 SA 1526: Plant Specific RVSP Matl.

Surry Und 2: Capsule V 0.19 0.55 149.3 537.5 1.173 142 SA-1526: Plant Specific RVSP Matl.

Vessel Best-Estimate 0.19 0.55 149.3 543-*

  • Mean value based on two measurements,1) RVSP baseline chemistry and 2) surveillance specimen W14.
    • For conservatism no temperature adjustment was made to the measured data CFsurv.dar, = best fit line relating Adjusted ARTuor to the Fluence Factor (i.e., CFsurv. dat, = 126.5)

I l

i q

4.e, mme i

E________________________

i

5. References 1.

K. E. Moore and A. S. Heiler, " Chemistry of 177-FA B&W Owners' Group Reactor Vessel Beltline Welds," BAW-1500. Babcock & Wilcox, Lynchburg, Virginia, September 1978.*

2.

K. E. Moore and P.. S. Hel\\er, "B&W 177-FA Reactor Vessel Beltline Weld Chemistry Study," BAW-1799. Babcock & Wilcox, Lynchburg, Virginia, July 1983.*

3.

L. B. Gross, " Chemical Composition of B&W Fabricated Reactor Vessel Beltline Welds," BAW-2121 P, B&W Nuclear Technologies, Inc., Lynchburg, Virginia April 1991.*

4.

Letter from John F. Stolz, Director PWR Project Directorate #6 Division of PWR Licensing-B, to Walter S. Wilgus, Vice President, Nuclear Operations Florida Power Corporation,

Subject:

Projected Values of Material Proper 1ies For Fracture Toughness Requirements For Protection Against Pressurized Thermal Shock Events, dated September 4,1986.

5.

U. S. Nuclear Regulatory Commission, " Radiation Damage to Reactor Vessel l

Material,"Reaulatory Guide 1.99. Revision 2, May 1988.

l l

6.

Code of Federal Regulations, Title 10,

  • Domestic Licensing of Production and Utilization Facilities," Part 50.61, ' Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock," Federal Register, December 19, 1995.

i l

I 1

5-1 I'"< W " D

6. Certification This report accurately responds to the request for additional information regarding reactor pressure vessel integrity for the B&W Owners Group Reactor Vessel Working Group.

7&6)0W daht M. J. EfeVan, Engineer IV Date Materials & Structural Analysis Unit This report has been reviewed for technical content and accuracy.

$- N-75 Jf. Hall, Engineer lil Date Materials & Structural Analysis Unit Verification of independent review.

$$t 0 E-Ah

/k.'E. hXo6te, Manager Dat6 ~

~

Materials & Structural Analysis Unit This report is approved for release.

D. L. H'o'well

~

ShNV8 twP

'Date Program Manager 6-1 IMMAM

I l

APPENDIX A Best-Estimate Copper and Nickel Contents for high-Copper Linde 80 Welds Used in the Reactor Vessel Beltline Regions of the B&W Owners Group Reactor Vessel Working Group i

t A-1 IMTNPM l

Tcblo A-1. Copper and Nickci Contants Sourco Moans for Wald Wiro Haat Numbsr 299L44 l Flux l Wold Metal -

. Analysis Source Cu Ni l

Weld ID l Lot l Source Reference wt%

wt%

Notes l

SA-1526 8596 Weld Qualification Barberton WO Lab No 67239 g

Source Mean 0.46

0. 6 SA-1526 8596 l CR-3 Nozzle Dropout h Mt Vemon Lab No. 29818 0 36 0 70 lCR-3 Nozzle Dropout lMt Vemon Lab No. 29819 0.37 0 70l l

lCR 3 Nozzle Dropout i Mt. Vemon Lab No. 29820 0 38 0 711 l

l CR-3 Nozzle Dropout lMt Vernon Lab No 29821 0 39 0.71 l l

l CR-3 Nozzle Dropotr. l Mt. Vemon Lab No. 29822 0 37 0 70 l l

l CR-3 Nozzle Dropout l Mt. Vernon L ab No. 29823 0.39 0 71 l l

l CR-3 Nozzle Dropout l Mt. Vemon Lab No. 29824 0 38 0.71 l l

l CR-3 Nozzle Dropout lMt. Vernon Lab No 29825 0 37 0 71 l l

l CR-3 Nozzle Dropout l Mt. Vemon Lab No. 29826 0.36 0.71 l l

l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29827 0 37 0.71 l l

l CR-3 Nozzle Dropout l Mt. Vernon Lab No. 29828 0.38 0 65 l l

[CR-3 Nozzle Dropout l Mt. Vernon Lab No. 28793 0 36 0 70 l l

CR-3 Nozzle Dro ut 3

07 Source Mean 0.37

0. 7 SA-1526 8596 l Surry-1 Sury. Weld

!I RVSP Baseline Chemistry 0 25 0 68 l Surry-1 Surv. Weld l CVN Specimen: W-10 0 24 064l l

lSurry-1 Surv Weld l CVN Specimen: W-1 0.25 0 66 l l

l Surry-1 Surv. Weld l CVN Specimen: W-5 0 26 0 67 l l

lSurry-1 Sury Weld l CVN Specimen: W-9 0 24 0 66 l l

l Surry-1 Surv. Weld lCVN Specimen W-16 0 24 0 651 l

l Surry-1 Surv. Weld lCVN Specimen W-1 0.21 0 66 l l

l Surry-1 Surv. Weld l CVN Specimen: W-5 0.21 0 65 l l

l Surry-1 Sury. Weld lCVN Specimen W-9 0 20 0 64 l l

l Surry-1 Surv. Weld lCVN Specimen W-16 0 20 0 651 l

Su

-1 Surv. Weld CVN S cimen W-22 g,0 49 Source Mean 0.23 0.64 WF-19 8650 iWeld Qualification Mt. Vemon WO: Lab No. 5207 0 29 0.72 WO test eted Source Mean 0.29 0.72 WF-25 6650 Weld Qualification llMt Vernon WQ: Lab No. 5396 0 29 0.71 l

l Retest of WQ Sample 0 32

- 1 l

l l Retest of WO Sample 0 34 0.71 l l

Retest of WO Sam te 3

0.72 Source Mean 0.32 0.71 WF-25 8650 4 TMI-1 Surv. Weld lj Mt Vemon Lab No. 30538 0.27 0 63 l TMI-1 Surv. Weld l Mt Vemon Lab No. 30539 0.29 0 63 l l

l TMI-1 Surv. Weld l Mt Vernon Lab No,30540 0.29 0 63 l l

l TMI-1 Surv. Weld l Mt Vernon Lab No. 30541 0 33 0 64 l l

[TMI-1 Surv Weld lMt Vemon Lab No 30534 0.36 0 69 l l

l TMI-1 Surv. Weld l Mt Vernon Lab No 30535 0 37 0.70 l l

l TMI-1 Sury. Weld I Mt Vemon Lab No. 30530 0 36 0 69 l l

l TMI-1 Surv. Weld l Mt Vemon Lab No. 30537 0.35 0 70 l l

TMI-1 Surv. Weld CVN Specimen CC-018 0.34 0.43 Ni content lower than expected range and analyses on same production weld; retest performed; Ni content not used in source mean calculation.

TMl-1 Surv. Weld CVN S cimen CC-018 Retest 3

0 71 Source Mean 0.33 0.67 WF-25 8650 llONS-3 Nozzle Dropout 4 Mt Vemon Lab No. 28818 0.36 0.70 ONS-3 Nozzle Oro ut Mt. Vernon Lab No. 28818 g

0 70 Source Mean 0.36 0.70 A-2 f!MMM

Tcbla A-1 (ccntinu:d). Ccpp;r cnd Nick:1 Centents Ssurca Micn3 far W:Id Wiro H:ct Number 299L44 Flux Wold Metal Analysis Source Cu NI Wold ID Lot Source Reference wt%

Wt%

Notes WF 25 8650 TMI-2 Nozzle Dropout Mt. Vemon Lab No 28819 0 35 0 69 1Mi-2 Nozzle Dropout 0 35 0 70 TMI-2 Nozzle Dropout Mt Vemon Lab No 30632 0 34 0 67 TMI-2 Nozzle Dropout Mt Vemon Lab No 30631 0 36 0 70 TMI-2 Nozzle Dropout Mt Vemon Lab No 30630 0 37 0 70 1Mi-2 Nozzle Dropout Mt Vemon Lab No. 30629 0 38 0 70 TMi-2 Nozzle Dropout Mt Vemon Lab No. 30628 0 40 0 70 TMI-2 Nozzle Dropout Mt Vernon Lab No 30627 0.38 0 71 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30626 0 38 0 71 TMI-2 Nozzle Dropout Mt Vemon Lab No 30625 0 36 0 67 TMI-2 Nozzle Dropout Mt Vemon Lab No 30624 03' O 62 TMI-2 Nozzle Dropout Mt Vernon Lab No 30623 0 34 0 60 TMI-2 Nozzle Dropout Mt Vemon Lab No 30622 0 32 0 60 TMI-2 Nozzle Dropout Mt Vemon Lab No. 30621 0 33 0 64 TMi-2 Nozzle Dropout Mt Vemon Lab No. 30620 0 36 0 69 yAl-2 Nozzle Dropout Mt Vernon Lab No 30619 0 36 0 70 TMI 2 Nozzle Dropout Mt Vernon Lab No 30618 0 36 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No 30617 0 35 ~ 0.71 TMI-2 Nozzle Dropout Mt Vemon Lab No 30616 0 34 0 66 TMI-2 Nozzle Dropout Mt Vemon Lab No 30615 0 32 0 60 TMI-2 Nozzle Dropout Mt Vernon Lab No 30614 0 31 0 60 TMI-2 Nozzle Dropout Mt Vemon Lab No 30613 0 36 0 68 TMi-2 Nozzle Dropout Mt Vernon Lab No. 30612 0 37 0.70 iMi-2 Nozzle Dropout Mt Vemon Lab No 30611 0.36 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No 30610 0 34 0 70 TMI-2 Nozzle Dropout Mt Vemon, Lab No. 30609 0 34 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No 30608 0 36 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No 30607 0 35 0 69 TMl-2 Nozzle Dropout Mt Vemon Lab No 30606 0 38 0 69 TMl-2 Nozzle Dropout Mt Vemon Lab No. 30605 0 35 0 70 TMI-2 Nozzle Dropout Mt Vemon Lab No 30604 0 33 0.71 TMI-2 Nozzle Dropout Mt Vernon Lab No 29274 0 34 0 69 TMI-2 Nozzle Dropout Mt Vernon Lab No. 29275 0 36 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29276 0 37 0.70 iMi-2 Nozzle Dropout Mt Vemon Lab No 29277 0 37 0 70 TMI-2 Nozzle Dropout Mt Vemon Lab No 29278 0 40 0.71 TMI-2 Nozzle Dropout Mt Vemon Lab No 29279 0 38 0.71 TMI-2 Nozzle Dropout Mt Vemon Lab No 29280 0 36 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No 29281 0 35 0 61 TMi-2 Nozzle Dropout Mt Vemon Lab No. 29282 0 34 0 60 1Mi-2 Notzte Dropout Mt Vemon Lab No. 29283 0 32 0 59 TMi-2 Nozzle Dropout Mt Vemon Lab No 29284 0 31 0 62 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29285 0.36 0 68 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29286 0.36 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29287 0 35 0 69 TMi-2 Nozzle Dropout Mt Vemon Lab No. 29288 0 35 0 71 TMI-2 Nozzle Dropout Mt Vemon Lab No 29289 0 33 0 70 TMi-2 Nozzle Dropout Mt Vemon Lab No. 29290 0 30 0 61 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29291 0 30 0 62 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29292 0 35 0 68 TMl-2 Nozzle Dropout Mt Vemon Lab No 29293 0 35 0.70 TMi 2 Nozzle Dropout Mt Vemon Lab No 29294 0 35 0 70 TMI-2 Nozzle Dropout Mt Vemon Lab No,29295 0 34 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No 29296 0 35 0 69 TMI-2 Nozzle Dropout Mt Vernon Lab No. 29297 0.36 0.70 TMI-2 Nozzle Dropout Mt Vemon Lab No 29298 0 37 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29299 0 35 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No 29300 0 36 0 69 TMI-2 Nozzle Dropout Mt Vemon Lab No. 29301 0 35 0 70 TMI-2 Nozzle Dropout Barberton Analysis Section FF 0.33 0 69 TMI-2 Nozzle Dropout Barberton Analysis Section EE O 34 0 69 A-3 h" M M J

Tcbla A-1 (csntinu:d). Cepper cnd Nick:1 Centents Scurca M ans for Wild Wira Hrct Number 299L44 Flux Wold Metal Analysis Source Cu Ni Wold ID Lot Source -

Reference wt% Wt%

Notes WF-25 8650 TMI-2 Nozzle Dropout Barberton Analysis Section CC 0 33 0 69 TMI-2 Nozzle Dropout Barberton Analysis Section BB 0 34 0 69 TMI-2 Nozzle Dropout Barberton Analyss Secten AA 0 32 0 69 TMl-2 Nozzle Dropout Barberton Analysis Secten Z 0 32 0.70 TMI-2 Nozzle Dropout Barbertnn Analysts Section Y 0.30 0 69 TMI-2 Nozzle Dropout Barberton AnalysisSection X 0 32 0 63 TMI-2 Nozzle Dropout Barbertor. Analyses Section W D 31 0 60 TMI-2 Nozzle Dropout Barberton AnalysisSection V O 31 0 60 TMI-2 Nozzle Dropout Barberton Analysis Section U 0.28 0 59 TMI-2 Nozzle Dropout Barberton Analyss Section T 0 30 0 69 TMi-2 Nozzle Dropout Barberton Analysis Section S 0 33 0 70 TMI-2 Nozzle Dropout Barberton Analysis Section R 0.33 0.70 TMi-2 Nozzle Dropout Barberton Analysis Section O O 32 0.71 TMI-2 Nozzle Dropout Barberton Analysis Section P 0.32 0 70 TMI-2 Nozzle Dropout Parberton Analysis Secton 0 0 33 0 70 TMI-2 Nozzle Dropout Barberton Analysis Section N O 32 0 69 TMI-2 Nozzle Dropout Barberton Analysis Section M 0.27 0 60 TMi-2 Nozzle Dropout Barberton Analysis Section L 0 26 0 58 TMI-2 Nozzle Dropout Barberton Analysis Section K 0 31 0 65 TMI-2 Nozzle Dropout Barberton Analysis Section J 0.32 0 69 TMl 2 Nozzle Dropout Barberton Analysis Secten 1 0 33 0.70 TMI-2 Nozzle Dropout Barberton Analysis Section H 0.31 0.69 TMI-2 Nozzle Dropout Barberton Analysis Section G 0.31 0.70 TMi-2 Nozzle Dropout Barberton Analysis Secten F 0 29 0.69 TMI-2 Nozzle Dropout Barberton Analysis Secten E O 32 0.70 TMI-2 Nozzle Dropout Barberton Analysis Section D 0 34 0 70 TMI-2 Nozzle Dropout Barberton Analysis Section C 0 32 0 66 TMI-2 Nozzle Dropout Barberton Ane ysis Section B 0.30 0 65 TMI-2 Nozzle Dropout Barberton Analysis Section A 0.30 0 66 TMI-2 Hozzle Dropout Round Robin Sample LRC 0.32 0.67 Analysis TMI-2 Nozzle Dropout Round Robin Sample LRC 0.32 0.72 Analysis TMI-2 Nozzle Dropout Round Robin Sample Mt. Vernon 0.34 0.69 Analysis: Lab No. 28774 TMI-2 Nozzle Dropout Round Robin Sample Mt. Vemon 0.34 0.68 Analisis Lab No. 28774 TMI-2 Nozzle Dropout Round Robin Sample Mt. Vemon 0.35 0.69 Analysis: Lab No. 28775 TMi-2 Nozzle Dropout Round Robin Sample Mt. Vemon 0 35 0.69 Analysis: Lab No. 28775 TMi-2 Nozzle Dropout Round Robin Sample Barberton 0.27 0 67 Analysis TMI-2 Nozzle Dropout Round Robin Sample Barberton 0.29 0 68 Analysis TMI-2 Nozzle Drepout Round Robin Sample LRC 0.29 0.66 Analysis TMI-2 Nozzle Dropout Round Robin Sample LRC 0.36 0.69 Analysis TMI-2 Nozzle Dropout Round Robin Sample LRC 0.33 0.59 Analysts TMI-2 Nozzle Dropout Round Robm Sample LRC 0.35 0.58 Analysis TMi-2 Nozzle Dropout Round Robin Sample LRC 0.34 0.59 Analysis TMI-2 Nozzle Dropout Round Robin Sample LRC 0.34 0.70 Analysis TML-2 Nozzle Dropout Round Robin Sample LRC 0.33 0.68 Analysis TMI-2 Nozzle Dropout Round Robin Sample J&L Steel 0.33 0.68 Company Analysis TMI-2 Nozzle Dropout Round Rooin Sample ORNL 0.28 0.65 Analysis A-4 I M E^?R M

Tcblo A-1 (centinu;d). Capp:r cnd Nick:1 Centents Sourcs Meena for W:Id Wira Heat Numb:r 299L44

}

l WoldID l Lot lFluxj Wold Metal l

Analysis Source Cu Wt%l

[

Ni I

Source ~

l Reference wt%

t Notes

[

WF-25 8650 l TML-2 Nozzle Otopout lRound Robin Sample Y-12 0.24 0.72) l

[

] Analysis

]

]

[ TMi-2 Nozzle Dropout l Round Robin Sample Y-12 0.24 0 66l l

(

l Analysis I

)

{ TM1-2 Nozzle Dropout lRound Robin Sample NBS O 31 0 68)Mean of 4 analyses.

