ML20064A807

From kanterella
Jump to navigation Jump to search
Forwards Core Operating Limits Rept for Four & Three Loop Operation,Per Tech Spec 6.9.1.6.d
ML20064A807
Person / Time
Site: Millstone Dominion icon.png
Issue date: 09/11/1990
From: Scace S
NORTHEAST NUCLEAR ENERGY CO., NORTHEAST UTILITIES
To:
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
References
MP-90-996, NUDOCS 9009280119
Download: ML20064A807 (15)


Text

,y -

8 -[.' I #

~ h. I lh: O '

  • g; r d

2 '

General Offices

  • Selden street.' Berlin, Connecticut r sw u=cem uo.e eesa cw.=

j >

l atin= ma.c msns ee c cm." -

P.O. BOX 270 . - .

p -

i g ', S omme wSYu'., . cw -

Q. HARTFORD. CONNECTICUT 061410270 i (203) 665-$000 -

] -

,3 Septemb'er 11. 1990. .

y. 'MP-90-996' .!

't

'i

, 'i U.SfNuclearRegul'atoryCommission ..

l cDocument-Control! Desk: ' l

? Washington, D.C. 20555.

9., it E W '

Reference:

~ ~ DicilitpOperating License No. NPF-49 ,

, -Docket Eo. 50-423 '

~ Gentlemen:

g

= Millstone Nuclear Power Station Unit 3' c m Transmittal 'of CORE OPERATING ' LIMITS REPORT - (COLR) li LAmendment'50 to the Millstone 3 Technical Specifications issued June:13, 1990' H > (allowed implementation of a" CORE OPERATING LIMITS REPORT within 90 days, ni p t In:accordance with Millstone No. 3. Technical Specification 6.9.l'.6.d, the-(Northeast Nuclear Energy Company hereby-submits the CORE OPERATING LIMITS REPORT ~ b

  1. ;for the remainder of' Cycle 3 operation. This information addresses both four .

? :and three' loop operation. The information provided represents.no changes from 4

, ;the previouslyJissued Technical' Specifications, or Radial Peaking Factor Limit t Report: fc: Millstone 3, Cycle 3. ,

g.

LIf you have:any questions please contact David McDaniel at (203) 444-4389 -

j

directly. ,

. E!

j t

MX , very truly yours, t NOR'iHEAST NUCLEAR ENERGY COMPANY y

i3 7 e

," , I(LC&

' ' ' ^ St* *" S-0440t

.D rector, Millstone Station  ;

1 b' SES/DTH:cle

' cc:

T. T. Martin, Region I Administrator i t' W.~J..Raymond, Senior Resident Inspector, Millstone Unit Nos. 1, 2 and 3 i '

D; H. Jaffe, NRC Project Manager, Millstone Unit No. 3

?

o

.LhI , .=

P 9009200119 900911 M -

!, PDR. ADOCK 05000423 50 P PNV d [f(:

h m..

1< M,; L l_ _ _

)

y. . 3- --m ,

-o-

.. ~l s y

.r L; s -. .-.. .

i-

>5.4- ,

r

v. 2 L w

f! , 2u Docket-50-423 4

4 1

i '

,' Attachment I Millstone Unit No. 3

' Core Operating Limits Report oy P

.y -

-) ,

, 1:s -

s m

?

( .- b t.-

I

l. August 1990 4

l:

I t

4.;:I .'.C, ,

.x

, 1 MILLSTONE UNIT NO. 3 -'

CYCLE 3

+ CORE OPERATING LIMITS REPORT'  ;

4 1.0 CORE OPERATING LIMITS REPQBI 1

-This Core Operating Limits Report (COLR) for Mil.1 stone Unit' No. 3,

~

Cycle 3, has been preparad in accordance with the requirements of Techni - l 1

cal' Specification 6.9.1.6.- i

~

, ,, The Technical Specifications affected by this report are-listed below: }

n 4 3/4.1.1.3- Moderator Tem.ncrature Coefficient

- 3/4.1.3.5 Shutdown Rod-Insertion Limit t 3/4.1.3.6 Control Rod Insertion Limits (Four Loop and Three-Loop) g +

I!- 3/4.2.1.1 Axial Flux Difference--Four Loop

- Axial Flux Difference--Three Loop- a 3/4.2.1.2 3/4/2.2.1 Heat Flu'x Hot Channel Factor--Four Loop

