ML20094J488

From kanterella
Jump to navigation Jump to search
Forwards Status Rept of Draft SER Section 1.7 Open Items, Draft SER Sections Not Yet Provided,Draft SER Open Items & Resolutions to Items.Items Identified as Complete Considered Closed.Description of Unresolved Issues Requested
ML20094J488
Person / Time
Site: Hope Creek PSEG icon.png
Issue date: 08/10/1984
From: Mittl R
Public Service Enterprise Group
To: Schwencer A
Office of Nuclear Reactor Regulation
References
NUDOCS 8408140336
Download: ML20094J488 (182)


Text

_ _ _ _ _ _

Pubhc Senece O PS Electnc and Gas Cornpany 80 Park Plaza, Newark, NJ 07101/ 201430-8217 MAILING ADDRESS / P.O. Box 570, Newark, h J 07101 Robert L. Mitti General Manager Nuclear Assurance and Regulation August 10, 1984 f

Director of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission 7920 Norfolk Avenue Bethesda, MD 20814 Attention: M r. Albert Schwencer, Chief Licensing Branch 2 Division of Licensing Gentlemen:

HOPE CREEK GENERATING STATION DOCKET NO. 50-354 DRAFT SAPETY EVALUATION REPORT OPEN ITEM STATUS Attachment 1 is a current list which provides a status of the open items identified in Section 1.7 of the Draft Safety Evaluation Report (SER). Items identified as " complete" are those for which PSE&G has provided responses and no confir-mation of status has been received from the staff. We will consider these items closed unless notified otherwise. In order to permit timely resolution of items identified as

" complete" which may not be resolved to the staff's satis-faction, please provide a specific description of the issue which remains to be resolved.

Attachment 2 is a current list which identifies Draft SER Sections not yet provided.

In addition, enclosed for your review and approval (see Attachment 4) are the resolutions to the Draft SER open items, listed in Attachment 3.

Should you have any questions or require any additional information on these open items, please contact us.

Very truly yours, J -

\, O/

/ /10 8408140336 840810 '

PDR ADOCK 05000354 l E PDR Q

Attachments The' Energy People kg

%4'112 OM) 4 84 b _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ . _ _ 1

3 o-A

. Director of' Nuclear Reactor: Regulation 2 8/10/84-

- -- lC' D. H.' Wagner

-USNRC Licensing Project Manager W. - H . Bateman-

-USNRC Senior Resident. Inspector 4

FM05'1/2 7

i t (

, :. ,: '-k; l ~.\

D e

. , = --- - . -

V:

DATE2 8/10/84 ATTACIMENT 1 DSER R. L. MITTL TO OPEN- SEX, T ION A. SCHWENCER ITD4 NUMBER SUELIECT STATUS LETTER DATED 2.3.1-

~

1 Design-basis temperatures for safety- Open related auxiliary systes 2a 2.3.3 Accuracies of neteorological Cmplete 7/27/84 measurements

-2b 2.3.3 Accuracies of meteorological- Cmplete 7/27/84 measurements p 2c 2.3.3 Accuracies of meteorological Conplete '7/27/84 measurements 2d 2.3.3 Accuracies of meteorological- Open measurements 3a 2.3.3 Upgrading of onsite meteorological Ccmplete 8/01/84 measurements program (III.A.2) 3b 2.3.3 Upgrading of onsite meteorological Cmplete 8/01/84 measurements program (III.A.2) (Rev. - 1 )

3c 2.3.3 Upgrading cf onsite meteorological Open measurements progran (III.A.2) 4 2.4.2.2 Ponding levels Cmplete 8/03/84 Sa 2.4.5 Wave impact arrl rurup on service Ccmplete 6/01/84 Water Intake Structure Sb - 2.4.5 Wave impact and runup on service Open water intake structure 5c 2.4.5 Wave impact and rurup on service Ccnplete 7/27/84 water intake structure 5d -2.4.5 Wave impact and runup on service Conplete 6/01/84 water intake structure 6a 2.4.10 Stability of erosion protection Open structures 6b 2.4.10 Stability cf .ermion protection Open structures 6c 2.4.10 Stability of erosion protection Ccrnplete 8/03/84 i structures  !

M P84 80/121-gs

ta e

l l

l ATTACHMENT 1 (Cont'd) l DSER R. L. MITIL TO OPEN SECTION A. SCHWENCER ITEM NUMBER SUBJECT STATUS LETTER DATED 7a 2.4.11.2 Thermal aspects of ultimate heat sink Cmplete 8/3/84 7b 2.4.11.2 Thermal aspects of ultimate heat sink I Complete 8/3/84  ;

l 8 2.5.2.2 Choice of maximum earthquake for New Open England - Piedmont Tectonic Province  ;

9 2.5.4 Soil damping values Complete 6/1/84 10 2.5.4 Foundation level response spectra Complete 6/1/84 11 2.5.4 Soil shear moduli variation Complete 6/1/84 12 2.5.4 Combination of soil layer properties Complete 6/1/84 13 2.5.4 Lab test shear moduli values Conplete 6/1/84 14 2.5.4 Liquefaction analysis of river bottm Complete 6/1/84 sands 15 2.5.4 Tabulations of shear noduli Cmplete 6/1/84 16 2.5.4 Drying and wetting effect on Cmplete 6/1/84 Vincentown 17 2.5.4 Power block settlement monitoring Complete 6/1/84 18 2.5.4 Maximun earth at rest pressure Complete 6/1/84 coefficient 19 2.5.4 Liquefaction analysis for service Cmplete 6/1/84 water piping 20 2.5.4 Explanation of observed _ power block Cmplete 6/1/84 settlement 21 . 5.4 Service water pipe settlement records _ Cmplete 6/1/84 22 2.5.4 Cofferdam stability Cmplete 6/1/84 23 2.5.4 Clarification of FSAR Tables 2.5.13 Cmplete 6/1/84 and 2.5.14 M P84 80/12 2 - gs

ATTACHMENT 1 (Cont'd)

DSER R. L. MITTL 'IO OPEN SECTIQ1 A. SCHWENCER ITEM MJMBER SUBJECT STA'IUS IEITER IRTED 24 2.5.4- Soil depth models for intake Couplete 6/1/84 structure 25 2.5.4 Intake structure soil modeling Conplete 8/10/84 26 2.5.4.4 Intake structure sliding stability. Open 27 2.5.5 Slope stability Conplete 6/1/84 28a 3.4.1 Flood protection Complete 7/27/84

'28b 3.4.1 Flood protection Conplete 7/27/84 28c 3.4.1 Flood protection Conplete 7/27/84 28d 3.4.1 Flood protection Conplete 7/27/84 28e 3.4.1_ Flood protection Conplete 7/27/84 28f 3.4.1 Flood protection Conplete 7/27/84 28g 3.4.1 Flood protection Conplete 7/27/84 29 3.5.1.1 Internally generated missiles (outside .Conplete 8/3/84 containment) (Rev. 1) 30 3.5.1.2 Internally generated missiles (inside Closed 6/1/84 containment) (5/30/84-Aux.Sys.Mtg.)

31 3.5.1.3 Turbine missiles Couplete 7/18/84 32 3.5.1.4 Missiles generated by natural phenomena Conplete 7/27/84 33 3.5.2 Structures, systems, and conponents to Conplete 7/27/84 be protected fran externally generated missiles 34 3.6.2 Unrestrained whipping pipe inside Conplete 7/18/84 containment 35 3.6.2 ISI program for pipe welds in Couplete 6/29/84 break exclusion zone M P84 80/12 3 - gs

l i

l A'ITACINENT 1 (Cont'd)

DSER R. L. MITTL 'IO OPHI SECTIW A. SCHWENCER ITO( MJMBER SUBJECT STA'IUS IEITER DATED 36 3.6.2 Postulated pipe ruptures Conplete 6/29/84 37l 3.6.2 Feedwater isolation check valve Open operability 38 3.6.2 Design of pipe rupture restraints Open 39 3.7.2.3 SSI analysis results using finite Conplete 8/3/84 element method and elastic half-space approach for containment structure 40 3.7.2.3 SSI analysis results using finite Conplete 8/3/84 element nethod and elastic half-space approach for intake structure 41 3.8.2 Steel containment buckling analysis Complete 6/1/84 42 3.8.2 Steel containment ultimate capacity Conplete 6/1/84 analysis 43 3.8.? SRV/WCA pool dynamic loads Conplete 6/1/84 44 3.8.3 ACI 349 deviations for internal Conplete 6/1/84 structures 45 3.8.4 ACI 349 deviations for Category I Conplete 6/1/84 structures 46 3.8.5 ACI 349 deviations for foundations Conplete 6/1/84 47 3.8.6 Base mat response spectra Cenplete 8/10/84 Rev.1 48 3.8.6 Rocking time histories Couplete 6/1/84 49' 3.8.6 Gross concrete section Couplete 6/1/84 50 3.8.6 Vertical floor flexibility response Conplete 6/1/84 spectra 51 3.8.6 Conpariscn of Bechtel independent Complete a/10/84 Rev. :

verification results with the design-basis results M P84 80/12 4 - gs e m _

Q l

ATTICMENT 1 (Cont'd) I DSER' R. L. MITfL 'IO OPEN SECTICU A. SCHWENCER ITEM MJMBER SUBJECT STA'1US LETTER DATED - l 52 3.8.6 Ductility ratios due to pipe break Caplete 8/3/84 53 -

3.8.6 Design of seismic Category I tarJcs Cm plete 6/1/84 54 3.8.6 Combination of vertical responses Ca plete 8/10/84 Rev.1-55 3.3.6 'Ibrsional stiffness calculation Cmplete 6/1/84 56 3.8.6 Drywell stick model develognent Conplete 6/1/84 57 3.8.6 Rotational time history inputs Cmplete 6/1/84 58 3.8.6 "O" reference point for auxiliary Cm plete 6/1/84 building model

.59 3.8.6 Overturning moment of reactor Complete 6/1/84 building foundation mat 60 3.8.6 BSAP element size limitations Cmplete 6/1/84 61 3.8.6 Seismic nodeling of drywell shield Conplete 6/1/84 wall 62 3.8.6 Drywell shield wall boundary Cm plete 6/1/84 conditions 63 3.8.6 Reactor building dome boundary Conplete 6/1/84 conditions 64 3.8.6 SSI analysis 12 Hz cutoff frequency Couplete 6/1/84 65 3.8.6 Intake structure crane heavy load Conplete 6/1/84 drop 66 3.8.6 Inpedance analysis for the intake Complete 8/10/84 Rev.1 structum 67 3.8.6 Critical loads calculation for Conplete 6/1/84 reactor building dome 68 3.8.6 Reactor building foundation mat Conplete 6/1/84 contact pressures M P84 80/12 5 - gs .

_]

ATTACHMENT 1 (Cont'd)

DSER R. L. MITTL TO OPEN SECTICN A. SCHhM CER ITEN NUMBER SURTECT STATUS LETIER DATED l 69; 3.8.6 Factors of safety against sliding and Cmplete 6/1/84 overturning of drywell shield wall 70 3.8.6 Seismic shear force distribution in Cmplete 6/1/84 cylinder wall 71 3.8.6 Overturning of cylinder wall Cmplete 6/1/8'4 72 3.8.6 Deep beam design of fuel pool walls Cmplete 6/1/84 73 3.8.6 ASHSD dome model load inputs Complete 6/1/84 74 3.8.6 Tornado depressurization Cmplete 6/1/84 75 3.8.6 Auxiliary building abnormal pressure Cmplete 6/1/84 76 3.8.6 Tangential shear stresses in drywell Cmplete 6/1/84 shield wall and the cylinder wall 77 3.8.6 Factor of safety against overturning Complete 6/1/84 of intake structure 78 3.8.6 Dead load calculations Cmplete 6/1/84 79_ 3.8.6 Post-modification seismic loads for Cmplete 6/1/84 the torus 80 3.8.6 Torus fluid-structure interactions Cmplete 6/1/84

.81 3.8.6 Seismic displacement of torus Complete 6/1/84 82 3.8.6 Review of seismic Category 7 f .c' Complete 6/1/84 design -

83 3.8.6 Factors of safet- 'ar drywell Cmplete 6/1/84 buckling evaluation 84 3.8.6 Ultimate capacity of containment Caplete 6/1/84

-(m-terials) 85 3.8.6 toad cmbination consistency Complete 6/1/84 M P84 80/12 6 gs

- N

I ATTACl44ENT 1 (Contd)

DGER R. L. MITTL TO OPEN -SECTION A. SCHWDICER ITEM NUMBER SUBJECT STATUS IEITER DATED 86 3.9.1 Caputer code validation Open 87 3.9.1 Information on transients Open 88 3.9.1 . Stress analysis and elastic-plastic Cmplete 6/29/84 analysis 89 3.9.2.1 Vibration levels for NSSS piping Couplete 6/29/84 systems 90 3.9.2.1 Vibration monitoring program during Cmplete 7/18/84 testing 91 3.9.2.2 Piping supports and anchors Couplete 6/29/84 92 3.9.2.2 Triple' flued-head containment Cm plete 6/15/84 penetrations 93 3.9.3.1 Inad ccubinations and allowable Cmplete 6/29/84 stress limits 94 3.9.3.2 Design of SRVs and SRV discharge Cm plete 6/29/84 piping 95 3.9.3.2 Fatigue evaluation on SRV piping Capletc 6/15/84 and IDCA downcmers 96 -3.9.3.3 IE Information Notice 83-80 Cmplete 6/15/84 97 3.9.3.3 Buckling criteria used for cmponent Conplete 6/29/84 supports 98 3.9.3.3 Design of bolts Cmplete 6/15/84 99a 3.9.5 Stress categories and limits for Caplete 6/15/84 core support structures 99b 3.9.5 Stress categories and limits for Cmplete 6/15/84 core support structures 100a. 3.9.6 10CFR50.55a paragraph (g) Cmplete 6/29/84 M P84 80/12 7 gs  ;

I I

ATTACHMENT 1 (Cont'd)

DSER R. L. MITIL 'IO OPER SECTION A. SCHWENCER ITEM NUMBER SUBJECT STATUS IfffER DATED 100b 3.9.6 10CFR50.55a paragraph (g) open 101 3.9.6 PSI and ISI programs for pumps and open valves 102 3.9.6 Leak testing of pressure isolation Complete 6/29/84 valves 103al 3.10 Seismic and dynamic qualification of open mechanical and electrical equipnent 103a2 3.10 Seismic and dynamic qualification of open mechanical and electrical equipment 103a3 3.10 Seismic and dynamic qualification of open mechanical and electrical equipment 103a4 3.10 Seismic and dynamic qualification of open mechanical and electrical equipment 103a5 3.10 Seismic and dynamic qualification of. Open mechanical and electrical equipnent 103a6 3.10 Seismic and dynamic qualification of open mechanical and electrical equipment 103a7 3.10 Seismic and dynamic qualification of open mechanical and electrical equipnent 103bl 3.10 Seismic and dynamic qualificaticn of open mechanical and electrical equipment 103b2 3.10 Seismic and dynamic qualification of open mechanical and electrical equipnent 103b3 3.10 Seismic and dynamic qualification of open mechanical and electrical equipment 103b4 3.10 Seismic and dynamic qualification of open mechanical and electrical equipnent 103b5 3.10 Seismic and dynamic qualification of open mechanical and electrical' equipnent 7

.M P84 80/12 8 - gs b

.3 r

ATTACHMENT 1 (Cont'd)

DSER- R. L. MITIL TO OPEN SECTICN A. SCHWENCER ITEM- NUMBER SUETECT STATUS LETTER DATED'

'103b6. 3.10 Seismic and dynamic qualification of open mechanical and electrical equipnent 103cl 3.10 Seismic and dynamic gealification of open m chanical and electrical. equipment 103c2 3.10 Seismic and dynamic qualification of Open mechanical and electrical equipnent 103c3 3.10 ' Seismic and dynamic qualification of open

' mechanical and electrical equipment

~103c4. 3.10 ~ Seismic and dynamic qualification of- Open mechanical and electrical equipnent 104 3.11 Environmental qualification of NRC Action mechanical and electrical equipment

'l05 4.2 Plant-specific mechanical fracturing Conplete 7/18/84 analysis 106 4.2 Applicability of seismic andd LOCA - Complete 7/18/84 loading evaluation 107 4.2 Minimal post-irradiation fuel Caplete 6/29/84 surveillance progran

^

108' 4.2 Gadolina thermal conductivity Caplete 6/29/84 equation

~109a 4.4.7 TMI-2 Item II.F.2 Open 109b 4.4.7 TMI-2 Item II.F.2 Open

-110a 4.6 Functional design of reactivity Caplete 7/27/84 control systems 110b 4.6 Functional , design of reactivity Cmplete 7/27/84 control systems lila 5.2.4.3 Preservice inspection program Cmplete 6/29/84 (caponents within reactor pressure boundary) 4 M P84 80/12 9 - gs

ATTACHMENT 1 (Cont'd)

CSER R. L. MITIL 'IO OP.*N SECTION A. SCHWENCER ITEM NUMBER SUa7ECT STATUS LETTER DATED 111b 5.2.4.3 Preservice inspection program Cmplete 6/29/84 (cmponents within reactor pressure boundary) llle 5.2.4.3 Preservice inspection program Cmplete 6/29/84 (conponents within reactor pressure boundary) ll2a 5.2.5 Reactor coolant pressure boundary Caplete 7/27/84 leakage detection ll2b 5.2.5 Reactor coolant pressure boundary Conplete 7/27/84 leakage detection ll2c 5.2.5 Reactor coolant pressure boundary Cmplete 7/27/84 leakage detection 112d 5.2.5 Reactor coolant pressure boundary Complete 7/27/84 leakage detection ll2e 5.2.5 Reactor coolant pressure boundary Conglete 7/27/84-leakage detection 113 5.3.4 GE procedure applicability Couplete 7/18/84 114 5.3.4 Compliance with NB 2360 of the Stamer Couplete 7/18/84 1972 Addenda to the 1971 ASME Code 115 5.3.4 Drop weight and Charpy v-notch tests .Cmplete 7/18/84 for closure flange materials 116 5.3.4 ;Charpy v-notch test data for base Couplete 7/18/84 materials as used ~in shell course No. I 117 5.3.4- Compliance with NB 2332 of Winter 1972 Open Addenda of the ASME Code 118 5.3.4 Lead-factors and neutron fluence for Open surveillance capsules

~

M P84 80/.12.10- gs y j

i ATTACHMENT 1 (Cont'd)

DSER R. L. MITIL TO OPEN SECTION A. SCHWENCER ITEM NUMBER SUR7ECT STATUS LETTER DATED 119 6.2 TMI item II.E.4.1 Cmplete 6/29/84 120a 6.2 TMI Item II.E.4.2 Open 120b 6.2 TMI Item II.E.4.2 Open 121' 6.2.1.3.3 Use of NUREG-0588 Cmplete 7/27/84 122 6.2.1.3.3 Temperature profile Cmplete 7/27/84 123 . 6.2.1.4 Butterfly valve operation (post Cmplete 6/29/84 accident) 124a 6.2.1.5.1 RPV shield annulus analysis Complete 6/1/84 124b 6.2.1.5.1 RPV shield annulus analysis Cceplete 6/1/84 124c 6.2.1.5.1 RPV shield annulus analysis Cmplete 6/1/84 125 6.2.1.5.2 Design drywell head differential Complete 6/15/84 pressure 126a 6.2.1.6 Redundant position indicators for Open vacuun breakers (and control rom

. alarms) 126b 6.2.1.6 Redundant position indicators for Open vacuun breakers (and control rom alarms) 127 6.2.1.6 Operability testing of vacuum breakers Complete 7/18/84 128 6.2.2 Air ingestion Cmplete 7/27/84 129 6.2.2 Insulation ingestion Cmplete 6/1/84 130 6.2.3 Potential bypass leakage paths Cmplete 6/29/84 131 6.2.3 Administration of secondary contain- Cmplete 7/18/84 ment openings M P84 80/12 11- gs d

.,e- - - , , +-p--- e

ATTACHMENT 1 (Cont'd)

DSER .

R. L. MITTL TO OPEN SECTICN A. SCHWENCER ITEM NUMBER SUBJECT STATUS LETTER DATED 132 6.2.4- Containment isolation review Ccuplete 6/15/84 135a 6.2.4.1 Containment purge system Open 133b- 6.2.4.1 Containment purge system Open 133c 6.2.4.1 Containment purge system Open 134 6.2.6 Containment leakage testing Conplete 6/15/84 135 6,3.3 LPCS and LPCI injection valve Open interlocks 1

136 6.3.5 Plant-specific IOCA (see Section Complete 7/18/84 15.9.1-3) 137a r.4 Control room habitability open 137b (A Control rom habitability open 137c 64 Contrcl rom habitability Open 138 6.6 Preservice inspection program for - Ccanplete 6/29/84 Class 2 and 3 conponents 139 6.7 MSIV leakage control system Conplete 6/29/84 140a 9.1.2 Spent fuel pool storage '

Couplete 7/27/84 140b 9.1.2 Spent fuel pool storage Ccanplete 7/27/84 140c 9.1.2 Spent fuel pool' storage Complete 7/27/84 140d 9.1.2 Spent fuel pool. storage Conglete 7/27/84 141a 9.1.3 Spent fuel cooling and cleanup. Conglete 8/1/84

. system 141b 9.1.3 Spent fuel cooling and cleanup CO plete 8/1/84 systs.

141c 9.1.3 Spent fuel pool cooling and cleanup Ccmplete 8/1/84 system M P84_80/12 12- gs-

= :l

A'ITACIMNr 1 (Cont'd) _

'DSER R. L. MITIL 10 OPEN. SECTICN A. SCHWENCER ITEM- NUMBER. SUBJECT STATUS LETTER DATED 141d 9.1.3 ~ Spent fuel pool cooling and cleanup Cmplete 8/1/84 system Ll41e - 9.1.3 Spent fuel pool cooling and cleanup Cmplete 8/1/84

. system 141f- 9.1.3 Spent fuel pool cooling and cleanup Cmplete 8/1/84 systen

'141g _9.1 3 Spent fuel-pool cooling and cleanup Cmplete 8/1/84 system 142a. 9.1.4 Light load handling system (related Closed 6/24/84 to refueling) (5/30/84-Aux.Sys.Mtg.)

142b- 9.1.4 - Light load handling system (related Closed 6/29/84 to refueling) (5/30/84-Aux.sys.Mtg.).