}

l

] Analysis. 63W l

}

l TMI-2 Nozzle Dropout \\ Round Robin Sample NBS 0 31 0.69lMean of 4 analyses.

l t

I Analysis - 63W i

)

{ TMI-2 Nozzle Dropout l Round Robin Sample NBS 0.31 0 69)Mean of 4 analyses.

}

l

] Analysis - 63W l

l

[TMi-2 Nozzie Dropout IRound Robin Sample NBS O 30 0.68)Mean of 4 analyses.

1 i

1 Analysis - 63W l

l lTML-2 Nozzle Dropout i HSST Specimen ID. 63W-258 0 28 0 57i l

l TMl-2 Nozzle Dropout iHSST Specimen ID: 63W-259 0 26 0 51l l

1 TMI-2 Nozzk Dropout l HSST Specimen 10: 63W-262 0 34 0 58l l

l TMI 2 Nozzle Dropout iHSST Specimen ID: 63W-291R 0.24 0 46{

l l TMI 2 Nozzle Dropout (HSST Specamen iD: 63W-209 0 24 0 64 l l

l TMi-2 Nozzle Dropout l HSST Specimen ID' 63W 209 0 29 0 66(

l i TMI-2 Nozzle Dropout (HSST Specimen ID: 63W-289 0 29 0 68l l

l TMI-2 Nozzle Dropout iHSST Speer.enID 63W 291C 0 32 0 681 1

TMi-2 Nozzle Dropout HSST Specimen ID: 63W-291C 0.35 1.04 Ni content higher than expected range and so4ses on same production weld; Ni content not used in source mean calculatio Source Mean 0.33 0.67 m

\\

i

??MNRM1

Tebin A-2. Coppar and Nicksi Contants Sourco Msans for Wold Wiro Heat Numbar 406L44 l Flux l Weld Metal l

Analysis Source Cu Nil l

Weld lD l Lot l Source l

Reference Wt*/. Wt%l Notes l

l WF-112 8688 Weld Qualification Mt. Vernon WQ: Lab No. 7278 0.22 0.58 Cu content lower than WO retest analysis and analyses on production welds; Cu content not used in source mean calculation l

l Retest of WO sample 0 26

- l l

l l Retest of WO sample 0 32 0 58 l l

Retest of WO sam le 3

0 59 Source Mean 0.30 0.

WF-112 8688 I ONS-1 Sury. Weld Mt Vemon Lab No. 30072 0 31 0.59 I ONS-1 Surv. Weld l Mt Vemon Lab No. 30073 0 32 0 59l l

[ ONS-1 Surv. Weld l Mt Vernon Lab No. 30074 0 31 0 59 l l

l ONS-1 Surv. Weld l Mt Vemon Lab No 30075 0.33 0 60 l l

l ONS-1 Surv. Welt', 1 Mt Vemon Lab No 30076 0.31 0 60 l l

l ONS-1 Surv. Weld l Mt Vemon Lab No 30 #77 0 32 0 59I l

l ONS-1 surv. Weld l Mt Vemon Lab No. 300If 0 32 0 59l l

l ONS-1 Surv. Weld l Mt Vernon Lab No 30079 0 34 0 59 l l

l ONS-1 Sury. Weld l Mt Vemon Lab No. 30080 0 32 0 60 l l

l ONS-1 Surv. Weld l Mt Vemon Lab No. 30081 0 31 0 60l l

l ONS-1 Sury. Weld l Mt Vernon Lab No. 30082 0 30 0 58 l l

lONS-1 Surv. Weld l Mt Vemon Lab No 30483 0 30 0 58 l l

l ONS-1 Surv. Weld l Mt Vernon Lab No 30484 0 30 0 58 l l

l ONS-1 Surv. Weld l Mt Vemon Lab No. 30485 0 31 0 58 l l

l ONS-1 Sury. Weld l Mt Vemon Lab No. 30486 0 31 0 58 l l

l ONS-1 Surv. Weld l Mt Vemon Lab No. 30487 0 32 0 58 l l

l ONS-1 Surv. Weld l Mt Vemon Lab No 30488 0 33 059l l

l ONS-1 Surv. Weld l Mt Vemon Lab No 30489 0 33 0 58 l l

l ONS-1 Surv. Weld l Mt Vemon Lab No. 30490 0.34 0 59 l l

l ONS-1 Sury. Weld l Mt Vemon Lab No 30491 0.32 059l l

lONS-1 Surv. Weld l Mt Vemon Lab No. 30492 0 32 0 58 l l

ONS-1 Sury. Weld CVN Specimen: 0C1-025 0.16 0.47 Cu & Ni contents lower than analyses on same production weld; Cu & Ni contents not used in sour.,4 mean calculation ONS-1 Surv. Weld CVN Specimen: OC1-034 0.17 0.56 Ce content lower than analyses on same production weld; Cu content nJt used in source mean calculation ONS-1 Surv. Weld 3

0 Source Mean 0.32 0.

WF 154 8720 Weld Qualification Mt. Vemon WQ: Lab No. 8151 0.20 0 59 Cu content lower than WO retest analysis and analyses on production welds; Cu content not used in source mean calculation l

l Retest of WO sample 0.25

- l l

l l Retest of WO sample 0.27 059l l

Retest of WO sam le 3

0 60 Source Mean 0.26 0.5 WF 183 8754 l Weld Qualification Mt Vemon WQ: Lab No. 9300 3

05 test ~ cted Source Mean 0.21 0.5 l

A-6 L"A W M

/

Tabla A-2 (continu3d). Coppar and Nickci Contants Source Moans for Wold Wiro Host Numbar 406L44 l Flux l Wold Metal l

Analysis Source Cu Nil l

Weld ID l Lot l Source l

Reference wt*/.

wt%l Notes l

WF-193 8773 Weld Quahfication Mt. Vernon WQ: Lab No. 9374 0.19 0 59 Cu content lower than WQ retest analysis and analyses on production welds; Cu content not used in source mean calculation

]

l Retest of WO sample 0 28 0 60 l l

l l Retest of WO sample 0 27 0 601 l

Retest of WQ sample. Lab No.

0.016 0.91 Cu & Ni contents dissimitar 16451 compared to retest WO analyses and on production welds; Cu & Ni contents not used in source mean calculation Retest of WQ sample 0.014 Cu & Ni entents dissimilar compared to retest WQ analyses and on production welds; Cu & Ni contents not used in source mean calculation Retest of WO sample 0.018 0.90 Cu & Ni contents dissrnstar compared to retest WO analyses and on production welds; Cu & Ni contents not used in source mean calculation Retest of WO sample 0.017 0.91 Cu & Ni contents dissimilar compared to retest WQ analyses and on production welds; Cu & Ni contents not used in source mean Source Mean 0.28 0.60 WF-193 8773 l ANO-1 Surv. Weld 0 Mt Vernon Lab No 30040 0 26 0 59I

[ ANO-1 Sury Weld l Mt Vernon Lab No. 30041 0 27 0 60l l

l ANO-1 Sury. Weld l Mt Vernon Lab No 30042 0 27 059l l

l ANO-1 Surv. Weld l Mt Vernon Lab No. 30043 0 27 0 59l l

l ANO-1 Surv. Weld l Mt Vernon Lab No. 30059 0 27 0 58l l

l ANO-1 Surv. Weld lMt Vemon Lab No 30060 0 30 0.58 l l

l ANO-1 Surv. Weld l Mt Vemon Lab No 30%1 0 28 0 58l l

l ANO-1 Surv. Weld lM Vernon Lab No 30062 0 28 018l l

ANO-1 Surv Weld CVN S ecimen ID-GG-027 y

o 57 Source Mean 0.27 0.58 WF-193 6773 PB-2 Surv Weld RVSP Baseline Chemist 3

0 59 x

Source Mean 0.25 0.59 A-7 I"MMA

Tablo A-3. Copper and Nickel Contants Sourco Moans for Wald Wiro Host Numbsr 61782 I

Flux l Wold Metal Analysis Source Cu Ni l Wold ID Lot l Source Reference wt%

Wt% l Notes SA-847 8350 Weld Qualification Bart>erton WQ 0.20 0.39 Ni content lower than analyses on other WQs and production welds; Ni content not used in source mean Source Mean 0.20 SA-848 8373 Weld Qualification i Barberton WO O 22 04 Source Mean 0.22 0.4 SA-948 8408 Weld Qualification Barberton WO 0.18 0 55 Source Mean 0.18 0.55 SA-1014 8436 Weld Qualification Barberton WO O 23 0 46 Source Mean 0.23 0.46 SA-1036 8436 Weld Qualification Baroerton WO 0.31 0 64 Source Mean 0.31 0.64 SA-1036 6436 ONS 1 Nozzle Dropout l Specimen No. U 0 15 0 49 l ONS-1 Nozzle Dropout Specimen No. T 0.15 0 49 l IONS 1 Nozzle Dropout Specimen No. S 0.17 050l lONS 1 Nozzle Dropout Specimen No. R O.16 0 49 l lONS-1 Nozzle Dropout Specimen No O 0.16 0 49 l lONS-1 Nozzle Dropout Specimen No. P O 21 0 48 l lONS-1 Nozzle Dropout Specimen No. O 0.22 0 48 l l ONS-1 Nozzle Dropout Specimen No N 0.23 0 49 l lONS-1 Nozzle Dropout Specimen No. M 0 22 0 49 l lONS-1 Nozzle Dropout Specimen No. L 0.24 0 49 l l ONS-1 Nozzle Dropout Specimen No. K 0.27 0 49 l ONS-1 Nozzle Oro out MJ 0.27 Source Mean 0.20 0.4 SA-1036 8436 REG Surv. Weld RVSP Baseline Chemistry 0.23 0.56 l REG Sury. Weld l CVN Specimen ID: W-26 0.22 050l l REG Surv. Weld lCVN Specimen 0 25 057l l REG Surv. Weld l CVN Specimen 0 25 052l l REG Surv. Weld lCVN Specimen 0 27 0 58 l l

l REG Surv. Weld i CVN Specimen 0 22 0 45) l l REG Sury. Weid l CVN Specimen 0 23 0 501 l

l REG Surv. Weld l t:VN Soecimen 0.23 0.50 l l

l REG Surv. Weld lCVN Specimen 0.21 0 46 l l

REG Surv. Weld CVN S cimen 0.25 0 53 Source Mean 0.24 0.52 SA-1118 8443 Weld Qualification Barberton WO 3

0 52 Source Mean 0.22 0.52 SA-1135 8457 Weld Qualification Barberton WO E

0.50 Source Mean 0.17 0.50 A-8 f."MNRM

Tablo A-3 (continund). Coppsr and Nicksi Contsnts Sourco Manns for Wald Wiro Hsat Number 61782 Flux l Wold Metal j

Analysis Source Cu Ni j l

Weld ID Lot i Source l

Reference wt%

Wt% l Notes l

(

SA-1135 8457 IONS-2 Nozzle Dropout lMt Vernon Lab No 30691 0 17 0 59l l

l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30690 0 23 0 60l l

l 1 ONS-2 Nozzle Dropout l Mt Vernon Lab No. 30689 0 21 0 59]

l l ONS-2 Nozzle Dropout lMt Vernon Lab No. 30688 0 23 0 601 l

l ONS-2 Nozzle Dropout lMt Vernon Lab No 30687 0 22 0 60 l l

l ONS 2 Nozzle Dropout lMt Vemon Lab No 30686 0 22 0 601 l

lONS-2 Nozzle Dropout ]Mt Vernon Lab No 30685 0.26 0 58l l

lONS-2 Nozzle Dropout 1Mt Vemon Lab No. 30684 0 33 0 59 l l

]

l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30683 0 34 0 59 l l

lONS 2 Nozzle Dropout lMt Vemon Lab No. 30682 0 34 0 59l

]

lONS 2 Nozzle Dropout } Mt Vemon Lab No 30681 0 31 059l l

l ONS 2 Nozzle Dropout ] Mt Vernon Lab No. 30680 0.32 0 58 l l

lONS-2 Nozzle Dropout lMt Vemon Lab No 30679 0 31 0 59l l

lONS-2 Nozzle Dropout lMt Vernon Lab No 30678 0 22 0 58) l 1 ONS-2 Nozzle Dropout lMt Vernon Lab No 30677 0 22 0 591 l

1 ONS-2 Nozzle Dropout iMt Vernon Lab No 30676 0 25 0 58 l l

l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30675 0 24 0 58i l

lONS-2 Nozzle Dropout l Mt Vernon Lab No. 30674 0 29 0 58l l

l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30673 0 28 0 59l l

[ONS-2 Nozzle Dropout lMt Vemon Lab No 30672 0 29 0 58 l l

l ONS-2 Nozzle Dropout 1 Mt Vernon Lab No. 30671 0.28 0 58 l l

lONS-2 Nozzle Dropout l Mt Vemon Lab No. 30670 0 27 0.58 l l

l ONS-2 Nozzle Dropout l Mt Vemon Lab No. 30669 0.29 0 58 l l

l ONS-2 Nozzle Dropout ]Mt Vernon Lab No 30668 0.28 0.581 l

1ONS 2 Nozzle Dropout l Mt Vernon Lab No. 30667 0 27 0 58 l l

l ONS-2 Nozzle Dropout l Mt Vernon Lab No. 30666 0.27 0 58 l 1

lONS-2 Nozzle Dropout l Mt Vemon Lab No. 30665 0 31 0 58I l

l ONS-2 Nozzle Dropout lMt Vemon Lab No 30664 0 31 0 58 l 1

ONS-2 Nozzle Dro out Mt Vernon Lab No 30663 g

0 58 Source Mean 0.27 0.59 SA-1346 8504 Weld Quahfication Barberton WO y

05 Source Mean 0.20 0.51 SA-1779 8738 Weld Quahfication Barberton WO Lab No. E-7705Lg 0 45 Source Mean 0.28 0.4 SA-1788 8754 Weld Quahfication Barberton WO Lab No. E-77355 0 29 p47 Source Mean 0.29 0.47

\\

l l

l l

1 l

l A-9 f!MWNRP,'E

Teblo A-4. Coppsr end Nicksi Contsnts Sourco Masna for Wald Wiro Hart Numbsr 71249 l Flux l Wold Metal Analysis Source Cu NI l

Wold ID l Lot j Source Reference wt%

wt%

Notes l

SA-1094 8457 Weld Qualincation Barberton WO y

0 55 Source Mean 0.23 0.55 SA 1094 6457 TP-4 Surv. Weld l RVSP Baseline Chemistry 0.30 0 60 l TP-4 Surv. Weld lCVN Specimen 0.27

- l l

lTP-4 Sury. Weld l CVN Specimen 0 29

- l l

TP-4 Sury. Weld CVN S cimen y

Source Mean 0.29 0.60 SA-1101 8445 Weld Qualineation

Barberton WO 3

0 57 Source Mean 0.21 0.57 SA-1101 8445 ONS-1 Nozzle Dropout ! Specimen No.1 0 23 0 52 lONS-1 Nozzle Dropout l Specimen No. H 0 20 0.54 l l

lONS-1 Nozzle Dropout l Specimen No. G 0.20 0 54 l l

lONS-1 Nozzle Dropout l Specimen No. F 0 17 0 54 l l

lONS-1 Nozzle Dropout l Specimen No. E O 15 0 55l l

lONS-1 Nozzle Dropout l Specimen No D 0 19 0 54 l l

LONS-1 Nozzle Dropout l Specimen No. C 0.18 055l l

l ONS-1 Nozzle Dropout l Specimen No. B 0 15 0 54 l l

l ONS-1 Nozzle Dropout l Specimen No. A 0 16 0 55l l

lONS-1 Nozzle Dropout lRound Robin Sample Mt. Vernon 0.19 063l l

l l Analysis Lab No 28772 l

l ONS-1 Nozzle Dropout l Round Robin Sample Mt. Vemon 0.19 0.61 l l

l Analysis l

l Round Robin Sample Mt Vernon 0.17 062l l

lONS 1 Nozzle Dropout l Analysis Lab No. 28773

[

l l

Round Robin Sample Mt. Vernon 0.18 0.62 l

lONS-1 Nozzle Dropout Analysis l

lONS-1 Nozzle Dropout lRound Robin Sample Barberton 0.16 0 60l l

l l Analymis l

l lONS-1 Nozzle Dropout l Round Robin Sample Barberton 0.16 0.61 l l

l l Analysis l

l l ONS-1 Nozzle Dropout Round Robin Sample LRC 0.18 0 G2 l

Analysis lONS-1 Nozzle Dropout l Round Robin Sample LRC 0.29 0.67 l l

l l Analysis l

l lONS-1 Nozzle Dropout lRound Robin Sample LRC 0.18 0.54 l l

[

] Analysis l

l 0.19 0.53 l

lONS-1 Nozzle Dropout lRound Robin Sample LRC 1 Analysis l

l ONS-1 Nozzle Dropout [Round Robin Sample LRC 0.18 0.54 l l

l Analysis l

lONS-1 Nozzle Dropout Round Robin Sample LRC 0.23 0 64 l

l Analysis l

lONS-1 Nozzle Dropout lRound Robin Sample LRC 0.23 0.65 l l

l Analysis l

l ONS-1 Nozzle Dropout Round Robin Sample J&L Steel 0.17 0.62 l l

l Company Analysis l

l l ONS-1 Nozzle Dropout l Round Robin Sample ORNL 0.18 0.61 l 1

l Analysis l

[ONS-1 Nozzle Dropout l Round Robin Sample Y-12 0.18 0.65 l

l Analysis lONS-1 iJozzle Dropout [ Round Robin Sample Y-12 0.13 0.63 I

I Ana!ysis lONS-1 Nozzle Dropout Round Robin Sample NBS 0.17 062l t

Analysis 62W l

l ONS-1 Nozzle Dropout l Round Robin Sample NBS 0.17 0.611 I

l Analysis - 62W j

lONS-1 Nozzle Dropout lRound Robin Sample NBS 0.17 0.62 I

l Analysis - 62W A-10 f."MNRM l

Tabla A-4 (continusd). Coppar and Nickci Contsnts Sourco Maans for Wald Wiro Haat Numbar 71249 l Flux l Wold Motal