- 3/4.2 2.2 Heat Flux Hot Channel Factor--Three Loop ,

-3/4.2.3.1 RCS - Flow. Rate - and Nuclear Enthalpy Rise Hot Channel -,

Factor--Four Loop ,

b 3/4.2.3.2 RCS -Flow Rate and Nuclear Enthalpy Rise Hot- Channel ll Factor--Three' Loop l

2.0 OPERATING LIMITS d ll -

h

' The cycle'-specific parameter limits for' the specifications listed in ,

l<< ' Section 1.0 are'_ presented in- the following subsections.. These limits -

= have< been developed using the NRC-approved methodologies specified ~in U

Technical. Specification 6.9.1.6.

- 2.1 Moderator Temocrature Coefficient (Soecification 3/4.1.1.3) ,

f" 2.1.1 The moderator temperature coefficient-(MTC) limits are: +

The BOL/AR0/0%-70% RTP--MTC shall ' be :less positive than.  !

+0.5 x 10 4 Ak/k/*F. Above :70% RTP the MTC limit. is . a

,, linear ramp to 0 Ak/k/*F at 100% RTP.

The . EOL/ARO/RTP--MTC - shall be less negative- than.

t:

L

-4.75 x 10 4 Ak/k/*F.

Page 1, Revision 0 I'

w , ,

t 4

v. . :.y . . - .
a 1

4 2.1.2 : The MTC surveillance limit is:

The 300 ppm /AR0/RTP-. MTC should be less negative than- or

' equal;to-4.0x108Ak/k/*F.

-Nhere:: BOL stands for beginning of cycle life ARO stands for all rods out HZP stands for hot zero power EOL stands for end of cycle life RTP stands for rated thermal power 2.2. Shutdown Rod Insertion-Limit (Soecification 3/4.1.3.5)' l The shutdown rods shall be fully withdrawn.

m 2.3 control Rod Insertion Limits (Soecification 3/4.1.3.6)

The control rod banks shall be limited in physical ~ insertion as shown .in Figure 1 for four-loop operation and Figure 2 for three- .

I.

loop' operation.

, 2.4 Axial Flux Difference--Four-looo Operation (Soecification 3/4.2.1.1)

H 2.4.1 The axial flux difference -(AFD) target band' is +5%, -5%-

for' core average accumulated burnup 5 3000 MWD /MTU.

2.4.2 Th'e AFD target band is +3%,'-12% for core average accumu-11ated burnup r 3000 MWD /MTV.

MWD /MTU stands for megawatt days / metric; ton of 1 Where:

initial uranium metal.

2.4.3L The AFD acceptable operation limits are provided in Figure 3.

2.5. Axial' Flux Difference--Three-loco Ooeration (Soecification 3/4.2.1.2)

2. 5 ~.1 - The:AFD target band is +5%, -5%.

2.5.2 The AFD : acceptable; operation limits are provided in Figure 4.

, -2.6 JHeat' Flux Hot Ch'annel Factor (Four Loops Operating)--F (Z) 0

-i (Specification 3/4.2.2.1)

~

p RTP Q

L ,Fg(Z) 1- *'K(Z)' for P > 0.5 i P-L; i Page 2, Revision 0 1

Py

.n-5 t

t R1 P -

Q F'(I)

O 5 *K(Z) for P 1 0.5

-- 0 . 5 '

s Themal Power

.Where:. P=

Rated Thermal Power 2.6.1 FhTg2.32 2.6.2 K(Z) is provided in-Figure 5.

2.6.3 .See Figure 6 for a plot of (Ff . PRel) versus axial core height.

FxylF P , (3 y pp . [3 p))

1 R

2.6.4 Where

F*TP = 1,67 for unrodded core planes Y 1.79 for core planes containing Bank D control rods 2.6.5 -PF xy = 0.2 2.7 L Heat Flux Hot Channel Factor (Thr ' Loops Operating)--FQ(Z).

L (Soecification 3/4.2.2.2) p RTP Q

.FQ-(Z) 1

  • K(2) for P > 0.325 p.

p RTP

- Q

=F (I),s

  • K(2) for P 1 0.325

+ 0 0.325 a

^

Thermal Power

? '

Where: P--

, Rated Thermal- Power o-Page 3, Revision 0 a

i

\

i,

, _ l;, , '< q L

2. 7.1 -

. FlT[ 1.69_ '

Note: Since' maximum power. in-three loop operation ~ is :

TP L 65%, F represents .the- theoretical.g F limit if

-power were at 100%.