143a 9.1.5 Overhead heavy load handling ~ Open 143b 9.1.5 Overhead heavy load handling' 'Open 144a 9.2.1. Station service water system Conglete '7/27/84 144b 9.2.1 Station service water system Cm plete 7/27/84 144c 9.2.1 Station service water system Caplete 7/27/84 145' 9.2.2 ISI program and functional testing : Closed 6/15/84 of safety and turbine auxiliaries - (5/30/94-cooling systems Aux.Sys.Mtg.)-

146 9.2.6 Switches and wiring associated with Closed 6/15/84 HPCI/RCIC torus suction -(5/30/84-Aux.Sys.Mtg.)

L147a 9.3.1 Compressed air' systems complete 8/3/84 (Rev 1) 147b 9.3.1 Cenpressed air systems Caplete 8/3/84 (Rev 1)

.M P84 80/12 13- gs J

r.

ATTACHMENT 1 (Cont'd)

DSER R. L. MITIL 10 OPEN SECTION A. SCHWENCER ITEM NUMBER SUBJECT STATUS LETTER DATED 147c 9.3.1 Cmpressed air systems Cmplete 8/3/84 (Rev 1) 147d 9.3.1 Cmpressed air systems Ccupleta 8/3/84 (Rev 1) 148 9.3.2 Post-accident sampling system Open (II.B.3) 149a 9.3.3 Equipment ard floor draina@ system Cmplete 7/27/84 149b 9.3.3 Equipment ard floor drainacy system Cmplete 7/27/84 150 9.3.6 Primary containment instrument gas Cmplete 8/3/84 system (Rev. 1)

'151a 9.4.1 Control structure ventilation system Ccmplete 7/27/84 151b 9.4.1 Control structure ventilation system Cmplete 7/27/84 152 9.4.4 Radioactivity monitorirg elements Closed 6/1/84 (5/30/84-Aux.Sys.Mtg.)

153 9.4.5 Ergineered safety features ventila- Cmplete 8/1/84 tion system (Rev 1) 154 9.5.1.4.a - Metal rocf deck construction Cmplete 6/1/84 classificiation 155- 9.5.1.4.b Ongoing review cf safe stutdown NRC Action capability 156 9.5.1.4.c Ongoirg review cf alternate shutdown NBC Action capability 157 9.5.1.4.e Cable tray protection Open 158 9.5.1.5.a Class B fire detection system Ccmplete ' 6/15/84 159 9.5.1.5.a Primary ard secondary power supplies Cmplete 6/1/84 for fire detection system 160 9.5.1.5.b Fire water pump capacity Open M P84 80/12~14- gs

_______-__-__-___-D

1

[.

ATTACHMENT 1 (Cont'd)

DSER R. L. MITIL TO OPEN- SECTION A. SQ5ENCER ITEM NUMBER SUR7ECT STATUS LETTER DATED 161 9.5.1.5.b Fire water valve supervision Cmplete 6/1/84 162 9.5.1.5.c Deluge valves Complete 6/1/84 163 9.5.1.5.c Manual hose station pipe sizing Conplete 6/1/84 164 9.5.1.6.e Remote shutdown panel ventilation Ccmplete 6/1/84 165 9.5.1.6.g Emergency diesel generator day tank Cmplete 6/1/84 protection 166 12.3.4.2 Airborne radioactivity monitor Complete 7/18/84 positioning 167 12.3.4.2 Portable continuous air nonitors Complete 7/18/84 168 12.5.2 Equipment, training, and procedures Cmplete 6/29/84 for inplant iodine instrmentation 169 12.5.3 Guidance of Division B Regulatory Cmplete 7/18/84 Guides 170 13.5.2 Procedures generation package Ccmplete 6/29/84 submittal 171 13.5.2 TMI Item I.C.1 cmplete 6/29/84 172 13.5.2 PGP Comnitment Conplete 6/29/84 173 13.5.2 Procedures covering abnormal releases Cmplete 6/29/84 of radioactivity 174 13.5.2 Resolution explanation in FSAR of Cmplete 6/15/84 TMI Items I.C.7 and I.C.8 175 13.6 Physical security Open 176a 14.2 Initial plant test program Open M P84 80/12 15- gs

.]

2 l

ATIACIMNr 1 (Cont'd)

DSER R. ,L. MITIL TO !

! OPEN SECTIOi A. SCHWENCER i l ITEM NUMBER SUE 7ECT STATUS IEITER DATED 176b 14.2 Initial plant test program Open l

176c 14.2 Initial plant test program Cmplete 7/27/84 176d 14.2 Initial plant test program Cmplete 7/27/84 176e 14.2 Initial plant test program Cmplete 7/27/84 l 1

l, 176f 14.2 Initial plant test program Open 176g 14.2 Iraitial plant test program Open 176h 14.2 Initial plant test program Open 1761 14.2 Initial plant test program Caplete 7/27/84 t

{ 177 15.1.1 Partial feedwater heating Caplete 7/18/84 178 15.6.5 toCA resulting from spectrum of NRC Action postulated piping breaks within RCP *

  • 179 15.7.4 Radiological consequences of fuel NRC Action handling accidents 180 15.7.5 spent fuel cask drop accidents NRC Action L

t 181 15.9.5 7MI-2 Item II.K.3.3_ Ca plete 6/29/84 182 15.9.10 7MI-2 Item II.K.3.18 Ccaplet'e 6/1/84 183 18 Hope Creek DCRDR Open 184 7.2.2.1.e Failures in reactor vessel level Couplete .8/1/84 sensing lines (Rev 1) 185 7.2.2.2 Trip systen sensors and cabling in Conglete 6/1/84

, turbine building ,

186 7.2.2.3 Testability of plant protection Complete 8/3/84 systems at power

~

l M P84 80/12.16- gs-

ATTACHMEtfr 1 (Cont'd)

DSER R. L. MITrL TO OPDi SECTION A. SCHWENCER ITD4 NUMBER SUMECT STATUS IErrER DATED 187 7.2.2.4 Lif ting of leads to perfona surveil- Cmplete 8/3/84 lance testing 188 7.2.2.5 Setpoint methodology Couplete 8/1/84 189' 7.2.2.6 Isolation devices Conplete 8/1/84 190 7.2.2.7 Regulatory Guide 1.75 Cmplete 6/1/84 191 7.2.2.8 Scram discharge volune Conplete 6/29/84 192 7.2.2.9 Reactor mode switch Cmplete 6/1/84 193 7.3.2.1.10 Manual initiation of safety systems Couplete 8/1/84 194 7.3.2.2 Standard review plan deviations Conglete 8/1/84 (Rev 1) 195a 7.3.2.3 Freeze-protection / water filled Ccmplete 8/1/84 instrunent and sanpling lines and cabinet tenperature control 195b 7.3.2.3 Freeze-protection / water filled Cmplete 8/1/84 instrument and sangling lines and cabinet tenperature control 196 7.3.2.4 Sharing of aminon instrument taps Ccmplete 8/1/84 197 7.3.2.5 Microprocessor, multiplexer and Ccaplete 8/1/84 computer systems. (Rev 1) 198 7.3.2.6 TMI Item II.K.3.18-ADS actuation Cpen 199 7.4.2.1 IE Bulletin 79-27-Ioss of non-class Conglete 8/1/84 IE instrumentation and control power system bus during operation 200 7.4.2.2 Remote shutdown system Complete 6/1/84 201 7.4.2.3 RCIC/HPCI interactions Conplete 8/3/84 202 7.5 .2.1 Level measurement errors as a result Complete 8/3/84 of environmental tenperature offects on level instrunentation reference leg M P84 80/12 17- gs

_ - _ _ _ _ _ _ _ _ - - O

F i

ATTACHMENT 1 (Cont'd)

DSER R. L. MITTL 'IO OPEN SECTION A. SCHWENCER ITEM NUMBER SUR7ECT STAWS LETTER DATED 203 7.5.2.2 Regulatory Guide 1.97 Cmplete 8/3/84 204 7.5.2.3 TMI Item II.F.1 - Accident monitoring Cmplete 8/1/84 205 7.5.2.4 Plant process caputer system Cmplete 6/1/84 206 7.6.2.1 High pressure / low pressure interlocks Cmplete 7/27/84 207 7.7.2.1 HELBs and consequential control system Cmplete 8/1/84 failures 208 7.7.2.2 Multiple control system failures Cmplete 8/1/84 209 7.7.2.3 Credit for non-safety related systems Complete 8/1/84 in Chapter 15 of the FSAR (Rev 1) 210 7.7.2.4 Transient analysis recording system Caplete 7/27/84 211a 4.5.1 Control rod drive structural materials Complete 7/27/84 211b 4.5.1 Control rod drive structural materials Caplete 7/27/84 211c 4.5.1 Control rod drive structural materials Caplete 7/27/84 211d 4.5.1 Control rod drive structural materials Caplete 7/27/84 211e 4.5.1 Control rod drive structural .aaterials Caplete 7/27/84 212 4.5.2 Reactor internals materials Caplete 7/27/84 213 5.2.3 Reactor coolant pressure boundary Caplete 7/27/84 material 214 6.1.1 Engineered safety features materials Cmplete 7/27/84 215 10.3.6 Main steam and feedwater systm Caplete 7/27/84 materials 216a 5.3.1 Reactor vessel materials Caplete 7/27/84 M P84 80/12 18- gs i .

L.

ATTACl#ENT 1 (Cont'd)

DSER R. L. MITIL 10 CPEN SECTIGI A. SCHWENCER ITEM NUMBER SUBJECT STATUS IEITER DATED 216b 5.3.1 Reactor vessel materials Complete 7/27/84 217 9.5.1.1 Fire protection organization Open 218 9.5.1.1 Fire hazards analysis Complete 6/1/84 219 9.5.1.2 Fire protection administrative Open controls 220 9.5.1.3 Fire brigade and fire brigade Open training 221 8.2.2.1 Physical separation of offsite Cmplete 8/1/84 transmission lines 222' 8.2.2.2 Design provisions for re-establish- Complete 8/1/84 ment of an offsite power source 223 8.2.2.3 Independence of offsite circuits Caplete 8/1/84 betweep the switchyard and class IE buses 224 8.2.2.4 Canon failure node between ensite Caplete 8/1/84 and offsite power circuits 225 8.2.3.1 Testability of autmatic transfer of Complete 8/1/84 power fr a the normal to preferred power source 226 8.2.2.5 Grid stability Complete 8/1/84 227 8.2.2.6 Capacity and capability of offsite Complete 8/1/84 circuits 228 8.3.1.l(1) Voltage drop during transient condi- Caplete 8/1/84 tions 229 8.3.1.1(2) Basis for using bus voltage versus Caplete 8/1/84 actual connected load voltage in the voltage drop analysis 230 8.3.1.l(3) Clarificaticm of Table 8.3-11 Cm plete 8/1/84 M P84 80/1219- gs t -

J

ATTACINEMP 1 (Cont'd)

DSER

. OPDi R. L. MITTL TO SECTION A. SCHWENCER ITEM NUMBER SUR7ECT STATUS LETTER DATED 231 8.3.1.1(4) Undervoltage trip setpoints Cmplete 8/1/84 232 8.3.1.l(5) Load configuration used for the Cmplete 8/1/84 voltage drop analysis 233 8.3.3.4.1 Periodic system testing Cmplete 8/1/84 234 8.3.1.3 Capacity and capability of onsite Complete 8/1/84 AC power supplies and use of ad-ministrative controls to prevent overloading of the diesel generators 235 8.3.1.5 Diesel generators load acceptance Couplete 8/1/84 test 236 '8.3.1.6 Compliance with position C.6 of Couplete 8/1/84 10 1.9 237 8.3.1.7 Decription of the load sequencer Capplete 8/1/84 238 8.2.2.7- Sequencing of loads en the offsite Conplete 8/1/84 power system 239 8 .3 .1.8 Testing to verify 80% minimum Open voltage 240 8.3.1.9 Cmpliance with BrP-PSB-2 Complete 8/1/84

-241 8.3.1.10 Imd acceptance test after prolonged Caplete 8/1/84 no load operation of the diesel generator 242 8.3.2.1 Cm pliance with position 1 of Regula- Caplete 8/1/84 tory Guide 1.128 ,

243 8.3.3.1.3 Protectial or qualiffeation of class conplete 8/1/84 lE equipment from the effects of fire suppression systems 244 8.3.3.3.1 Analysis and test to demonstrate Complete 8/1/84 adequacy of less than specified separation M P94 80/12 20- gs I

ATTACISENT 1 (Cont'd) '

DSER R. L. MITTL TO OPEN. SECTICN

  • A. SCHWENCER ITEM NUMBER SUIL7ECT STATUS LETTER DATED 245 8.3.3.3.2 1he use of 18 versus 36 inches of Cmplete 8/1/84 separation between raceways 246 8.3.3.3.3 Specified separation of raceways by Caplete 8/1/84 analysis and test i 247 8.3.3.5.1 Capability of penetrations to with- Ccaplete 8/1/84 F stand long duration short circuits at less than maximum or worst case short circuit 248 8.3.3.5.2 Separation of penetration primary Caplete 8/1/84 and backup protections 249 8.3.3.5.3 The use of bypassed thermal overload Ccaplete 8/1/84 protective devices for penetration protections 250 .8.3.3.5.4 Testing of fuses in accordance with Ccnplete 8/1/84 R.G . 1.63 251' 8.3.3.5.5 Fault current analysis for all Caplete 8/1/84 representative penetration circuits 252 8.3.3.5.6 The use of a single breaker to provide Caplete 8/1/84 penetration protecticn 253 8.3.3.1.4 Cormnitment to protect all Class 1E Caplete 8/1/84 equipment fran external hazards versus only class IE equipment in one division 254 8.3.3.1.5 Protection of class lE power supplies Caplete 8/1/84 from failure of unqualified class lE-loads 255 8.3.2.2 Battery capacity Conglete 8/1/84 256 8.3.2.3 Autmetic trip of loads to maintain Open sufficient battery capacity 9

-M P84 80/12 21- gs

m. . .. . _ ._ _ _ .

~

f ATTACHMENT 1 (Cont'd)

DSER R. L. MITTL'IO OPEN SECTICN A. SCHWENCER ITEM NUMBER SUELTECT STATUS LETTER DATED 257 8.3.2.5 Justification for a 0 to 13 second Cmplete 8/1/84 load cycle 258 8.3.2.6 Design and qualification of DC Cmplete 8/1/84 system loads to cperate.between mininun and maxinun voltage levels 259 8.3.3.3.4 Use of an inverter as an isolation Ccaplete 8/1/84 device 260 8.3.3.3.5 Use of a single breaker tripped by Cmplete 8/1/84 a LOCA signal used as an isolation device 261 8.3.3.3.6 Autmatic transfer of loads and Conglete 8/1/84 interconnection between redundant divisions TS-1 2.4.14' Closure of watertight doors to safety- Open related structures TS-2 4.4.4 Single recirculation loop operation Open TS-3 4.4.5 Core flow monitoring for crud effects Conplete 6/1/84 TS-4 4.4.6 toose parts monitcring system Open TS-5 4.4.9 Natural circulation in nomal Open operation TS-6 6.2.3 secondary containment negative open pressure TS-1 6.2.3 Inleakage and drawdown time in Open secondary containment TS-8 6.2.4.1 Imakage integrity testing Open TS-9 6.3.4.2 ECCS subsystem periodic conponent open testing TS-10 6.7 MSIV leakage rate M P84 80/12.22- gs

__ _ __ _ _. - _ _ N

[:

ATTACHMENT 1 (Cont'd)

DSER R. L. MITIL TO.

OPEN SECTICN A.' SCHWENCER ITEM NUMBER SUR7ECT STATUS LETTER DATED TS-Il- 15.2.2 Availability, setpoints, and testing- Open of turbine bypass system TS-12 '15.6.4 Primary coolant activity LC-1 4.2 Fuel rod internal pressure criteria Complete 6/1/84 4.4.4 Stability analysis subnitted before

~

-LC-2 .Open wcond-cycle operation M 'P84 80/12 gs .

~

l

ATTACHMENT 2 DATE: 8/10/84 DRAFT SER SECTIONS AND DATES PROVIDED SECTION DATE- SECTION DATE 3.1

' 3.2.1- 11.4.1

' 3.2.2. 11.4.2 5.l' 11.5.1 5.2.1 11.5.2 6.5.1 13.1.1 8.1 13.1.2-

' 8.'2.1

~

13.2.1

' ' 8.2.2 13.2.2

' 8.2.3 13.3.1 8.2.4 13.3.2

- 8 '. 3 .1 13.3.3

-8.3.2 13.3.4 8.4.1 13.4 8.4.2 13.5.1

- 8.4.3 15.2.3

. 8.4.5 15.2.4 8.4.6 15.2.5

--8.4.7 15.2.6 8.~4.8 15.2.7

- 9. 5. 2. 15.2.8

' 9.5.3 15.7.3 9.5.7 17.1

. - 9.5.8 17.2 10.1 17.3

.10.2 17.4 10.2.3-10.3.2 10.4.1 10.4.2;

.  ; 10.4.3'

, ' 10'.4.4

' ' 11.~1.1

- 11.1.2

. 11.2.1 p -11.2.2

- 11.-3.1-

. _ 11.3.2: . .

4

\

- CT:db-s _ ,

-  ?

  • p s a

L- MP 8'4 95/03 01 e . . .

1 l

.I DATE: 8/10/84 ATTACHMENT 3 OPEN ITEM DSER SECTION. SUBJECT 25 2.5.4. Intake structure soil modeling 47.. 3.8.6 Base mat response spectra

, ~ 51 3.8.6 Comparision of Bechtel independent verification results with the design-basis results.

54~ 3.8i6 Combination of vertical responses 66 3.8.6 Impedance analysis for the intake structure 6

yon-y

ATTACHMENT 4 a

d

HCGS DSER Open Item No. 25 ( DSER Section 2.5.4)

INTAKE STRUCTURE SOIL MODELING --

Assess and justify that the current soil modeling for the intake structure adequately accounts for:

a. Soil property variability along the depth
b. Sheet piling
c. Lavering of soil including. inclined lavering

RESPONSE

This item corresponds to Iten A.14 from the NRC Structural /

Geotechnical meeting of January 11, 1984. A response to

.this item is attached, t

h l

l l

1 l

l l

l L

l Kl/29-J

Meeting Date: January 11, 1984 Question No: A-14 Question: Assess and justify that the current soil modeling for the intake structure adequately accounts for:

~

o Soil property variability along~the depth o Sheet piling o Layering of soil including inclined layering Res ponse:

l As requested by the NRC, independent finite element analyses have been _ performed by Bechtel to verify the adequacy of the current design requirements for the Service Water Intake Structure (SWIS). Figure A-14-1 shows the plot plan of the SWIS and the adjacent sheet piles and cof ferdams. The gene-

.' ralized North-South and East-West cross sections through SWIS are shown in Figures A-14-2 and A-14-3, respectively. To con-firm the soil properties and soil profile offshore of the SWIS, four additional soil borings were performed in May 1984. This information was supplemented to the existing boring data to develop the soil profiles which were used as the basis Tables for the c ,

soil structure interaction . analyses described herein. _

i A-14-1 and A-14-2 show the simplified dynamic soil column models used _ for the seismic soil-structure interaction analysis (SSI) for the West (River) and East (Landward) side of SWIS area.

1. Evaluation Procedure A total of ten separate seismic soil-structure interaction (SSI) analyses of the SWIS were performed using the finite element method (Table A-14-3). Each SSI analysis consisted of a free-field deconvolution analysis followed by a finite element interaction analysis. The interaction analysis L takes into consideration the coupled ef fect of the structure' and the supporting soil. The computer code FLUSH was used.

The East-West and North-South soil-structure models used in the analysis are shown in Figures A-14-4 and A-14-5, respec-tively. The vertical SSI analysis is performed using the model shown in Figure A-14-4. It is noted that sheet piles and cof ferdams are explicitly represented in the soil-struc-ture interaction model as appropriate. As the slanted soil l

layering is not significant (less than 5* ) discretized l

horizontal layers with average layer thicknesses are used to represent the soil strata in the finite element SSI model.

l-l

- - .A--.- - -_ _ _ _ _ _ _ _ _ _ _ _ _

The following criteria were followed in the development of the soil-structura models:

A. Depth of Soil-Structure Model o The model depth is greater than twice the base " dimensions. [

o The fundamental frequency of the soil stratum is well below the otructural frequencies of interest.

o Thn input motion at the base for the discrete soil. model produces the specified design spectra at the control point (input level) of the soil profile in the free field.

B. Side Boundaries of the Soil-Structure Model o Transmitting boundaries are used where applicable.

o Where transmitting boundaries are not used, the distance of the boundaries to the edge of the foundation is kept equal to or greater than three time the base slab dimen-sion.

~

o The aspect ratio of finite elements is increased in a ,

gradual way from edge of the foundation to the boundary.

o Elements in the neighborhood of the foundation are kept suf ficiently small to reproduce adequately the static stress distributions and to transmit waves at all fre-quencies of interest.

The SSI Runs 1 and 2 were performed to determine whether the land-l ward side or the river side soil column will provide the governing l

SWIS responses. Similarly, the SSI Runs 1 and 3 were performed to investigate whether the upper bound (30 f t) or the lower bound (10 ft) kirkwood clay layer thickness will provide governing SWIS res po nses. The ef fects of soil property variation on the SWIS responses were evaluated using the results obtained from the SSI Runs 3, 4, and 5. The SSI Runs 3 and 6 through 10 were performed to develop the seismic structural -responses due to the SSE and OBE for the three earthquake directions.

-2. Results of Evaluation l A. Landward versus River Side Soil Column Figure A-14-6 shows the 2% damping response spectrum comparison plots for results obtained from SWIS SSI analyses performed using the simplified landward and rive rside soil columns. Response spectra obtained I -

1 l

_ }

Y b

4 A. Landward versus River Side Soil Column (Cont'd) i

. I from the SSI analysis using the landward side soil column generally envelop those obtained using riverside soil Since column except in the frequency range around 0.9 Hz.

the differences is spectral acceleration at 0.9 Hg range

- ~ are of no practical importance to the design of the SWIS structure and the piping and components insids the structure (there is no equipment or component in this frequency range),

the use of landward side soil column are, therefore, judged to produce conservative SWIS responses and has been selected as the free-field soil column for the SSI model.

