B11746, Forwards Util Responses to Questions Raised Re Proof & Review Tech Specs.Pressurizer Heatup & Cooldown Rates Will Not Exceed 100 F/H & 200 F/H,Respectively & Valve 3CHS-V305 Will Be Verified Closed & Secured

From kanterella
Jump to navigation Jump to search
Forwards Util Responses to Questions Raised Re Proof & Review Tech Specs.Pressurizer Heatup & Cooldown Rates Will Not Exceed 100 F/H & 200 F/H,Respectively & Valve 3CHS-V305 Will Be Verified Closed & Secured
ML20133F550
Person / Time
Site: Millstone Dominion icon.png
Issue date: 09/24/1985
From: Opeka J
NORTHEAST NUCLEAR ENERGY CO., NORTHEAST UTILITIES
To: Youngblood B
Office of Nuclear Reactor Regulation
References
B11746, NUDOCS 8510110092
Download: ML20133F550 (30)


Text

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ,

,e o.nor i O,,ic.. . s io.n street. seriin. connecticut NORTHEAST UTILITIES 1

s,Y.,5ENEs$i Ew P.O. BOX 270

.o w-s *ma aoaa w~ HARTFORD. CONNECTICUT 06141-0270 L e  ; [**,* ,,"' Q",*,',[",*, (203) 665-5000 September 24,1985 Docket No. 50-423 B11746 Director of Nuclear Reactor Regulation Mr. B. J. Youngblood, Chief Licensing Branch No.1 Division of Licensing U. S. Nuclear Regulatory Commission Washington, D. C. 20555

References:

(1) 3. F. Opeka letter to B. J. Youngblood, Technical Specifications - Proof and Review, dated September 19, 1985.

(2) 3. F. Opeka letter to B. J. Youngblood, Technical Specifications - Proof and Review, dated September 20,1985.

(3) J. F. Opeka letter to B. J. Youngblood, Technical Specifications - Proof and Review, dated September 23,1985.

Gentlemen:

Millstone Nuclear Power Station, Unit No. 3 Technical Specifications - Proof and Review In the above references, Northeast Nuclear Energy Company (NNECO),

submitted information requested by the Staff concerning certain draft technical specifications for Millstone Unit No. 3. Enclosed please find additional NNECO responses to questions raised.

We trust the attached will resolve the Staff's concerns. If there are additional questions, please contact our licensing representative directly.

Very truly yours, NORTHEAST NUCLEAR ENERGY COMPANY et. al.

BY NORTHEAST NUCLEAR ENERGY COMPANY Their Agent J.140peka V Senior Vice President l 1 8510110092 050924 k0 PDR ADOCK 05000423 A PDR

STATE OF CONNECTICUT )

) ss. Berlin

. COUNTY OF HARTFORD )

Then personally appeared before me 3. F. Opeka, who being duly sworn, did state that he is Senior Vice President of Northeast Nuclear Energy Company, an Applicant herein, that he is authorized to execute and file the foregoing information in the name and on behalf of the Applicants herein and that the statements contained in said information are true and correct to the best of his knowledge and belief.

et h L s t a l , / fx/

Notary Publid/

'on & plies March 31, 3ggg

f .. ...

ADDITIONAL REVIEW REQUIRED Item: Bases 3/4.4.9, Pressure / Temperature Limits.

Provide temperature difference between the pressurizer and the spray fluid.

NNECO's Response:

The pressurizer heatup and cooldown rates shall not exceed 1000F/h and 2000F/h, respectively. The spray shall not be used if the temperature difference between the pressurizer and the spray fluid is greater than 3200F, and

ADDITIONAL REVIEW REQUIRED Item: Technical Specification 4.7.11.2:

Provide justification to exempt Fuel Building, Auxiliary Building and SLCRS Filter banks from surveillance 4.7.11.2.

NNECO's Response:

NNECO has reviewed the surveillance requirements of Technical Specification 4.7.11.2 which addresses the testing requirements for deluge type fire suppression systems. It is NNECO's intent to provide a testing program / procedure which will address the above referenced requirements.

However, there are two testing requirements outlined in the surveillance section of this Technical Specification which NNECO does not believe are warranted for charcoal filter fire suppression systems. The following two surveillance requirements which are not applicable are:

4.7.ll.2.c 3) By a visual inspection of each nozzle's spray are to verify the spray pattern is not obstructed.

4.7.ll.2.d At least once per 3 years by performing an air flow or water test through each open head deluge header and verifying each open head deluge nozzle is unobstructed.

Therefore, NNECO is requesting relief from the standard Technical Specification surveillance requirements.

Charcoal filter fire suppression systems are uniquely designed due to space restrictions. The system design provides distribution piping equipped with custom designed and installed spray nozzles over each rack of the charcoal filter bed.

Due to the space limitations, both the fire suppression system and the charcoal filter bed tray arrangement are designed and constructed by the filter manufacturer. Since these filter units are enclosed with a steel housing, changes / damage to the internal design (tray / suppression system) which could effect discharge spray pattern is virtually impossible, in addition, visual inspection of these spray nozzles would require the unloading of the charcoal filter beds from the filtration units, resulting in a potential unnecessary radiation exposure hazard to plant personnel performing this surveillance requirement.

With regards to 4.7.ll.2.d, flow test requirements, NNECO again does not feel that this surveillance requirement is necessary due to the fire water / fire suppression system design. The charcoal filter suppression system is a dry pipe system with openings (spray nozzles) located in the filter unit itself. This arrangement limits the Internal exposure of the pipe to atmospheric conditions which could cause corrosion, scale or rust to form. To safeguard against foreign material entering the piping from the fire water supply, strainers have been installed within the piping system per NFPA code requirements. The discharge of water to verify system operability would result in a radwaste/ contamination hazard to the plant and personnel radiation exposure hazard.

t

?