.l Analysis Source Cu-Ni l Wold ID l Lot l-Source l

Reference wt%

Wt% l Notes SA 1101 8445 lONS-1 Nozzle Dropout Round Robin Sample NBS 0.18 0 62 l

Analysis - 62W lONS-1 Nozzle Dropout lHSST Specimen ID 62W-309 0 17 0 52 l lONS 1 Nozzle Dropout l HSST Specimen ID' 62W-359 0 17 0 48 l lONS-1 Nozzle Dropout l HSST Specimen ID-62W-202 0.18 0 57 l lONS-1 Nozzle Dropout lHSST Specimen ID: 62W-223 0 18 0 581 lONS 1 Nozzle Dropout l HSST Specimen ID' 62W-223 0 15 0 621 l ONS 1 Nozzle Dropout l HSST Specimen ID: 62W-276 0 19 0 59I ONS 1 Nozzle Dropout HSST Specimen ID: 62W-276 0.32 1,03 Ni content higher than expected range and analyses on same production weld; Ni content not used in source mean calculation SA-1101 8415 TP-3 Sunt Weld RVSP Baseline Chemistry 0 31 0 57 l

]TP-3 Surv Weld Retest RVSP Baseline Chemistry 0 33

- l

{

l TP-3 Surv. Weld Retest RVSP Baseline Chemistry 0 32 l

l TP-3 Surv. Weld CVN Spec # men 10. W-17 0 35

- l l TP-3 Surv. Weld CVN Specimen ID W 19 0 34

- l TP-3 Surv. Weld y

Source Mean 0.33 0.57 I

. SA-1229 8492 Weld Qualification l Barberton WO 0.20 0 57 Source Mean 0.20 0.57 l

SA-1344 I 8504 Weld Qualification Barberton WO O 21 9 62 l

Source Mean 0.21 0.6 SA-1706 8669 Weld Qualification Barberton WO Lab No. E-70325 0 21 05 Source Mean 0.21 0.5 SA-1769 8738 I Weld Qualification Barberton WO Lab No. E-76488 0.19 0 66 Source Mean 0 19 0.66 l

SA 1769 8738 W Surv. Weld Mt Vemon Lab No. 29652 0 29 0 63 l W Surv. Weld Mt Vemon Lab No 29651 0 31 0 63 l l

LW Surv. Weld Mt Vemon Lab No 29650 0 31 0 63 l l

l W Sury. Weld Mt Vemon Lab No 29649 0 27 0 63 l lW Surv. Weld Mt Vemon Lab No 29648 0.28 0 63 l l

l W Surv. Weld Mt Vernon Lab No. 29647 0.28 0 62 l l W Surv. Weld Mt Vemon Lab No. 29646 0 31 0 621 l W Surv. Weld Mt Vemon Lab No. 29645 0 29 0 621 l W Surv. Weld Mt Vernon Lab No. 29644 0.28 0 62 l l W Surv. Weld Mt Vemon Lab No 29643 0 34 0 63 l 1W Sury. Weld Mt Vemon Lab No 29642 0 30 0 63 l l

lW Surv. Weld Mt Vemon Lab No 29641 0 29 063l l

lW Sury Weld Mt Vernon Lab No. 29640 0 27 0 62 l l W Surv. Weld Mt Vemon Lab No. 29639 0 28 062l lW Surv. Weld Mt Vernon Lab No 29638 0 28 0 62 l l W Surv. Weld Mt Vernon Lab No. 29637 0 24 062l l W Surv. Weld Mt Vemon Lab No. 29636 0.26 0.621 l W Surv. Weld Mt Vemon Lab No. 29635 0.27 0 63 l l W Surv. Weld Mt Vemon Lab No. 29634 0.28 0 63 l j

l W Surv. Weld Mt Vemon Lab No. 29633 0 28 0 64 l t

l W Surv. Weld Mt Vernon Lab No. 29632 0.31 0 64 l l

l W Surv. Weld Mt Vemon Lab No. 29631 0 28 0 64 l l

l W Surv. Wald Mt Vemon Lab No. 29630 0 28 0 64 l l W Sury. Weld Mt Vernon Lab No. 29629 0.27 0 64 l l

l l W Surv. Weld Mt Vemon Lab No. 29628 0 27 064l l

l lW Surv Weld

. Mt Vemon Lab No. 29627 0 31 0 64 l l

l A-11 h" M M

Tcblo A-4 (centinund). Cepp r cnd Nick:1 Centents Sourca Mena for W:Id Wira Hut Numb:r 71249 Wold Metal l

Analysis Soutce Cu*

Ni l Wold 10 I Flux l Lot l Source l

Reference wt%

Wt% l Notes SA-1769 8738 lW Surv. Weld l Weld HSST-61W Westinghouse 0 31 0 63 j

1 l Analysis i

lW Surv. Weld l Weld HSST-61W Westinghouse 0.28 0.62 l l

l l Analysis l

{ W Surv. Weld l Weld HSST-61W Westinghouse 0.20 0.62 l l

I Analysis l

l W Sury. Weld l Weld HSST 61W Westinghouse 0.28 0.64 l l

l Analysis t

lW Sury. Weld l Weld HSST-61W Westinghouse 0.27 0 64 l l

l Analysis i

W Sury. Weld HSST Specamen ID: 61W-232 0.39 0.47 Ni content lower than expected range and analyses on same production weld; Ni content not used in source mean calculation l W Surv. Weld l HSST Specimen ID' 61W 276 0,24 0 59 l HSST Specimen ID. 61W-246 0 21 0.45 Ni content lower than expected lW Sury. Weld range and analyses on same production weld; Ni content not used in source mean calculation W Surv. Weld HSST Specimen ID: 61W-225 0 35 0.44 Na content lower than expected range and analyses on same production weld; Ni content not used in source mean calculation l W Sury. Weld l H3ST Specimen ID: 61W-222 0.24 0.52 l l W Surv. Weld l HSST Specimen tD: 61W-270 0 24 0 54 l l W Surv. Weld l HSST Specimen tD: 61W-270 0.28 0 62 l lW Sury. Weld lHSST Specimen ID' 61W-270 0.26 0 59l W Surv. Weld HSST Specimen (D: 61W-270 0.36 0.97 Ni content higher than expected range and analyses on same production weld; Ni content not used in source mean calculation W Surv. Weld HSST Specimen ID: 61W-234 0.19

- 0.43 Ni content lower than expected range and analyses on same production weld; Ni content not used in source mean calculation Source Mean 0.28 0.62 A-12 f."A %^W.'i

l Tcbla A-5. Cepper cnd Nick:1 Centents S:urca Mun3 for i

W:Id Wiro H:ct Number 72105 Flux l Wold Metal l

Artalysis Source Cu Ni l l

Weld ID Lot l Source i

Reference wt%

wt% l Notes l

WF70 8669 Weld Qualification Mt. Vemon WQ: Lab No. 6595 0.27 0.46 Ni content lower than WO retest analysis and analyses on production welds; Cu content not used in source mean calculation l

l Retest of WO Sample 0 31

- l l

Retest of WO S le 3

05 Source Mean 0.31 0.5 WF-70 8669 MD-1 Nozzle Dropout Mt Vemon Lab No. 30418 0 44 0 60 l MD-1 Nozzle Dropout l Mt Vemon Lab No 30417 0 47 0 61 l l

l MD-1 Nozzle Dropout lMt Vernon Lab No 30416 0.49 0 61 l l

lMD-1 Nozzle Dropout l Mt Vernon Lab No. 30415 0 47 0 61 l l

l MD-1 Nozzle Dropout lMt Vemon Lab No 30414 0 47 0 60 l

l MD-1 Nozzle Dropout l Mt Vernon Lab No 30413 0 48 0.59 l

[MD-1 Nozzle Dropout l Mt Vemon Lab No. 30412 0 36 0 59 l

l MD-1 Nozzle Dropout l Mt Vemon Lab No. 30411 0.37 0 59 l

l MD-1 Nozzle Dropout l Mt Vemon Lab No. 30410 0 39 0 58 l

l MD-1 Nozzle Dropout l Mt Vemon Lab No. 30409 0 35 0 58 l

lMD-1 Nozzle Dropout lMt Vernon Lab No 30408 0 35 0 58 l

l MD-1 Nozzle Dropout l Mt Vemon Lab No. 30407 0 39 0 59 l

lMD-1 Nozzle Dropout l Mt Vernon Lab No. 30406 0 40 0 59 l

l MD-1 Nozzle Dropout l Mt Vemon Lab No. 30405 0 42 0 59 l

l MD-1 Nozzle Dropout l Mt Vemon Lab No. 30404 0 43 0 59 l

l MD-1 Nozzle Dropout l Mt Vernon Lab No. 28869 0.46 0 60 l

lMD-1 Nozzle Dropout l Mt Vemon Lab No. 28868 0 47 0 60 l

I lMD-1 Nozzle Dropout l Mt Vemon Lab No. 28867 0.49 0 60 l

l MD-1 Nozzle Dropout lMt Vemon Lab No 28866 0 48 0 60 l

J l MD-1 Nozzle Dropout l Mt Vemon Lab No 28865 0 50 0 59 l

q

[MD-1 Nozzle Dropout lMt Vemon Lab No 28864 0 37 0 59 l

t lMD-1 Nozzle Dropout l Mt Vemon Lab No. 28863 0 40 0.59 l

l l MD-1 Nozzle Dropout l Mt Vernon Lab No. 28862 0 38 0 58 l

l MD-1 Nnzzle Dropout l Mt Vernon Lab No. 28861 0.34 0 58 l

lMD-1 Nozzle Dropout l Mt Vernon Lab No. 28860 0 38 0 58 l

1 MD-1 Nozzle Dropout l Mt Vernon Lab No. 28859 0.39 0 58 l

l lMD-1 Nozzle Dropout l Mt Vernon Lab No. 28858 0 46 0 58 l

1 l MD-1 Nozzle Dropout l Mt Vernon Lab No. 28857 0 41 0 58 l

lMD-1 Nozzle Dropout lBarberton Analysis Bik ID:

0.42 0.56 l

l l MS294-1 AWC l

lMD-1 Nozzle Dropout l Barberton Analysis Blk (D:

0.41 0.56 l

l l MS294-1 AWC l

lMD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0.41 0.56 l

l MS294-1 AWC l

lMD-1 Nozzle Dropout l Barberton Analysis Bik ID.

0.39 0.56 l

l MS294-1 AWC l

l MD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0.39 0.56 l

l MS294-1 AWC I

1 MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0 39 0.56 l

MS294-1AWC l

lMD-1 Nozzle Dropout l Barberton Analysis B!k ID:

0.44 0.56 l

l MS294-1 AWC l

l MD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0 42 0.55 l

l l MS294-1 AWC l

l MD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0.42 0.56 l

l MS294-1 AWC l

l MD-1 Nozzle Dropout Larberton Analysis Bik ID:

0.42 0.56 l

MS294-1AWC l

l MD-1 Nozzle Dropout l Barberton Ariatysis Bik 10.

0.40 0.59 l

l l MS294-1 AWC I

l lMD-1 Nozzle Dropout l Barberton Analysis Blk ID:

0.40 0.59 l

1 l MS294-1 AWC I

MD-1 Nozzle Dropout Barberton Analysis Bik ID:

0.43 0.57 MS294-1 AWC l

A-13 L"<WM i

Tcbla A-5 (centinu d). Capper cnd Nick:1 Centents Ssurcs M:cn3 for W:Id Wire Hzt Number 72105 Flux l Wold Metal l

Analysis Source Cu Ni l l

Wold ID Lot i Source l

Referer:ce wt%

Wt% l' Notes l

WF-70 8669 l MD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0 42 0 60 l l

l lMS2941 AWC l

l l MD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0.35 0.54 l l

l l

l MS294-1BWC l

l lMD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0.38 0.56 l l

l MS294-1 BWC l

l lMD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0.38 0.56 l l

l l MS294-1BWC l

l l Barbertor. Analysis Blk ID:

0.31 0.57 l

lMD-1 Nozzle Dropout l MS294-1BWC l

l Barberton Analysis Bik ID:

0.34 0.56 l l

lMD-1 Nozzle Dropout l MS294-1BWC l

l l MD-1 Nozzle Dropout lBarberton Analysis Bik 10.

0.37 0.57 l l

l l MS294-1BWC l

l l Barberton Analysis Bik ID:

0 40 0.57 l l

lMD-1 Nozzle Dropout l MS294-1BWC l

l l MD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0.38 0.56 l l

l l MS2941BWC l

l l MD-1 Nozzle Dropout lBarbeiton Analysis Bik 10:

0.36 0.581 l

l l MS2941BWC l

l lMD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0.35 0.57 l

l l MS294-1BWC l

l MD-1 Nozzle Dropout l Barberton Analysis Blk ID:

0.46 0.55 l

l MS294-1CWC l

l Barberton Analysis Blk ID:

0.45 0.55 l

l MD-1 Nozzle Dropout l MS294-1CWC l

lMD-1 Nozzle Dropout l Barberton Analysis B!k ID:

0.45 0.56 l l

l l MS294-1CWC l

l l MD-1 Nozzle Dropout lBarberton Analysis Blk ID:

0.45 0.56 l l

l MS294-1CWC l

l lMD-1 Nozzle Dropout l Barberton Analysis Bik ID:

0.46 0.57 l

l l MS294-1CWC l

l MD-1 Nozzle Dropout l Barberton Analysis Blk ID:

0.47 0.58 l l

l l MS294-1CWC l

l l MD-1 Nozzle Dropout l Mt Vernon Lab No. 28799 0 40 0 58 l l

lMD-1 Nozzle Dropout l Mt Vernon Lab No. 28799 0 40 0 59l l

lMD-1 Nozzle Dropout l Mt Vernon Lab No. 28801 0.38 0 59 l l

l MD-1 Nozzle Dropout l Mt Vernon Lab No 28801 0.38 0 59 l l

l MD-1 Nozzle Dropout lORNL Analysis Block No. 3-1 0 29 0 56 l l

l MD-1 Nozzle Dropout lORNL Analysis Block No 3-1 0 20 0 58 l l

l MD-1 Nozzle Dropout lORNL Analysis Block No. 3-1 0 15 0 59 l l

l MD-1 Nozzle Dropout lORNL Analysis Block No. 3-1 0 37 0 61 l l

l MD-1 Nezzle Dropout lORNL Analysis Block No. 3-1 0.46 0 59 l l

l MD-1 Nozzle Dropout lORNL Analysis Block No. 3-1 0 37 0 56 l l

l MD-1 Nozzle Dropout lORNL Analysis Block No. 3-1 0 38 0.56 l l

lMD-1 Nozzle Dropout lORNL Analysis Block No. 3-1 0 41 0 56 l l

lMD-1 Nozzle Dropout lORNL Analysis Block No. 3-4 0.30 0.56 l l

lMD-1 Nozzle Dropout iORNL Analysis Block No. 3-4 0 19 0.58 l l

lMD-1 Nozzle Dropout lORNL Analysis Block No. 3-4 0.14 0 58l l

lMD-1 Nozzle Dropout lORNL Analysis Block No. 3-4 0.23 0 60 l l

lMD-1 Nozzle Dropout lORNL Analysis Block No. 3-4 0 42 0.58 l l

lMD-1 Nozzle Dropout l ORNL Analysis Block No. 3-4 0.38 0.57 l l

l MD-1 Nozzle Dropout lORNL Analysis Block No 3-4 0.39 0 56 l l

M N

f"AMM h

A-14

Tcblo A-5 (cantinu:d). Cepper cnd Nick;l Centents Sourcs M cna far W:Id Wira H ct Number 72105 Flux Wold Meal-Analyels Source -

.Cu NI Wold ID Lot Source '

Reference wt%

Wt%

Notes WF-70 8669 MD-1 Belthne Weld Barberton Analysis Bik 10.

0.26 0.56 MS304-1WC MD-1 Bettihe Weld Barberton Analysis Bik ID:

0.26 0.57 MS304-1WC MD-1 BetJine Weld Barberton Analysis Bik ID-0 25 0.56 MS304-1WC MD-1 Balthne Weld Barberton Analysis Bik 10.

0.26 0.57 MS304-1WC MD-1 Betthne Wold Barberton Anatysis Bik ID:

0.25 0.57 MS304-1WC MD-1 Betthne Wela Barberton Analysis Bik ID:

0.25 0.57 MS304-1WC MD 1 Beltl ne Weld Berberton Analysis Blk 10.