B. Upper Bound versus Lower Bound Kirkwood Clay Thickness As can be seen from Figure A-14-7, upper bound (30')

Kirkwood clay layer thickness provides more conservative SWIS response. This upper bound thickness is used in the subsequent analysis.

C. Soil Property Variation The ef fects of the upper bound and the lower bound soil properties on dominant spectral peak frequency shif t were evaluated for two typical elevations of the structure.

i The results are as follows:

Upper bound Lower bound-Elevation (ft)

- lit 93 (operating floor) +28%

- lit 135 (top of SWIS) +44%

l-Therefore, results of soil property variation studies (SSI Run 3, 4, and 5) confirm that the existing response spectrum broadening criteria (+50% widening of the dominant spectral-peak) used for the SWIS are conservative.

D. Design Basis Analysis Results Based on the conclusions of the parametric studies discus-sed in Items A, B, and C above, additional SSI runs are made to develop the response spectra in the two horizontal and the vertical directions for both the SSE and the OBE ca se s. Figures A-14-8 through A-14-25 provide responseimped-spectrum ance approach comparison plots for the design _ basis, the(half-s for the design basis The response spectrum comparison plots and the impedance approach analysis results were presented and discussed in the response to NRC Audit Question -No. A-16, Meeting 1D ate January 11, 1984.

WHC/es

- . Fl(41)'

J

D. Design Basis Analysis Results (cont'd)

In general, the Bechtel FLUSH analysis results are in good agreement- with the SWIS seismic design requirements cur-

. rently being used in the project. There are some exceed-ances in the frequency ranges approximately 1-to 4 Hg and 15 to 20 Hg between the Bechtel FLUSH and the design basis analysis results. These exceedances are listed in Table A-14-4. The ef fects of these exceedances are evaluated for the combined responses in three directions using the SRSS approach and compared with the design basis results. Table A-14-5 provides these comparisons. In all cases, these variations are judged to be minor. In areas where multimodal analysis is performed, the effects of these variations will be further reduced. It has been concluded that the variations between these two analyses are within the accuracy of analyses and can be accommodated within the design margin.

S F

i WHC/em Fl(41) o h..

.s .

t TABLE A-14-1 SIMPLIFIED DYNAMIC SOIL NODEL (RIVERSIDE INTAKE STRUCTURE AREA)

POR SOIL STRUCTURE INTERACTION-AVERAGE SOIL PROPERTIES Go K Damping Sat rated Curve i Curve Elevation thit Poisson's (psf

- (pleet, PSBEG ..

Datum) Thickness Soil Type Weight Ratio A n xlk) From Fig.8 From Fig.

(pct)

(ft)

.2 5 4 107 0.48 - -

4 67-58 9 SP/MI/CH 0.40 45,000 0.5 - 5 8 SC/GC/01 128 2 4 58-60 121 0.43 3,160 1 -

50-40 10 m (oxidized (Vincentown) 3,160 1 - 2 4 m (Vincentown)- 121 0.43 4 40-(-28) 65 3,160 1 - 2 SM (Ibenerstown) 1 21 0.43 4

(-2)-(-46) 18 3,160 1 - 2

.98 (Navesink) 121 0.43 2 4

(-46)-(-68) 22 0.43 3,160 1 -

SM (various) 121 2 4

(-68)-(-100) 32 0.40 1,890,000 0.3 -

Various 121

(-100)-(-300) 200 Notes: (= 4 R Shear modulus at small strains K = 1. '

Value of K depends on strain level. It is obtained from Corresponding curve in. Fig. 8.

G =K4 a D = DampLng ratio is obtained from Figs. 4 & 5 as a function of strain.

13, 1975 Dames and Moore soil report.

Figure numbers correspond to the Figres in the Jme WHQ/es I Fl(41)

TABLE A-14-2 SIMPLIFIED DYNAMIC SOIL MODEL (LANDNARD INTAKE'STRUCHRE AREA) '

POR SOIL STRUCTURE INTERACTION -

AVERAGE SOIL PROPERTIES Elevation Saturated Go K. Damping (seet, Poisson's (psf Curve Curve PSE&G -

Unit sl(8 ) From Fig. 8 From Fig.

Soil Type Weight Ratio A n Datum) Thickness -

.(pcf)

(ft) (ft) 0.48 - - .15 3 5 9 ML (Fill) 110 100-91 0.48 - - .30 3 5 91-74 17 CL (Fill 96 5 96 0.48 - - .30 3 74-65 9 OL (Fill) 0.40 3160 1 -

2 4 5 SP (River Bottom) 124 6fHiO 0.40 - - 5.5 4 5 10 01 (Kirkwood) 124 60-50 0.40 3160 1 - 2 4 8 SM (Basal) 124 50 42 0.43 3160 1 - 2 4 5 94 (Oxidized 121 42*-37 Vincentown) 1 2 4 121 0.43 3160 -

37-(-28) 65 m (Vincentown) 1 2 4 18 SM (ibrnerstown) 1 21 0.43 3160 -

(-:B)-(46) 0.43 3160 1 - 2 4 22 m (Navesink) 121

(-46)-(68) 3160 1 2' 4 SM ' (Thrious) 1 21 0.43 -

(-68)-(100) 32 1,890,000 0.3 2 4 various 121 0.40 -

(-100)-(-G00) 200 NorES: 4 = Air, " Shear modulus at small strains K = 1.

It is obtained from corresponding curve in Fig. 8.

G = K A Tr, " Value of K depends on strain level.

D = Damping ratio is obtained from Figs. 4 & 5 as a finccion of strain.

13, 1975 Dames and Moore soil report.

Figtre raambers correspond to the Figtres in the Jme Water table two feet below ground surface.

e WIK'/en Fl(41)

1 ,

i I l i \

l \

l l

l 1

(

d n _

u _

n o

o%

t t

- - - x - - - - -

i r5 t e a w1 i

r o/

t1 l l l a

1 l

l 1

_ V g t

y e%

ra x x x - x x x xx r e0 e

p v A1 I o

i

\

l 1 l l

r d

_ P n u

_ l o i

o B% x - - - -

S r5 - - - - -

S e p1 E p S

Y U 1 i

l1 L (lsy 1 A

N sa el A nC N k O cd io I

T u ho -- - x x x x - - - -

C r t t A

R sr t r k r

E t e ey

'0 i 3K I

e 1

N A lls y I m I E r a l sa el t i nC l

U m o k 3

T C s S cd

.io x x - - - - x x x x 4 U i ho tw t

_ 1 S s y k

. T r A- S- l a '0 i E I t

n 1K L I A e

O M S d i

1 n s E a r - x - - - - - - - -

R a U t e T l v C o i R

U C l I

F l dr S i o a E S d

w x - x x x x x x x x K

A E

N I m \

\

l l

I l e E F -

x x - x O g#

n

?

B O

i X

I i r sh R et E x x x T Dr S x x x x - - -

A a S

_ M E \1 t

1 j

1 1

I 1

\

\

I

- - x x en ko V

\i l

i i

i

\

1 1

i ai

\

1 ut qc W- x x x x x x ~- - - -

he E \

\

i1 i i 1

\

1 l

r 1

i tr '

ri aD S- - - - - - - x x - -

t M j si \

I 1

I' l

1 1

l 1

\

\

1 I

1 i

s oy s wla tn cA u

rn t os 1 2 3 4 5 s 1 8 , 0 Sie ts 1

_ lca ,1_)4 i aC r e(

be a

t

.t

.F l .

n i

L

TABLE A-14-4 I

Comparison of Design Basis and Independent Finite Element Verification Response Spectra For Intake Structure ,

I I I I I I I Design I

l Earthquake l Location ofl l Spectral Acceleration i l Item l Key I lExceedancesl Figure I (Note 2)

I No. l Elevation lEarthquake -_l Direction  ; Design Basial Bechtel FLUSH l l Ft. l l 1 (Note 1) l No.

(q) (q) i i 1 1 I 1

1.80 Hz. lA-14-lll 0.85 1 0.89 I 93 .I SSE l E-N l I l 1 l I I I I I I '

I I 1.30 Hz. IA-14-12l 0.84 l 1.04 l 114 l SSE l E-W l l 2 l I l- l l I

I I I I 1.80 Hz. lA-14-13l 1.01 l 1.17 I 135 l SSE I E-W l l 3 1 I I I i I I >

I I I 3.60 Hz. IA-14-161 1.79 l 1.81 l 4 135 l SSE l VERT. l '

l 1 l I I I 1 1 I 18.0 Hz. A-14-16l 1.50 1.59 l 135 l SSE l VERT. I l

1 5 l I l- l I I

'l i 135 I

i OBE l ~ VERT. l 4.0 Hz. lA-14-25l 1.41 l 1.44 l l 6 l i l i  !

l 1 l 1.30 I l 1 135 l OBE l VERT. l 18.0 Hz. lA-14-251 1.24 l I

l 7 l 1 I l 1 -

l l l l WHC/es NOTES: 1. This column identifies those locations where the results of the independent analysis exceed those of the design basis anaplysis.

F1(41)

For vertical earthquake direction, spectral acceleration includes _

2.

the ef fect of gravity load (1.0 g).

l Q _ _ _ _ --

TABLE A-14-5

~

~

SRSS Spectral Acceleration Comparison between Design Basis and Finite Element Verification Analysis for Intake Structure lSRSS Spectral Acceleration Comp'rison (q)(Note 1)!

I l

l Item l l No. l Design Basis (Bechtel FLUSH l Difference (t) l l (B)-(A) l l l (A) 'l (B) l (A) I l j i l ,

-13 l 1 l 2.16 1.88 l l l l l l l -10 I l 2 l 2.23 l 2.01 l 1

i l l 2.09 -6 l l 3 l 2.23 l 1-

  • I -8 l 4 l 2.24 2.05 I I 1 I l

1.62 1 0 l 5 l 1.62 l l

I i l 1 I 1.53 l -7 l l 6 l 1.64 l I

I I

  • I I +2 l 7 l 1.29 l 1.31 l l l _I I I I

NOTE: 1. The SRSS spectral acceleration values include the ef fect of gravity loads (1.0 g) l

! WHC/es i

Fl(41) f

[

L 1

-- '%_ .-'-s_

'w 'w -

TRENC WATERTRENCH '

s SERV!CE W OF 0 CKFILL Sa SOTTO EL. 6 RAL 'BA TU STRUT GR. EL. IO l' -

llpgAg UP

/

/

/

( /

w

/

l TO Lb ? -s.

' 7 WATER

/

' SER VICE CYURE l INTAKE STRU I '

/

/,

o#eer,,,t,

/

ACCESS PLATFORM i

Y h fop \*

f 4.b 4 f 4 4 44 4

$ h hh Wh f / '

h<*

~

O m e , m

  • r-- M t- N y m m N N N N N N N N 100 100 " I l

l i 1 H M- q .3

. y i 90 90 l la I j

g ni l

..o HYDRAULIC FILL mi, n s i ,

l l1 l l l

n l' ,1 li i' ij l

t-W ll !l ' l l l " 80 w 80

. l 4

j

' i J ,

! I i I 1 l l l i ! l' '

l

] f' " '

p '

J '

l 70 2 70 '

,,0.u.,M 9.M i.h " ,y .'

ir I li il + ,w i@ I n d,h!

~

" 31 Y i , ,-

.!N l. @ M ,t _k M,. M NWe

. l i

y ' j,. ..*

  • g' S ,lgl 'gl,g f

" ' ".* g, . pl l;h - e ^^^^M E u m.-."^y

  • ' g } j'O Q^ , @ # 'E'l M I z c:

ft IQ a diWRP'F4

. P,*JtRIVER g80TTOM SANDS ' 60 o so ,' Am j'"' %h ?e 2pp cff -

4 i-=.-

i y f5if?]TEwf%KLi R &gQD ' C L,

.w= M mW.Wsp A Y_Sfgf;gayAygg $4. FATE o* # b k Eik'<

Q'l",T),o<~nA &?5Y#

MUNNN U

tw!*.

  • T[EAS' 'L k$*if.'*7Millb.'*f u $.ANDS m'x.*(**.ofg*:f

~ '

thtl fiy7 q P 1 11 1 p  :

T", "

l

',.l T W}

l i

NN Gfi ' '

?

b M M M L i PW

  • ' I SN 05 I I ' ,

I ,

l l INC Td '

u'.

} Mi n ' ' ' ' ' ' " l i 11 H ir "

T el ' l ' ' ' ' ' '

4

' ..g i

i 5.' A i

'.,.{ ol a o

' ' o

' o u  ;

l '  ; o > > ,

O ' , , - < < > > ,

', u <

l ' r

' i ,

' , i p ii, di5 E

l ,

Ari ,, i i

l i ,

4 ii .

i

h i'

l '.

i i

i ,

7 i

l 1

i i

I ,

i l i i

i d

, h'

' 'i 'i c

i i

) i ji i i g i ' ' i tq i i I

i .

$l 1

M

H, i

l

%;h y ,

M l' li l l M  ! bi g!

l. n.

1 1

l h l I l

i l l ,k l

l i ill l i l fh '

j '

ll il l 0 l l l l h -

bl..l l .

l l 1. 1 l 20 20 MIGRALIEED INR11640UrH CROM N

'I1 5 tO U 5Get SERVECE WA*HER DETAEE STRUCTURE M mm MRA*FING MAT 50N .

NOTES e KEYa, SO O 50 100

1. THE SUBSURFACE SECTION REPRESENTS OUR EVALUATION ' ' ' '

OF THE MOST PROBABLE CONDITIONS BASED UPON INTER-l BORING ON HORIZONT AL SCALE l CROSS-SECTION PRETATION OF PRESENTLY AVAILABLE DATA. SOME IN FEET VARIATIONS FROM THESE CONDITIONS MUST BE EXPECTED. I l BCRING PROJECTED

2. ELEVATIONS SHOWN REFER TO PUBLIC SERVICE DATUM. , g DNTO CROSS-SEC TION I

FIWHE A-14-2 6

'- * * . .. "f

-i.

W- k,,

= _

ni - r . , ,...._ .. _ _ , , _ ,,,,

\

( 1' 'i" .

- \ l w 5- ' '

n a f

. haw "a a- i l

l c ni.

l g

l l a I l 1 l'd  ! I '

i :r

i. j' 'i l p 4

.i - 0 l l l yl mumm sina seq. i C-i i i i

i i i I

g 7et nf.*t h;.k bk$. *?.$h.Ykhhk.'$k$Yh.b l

.. $h.'#??. S ? ? '$h$$ $ ?b r 5 ff 7 h 5 h/ h lh $ $ $ $ $ 6 s M nc

"' .k ' I

/ 4 'I I/ *

! .i "

M4EMVAEWM%W"i-W m"iV X~ ~

~

177%W%WBa%:!k@"

., m ,., ,

m. -_ .- .m.. .
m r, Wut (Q, ,l ,7e

$ r g::nmnurn milm i N N

3i.14,5. .5.rus usu memum en s.n. w = nu meaua c=- GENERALIZED BAST-WEST CROSS SECTION

.n. mu. wa inu==iana w uv.

'"I',E',".UEu""me:E =st THROUGH BERVICE WATER INTAKE STRUCTURE

.a = caus-ucn=

"**""*- HOPE CREEK GENERATING STATION l

, smem emancue == cams-ucn

w. . , we i
3. nnnna ures asu.n amensem coun=s.a musum w I R j l 3.una= ns ,ireatuana w u.ia u. ,, uh --.-

cams ucu m.

FIritRE A-14-3

b is a I

3 i l , , , , , , , , , , , , , , , , , , , , , , m.

2 L ""

!su. llItss l . i l \l;M * * * ' ' - - - - - - - - - - - - - -

d<

b l ki n c- , i , , , , , , , , , ,

g.=

l@ r @

i i i i i i i i i i ,

g# .s i

** * * * * * * * * * * * * * * * * * = = = = .s 01 J ?

=*l=8 1!lili!l'fi

? I { 1 I I li

  1. L"'

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' > - ' i e

i ei' s

.!,g 5

.e<nipg k m p 8 qu i i i i i i i i i i i i < i i , , , , , , , , ,f.

h i i i :t d

W .. . 2:' 2 g

d... . . . o . . 3 . . . . . . .

l l

s'

!E l i  ;

% i i , , c. -

o i i i i i i a i i  :

'g":pl.;.

I c

. .;..ji,iji. .).3. , g 3;. , p ,,, o j , p. , , -'

l.

I

' i

j  ;

t ,H l ,'  !

W i' ' ' ' ' '

1 1 1 1 1 i i
  • 1 F~p-'- TTT, ' .

. . . . . . . 3 ji i j. .. . .. ......... . . . .

i a

, ,j g

, , , , , i . i , i i

, . . , , , , i i i 2 2 2, 2 2; .  ::

.fq;p}... . . . . . . . . . . . . . .

.. .i .. .' .' .' .' .' .' .' e e e e e .- e $ m :'

i v y;;.'.' .' .' .' .'

.' .i .' .' .' .' .. .' .. .' => .' .i e e e e, e : i ,

4 g p; ,.;,i.' .i .i .' .i 0 R ; E.4

r : :l L r t++++  :!, :l :i  : L l r 0, g..Mr g - l i i t ,

, i i i i , i i s g' '

i .. i; y .

w . . . . . .

a p p . . . . . . . . . . . . . . . . .

l ,

i m. ,,i . ,, .ig Gs , i i i i i i . i i i _i i > > > > i q.

~ ,A . a,a gs,,,;

, , i g

,j . e s e q

,t 24,lp, ajAsa x .

h, kr i, o g:44 s  % k , , , , , , . . .. , , , , i i,, ,

.9 , o

7

. . .. . k . . . . . . . . . . . e . . e e e s * . c l, s g

- i4p42 . .y

,s - : m. . .  ;

, . . , , , , ,, , , . g, .

h 4

4.q.g ,1 S gy Mk si 22

.i si s i si ni 1 o

. .i .

. . ., .i .i .. .i .i.i.i.i.i .i.i.i..mi ' .' e ' . ' 'Q, m ~.m _

'..' e'

._lulllllll= ,. . , .".-

'ii . .

g-

,k , . k k, . .,kk

k. k.

k ,, k, ,,,,,e i , ,i

k. . . , , .

I t

< > a ;i T,

O

9 e

I I g

i i v t * =a 3 s- 5 a 11 Il

.N.!llf I 5:

5teIa w - a gl D. ' h h !!  ;

. L L i '.

i j's jj 1: s i i s s a i i a i I g

g!' .

g * * *

  • e

((

ga! ! 1a1a a:,1, ex R9

g:- .

k lid i.

a g !i Y - e g3a 8a 8a sis- aino___.

n

ss ;i i ux s s e e i

e i

e i

e i

e i

e

, s 5

S-}- o o 9 l.J .[1 l ow- inn.u i Js;;p  :.

,i ;s i i i i i i a e

zu m.p:m e e o e e e e i

d .

' I g g 3 g

{';"f @I Q' @' g 3 i I I I D

'"" %'J;i pm e i e' e s e n e a e ,. .,}

j ' ' '

et , , i i . i .i SN  :

y1 'N. \' xN Y \' ' e i

i

, iI ,o e 89 e d o

. * ,$.-l, j.

gi 8 ,

h *.

5

ce-b

'p b '  !' '

kN N h NN(-. .

l , ,

'f 7 ' \ S 4 8 4 5 N

s\ x\Ns 4' *

. \

P => i =

i?"m p, r r .r.

< = T' ,

7 4y .

j.D.A's y a . % s MsN $ s .t\ -

ia i e l g k c, .

,, k N s s t N !s i s i MB 2'- N N' NNN- i

. s

4. .

't r r r  ?

't 4

DhN'Nh'\\\\ \\r. s\ i'i  ! .

-(8:

$[if i *

+

G-- p k,

p P i' iM'Q b

TF \ \\s\sx N N'NN N)1 s

e e m  :

M s a:;4s g

s 4 4 7 s3N 9. -N '

  • p*=71 -7 ". =b 'NM,N \g\ e i vr A wxsN SN r.

%j'4, v .

c.

3- ,g,/.P4 Nu .as x y $ Ni i a n

=. P ica N, x

I ., .[. Fa r

. s

\

l = c

- <. <- aggy e g e e e  :

r .

e\

M I, _, , -

.,-,.m N\'Nx

  • r I

unmx \x

". < < x

$u f e. . . e. u.

e. ingup.r.,h u= - nun e .

< . . a ,

.. i .

i J ) ) ) 1,

.l t i .l .i .l l .l

.M... .l .l . .

1 1 1 1 1 1, 1

,l, i 1 i, . l. .

I I

!I 11=

!!!ilIi1 lEEE$B nl 1111'i ,ja .

L I!! a li s I il,i il- * @ a n I l - t i e i e

a.i  : :

e i . e i .

; i. ; i. i. i.. # .; ; i. :r  !-l  ! f

.t.

i, :r i 5et.. ;;

.i .i e i ei . . .

5 V._--

- vwe er, i.i .i .i .i .i .

mi mi ai mi ai si

.i .

mi si si ai mi mi si 3.i .i x- ri x- u- _TTTT I 4 8

I 1

.i e r e f;l, 1 ..

i 1

.I .I .I .I 1

el 85pqqtl I I

.I .I . .I .I .i 1 1 gEp w

. . .I .I . .F .

j - niil _ ,

i qs l M".

mm

.i .i .I .I .I .i 1

.i .I .i .i .i .i .l .i .i .i .i 1

e .i .i .i .i .s;.,

l i i i i q g= I s a # #

i i a i e i i a a i a s a ,

q' 1 a

l r =

m jj . .

i l 'i O U

. 2 I- =- == . .

.i . . . . . . . . . . . . . . . . . .

wm sg i' .',e'

r. , a 2 - -~ # .' .' .' .' .' .' .' .' .

. ' e' .' .' .' . ' . . ' .' e' 2' i' P. l s q" 'im .i .'..' .'

.' .' .i .'.i .' .' .' .' .' .' .*.5i si 5G : ',

( o i

g a a s a 4 3 e a a a a a

.'..i .

ar i i i 4

y

. .. . . . e l . g - . N. g 44 < s x. i I I I i a i r I I I I I I I s iia a s (Ng e Z

! ] .\

a >q . . . e . . . . . . . . . . . . . . .