ADDITIONAL REVIEW REQUIRED ltem: 4.9.1.3, Boron Concentration Provide means of isolating unborated water sources.

NNECO's Response:

Valves 3CHS-V305 shall be verified closed and secured in position by mechanical ,

stops or by removal of air or electrical power at least once per 31 days. l l

. . ..a. . , . . ,

.. r . .

  • . . i *? n 3/4.9 REFUELING OPERATIONS 3/4.9.1 BORON CONCENTRATION THIS PAGE OPEN PENDING RSC51PT OF INFORMATION FROM THE AFPUCANT LIMITING CONDITION FOR OPERATION 3.9.1 The boron concentration of all filled portions of the Reactor Coolant
  • System and the refueling canal shall be maintained uniform and sufficient to ensure that the more restrictive of the following reactivity conditions is met; either:
a. A K,ff of 0.95 or less, or
b. A boron concentration of greater than or equal to 2000 ppm.

APPLICABILITY: MODE 6.*

ACTION:

With the requirements of the above specification not satisfied, immediately suspend all operations involving CORE ALTERATIONS or positive reactivity changes and initiate and continue boration at greater than or equal to 33 gpm of a solution containing greater than or equal to 6300 ppm boron or its equivalent until X is reduced to less than or equal to 0.95 or the boron concentrationisr$Noredtogreaterthanorequalto2000 ppm,whicheveris the more ' restrictive.

SURVEILLANCE REOUIREMENTS 4.9.1.1 The more restrictive of the above two reactivity conditions shall be

, determined prior to:

a. Removing or unbolting the reactor vessel nead, anc
b. Withdrawal of any full-length control rod in excess of 3 feet from -

.. its fully inserted position within tne reactor vessel.

4.9.1.2 The baron concentration of the Reactor Cocian- System and the refueling canal shall be determined by chemical analysis at least once per 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />.

A D0[

4.9.1.3 Valvehhi-._.C.}/.$'e: t:0 c::: ;;..;Qsha11deverifiedclosed and secured in position by mechanical stops or by rem 6 val of air or electrical power at least once per 31 days.

"The reactor shall be maintained in MODE 6 whenever fuel is in the reactor vessel with the vessel head closure bolts less than fully tensioned or with the head removed.

MILLSTONE - UNIT 3 3/4 9-1

F' ,

ADDITIONAL REVIEW REQUIRED item: Reactor Trip System Instrumentation Setpoints and Engineering Safety Features Actuation System Instrumentation Trip Setpoints.

Provide setpoints for T.tble 2.2-1 and Table 3.3-4.

NNECO's Response:

Revised Table 2.2- 1 and Table 3.3-4, using the Westinghouse setpoint methodology, is attached.

e h

PROOF & D"/IEW COPY As3 16 153:

SAFETY LIMITS AND LIMITING SAFETY SYSTEM SETTINGS 2.2 LIMITING SAFETY SYSTEM SETTINGS REACTOR TRIP SYSTEM INSTRUMENTATION SETPOINTS 2.2.1 The Reactor Trip System Instrumentation and Interlock Setpoints shall be set consistent with the Trip Setpoint values shown in Table 2.2-1.

APPLICABILITY: As shown for each channel in Table 3.3-1.

ACTION:

a. With a Reactor Trip System Instrumentation or Interlock Setpoint less conservative than the value shown in the Trip Setpoint column but more conservative than the value shown in the Allowable Value

__ column of Table 2.2-1, adjust the Setpoint consistent with the Trip Setpoint value.

b. With the Reactor Trip System Instrumentation or Interlock Setpoint less conservative than the value shown in the Allowable Values column of Table 2.2-1, either:
1. Adjust the Setpoint consistent with the Trip Setpoint value of Iable 2.2-1 and determine within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> that Equation 2.2-1 --

was satisfied for the affected channel, or

2. Declare the channel inoperable and apply the applicable ACTION statement requirement of Specification 3.3.1 until the channel is restored to OPERABLE status with its Setpoint adjusted consistent with the Trip Setpoint value. ,

Equation 2.2-1 Z + R + 5 < TA Where:

2 = The value from Column 2 of Table 2.2-1 for the affected channel, R = The "as measured" value (in percent span) of rack error for the affectec channel, S = Either the "as measured" value (in percent span) of the sensor error, or the value from Column S (Sensor Error) of Table 2.2-1 for the affected channe*,, and TA = The value from Column TA (Total Allowance) of Table 2.2-1 for the affected channel.

MILLSTONE - UNIT 3 2-4

I l )

TABLE 2.2-1 3 REACTOR IRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS F.

u g SENSOR z TOTAL ERROR

]' IUNCTIONAL UNIT ALLOWANCE (TA) Z (S) TRIP SETPOINT ALLOWABLE VALUE e 1. Manual Reactor Trip N.A. N.A. N.A. N.A. N.A.