0.27 0.55 i

MS304-3WC ED-1 Belthne Weld Barberton Analysis Bik ID:

0.27 0.56 MS304-3WC

'MD-1 Belthne Weld Barberton Analysis Bik ID:

0.28 0.56 MS304-3WC MD-1 Belthne Weld Barberton Analysis Blk ID:

0.27 0 56 MS304-3WC MD 1 Belthne Weld Barberton Anatysis Bik ID:

0.27 0.57 MS304-3WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.28 0.56 MS304-3WC

{

MD 1 Belthne Weld Barberton Analysis Bik ID:

0.35 0.55 MS304-4WC MO-1 Belthne Weld Barberton Analysis Bik 10:

0.36 0.56 MS304-4WC MD-1 Belthne Weld Barberton Analysis Blk 10:

0.35 0.56 MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.36 0.56 MS304 4WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.36 0.58 MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.35 0.56 MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.35 0.57 MS304 4WC MD-1 Beltkne Weld Barberton Analysis Bik ID:

0.36 0.56 MS304-4WC MD-1 Belthne Weld Barberton Analysis Dik ID:

0.36 0.56 MS304-4WC MD-1 Belthne Weld Barberton Analysis B!k 10:

0.35 0.59 MS304-4WC MD-1 Belthne Weld Barberton Analysis Blk ID:

0.35 0.60 MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik ID:

0.35

. 0.58 MS304-4WC MD-1 Belthne We'd Barberton Analysis Bik ID:

0.36 0.59 MS304-4WC MD-1 Belthne Weld Barberton Analysis Bik ID; 0.34 0.58 MS304-4WC MD-1 Belthne Weld ORNL Analysis Block ID: 19 0.24 0.58 MD-1 Belthne Weld ORNL Analysis Block ID: 1-9 0.22 0.56 l

MD-1 Belthne Weld ORNL Analysis Block ID-1-9 0.27 0.57 i

MD-1 Betthne Weld ORNL Analysis Block ID: 1-9 0.22 0.57 l

MD-1 Belthne Weld ORNL Analysis Block ID: 1-9 0.22 0 62

. LAD-1 Belthne Wold ORNL Analysis Block ID: 1-9 0.30 0 58 MD-1 Belthne Weld ORNL Analysis Block ID: 1-9 0.27 0.$6 MD-1 Belthne Wald ORNL Analysis Block ID: 1-9 0.34 0 57 MD-1 Betthne Weld ORNL Analysis Block ID: 1 11 0.23 0 57 MD-1 Betthne Weld ORNL Analysis Block ID: 1 11 0.23 0.57 MD-1 Belthne Weld ORNL Analysis Block ID: 1-11 0.24 0.58 l

A-15 L"AWM 1

I

Tablo A-5 (continusd). Coppar and Nickel Contants Source Msans for Wald Wira Host Numbsr 72105 l Flux l Weld Metal ^

l Analysis Source Cu Ni l.

l Weld ID l Lot l Source l

Reference wt%

Wt% l Notes l

WF 70 8669 l MD-1 Beltline Weld lORNL Analysis Block ID: 1-11 0.25 0 58 l l

[MD-1 Bettiine Weld lORNL Analysis Block ID: 1 11 0 26 0 56 l l

l MD-1 Beltline Weld lORNL Analysis Block ID 111 0.25 0 57 l l

l MD-1 Bettline Weld lORNL Analysis Block ID: 1 11 0 29 057l l

lMD-1 Beltline Weld lORNL Analysis Block ID: 1 11 0 31 0 56 l l

lMD-1 Beltline Weld lORNL Analysis Block 10 1-13 0 24 0 58l l

l MD-1 Bettline Weld lORNL Analysis Block ID: 1 13 0.21 0 61 l l

lMD-1 Bettline Weld

{ ORNL Analysis Block 10: 1-13 0.22 063l l

lMD-1 Beltline Weld lORNL Analysis Block ID: 1 13 0 25 0 60 l l

lMD-1 Bettline Weld lORNL Analysis Block ID: 1-13 0.32 0 60 l l

l MD-1 Beltline Weld lORNL Analysis Block (D: 1-15 0.29 0 58 l l

l MD-1 Beltline Weld lORNL Analysis Block 10: 1 15 0 28 0 57 l l

l MD-1 Beltline Weld lORNL Analysis Block ID: 1 15 0 25 0 57 l l

l MD-1 Beltline Weld lORNL Analysis Block ID: 1-15 0 22 0 56 l l

l MD-1 Beltline Weld lORNL Analysis Block 10: 1 15 0 22 0 57l l

l MD-1 Beltline Weld lORNL Analysis Block ID: 1-15 0.27 0.55 l l

MD-1 Beltline Weld M

0 57 Source Mean 0.28 0.57 WF-113 8688 Weld Qualification Mt. Vernon WQ: Lab No. 7277 0.21 0.59 Cu content lower than WQ retest analysis; Cu content not used in source mean calculation Retest of WQ Sample:

0.28

- l l

ILab No. 7278 l

l l

l l Retest of WQ Sample:

0.30 0.59 l l

1 l Lab No. 7278 l

l Retest of WO Sample:

0.30 0.61 5

0.60 WF-209 8773 Weld Qualification Mt. Vemon WO: Lab No. 9837 0.32 0 59 N.Ri1 Source Mean 0.37 0.59 WF-209-1 8773 Weld Qualification Mt. Vernon WQ: Lab No.10029 0.30 0.48 Ni content lower than WO retest analysis and analyses on production welds; Ni content not used in source mean calculation l

l Retest of WO Sample 0 41 0.591

_l Retest of WO Sam le M

0 59 Source Mean 0.37 0.

WF-209-1 8773 ONS-2 Surv Weld Mt Vernon Lab No. 30050 0.35 0.59 l ONS-2 Surv. Weld l Mt Vemon Lab No. 30051 0.36 0.58 l l

l ONS-2 Sury. Weld l Mt Vemon Lab No. 30052 0 35 0.58 l l

l ONS-2 Surv. Weld l Mt Vernon Lab No. 30053 0.36 0 58 l l

lONS-2 Surv. Weld lMt Vernon Lab No. 30054 0.36 0.58 l l

l ONS-2 Sarv. Weld l Mt Vemon Lab No. 30055 0.36 0 57 l l

ONS-2 Surv. Weld CVN S cemen ID: EE-016 g

06 Source Mean 0.35 0.5 WF-209-1 8773 CR-3 Surv. Weld Mt Vernon Lab No. 30550 0 37 0 59 l CR-3 Surv. Weld l Mt Vernon Lab No. 30551 0 35 0 61 l l

l CR-3 Surv. Weld l Mt Vemon Lab No. 30552 0.37 0.60 l l

CR-3 Surv. Weld Mt Vemon Lab No 30553 3

0 62 Source Mean 0.36 0.61 A-16 IMWRM

I Tcbl3 A-5 (c:ntinu:d). Copper cnd Nick 11 Centents Sourcs Mstn3 far l

Wald Wire Hrct Number 72105 i

L Flux Weld Metal Analysis Source Cu Ni Weld ID Lot Source Reference wt%

Wt%

Notes WF-2091 8773 ONS-3 Surv. Weld Mt Vemon Lab No 30056 0 29 0 57 l

ONS-3 Sury. Weld Mt Vemon Lab No 30057 0.30 0 58 I

ONS-3 Surv. Weld Mt Vemon Lab No. 30058 0 29 0 57 ONS-3 Sury. Wald Mt Vemon Lab No 30014 0 29 0 58 ONS 3 Sury Weld Mt Vemon Lab No. 30015 0.30 0 58 ONS-3 Surv. Weld Mt Vernon Lab No. 30016 0.28 0 58 ONS-3 Sury. Weld Mt Vernon Lab No. 30566 0 32 0 59 l

ONS-3 Surv. Weld Mt Vemon Lab No. 30567 0.32 0.59

(

ONS-3 Surv. Weld Mt Vemon Lab No. 30568 0 31 0.59 ONS-3 Sury. Weld Mt Vemon Lab No. 30569 0 32 0 59 ONS 3 Surv. Weld Mt Vemon Lab No. 30570 0.30 0 58 ONS-3 Sury. Weld Mt Vernon Lab No. 30571 0 31 0 58 ONS-3 Surv Weld Mt Vemon Lab No. 30572 0 32 0.58 ONS-3 Sury. Weld Mt Vemon Lab No ?O573 0 31 0 58 ONS-3 Sury. Weld Mt Vernon Lab No 30558 0 31 0.58 ONS-3 Sury. Weld Mt Vernon Lab No. 30559 0.30 0 58 ONS-3 Surv. Weld Mt Vemon Lab No. 30560 0 31 0 58 l

ONS-3 Sury Weld Mt Vemon Lab No. 30561 0.30 0 58 ONS-3 Surv. Weld Mt Vemon Lab No. 30562 0 28 0 59 ONS-3 Sury. Weld Mt Vemon Lab No. 30563 0 28 0.59 ONS-3 Sury. Weld Mt Vernon Lab No. 30564 0 30 0.58 ONS-3 Sury. Weld Mt Vernon Lab No 30565 0 30 0.59 ONS-3 Surv. Weld Mt Vemon Lab No. 30574 0 27 0 58 ONS-3 Surv, Weld Mt Vernon Lab No 30575 0.30 0 58 ONS-3 Surv. Weld Mt Vemon Lab No. 30576 0 31 0 58 ONSa Sury. Weld Mt Vernon Lab No. 30577 0 32 0 58 ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.30 0.53 MS293 WC-1 ONS-3 Sury. Weld Barberton Analysis Blk ID:

0.29 0.52 MS293 WC-1 ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.30 0.53 MS293 WC-1 l

ONS-3 Surv. Weld Barberton Analysis Bik ID:

0.30 0.53 MS293 WC-1 ONS-3 Surv. Weld Barberton Analysis Blk ID:

0.30 0.54 MS293 WC-1 ONS-3 Surv. Weld Barberton Analysis Blk (D; 0.27 0.54 l

MS293 WC-1 ONS-3 Surv. Weld Barberton Analysis Bik 10:

0.26 0.54 l

MS293 WC-1

(

ONS-3 Surv. Weld Barberton Analysis Bik ID.

0.26 0.55 MS293 WC-1 i

ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.30 0.54 MS293 WC-2 ONS-3 Surv. Weld Barberton Analysis Blk ID:

0.29 0.54 MS293 WC-2 l

ONS-3 Surv. Weld Barberton Analysis BIk ID:

0.29 0.54 MS293 WC-2 ONS 3 Surv. Weld Barberton Analysis Bik ID:

0.30 0.55 MS293 WC-2 ONS-3 Surv. Weld Barberton Analysis Bik 10:

0.26 0.54 MS293 WC-2 ONS-3 Surv. Weld Barberton Analysis Blk ID:

0.29 0.56 MS293 WC-2 ONS-3 Surv. Weld Barberton Analysis Bik ID:

f).29 0.55 MS293 WC-2 ONS-3 Surv. Weld Barberton Analysis Blk ID:

0.25 0.52 r

l MS293 WC-2 ONS-3 Sury. Weld Barberton Analysis Bik ID:

0.30 0.55 MS293 WC-3 ONS-3 Sury. Weld Barberton Analys!s Bik 10:

0.29 0.55 MS293 WC-3 A-17 ff<WM

Tebis A-5 (centinu:d). Ccpp:r and Nick:1 Contants Scurco Means for Wald Wiro H st Number 72105 l Flux l Wold Metal Analysis Source Cu Ni l l

Weld ID l Lot l Source Reference '

wt%

Wt% l Notes l

WF-209-1 8773 lONS 3 Surv. Weld Barberton Analysis Bik ID:

0.30 0.55 l l

l MS293 WC-3 I

l l ONS-3 Sury. Weld Barberton Analysis Blk ID:

0.30 0.56 l l

l MS293 WC-3 l

l ONS-3 Surv. Weld Barberton Analysis Bik 10:

0 29 0.54 l l

MS293 WC-3 l

l

[ONS-3 Sury. Weld Barberton Analysis Bik ID.

0.28 0.55 l l

l MS293 WC-3 l

I Barberton Analysis Blk ID:

0.30 0.56 l l

I ONS-3 Sury. WeldMS293 WC-3 l

l l ONS-3 Sury, Weld Barberton Analysis Bik ID.

0.30 0.55 l l

l MS293 WC-3 l

l lONS-3 Surv. Weld GE Analysis Block ID 9-18 0.26 055l l

J ONE 3 Surv. Weld GE Analysis Block ID 9-18 0.25 057l l

ONS-3 Surv. Weld g

0 58 Source Mean 0.29 0.56 WF-209-1 8773 MD-1 Sury. Weld Mt. Vemon Analysis Lab No.

0.32 0.58 31585 l MD-1 Surv. Weld Mt. Vemon Analysis Lab No.

0 34 0.59 l

1 31586 l

Mt. Vemon Analysis Lab No.

0.37 0.59 l l

l MD-1 Sury. Weld 31587 l

l l MD-1 Surv. Weld Mt. Vernon Analysis Lab No.

0.37 0.58 l

1 31588 l

l MD-1 Sury. Weld Mt. Vernon Analysis Lab No.

0.41 0.58 l l

1 31589 I

l Mt. Vemon Analysis Lab No.

0.35 0.581 l

lMD-1 Sury. Weld 31590 l

l Mt. Vemon Analysis Lab No.

0.36 0.59 l l

l MD-1 Sury. Weld 31591 l

l lMD 1 Surv. Weld Mt. Vemon Analysis Lab No.

0.35 0.59 l l

1 31592 l

l l MD-1 Surv. Weld Mt. Vemon Analysis Lab No.

0.38 0.59 l

l 31593 l

Mt. Vernon Analysis Lab No.

0.35 0.59 l

l MD-1 Sury. Weld 31594 l

l MD-1 Surv. Weld Mt. Vernon Analysis Lab No.

0.37 0.59 l l

l 31595 l

l MD-1 Surv. Weld Mt. Vernon Analysis Lab No.

0.36 0.59 3

0.

A-18 f."MNRM

Tcbla A-5 (centinu:d). Ccpp:r end Nick:1 Contents Scurca Msena for W:Id Wira Hut Numb:r 72105 WoldID I Flux Wold Metal Analysis Source Cu NI l

Lot Source Reference wt%

Wt%

Notes l

WF-209-1 8773 lZN-1 Sury. deld l RVSP Baseline Chemistry 0 35 0 57 l l

lZN-1 Surv. Weld l CVN Specimen ID: W-25 0 22 0 53l l

l lZN 1 Surv. Weld l CVN Specimen 10. W-25 0 27 0 57l l

lZN-1 Sury Weld l CVN Specimen ID: W-28 0 22 0 55l l

lZN-1 Sury Weld l CVN Specimen 10: W-28 0 25 0 49 l l

lZN-1 Sury Weld lCVN Specimen ID W-26 0 26 0.56 1 l

lZN 1 Sury. Weld l CVN Specimen ID: W-27 0 26 0 541 l

(ZN-1 Surv. Weld l CVN Specimen ID W-29 0.24 0 55 l l

lZN-1 Surv Weld l CVN Specimen ID W-30 0 26 0 53 l l

l ZN-1 Sury. Weld l CVN Specimen ID: W-31 0 28 0 56 l l

)

lZN-1 Surv Weld l CVN Specimen ID: W-32 0 25 0 54 l l

lZN-1 Surv. Weld l CVN Specimen ID' W-49 0 25 0 551 l

(ZN-1 Surv. Weld l CVN Specimen ID. W-50 0 22 0 551 l

lZN-1 Surv Weld l CVN Specimen ID: W-51 0 22 0 54 l l

lZN-1 Surv. Weld l CVN Specimen 10: W-52 0.23 0 54]

l lZN-1 Sury. Weld l CVN Specimen ID. W 53 0 23 0 541 l

l lZN-1 Surv. Weld I CVN Specimen ID' W-54 0 22 0.54]

l j

lZN-1 Surv Weld l CVN Specimen ID: W-55 0 24 0 55 l l

)

ZN 1 Surv Weld CVN S ecimen ID: W-56 g

0 53 J

Source Mean 0.25 0.54

\\

l WF-209-1 8773 ZN-2 Surv Wold RVSP Baseline Chemistry 0 28 0 55 l ZN-2 Surv. Weld l CVN Specimen ID: W-37A 0.19 052l l

l ZN-2 Sury. Weld l CVN Specimen ID: W-378 0.23 0 521 l

l ZN-2 Surv. Weld l CVN Specimen ID: W-378 0.26 0 53 l l

l l ZN-2 Surv. Weld l CVN Specimen ID: W-38A 0 23 0 541 l

l ZN-2 Sury. Weld l CVN Specimen 10: W-388 0.25 0 531 l

lZN-2 Surv Weld lCVN Specimen ID: W-388 0 31 0 52 l l

(ZN-2 Surv Weld l CVN Specimen ID: W-39A 0 27 0 53 l l

l ZN-2 Surv. Weld l CVN Specimen ID: W-398 0 21 0 48 l l

l ZN-2 Surv. Weld l CVN Specimen ID: W-398 0 28 0 55 l l

l ZN-2 Surv. Weld l CVN Specimen ID: W-33A 0.26 0.54 l l

l ZN-2 Surv. Weld l CVN Specimen ID: W-34A 0 23 0 47 l l

[_Z_N-2 Surv. Weld lCVN Specimen ID W-35A 0 22 0 52 l l

lZN-2 Surv. Weld l CVN Specimen ID: W-36A 0 20 0 56 l l

ZN-2 Surv. Weld CVN Specimen 10: W-40A 0.17 0.53 Cu & Nicontents suspect; specimen may have been notched in the base metal; Cu & Ni contents not used in source mean calculation ZN-2 Surv. Weld CVN Specimen ID: W-408 0.10 0.74 Cu & Ni contents suspect; specimen may have been notched in the base metal; Cu & Ni contents not used in souro mean calculation ZN-2 Surv. Weld CVN Specimen ID: W-40B 0.09 0.76 Cu & Ni contents suspect; specimen may have been notched in the base metal; Cu & Ni contents not used in source mean calculation lZN-2 Sury. Weld l CVN Specimen ID: W-50 0.26 0 57 l l

l ZN-2 Surv. Weld l CVN Specimen ID: W-55 0 27 0 601 l

l ZN-2 Sury. Weld l CVN Specimen ID: W-49 0 26 0 59 l l

l ZN-2 Surv. Weld l CVN Specimen ID: W-51 0.28 060l l

l ZN-2 Surv. Weld l CVN Specimen ID: W-52 0 26 0 60 l l

l ZN-2 Sury. Weld l CVN Specimen ID: W-53 0 27 0 60 l l

l ZN-2 Surv, Weld l CVN Specimen ID: W-54 0 26 0 561 l

ZN-2 Surv. Weld CVN S cimen ID: W-56 0 23 0 59 Source Mean 0.25 0.55 l

l A-19 b"NN

1 Tabla A-6. Coppsr end Nickni Cont::nts Sourca Msens for Wald Wira Hast Numbar 72442 Flux Wold Metal Analysis Source Cu Ni.