. . . R j S. M,

@ w i i i e i e s a s s a a i i i i i  ! t g>*

p s i e!

l

/

4 44 j -

h

h. :!?,

i8 c .

i i a 1 1 1 1 3 1 1 3 I J I I I I J J l j' I h .,g :

3,

. ,1 E E H i

E . . $

e

, s. e

- e e m .' .' .'.' .' .' .' . ' . ' .' .' .' .' .' .' .' .i .' .' .' .' .' .'7 'Ig

.i .' .' .' .' .' .' .' .' .' .' .' .' .' .' .' .' .' .' .! '

.' .i .' .' i i i I I I i i i i i E

17 I I i

g .n

.g A

I i

A i

i 1

J

s. 33 s

. . . . . . . . . . .' . . . . . '3 c

m w

. . . . . . . a e.

o' u-

g. ' . '.' .' .' .' .' .' .' .' .' .' .i .i .' .' .' .' .'; .' .' .' .' .' ;

s 'jgg , ,,,,

s i i i i i i i i i i i i i i q;'

i s

i e i

. . . . . . . . . . . . . . .i .i . . . . .

s i B . . . . . . . . . . . . . . . . . . .. . .. . . g .

l g" '

w .. m.m.m.m.m.,.... . >s,

... ... ... ,3 I - . .. , m . . . . . .. .

.- .. . . > y' . .- ...

ru . .. . . . . . . . . . . . . .

g gliF[ r17 r4 *111;jiijjiiiiiiiiiiiii 1

f f e t t l 1 1 f f f f f t t (

l -

j . . _ _ . .

e e'

O

i t

i gmiimi;i;grijn a IIT .l n 9, ma Tda

,i

[ nu mmmmer en r.  ?

l D

ii s riq DI\fsifilli3 '

i e

T- S Ns;gg

^ '

I  !!l

!!!ilI1111 t

~ '

j sss E 1830908 19@iOha@ ldd--

qq T -

, ~

mg\ 5 \\(% cry \\

5 my simbkhndra lIlIiii IiiI IIIII

J& . a o umm --

cb.i E e

m m e  :

o

}I IdMMMMM3:

maa m!dh\\\s \q r!1 : mius'.m s a

j i+ + nii Tfi .(Mis!I lslif! rd) $ .

f 9 I

fid9\'INhM # #

3

.z y

"35-5 I }Y v8 .n?.a O*E.

an "8

- i e i r+:r s y s s s s s s e m e m i ?

  • I : 2,f ' .;[ .,j;.*,';; j.,r .

f({\ f ., \ ' j g [

'l .' g

.b.,h,4?p a ? $ N ? $.f. 5.. .h.

s I , = ,

  • i .L l .* 2 tq i t ._

lil

' til 'iil u

WiLll 11] ~W ,% f_t!T51T11 i4 '. ' TliT 7 Il *T\

nQQ . lfT T D(e. :.~Yd\* e 7] 3 C f& E fi ,

IV!O f ISh '

mi 'd Icdu J D\\b k SJ $

y&,k h

h1 ern" w n4+9etO m; +

a; sw y _

M_ i i a..'.g Fi fi! E i \\g Z W ~ T Y.

E

/1

&m,:g.a.

h q v.n -

I M rrt hhMMenniN v e g

>I T G 1 G G wunp=q%

$gy9 W l C m

h. k. E a, :

i g f,- m i m rm.m. oms I o

e dW L__L_J,1W . m g - - - -

~ W l+:i 'g ol sa y tj g ,g"-qq;

'T P-K g*

\ rr'mq\h-m*g

  • a 5 E fiI i j sD\h3 hm* Q
  • = r as s: HWiq % fhM ssp

.~

'i * *

  • 5, r..

N mir mrihhhd a rn b s h( g 4' : 1 n w +%... . . .m~. s #. . .g 2 -- 2

,,,,,,,,,,, O I .

?

L. J

10,0 n

gigv D SIDE 9 5 U T O

w UNOWN IWW I>

4 5 i.O J

W ~

U U

4  !\

!1 J J '.

4 - / N.

W i U

0. 5 f

7

  • i

\

's

\

l 4h \R

pl y ... .... . . ..--

l

0. O 5. O It). O 513. O O. I O. 5 8. 0 FREQUENCY ( Hz)

EL. 9 3' -O' -

i 1. 5 l

e RIVERSIDE IlrUT w m 3ppgy - .... _-

b 4 .E.

E  ;'

W l.0 f

    • 1 J

W  ! t u  ;  ;

u  !*j 4 1 J /

E  % '.

o

W A5 '

i N ,

!' \g \ >,

/ \

k' is:

k s ~~..... . . -. ...

}

/

0. 0 EO II). 0 513. O
0. I 0. 5 1.O FREQUENCY (Hz)

EL. I 35' -O' FIGURE A-14-6

  • MOPE CREEK UNIT I RESPONSE SPECTRA COMPARISON.

can,Lo sur s.nav o N -_ _~._ _ _LANOWARD VS. __.__ _ _ _ _ _

RIVERSIDE

.lo S I )

9 l am

  • 3F cIJr l w

BF CLS 1 ...

N -

U >

h 1 a ,

\.

g.

- 1 3 '

b ,

f

/ -

g p

  1. b eg j !

"'? .__... . .. ,_.... ....... .

/

0. 0 8%0 SAO
0. 8 0. 5 1. 0 LO FREQUENCY ( Hz) -

i EL. 93' -O' .

s. s

\

! w cas ir cut -- _

g C

i w .0 A .

U .

E .

2

\-

o

" as ,

/

/ 0 k- m, _

~

, / .--..

/

/

/

0. 0 5. 0 i% e Sh 0
c. , cw s i. o FREQUENCY (Hz)

EL. I 35' -O' FIGURE A-14-7 more casum uset e can Las swt 3,asw e RESPONSE SPECTRA C0tPARISON.

  • * ' ' * * ' 30' CLAY WS1_IO'_ CL_AY _- - _

< l S - ,

L . -

L - . .

E -

rE t '- M C

0

( 4 6 D . r 5 E . .- 0 SUr I

S L 5

_ A F h .-

B LL .

8 B EE

.y G T T 0

I 8 a l

- SC C --

_ EEE DSg '

m

\ N:

~

~

.O

\.\ N-

.'\ 0 O' 0

S3

\

, \ ,. g

% I I9G R .N s A VI

.t > ) PEP 1

L' O z 8 ML M

,\-

, eI

% N . H - O C

EA D 5 ( 4

. N -

Y 1

A T '.

A TAR >2 l '

'gt j

. C

- , N E ,

E U E CR E n Q R E U U P TS

/"f " E

.I R G SCS

/

f

/. !

Yl F I F

S U

E R ,

S t

!lll 0 N ST-N 7.' ,/ O J.' # 1 PE

/ .>f SK

/ . EA

_ j( /' RT f, 5 N

I j

, ' ., / O

/

. h

./.

8 o

v O

s 5 0 5 0 7n s .

l

. I 4 O e3 s

uv aae ss s 4

,E~D zOmF4gWJ5U4 a4 6 owe

- ass caw s .z L

rn/

oav eco s

b;!I!!

1

~ --

I

~ - -

L ; - -

E E .

r C -

O h

( 0 0 M I

S U5 E .

- 0 P 5 I

S L AF S .-

S LL -

GNET ET -

I NN -

SC C EE E DSS Y-

,O O

N-i[

. O S '4

. 0 I l

G s I RI N A .I

, .\ '..' rn PVP

)

z MEM

,1 Y O

. H 9

OLA CED

--  % 5 ( 4 A T V.

s 1

Y

.; C A

RA2

, N T

\ E U

CE E ERE Q R PUS

[

? a E U STS R

"ry i

- G C F

/

I F EU ,

/ SRS y

/

/

'f' P 0 8

NT-OSN P

SE EK

/ . RA

/ .

T N 5 N

/ . I O

/

/ y, .

lp o .

I

. I v 0 z O O 0 O Tn I .

3 2

. I L Ms ur Ku Es E 4 nh ZO.><EWJWoU4  :.4EpuWE# n48 mt-a m

s - .

e4/

L0 t .2 ro/

oa7 pc0 4 I i ,1 11Il! l;I' i1i!1 .!ii;.'!<\!1iI 'Iit.i'l1 li!

i' ,:

' .)1 L

= --

x ---

3  ; -

. x L -

L E xEC .

f .

h=

I t I

B A .

0 s D .

S 5UPE .

0 I

S L d . 5 A F b .

B LL . =

N E T TE .\

G4 H l l

&C C EEE DOO ~

- , O"

\* N-

.m

..s -

0 0

O' 5 S 3

\ ,k 4

I G s R1 N g '.\'.

W A .I PVP

!:iY\' ' ) 0 MEM

&( 0 z

.OLA 1

.,1

,, ..- N I 5

. H

(

CED 4

N \

\

Y 1

AT%

3

(% C A T RA2

'- N CE E .

U E ERE Q

g i,,, A E R

R PUS U STS G C j/ # F

., , /( I F EU ,

SRS

!:;::l- Y[ NT-0 OSN e!l [ 1 P

SE

/ Is .

EK

( / J RAT

../ f 5 N

',:.N'i- . I

) 0

[ :f fW hc 0

t W

O

E O 5 0 7 R S . s l

. l A 0 n3 uT see Es E 4 a,w .-

Zo.44="

. Woo < 8

. E uWE* naS eeV L4

. t .2

' rn/

oa7 sc0 e

' .l$i< ii;' :l! b  !- > > .  :  !  !  !!i i!:

.' ' s  ;' i L  ; --

L' .  :

t E p

3 t O

(

m i - .

$ 0 ISU 5 S L A F .

B LL

_ t s EE A iT T

_ kI I u -

scc

_ EE t doe , -

__ ~

1 \ , O'

%' ., N-

,\. o O'

.." o

. S3 s

s

% I I9G R .N

(. .t. A VI N ) l PEP z MLM

\u

' m O O EA

- . I

' . H C D 5 ,

>h, ( 4 1 T

, \ Y - A A Y.

\ 5 C R 2

-g

( N A TE

- E E CR U E U E f . j Q R PTS

/, > E U S CS R G 4- ): j F I U F, E R ,

S T-W

_ - f

. .i,
T o N S-E

! / f .

O J

/

)f

'. ' , .. SK s( ,[ EA

/

' .lsy RT

_ N

..# 5 I

/ /. /. p o

[ .

/

I o _

. v E

S o 5 o o Tn.

_. l e B 0 o u3 u.T

_ nw

_ Es E 4

~ @w 22>4awJ.wou< ,<EtwEe  ;

n7s L

c3w E,

Po oan Hco

N-D - -

L E

S R hE

( GI S

O 0

S U I

S L A F S LL N ~

x 5

t e EE G T Tes -

I x

SOC I

EE E DSB

_ .\s

0 N-

,t:( O O*4 4 0

. S I

\ '.' I G g .

. u I RI N bIi A .I PvP O

)

z 2 MEM

_  ?

N k . H l

OLA s 5 ( 4 C ED*

Y I

AT%

A k

\ C N

E A T R A2 CE .

. \ *\ U E ERE e/ j\ -

Q E

R R PUS U STS K,J.. 1 ,

F G C 1

i I F EU ,

-- SRW

- [ NT-

![l i* ,f 0 OSE

?

ly P

'l  ;/

3 SE

_ EK RAT

. /

/ f/. s

]

  • 5 I

N

) O f( ..*/

. ., /

/ " -

/.f-I o

. w 0 E S o s

5 0 ta o .

C O

. e.

s3 l

i u.r nu Es E 4

.. e, g . ,_4gWdoE eE>UwG* .

n38 #

c40i s .2 m /

em7 sc0 e

! , !lIl'l,; l!l, i i ,<  ! 1I  ! ;i*I4I\  ; -'}.; fi!I  !, ii! ' :

h-S L - ,

L -

M B

. O m

R .

i I .

S 0 3 M 1 5 S L A F B LR ,

t e E E G T TN

. (

I I I  ;

SC C EE E DO S  ;

'  ; ,O'

\ 0 N-1 t

  • . O S '5

\ u 0 I 3G i

% 1 R1 A .I N

i.; ng L;I V PVP 0

)

z 3 MEM x'.i\ ).1' \ i. H 1

OLA s1 <

t 4 5 ( 4

- C ED

\' Y 1

AT%

s

\

C A

RA2 N T CE .

i* E U E ERE Q R PUS e E R

U STS G C k [i 7 >

! i F I F EU .

SRW NT-0 OSE q .

P SE l

if

/f EK

_ /r

,l RAT in7 N 5

. I

_ O

_ I ta {

'/ l

  1. .f

_ !t $- -

j/ -

Y]

_ S 6i t

o

. I W E

o o

  • 5 T R S . I .

o c N3 8

' U.

T KM Es E a h R3n

- O

  • zO.Y4EWJ. WOO < a<E>OwEe Cso E L.n P

Oao ,s Mcs

, l  ! I- .1 ii!! ,1':l i

- !(j4!  :! ji;<; i;]j1l  ! fl4 l4 Ii :i jlj9 I

x --

x -- .

) -

L  ; - -

L E : E .

WxI S

C I

A 0

( 00 D .

5 E . 0 5

5 U 3

L P 5

4 F h 8 L L - -

t e EE T Tt

(-

G I e e l

SCC EE E DSS .... ,~

h 3+ ,

..'t'

, O"

\ \*-

N 0 N-O'G

~

~

g 0 S3NI

\ I 9

.PM

,\

\ b t 1

R PEA A V

' h

%,\

  • . 4 MLD

)

0 z O E 1

f

. H - C  %

5

% (

T 2

.I 4

., g i

. Y C - AA R .

./ / "l N E

A TE E S

,.I*!

E CR

", l f' U Q R EUS lc E U P S T .

C

  • 'l M

R G L F UA

/ l*

j/l -

I F ER STC I

.'j't 0 N O ST

/

, . 1 P

S EE R

KV j ., /

EA i

>f ., p

) ', RT g , F 5 N j f

, j .

I 0

/

9

/

8 o

.  : v g

O O

g O 5 7 s n.

5 . .

B

. l O O w3 L

i au cs s 4 aO ZO=p4EWd 8* J<E>UWa.* ass car La t .a ro oav e

tco l < .: I!  ; , i .

i i :i1

x --

x 3 - _

L : - .

L E

P

CE ' .

f s h s

( 48 a . O. _

5 ED 0

SU S L F 5 _

I .

AFR B LL 8 EE ~ --

8 T Tt -

MNi SC C MKK 7

.O I

N-D'Q.. 0 0

O'G S

I 14N I 8

RI P A .M PVA

. ) 5 MED

.. n 0 5

z H

1 OL C E%

y r .

. ( 4 2

- Y 1

AT ,

- - RA E

.. r C N

E A T CES

/' '

U O

E R

F E

R PU G

U ST ERS CL f EUA I

' F SRC

. NTI

., OS TR 0

P i

- 1 SE E EK V RAT

/, g~ .

.u 5

0 N

I p

/. -

~

  1. I

~

~

- ~

~

O a

.  : V 0 E t

0 O 7 f.

0 0 5

. u3 5

3 t

. uT 4 KH ES 4 E

s) Zo~Y<EWJ. Woo 4 J.4E>uwIW L n68 e0, c4/

L0 E ,2 rD/

. oA1 wC0

2 x ,

u ;- ..

L E ; E , -

Ps C .. '

t; Ae l 0

( SN ED 0 5

5 U 3

L P

, 5 A F k S LL y e E E e . \k_

G I 6 T T 4

H k S C C .

MKK -

\ G ,

\. \

N-

, O" s' 0 O'G 0

S 5 3I N

.h::i s I

,~ * (

8 RI P g A .M 4

PVA 0

)

z 6 MED r H 1

OL 5

4-C E%

\

V (

2

. n Y

1 AT

. e 4 C -

A T RA E y:r J N

/;. j( E U

CES E ERS l* Q R PU f.! $. E U ST ,

.r

/

lr R

F G CL F EUA

  • / I

/ SRC NTI T 0 OS R

.f -

P f ,

/ EK

2,

'f RAT

/

  1. ' 5 0

N I

.- 9

/ :S.g '

o

. ivE 0

o vR O O . i.

0 n3 1

1 uT nH ES c 4 2 ~p.4Ewymuo4 J.awuI

. a4S /

nO c50 s .2 t

ro/

oa7 ec0 s

, t ;$ s- , . ,.

' '; . ,i. ,

-N '-

3 -

L L = -

M h

( 0 O

4 .

S sU .

0 i

sL .

5 A F .

S .

G t

e EEL TG T 3 I H

$CC EEE OSS =

- =

\ *

.O

.g\

\= - 0 N-O*

S3

,,* - 0 I9G R

- I

, . ', l A v. N I P E P

\

.,' , ) 7 g O z MLM O EA l

. H D

- , 5 ( 4 C

- 'T A A%

1

= Y -

.! C R 2 h ,\ N E

U A

E T

CRE.

Q R EUE U P TB f

tl . E S C O

' .[ R F

G I

F E

S U,

RS

,'jl 0

N ST-N f O i[j 1 PE SK

? EA

). RT

., 5 N I

p O

, #r -..

I o

v 0

s O 0 5 0

Ta t .

0 0 ns 8 8 u

w. TH Es E 4 aw gO~><EwJ.wuu4 J4Ioham s .

nvs

. esr La

, s .a eo oav 1I ^ ' , , ,' ; ;: ,.

wco:

- l -

U L

E -

M R

C e

s

- O

( i a e t p .

st -

- 0

$u S L e l -

5 AF B S .

L s -

t a E t -

T He n

\;-

C I

SC C MMM 1 - ,

0 0

N-

. O S *4

, 0 1

I i

G n.

RI A .I N

PVP z

- s ) 8 MEM 0 z l OLA

. H - C ED

\ 5

- (

4

., Y 1

ATX

/ ,

C A

- RA2

.. N T

- E E

CE .

D U Q

E R PUB ERE I

U STO R

G C J

f-j- F I EU F SRS .

' NT-

/ s 0

1 OSN P

/ SE g, EK

/ S RAT N

s 5

,l

. I

_ O

/*e =

=

/p 0

I l

. Iws 0

0 o ,

0

. T I n.

O. . 3 0 N3 3 2 U T

Cu 8

Es

_ E 4 D* .>4Ela.wUu4

.- e . .

s a.4E*on&m a Ra4

. (' n . Ca#

_ L0 E.9 Po/

_ 0a7

- ,cG 0

_ iI iilj i;i l ',i4 1ja

= --

x ---

2 ---

I -

L : -

L ..

E2 EC r . .

B;

( se M .

O D . ,

S sE s . 0 S L r I a

. 5 A F t .

S LL .

t E E ..

eT s T t a I I

.=

sC C EE g OOg .

=

=

,L - . O' N-

+

_ k O O'5 O

S

\'

,Y I

I 3G

'.,^

., RI A .I N

s

.\,

PVP 9 MEM

)

1 Q O z l OLA

%' H

~

~ N 5

(

Y 4

I C ED AT%

l' 1 J *N C N

A T RA2 s E CE ,

- - U E ERE

l A Q R PUB E U STO

, R G C

_ . F I F EU.

l./, SRS NT-f 0

OSN 8 P SE s./ EK

)' RAT 5 N I

O f

3,

/

  1. g 0

t

. v O E

- 5 0 5 o Tn t .

1

. 8 O o e3 s

uT Ku Es E 4 aDw 2Oe>4EsJ.aUu4 G

e s a t a

i uasa*

. a noa c7r Lo E .z Ppe oav nco

- I i!i'1 i, 4ii i :!la: ,J < , l I. jii i :i :J i)j!ij! il;jl;q!

' t'  !

- ~

- ~

L--

)

L'-

E E rL B

Cl f

A

. O

( l t

D . .

~

S 5 E 0 I

S Ur L ._

5

_ AF t S

LL -

I I

E E .L G T Te I Nl SC C EE E DSS

%=

~'  % .O q N-s'\ --

O 0

O' S3 I9G 8

R .N

% A VI

% ) 0 PEP M N, O z ML A 3 5

. H 2

- O C

ED

( 4 I T Y A A%

N C N

E A

- R TE .

2

- -- I) U E CR

< Q R EUE

" E U P TB S CO

_ R G F I U .

F E R -

_ . S W

! 0 N ST-E i O M I PE

- SK

/ /

4 P 5 EA RT N

I

. O e,

j M[

I o

.  : v 0 E 0 g O Tn 0 . g O

. t .

e s3 8 I u.r Ku Es E 4 D

  • b . >4EsJsuo4 4~ n n J4E>Ug

- a .n gae Rse a a Car La E .a Pn oav wco

.  ! ,4 ;51:  ! )i i;l.l:j  ;!1 i:i IjI

g* 9

?

\ '.

~

s O e

\

o

' h fd 1

\% - .

[ 't ,

i O 4

, . - ~d M*

y- i '

g-4 r

f n

) O

.s ,.,

s r 0,\

a

/ y

  • q%

! /

s r y f'.. .. Gh

% t

  • S t w als i

1 ._..._

%e s .,

  • N 4

N g =

g 1 e ,

N k O x  %<

s

'\

O s -

O . *, -

b

\

e "

  • a ga

.g

\ to) #gg43Y $9gkN 4%

O

\

\

al

-- I u

L E E e

h R

I

. O A .

( ll D . .

SEE I A r g

0 5

SRt a

t LL s EE s T N

4 E W J.W o u 4 i o ais c T. t w mo.a / aT co ! ,  ! .: ,:)iii  !< :!  ; l i' ill1ii;} !1 ji! u - ) - . L - - . L ' . E - . 8 rE h CI A O A . ( fl D . - . E E 0 5Ur 1 5L . 5 4 Ft S LL - I I EE f ff v Gf I I a - SCC . EEg DSa .-,- ~C ' m . \ 'w\ , 'O NG - \ O O . O S '3 N I9 I ,, \( I R AV M .P _ PED A - ) 3 O z 2 ML , N . H - O C E  % -, 5 ( - L 4 1 T 2 AA Y / "f C N E - R A T E E B E CR

  • //,i U Q

E R E U S PT U O . R G C L . F I UA ER f.' */f, F / STC I O N O ST . R -,- 1 P EE // j

  1. j.