J's

^

" 2. Power Range, Neutron Flux

a. liigh Setpoint 7.5 4.56 0 < 109% of RTP** < 111.1% of RTP**
b. Low Setpoint 8.3 4.56 0 1 25% of RTP** 5 27.1% of RTP**
3. Power Range, Neutron Flux, 1.6 0.5 0 < 5% of RTP** with liigh Positive Rate < 6.3% of RTP** with a time constant a time constant -

> 2 seconds _

> @econds

4. Power Range, Neutron Flux, 1.6 0.5 0 < 5% of RTP** with liigh Negative Rate < 6.3% of RTP** with a time constant a time constant 1 2 seconds 2 20teconds
5. Intermediate Range,. 17.0 8.41 0 Neutron Flux 5 25% of RTP** $ 30.9% of RTP**

l 6. Source Range, Neutron Ilux 17.0 10.01 O- $ 105 cps 5 1.4 x 105 cps

7. Overtemperature AT(Ntoor) 3 1 +l-l 8.3 5.9 4-6 See Note 1 See Note 2 (N-1 loop) 12 0 5-9 1.l + 1 1 Sec.Mdc1 Su Moh. L 1

l

8. Overpower AT 4.8 1.43 (ICIS See Note 3 See Note 4

, 0 11

9. Pressurizer Pressure-Low 5.0 1.77 3.3 1 1885 psig 1 1875 psig
10. Pressurizer Pressure-High 5.0 1.77 3.3 $ 2370 psig :o l

-< 2380 psig o r,

C.

o

11. Pressurizer Water Level-liigh 71 8.0 5.13 2.7 $ 89% of instrument i 90.7% of instrument u p span span

[x

12. Reactor Coolant flow-Low 2.5 2.12 0.8 3 90% of loop design flow
  • 1 89.7% of loop @2 design flow * *k
  • Loop design flow = D',,700] :,,_ SVfGoo 3pra C N loo r operv.4*ew)j 99,60o 3pn C.R-1 loop opevdi*w) Qo
    • RTP = RATED TilERMAL POWER t - - _ . _ ..A

. o m8-q gSn j 2 g-4

.l, pt. _ o Es w

o rt E rn U ae (

L A

V nm4 f r -

u g

ot i n E

L B

%n s

n s p

e p

ji  % o A

W

^

.eg 6 * ]

f O St J L La n" A.

. 4 9 atP .

L [ aP [ A.

A [rS N 1 1 > N w

o rt rn ae T

N nm5 u S I f r - g T O ot i n F N

I O

P T

E

%n s

n  %

s p

o e

p OT I P S 9i 8 0] T N

T E P

.e 0 8 6Yy P A .

C 2 gn . 7 . I S I 2 na 9 E P

R [ ap A. 5 [ 8 fg l A. C I

L P -

I T 1rs N 1 [ > N E R R R P -

) T OR ] A d

e SO 5 5 . . . .

G E N NR) u O ERS i 7 A. A. A. A. Nl n I SE( [l - N 0 N N N I

i l

i T t

n o

A T

N ,

]

! p HM-E O -

C

(

E M 7 .S -

5

)R 1 R U

Z 2 8

{1 A.

N 0

. A.

N A.

N A.

N NF E

2 T

S P N 2

N I ) OO I A E T

E L

M T n E (

B A

T S E GM AR T Y C P S N O A ] 5 F P

I LW AO 0 5 1 1 N R TL ^

i

. . . 1 1

I T OL 2 0 A. f. A. A. A.

R TA [ 2 N 3 N N N 0

1 C

A E e R r r o u t s c s e t R m a e v u E r r e r l p W e a R P a n O t

a l

V I P A - l W g i p n L s O o o A rw oo n

t cp em d t

S i

M i t R tL n pu p i c E a- r SP i u ee e l T rw a r l nr jF i

T I

N eo nL W tt f n T F iu nS U e aa e bs IE D l

w ro E L

Gl e

a r

hl n o ul ym T S o i L TC t o A A

N mv ae e o b er R .'

O n

e wC r f f eL o u . . a =

I T

t S

G L T a b S C P T

N . . . . . R U 3 4 5 6 7

  • F 1 1 1 1 1
  • x?GgR,EQi .

uS

l

,3 TABLE 2.2-1 (Continued)

G REACTOR TRIP SYSTEM INSTRUMENTATION TRIP SETPOINTS Y

i SENSOR TOTAL ERROR FUNCTIONAL UNIT '

ALLOWANCE (TA) Z (S) TRIP SETPOINT i 18. Reactor Trip System ALLOWABLE VALUE 1 Interlocks t

a. Intermediate Range N.A.

Neutron Flux, P-6 N.A. N.A. 3 1 x 10 80 mp 3 x1088[ amp

b. Low Power Reactor Trips Block, P-7
1) P-10 input N.A. N.A. N.A. $ 10 of RTP** $[  % of RTP**
2) P-13 input N.A. N.A.

l N N.A. <

ONRTP** Turbine <[

Tmpulse Pressure  % RTP** Turbine 3 Equivalent Impulse Pressure Equivalent

c. Power Range Neutron 37 5 sq.4 7 N .A. N.A. N.A. <[M ]% of RTP**
    • <[f4+f% of RTP" gy ..p ) M A. N.A. ft. A . g37 5 */. 4 RT
d. Power Range Neutron 4 h C *E A N. A. N.A. N.A.

l Flux, P-9 $[S&]% of RTP** $[.%Lt]% of RTP**

51 53.l

e. Power Range Neutron N.A.

Flux, P-10 N.A. N.A of RTP**

3(10 2[N]%ofRTP**

I

)

' f. TbrbineImpulseChamber N.A.

Pressure, P-13 N.A. N.A. $fl0 ImpulseRTP** Turbine $[

Pressure  % RTP** Turbine Impulse Pressure Equivalent Equivalent @

19. Reactor Trip Breakers N.A.

., g N. A. N. A N.A. c: n N.A.

20. Automatic Trip and Interlock N.A. N.A.

] wu Logic N.A. N.A. N.A.

tv, 'A J g Q 3; .,j

    • RIP = RATED TliERMAL POWER Tills PAGE OPEl PEH91r1G RECEIPT OF INFORMATION FROIA WE APPLICANT h

.we -.e =

I .

i TABLE 2.2-1 (Eontinued) l :c .