Wold ID Lot '

Source Reference wt%

wt%

Notes SA-1450 8467 Weld Qualification Barberton WO 3

0 60 Sourte Mean 0.25 0.6 SA-1484 8579 Weld Quahfication Barberton WO g

0 64 Source Mean 0.25 0

SA-1484 8579 CR 3 Nozzle Dropout Mt Vemon Lab No 29799 0 24 0 57 l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29800 0 23 0 60l l

lCR 3 Nozzh Dropout l Mt Vemon Lab No 29801 0 24 059l l

l CR-3 Nozzle Dropout l Mt Vemon Lab No 29802 0 24 0 60 l l

l CR-3 Nozzle Dropou'. l Mt Vemon Lab No 29803 0 27 060l l

l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29804 0.22 0 60 l l

lCR 3 Nozzle Dropout l Mt Vemon Lab No 29805 0 26 0 60 l l

lCR-3 Nozzle Dropout lMt Vemon Lab No 29806 0 27 0.59 l l

l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29807 0 23 0 60 l l

lCR 3 Nozzle Dropout 1Mt Vemon Lab No 29808 0 28 059l l

lCR-3 Nozzle Dropout l Mt Vemon Lab No. 29809 0 29 0 59 l l

lCR-3 Nozzle Dropout l Mt Vemon Lab No 29810 0 29 0 59 l l

lCR-3 Nozzle Dropout l Mt Vemon Lab No 29811 0.30 0 60 l l

l CR-3 Nozzle Dropout l Mt Vemon Lab No. 29812 0 31 0 60 l l

lCR-3 Nozzle Dropout l Mt Vernon Lab No 29813 0.30 0 59l l

lCR-3 Nozzle Dropuut l Mt Vernon Lab No. 29814 0 26 0 59 l l

lCR-3 Nozzle Dropout t Mt Vernon Lab No. 29815 0 24 060l l

CR-3 Nozzle Oro out Mt Vemon Lab No 29816 3

0 Source Mean 0.26 0.

WF-67 8669 0 Weld Quahfication Mt. Vernon WO: Lab No. 6556 0.27 0 57 l

l Retest of WO Sample 0.33

- l l

l l Retest of WO Sample 0.35 0 581 l

Retest of WO Sam te 3

0.58 Source Mean 0.32 0.58 WF-67 8669 MD-1 Nozzle Dropout [ Mt Vemon Lab No. 30431 0 17 0 61 l lMD-1 Nozzle Dropout l Mt Vemon Lab No. 30430 0 15 0 61 l l

lMD-1 Nozzle Dropout l Mt Vemon Lab No. 30429 0.15 0 60 l l

lMD-1 Nozzle Dropout l Mt Vernon Lab No. 30428 0 15 0 61 l l

lMD-1 Nozzle Dropout l Mt Vernon Lab No. 30427 0.18 0 61 l l

lMD-1 Nozzle Dropout lMt Vernon Lab No 30426 0 20 0 60 l l

lMD-1 Nozzle Dropout l Mt Vemon Lab No. 30425 0.25 0 60 l l

)

l MD-1 Nozzle Dropout l Mt Vemon Lab No. 30424 0 25 0 60 l l

lMD-1 Nozzle Dropout lMt Vernon Lab No 30423 0 23 0 621 l

l MD-1 Nozzle Dropout l Mt Vernon Lab No. 30422 0.21 0 601 l

lMD-1 Nozzle Dropout lMt Vemon Lab No 30421 0.26 0 60 l l

lMD-1 Nozzle Dropout lMt Vernon Lab No. 30420 0 33 0 60l l

lMD-1 Nozzle Dropout l Mt Vernon Lab No. 30419 0 35 0.59 l l

lMD-1 Nozzle Dropout l Mt Vernon Lab No. 28880 0.16 0 60 l l

1MD-1 Nozzle Dropout I Mt Vemon Lab No. 28879 0 13 0 60 l l

lMD-1 Nozzie Dropout l Mt Vemon Lab No. 28878 0.15 0 60]

l lMD-1 Nozzle Dropout i Mt Vemon Lab No. 28877 0.19 060l J

lMD-1 Nozzle Dropout lMt Vemon Lab No 28876 0 21 0 60 l l

lMD-1 Nozzle Dropout l Mt Vemon Lab No. 28875 0.24 0 59 l l

lMD-1 Nozzle Dropout iMt Vemon Lab No 28874 0.22 0 60 l l

lMD-1 Nozzle Dropout I Mt Vemon Lab No. 28873 0.21 0 fS l l

lMD-1 Nozzle Dropout l Mt Vemon Lab No. 28872 0 32 0.08 l l

lMD-1 Nozzle Dropout l Mt Vemon Lab No. 28871 0 34 0.58 l l

l i

A-20 fME^7M

m-r Tablo A-6 (continusd). Coppar and Nickel Contants Sourco Macnn for Wald Wiro Hset Numbar 72442 l WeldlD l Lot l Flux Wold Metal l

Analysis Source l Cu l Ni Source l

Reference l wt% l wt%

Notes l

WF47 8669 lMD-1 Nonle Dropout l Mt Vernon Lab No. 28800 l0.24l 0.59l l

lMD-1 Noule Dropout lMt Vernon Lab No. 28800 l0.25l 0.60l l

l MD-1 Nonle Dropout l Mt Vernon Lab No. 28802 l0.21l 0 60l l

MD-1 Noule Dropout Mt Vernon Lab No. 28802 0.23 0 60 Source Mean 0.22 0.60 1

t I

l l

l A-21 I"MNaD

Tablo A-7. Coppar and Nickcl Contsnts Sourco Monna for Wald Wiro Hsat Numbsr 72445 Wold Metal l

Ariatysis Source -

Cu Ni l WoldID I Flux Lot

' Source l-Reference wt%

wt%l Notes SA-1263 8504 Weld Ovalification Barberton WO 3

0 47 Source Mean 0.24 0.47 SA-1263 8504 PB-1 Surv. Weld PV5P Basehne Chemistry 0 24 0 57 PB-1 Surv. Weld CVN S cimen ID WW-23 3

0 66 Source Mean 0.23 0.6 SA-1471 8578 Weld Qualification i Batterton WO 0.18 0.

Source Mean 5 0.54 SA-1582 8596 Weld Qualification

Barberton WO Lab No E-68303 3 04 Source Mean 0.25 0.4 SA 1585 8597 Weld Qualification Barberton WO Lab No. E-68379 3 0.51 Source Mean 0.25 0.51 GA-1585 8597 ANO-1 Nozzle Dropout ll Mt Vemon Lab No. 30662 0.24 0 59 l ANO-1 Nozzle Dropout l Mt Vernon Lab No. 30661 0 22 0 60 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30660 0 26 0 60 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30659 0.23 0 61 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30658 0 20 0 61 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30657 0 19 060l l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30656 0 24 059l l ANO-1 Nozzle Dropout IMt Vemon Lab No 30655 0 23 0 59l l ANO-1 Nozzle Dropout l Mt Vernon Lab No. 30654 0 22 0 60 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30653 0 21 0 59 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30652 0 21 0 59 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30651 0.22 0.59 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30650 0.18 0 59 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30649 0 18 060l l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30648 0.18 0.59 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30647 0 19 0 59 l l ANO-1 Nozzle Dropout l Mt Vernon Lab No. 30646 0 29 060l l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30645 0.21 0 60 l l ANO-1 Nozzle Dropout l Mt Vernon Lab No 30644 0 20 0 60 l l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30643 0 18 0 59 l l

l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30642 0.18 0.59]

l l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30641 0.20 0 59l l

l ANO-1 Nozzle Dropout l Mt Vemon Lab No 30640 0 20 0 59 l l

l ANO 1 Nozzle Dropout l Mt Vemon Lab No 30639 0 21 0 59 l l

l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30638 0 22 0.59 l l

l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30637 0 21 0 58 l l

l ANO-1 Nozzle Dropout IMt Vemon Lab No 30636 0 24 0 58 l l

l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30635 0 23 0 59l l

l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30634 0 23 059l l

l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 30633 0.23 059l l

l ANO-1 Nozzle Dropout l Mt Vemon Lab No. 28798 0 24 0.58 l l

ANO-1 Nozzle Dropout Mt Vemon Lab No 28798 g

O.

Source Mean 0.22 0.5 SA-1650 1 8632 Weld Qualification Barberton WO Lab No E-70102 3 0 47 Source Mean 0.20 0.47 WF-9 8632 Weld Qualification Mt. Vemon WO E

O6 Source Mean 0.17 0.6 A-22 WMM

Tabis A-7 (continusd). Coppsr end Nicksi Contsnts Source Maana for Wald Wiro Hont Number 72445 l WeldlD l Lot l Flux Wold Metal l

Analysis Source l Cu l Ni l Source l

Reference l Wt% l wt% l Notes WF-101 8688 Weld Qualification Mt. Vernon WQ Lab No. 7040 0.10 060 Cu content lower than other WQ analyses and production welds; Cu content not used in source mean calculation Source Mean -

0.60 l

[IMTNAM A-23

Tcblo A-8. Coppar and Nickel Contsnts Sourca Msans for

'Nold Wiro Hoat Numbsr 821T44 Wold Metal l

Analysis Source Cu Ni l l

WoldID I Flux Lot Source l

Reference wt*/.

wt% l Notes l

WF-182 8754 Weld Qualification Mt. Vernon WO. Lab No 9261 0.18 0 59 Cu content lower than WO retest analysis; Cu content not used an source mean calculation l

l Retest of WO Se riple 0 25

- l l

l l Retest of WO Simple 0 27 0 611 l

Retest of WO F g

0 63 Source Mean 0.26 0.61 WF 182-1 8754 ll Weld Qualification Mt Vemon WO' Lab No. 9376 0 19 0 63 l

l Retest of WO Sample 0.22

- l l

l l Retest of WO Sample 0 24 0 62 l l

l l Retest of WO Sample 0 24 0 64 l l

Weld Qualification Mt Vemon WO Lab No. 21956 3 0 61 Source Mean 0.22 0.63 WF-182-1 8754 TMl-2 Surv. Weld Mt Vernon Lab No. 30542 0 26 0 62

[TMI-2 Surv Weld l Mt Vernon Lab No. 30543 0 27 0 631 l

l TMI-2 Surv. Weld l Mt Vemon Lab No. 30544 0 28 0 621 l

TMI-2 Surv. Weld Mt Vemon Lab No. 30545 g

06 Source Mean 0.28 0.6 I

WF-182-1 8754 DB-1 Surv. Weld Mt Vcnon Lab No 30047 0 21 0 63 1 DB-1 Sury. Weld l Mt Vemon Lab No. 30048 0 22 0 63 l l

l DB-1 Sury. Weld 1Mt Vemon Lab No 30049 0 23 0 63 l l

l DB-1 Sury. Weld l Mt Vernon Lab No 30063 0 22 0 63 l l

l DB-1 Surv. Weld l Mt Vernon Lab No. 30064 0.21 0 63 l l

DB-1 Sury. Weld Mt Vernon Lab No 30065 g

0 64 Source Mean 0.22 0.63 WF-195 8773 Weld Qualification Mt. Vemon WO O 18 0 63 Source Mean 5 0.63 WF-200 8773 Wald Qualification 1 Mt. Vemon WO' Lab No. 9533 3

0 64 Source Mean 0.26 0.64 A-24 f.".^ TNR Y.5

Tebis A-9. Coppsr and Nicksi Contsnts Macna for Wald Wiro Heat Numb 2r T29744 Flux l Weld Metal l

Analysis Source Cu Ni l Wold ID Lot l Source i

Reference wt%

wt% l Notes WF-233 8790 IWekt Qualification l Mt. Vemon WO Lab No.10274 0 22 0 55l l

l l Retest of WO Sample 0 24

- l l

l l Retest of WO Sample 0 27 066l l

Retest of WO Sam te E

D 68 Source Mean 0.25 WF 233 8790 KORI.1 Surv. Weld RVSP Baseline Chemistry 0 23 0 611 I KORI-1 Surv. Weld l CVN Specimen ID' KW-39 0 28 0 78 l l

l KORI 1 Surv. Weld l CVN Specimen ID' KW43 0 33 0 75l l

l KORI-1 Sury. Wekt l CVN Specimen ID: KW-45 0 30 0.76 l l

lKORI-1 Surv Weld l CVN Specimen ID: KW-12 0 18

-l l

l KORI-1 Surv. Weld l CVN Specimen ID: KW-4 0 19

-l l

l KORI 1 Surv. Weld l CVN Specimen ID: KW-38 0 13 l

l lKORI-1 Sury Weld l CVN Specimen ID-KW-28 0 23 0 651 l

\\ KORI-1 Surv. Weld l CVN Specimen ID KW-35 0 19 0 60 l l

] KORI-1 Sury. Weld l CVN Specimen ID: KW-27 0 14 0 691 l

\\ KORI-1 Surv. Weld l CVN Specimen ID-KW-5 0 20 0 701 l

l KORI-1 Surv. Weld l CVN Specimen ID. KW-13 0 25 0 60]

l KORI 1 Surv Weld CVNS cimen ID KW 17 g

06 Source Mean 0.21 0.67 WF-282 8806 Weld Qualification Mt. Vemon WO: Lab No.12380,3 0 66 Source Mean 0.16 0.66 1

1

[f!MTNRP,5

)

A-25

Tablo A-10. Coppar and Nicksi Contsnts Sourca Msans for Wsid Wiro Hset Numbar 1P0661 l

l Flux j Wold Metal l

Analysis Source.

Cu Ni l l

l Wold ID l Lot l Source 1

Reference wt%

wt%I Notes l

l SA-775 8304 Weki Qualification Baterton WO y

06 Source Mean 0.19 0.63

' SA 1060 8446 eld Qualification Baterton WO O 14 0 65 Source Mean 5 O.

f f.fMSNRP.5 A-26

Tablo A-11. Coppsr and Nickel Contsnts Sourco Maans for Wold Wiro Haat Numbar 1P0815 Flux Wold Metal Analysis Source Cu Ni Wold ID Lot -

Source Reference wt% wt%

Notes SA-806 8304 Weld Quahfication Barberton WO 0 25 0 48 Source M san 0.25 0.48 SA-812 8350 Weld Quahfraten Barberton WO O 12 0 52 Source Mean 0.12 0.52 SA 1366 8544 Weld Quahfication Barberton WO 0.13 0 57 Source Mean 0.13 0.57 A-27 I"ATNaD=5

Tablo A-12. Coppsr and Nicksi Contants Sourco Mnann for Wald Wiro Host Numbsr 1P0962 l WeldID l Flux l' Wold Metal l

Analysis Source Cu Ni l l

Lot l Source l

Reference wt%

wt%l Notes l

f."<^YNRM f

A-28

Tablo A-13. Coppar and Nickel Contsnts Sourco Means for Wald Wiro Heat Numbar 8T1554 l Flux l Weld Metal l

Analysis Source Cu Ni l Wald ID ] Lot l Source l

Reference wt%

wt%I Notes SA-1174 8479 Weld Qualification Barberton WO g

06 Source Mean 0.19 0.6 SA-1413 8504 Weld Qualification Barberton WO Source Mean i SA-1494 8579 Weld Qualification I Barberton WO 3

0 45 Source Mean 0.14 0.