S EA RT N KV 5 ! 5- . I p O / >/ s:W 0 I . svs O t 5 O O . . 7 s. O. . 0 O u3 I l u _ t au ss s 4 >4EwJ.wuu4 J.4EHowgot as8 i . ca/ L0 s pn/ .2 oa7 nc0 i'{i , ' ii - ). - - s , - L - , E - E - P WC ( e Ml I I O 58 5 I - O 8 4 E - S L P - 5'F 4 B - 8 LR t e EE s  ;- G TT s t I a e SC C x MEE SB ~ 1 ,O -.'D O NG O S '4 N 0 I i I 1 RI PM - A . - VA r r; O z 5 . H ) 4 2 WED OL dEX 2 1 t ( 4 Y 1 AT . C - RA l g., . N E U A T E ER0 CE8 E - Q R PU _. .t E U ST . R / F G CL F EUA I SRC NTI T _. O OS R P SEE _ 1 a; EK V _ - ... RAT N . 5 /.- ... . I - O Y. s - 0 3 . v O s O o, 0 im O . ms. L 3 0 L r Eee Es - E 4 .. O* b.>4gtsJhUo4 2.4E>osi4# a s n mse carLo i . ,.1!i J !i: :i! 1 'i'i;ll .' ;  :;i1i f \i;i1 ,l1!f'!!!I: ),iI mo.a an co li - a .- e 4 u-E e.E a e a m.E c se e a a o 1 n r . ss sE o mFur t - S o nE LL oTT E s I i I e ~. b _ sC C sE E oBB . y' , ,t ' , O" l O NG O '5 N S - p'b o I 3I , 'q ', >\ I R1 P A .M E PVA r ' o. Hz ) 5 2 MED OL CE%2 5 ( 4 4 AT I m Y . C - A T RA E .* ./ N E U E ERO CEB Q R PU E U ST . R G CL _. F I F SRC EUA [/ /* o NTI . OS TR P S EE / 1 / /, .'.. # . EK V RAT /  ; / . 5 N / .'.:: . I 4* o /#'& .. I o - iy o o _ s O o 5 ta a . o o u. n3 l s ui nu Es s 4

  • M E. 4EwJ.wuu4 s.4E>uwa.* a2s cTr Lo s

po/ .a _ oa7 _ nc0 I, ,4iI<:ij:!!'  !;i J1 I'!j;l ) i{]!!ii,i l  !:J' I1!i!J HCGS DSER Open Item No. 4 7 ( DSER Section 3.8.6) Rev. 1 BASE MAT RESPONSE SPECTRA From January 10 through January 12, 1984, the staf f met with the applicant and his consultants to conduct the structural audit. The audit covered each major safety-related structure at the Hope Creek _ Generating Station. As a result-of the audit, the staf f identified 39 action items. The applicant has submitted preliminary responses to 22 of the 39 action items. The staf f is in the process of reviewing these . responses. The final resolution of the action items and any additional questions, which may be raised further, will be reported in the Final SER. The resolution of these action items will be needed before the issuance of the Final SER.

RESPONSE

This item corresponds to Item A.3 from the NRC Structural /

Geotechnical meeting of January 10, 1984. A response to this item has been adbmitted to the NRC by a letter da ted February 17, 1984, from R. L. Mittl to A. Schwencer. As a result of discuss-ions wi th the NRC s taf f, a revised response to this item is attached.

K51/2-40 1

i 1

m -7 9 0 '. 0 S 3 9 5 Response to NRC' Audit Revised Response Revision 2 Meeting Date: January 10, 1984 August 3,1984 Question No.: A-3 -

QUESTION: Provide comparison between basemat response spectra and regenerated response spectra at basemat.

RESPONSE: Comparison of spectra for 2% damping was provided in the original response for both SSE and OBE cases.

ADDITIONAL

- INFORMATION REQUESTED: Provide the same comparison for 5% damping value.

RESPONSE: Figures 1 and 2 provide the comparison between the response spectra of the defined input motion and regenerated response at the basemat elevation. These spectra were generated for 5% damping and show the comparison for the SSE and OBE events, respectively.

A 12 Hz. cutoff frequency has been used in these analyses. As observed from Figures 1 and 2, the match between the two spectra are adequate below the 12 Hz.

cutoff frequency. The adequacy of the 12 Hz. cut off frequency is addressed in a separa'a response to Question A-12 from the audit meet' g on January 11, 1984.

The spectra for the input motion at the basemat level is obtained from Section 3.7.1.2 of the Hope Creek FSAR. Justification for the adequacy of the response spectra for the input motion versus the R.G. 1.60 spectra is provided in response to NRC Question 220.20.

Comparison of the response spectra between the regenerated motion and the R.G.1.60 spectra for 5% damping are provided in Figures 3 and 4. These figures correspond to the SSE and OBE events, respectively.

L

-a -- --- . - - - - - - , ,-, ..we,-- , . - - . ,, - _ _ . , . . , - - - - - - .

Revised Response January 10/A-3

.- 5% Damping Input Motion y*" -

Regenerated Motion x

o s /

'g. . s. - - a g,g ,

lr, ,

_a s

'd \

y. -

~. -__ =

.n ,

c FREQUENCY ICPS)

SSE CASE - AVERAGE S0ll PROPERTIES C0ffARISON OF RECOVERED VS. INPUT MOTIONS '

ELEVATION 40.0 FT., FREE FIELD 110PE CREEK Soll STRUCIURE INTERACTION figure 1

v.

-5 mb e

  • ~ v/

Em e 2 I s t

K <.

es ee

-oT u -

"~

&2 .

it u 8 I 33 &*

=F i

m .e

. ~ = -

z E7'  !

i

, o l /

, i i .- m g

m i.-

z wEc o

+ a -

E >- w +

cn

.. ww-a a. m

= - oz U E

m L

a-w CL. W c u amm a ce g 8 . - . :: y M o -

m >- M C3

  • wH MH u w=w uz 4 z 6 WWe cc O
  • u- es

= wwe  % e

,C EW" UW

=

2 ew5 o- "

w w WD

- m c. "

<5<

www ou

-a www D 85  %

  • 8 w

, en t

C

' in

~

F (D) NCI1Sh31332b J

Revised Response January 10/A-3 e ee -

57 Damping g e es -

z , Regenerated Motion

[,,

a R.G. 1.60

t. . M =

f N ta,l

_ s u, ~

o , s s

y.n .

's, c

1, .', -

. 's FREQUENCY ICPSI t

l t

SSE CASE - AVERAGE- 50ll PROPERTIES COPFARISON OF RECOVERED VS. R.G.1.60 MOTIONS ELEVATION 40.0 FT., FREE FIELD

  • l l

l _ _ _ _

Js -

Il0PE CREEK r i SOIL' STRUCTURE INTERACTION i

l r igure J l

a Revised Response

  • January 10/A-3 s ee -

en -

Regenerated Motion 2 5% Dancing . ---- R.G. 1.60 2

F ' " -

Si d,

U.n -

s, h a a h a a a a I & A A A E A FREQUENCY ICPS)