P IABLE NOTAIJONS G NOlE 1: DVERitMPERAIURE Ai AI g , (g , ,,5) $ AT, {K, - K 2 hl - .[T (y f g) - I'] + K3 (P - P') - f (AI)l

=

M Where: AT =

Measured AT by RID Manifdid Instrumentation; 1e 1 5 y , ,lg =

lead-lag compensator on measared AT; 13 12 =

Time constants utilized in lead-lag compensator for AT,1 = s, 12= 3 5; 1 ,

=

y, 5 Lag compensator on measured AT; ta 9

] =

lime constants utilizsyl in the lag compensator for AT,1 3= [#] s; AI, =

Indicated AT at RATED lilERMAL POWER; Ks =

LL asTi 10eo CM l**t *ttnN*)s l*

  • l * (^'~l '**f *W*k K2 -

' " ^ ! ? '" ' . - O.OL313

- -h =

lhe lunction generated by the lead-lag compensator for T dynamtc compensation; avg r,rs =

Iime constants utilized in the lead-lag compensator for T 3N,

  • =

1 5 =J4%; avg, 1 4 I =

Average temperature, *f; g

=

y

, g , gg -

lag compensator on measured T  ; C g if,

') po is ,= o -

.y line constant utilized in the measured 1,,g lag compensator, rc, = [+] s ;

gi

"' e q g

11115 PAGE OPEN Pa! I' JE EIPT OF G INf0!hilON IRoa, t..t o 4

. . - - - .-  ?' rl'IlCANI

1 l .

a TABLE 2.2-1 (Continued) '

c

?:

TABLE NOTATIONS (Continued)

} NOTE 1: (Continued) u

$t7 I M T' 5 [Sa&97'F (Nesinal T,yg at RATED TilERMAL POWER);

e K3 =

I i~. [0. ."^^'Tf;- ':; o o o C O 3 l ~'

u P = Pressurizerpressure, psi la; P' = 2.2 3 5 Psi S r r p ": (Nominal RCS operating pressure);

5 =

Laplace transform operator, s 8; and f (AI) is a function of the indicated dif ference between top and bottom detectors of the

  • power-range neutron ion chambers; with gains to be selected based on measured instrument response during plant startup tests such that:

le (1) For q -

g e,

t b between -[goJg]% and + [ 5 , f (AI) = 0, where bq and o are percent RATED TifER POWER in the top and bottom halves of the core respectively, and q .+ q b is total TilERHAL POWER in percent of RATED TIIERMAL POWER; 30 (2) For each percent that the magnitude of q - g exceeds b -[Wr]%, the AT Trip Setpoint. shall be automatically reduced by [14ti]% of its value at RATED TIIERHAL POWER; and

% to (3) For each percent that the magnitude of q ~

"b exceeds +[?1%, the AT Trip Setpoint shall t

be automatically reduced by [T-@5J% of its value at RATED TilERHAL POWER.

2.-
  • HOTE 2:

The channel's maximise Trip Setpoint shall not exceed its computed Trip Setpoint by more than C .^T-.

. 2-1 pesec.w k AT 5 pow ( A toop o%hb 4-\ */. AT spew (9-L loop of c.wh) 'E O

u m G

n 11115 PAGE OPEtt PFNolHG RECEIPT OF Y, LU INf0RhilON FROM IllE APPLICANT yQ o

O

_ l

r

, PRC0F & RE'ilEW COPY 2 10 l=..e, W

~ @

m

  • r0 .

L e

o o=e

~ k u O E e r0 m

..C=

c >.

m . A t t0 "O .

>= @ C 6 C > 4 e

  • U > m fI '

@ #5 >-

mm T P==

m L L L C ke C C -

P=e , L c 6 o

~e O ee ww T a @

c #5 m

>== #5 m C h=d C e W W 6

~ # 3 U 6 e

"m y Qw2 u a

>= e e = w m #O - e, "O mm e s -

G W e o W =**

^ 3 @

ob G a G.) g' "O C ee @

>=

0 f5 6 .J .

G =

g 7 3 *J *=9 * @ L  %

f5 W ,

.J C

u w

O ww M

G re

.J C

Y$

C -

U mm h .=

v1 E M m

y .c T

t, g,

w .R M .e. w . . . . .

  • =
  • C @

8 .* M p=4 p=0 M e  % . . =- ../

g N 4 m

  • smme smme M f6 ed *ess M M
  • >= wt & W & W W 80 a= , 4 a

N W a a a a W W b b *= @ W i w a a G e a a L W

- W . 4 4 4 4 4 **

nD =.4 M C C C L* C t*=

& . h_

>=

so w w = .. .-

L C

  • oJ C

C

=

C

  • =

,e

,4 1

, -Wu C C fe u.d.a

=c 3 = , m -

2 8

._8 ._8 8 8 8 *- o o_

=

pb ."*,3u "v" = C C

C U

8 ._5

- y. .

- 4 4 4 4 4 4 * -

2 4 4 = =

vt c <

c S. e. S b %e at . I .t

.=

- w - <

.c mm m,, 11 ll If Il il it 11 il il ll ll 11 w

- . mm m m m

  • =.

a N N r1 m e se ne se ww ne e e. w

> ==e mm a=

e . C w . .

- mm

= a= , . > w

< a N

< M - k. -. .e.i < w w e e

>. me m

See eue w- w E

t-LJ E

MILLSTONE - UNIT 3 ,

2-10

__M

Illf'1 eo 8n- p

GN y

s l y c>c14' 1

,:m *

, A n 2

A I I 1

e R

[

5 1

e l NM I

O 2 O t t t l l' N r o a ,

o a R E o N - n N h NF L E f o s B

A L n ,it n .