WF-69 8669 I Weld Qualification

! Mt. Vemon WO: Lab No. 6596 3

0 61 Source Mean 0.15 0.61 WF 169-1 8754 Weld Qualification Mt. Vernon WO: Lab No. 9039 0.11 0.59 Cu content lower than WO retest analyses; Cu content not used in source mean calculation l

l Retest of WO Sample 0.15

- l l

l Retest of WO Sample 0.17 0 621 Retest of WO Sam le M

06 Source Mean 0.16 0.

l l

1 A-29 I"<W D

Table A-14. Coppor and Nickel Contents Sourco Means for Wald Wire Hsat Numbar 8T1762 Flux l Wold Metal l

Analysis Source Cu Ni l

! Wold ID Lot i Source I

Reference '

Wt%

wt% l Notes SA-1426 8553 Weld Qualification Barberton WO y

0 61 Source Mean 0.18 0.61 SA-1430 8553 Weld Qualification Barberton WO M

0 60 Source Mean 0.16 0.

SA-1493 8578 Weld Qualification Barberton WO 0.22 0.43 Ni content lower than other WO analyses; Ni content not used in source mean calculation Source Mean ' O.22 SA-1580 8596 Weld Qualification Barberton WO Lab No. E-68288 3 06 Source Mean 0.22 0.

WF-4 l 8597 Weld Qualification Mt. Vemon WO 0.17 0 53 Source Mean 5 0.53 WF-8 8632 Weld Qualification Mt Vemon WO E

0.61 Source Mean 0.20 0.61 l

WF-18 8650 Weld Qualification Mt. Vernon WO Lab No. 5206 0.11 0.45 Cu content bwer than other WO analyses; Cu content not used in source mean calculation 0

Source Mean f.fMTNRM A-30

Tablo A-15. Coppar and Nicksi Contants Sourco Means for Wald Wiro Hect Numbsr 8T3914 l Flux l Wold Metal l

Analysis Source Cu Ni l l

Wold ID l Lot l Source l

Reference wt%

wt% l Notes l

WF032 8790 Weld Qualification Mt. Vemon WQ: Lab No.10368 0.14 0.69 Cu content lower than WO retest analyses; Cu content not used in source mean calculation l

l Retest of WO Sample 0.18 0 64]

[

Retest of WO Sam le 0.18 0

Source Mean 5

0. 6 WF-252 8806 Weld Qualification Mt. Vemon WQ: Lab No.10925 0.10 0.59 Cu conant lower inan WQ retest analyses; Cu content not used in urce mean calculation Source Mean 0.

A-31 f"MNRM

l l

l APPENDIX B Base Metal Surveillance Data Used in the Reactor Vessel Beltline Regions of the B&W Owners Group Reactor Vessel Working Group 1

I l

.B-1 f."^ %^7P M l

B.1. Assessment of Base Metal Heat Surveillance Data The following tables provide the surveillance data evaluation of the base metal heats used in the RVWG reactor vessel beltline region. The data contained in these tables provide the information requested in " Table 2" and " Table 3" of the request for additional infom1ation regarding reactor pressure vessel integrity in addition to the determination of the cheriintry factor for the base metal heat.

NOTE: The original Charpy V-notch impact data are based on hand-fit Charpy curves using engineering judgment; these data were re-evaluated using a hyperbolic tangent curve fitting program to achieve consistency in the interpretation of the available surveillance test data.

I B-2 IMTNRM I

B.1.1. Base Metal Heat Number C5114-1 Table B.1.1-1. Surveillance Data for Base Metal Heat Number C5114-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation -

Measured Data Used in

. Capsule ID,..

Cu.

.. NI.

Temperature

.. Fluence '

7 ARTuor'-

Assessing Vessel t

(including source)'

wt% :

wt%

  • T('F) f (x10 n/cm')

('F)

(Y or N)

ANO-1: Capsule AN1-E 0.15 0.52 556 0.073 18 Y

Plant-Specific RVSP Material (LT)

ANO-1: Capsule AN1-E 0.15 0.52 556 0.073 44 Y

Plant-Specific RVSP Material (TL)

ANO-1: Capsule AN1-A 0.15 0.52 556 1.03 47 Y

Plant-Specife RVSP Material (LT)

ANO-1: Capsule AN1-A 0.15 0.52 556 1.03 72 Y

Plant-Specific RVSP Material (TL)

ANO-1: Capsule AN1-C 0.15 0.52 556 1.46 53 Y

Plant-Specific RVSP Material (LT)

ANO-1: Capsule AN1-C 0.15 0.52 556 1.46 45 Y

Plant-Specific RVSP Material (TL)

Table B.1.1-2. Credibility Assessment for Base Metal Heat Number C5114-1 (Table 3 of the RAI Regarding Reactor Vessel integrity)

Predicted (Measured -

m irred. -

. Meas.

ARTuor from Predicted)

Capsule -

Cu Ni Chem.

. Temp.

, Fluence

' Designation -

. wt%'

wt%-

Factor

(*F)-

1 Factor

~. ARTuor ~

Best Fit Line ARTuoi

(*F)

(*F)

(*F)

ANO 1: Capsule AN1-E 0.15 0.52 105.6 556 0.356 18 19

-1 Plant-Specific RVSP Material (LT)

ANO-1: Capsule AN1-E 0.15 0.52 105.6 556 0.356 44 19 25 Plant-Specrfc RVSP Material (TL)

ANO-1: Capsule AN1-A 0.15 0.52 105.6 556 1.008 47 53

-6 Plant-Specific RVSP Material (LT)

ANO-1: Capsule AN1-A 0.15 0.52 105.6 556 1.008 72 53 19 Plant-Specific RVSP Material (TL)

ANO-1: Capsule AN1-C 0.15 0.52 105.6 556 1.105 53 58

-5 Plant-Specife RVSP Material (LT)

ANO-1: Capsule AN1-C 0.15 0.52 105 6 556 1.105 45 58

-13 Plant-Specife RVSP Material (TL) where Predicted ARTuor = (Slopeseaf m) * (Fluence Factor) and Slopeseata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 52.9)

These data are not credible since the scatter is greater than ii7 F for one surveillance capsule data point.

l B-3 fMWD

Table B.1.1-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number C5114-1

- Table..

Capsule.

(Measured -

Capsule '

Chem. Factor Fluence Measured

' Predicted Predicted) t Designation ~

(Surv. Avg.) -

Factor ARTuor (*F)

' ARTwor ('F)

ARTuor (*F) l ANO-1: Capsule AN1-E 105.6 0.356 18 38

-20 Plant-SpecWe RVSP Material (LT)

ANO-1: Capsule AN1-E 105.6 0.356 44 38 6

Plant-SpecWe RVSP Material (TL)

ANO-1: Capsule AN1-A 105.6 1.008 47 106

-59 Plant-SpecWc RVSP Material (LT)

ANO-1: Capsule AN1-A 105.6 1.008 72 106

-34 Plant-SpecWe RVSP Material (TL)

ANO-1: Capsule AN1-C 105.6 1.105 53 117

-64 Plant-SpecWe RVSP Material (LT)

ANO-1: Capsule AN1-C 105.6 1.105 45 117

-72 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

The data indicate that several points exceed 2 standard deviations (34 F), however the generic Table chemistry factor based on the surveillance data over-predicts the measured data. Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of reactor vessel integrity.

B-4 f."ATNRM

i B.1.2. Base Metal Heat Number C4344-1 Table B.1.2-1. Surveillance Data for Base Metal Heat Number C4344-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity) 5 Irradiation..

Fluence '

~

Measured Data Used in

~ Capsule ID L iCu

. Ni.

Temperature

ARTuor '

Assessing Vessel

-(including source) wt% >

wt%

(*F).

(x10 n/cm')

' (*F)

(Y or N)

CR 3: Capsule CR3-B 0.20 0.54 556 0.117 39 Y

Plant-Specific RVSP Material (TL)

CR-3: Capsule CR3-C 0.20 0.54 556 0.660 116 Y

Plant-Specific RVSP Material (TL)

CR-3: Capsule CR3-D 0.20 0.54 556 0.750 102 Y

Plant-Specific RVSP Material (TL)-

CR-3: Capsule CR3-F 0.20 0.54 556 1.08 116 Y

Plant-Specific RVSP Material (TL) 1 l

f Table B.1.2-2. Credibility Assessment for Base Metal Heat Number C4344-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

.~

' trred.

. Predicted.

(Measured -

.m Capsule.,

Cu '.

,. Ni,

' Chem..

Tempf Meas.

ARTunt from Predicted)

Designation wt%L

. wt%'

Factor

- ('F)

~ Fluence ARTwor Best Fit Line ARTwor Factor

('F)'

~(*F)

('F)

CR-3: Capsule CR3-B 0.20 0.54 141.8 556 0.449 39 52

-13 Plant-Specific RVSP Material (TL)

CR-3: Capsule CR3-C 0.20 0.54 141.8 556 0.882 116 102 14 Plant-Specific RVSP Material (TL)

CR.3: Capsule CR3-D 0.20 0.54 141.8 556 0 919 102 106

-4 Plant-Specific RVSP Material (TL)

CR-3: Capsule CR3-F 0.20 0.54 141.8 556 1.022 116 118

-2 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopesestaf * (Fluence Factor) and Slopeseatnt = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,115.8)

These data Credible since the scatter is less than i17 F for all surveillance capsule data points.

4 i

f"M'M i

I<

B-5

)

1 Table B.1.2-3. Base Metal Heat Number C4344-1 Chemistry Factor Calculation for Crystal River Unit 3 Reactor Vessel irrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Designation '

wt%

wt%

Factor

(*F)

Factor

(*F)

CR-3: Capsule CR3-B 0.20 0.54 141.8 556 0.449 39 Plant-Specine RVSP Materiti(TL)

CR-3: Capsule CR3-C 0.20 0.54 141.8 556 0.882 116 Plant-Specine RVSP Material (TL)

CR-3: Capsule CR3-D 0.20 0.54 141.8 556 0 919 102 Plant-Speerfic RVSP Material (TL)

CR-3: Capsule CR3-F 0.20 0.54 141.8 556 1.022 116 Plant-Speci6c RVSP Material (TL)

Vessel Best-Estimate 0 20 0 54 141.8 556 CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFsurv. data = 115.8)

/l-I!MTNRPA

~

B-6

B.1.3. Base Metal Heat Number SP4086 (BCC 241)

Table B.1.3-1. Surveillance Data for Base Metal Heat Number SP4086 (BCC 241)

(Table 2 of the RAI Regarding Reactor Vessel Integrity)

. y.

Irradiation Measured Data Used in Capsule ID Ju -

. Ni '

Temperature Fluence

. ARTwor Assessing Vessel (including source) -

int %i wt%

(*F)

(x10 n/cm )

(*F)

(Y or N) 8 DB-1: Capsule TE1-F 0.02 0.81 556 0.196 0

Y Plant-Specific RVSP Material (TL)

DB-1: Capsule TE1-B 0.02 0.81 556

-0.592 0

Y Plant-Specific RVSP Material (TL)

DB-1: Capsule TE1 A 0 02 0.81 556 1.29 38 Y

Plant-Specific RVSP Material (TL)

DB-1: Capsule TE1-D 0.02 0.81 556 0.962 6

Y Plant-Specific RVSP Material (TL)

Tabla B.1.3-2. Credibility Assessment for Base Metal Heat Number SP4086 (BCC 241)

(Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad..

Meas. '

ARTuor from Predicted)

- Capsule-Cu Ni.

Chem.

Temp.

Fluence ARTwor

' Best Fit Line ARTuor Designation '

wt%

wt% '

Factor

(*F)

Factor

(*F)

(*F)

(*F)

DB-1: Capsula TE1-F 0.02 0.81 20.0 556 0.565 0

8

-8 Plant-Specific RVSP Material (TL)

DB-1: Capsule TE1-B 0.02 0.81 20.0 556 0.853 0

12

-12 Plant-Specific RVSP Material (TL)

DB-1: Capsule TE1-A 0.02 0.81 20.0 556 1.071 38 16 22 Plant-Specific RVSP Material (TL)

DB-1: Capsule TE1-D

' ' } 0.02 9 lit 20.0 556 0.989 6

14

-8 Rnnt-Specific RVSP Material (Ti.

I where Predicted ARTuDr = (Slopesestaf * (Fluence Factor) and Slopesest at = best fit line relating Measured ARTnDr to the Fluence Factor (i.e.,14.7)

These data are not credible since the scatter is greater than ii7*F for one surveillance capsule data point.

l I'"<M'aD B-7

Table B.1.3-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number SP4086 (BCC 241)

Table.:

Capsule (Measured.

Capsule' Chem. Factor

. Fluence Measured Predictcd Predicted)

Designation (Surv. Avg.) '

Factor -

ARTuot (*F)

ARTwer (*F)

ARTuot (*F)

DB-1: Capsule TE1-F 20.0 0.565 0

11

-11 Plant Specific RVSP Material (TL)

DB-1: Capsule TE1-B 20.0 0.853 0

17 17 Plant Specific RVSP Material (TL)

DB-1: Capsule TE1-A 20.0 1.071 38 21 17 Plant Specific RVSP Material (TL)

DB-1: Capsule TE1-D 20.0 0.989 6

20

-14 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points is less than 2 standard deviations (34*F), the Table chemistry factor is consentative, therefore the Table chemistry factor based on the base metal best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

l l

l t

I I

B-8 f."MNRM l

B.1.4. Base Metal Heat Number C3265-1 Table B.1.4-1. Surveillance Data for Base Metal Heat Number C3265-1 (Tr.ble 2 of the RAI Regarding Reactor VesselIntegrity) i l

+.

g irradiation.

Measured Data Used in Capsule ID.

- Cu

' NI Temperature Fluence ARTuor Assessing Vessel (including source)

'wt%

wt%

('F)

(x10" n/cm')

(*F)

(Y or N)

ONS-1: Capsule OC1-E 0.10 0.50 556 0150 55 Y

Plant-Specific RVSP Material (LT)

ONS-1: Capsule OC1-E 0.10 0.50 556 0.150 29 Y

Plant-Specific RVSP Material (TL)

ONS-1: Capsule OC1-A 0.10 0.50 556 0.895 55 Y

Plant-Specific RVSP Material (LT)

ONS-1: Capsule OC1-A 0.10 0.50 556 0.895 28 Y

Plant-Specific RVSP Material (TL)

ONS-1: Capsule OC1-C 0.10 0.50 556 0.986 45 Y

Plant Specific RVSP Material (LT)

ONS-1: Capsule OC1-C 0.10 0.50 556 0.986 87 Y

Plant-Specific RVSP Material (TL)

Table B.1.4-2. Credibility Assessraent for Base Metal Heat Number C3265-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTuor from Predicted)

Capsule..

Cu

. Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuor Designation '

wt%.

wt%

Factor

('F)

Factor

.(*F)

('F)

(*F)

ONS-1: Capsule OC1-E 0.10 0.50 65.0 556 0.503 55 29

-26 Plant-Specific RVSP Material (LT)

ONS-1; Capsule OC1-E 0.10 0.50 65.0 556 0.503 29 29 0

Plant-Specific RVSP Material (TL)

ONS-1: Capsule OC1 A 0.10 0.50 65.0 556 0.969 55 56

-1 Plant-Specific RVSP Matenal(LT)

ONS-1: Capsule OC1-A 0.10 0.50 65.0 556 0.969 28 56

-28 Plant-Specific RVSP Material (TL)

ONS-1: Capsule OC1-C 0.10 0.50 65.0 556 0 996 45 58

-13 Plant-Specific RVSP Material (LT)

ONS-1: Capsule OC1-C 0.10 0.50 65.0 556 0.996 87 58 29 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopesesf nd * (Fluence Factor) and Slopesesf nt = best fit line relating Measured ARTu;>r to the Fluence Factor (i.e., 58.2)

These data are not credible since the scatter is greater than i17 F for several surveillance capsule data points.

B-9 h"<WM

Table B.1.4-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metai Heat Number C3265-1 Table Capsule (Measured -

Capsule Chem. Factor Fluence Measured Predicted Predicted)

Designation (Sury. Avg.)

Factor ARTuor (*F)

ARTwor (*F)

ARTuor (*F)

ONS-1: Capsule OC1-E 65.0 0.503 55 33 22 Plant-Specific RVSP Material (LT)

ONS-1: Capsule OC1-E 65.0 0.503 29 33

-4 Plant-Specific RVSP Material (TL)

ONS-1: Capsule OC1-A 65.0 0.969 55 63

-8 Plant-Specific RVSP Material (LT)

ONS-1: Capsule OC1-A 65.0 0.969 28 63

-35 Flant-Specific RVSP Material (TL)

ONS-1: Capsule OC1-C 65.0 0.996 45 65

-20 Plant-Specific RVSP Material (LT)

ONS-1: Capsule OC1-C 65.0 0.996 87 65 22 Plant Specific RVSP Material (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

The data indicate that one data point exceeds 2 standard deviations (34 F), however the generic Table chemistry factor based on the surveillance data over-predicts this measured data point. Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of reactor vessel integrity.

B-10 f"< M 'R M

B.1.5. Base Metal Heat Number 3P2359 (AAW 163)

I l

l Table B.1.5-1. Surveillance Data for Base Metal Heat Number 3P2359 (AAW 163) l (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation '

Measured Data Used in Capsule ID,.