OBE CASE - AVERAGE S0ll PROPERTIES CONARISON OF RECOVERED VS. R.G. I.60140TIONS ELEVATION 40.0 FT., FREE FIELD '

~~~ ^ -~~ ~ ' -~

2 Il0PE CREEK r -

SO Il STRUCIURE INTER 0CT10N L

Figure 4

HCGS Rev 1 DSER Open Item No. 51 ( DtiER Section 3.8.6)

COMPARISON OF BECHTEL INDEPENDENT VERIFICATION RESULTS WITH THE DESIGN _ BASIS RESULTS Frca January 10 through January 12, 1984, the staf f met with the applicant and his consultants to conduct the structural audit.

"The audit covered each major safety-related structure at the Hope Creek Generating Station.

As a result of the audit, the staff identified 39 action items.

The applicant has submitted preliminary responses to 22 of the 39 action items. The staff is in the process of reviewing these responses. The final resolution of the action items and any additional questions, which may be raised further, will be reported in the Final SER. The resolution of these action items will be needed before tho' issuance of the Final SER.

RESPONSE

This itas corresponds to Item A.13 frca the NRC Structural /

Geotechnical meeting of January 10, 1984. A response to this item has been submitted to the NRC by a letter dated August 3, 1984, from R. L. Mitti to A. Schwencer. As a result of discussion with the NRC staff, a revised response to this item is attached.

I l K51/2-58

R3viccd ROCpongo Revision 2 Meeting Date:- January-10, 1984 . August 3, 1984 Question No: -A-13 Question: Provide comparison of Bechtel Independent Verification Results with the Design Basis Results.

Response: ,

As described in Amendment 1 of the FSAR (Section 3.7.2.4),

three independent seismic soil-structure interaction analyses are performed for the major plant structures. The design basis analyses'are performed using the finite element method by EDS Nuclear, Inc. (presently known as Impell Corporation).

Independent finite element soil-structure interaction analyses are subsequently performed by Bechtel to verify the design basis analyses. In addition, in accordance with the requirements of the Standard Review Plan, Section 3.7.2 (NUREG 0800), impedance approach (the half-space) soil-structure interaction analyses are performed by Bechtel. The analytical method utilized for the impedance ~ approach seismic soil-structure interaction analyses of power. block structures and service water intake structure is given in FSAR Section 3.7.2.1. Figure A-13-1 summarizes the division of responsibilities for the seismic analyses. The structural models and soil properties used in the analysis are given in Appendix A.

Figures A-13-2 to A-13-37 show the comparison of the response spectra ' (2% damping) obtained from the above three seismic soil-structure interaction analyses. Discussions of these comparisons are as follows:-

Power Block Structures I. Comparison of Design basis and Independent Finite Element Verification Response Spectra Bechtel's independent soil-structure interaction analyses are performed using the. computer code FLUSH. The results of independent finite element analyses are-in reasonable agree-ment with those of.the design basis analyses. As can be seen f rom Figures A-13-2 ' through A-13-37, the horizontal responte spectra obtained from the independent finite element analyses are generally enveloped by those obtained from the design basis analyses except for the frequency range lower tnan 2 Hz. The vertical response spectra showed some exceedances at the frequency range of 18 Hz.

These exceedances are listed in Table A-13-1.

The effects of these exceedances arc evaluated for the combined responses in three directions using the SRSS approach and compared with the design basis results. Table A-13-2 provides these comparisons. In all cases, these variations are judged to be minor and can be accommodated G5/48-1

s .

I Revised Response to NRC Audit l 4 Page 2 4 within the design margin. In areas where multimodal analy-

, sis is performed, the effects of these variations will be  ;

It has been concluded that the variations

~

'further reduced.

between these two analyses are within the accuracy of ,

analyses and can be accommodated within the design margin. j II. Comparison of Design Basis and Impedance Approach Response Spectra The peak spectral accelerations obtained from the impedance I approach analyses are generally lower than those obtained  ;

from the design: basis analyses. However, these response l spectra are not completely enveloped by those obtained from the design basis analysis, especially in the frequency range between 1.0 and 3.5 Hz. Also, there are some local exceed-ances in the higher frequency range, as shown in Figures i A-13-2 through A-13-37. [

f As discussed during the NRC Structural Design Audit, dated  !

January 10, 1984, sampling studies have been performe'd to confirm the adequacy of the plant design. Table A-13-3 i describes the criteria used in selection of the samples for  !

this study.

The results of sampling studies are as follows:

1. Structures  :

All major reinforced concrete shear walls at the base of the reactor building have -been evaluated for seismic '

forces and moments obtained from the impedance approach analyses. .These walls' represent approximately 40 percent i of the total number of shear walls in the reactor building.

The actuel shear-stresses resulting from the impedance ,

approach analyses were evaluated and found to be lower.

than-the design basis stresses.- Table A-13-4 provides the comparision of shear stresses at El. 54'-0. Tables A-13-5a and A-13-5b show the comparision of impedance approach and' design basis moments for OBE and SSE cases.

respectively. The. impedance approach moments exceed the 1 design-basis moments at a few wall locations'as identified on Tables A-13-5a and A-13-5b. These walls were reevaluated i and the resulting moments were found to be less than the  ;

allowables.

i Th'e auxiliary building seismic f orces .and moments -obtained- J from the impedance approach analysis'are less than the >

design basis' shears and' moments. Therefore, no further i evaluation of the auxiliary building: structure is neces- l sary. -

Based on.the above, it is concluded that the as-built i power. block structures can accommodate the loads'obtained

'from the impedan'ce approach analysis. ]

i a '

G5/48-2 -

a 4

i '

m m.

} #

'>l l~ >

~ 3 . - .

. Revised Roepon00. to NRC. Audit. -

', s <

'Page 3 a

, 5 2. Equipment-Y

~

. 'The effects of?the impedance approach response spectra was evaluated on 26 types'of' equi'pment. The selected

/ ' items are located in the . areas :where the impedance ' approach

~

spectra were found to have higher spectral accelerations

. fthan those of the design ~ basis response spectra. ..Each' equipment was evaluated in accordance:with the procedure

., described'in Table ~A-13-3, and the results of the evalua-tion are' summarized in Table A-13-6. .In.all' cases, the as-built equipment designs were found acceptable.

3. Cable Tray and HVAC Supports

, a. . l Cable Tray Support Approximately 200 supports were evaluated. In all cases, the existing designs were determi'ned to be acceptable.

I b. XVAC Supports Over 200 supports were evaluated. In all cases, it

~

was found that the design basis spectral accelerations exceeded the impedance approach spectral accelerations for the support frequencies. Therefore, the HVAC supports were considered acceptable.

4. Pipina and Pipe Supports A total of 10 representative piping system calculations

, were selected out of 64 calculations affected by the, impedance approach analysis results. The selection of these calculations was based on the criteria given in Table A-13-3; The objective of performing detailed dynamic seismic analysis of the sample calculation was to demonstrate that although the design basis curve did not envelop the impedance curves'in the low frequency range, such devia-tion'do not have any affect on the adequacy of existing

, piping analysis and support design. In other'words, . the stresses and loads generated using-the impedance response spectra curve as input are still within the ASME Section III code allowable for pipe and pipe support design.

The methodology used for evaluation was to subject the selected existing mathematical models of piping' systems to the impedance approach response spectra and.to compare the resulting pipe stresses with the ASME Section .III-code allowables for pipe and pipe support design. The reactions at equipment nozzles were compared with vendor's design allowables. All pipe supports were evaluated for adequacy under the revised loads.

. G5/48-3

i Response to NRC Audit Page 4 In all cases, the pipe stresses were found to be within the code allowables as shown in Table A-13-7. Also, as illustrated.in Table A-13-7, the equipment nozzle allowables were also met. The existing pipe support designs were also found adequate for the new Loads and met the ASME Section III code Subsection NF allowables.

This is illustrated in Table A-13-8.

Intake Structure See responses to questions A-14 and A-16, meeting date January 11, 1984.

e G5/48-4

+

4 APPENDIX A Impedance Approach Structural Models and Soil Properties In the soil-structure interaction analysis, using the impedance approach, the'effect of dynamic stiffness of the foundation medium is represented by the foundation impedances, which are functions of the base mat dimensions, embedment depth, elastic properties of the foundation medium, and forcing frequencies.

With the foundation impedance known, the structure-foundation system is modeled by coupling the fixed-base structure model with the foundation impedances through the basemat (Figure A-13-38). For this study the effects of embedment which in-crease both damping and stiffness of the soil-structure systems are considered. However, the wave scattering effect is con-servatively neglected in the present impedance approach analysis.

This is consistent with the requirement specified in SRP Section 3.7.2.

The impedance approach seismic soil-structure interaction analysis of the reactor building (Figure A-13-39) and the auxiliary building (Figure A-13-40) is performed for both the SSE and OBE cases. The foundation soil is assumed to be a uniform visco-elastic half space. The weighted average of the final iterated shear moduli of 3,522 ksf (shear wave velocity of 989'ft./sec.) and 5,235 ksf (shear wave velocity of 1,205 ft./sec.) respectively, are used in calculating the horizontal SSE and OBE impedance functions. Since the ground-water table is located at elevation 98.0 ft., a compressional wave velocity,'Vp, of 4,800 f t./sec. is used for the vertical analysis. The computed OBE and SSE translational and rocking impedances for the embedded reactor building and auxiliary building foundations are given in Tables A-13-9 to A-13-12.

t G5/48-5

m _ . -

Table A-13-1 Cossparison of Desigt basis and Independent Finite Elesment Verification Response Spectra _ ,

1 Locations of: Spectral Acceleration m:11 ding Eey Design Earthquake variations Figure Itant (Note 2)

Elevation Earthquake Direction (Note 1) No. No. Design Basis' Bechtel FLtEH (q) (q) 4 REACFOR 102 SSE N-S 1.8 Hz A-13-3 1 0.62 0.75 201 SSE N-S 1.8 Hz A-13-4 2 1.00 1.22 54 SSE Vertical 18.5 H z A-13-8 3 1.50 1.75 102 SSE Vertical 22.0 Hz A-13-9 4 1.35 1.68 201 SSE Ve rtical 18.0 Hz A-13-10 5 2.15 2.45 AUXILIARY 54 SSE N-S 3.6 Hz A 11 6 1.34 1.56

54 SSE E"W 3.0 Hz A-13-14 7 0.88 1.44 I

102 SSE E-W 3.0 Hz A-13-15 8 1.10 1.68 l 17 8 SSE E-W 3.2 Hz A-13-16 9 1.40 1.92 102 SSE Ve rtical 14.0 Hz A 18 10 1.83 1.95 17 8 SSE Ve rtical 22.0 Hz A-13-19 11 1.53 , 1.85 i

i i

Table A 1 (Cont'd)

Caparison of Design Basis and Independent Firite Element Verification Response Spectra l .

Locations of Spectral Acceleration 4-mailding Ney Design Earthqur.ke Va riations Figure l Item (Note 2)

Elevation Earthquake Direction (Note 1) No. No. Design Basis Bechtel FLISH (q) (q)

REAcroR 102 CBE N-S 1.7 Hz A-13-21 12 0.34 P.42 54 OBE E-W 4.3 Hz A-13-2 3 13 0.50 0.67

201 OBE E-w 1.8 Hz A-13-2 5 14 0.38 0.55 102 mE vertical 22.0 Hz A-13-27 15 1.20 1.42 i

i 201 OBE Vertical 18.0 Hz A-13-28 16 1.68 1.85 MJKILIARY 54 OBE N-S 4.9 Hz A-13-29 17 1.15 1.40 f

54 CBE E-W 4.4 Hz A-13-32 18 0.75 0.85 ,

1 54 ms Vertical 22.0 Hz A-13-3 5 19 1. 17 1.26 l 102 OBE Vertical 18.0 Hz A-13-37 ! 20 1.47 1.54 17 8 cme Vertical 18.0 Hz A-13-37 21 1.80 1.95 f

1 NorES: 1. His column identifies those locations where the results of the

  • l independent analysis aerceed those of the design basis analysis.
2. For vertical earthquake direction, spectral acceleration includes the of fect of gemity load ( 1.0 g).

G-5/48 1 4 l

l l

P i'

Table A-13-2 ,

l SRSS Spectral Acceleration Comparison between l Design _ Basis a nd Finit e_E lem ent Verification Analysis l Item SRSS Spectral Acceleration Comparison ( q) (Note 1)

No. (A) (B) (B-A)/A ,

Design Basis B e c h t e l-F LUS H Difference '(%)

1 1.97 1.75 -11 2 2.24 2.20 -2 3 1.53 1.78 16 4 1.39 1.72 24 5 2.23 2 49 12 6 2.86 2.68 -6 7 2.34 2.32 -1 8 2.56 2.48 -3 9 4.27 3 44 -19 10 1.87 1.93 4 11 1.73 1.93 11 12 1.41 1.38 -2 13 2.02 1.66 -18 14 1.52 1.50' -1 15 1.21 1 43 18 16 1.71 1.86 9 17 2.24 2 07 -8 18 2.23 1.94 -13 19 1 . 19 1.27 7 20 1.86 1.99 7 21 1.51 1.56 3 l

l NOTE s . 1. The SRSS spectral acceleration values include the effect of gravity loads (1.0 g) 45/48

^

TABLE A-13-3 PROCEDURES FOP. EV7LUATION OF STRUCTURES, EQUIPMENT & COMPONENTS USING IMPEDANCE ANALYSIS RESULTS INTRODUCTION The results of , the impedance analysis are used" to assess the existing design of the HCGS structures, equipment and components. . A sampling approach . is used. The procedure forsthis evaluation is as follows:

A. STRUCTURES,1 Since the maximum shear and axial forces and the maximum overturning ~ moments occur at the base .of the structures, and the design margins for- the upper elevations are greater than those of the base, the ef fects of these loads at the base of each structure are evaluated.

B. EQUIPMENT:

The impedance analysis spectra in general are not completely enveloped by the design basis spectra in the following areas, i) 1.0 to 3.5 Hz range throughout the reactor and auxiliary buildings

11. ) 6 to 15 Hz range in the reactor building at elevation 102 ft and below.

iii. ) 6 to 15 Hz in the auxiliary building at elevation 54 f t.

Since typical equiprent frequencies are not found in the r a nge of 1. 0 to 3. 5 H z , t he i tem ( i ) above does not need any further evaluation. Items (ii) and (iii) are reconciled a s follows :

. . Review the 'significant frequencies of approximately 30% of all equipment selected at random and located in the areas where spectral variations were noted.

. If the significant equipment frequencies f all in the range where the dif ference in the spectra exist, additional eval-uation is necessary. No' f urther evaluation is necessary if the significant frequencies are outside the frequency range in question.

. The evaluation is performed either by comparing the test response spectra of the equipment with the- impedance spectra (if the equipment is qualified by testing) or comparing the actual-to-allowable stress ratios with the spectrum exceed-ance ratios.

.- If the _above evaluation shows the equipment may not be qualified for the impedance spectra, detailed evaluation consisting of analysis and/or testing is performed.

. l

-- _ _ . _ _ _ _ _ _ - , . . ~ _ , . _ - . . -. _ _ _ . _ _ - .

. As a result of evaluation, if equipment requires modifications, the sample size for this eval ..' tion is expanded as required.

I C. CABLE TRAY AND HVAC SUPPORTS Cable tray and HVAC supports do not have frequenc'ies in the l r a nge of 1. 0 to 3. 5 H z. Therefore any dif ferences between the '

two spectra in this frequency range do not require any evalua-tion.

l The ef fects of the spectrum exceedances at frequency range between 6 and 15 Hz are evaluated for approximately 200 cable

, tray and HVAC supports. These supports are selected at random i

Dut are located at the lower elevation (Reactor Building El. 54 to 10 2 f t. , Auxiliary Building El. 54 f t. ) where the spectrum dif ferences exist. If the results of evaluation indicate need for modifications to any support, the sample size for this evaluation is expanded as required.

D. PIPING AND PIPE SUPPORTS In general, impedance curves resulted in significant reductions in response spectrum peak accelerations as compared to those of the design basis curves. However, frequency shif ts were observed in some curves, particularly .in the low frequency ranges. To evaluace .the ef fects of the frequency shif t, a " biased" sample f of af fected piping systems is reanalyzed and reevaluated.

The sample is selected as follows :

Individual impedance curves for various elevations and structures l' are superimposed on their corresponding design basis curves to

!~ identify those impedance curves which are not enveloped by design Dasis curves. Those impedance curves are then superimposed on ,

the design basis " enveloped" response spectra used for various piping system design calculations.- If the design basis enveloped response spectra curves af fecting a calculation did not totally envelop all the corresponding impedance curves, that particular calculation is then identified as'"af fected" and a candidate for sampling .

A " biased" sample of the "af fected" calculations was selected which. emphasized the following important piping parameters :

1. Stress levels in the existing pipe stress calculations.

Samples included systems with high stress levels.

2.- Dif fe rence' in "g" level Wig) between impedance -and design basis curves in the af fected frequency zones. - Sample selected to include curves showing significant dif ferences.

3.- High equipment. nozzle loads' in existing calculation.

4. -Relative location of . piping system in the plant in an attempt

< to include response of all structure's in :the -sample selected.

f i

The number of calculations included in the sample is:  :

Total No. No. of Cales No. of Calcs No. of Calcs i Buildina of Q-Cales Reviewed a f fec ted . in the sample

~

Drywell 32 32 23 3 .

Reactor 213 213 34 5 Auxiliary 124 124 7 2

~

Results of the analysis including support loads are ccrapared against the design basis values for acceptability.

i.

GS/48 O

- - . . . - . . . , ,, , , . _ . , - , ,-m,_,._- , , , . . , , . . , , , . , , , ,., ,n _., , .,. --..,,.,.,..,.,,,......,..-.,n, , . , , , , - , - ,

TABLE A-13-4 REACTOR BUILDING SHEAR STRESSES AT EL. 54'-0" Design Impedance Wall Basis- Approach Allowable Location Psi Psi Psi North Wall 323 207 630 South Wall 333 224 630 East Wall 29 8 261 630 West Wall 303 268 630 Cylindrical Shell 257 251 630 Pedestal 27 91 126 j

p SOUTH RADWASTE SHEAR STRESSES AT EL. 54'-0" 3,

Design Impedance i~

Wall Basis AP pr o ach Allowable Location Psi Psi Psi North Wall -183 207 630 i

! South Wall '216 224 630 i'

East Wall. 208 276- ,

630 West Wall 458 257 630 Notes: '1. Concrete f' c = 40 0 0 Psi

2. See FSAR. Figures 1.2-2 foz wall location.

l:

l- G 5 / 4 8 ~-

, . . . . .-. . - ~ . _ . . - - _ -

TABLE A-13-5a REACTOR /RADWASTE BUILDING -

OBE SEISMIC MOMENTS AT EL. 54'0" Impedance Design Basis Approach Wall Location Me tho d M e tho d (Kip-Ft) (Kip-Ft)

N o r th- R e a c to r N orth- Radwa s te 359,200 414,500 South-Reactor South-Radwaste 517,400 847,700 E a s t- Radwa s t e 461,000 421,900 We s t- Ra d wa s t e .329,000 290,700 E a s t- R e a c to r 434,500 276,900 We s t- R e a c to r _

588,600 482,900 Cy lind ric al 2,772,000 (N-5) 1,847,000 (N-S )