E N

B F i i I t P T A I

/ d T a t d A i n GO l 9 e d n e o l

]^ l n

2^ i t e e i n l a

p E A 1"

o' f

e a

c r m

a f e r t

e G A M R

S

- d i t d o , P O

e. " .

l mn s f p o [" A s

I i A s

0 i

T r

S F H N l I

- l

= = = = = a s n t _

a

~

i _

x ap

)

t a ms s _

( 'f s " 2 ' "

r K

eA

)

I 1 5 f l d n

- e u

n h n

a -

i t

n c Y o e 3 h

_ C Tl

(

3 4 E E T T

- O N

O N

1 ' ..

? C 1 @' ' C=*1 '

c 7U ' . ?-  :

i 1 1 TABLE 3.3-4 3

p

: ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION TRIP SETPOINTS

, E r*

i l * . SENSOR TOTAL g FtMCTIONAL (MIT .

ALLOWANCE (TA) Z ERROR (S) TRIP SETPOINT U l ALLOWABLE VALUE

, 1. Safety injection (Reactor Trip, I l

Feetkater Isolation, esseIsolationg Control 36]A.g narL useses Generators, '--' 8-- -*

r^^ ' ' T r wgy hk.6 04)

_ - i .., and Essential Service Water)

a. Manual Initiation N.A. N.A. N.A. N.A. N.A. -
b. Automatic Actuation logic N.A. N.A. N.A. N.A. N.A.

w l g c. Containrent Pressure--High 1 3.3 1.01 1.75 $ 3.0 psig i 3.8 psig

d. Pressurizer Pressure--Iow 16.5 -

13.67 3.3 $ 1877.3,psig i 1870.2 psig

e. Steam Line Pressure--tow 17.7 15.31 2.2 5 658.6 psig% $ 644.9 psig a
2. Containment Spray (CDA)
a. Manual InitiaLion N.A. N.A. N.A. N.A. N.A.
b. Automatic Actuation Logic N.A. N.A. N.A. N.A. H.A.

and Actuation Relays

  • o

_o

c. Containment Pressure--IIIgtr3 3.3 1.01 f) 1.75 5 8.0 psig $ 8.8 psig Q

$ C=

,y 1 .

.1 I *3 l

eJ B

( ~)

  • 3 3

~<

l n

I '

I TABLE 3.3-4 (Continued) -

i d l p ENGIFEERED SAIEIY FEATURES ACTUATION SYSTEM INSTRUMENTATION TRIP SETPOINTS O

o z

SENSOR l

  • TOTAL ERROR i

y FUNCTIONAL UNIT All0WANCE (TA) Z (S) TRIP SETPOINT ALLOWABLE VALUE

% i m 3. Containment Isolation I

a. Phase "A" Isolation
1) Hanual Initiation N.A. N.A. N.A. N.A. N.A.
2) Automatic Actuation Logic N.A. N.A. N.A. N.A. N.A. .

and Actuation Relays .

m 3) Safety Injection See Item 1. above for all Safety Injection Trip Setpoints and Allowable Values.

D m h. Phase "B" Isolation S

m 1) Hanual Initiation N.A. N. A. N.A. N.A. N.A.

2) Autcmatic Actuation N.A. N.A. N.A. N.A. N.A.

Logic and Actuation Relays -

o x

3) Containment Pressure-- 3.3 a 1.01 1.75 5 8.0 psig $ 8.8 psig u o liigh-3 C W
c. PthrgeandExhaustIsolation 5 y
1) Hanual Infllallon N.A. N.A. N.A. N.A. N.A. ,

s

2) Automatic Actuation N.A. N.A. N.A. N.A. N.A. @

Logic and Actuation y Relays

. %hw4 Isotabw Phc.se M McWow &

3) sifety Injection SeeItem1.aboveforallkS:':i;'j:::L ' u naint< and a',':-:i':

"'-g cad qd-awk I ..

L h I

f .

r~

. 7 l

i TABLE 3.3-4 (Continued) ~

x

ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION TRIP SETPOINIS G

w o

E . SENSOR

. TOTAL ERROR g

FUNCTIONAL UNIT ALLCWANCE (TA) 2 (5) 1 RIP SETPOINT At10WABIE VALUE u

4. Steaa Line Isolation I
a. Manual Initiation N.A. N.A. N.A. N.A. N.A.

l

b. Automatic Actuation Logic N.A. N.A. N.A. N.A. N.A.

l and Actuation Relays t

l c. Containment Pressure--High-2 3.3 1.01 1.75 5 3.0 psig 5 3.8 psig J

d. Steam Line Pressure--Low 17.7 15.31 2.2 1 658.6 psigY $ 644.9 psig*

l u I N

e. Steam Line Pressure - 5.0 0.5 0 $ 100 ps! [ $ 122.7 psi D 4 Negative Rate--liigh tdsk h g M m c. g M me. Cowshw %-
5. Turbine Trip and Feedwater C*"' # N db 50 88 C-j . Isolation l a. Automatic Actuation Logic N.A. N.A. H.A. N.A. N.A.

! Actuation Relays

b. Steam Generator Water 3.7 2.33 1.75 5 82.0% of l' 5 82.8% of narrow

, Level--High-High (P-14) narrow range range instrument l instrument span. -a l '

span. jj gQ

. m um WO f Lib

$ 9')

$ 3

u. =

L"2

'

  • O i .

I.k y, _ ., _ . , . , ,

T S PAGE OPEN PENDING RECEIPT OF MN

~

TABLE 3.3-4 (Continued) .

E '

p .

ENGINEERED SAFETY FEATURES ACTUATION SYSTEM INSTRUMENTATION T't!P SETPOINTS O

L E N.m -

SENSOR .

g' N ,FUh 7t. T NAL UNIT TOTAL ERROR

.~ .