Cu Ni' Temperature Fluence ARTuor Assessing Vessel (including source) wt% '

wt%

(*F)

(x10"n/cm )

('F)

(Y or N) 2 ONS-2: Capsule OCil-C 0.04 0.75 556 0.102 24 Y

Plant Specific RVSP Material (LT)

ONS-2: Capsule OCll-C 0.04 0.75 556 0.102 0

Y Plant-Specific RVSP Material (TL)

ONS-2: Capsule OCil-A 0.04 0.75 556 0.337 0

Y Plant-Specific RVSP Material (LT)

ONS-2: Capsule OCal-A 0.04 0.75 556 0.337 4

Y Plant-Specific RVSP Material (TL)

ONS-2: Capsule OCil-E 0.04 0.75 556 1.21 18 Y

Plant-Specific RVSP Material (LT)

ONS-2: Capsule CCil-E 0.04 0.75 556 1.21 8

Y Plant-Specific RVSP Material (TL)

Table B.1.5-2. Credibility Assessment for Base Metal Heat Number 3P2359 (AAW 163)

(Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTuor from Predicted)

Capsule Cu-Ni Chem.

Temp.

Fluence ARTuor Best Fit Line ARTuor Designation wt%

wt%

Factor

('F)

Factor

(*F)

('F)

('F)

ONS-2: Capsule OCil-C 0.04 0.75 26.0 556 0.421 24 5

19 Plant-Specific RVSP Material (LT)

ONS-2. Capsule OCil-C 0.04 0.75 26.0 556 0.421 0

5

-5 Plant-Specific RVSP Material (TL)

ONS-2: Capsule OCll-A 0.04 0.75 26.0 556 0.701 0

8

-8 Plant-Specific RVSP Material (LT)

ONS-2: Capsule OCil-A 0.04 0.75 26.0 556 0.701 4

8

-4 Plant Speci0c RVSP Material (TL)

ONS-2: Capsule OCll-E 0.04 0.75 26.0 556 1.053 18 12 6

Plant-Specific RVSP Material (LT)

ONS-2: Capsule OCll-E 0.04 0.75 26.0 556 1.053 8

12

-4 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopebest nt) * (Fluence Factor) and Slopesest at = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,11.3)

These data are not credible since the scatter is greater than i17 F for one surveillance capsule data point.

B-11 f."MNRM

Table B.1.5-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number 3P2359 (AAW 163)

Tabk.

Capsub (Measured -

Capsule

' Chem Factor Fluence Measured Predicted Predicted)

Designation (Sury. Avg.)

Factor ARTwot (*F)

ARTwor (*F)

ARTwot (*F)

ONS-2: Capsule OCil-C 26.0 0.421 24 11 13 Plant-Specific RVSP Material (LT)

ONS-2: Capsule OCil-C 26.0 0.421 0

11

-11 Plant-Specific RVSP Material (TL)

ONS-2: Capsule OCil-A 26.0 0.701 0

18

-18 Plant-Specific RVSP Material (LT)

ONS-2: Capsule OCil-A 26.0 0.701 4

18

-14 Plant-Specific RVSP Material (TL)

ONS-2: Capsule OCil-E 26.0 1.053 18 27

-9 Plant-Specific RVSP Material (LT)

ONS-2: Capsule OCli-E 26.0 1.053 8

27

-19 Plant-Specific RVSP Material (TL) wl.ere Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points is less than 2 standard deviations (34 F), the Table chemistry factor is conservative, therefore the Table chemistry factor based on the base metal best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

B-12 I"MNM

B.1.6. Rase Metal Heat Number 522314 (AWS 192)

Table B.1.6-1. Surveillance Data for Base Metal Heat Number 522314 (AWS 192)

(Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation -

Measured Data Used in Capsule ID Cu.

Ni Temperature Fluence ARTwor Assessing Vessel (including source) wt%~

wt%

(*F)

(x10 n/cm )

(*F)

(Y or N) 2 ONS-3: Capsule OCiti-A 0.01 0.73 556 0.081 52 Y

Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCill-B 0 01 0.73 556 0.312 6

Y Plant-Specific RVSP Material (TL)

ONS-3: Capsule OClli-D 0.01 0.73 556 1.45 38 Y

Plant-Specific RVSP Material (TL)

Table B.1.6-2. Credibility Assessment for Base Metal Heat Number 522314 (AWS 192)

(Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit Une ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

ONS-3: Capsule OCill-A 0 01 0.73 20 0 556 0.376 52 14 38 Plant-Specific RVSP Material (TL)

ONS-3. Capsule OCill-B 0.01 0.73 20.0 556 0.680 6

24

-18 Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCill-D 0.01 0.73 20.0 556 1.103 38 40

-2 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopebest nd * (Flusnce Factor) and Slopebestat = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 36.0)

These data are not credible since the scatter is greater than 17 F for one surveillance capsule data point.

B-13 f="MNM

Table B.1.6-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number 522314 (AWS 192)

Table Capsule (Measured -

Capsule -

Chem. Factor Fluence Measured Predicted Predicted)

Designation (Surv. Avg.)

Factor ARTuor (*F)

ARTuor ('F)

ARTwor ('F)

ONS-3: Capsule OCill-A 20.0 0.376 52 8

44 Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCall-B 20.0 0.680 6

14

-8 Plant-Specific RVSP Material (TL)

ONS-3; Capsule OClli-D 20.0 1.103 38 22 16 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter from one data point exceeds 2 standard deviations (34 F), the Table chemistry factor is not conservative. The chemistry factor determined from best-fit line of the surveillance data (CFsurv.cata = 36.0 F)is used in the assessment of reactor vesselintegrity. In addition, the " full" value of c3 (17 F) is used in the calculation of the margin term.

B-14 f"MNM

B.1.7. Base Metal Heat Number 522194 (ANK 191)

Table B.1.7-1. Surveillance Data for Base Metal Heat Number 522194 (ANK 191)

(Table 2 of the RAI Regarding Reactor VesselIntegrity) i irradiation Capsule ID

_Cu

' Ni Temperature Measured Data Used in Fluence

' ARTwor Assessing Vessel (including source) wt%

wt%

(*F)

(x10 n/cm )

(*F)

(Y or N) 2 ONS-3: Capsule OCIll-A 0.02 0.76 556 0.081 12 Y

Plant-Specific RVSP Material (LT)

ONS-3: Capsule OCill-A 0 02 0.76 556 0.081 7

Y Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCill-B 0.02 0.76 556 0.312 4

Y Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCill-D 0.02 0.76 556 1.45 22 Y

Plant Specific RVSP Material (TL)

Table B.1.7-2. Credibility Assessment for Base Metal Heat Number 522194 (ANK 191)

(Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ART ot Best Fit Line ARTwot N

Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

ONS-3: Capsule OClli-A 0.02 0.76 20.0 556 0.376 12 7

5 Pbnt-Specific RVSP Material (LT)

ONS-3: Capsule OCiti-A 0.02 0.76 20.0 556 0.376 7

7 0

Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCill-B 0.02 0.76 20,0 556 0.680 4

12

-8 Pbnt-Specific RVSP Material (TL)

ONS-3: Capsule OClli-D 0.02 0.76 20.0 556 1.103 22 19 3

Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopesestnt) *(Fluence Factor) and Slopesestnt = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,17.4)

These data are credible since the scatter is less than ii7 F for all surveillance capsule data points.

B-15 f="<WM

Table B.1.7-3. Base Metal Heat Number 522194 (ANK 191) Chemistry Factor Calculation for Oconee Unit 3 Reactor Vessel

' trrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

ONS-3: Capsule OCall-A 0.02 0.76 20.0 556 0.376 12 Plant-Specific RVSP Material (LT)

ONS-3: Capsule 0C1114 0.02 0.76 20.0 556 0.376 7

Plant-Specific RVSP Material (TL)

ONS-3: Capsule OCill-B 0.02 0.76 20.0 556 0.680 4

Plant-Specific RVSP Material (TL)

ONS-3: Capsule OClli-D 0.02 0.76 20.0 556 1.103 22 Piant-Specific.RVSP Materia 1(TL)

Vessel Best-Estimate 0.02 0 76 20.0 556 CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CF ury. data 17 4)

S B-16 f="<MNM

B.1.8. Base Metal Heat Number C2789-2 Table B.1.8-1. Surveillance Data for Base Metal Heat Number C2789-2 (Table 2 of the RAI Regarding Reactor Vessel Integrity) irradiation '

Measured Data Used in Capsule'ID L

. Cu.

. Ni Temperature Fluence

ARTwor Assessing Vessel (including source) wt%'

wt%

('F).

(x10" n/cm')

(*F).

(Y or N)

TMI-1: Capsule TM11-E 0.09 0.57 556 0.107 26 Y

Plant-Specific RVSP Material (LT)

TMI-1: Capsule TM11-E 0.09 0.57 556 0.107 0

Y Plant-Specific RVSP Material (TL)

TMI-1: Capsule TMll-C 0.09 0.57 556 0.866 14 Y

Plant-Specific RVSP Material (LT)

TMI-1: Capsule TM11-C 0.09 0.57 556 0.866 15 Y

Plant Specific RVSP Material (TL)

Table B.1.8-2. Credibility Assessment for Base Metal Heat Number C2789-2 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured.

Irrad.

Meas.

ARTwor from Predicted)

Capsule..

Cu-Ni Chemc Temp.

Fluence ARTwor Best Fit Une ARTwor Designation wt%

wt%

Factor

('F)

Factor

(*F)

(*F)

(*F)

TMI-1: Capsule TM11-E 0.09 0.57 58.0 556 0.431 26 8

18 Plant-Specific RVSP Material (LT)

TMi-1: Capsule TM11-E 0.09 0.57 58.0 556 0.431 0

8

-8 Plant-Specific RVSP Material (TL)

TMI-1: Capsule TMl1-C 0.09 0.57 58.0 556 0.960 14 17

-3 Plant-Specific RVSP Material (LT)

TMi-1: Capsule TM11-C 0.09 0.57 58.0 556 0.960 15 17

-2 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebest at = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,17.6)

These data are not credible since the scatter is greater than 17 F for one surveillance capsule data point.

B-17 I"MNM

Table B.1.8-3. Table Chemistry Factor Non-Conservatism Assessment for Base Metal Heat Number C2789-2 Table Capsule (Measured.

Capsule Chem. Factor Fluence Measured Predicted Predicted) l Designation (Surv. Avg.) -

Factor ARTwor (*F)

ARTwor (*F)

ARTwor (*F)

TMI-1: Capsule TM11-E 58.0 0.431 26 25 1

Plant-Specific RVSP Material (LT)

TMI-1: Capsule TM11-E

$8.0 0.431 0

25

-25 Plant-Specific RVSP Material (TL)

TMI-1 Capsule TM11-C 58.0 0.960 14 56

-42 Plant-Speerfic RVSP Material (LT) l TMi-1: Capsule TM11-C 58.0 0.960 15 56

-41 l

Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

The data indicate that two data points exceed 2 standard deviations (34 F), however the generic Table chemistry factor based on the surveillance data over-predicts these measured data points. Therefore, the Table chemistry factor calculated using the weld wire heat best-estimate copper and nickel contents is considered conservative and is used in the assessment of reactor vesselintegrity.

l l

B-18 E="<MNM

B.1.9. Base Metal Heat Number A9811-1 Table B.1.9-1. Surveillance Data for Base Metal Heat Number A9811-1 (Table 2 of the RAI Regarding Reart:.-VesselIntegrity)

Irradiation Measured Data Used in Capsule 10 -

Cu Ni Temperature Fluence ARTwor Assessing Vessel (including source) wt%-

wt%

(*F)-

(x10" n/cm')

(*F)

(Y or N)

PB-1: Capsule V 0.20 0.06 540 0.634 81 Y

Plant-Specific RVSP Material (LT)

PB-1: Capsule S 0.20 0.06 540 0.829 87 Y

Plant-Specific RVSP Material (LT)

PB-1: Capsule R 0.20 0.06 540 2.19 93 Y

Plant-Specific RVSP Material (LT)

PB-1: Capsule T 0.20 0.06 540 2.23 82 Y

Plant-Specific RVSP Material (LT)

Table B.1.9-2. Credibility Assessment for Base Metal Heat Number A9811-1 (Table 3 of the RAI Regarding Reactor Vesselintegrity)

- Predicted (Measured -

Irrad.

Meas.

ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Dest Fit Line ARTwor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

PB-1: Capsule V 0.20 0.06 88.0 540 0.872 81 69 12 Plant-Specific RVSP Material (LT)

PB 1: Capsule S 0.20 0.06 88.0 540 0.947 87 75 12 Plant-Specific RVSP Material (LT)

PB-1: Capsule R 0.20 0.06 88.0 540 1.213 93 96

-3 Plant-Specific RVSP Material (LT)

PB-1: Capsule T 0.20 0.06 88.0 540 1.217 82 97

-15 Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Slope,trif * (Fluence Factor) and se Slopesestrig = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 79.3)

These data are credible since the scatter is less than 117'F for all surveillance capsule data points.

B-19 E="M A' M

Table B.1.9-3. Base Metal Heat Number A9811-1 Chemistry Factor Calculation for Point Beach Unit 1 Reactor Vessel arrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Designation wt%

wt%-

Factor

(*F)

Factor

(*F)

PB-1: Capsule V 0.20 0.06 88.0 540 0 872 81 Plant-Specific RVSP Material (LT)

PB-1: Capsule S 0.20 0.06 88.0 540 0.947 87 Plant-Specific RVSP Material (LT)

PB-1: Capsule R 0.20 0.06 88.0 540 1.213 93 Plant-Specific RVSP Material (LT)

PB-1: Capsule T 0.20 0.06 88.0 540

?.217 82 Plant-Specific RVSP Material (LT)

Vessel Best-Estimate 0.20 0 06 88 0 542*

  • For conservatism no temperature adjustment was made to the measured data.

CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e.,.CFsurv. data = 79.3)

B-20 I'"<WR M

B.1.10. Base Metal Heat Number C1423-1 Table B.1.10-1. Surveillance Data for Base Metal Heat Number C1423-1 (Table 2 of the RAI Regarding Reactor VesselIntegrity)

Irradiation -

Measured Data Used in Capsule ID

' Cu Ni Ternperature

Fluence ARTwer.

Assessing Vessel (including source)

!wt%

wt%

~(*F)

(x10" n/cm')

(*F)

(Y or N)

PB-1: Capsule V 0.12 0.07 540 0.634 41 Y

Plant-Specifre RVSP Material (LT)

PB-1: Capsule S 0.12 0.07 540 0.829 43 Y

Plant-Specific RVSP Material (LT)

PB 1: Capsule R 0.12 0.07 540 2.19 28 Y

Plant-Specific RVSP Material (LT)

PB-1: Capsule T 0.12 0.07 540 2.23 45 Y

Plant-Specific RVSP Material (LT)

Table 9.1.10-2. Credibility Assessment for Base Metal Heat Number C1423-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTwor from Predicted)

. Capsule Cu Ni-Chem.

Temp.

Fluence ARTwor Best Fit Line ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

PB-1: Capsule V 0.12 0.07 55.3 540 0.872 41 31 10 Plant-Specific RVSP Material (LT)

PB-1: Capsule S 0 12 0.07 55.3 540 0.947 43 34 9

Plant-Specific RVSP Material (LT)

PB-1: Capsule R 0.12 0.07 55.3 540 1.213 28 44

-16 Plant-Specific RVSP Material (LT)

PB-1: Capsule T 0.12 0.07 55.3 540 1.217 45 44 1

Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Slopesestny * (Fluence Factor) and Slopesestat = best fit line relating Measured ARTuor to the Fluence Factor i.e., 35.8)

These data are credible since the scatter is less than ii7 F for all surveillance capsule data points.

B-21 I"<M'M

Table B.1.10-3. Base Metal Heat Number C1423-1 Chemistry Factor Calculation for Point Beach Unit 1 Reactor Vessel irrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Designation wt%

wt%

Factor

(*F)

Factor

(.F)

PB-1: Capsule V 0.12 0.07 55.3 540 0.872 41 Plant-Specific RVSP Material (LT)

PB-1: Capsule S 0.12 0 Ol 55.3 540 0.947 43 Plant-Specific RVSP Material (LT)

PB-1: Capsule R 0.12 0.07 55.3 540 1.213 28 Plant Specific RVSP Material (LT)

PB-1: Capsule T 0.12 0.07 55.3 540 1.217 45 Plant-Specific RVSP Material (LT)

Vessel Best-Estimate 0.12 0 07 55 3 542*

  • For conservatism no temperature adjustment was made to the measured data.

CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFSurv. data = 35.8)

B-22 f"<M A' M

B.1.11. Base Metal Heat Number 123V500 Table B.1.11-1. Surveillance Data for Base Metal Heat Number 123V500 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation..

Measured Data Used in Capsule ID eCu Ni' Temperature

. Fluence -

ARTuor Assessing Vessel (including source) J wt%

wt3

(*F)

(x10Y n/cm')

(*F)

(Y or N)

PB 2: Capsule V 0.09 0.70 542 0.650 39 Y

Plant-Specific RVSP Matenal(LT)

PB-2: Capsule T 0.09 0.70 542 0.861 62 Y

Plant-Specific RVSP Material (LT)

PB-2: Capsule R 0.09 0.70 542 2.20 88 Y

Plant-Specific RVSP Material (LT)

PB-2: Capsule S 0.09 0.70 542 3.1C 101 Y

Plant-Specific RVSP Ma'erial(LT)

Table B.1.11-2. Credibility Assessment for Base Metal Heat Number 123V500 (Table 3 of the RAI Regarding Reactor VesselIntegrity)

Predicted (Measured -

Irrad.

Meas.

ARTwor from Predicted)

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Best Fit une ARTuor Designation wt%

wt%

Factor

(*F).