Shell 1,723,000 (E-W) 1,609,000 (E -W )

Note See FSAR Fig ur e 1. 2-2 for wall location.

i GS/48

- - - -*w,- . . - - , - , - - - -- y -m-- m.- -

--o. -,-y-- -%- . - . ,1-v.. - - -

TABLE A-13-5b REACTOR /RADWASTE BUILDING - SSE SEISMIC MOMENTS AT EL. 54'0" Impeaance Design Basis Approach Wall Location M e tho d M e tho d

( Ki p- F t ) (Kip-Ft)

N o r th- R e a ct o r N o r th- Radwa s te 912,100 699,100 S ou th- R e acto r S ou th- Rad wa s ta 1,344,000 1,429,000

. E a s t- Radwa s t e 675,000 732,300 We s t- Radwa s t e 654,000 504,500 E a s t- R e a c to r 909,000 480,200 West-Reactor 1,320,000 837,400 Cy lind ric al 4,4 71,000 ( N-S ) 3,092,000 (N-5)

Shell 3,054,000 (E-W) 2,66 8,000 ( E-W )

i Note: 'See FSAR Fig ur e 1.2-2 for wall location.

G5/48

l TABLE A-13-6 POWER BLOCK ' SEISMIC CATEGORY I EQUIPMDIT Equipment Equipment Methof of or. Iccation Frequencies Selanic Applicable .

Camponent Tag No. Elgd./El. (Hz) Qualification Note Reactor Bldg. Horizontal- 10, 12 MPCI Turbine E41-C002 E1. 54 Vertical - 23 Testing 1 Residual Heat Removal Pump / Ell-C002 Reactor Bldg. Horizontal- 8.7, . 9.7 Analysis 3

' Motor. El. 54 Ve rtic al - >3 3 H11-P617 Control Ro m H 11-P618 Aux. Bldg.

-Panels H 11-P640 El. 102 Horizontal- 11.5,16 Testing 1 l - E'l l-P641 Vertical - >33 H11-P62 0 through Control Ro m H11-P62 3 Aux. Bldg. Horizontal- 21, 29 Panels H11-P628 El. 102 Vertical - >3 3 Testing 1 H22-P631

' Control Roan H11-P635 Aux. Bldg. Horizontal- 19, 37 Panels H11-P636 El. 137 Ve rtic al - >3 3 ' Testing 1 C Control Room Aux. Bldg. Horizontal- 7, 12 Panels- H11-608 El. 137 Vertical - >33 Testing 1 l

> Control Roan H11-609 Aux. Eldg. Horizontal- 22, 37 Panels H11-611 El. 137 Vertical - >3 3 Testing 1 Reactor Bldg. Horizontal- 16 ' Analysis &

Vertical - 18 Testing 1, 2

. RCIC Turbine 251-C002 El. 54 I-LPCS Pump / E21-C001 Reactor Bldg. Horizontal- 11.5, 12.7 El. 54 ve rtical - >3 3 Analysis 2  ;

Motor G5/48-16 1

_ . . - . . - - . . . . - . . . _ . . _ , _ _ , , . - . _ . - . , , . . - , . . . . _ . . . . , . _ , . , . - , , , - , , , - . , . , , - .,,,,-,--.n...-,.. ., . - . . .

TABLE A-13-6 (Cont'd)

POWER BLOCK SEISMIC CATEGORY I EQUIPM224T Equipaant '

Equipsent . Method of or location Frquencies Seismic Applicable Qualification Camponent Tag No. Elgd./El. (Hz) Note Chiller Water l IAT, D. G. Horizontal - >33 Tank BT 410, 413 E1. 178 Vertical - >33 Analysis 2 ECCS Jockey IAP, BP, Reactor Bldg. Horizontal - >33 Analysis 2 Pump' CP, DP 228 El. 54 vertical - >33 d

SACS Expansion IAT, Reactor Bldg. Horizo.stal - 12.5 Tank BT 205 El. 201 Vertical - >33 Analysis 2 5.0 Kv Switch-l IAN, W , Reactor Bldg. Horizontal - 8, 14 gear CN, DN 205 El. 102 Vertical - 30 Testing 1 DC Stitchgear l

& Control IOD 251, Reactor Bldg. Horizontal - 8, 35 Center 261 E!n 54 Ve rtical - 20 Testing 1

(

l i

-Batteries IOD 421, Jax. Bldg. Horizontal - 14, 16 Racks 431 El. 54 Vertical - 28 Testing 1 1

i. Inst. AC Pcwer l IYF 401-407 Aux. Bldg. Horizontal - 17, 21 Panel IYF 209 El. 102 vertical - 6 Testing 1 Control Panel l IAC, BC 201 Reactor Bldg. Horizontal - 8, 17 El. 102' Horizontal - >33 Analysis 2 Note:
  • D.G. - Diesel' generator crea of the auxiliary building.

f G5/48-17 i

,-- .-w, -

n. - - - ,, - . - , , , ~ . , . . . - - - , -, , , - , ---,, ,.--n,e --n-- , , - . . . , , - . - - - - e -,,.,--,w-

w TABI.E A-13-6 (Cont'd)

POWER BLOCK SEISMIC CATK;ORY I B2UIPMDIT l Equipment Equipment Method of I or Location Freguancies SeisuLic Applicable Caponent

  • Tag No. Blgd./El. l (Hz) Qualification Note Standby Diesel 1(A-D)G 400 D. G . Horizontal - >15 G3nerator set E1. 102 vertical - >15 Analysis 2

SACS Heat 1AIE, 1A2E2C1 Reactor Bldg. Horizontal - 8, 10.4 Analysis 2 Exdianger - 1BIE, 152E201 El. 54 Vertical - 21 SACS Pumps 1 (A-D)P210 Reactor Bldg. Horizontal - >33 El. 2 01 Ve rtical - >3 3 Analysis 2 l

i Centrol Panel. ICC, DC201 Reactor Bldg. Horizontal- 12.7, 17.6 E1. 102 Vertical - 29 Analysis 2 l Accumulator 1AT, BI412 D. G. Horizontal - 31, 33 Tcnk EL. 54 Vertical - 35 Analysis 2 Air Handling 1AVH407 D. G. Horizontal - 16.6, 18 Units 1BVH407 El. 178 Vertical - 19 Analysis 2' A/C Units Unit Cooler 1AVH208 Reactor Bldg. Horizontal - 9.4, 21 1AVH209 El. 102 Ve rtical - 26. 4 Analysis 2 1BVH208 1BvH209 HVAC Control 17.C, CC285 D. G . Horizontal '- 12.7, 16.4 Panels 1AC, CC281 El . 17 8 Vertical - 16.9 Analysis 2 1AC , DC48 3 l

Ccntrifugal 1AK, BK403 D. G . Horizontal - >30 Water Chiller El. 178 Vertical - >3 0 Analysis 2 l

Notes: 1. TRS envelopes impedance approach spectra.

2. Impedance approach spectral acceleration is lower than that of the design-basis response spectra in the major equipment fr equencies .
3. Although impedance ap; roach spectral acceleration exceeds that i of design basis response spectra in the equipment frequency range, l a more detailed calculation slowed that the equipment stresses

- are within the code allowables.

G5/48-18 r--,, , rw, .,- , . . . , , _,, - , -,,.-. -----. , w ..--v. ,.-am. - - , . .-%...e,.- , - , ~ ,=-,.,wr

TABLE A-13-7 POWER BLOCK PIPE STRESS

SUMMARY

htilding Calc. Max. Seismic Stress Ratios A9tE Code Equation ,

No. Max. Impedance Stress Evaluation Vendor Max. Design Basis Stress Eq. 9B* Eq. 9D* - Equip. Nozzle Code Allowable' Code Allowable Allowables Met OBE SSE Upset Faulted C1549 0.51 0.76 0.29 0.66 YES Auxiliary C1581 0.G4 0.86 0.40 0.28 YES C118 0.75 0.83 0.44 0.34 YES Drywell C1842 0.65 0.83 0.63 0.85 YES C120 0.30 0.52 0.49 0.39 YES C988 0.88 0.75 0.54 0.35 YES C911 0.88 0.94 0.84 0.63 YES Reactor C963 1.10 1 . 18 0.71 0.47 TES C918 0.29 0.39 0.33 0.21 YES C937 0.90 1.15 0.70 0.38 YES 1

1

TABLE A-13-8 POWER BLOCK PIPE SUPPORT LOAD

SUMMARY

Euilding- Calc. Total No. No. of. Average Percentage Support No. of Supports with increase in Load Design Supports Load Increase Upset Faulted Adequate C1549 5 0 N/A N/A YES Auxiliary C1581 16 5 11% NONE YES C113 8 1 2% 1% YES Drywell C1842 34 0 N/A N/A YES C120 18 2 7% NONE YES C988 11 3 NONE 14% YES C911 34 6 20t 17 % YES Reactor C963 7 4 27% 28% YES C918 10 0 N/A N/A YES C937 17 5 17% - 21% YES l

!~

4 G5/48 l-

l i

TABLE A-13-9 VALUES OF SOIL STIFFNESS AND DAMPING COEFFICIENTS OF REACTOR BUILDING (OBE CASE)

I DIR ECTION l STIFFNESS DAMPING CO EFFICIENTS l COEFFICIENTS l VERTICAL , 1.53x107 k/ft

~

j 9.19x105 k-sec/ft l TRANSLATION l l 1

NORTH-SOUTH 7.26x106 k/ft l 6.42x105 k-sec/ft

) TRANSLATION l l l- l l l EAST-WEST 5.90x106 k/ft l 5.74x105 k-sec/ft

l. TRANSLATION l 1 I l ROCKING ABOUT 1.26x10ll k/ft/ rad l 9.50x109 k-ft-sec/ rad NORTH-SOUTH AXIS l l ROCKING ABOUT 7.'56x10lO k/ft/ rad 3.31x109 k-f t-sec/ rad l EAST-WEST AXIS l l l l 1 K56(2) l I

l l

l-l I

l l

r

l 1

l TABLE A-13-10 VALUES OF SOIL STIFFNESS AND DAMPING COEFFICIENTS OF 3-D REACTOR BUILDING (SSE CASE) l I I DIRECTION l STIFFNESS l DAMPING J

l CO EF FICI ENTS l COEFFICIENTS l I f

VERTICAL l TRANSLATION 1.53x107 k/ft 9.19x105 k-sec/ft

-1 l' l NORTH-SOUTH l TRANSLATION- 4.74x106 k/ft 5.17x105 k-sec/ft l l l l

EAST-WEST l 4.03x106 k/ft 4.79x105 k-sec/ft l TR ANSLATION h l l L l

) ROCKING ABOUT l NORTH-SOUTH AXIS 8.17x1010 k-ft/ rad l 8.47x109 k-ft-sec/ rad l ROCKING ABOUT 1 l EAST-WEST AXIS 5.14x1010 k-ft/ rad 2.70x109 k-f t- se c/ rad l

I I _.

K56 ( 2) 9

--eq - m - - ,-

1 l

l l

TABLE A-13-11 V ALUES OF SOIL STIFFNESS AND DAMPING COEFFICIENT.S OF AUXILILARY BUILDING (OBE' CASE)

STIFFNESS DAMPING l ll DIRECTION CO EF FICIENTS COEFFICIENTS VERTICAL l

.l TRANSLATION 1.40x107 k/ft l 7.87x105 k-sec/ft l

NORTH-SOUTH TRANSLATION 7.15x106 k/ft 5.71x105 k-sec/ft 1,

EAST-WEST l TRANSLATION 5.58x106 k/ft l 5.21x105 k-sec/ft I

l ,

l ROCKING ABOUT (

NORTH-SOUTH AXIS 1.15x10ll k-ft/ rad 9.32x109 k-ft-sec/ rad 1 l ROCKING ABOUT l l

-l EAST-WEST AXIS 5.56x1010 k-ft/ rad l 1.76x109 k-f t-sac / rad l

t I l

K56(2)-

m - - - - . , , , -

n - , m- ,w -,_,e -.m n ,- o ~

l l

1 l

TABLE A-13-12 VALUES OF SOIL STIFFNESS _ AND DAMPING COEF FICIENTS OF AUXILIARY BUILDING (SSE CASE)

I I l DIRECTION l STIFFNESS DAMPING

'l COEFFICIENTS CO EFFICIENTS l I

l. l YERTICAL TRANSLATION 1.40x107 k/ft 7.87x105 k-sec/ft NORTH-SOUTH 4.89x106 k/ft 4.26xlO5 k-sec/ft

, TRANSLATION l

l' EAST-WEST l l TR ANSL ATION ' l ~3.76x106 k/ft 4.28x105 k-sec/ft l I ROCKING ABOUT I NORTH-SOUTH AXIS , 7.33x1010 k-ft/ rad . 7.72x109 k-ft-sec/ rad 1 l l l ROCKING ABOUT l l l EAS'f-WEST AXIS 3.61x10lO k-ft/ rad l 1.62x109 k-f t-sec/ rad '

l

.K56(2) 3 0

m._,.. . .._- __ _ _ _ _

PS E&G

. ir DEVELOPMENT OF PS AR CRITERIA

,r v IMPELL (EDS ) BECHTEL

  • DEVELOPMENT OF RESPONSE COORDINATION AND REVIEW SPECTRA AND DESIGN OF IMPELL ANALYSIS LOADS USING FINITE ELEMENT APPROACH -
  • PERFORM INDEPENDENT VERIFICATION ANALYSIS USING
i. FI NITE . ELEMENT (FLUS H) APPROACH-ii. IMPEDANCE APPROACH i

Figure A-13-1 Division of Responsibility G-5/48 O

w -

,re - - - > 4--.-- ,,-n.. . , - - . -m---- ,,a - - - - - , . -, -,,,-~,-..-n- -

- - , -, , , , e

= --

= ---

I -

L _

L E ",t _

Pe t _

D"

( 4 s

f A

d

'4 D - _

S U EP I O S L - S A F D _

S L L _

t e E E _

T T G H H .

I S C C E E E ,

DB B l

' O'

- ~

, 4'

% 0 N O

5 0 S V R EG

- I 1

- - ALN I P E P 2

- - - -Q ) -

M T M 0 z 3 O A A

. H 1 b-S\( -

5 (

Y A

- C A G D

- f-J' r C E R RIN 2 N TD

~- f E U C L ,

-- U G Q I EI E E F PUS

- _  % R SBS

- _ F

, ER .

l/, A"'; '

SOS 0

NT -

,f ,

  • OCN

- r 1 PA

- SE

/j ER

, R

- - I

- 5 T

f, O I

- - - N U

W A

p

_ I

- . I O

_ 0 O O O T

. . . I 3 2 s O NI U

V KE

" ER

) E 4

_ aU zaF<EW2.wuo s_4 E F = RA8 Cs /

L9 E 8 PD/

oA4 nc0

4

= --

m -

- 5

- ) -

L Z - - -

L - -

E -

t e F"c e - -

D s a O

(

N o S t

'l S 0 I

S Ue L n - 5 A F I 3 B

- L L N TET E -

G I H H .

S C C ,

E E E _

D S O _ =

  • O

_w

_ , 2' N0

\% O O

O1 S

I V G

- , I V RE N

' - 3 ALI

- ' )

3

- PEP M M

. ' s\; O z 1 OTA 5

. H

' 5 ( A CAD 3

Y E A G */.

t t

C N R RN2 TI U

~- E CD U G E L 'I

~- Q I I S

- ~

E F PU S

_ - - R SB

- F r e E S

R 9

  1. a i
  1. 8 N O-T

/ O

- . OC N PA r

/tp, 1

SE E

R R

,h /

- 1 5

- I .

- /y- - O T I

N U

fg s

_ . I

_ O 0 O O T O . . I 2

I O N 3 U' m KN E

E a(D ZO~>4Ewa_dou4 a s.4 Eh od a.n i I R*

C' E'

_ P c, "*

s"

, i14 ,i' , ,, ,

4 r --

r -

I - .

L = - ..

L _-

f'= E r2 Cs B

e -

( 0 A _- 0 S ED 4

l S Ue L t

- 0 5

A F I _

S L L -

1 8

E E -

G T T 4 al N 5 C C ,

E E E DS S  ;

O l

\%, 0 N,0 O2 S .

- 0

.# 1 I V G

\

RE ALI N

4

) -

PEP j

s, 0 z 3 M M

. H 1 OTA

\ 1l' 5 (

A

- CAD k . '

\j ' Y E AG%

i.s C R

RN2

  • 8 N TI U

E U G CC .

O I E ILE P S S U S

- r E F R B

- [/ J F s s a

E S R S

'sf),'

g, 0

N O-T

. OC N

' , 1 PA p

S E

E

  1. j R R I

5 g,p, 0 T

_ I N

P U J'M.

4 1

. I

_ O O 0 O O T

_ . . . I 3 2 S O NI U

W O

KE ER

) E .

- 0" Z3Y4Ess:oo4 t

a

-a. s4Ebosa

- n n RA C3 t

E ,

. Po Oa

- Hc

,l

I S - -

L -

L E ; E e F C 8 -

D 8 A 0 i 8 8

5 D v . '

S I U EP - 0 5

S L A F B r B LL -:

I I

E E -

G T T I H H -

S C C -

E OMK -

2 O

,2 , 4'

' N5

_A 0 0

O SV R EG I

8 LN Qk% " )

z 5

3 A E P

M T M I

P

~

\ O H

1

- O C AD A

y S

( A h Y A G %

E R IN 2 I

\ C

e. N R TD L

j E U CL .

- Wj U G EI E Q I PUS

- E F R SBS

< F ER .

SOW NT -

.! 0 OCE l

PA SE

- N ER R

\

- - S I

  1. 5 T

0

  1. I N

j U

_- 1 0

. e 5 O 5 o i s

4 3

I o us u

m v _

KE En E .

- E a a a.

D. 2OE4Edsduo4 3.4EFussnM nA cT _

E L, . _

Po _

oA -

Hc _

~

I - 3 L

L E : E 7 ,

r:

b l

C e

8 A

4 t a D g 0

$ E .

S I

S U*

L A F n 0

5 S L L _

60 E E _

G T T 1 H H g 5 C C _

KGK E g

O" g '

2 N,0

[2 0 0

O1 S .

% 3 I V G

\~ RE ALI N

,' s% )

z 6

3

- PEP M M

\ 0

. H 1 OTA

- $ 5 ( A CAD

$ Y C E AG%

RN2

~~

N R TI E U CO .

l

4. / 1 U G E LE Q I I S

E F PU S R SB

~

}m F E R ,

S

~ OW

' , 0 N T-E l . OC 1

PA 2 -

S E

R R E

I

  • 5 T

7 0 I

N U

W

" 1 5 O 0

5 O T

. . . I 4 3 t O NI U

V m

KE

_ ER

) E .

0- g314Ews.Wuu4 I.4E6UstAV

.I

- a RA CS

_ L E .

PD OA HC

4 _

r ~

~
==
-  ?

=

) - - -

L L .

_n E ; E 8 P C M ; N I

. 0 A .

( H ED S

0 5 U 1

5 5 L W -

4 F l . -_-

8 L L N E E G T 1 .

I MH - ,

S C C E E E -

OBE - O" l

\- 0 N,O O2 S .

~,

~- 0 1

I VG RE N 1

(

xN >

7 ALI PEP

- l z

3 M M

- -  %  % 0 H

1 OTA 1

\ 5

( A CAD g

Y E AG%

s C R

RN2 a

N TI

~

o, E U CD ,

U G E ILE Q I

- E F P U SS R SB

! F

- E S R W

.i 0 N TO-E a# OC

',r PA 1

. SE d E R

R

- -@ I 5

- G .

p 0 T I

N U

W F

G

~

- 8

_ . I 0

O 5 o T S . . I 3

. 1 o NI U

4 V KE m ER E .

) RA

  1. 5

% p4Eassuu4 t

a l a J_4 E- b 0 a C9 L

E .

PD OA HC a e I l ;4'

-. = **

I

  • L' L -

=

M=E B

C N

A - 0 I e s D .

S sE 0 I uP S rL B 5 A s B L L N ET TE 1

5 G H N C C b E

D E E B B \- ,

O"

, 4' s 0 0

N5 O

SV

.G NI I

y 1 R EP 8

A ELMA P

. 0

)

z 3 M T D a -

H O C A %

' . 1

- 5 (

' ' A 2 A G T

Y

^ p C E R G IN .

, N U TD E E

U G CL S EI S O I PU F

,r E R

F SB .

ERA SOC L

0 NTI T s3- 1 OC R PA E SE ER V 4, R I 5

O

. T I

N U

x~

_ I S O 0

5 0 . .

T I 8 3 t O N 4 Uy

~ c Nn E .

- Ea

- D Z8e<Ewsluu4 t

a s<EVowa.e

- Rs Cu E .

Pn oa nc

i Z ---

Z -

) -

L -

L E L t ,

r B; ses c

0 t H S o 0 S

I S Un L

u.

5 A F a B L L s E E eTN t b-3 u .

5 C c KKe t O

r -

y'

- , 2' NO 0 OI G S .

I V N1 0

t 3

rep 1_ b 9 ALu pea

) -

I 0 z 3 M n

. . . H 1 OT r -

U 5 ( A CAv Y E A G '>

- C RN

- N R TI -

'~ E U C Dt:<

r U

O E

G E IL:

I F PU c

- R S Baa F

E R r-S N Ovv M 0 O Cn T

y, 8 P A **

S E=

,g- E

- RR W 5 0

I T

?nn I N

-- U m_~

~

~

3

. e 0 5 0 O 7 5 . . f 3

. I 0 m 4 t m N E

E

n. ZO* - .

R nO 5 4EsJWuo<

L a

J4EtuWAw C E

P O

H

r  ; -

= -- -

s. - -

u f'"

e"E E m s a  :

. 0 a Np .

sAE P i I

. 0 5

sL aF B s LL ME ET

  • N. .

wT sC C N N -

eMg s

E O

\

^ g

,l

)y '

NO 0 O 2G .N 0

S

' s I VI REP r

1 0 ALM

,/

jY' 0

)

z H

1 3

1 PE A M

OT CA7 D

Y 5 (

Y A

AG 2

C E RN .

~ 'f N R TI E E U C DS U G E LS

/a^J' O

E R

I F PU SB L I

F E R AC

'g S OI 0 N TT O CR P AE 1

S EV

/,J9 E R R I

5

, 0 T

I N

U b

A. .

8 O

0 5 O r 5 . . iI

. t O N 4 3 UV E

KR E .

EA n a. R7 ai 2OY4El8Jsuu4 a n a

34EFusnnm C 7' t

E .

Pn Oa-Hf

, \  !;

i\

8. .

[

O, - -

^ -

x - ,

) -

L x -

L f x E _

r C e _

B f A

I

( 0 0 5 ED 0 _

S U 0 S L F I

5 A F B S L L 0

8 E E C HT H T I

S C C _

E E E DB B r ,

, k 0

,O N-O' ti 0 S4 1 I 5G R .N Nv~ l l A VI

~ ) - PEP s

0 z 3 ML M A

. H 1

- O C

E D

\ 1 \} 5 ( A T

Af 1 ~

Y AA%

E Al

[

-4 l-' C N

E R

U R

TG 2

G CEINE U

Q I

% F PDS E

R SLS

- F I

. EU

'e SBS N -

O OYN f f PR j SA I

., E RI L

X N 5 U p O A

p

~

~

" B S O 5 0 O T

. . . I

% 4 3 I 0 N' U*

K E

E

n 28t4Es28.uo4 t

a t J4E6Us$

- a n R C"

E' P

O "'

H"

q  ; -

= -

S L = -

L = .

E F"E D

C N

A 0

(

MD S E 0

S S LU F I

5 A F D B L L s

e E E G T T -

I H H S C C E E E D B B ,

w "

,O N-W-N00 O'2 S 0:

I r

1 R1 a

- <s 2 1

A .u

) - P V n.

z ME.

\sx~ G 0

. H 3

1 OL.

CEn

,~ N 5 ( -

- A

.- Y AT, C E RA.n

~~ 1 S I

% N R T

- - \ $ E U CG M U G EN.

s ^ Q I P I E F R S LD-o, F I o EU a*)/ SB-N

'f #

i-0 1

OY-PR SA 4 ,. EI

% RL 1

_ 5 X U

s"p O A

d i

~I

~

O O 5 O T 5 . .

3 I

O m 4

^

t x

_ E

)

E a O ~ 2OmF4Essduu4 t

a a 54EtUoLn sde n e

r e

oe s

!' ) 4 :i' l

, l' r  : --

I L

L' E "

F;E C

e . -

B n a - 0 I t f D .

sue I

S L 5 t A F h 0

5 B L L .

s -

e E E C TH HE 4 .

5 C C .

KEBK -

- - .O 0

N-

- O' 8 0

S 7 s - I G

\

\

s- .

r

~

1 0

5

)

z H

(

3 1

3 1

A RI A .I PVP MEM OLA CED N

Lgk .

Y AT*./

E RA2 C R T

- uf ,

N E U CG

- JY -

- U G ENE Q I PIDS f E F S L S j R

</ F EU I

ll , SB-N S

,,' 0 OYN 1

PR

- - SA

- EI

/, RLI X

/ "..

5

. U

, . , .. O A

/g.

s

_ I

. I 0 s ,O T 5 .

, I 4

3 s

m 'V t

" K" E -

E*

.D, R' rE. e4Eaasuo4 Y K>os.e.a s

a l e i C'

E' P"

O*

H#

A, = --

x -

S L

L E -

t W; c e

s n

0 t H o _ .

S t _

0 .

S U I

S L A F y _

5 m R L _

s o E t _

c T s s H u _

sc c g .

E t .

o e~g ,

- , O" N-

, 0 O' S4

-[ 0 I

- 1 4

R 5G .N 1 A VI

' ) - PEP

~

0 z 3 MLM

~ . H 1 O

C EA D

- $ 5 ( A R T g q

~

Y C E A A%

R 2

" A N R E U TG

)l> U G C NE EI

, / Q E

I F PDS

  1. R SLS I

_ F r_ EU ,

_ S BW

_.y o 0

N OYE PR SA 1

I

~ -

- I EL RI X

5 U

~ - - 0 A

e M

c S_

. - 3

. I 0 0 0 0 0 O T O

O

. . I i N

4 3 2 1 O Uv 4 S E

KR E .

Ea s.4 E t- u shSv

.i Rs

_ am. zoI4Etl 3.d au o 4

. a C i.t E .

Po oa ec c

i i~  : < ::  ! i . :i i I i

p = -~

~ _

= -- _

2 ~~-

I L ,

L E -

E w P

d  ; C e

n n I

A 0 t N D .

  • S E 0 ~

5 UF 1

5 L n 5 aF s

m L L s

e e E E T 1 ,

1 H n 5 C C _

KMK =

=_

,O 0

N-O' 2

' .a 0 S

I On

( w~ 1 RI s A .m

' ['

ll 1

- PVa 1 MEu

\)) ) 3 0 z 1 OLn H

5

( A CEn 4*\-

\ $ 's Y AT E ram m ' C

<. TA - ^

N R T E U CG N U G ENe

.l '

Q E

I F PIDc

' R S L c

' b F I

- E U.

- SB N

l/ j-0 1

OYc -

PR

- .' SA

~

- .,= EI

~

RLI 5 X

. . U

, 0 A

- 1

. a 0 O O O 0 o O O

. T-I S

5 4 3 2 1 O N J '

~ L K-E

) .

E g 0E4EW2.suU< 34EFustam a R e5 t a -

C E

P O

H

' 4'

i

p -

~
~-
-- 1

) - -

L L i ,

E : E _

r C N 0 B A 5

( N D .

S . 0 S U Er I  !.. 5 S L h A F _

S L L _

0 E E 0

G N T T 4 H _

$ C C E E E _

D R B e

- .O e 0 N-O S '8 N

\ .

=

0 1

6 I

R1 7G N

t 1 A .I

- - PVP 0

)

z 3 MEM 1

H 1 OLA A CED

_ 5 (

q)k _

-)\ -

Y AT%

E RA2 C

--. - - f - -

N R T E U CG .

U G ENE Q I I S

E F P DS R S L w F I EU .

SBW N

f 0

3 OY E PR

- _ .d SA

." EI

+ RLI

- s os 5 X

- . U p O A

^

~

- I O O 0 O 0 0 T O O . . . I I 3

2 i O N s

5 4 UV m KR E

E .

EA D - L RI e O w ZSt4EW2.WoU4 J.4EFUWGm C?

I E .

wna u

ec

I \

u ;-

n ; c - ,

e;t m e p

0 a

a N 0 - .

s$ UE P 0

e sL B = 5 aF e L L .

s E E eT e TH

+

s SOC oMED E -

~ ,

~

.O 0

NG O

S 4' N 0

,%y ~

1 I 5 R

I 7

k )' 1 A v. M AP D ) - PE D 3

ML

)

^ 0 5

z H

1

- O C

E  %

r

~

V (

Y A

AA .

T 2 C E R

~ [ N R TG E

, E U S

, U G C EIN S e,fr Q E

R I

F PD SL I L

,p l

F E UA S BC I N

- lg

. 0 O RR YT

' - 1 P

SA I E V Ap E RI L

- X g 5 U 0

A W

/-

=

=8 .

0 O ,0 T O . . I 8 3

2

. I a N A. U" K"

E E'

n eO 2a>4Eh _luo4 a4EtO A aa a - n' t

c' E'

P o "'

H"

l 4 -

I -

L':

L  :

E x E e r C I -

b I A

I N 0 .

5 DE r S .

I S Ur L

=

0 C

A F B S LL  :

INE T TE H8 8 e t

S C C -

E EE -

D S B s'

V , O" 0

N- G

. O' f ' ' 0 S 2 OI N

I eA

, 1 N 8 RI P 1 A .M

_V ) 3 PVA 0 z 1 MED H - OL

=

r H

s) 5

(

Y A CE%

AT 2

E RA ,

~..

- / 7 C N R T E U CGS

' /[* 's ,

E U

O E

R G ENS I

F PID ,

S F

EU A IL L S

N BC I 0 T OY R

',/

1 PR E f SA V EI RLI f 5 0

X U

A 4s g

8 0 O 0 -

O. . O. .

T I I m3 2 O I

N Uv E

Kn E .

) EA4 _

.O zoY4EatsUu4 34KtUs) t a

s a

t a

R2a C3e ,

Ln _

E .a Pp OAu _

Hcn _

! 4 . ll!l , \ iii  !!i -,llI1!!

D  : -

I - - _ .

L  : - - _ .

L  ; .

E - ,

M B ::

C N -

( 0 A  ;

0 4 D . ,

S E .

$ U l

L P d 0

5 A F B S

I GT I

L E E H H R

T

(

y. -

S C C E E E -

D B B

\ -

s

, O" s

s s' N-I

]

)h)/' t 0

0 O'

S 7!8N G

I

g -

, 1 R1 P 1/

f - , 9 A .M

- d s' )

1 PvA MED

- r:- 0

. H z 3 1 OL

- ~j 5 ( - CE%

g A 2

-) Y AT

~ -

'- ~

/ C E RA ,

j N R T E

, E U CGS

,((

U O

E G ENS I

F PID ,

R S

[ ,

0 F

EU A SB N

I OY TR L L C

I 1

PR SA E

/";- EI V

,g RL1

- - 5 X

. U

- - ,0 A p

~

=

1 v . e o O O 0 0 T

. . . . I e 2 1 0 N "3 Uv c

Kn E .

o & Ea4

- - z2t4EWsWUu

- J4f ot Rs8

/

C s. a 0 E .2 Po/

oa4 nc0

( "

j o

i lt e J 'it a w o __

I it o O I

, f ,

me E dA ^IQr l l

i g *

$ a .s :

  • i 5 *5 5 a h 3II ,

o yW o o'

$/ m>

At o E n 4g m i -

Y- , o.

< U

'= - - a' #

  • Q

{

MN >.

,4 2-g i

s g

[

r 3

O C ti.

W CW w E eE SC s / E g o 4

s 1

1 Wo.