. ALLOWANCE (TA) Z (S) TRIP SETPOINT ALLOWABLE VALUE

~

, 6. Auxiliary Feed ater .

l

a. Manual Initiation N.A. N.A. N.A. N.A. N.A.
b. Automatic Actuation Logic N.A. N.A. H.A. N.A. N.A.

and Actuation Relays

c. Steam Generator Water so.( tt 86 S ' t .;5 T5 5 tt. 4

[ 3 9 -11 ] [27.10] [+-6] > [22.2]% of > [M-+]% of narrow Level--Low-tow t.sk 4 narrow range range instrument W .

en* W - M e A m Pi instrument span. -

1 E- s b b T Lv k h a.- D a.* p.7 l9 $$ f MW8W WN

, p%9 la 7f" gn.llP, 25 5 o F ngw& .w 11.( e

gg
d. Safety Injection See Item 1. above for all Safety Injection Trip Setpotots a o llowable values.

g% m "Ae S e4 % hsML /nsbQ  %

e. Loss-of-Offsite Per M. " . "^

M.^.

shv W o6,v- W w h y - ['???!Y

- ['f??)Y _ .

f. Trip of All Main Feedwater N. A. N.Ac N.A. N.A. N.A.

Pumps

7. Control Building Isolation -
a. 'tanual 4 Actuation N.A. N.A. N.A. N.A. N.A.

I

,,Q c: rt

b. Mant:a1 Safety Injection N.A. N.A. N.A. H.A. N.A. "" O=

Actuation

  • mT'l
c. Automatic Actuation Logic h.A. N.A. N.A. N.A.

~s and Actuation Relays N.A. *y4 18

~

d. Containment Pressure--liigh 1 o 3.3 1.01 1.75 5 3.0 psig 5 3.8 psig C M

Q

?

r I .

TAJ 3 *Dhe*b " N I TABLE 3.3-4 (Continued) lI ENGINEERED SAFETY FEATURES ACTUATION SYSTEN INSTRL#tENTATION TRIP SETPOINTS M

E

" SENSOR TOTAL ERROR TUNCTIONAL UNIT ALLOWANCE (TA) Z (5) TRIP SETPOINT ALLOWABLE VALUE 5

-e 8. Loss of Power w [

a. 4 kV Bus Undervoltage N.A. N.A. N.A. $ [5760] $ [5652] volts l

h (Loss of VoltaDe) volts with with a $ [0.275]

l , a $ [0.25] second time

. second time delay.

g delay. ,

\ 4 kV Bus Undervoltage N.A.

b. N.A. N.A. $ [6576] volts 5 [6511] volts l

(Grid Degraded Voltage) with a $ [3.3] with a $ [3.3]

w second time second time l D delay. delay.

I w 0

9. Engineered Safety features Actuation System Interlocks M8t I
a. Pressurizer Pressure, P-11 N.A. N.A. M.A. $ 1985 psig 5 [39967 psig 5'L49 ?
b. Low-Low T,,g. P-12 N.A. N.A. N.A. 1(553(*F 1 [Fae-9]*F & 6 l
c. Reactor Trip, P-4 N.A. N.A. N.A. N.A. N.A. ,
d. i Steam Generator Water Level, See Item 5. above for all Steam Generator Water Level Trip Setpoints P-14 and Allowable Values.

A l

Il \}

us. ,

c., as 11115 PAGE ~ PE'! "FNntMG RECEIPT OF

- r i; $l e.

INFORMnflON FRUM IllE APPLICANT

'" w,,,

o O

'O

i .

l VNQt & RE'nEW COPY AUG 161355 TABLE 3.3-4 (Continuec)

. TABLE NOTATIONS l

  • Time const nts utilized in the p ad-lag controller for Steam Line Pressure-Low l are ty1 50fseconds'and12 li5fseconds. CHANNEL CALIBRATION shall ensure that these time constants are adjusted to these values.

The time constant utilizea in une rate-tag controller for Steam Line eressu Negative Rate-High is less than or equal to (50] seconds. CHANNEL CALIBRATION l Shall ensure that this time constant is adjusted to this value.

l t

l l -

THIS PAGE OPEN .o?N 'NG RECE!PT OF INFORMATION FROM InE APPLICANT l

l l

i

!. . c I

i MILLSTONE - UNIT 3 3/4 3-32

I .

ADDITIONAL REVIEW REQUIRED ltem: 3.3.3.5, Remote Shutdown Instrumentation Submit Table 3.3-9, Remote Shutdown System.

NNECO's Response:

Table 3.3-9 for Millstone Unit No. 3 is attached.

r -

TABLE 3.3-9 -

REMOTE SHUTDOWN SYSTEM MINIMUM CHANNELS INSTRUMENT _ LEADOUT LOCATION NO. CHANNELS OPERABLE

1. REACTOR TRIP BREAKER l INDICATION Reactor Trip Switchgear 1/ trip breaker 1/ trip breaker i 2. PRESSURIZER PRESSURE Auxiliary Shutdown Panel 2 1
3. PRESSURIZER LEVEL Auxiliary Shutdown Panel 2 1 l 4. STEAM GENERATOR PRESSURE Auxiliary Shutdown Panel 2/ steam generator 1/ steam generator
3. STEAM GENERATOR LEVEL Auxiliary Shutdown Panel 2/ steam generator 1/ steam generator
6. AUXILIARY FEEDWATER FLOW RATE Auxiliary Shutdown Panel 1/ steam generator 1/ steam generator
7. LOOP HOT LEG TEMPERATURF, Auxjjjary Shutdown Panel 1/ loop 1/ loop l

l 3. LOOP COLD LEG TEMPEARTURE Auxiliary Shutdown Panel 1/ loop 1/ loop l 9. RCS PRESSURE (WIDE RANGE) Auxiliary Shutdown Panel 2