J ~ .

' 2 ~. 7 . 2 _ K(Z)'is provided in Figure 7.

2.7.3 See Figure 8 for a plot of (F .P- Rel) versus axial core 1 height.

Fxyk 0 Fxy.65 RTP * (1 + MF * (0.65 P))

xy

l 2.7.4 Where
F*Y-RTP ,.1.69 for unrodded core planes-

'c: 1.81 for core planes containing Bank D-h control' rods -

g 2.7.5 M

-p = 0.281 ,

xy- ,

N 2.8 Nuclear Enthalpy Rise Hot Channel Factor (Four Loops Operating). F3H (Soecification 3/4.2.3.1) ,

.'[3,p))

F"H A

s FR A

P , (3 , pp a

Thermal Power +

-Where: P= a j

' Rated Thermal Power, <

4 i 2.8.1 FRTP. , 3,49 i A

> ~

2.8.2 -PFAH = 0.3 ,

7

.i 2

Page 4, Revision 0 l

t 3 A

4

. 3 ._ . -

-i 2.9: Nuclear Enthalov Rise-Hot Channel Factor

  • fThree Loons N

.0perating)--Fg (Specification 3/4.2.3.2).

i N

F AH $FRTP AH- * (1 + PFAH * [1-P])

1 1

Thermal Power ]

Where:' P= . .. 1 Rated Thermal Power l l

l R P.

2.9.1 .F A = 1.351 P

2.9.2 PFAH.= 0.43'-

4 s

K ,

L L

1 l-1 :.

l.

I:

L; Page 5, Revision 0 l.

ll 1

s t 3

..-: l,.?'

l ><

l} t

..? (FULLY WITHDRAWN) .

(0.28.228) (0.78.2200 228:

200

- /.'

SANK B J

(1,0.164)

z. (0.Q164' >

9 2 150

/

f /

g BANK C

y.  ;

a

.100- g

/

1/ BANK 0 50 (0.0,50) l (029.0 C.

0 0.2 . O.4 ' O.6 0.8 1.0-

'(FULLY INSERTEC) FRACTION OF RATED THERMAL POWE.R FIGURF I-ROD BANK INSERTION L1 0.5 VERSUS THERMAL POWER FOUR L0c OPERATION 9

- MILLSTONE UNIT 3 L L

" e.  ?: y

., ., ; .? - a

~

'e u (FOLLY lWITMDRAWN)-'

(007228)' (L' -57 7't#1' /

. -228 SANKB

( 0,212)

  • 200

/

i

-_ g 150 4 g,gg g .

8

' (0.65,132) g

-G 5

4 8.100 ,

( 0,0.98)

MNK D 50 f '

(0 07,0) _

, 0 0.2 ' O. 4 ' ~06 0.6 10 (FULLY IN$ERTED) FRACTION OF RATED THERMAL POWE v.

a-

'j',

FIGURE 2'

' ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 7 7 THREE LOOP OPERATION h \

i MILLSTONE - UNIT 3

.g :t ,,

y;-

,, .. , j c +

T C

W K

(

g g

g y O a n

100'~

l l l l l l l- l

. UNACCEP TABLE (*11,90) (11. 9 0 )

OPERATION UNA CCEPT ABL E >

OPER ATION I

60 l /

' J ACCEPTABLE OPERATION 60 l-

/ \ 1

/. ..A 1

. ( 31, 5 0)

(31.5 0) J 40 l l. I m

l l

1 20 s

q L-o 50- -40 ' - 30 ~ 20 10 0 10 '20 30 40 '50. i u - FLUX DIFFERENCE (OI)*/.

4 L FIGURE 3 H

a AXIAL FLUX' DIFFERENCE' LIMITS AS A FUNCTION OF ll; 1 RATED THERMAL POWER (FOURLOOPSOPERATING) 3

. I MILLSTONE - UNIT 3 H .:

Ti,

, i. .- - -.-- -

} , f. 3 p*

g , ; .;. .

i l ? + __

t ,

d I t B I s t -

10 0 s.

i >

_SQ u;. '\

\ \~;

UNAC CEPTABLE ' ( 8.65) (8.65) UNACCEDTABLE

,. , , OPERATION OPERATION

' ' I ' \

'60

~ ACCEPTABLE

, OPERATION ao 2 I l I

(

/ \

( 24.5,32) (24 5,32) 20 -

,s .