Factor

(*F)

(*F)

(*F)

PB-2: Capsule V 0.09 0.70 58.0 542 0.879 39 60

-21 Plant-Specific RVSP Material (LT)

PB-2: Capsule T 0.09 0.70 58.0 542 0958 62 66

-4 Plant-Specific RVSP Material (LT)

PB-2: Capsule R 0.09 0.70 58.0 542 1.214 88 83 5

Plant-Specific RVSP Material (LT)

PB-2: Capsule S 0.09 0.70 58.0 542 1.298 101 89 12 Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Slopesestnd * (Fluence Factor) and Slopebest ne = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 68.4)

These data are not credible since the scatter is greater than i17 F for one surveillance capsule data point.

B-23 h"AM'M

b Table B.1.11-3. Table Chemistry Factor Non-Conservatism Assessment l

for Base Metal Heat Number 123V500 Tabk Capsum (Measured.

Capsule Chem. Factor Fluence Measured Predicted.

Predicted) i Designation (Sury. Avg.)

Factor ARTuor ('F)

ARTuor ('F)

ARTwor (*F) l PB-2: Capsule V 58.0 0.879 39 01

-12 Plant-Specific RVSP Material (LT)

PB-2: Capsule T 58.0 0.958 62 56 6

Plant-Specific RVSP Material (LT)

PB-2: Capsule R 58.0 1.214 88 70 18 Plant-Specific RVSP Material (LT)

PB-2: Capsule S 58.0 1.298 101 75 26 Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Table Chem. Factor) * (Capsule Fluence Factor)

Since the scatter for all data points is less than 2 standard deviations (34 F), the Table chemistry factor is conservative, therefore the Table chemistry factor based on the base metal best-estimate copper and nickel contents is used in the assessment of reactor vessel integrity.

B-24 f="<MNRM

B.1.12. Base Metal Heat Number 122W195 Table B.1.12-1. Surveillance Data for Base Metal Heat Number 122W195 (Table 2 of the RA: RegartCng Reactor Vessel Integrity) n.

Irradiation -

g PAsasured Data Used 6n

. Capsule ID" Cu-( Ni,

, Temperature

., Fluence -

. ARTuor.

Assessing Vessel (including source):

Pwt%

wt%

(*F)1 (x10'* n/cm )

(*F)-

(Y or N) 8 PB-2: Capsule V 0.05 0.72 542 0.650 39 Y

Plant-Specific RVSP Material (LT)

PB-2: Capsule T 0.05 0.72 542 0.861 35 Y

Plant-Specific RVSP Material (LT)

PB-2: Capsule R 0.05 0.72 542 2.20 50 Y

Plant-Specific RVSP Material (LT)

PB-2: Capsule S 0.05 0.72 542 3.10 61 Y

Plant. Specific RVSP Material (LT)

Table B.1.12-2. Credibility Assessment for Base Metal Heat Number 122W195 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irred.

Meas.

ARTNor from Predicted)

Capsule.

Cu NI-Chem.

Temp.

Fluence ARTuor Best Fit Line ARTwot Designation -

'wt%

wt%

Factor

(*F)

Factor

(*F)

(*F)

(*F)

PB-2: Capsule V 0.05 0.72 31.0 542 0.879 39 38 1

Plant Specific RVSP Mat.erial(LT)

PB-2: Capsule T 0.05 0.72 31.0 542 0.958 35 41

-6 Plant-Specife RVSP Material (LT)

PB-2: Capsule R 0.05 0.72 31.0 542 1.214 50 52

-2 Plant-Specife RVSP Material (LT)

PB-2: Capsule S 0.05 0.72 31.0 542 1.298 61 56 5

Plant-Specific RVSP Material (LT)

^ where Predicted ARTuor = (Slopeustag) * (Fluence Factor) and l

Slopeust nr = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 42.8)

These data are credible since the scatter is less than ii7 F for all surveillance capsule data points.

B-25 I'"M*'M

)

Table B.1.12-3. Base Metal Heat Number 122W195 Chemistry Factor Calculation for Point Beach Unit 2 Reacto Vessel irrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTwot Designation wt%

wt%

Factor

(*F)

~ Factor

(*F)

PB-2: Capsule V 0.05 0.72 3 i.0 542 0.879 39 Plant-Specific RVSP Material (LT)

PB-2: Capsule T 0.05 0.72 31.0 542 0.958 35 Plant-Specific RVSP Material (LT)

PB-2: Capsule R 0.05 0.72 31.0 542 1.214 50 Plant-Specific RVSP Material (LT)

PB-2: Capsule S

' O.05 0.72 31.0 542 1.298 61 Plant-Specific RVSP Material,(LT)

Vessel Best-Estimate 0 05 0.72 31.0 542 CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFSurv.cata = 42.8)

B-26 f."<MNR M

B.1.13. Base Metal Heat Number C4415-1 Table B.1.13-1. Surveillance Data for Base Metal Heat Number C4415-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

  • Capsule ID f.

Cu" Irradiation -

ARTuor" Assessing Vessel Measured Data Used in Ni -

Temperature Fluence (including source)i

  • wt%'

wt%

' (*F) /

(x10 n/ctn')

(*F)'

(Y or N)

S-1: Capsule T 0.11 0.50 538 0.281 50 Y

Plant-Speedic RVSP Material (LT)

S-1: Capsule V 0.11 0.50 538 1.94 113 Y

Plant-Specific RVSP Material (LT)

S-1: Capsele X 0.11 0.50 538 1.599 86 Y

Plant-Specific RVSP Material (LT)

Table B.1.13-2. Credibility Assessment for Base Metal Heat Number C4415-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted.

(Measured -

Irred.

Meas.

ARTwor from Predicted)

Capsule.(, '

Cu' Ni Chem.

Temp. '

Fluence ARTuor -

Best Fit Line '

ARTwot Designation

'wt%

'wt%

Factor

(*F)

~ Factor

' ' (*F) '

(*F)

(*F)

=

S-1: Capsule T 0.11 0.50 73.0 538 0.653 50 56

-6 Plant-Specific RVSP Matenal(LT)

S-1: Capsule V 0.11 0.50 73.0 538 1.181 113 100 13 Plant-Specific RVSP Material (LT)

S-1: Capsulo X 0.11 0.50 73.0 538 1.130 86 96

-10 Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Slopeustn() * (Fluence Factor) and Slopesent at = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 85.0)

These data are credible since the scatter is less than i17*F for all surveillance capsule data points.

i B-27 ff=MNM

Table B.1.13-3. Base Metal Heat Number C4415-1 Chemistry Factor Calculation for Surrt 81 nit 1 Reactor Vessel Temp.

Irrad.

Meas.

Measured Capsule Cu Ni-Chem.

Temp.

Fluence ARTNor ARTwot Designation wt%

'wt%

Factor

('F)

Factor

(*F)

('F)

_S-1: Capsule T 0.11 0.50 73.0 538 0653 50 46 Pts nt-Specific RVSP Material (LT)

S-1: Capsule V 0.11 0.50 73.0 538 1.181 113 109 Phnt-Specific RVSP Material (LT)

S 1: Capsule X 0.11 0.50 710 538 1.130 86 82 P ant-Specific RVSP Material (LT)

Vessel Best-Estimate 0 11 0 50 73 0 542*

  • For conservatism no temperature adjustment was made to the measured data.

CFsurv. data = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFsurv. data = 85.0) l l

l f."<^TNRM f

B-28

B.1.14. Base Metal Heat Number C4339-1 Table B.1.14-1. Surveillance Data for Base Metal Heat Number C4339-1 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

Irradiation Measured Data Used in Capsule ID ?.

' Cu ;

1 Nil Temperature'

. Fluence

. ARTuor Assessing Vessel (including source) 5 wt%

wt%

' (*F) -

(x10 n/cm')

(*F)

(Y or N)

S-2: Capsulo X 0.11 0.54 537.5 0.302 58 Y

Plant-Specific RVSP Material (LT)

S-2: Capsule X 0.11 0.54 537.5 0.302 49 Y

Plant-Specific RVSP Material (TL)

S-2: Capsule V 0.11 0.54 537.5 1.88 80 Y

Plant-Specific RVSP Material (LT)

S-2: Capsule V 0.11 0.54 537.5 1.88 65 Y

Plant-Specific RVSP Material (TL)

Table B.1.14-2. Credibility Assessment for Base Metal Hest Number C4339-1 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad..

I Meas. -

ARTuor from Predicted)

Capsule Cul

~ Ni Chem.

Temp.'

Fluence ARTwor Best Fit Line ARTwot Designation "

wt%

wt%

Factor

(*F)

' Factor '

(*F)

(*F)

(*F)

S-2: Capsule X 0.11 0.54 73 4 537.5 0.672 58 44 14 Plant-Specific RVSP Material (LT)

S-2: Capsule X 0.11 0.54 73.4 537.5 0.672 49 44 5

Plant-Specific RVSP Material (TL)

S-2. Capsule V 0.11 0.54 73 4 537.5 1.173 80 78 2

Plant Specific RVSP Material (LT)

S-2: Capsule V 0.11 0.54 73.4 537.5 1.173 65 78

-13 Plant-Specific RVSP Material (TL) where Predicted ARTuor = (Slopesestnf * (Fluence Factor) and Slopesest at = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 66.2)

These data are credible since the scatter is less than 117 F for all surveillance capsule data points.

l v

i.

I'" N ' M '5 B-29

Table B.1.14-3. Base Metal Heat Number C4339-1 Chemistry Factor Calculation for Surry Unit 2 Reactor Vessel irrad.

Meas.

Capsule

. Cu.

Ni Chem.

Temp.

Fluence ARTwor

. Designation wt%

wt%

Factor

(*F)

Factor

(*F)

S-2: Capsule X 0.11 0.54 73.4 537.5 0.672 58 Plant-Specific RVSP Material (LT)

S-2: CSpsule X 0.11 0.54 73.4 537.5 0.672 49 Plant-Specific RVSP Material (TL)

S-2: Capsule V 0.11 0.54 73.4 537.5 1.173 80 Plant-Specific RVSP Material (LT)

S-2: Capsule V 0.11 0.54 73.4 537.5 1.173 65 Plant-Specific RVSP Material (TL)

Vessel Best-Estimate,

  • For conservatism no temperature adjustment was made to the measured data.

CFswv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFSury. data = 66.2)

B-30 f."ATNRM

l B.1.15. Base Metal Heat Number 123P461 Table B.1.15-1. Surveillance Data for Base Metal Heat Number 123P461 (Table 2 of the RAI Regarding Reactor Vessel integrity)

Irradiation Measured Data Used in Capsule ID,

Cu.

Ni Temperature Fluence

. ARTwor Assessing Vessel 1 (including source).

'wt%:

wt%

('F) '

(x10 n/cm )

g,F)

(Y or N) 2 TP-3: Capsule T 0.06 0.70 546 0.739 18 Y

Plant-Specific RVSP Material (LT)

TP-3: Capsule S 0.06 0.70 546 1.72 13 Y

Plant-Specific RVSP Material (LT)

Table B.1.15-2. Credibility Assessment for Base Metal Heat Number 123P461 (Table 3 of the RAI Regarding Reactor Vesselintegrity)

Predicted (Measured -

irred.

. Meas.

ARTu n from Predicted)

Capsule '

Cu '

Ni.

Chem..

Temp; Fluence ARTwor Best Fit une ARTwor Designation -

wt% -

wt%

Factor

'(*F)

Factor '

(*F)

('F)

(*F)

TP-3: Capsule T 0.06 0.70 35 8 546 0 915 18 13 5

Plant-Specific RVSP Material (LT)

TP-3: Capsule S 0.06 0.70 35 8 546 1.149 13 17

-4 Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Slopebest nd * (Fluence Factor) and Slopebest nt = best fit line relating Measured ARTuor to the Fluence Factor

. (i.e.,14.6) l These data are credible since the scatter is less than i17 F for all surveillance capsule data points.

B-31 II^ M M

Table B.1.15-3. Base Metal Heat Number 123P461 Chemistry Factor Calculation for Turkey Point Unit 3 Reactor Vessel arrad.

Meas.

Capsule Cu Ni Chem.

Temp.

Fluence ARTwor Designation wt%

wt%

Factor

(*F)

Factor

('F)

TP-3: Capsule T 0.06 0.70 35.8 546 0.515 18 Plant-Specific RVSP Material (LT)

TP-3: Capsule S 0.06 0.70 35.8 546 1.149 13 Plant-Specific RVSP Material (LT)

Vessel Best-Estimate 0 06 0.70 35 8 546 CFsurv. data = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFsurv. data = 14.6)

B-32 f="ATNAf=5

' B.1.16. Base Metal Heat Number 123S266 Table B.1.16-1. Surveillance Data for Base Metal Heat Number 123S266 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

~

. Irradiation Measured Data Used in Capsuie 10

'Cu t LNi!

. Temperature

ARTsor '

Assessing Vessel Fluence '

(including source)

wt% -'

wt%

' ('F) :

(x10 n/cm')

(*F)

(Y or N)

TP-3: Capsule S 0.08 0.68 546 1.72 42 Y

Plant-Specific RVSP Material (LT)

TP-3: Capsule V 0.08 0.68 546 1.53 55 Y

Plant-Specific RVSP Material (LT)

Table B.1.16-2. Credibility Assessment for Base Metal Heat Number 123S266 (Table 3 of the RAI Regarding Reactor VesselIntegrity)

~

Predicted.

(Measured -

Irred.;

Meas'.

ARTuor from Predicted)

Capsule..

Cu Ni Chem.,

' Temp.

Fluence

. ARTuor Best Fit Line ARTuot Designation"

~wt%

. wt%

Factor

-(*F)

~ Factor '

- (*F)

~('F)'

(*F)

TP-3: Capsule S 0.08 0.68 50.3 540 1.149 42 49

-7 Plant-Specific RVSP Material (LT)

TP-3: Capsule V 0.08 0.68 50.3 546 1.118 55 48 7

Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Slopeustn() * (Fluence Factor) and Slopet> eat at = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 42.7)

These data are credible since the scatter is less than i17'F for all surveillance Capsule data points.

l l

l l

B-33 fMTNRM

Table B.1.16-3. Base Metal Heat Number 123S266 Chemistry Factor Calculation for Turkey Point Unit 3 Reactor Vessel irrad.

Mess.

Capsule Cu Ni Chem.

Temp.

Fluence ARTuor Designation wt%

wt%

Factor

-(*F)

Factor

(*F)

TP-3: Capsule S 0.08 0 68 50.3 546 1.149 42 Plant-Specific RVSP Material (LT)

TP-3: Capsule V 0.08 0.68 50.3 546 1.118 55 Plant-Specific RVSP Material (LT)

Vessel Bert-Estimate 0 08 0.68 50.3 546 CFsurv. cata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFsurv.cata = 42.7) l B-34 f."^ TNRf.E l

B.1.17 Base Metal Heat Number 122S180 Table B.1.17-1. Surveillance Data for Base Metal Heat Number 122S180 (Table 2 of the RAI Regarding Reactor Vessel Integrity)

,.. - Capsule ID ul.

' y

. irradiation =

Measured Data Used in

.-,c.,

O. Cu.;

_ Ni',

Temperature

, hlbence =

- ARTwot..

Assessing Vessel (including source) i

~: wt%.

wt%

~ ' (*F),

(x10 n/cm')

(*F).

(Y or N)

TP-4: Capsule T 0.06 0.74 546 0.708 12 Y

Plant-Specific RVSP Material (LT)

TP-4: Capsule S 0.06 0.74 546 1,43 0

Y Plant Specific RVSP Material (LT) i Table B.1.17-2. Credibility Assessment for Base Metal Heat Number 122S180 (Table 3 of the RAI Regarding Reactor Vessel Integrity)

Predicted (Measured -

Irrad.

Meas.

ARTwot from Predicted)

Capsule '

Cu Ni; Chem.'

Temp.

Fluence

'ARTwot Best Fit Une' ARTwot.

Designation '

' wt%

'wt%

Factor

- (*F) -

' Factor'

(*F)

(*F)

(*F)

TP-4: Capsule T 0.06 0.74 34.6 546 0.903 12 5

7 Ptnt-Specific RVSP Material (LT)

TP-4: Capsule S 0.06 0.74 34.6 546 1.099 0

6

-6 Plant-Specific RVSP Material (LT) where Predicted ARTuor = (Slopeustaf *(Fluence Factor)and Slopesest at = best fit line relating Measured ARTuor to the Fluence Factor (i.e., 5.4)

These data are credible since the scatter is less than 17*F for all surveillance capsule data points.

t l

I f

B-35 fME^TRM5

]

i

Table B.1.17-3. Base Metal Heat Number 122S180 Chemistry Factor Calculation for Turkey Point Unit 4 Reactor Vessel trrad.

Meas.

Capsule '-

Cu

' Ni Chem.

- Temp.

Fluence ARTwoT Designation wt%

wt%

Factor

(*F)

Factor

('F)

TP-4: Capsule T 0.06 0.74 34.6 546 0.903 12 Plant-Specific RVSP Material (LT)

TP-4: Capsule S 0.06 0.74 34.6 546 1.099 0

Plant-Specific RVSP Material (LT)

Vessel Best-Estimate 0 06 0.74 34 6 546 CFsurv. sata = best fit line relating Measured ARTuor to the Fluence Factor (i.e., CFsury.esta = 5.4)

J B-36 f"dWNRM