10. DTST LEVEL Auxiliary Shutdown Panel 2
11. RWST LEVEL Auxiliary Shutdown Panel 2
12. CONTAINMENT PRESSURE Auxiliary Shutdown Panel 2
13. EMERGENCY BUS VOLTAGE Auxiliary Shutdown Panet 1/ train 1/ train
14. SOURCE RANGE COUNT RATE Auxiliary Shutdown Panel 2
15. INTERMEDIATE RANGE AMPS Auxiliary Shutdown Panel 2
16. BORIC ACID TANK LEVEL Auxiliary Shutdown Panel 2/ tank

._ _ ..m.-~ - . _ _ - . _ .

_-._ m . - _ m __ _ _ . - . - _ . _ _ _ . _ _ _ . - __ _ . _ -__ , _ _ . _ _ _ _ . -

TABLE 3.3-9 (Continued) e <

REMOTE SHUT _DO.WN SYSTEM CONTROL CIRCUITS SWITCH LOCATION t t

1. AUXILIARY FEEDWATER FLOW CONTROL FWA*HV31A Auxiliary Shutdown Panel i
2. AUXILIARY FEEDWATER FLOW CONTROL FWA*HV31B Auxiliary Shutdown Panel
3. AUXILIARY FEEDWATER FLOW CONTROL FWA*HV31C Auxiliary Shutdown Panel -
4. AUXILIARY FEEDWATER FLOW CONTROL FWA*HV31D Auxiliary Shutdown Panel
5. AUXILIARY FEEDWATER FLOW CONTROL FWA*HV32A Auxiliary Shutdown Panel [
6. AUXILIARY FEEDWATER FLOW CONTROL FWA*HV32B Auxiliary Shutdown Panel
7. AUX!LIARY FEEDWATER FLOW CONTROL FWA*HV32C Auxiliary Shutdown Panel
3. AUXILIARY FEEDWATER FLOW CONTROL FWA*HV32D Auxiliary Shutdown Panel
9. AUXILIARY FEEDWATER FLOW CONTROL FWA*HV36A Auxiliary Shutdown Panel
10. AUXILIARY FEEDWATER FLOW CONTROL FWA*HV36B Auxiliary Shutdown Panel
11. AUXILIARY FEEDWATER FLOW CONTROL FWA*HV36C Auxiliary Shutdown Panel
12. AUXILIARY FEEDWATER FLOW CONTROL FWA*HV36D Auxiliary Shutdown Panel -
13. REACTOR VESSEL TO PRT CONTROL RCS*HCV442A Auxiliary Shutdown Panel I
14. REACTOR VESSEL TO PRT CONTROL RCS*HCV442B Auxiliary Shutdown Panel l
15. CHARGING HEADER FLCW CONTROL CHS*HCVl90A Auxiliary Shutdown Panel f
16. CHARGING HEADER FLOW CONTROL CHS*HCVl9CB Auxiliary Shutdown Panel
17. EXCESS LETDOWN FLOW CONTROL CHS*HCV123 Auxiliary Shutdown Panel l
13. CHARGING FLOW CONTROL CHS*FCV121 Auxiliary Shutdown Panel
19. LOW PRESSURE LETDOWN CONTROL CHS*PCV131 Auxiliary Shutdown Panel 1

~

l l i TABLE 3.3-9 (Continued)

REMOTE SHUTDOWN SYSTEM TRANSFER SWITCHES SWITCH LOCATION

1. AUXILIARY FEEDWATER ISOLATION FWA*MOV35A Transfer Switch Panel
2. AUXILIARY FEEDWATER ISOLATION FWA*MOV35B Transfer Switch Panel
3. AUXILIARY FEEDWATER ISOLATION FWA*MOV35C Transfer Switch Panel
4. AUXILIARY FEEDWATER ISOLATION FWA*MOV35D Transfer Switch Panel
5. AUXILIARY FEEDWATER PUMP AH. SUCTION FWA*AOV23A Transfer Switch Panel i
6. AUXILIARY FEEDWATER PUMP AH. SUCTION FWA*AOV23B Transfer Switch Panel
7. AUXILIARY FEEDWATER/DWST ISOLATION FWA*AOV61A Transfer Switch Panel l
3. AUXILIARY FEEDWATER/DWST ISOLATION FWA*AVO61B Transfer Switch Panel
9. AUXILIARY FEEDWATER CROSS CONNECT FWA*AOV62A Transfer Switch Panel
10. AUXILIARY FEEDWATER CROSS CONNECT FWA*AOV62B Transfer Switch Panel
11. TURBINE DRIVEN PUMP STEAM SUPPLY MSS *AOV31 A Transfer Switch Panel l

l 12. TURBINE DRIVEN PUMP STEAM SUPPLY MSS *AOV31B Transfer Switch Panel

13. TURBINE DRIVEN PUMP STEAM SUPPLY MSS *AOV31C Transfer Switch Panel l
14. REACTOR VESSEL HEAD VENT ISOLATION RCS*SV8095A Transfer Switch Panel
15. REACTOR VESSEL HEAD VENT ISOLATION RCS*SV3095B Transfer Switch Panel
16. REACTOR VESSEL HEAD VENT ISOLATION RCS*SV3096A Transfer Switch Panel I
17. REACTOR VESSEL HEAD VENT ISOLATION RCS*SV8096B Transfer Switch Panel
13. REACTOR VESSEL TO EXCESS LETDOWN RCS*MV8093 Transfer Switch Panel
19. PRESSURIZER LEVEL CONTROL RCS*LCV459 Transfer Switch Panel
20. PRESSURIZER LEVEL CONTROL RCS*LCV460 Transfer Switch Panel
21. LETDOWN ORIFICE ISOLATION CHS*AV3149A Transfer Switch Panel l.