-0

-50 ~*40! 30 ' 20 10 0 -10 20 30 40 50

' FLUX DIFFERENCE (61)*/.

, FIGURE 4 N AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION 0F RATED THERMAL POWER:

(THREELOOPSOPERATING)

' MILLSTONE - UNIT 3 4

^'

1 9 ,

  • I.

( .,:  %'.

.. l

'. * { t r

't li 1.50-1 .1 1.~ 2 5 - -

C

'- 'I 1;00

.wo I o e i l' W-l . 3. 0. 7 5 - -

TCT*' l L < -

2.320  :

'l CORE HEIGHT M(2)

L J- o.ooo s.ooo A

e O'50 - - s.ooo io.soo 1.ooo o.ed o

"- 12.o00. o.647 >

I .,

0. 2 5 : - -

1

' ' I 0.00 '

o O 2 S 6 8 1O 12 CORE MklGHT (FT) ,

}

FIGURE 5 K(2)-NORMALIZEDF@0VRLOOPOPERATION.(Z) FOR' AS'A FU '- i MILLSTONE - UNIT 3 i

i I'

' ~

4 r- , , . - . . . _ . , , , _ _ . - _ _ _ . _ _ _ _ _ _ l__._._____.__________________ . _ _ _ _ _ _ _ . _ _ _ _ _ . _ _ . _ . . _ _ . . _ _ . _ . . _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . _ _ _ _ . _ _

, h ,f-i 2.60 . . .

-0.0, 2.3N: 1 . 0 2.321 I

-- pW =,- - - -----

hm 10.8:. 2.18 2.28 --

p w aug

%g

/ %. , f****t ,

' e' '1, 1 -

fj i

, . L

" e J b,T +1 i ,

el i n >

a +' ;- *

-g1.76

a. . L! 1 1. :\ .

3I l l 12.0. 1.50 v\ '

g .

  1. [ . , ,

e

[ ..

g 1.25 , , ,

4 I I -

^

?

l e 1 l. l 1.00 i  ;<

l ,l .

L I i -

.no '

l I

I

.500 0- 8 4 6 8 10 18 sottot COREHEIGHT(FEET) to,

'l G

FIGURE 6 ll T

f -MAXIMUM F g P ggt VERSUS AXIAL CORE HEIGHT DURING NORMAL CORE F0VR-LOOP OPERATION E. MILLSTONE - UNIT 3

' m, s

' I 1.50 1.25 -

~

J C

go 1.00 8

3 0.75 - -

TCT

<- a.500

. CORE MEIGHT R(2)

E 0.000 1D00 a- Q,$Q - - 6.000- 1.000 -

3as 10.s00 0.040 12 ~.000 0.577-0.25 - -

O.00_ l  ! l

-0 2 4 6 8 10 12 --

CORE : ME'l0 MT (IrT) i- -

i i

FIGURE-7 K(2)>- NORMALIZED F n(Z) AS A-FUNCTION OF CORE HEIGHT ,

FOR THREE-LOOP OPERATION MILLSTONE - UNIT 3 I

1

y 9,...

, 1

-x i 2.00 e l i

y

~

4.0 1.490 rr ii '

1*78 - 0 . 0 . 1 .611l0 i 10.8. 1.63gj

" " ' " " " " " " " """""'" " ""' '"" """y'"'y ,- ,

h-=c 4

a Am1.. o

}.. ..QL l ,

y _

-, t

..<I o,

l ... .

...*+ ,-

i, 1.25 ;g 4'l  !

I j 6- .

1

v. <

y ' - ~ = 11.0. 0.975 1 4 1.00 ' --

jg 2 al 1 ,

i 1

-i 4;

,,L l

.750 ,' i

, i i to 12 .'

6- 8

'600 O'. 2- 4 l

COREHEIGHT(FEET). 109:

.90TTOW FIGURE 8 T

MAXIMUM Fn,pREL VERSUS AXIAL CORE HEIGHT DURING NORMAL CORE THREE-LOOP OPERATION

, l MILLSTONE - UNIT 3

, . . . . , , . . . . . - . . . _ , . ~ - . . . - , ,