l

i

{

1 l

l TABLE 3.3-9 (Continued) l REMOTE SHUTDOWN SYSTEM TRANSFER SWITCHES SWITCH LOCATION

22. LETDOWN ORIFICE ISOLATION CHS*AV8149B Transfer Switch Panel
23. LETDOWN ORIFICE ISOLATION CHS*AVS149C Transfer Switch Panel
24. VOLUME CONTROL TANK OUTLET ISOLATION CHS*LCVil2B Transfer Switch Panel
25. VOLUME CONTROL TANK OUTLET ISOLATION CHS*LCVil2C Transfer Switch Panel
26. RWST TO CHS PUMP SUCTION CHS*LCVil2D Transfer Switch Panel
27. RTST TO CHS PUMP SUCTION CHS*LCV112E Transfer Switch Panel
23. CHARGING TO RCS ISOLATION CHS*AV3146 Transfer Switch Panel
29. CHARGING TO RCS ISOLATION CHS*AVS147 Transfer Switch Panel
30. GORIC ACID GRAVITY FEED CHS*MV3507A Transfer Switch Panel
31. BORIC ACID GRAVITY FEED CHS*M/8507B Transfer Switch Panel
32. CHARGING HEADER ISOLATION BYPASS CHS*MV8116 Transfer Switch Panel
33. PRESSURIZER HEATER BACKUP RCS*HI A (GROUP A) Transfer Switch Panel
34. PRESSURIZER HEATER BACKUP RCS*HIB (GROUP B) Transfer Switch Panel

_4_

L

, ADDITIONAL REVIEW REQUIRED l

Item 3.3.3.3, Seismic Instrumentation Provide Table > 3.3-7, Seismic Monitoring Instrumentation and Table

!- 4.3-4. Seismic Monitoring instrumentation Surveillance j Requirements.

NNECO's Response:

i Revised Table 3.3-7 and Table 4.3-4 are attached.

l f

h 3

1

____.a

r

  • %0f &n WITU X.~'

AUG is 1985 TABLE 3.3-7 1

SEISMIC MONITORING INSTRUMENTATION MINIMUM MEASUREMENT INSTRUMENTS INSTRUMENTS AND SENSOR LOCATIONS RANGE OPERABLE 1.TriaxialTime-HistoryAccelerograpps

a. NBE20A Containment Mat. ( ') '

2 Ig (5v/g) 'l

b. N8E20B Containment Wall (40'6") i Ig (Sv/g) 1
c. NBE21 Emer. Generator Enclosure loc.k4
  • Ig (Sv/g) I h i'.dir.- E 1 C o^^ '

on me,Y Iw h(ej, de) oil vasik(9;d) .

d. NBE22 Aux. Bldg. F-Line Wall Near 2 Ig (Sv/g) 1

_ The Charging Pumps cooling Surge Tank (46'6")

2. Triaxial Peak Accelerographs
a. P/A1 Containment Safety Injection 2 2g 1

. Accum. Tank (- 9' 7")

b. P/A2 Safety Injection Accum. Disch. 2 Ig 1 Line (-22'10")
c. P/A3 Aux. Bldg. Charging Pumps i Ig 1 Cooling Surge Tank (94/ g # )

, 3. Triaxial Seismic Switches

a. Trigger Horizontal (Cenbl Room) .Olg la
b. Trigger Vertical (tow hm) Ruom ) .006g 1*
c. Switch Horizontal (,tm bl R.c om) .09g 1*
d. Switch Vertical [. Cam b el b k I .06g 1*
4. Triaxial Response-Spectrum Recorders a.RSA-50SpectrumAnalyzer((vwbl 1-32 Hz 1*

p.eg n. ) Peak Acceleration i in Gs (Max of Ig)

b. Self-contained Recorder SG 0-30 Hz at 2 2g 1 l Support ($1'4")

j "With reactor control room indications.

P' LSTONE - UNIT 3 3/4 3-49

PROOF & EFEh CC?

. AUG 161935 TABLE 4.3-4 SEISMIC MONITORING INSTRUMENTATION SURVEILLANCE RE0VIREMENTS ANALOG CHANNEL CHANNEL CHANNEL OPERATIONAL INSTRUMENTS AND SENSOR LOCATIONS CHECK CALIBRATION TEST

1. Triaxial Time-History Accelerographs
a. NBE20A Containment Mat M R SA
b. NBE208 Containment Wall M R SA
c. NBE21 Emer. Generator Enclosure M R SA Building Wall .
d. NBE22 Aux. Bldg. F-Line Wall Near M R SA

__ The Charging Pumps Cooling Surge Tank

2. Triaxial Peak Accelerographs
a. P/A1 Containment Safety Injection N.A. R N.A.

Accum. Tank

. b. P/A2 Safety Injection Accum. Disch. N. A. R N.A.

Line

c. P/A3 Aux. Bldg. Charging Pumps N.A. R N.A.

Cooling Surge Tank

3. Triaxial Seismic Switches
a. Trigger Horizontal
b. Trigger Vertical
c. Switch Horizontal
d. Switch Vertical
4. Triaxial Response-Spectru= Recorcers
a. RSA-50 Spectrum Analyzer
b. Self-Contained Recorder SG Support N.A. R

() l\/ A "With reactor control room indications. l MILLSTONE - UNIT 3 3/4 3-50}}