Wre o z o ui

~t@ u .

  • E <W z i \t W*E

\\ E~

i 1 h i 0 '* y

\ $ #

y 3

\

\0

(

\

O

'f O

o o e-

~_

a

. E d

( $$

t6) N011'83,33cv vW103d5 54

{u

2 --

I - _

L x -

L ._

M ;" ECe s

(

A .

_ 0 H ED S .

0 S

I S LUF -

5 A F B B L L t E E -

e G TH TH t

sC C - ,

E E E D BB u O" m -

2 NO 0 OI 0

S .

I v.

. sr 5 1 RE G

- D 2 AL N

- ) 3 PE IP z M OT M 0 1 p \ , ,- - . H A

- A 5 ( CA O Y

E AG /.

R RN7

- ,' C

% N TI E U CD U G E L .

-  % O I I F E F P S UR

, R BO

~f F

E S R .

,J OS 7/,/ 0 NT-

. O CH 8 PA SE E

R R

  1. I 5

'r O T I

N

- U

~

  • I

. I O O

~ O O 0 . .

T' I

3 2 I O N'

% U" K

E" E

aO Z0~>4EdJ_wou4 a J4EFUwa.t /

t R*

C*

E' P

O "*

H"

. i

- 4,.! ,

<1i  :

~

S L

o.

L E 2 P

E .

E C ,.

B; e t

a 0 t 4 9D . .

5 1

5 L U PE d 0

5 A F B s B L L N E E G

I HT HT S C C ._ ,

E E E _

D B B "

O n_

l N.O 0 O2

\ e 0 1

S .

I V G u 2 RE ALI N

2 PEP m- -

1

)

') 0 z 3 M M iY\

. H 1 OTA 5 -

CAD

)}f I A

  • (

Y A

A G */.

o -

Y' \

C N

E E

R U

RN2 TI CD .

U G E IL E

- Q I E F PUB

+ R SBO

, F l E S

RS ,

s N T O-

,w - 0 1

. OCN PA

/, S E

E

y R R

- - 5 O

I T

I N

' U

'E

~ I

. a~

O O 0 O O T

. . . t 3

2 s 0 mI a

m V uE tR t .

D E zOY4Ead 2.d o u 4 s.4 E uaine .n aA c6 t

t .

eD oA nC

m, ~

~ -
~

U ;- _ _

L __ _

E = E _-

r C N

B A 4 N D _ - 0 S S E U _

0 L P I

5 _ 5 A

S F B .

L L _ _

N E E G T T I H H S C C E E E _ ,

D mB _ -

O"

, '4

_ W-- 0 0

N5 O

SV R E I

G

'qV 8

3 A LN I

)

2 P E P

%,~ 0 z 3 M T M (t . H 1 O A A

- 5 ( - C O

[ - A Y A G s C E R IN-/. 2

~ '

N R TD

-

  • E U C L .

- U G EI F

_ ,

  • Q E

I F PUR SBO e' R ay F

- ER .

- - SOW NT -

'. 0 OCF

'" PA 8

, ' SE ER rg 5 R I 0

T a- I N

U

.y 0 c o 0 .

T I

3 2

1 N'

^ U" K

E" E*

am Z0U4Ewsauu4

-h a.4 m t oaham R^

C' E'

P' O"

H"

, 1  :

r  : --

S - . -

L - - . -

L .

E ; -

r B;

I H O M _

0 .

S . -

S I . 0 S F UM L _

5 A

B __ -

t e E LR - .

G TM HT t

5 C C - ,

KMK ~ , *

- O

, 2' NO

( 0 0

Ol S .

-," 8 I vG R2 N

\

~

,' )

4 2

ALI PEP

- O z 3 M M

- L

. H 1 OTA s - CAD

- hf ) - (

Y A

AG%

~ - ,a\ C N

E R

U RN2 TI

- p E U G CD E IL E

, f, O I E F PUB

- R SB O

  1. F

- ER ,

- SOW e, 0 N T-

. OCE r 3 PA 3, ' SE

- E R

R

/ I d 5 j 0 T

I N

U 8

= . I O O O 0 0 T

. . l I 2 I 0 mVE

^3 t KR E .

b .i EA

. Ow 2O . 4E*'^J.luu4 6 L a

J4EtoltaV

- a Rs ce ,

L..

t s .

ep.

oa.

e tc.

i ,!  !

6, -

S - -

L  : -

L .

f : E r C t: s s

A -

0 '

I HS D - .

S U EF I - 0 S L _ - 5 A F B B L L s

a ET ET ._

G H H I

S C C -

KKK .

O b

l NO k 0 O2 0 S .

C 1 I

vG I

% 5 RE ALI N

q 2

L '\.

1

) - PEP

s 0 z 3 M u

- L .% . H 1 OTA A CAn I.lI -

~ 5 (

8 r

,~

'[ ' Y AG4 E RN7

"- .r ,% C N R TI

?

E U CD .

U G E ILr

[w,r -

O E

R I

F P Un SB n

/

F

_ - E S R l 0 NO T w-1 *

. O Cr 3

PA

,, a S

E E

R

! R

, I u 5 0 T I

N U

"' 8 O

O 0 0 O T

^ 3 2

O N'

I U"*

Ka E

9 2 o t 4- E w 2.W u U 4 8 E-

.0- 4K> o w a." R' C

E Pa O-H"

u L

E M ~~ '

B a ss O s$U N

t 0 sL 5 aF e

l . L s

s E E cT T t

sC H m E E E rh, N

oS m .

0 4 N

. '4 5

o O O

S v. NG v% e

)

6 2

I R EP A LMA P E M T I

D

, 4 o z 3 O

. H 1 5 - C A  %

- v t A 2 Y A G m.

/ C N

E R

R IN TD E E U C L OB U G EI O I PU E F SB .

Av#p R L F

ERA SOC o NTI OC TR PA SE EV t

ER

  1. , R I c S
o. T

- ~ I N

U

~

~

I

. I O o 0 0 0 T

. . . I 8 3 2 t E N UV E

m KR E .

EA

~e zOwt4EwJ.wuu< J<e>uwa.M

- RS c2 L,

E ,

rD oA nC

= ---

Z --

2 - -

) - ..

L -

L .

E x E r:

B C

N A

. 0

( $H ED .

0 S

I S U LF BP ,. 5 A

S LL H TE T E -

G 1 H H y ~

5 C C -

KKK j

Q. 0"

/  %

, 2'

%~ NO

~ 0 OI .N G S

y' 0 I VI 1

REP 7 ALM I

i c. . )

2 PE AD 0 z 3 M

  1. . H 1 OT CA%2

_w 5 (

Y A

AG

/_/ C N

E E

R U

RN TI E C DB se,' U Q

E G

I F

E ILO PU j- R F

SB L ER C A

,^ SN OI O TT a O CR T-s P

S AE

~

/ E R

R EV

- I 5

= .

0 T I

N U

~

~

i 3

. I O O 0 0 T O . . I s N

2

. l 0 Uv 3

m Kp t

E .

eth,2SF4EWs.Wuu4 24EtUWa.BV Eu R

C7 t .

en oa pr

,, = --

= --- _

t

.= - -

L E  ;.

M D; =C 8

.n A

t u o -

0 s uste - 0 snm t

a e

w- -

5

_ v- -

s E aT 1

T

.E -

a d

scc uu E t E eee \- -

,' O" Y ,

i s 1 1

' N0 0 O 2G 0

S . N r / ,s I VI 1

REP g A. 3 2

ALM PEA

)

/ N 0 z 3 M D

. H 1 OT A- CA".2 5 ( /

/ _N Y E RN AG

-. C .

N R TI E U

4Wf E C DR U G E LO

'g O I I

, ~ E F PU

, R SB .

F l A

ER c S Oi 0 N TT

. O CR gn- 1 P AF p S E EV R R W 5 0

I T

  • I N

U m

I 0 0 O 0 O T

. . . t i 3 2 t 0 e t

m. Uv r

Ko E .

B 2oC4gnJauu4 a8- a a J4Eeua .BnsW Ea Rn C3 E .

Pn Oa Hr i1

i < ,1l ,' ,a .;
i i <' ,.l  ! !ll

2 -

S -

L .

L =.

E : E .'

P C D: NA =-

0

  • I N S E D 0

. ~

S I

S L U P 5 A F B -

S LL s E E .-

eTN H l

T .

5 C C -

E E E S SS  :-

,0 s

L-s t

%n 0 01 N-O S '4 I5G R

v- 9 A v. N I

\T 1 s )

2 PEP s' 0 z 3 ML M A

,l .[;

. H 1 O

C E D t1 nr- [, S ( A-

- i] - -

T

' J Y C E RAA% 2 o

a.

Q N R TG T E U U G C EI E N ,

m, Q E

I F PDB

- R SLO I

' F EU .

SD5 N -

0 O YN g s PR

  1. SA I

" E RI L

p X 5 U 0

A

+

= I O

o.

O T O 0 I 2

. i O N'

U' '

3 _

D K '" .

E -

E'

) R*

n5 z8><Kws.Wuo< J4g&uwn.

- C' C*

P*

O*

H"

= -

= ---

= - 3 I

L -

L E = -

P;E B

C N

3 0 A

i NDE E -

0 S

I S Mr L

- 5 A F B B L L -

8 E E 9T 1 N N T

5 C C -

EE E -

S S S t

,O

\- 0 N-O' Ns. S 2

'~% 0 8

I0 G G R1 N s %

\% 0 3

A .1 PVP 0

)

z 3 MEM H

1 OLA S

( A CED

- Y AT7 E RA2

~ ,- C

_ w N R T E U CG .

- h U O

G ENE

' E I

F P DO S L I

B R

,[d#

F EU SB-I S

N f O s

OYN PR SA

/,"e s EI f RLI 5 X

/,p 0

. U A

s,s.,

~- s

=- . I O

O O T I

s 0 O. I 0

N'

- 3 2 U" K"

E E'

- R' D

a O ~ ZOm>4EdadUU4 a a J.4KtUdaR.W C' E '

P~

O~

H l i' ,1! lll j' l jil i!!';

, l.

", = --

x -

) -

L x - _:

L .

E = t P;t 8 B t 8A . O i s S . .

5 $ E _

. 0 4

S LUr . 5 A F B B L L -

l E E -

e T T Ms e S C C N _

E E E -

D S S ~ -

- ,O N-O O'8 S T

\ O I G I

(

\ '

RI A .T N

i

&s '

1 3 PVp g

s' O

)

z 3 MEsn t.nl* i H 1 OLa L1

' 5

( A- CEn Ne]a if f

Y AT

- E R A */

I C

_ 2 f N R T E U CG U G ENt Q I P Dsn I E F R S L r F I s EU s

SBc N

  • O OY*

PR Q 8 SA EI RLI "s,f 5 O

X U

A

^

I O

O 0 O r 0 . . i

. I O n L 2 u n

E r

n W a. a eO 2OY<EeJwuo4h J4 c t

e o

p

' l I.  !' ' 'i  !
l

p = -

= ---

= ---

= ---

I L = - .

L -

M=E B

C I

I i 8 A -

- 0 4

5 D .

S 0 I

S L UM A F B

= 5 B LL -

e E E e

GI TH MT -

5 C C -

KKM .

,O N-

\% 0 0

O S

I 4'

5G

( 1

)

2 3

R .N A VI PEP 0 z 3 M L MA

. H 1 O C

E D

  • \1 5 (

A t T Y A R A */.

t,

. C E 2 N R

- ~ E T U CN . G

~ U G EI E

  1. O I PDB

- E F

, R SLO I

, F EU .

S BW 0 N O Y-E 8

PR SA

]c.

_ E RI I

L 3n X

- 5 U s 0 A

a

/~

,a-

- 8

. I 0

O O O Y O * . . t' 3

N I O m' t '

m. K" E

) . E" a R nG Z2F4EassUU4

- e t

n a a_4E>oltam C" E*

P" o*

H' l

p = -- _

= --

U L

=- .

7 M=E D

ts s

s a

E 0 A 0 5

0 D w .

S I

S A

UM L

F S w 0

5 S L L =

s _-

s E E iT T -

MM H 5 C C _ -

KMM _

.- ,O 1

0 N-O' 5

0 S 2

\

\ 5

~ 1 I

HI On e s

A . s

{6 1

u 1 \ *R 0 5

)

z H

(

3 3

3 1

P v a.

ME.

OL.

CEn f i A-

11

,1 f

% Y AT, Y- C N

E R RAn T

'y, E U

O E

U CG G

I EHe -

F P1 n

~

R S Dn L F I EU.

SB r?

  • 0 8

N OY-PR SA

,S- p EI RLI 5 X

[. O

. U

'4 A s,

- I O O 0 0 O r

. * . . e.

e 3 E I 0 s.

m . u. c a=

,D t.

s eS EOY4Edss U4 34co0dea s s e

.W a~

c~

t m-o-

e-s-

< i

I  ;

=

= --

= ---

= .

I L = - .

L .

f = E r

B; C

e t

E 8 a

. O 0 t . "

5 s5 E e

. 0 ,

8 i 5 P 5 A LF B  : -

S LL 6 E E . ~

I t T .

ee l s e l ,

$ cC KKK _

,~~

~

_ ~ ,

,O

% ~'- N-s' O O'8 g ) S , O S 7 I G N ,-

I R1 N

>\ ' A .I Lt[ 1 kI 4 3 PvP 1[M i

- O

)

z - ME4k g

k' H

3 1 OLA p\ j - - S

(

A-CED 4 t F -

AT 7 I

o l1 Y

I1 j1 lI' C E R A *"/.

~ N R T E U CG .

, 0 G ENF 0 I I E F P D R

, R S L O

, F I

_ EU .

_

  • SBW N

/d O OY F 8

PR yA s SA EI f RLI

  1. y 5 X

. U

'# O A s"

I

. a 0 O O 0 O T 2

8 O

e' I

3 m*

t *

- K*

E ain,. Z0I(uw3.Wuo . . E*

3.4E6uua* R' C'

E' P"

0*

4 "

5

~. -

~

) -

L :

L _

E :

E g r C -

e B s A O -

I se s E _- . ~

S uEr I

0 S

~

S L A F D -

S L L _

0 E E 1 _

4 Te T 8

I 5 OD E E E k-SB S N ,O NG w' O O

O' S4N I I 5 P

~-.c

. I R

AV u f- )

5 3 P E An

  • O z 3 ML I . . H 1 O E x

-* . 5 ( A

- C p

-% T-

- Y E RAA

- C .

~ N R e

,, E U TG n 0 G CN EI n 0 I PD E F

. R SLI .

. F s E UA S Brv '

N 7: O OYT P Rn S IAev i

1 g

qs EL RI X

x- 5 U O

A e

y j

I O

O O O O T

. . I

  • J 2 I O N U-m Ea e

E E-

~p s .n

-t ou4 2.<E6UtSe

- n-os- ZOm>4Ks 2a t

a e a e-t r-o-

n-

^. -

)L 'c -

I L

E : t B 0 r;m

(

S U I

S L A F e

s 0

5 S L L . =

NET TE MH H SC c EE E DS m w- .

f- - , O" O

NG O'

S 2 N o I OI v, ~ s s RI P

-: A .M 4

6 3 PVA 0

)

z - MED C . H 3

1 OL 5 CE%

_ C

~

(

Y A-AT 2

~ C E RA .

R T

[&I' E N

E U CGB U G ENO O f E F PID .

R S L L

,f F I EUA SB N

C I

o . OY R T

s PR E SA EI V

/,.

RLI 5 X

. . U 0 A

^

s a

0 O 0

0 T O .

. . I' I

O

^ & 2 M"'

(

K" E

E*

n aO g ><tWsWuo4 e -  :<e st oWn.W R-C' E

P-O-

H-

d

" ^

R

.. o etssou casas amettLa escurEL FLusse = = = = = =

eECHTEL hetDeseCE - - - - - - - - - - -

4 a

w Z 2. O

?

s-4 .

E w

s saa o

u a

r -

F u .

w t. O a.

we d J *

&g-

.=

a/ 5 g j' ,

/V

~~

fg,:f-,

Y' 's i 0. 0 - -

r O. I 0. 5 f. 0 5. 0 s o. O i 50.0 FREOUENCY ( Hz)

FIGURE A-13-37 RESPONSE SPECTRA COMPARISON, ces entret useer AUXILIARY BUILDING AT ELEV. ! 78' -O" .

Ao.Lssa.nty i 4/ 2ar ed VERTICAL, OBE, 27 DAMPING I

l 4

4 TRUCTURAL RIGID BASE MAT g,,

v.s l

C xx C yy b K yy

\\\N\\\\\\NNNNNNN FIGURE A-1558 IMPEDANCE APPROACH FOUNDATION MODEL

~

--,~,-----<-r--

REACTOR BUILDING SHELL FIGURE A-15-59

& RADWASTE BUILDING FIXED BASE LUMPED MASS STICK MODEL

@ , L, 3,,. WmMMEm%

8 -

,b EL 2W x

, ,@ n. ns-DRYWELL E

g SHIELDWALL EL. 201' ,

n. i.r ,,@

RADWASTE g 2 g BUILDING EL.17r ,h BIO. SHIELD, R.P.V.

@,, n. "'- g 4 pE & R.P.V. PED.

o@ 8 o 2  :

W u.,

M a n. ,.r F@ -

e e g, , u.1sr , ~g >M .qu o g e -

I EL 14s' EL.14r , O g" ELIF Et13r R

. b $

4 x

. m. , . . e w e

n. ur @

u.sor E t s7' b

h: =

@ n. ,,

~

. G h ~n@

g '@

E L. ,,.

O

,e _E ~eM.E.

g MEMBER NUMBER E

yRING NUM8E R EL S4'  ;

. ELEVATION I 198'- 0" 4

0 <

173*- 0" 172'- 0" 163*- 6"

_ g,, NOTATION:

3 137'- 0" 1ao,_ g, O NooE NuM.ER Qs([s.

U4 5 124'- 0" ( MEMBER NUMBER 4

> 102*- 0"

$4 ,

87'- 0" 77'- 0" 4

, , , , , _ 54' ~ 0" FIGURE A-13-40 FIXED BASE LUMPED MASS STICK MODEL FOR AUXILIARY BUILDING l

f HCGS DSER Open Item No. 54 ( DSER Section 3.8.6) Rev. 1 COMBINATION OF VERTICAL RESPONSES ,

From January 10 through January 12, 1984, the staf f met with the applicant and his consultants to conduct the structural audit.

The audit covered each major safety-related structure at the Hope Creek Generating Station.

As a result of the audit, the staf f identified 39 action items.

The applicant has submitted preliminary responses to 22 of the 39

- action itens. The staf f is in the process of reviewing these res ponses. The final resolution of the action items and any additional questions, which may be raised further, will be reported in the Final SER. The resolution of these action items will be needed before the issuance of the Final SER.

RESPONSE

This item corresponds to. Item B.5 from the NRC Structural /

Geotechnical meeting of January 10, 1984. A response to this item has been submitted to the NRC by a letter dated February 17, 1984, from R. L. Mitti to A. Schwencer. As a result of discuss-ions with the NRC staf f, a revised response bo this item is attached. .

k i

K51/2-44

Response to NRC Audit '

Revised Response Revision 2 Meeting Date: January 10, 1984 August 3,1984 Question No.: B-5 QUESTION: Provide example calculation for combination of N-S, E-W, and vertical responses.

RESPONSE: Example calculation was provided in the original response to this question.

ADDITIONAL INFORMATION REQUESTED: Provide summary tables showing the contributions to the in-plane response due to out-of-plane excitation for tiiree orthogonal directions. Two tables to be provided for both N-S and E-W responses.

RESPONSE: Tables 1 and 2 summarize the N-S and E-W response due to N-S, E-W, and vertical base motions for Reactor Building Unit 1, SSE case. Tables 3 and 4 provide similar information for the OBE case. Individual contributions and the resultant response maxima using the SRSS procedure are listed for selected elements in the Reactor Building mathematical model. As included in the original response, the out-of-plane response maxima (shear and moment) were found to have no significant contribution to the in-plane response maxima values.

Tables 2 and 4 of this attachment supercede the

. corresponding tables transmitted under the origiral response to this question. In the original tables, the values of the moment for E-W response due to E-W base motior were taken from the top end of the beam elements. However, the corresponding values of moments due to N-S base motion for the same beam elements were taken from the bottom end of these elements. This was corrected in Tables 2 and 4 of attachment to this response.

TABLE 1 REACTOR BUILDING OUT-OF-PLANE RESPONSE SAFE SHUTDOWN EARTHQUAKE Revised Response January 10/B-5 N-S Response N-S E-W Vertical Element Base Motion Base Motion Base Motion SRSS Ratio Number Variable (A) (B) (C) (D) (D)/(A) 1 Shear 9.139 x 10 2 1.746 x 10 1 2.053 x 102 9.368 x 102 1.03 Moment 8.988 x 10 3 1.663 x 10 2 2.282 x 10 3 9.275 x 10 3 1.03 7 Sheer 1.405 x 10 4 2.358 x 102 1.324 x 103 1.411 x 10 4 1.01 Moment 9.796 x 10 5 1.646 x 10 4 1.856 x 10 5 9.972 x 105 1.02 11 Shear 2.180 x 10 45 3.490 x 10 2 1.714 x 10 3 2.187 x 10 4 1.01 Moment 3.182 x 10 1.027 x 10 5 5.160 x 10 4 3.383 x 10 5 1.06 15 Shear 2.558 x 10 4 4.188 x 10 2 1.103 x 103 2.561 x 10 4 1.00 Moment 2.653 x 10 6 4.347 x 10 4 1.070 x 105 2.656 x 10 6 1.00 19 Shear 4.502 x 10 4 2.635 x 10 3 2.949 x 103 4.519 x 104 1.00 Moment 4.933 x 10 6 2.904 x 10 5 2.520 x 10 5 4.948 x 10 6 1.00 21 Shear 5.699 x 10 4 2.192 x 10 3 4.310 x 103 5.719 x 10 4 1.00 Moment 6.775 x 10 6 2.881 x 10 5 3.830 x 10 5 6.792 x 10 6 1.00 33 Shear 1.523 x 10 34 5.135 x 10 31 5.328 x 10 23 1.614 x 10 3 1.06 Moment 2.331 x 10 4.271 x 10 4.800 x 10 2.418 x 10 4 1.04 .

35 Shear 3.457 x 10 3 1.018 x 10 42 1.093 x 10 43 3.627 x 10 3 1.05 Moment 8.488 x 10 4 1.374 x 10 1.830 x 10 8.791 x 10 4 1.04 37 Shear 9.890 x 10 3 2.031 x 10 2 1.022 x 10 43 9.945 x 103 1.01 Moment 3.518 x 10 5 1.983 x 10 4 2.270 x 10 3.531 x 10 5 1.00 39 Shear 3.156 x 10 4 4.933 x 10 2 2.417 x 10 43 3.166 x 10 4 1.00 Moment 1.181 x 10 6 1.984 x 10 4 7.040 x 10 1.183 x 10 6 1.00 42 Shear 1.280 x 10 4 1.790 x 10 43 1.153 x 10 43 1. 298 x 10 4 1.01 Moment 9.634 x 10 5 3.389 x 10 5.300 x 10 9.655 x 10 5 1.00 4

44 Shear 1.515 x 10 6 2.805 x 10 43 1.420 x 10 35 1. 547 x 10 4 1.02 Moment 1.471 x 10 - 5.650 x 10 1.020 x 10 1.476 x 10 6 1.00 Note: 1. Units: Kip, Ft.

l Page 2 t

4 l

l i

l TABLE 2 REACTOR BUILDING  ;

OUT-OF-PLANE RESPONSE

~

SAFE SHUTDOWN EARTHQUAKE Revised Response January 10/B-5 E-W Response E-W N-S Vertical Element Base Motion Base Motion Base Motion SRSS Ratio Number Variable (A) (B) (C) (D) (D)/(A) 1 Shear 8.829 x 10 2 1.164 x 10 1 8.628 x 10 1 8.872 x 10 22 1.01 Moment 8.264 x 103 1.186 x 10 2 8.103 x 10 2 8.304 x 10 1.00 2.203 x 10 2 8.034 x 10 2 1.326 x 10 4 7 Shear 1.323x10j 1.00 Moment 8.504 x 10 1.267 x 10 6.400 x 10 8.529 x 105 1,00 11 Shear 1.698 x 104 4.092 x 10 2 3.796 x 10 2 1.699 x 10 4 1.00 Moment 1.583 x 10 6 2.653 x 10 5 6.930 x 10 4 1.607 x 10 6 1.02 15 Shear 4.918 x 10f 5.880 x 1024 9.377 x 10 2 4.919 x 10 4 1.00 Moment 8.257 x 10" 1.138 x 10 1.230 x 10 5 8.349 x 105 1.01 19 Shear 6.499 x 10 46 6.400 x 10 2 1.204 x 10 35 6.500 x 10 64 1.00 Moment 3.078 x 10 4.853 x 10 5 1.660 x 10 3.120 x 10 1.01 21 Shear 7.055 x 10 4 6.283 x 10 2 1.440 x 10 3 7.057 x 10 4

1.00 Moment 5.337 x 10 6 1.837 x 10 5 1.990 x 10 5 5.344 x 10 6 1.00 33 Shear 1.601 x 10 43 5.216 x 10 1 3.740 x 10 32 1.03 Moment 1.593 x 10 2.022 x 10 3 3.370 x 10 1.645x10f 1.641 x 10 l'.03 35 Shear 3.491 x-10 34 8.271 x 10 1 7.104 x 10 42 3.564 x 10 43 1.02 Moment 6.442 x 10 4.509 x 10 3 1.240 x 10 6.576 x 10 1.02 37 Shear 5.981 x 10 35 1.188 x 1032- 7.497 x 10 42 6.029 x 10 35 1.01 Moment 1.025 x 10 9.354 x 10 2.190 x 10 1.052 x 10 1.03 39 Shear 1.482 x 10 45 1.707 x 10 42 4.034 x 10 42 1.483 x 10 4 1.00 Moment 3.107 x 10 1.200 x 10 3.630 x 10 3.130 x 10 5 , 1.01 42 Shear 8.162 x 10 3 1.084 x 10 32 1.621 x 10 32 8.164 x 10 43 1.00 Moment 7.449 x 10 4 6.000 x 10 6.160 x 10 7.498 x 10 1.01 44 Shear 1.055 x 10 54 1.284 x 10 2 2.103 x 10 24 1.055 x 10 4 1.00 Moment 2.138 x 10 6.323 x 10 3 1.350 x 10 2.143 x 10 5 1.00 Note: 1. Units: Kip, Ft.

Page 3

O TABLE 3 REACTOR BUILDING OUT-OF-PLANE RESPONSE OPERATING BASIS EARTHQUAKE .

Revised Response

  • January 10/B-5 N-S Response N-S E-W Vertical Element Base Motion Base Motion Base Motion SRSS Ratio

. Number Variable (A) (B) (C) (D) (D)/(A) 1 Shear 8.676 x 10 2 2.339 x 10 1 1.283 x 10 2 8.773 x 10 2 1.01 Moment 8.247 x 10 3 2.239 x 10 2 1.426 x 10- 8.372 x 10 3 1.02 7 Shear 1.175 x 10 4 3.322 x 10 2 8.275 x 10 2 1.178 x 10 4 1.00 Moment 8.243 x 10 5 2.308 x 10 4 1.160 x 10 5 8.327 x 10 5 1.01 11 Shear 1.515 x 10 4 4.907 x 10 24 1.071 x 10 3 1.520 x 10 45 1.00 Moment 2.549 x 10 5 6.064 x 10 3.225 x 10 4 2.640 x 10 1.04 15 . Shear 1.306 x 10 4 5.542 x 10 2 6.894 x 10 2 1.309 x 10 4 1.00 Moment 1.830 x 10 5.553 x 10 6.688 x 10 1.832 x 10 1.00 19 Shear 1.899 x 10 4 1.561 x 10 3 1.843 x 10 35 1.914 x 10 4 1.01 Moment 2.873 x 10 6 1.798 x 10 5 1.575 x 10 2.883 x 10 6 1.00

' 21' Shear 2.406 x 10 4 1.578 x 10 3 2.694 x 10 35 2.426 x 10 4 1.01 Moment 3.665 x 10 6 2.059 x 10 5 2.394 x 10 3.679 x 10 6 1.00 33 Shear 6.421 x 10'c 3.330 x 10 2 7.249 x 10 2 Moment 7.924 x 103 4.807 1.967 x x 1010f 3.000 x 10 8.698 x 103 1.13(2) 1.10 35 Shear 1.468 x 10 3 1.040 x 10 2 6.831 x 10 2 1.622 x 10 3 Moment 3.015 x 10 6.522 x 10 1.144 x 10 3.290 x 10 1.10(2) 1.09 37 Shear. 4.282 x 1035 - 2.146 x 10 42 6.388 x 10 42 4.335 x 10 35 1.01 Moment 2.260 x 10 1.090 x 10 1.419 x 10 2.267 x-10 1.00 39 Shear 1.455 x 10 45 6.914 x 10 2 1.511 x 10 34 1.464 x 10 45 1.01 Moment. 7.580 x 10 2.396 x 10 4 4.400 x 10 7.597 x 10 1.00 42 Shear 5.381 x 10 35 8.901 x 10 24 7.206 x 10 42 5.502 x 10 3 1.02 Moment 5.879 x 10 2.707 x 10 3.313 x 10 5.895 x 10 5 1.00 44- Shear 6.382 x 10 35 1.315 x 10 34 8.875 x 10 42 6.576 x 10 3 1.03 Moment 7.841 x 10 3.660 x 10 .6.375 x 10 7.875 x 10 5 1.00 Notes: 1. Units: Kip, ft.~

2. This is considered insignificant because the' shear and moment for this beam'are very small .

Page 4 O

t

-o

~ TABLE 4 REACTOR BUILDING OUT-OF-PLANE RESPONSE OPERATING BASIS EARTHQUAKE .

Revised Response January 10/B-5 E-W Response E-W N-S Vertical Element Base Motion- Base Motion Base Motion SRSS Ratio Number Variable (A) (B) (C) (D) (0)/(A) 1 Shear- .6.049 x 10 2 1.604 x 10 1 6.075 x 10 2 1.00 Moment 5.660 x 10 1.571 x 10 2 5.393x 10 5.064 x 10f 5.685 x 10 1.00 7- Shear 2.178 x 10 2 5.021 x 10 2 8.740x10f 1.00 Moment 8'723 5.791 x 10x idf 1.391 x 10 4 4.000 x 10 5.806 x 10 1.00 2 3 11 Shear 9.271 x 10 3 6.722 x 10 2 2.373 x 10 4 9.298 x 10 6 1.00 L Moment 9.943 x 10 5 1.798 x 10 5 4.331 x 10 1.011 x 10 1.02 4

.15 Shear 2.437 x 10 4 .6.431 x 10 24 5.861 x 10 24 2.439 x 10 5 1.00 5

Moment 5.180 x.10 1.235 x 10 7.688 x 10 5.238 x 10 1.01 4 2 4 19 Shear 3.187 x 106- 7.589 x 10 28 7.525 x 10 5 ~

3.189 x 10 6 1.00 Moment 1.517 x 10 3.060 x 10 1.038 x 10 1.551 x 10 1.02 21 Shear 3.431 x 10 1.00 Moment 2.628 x 10[ 8.172 1.406 x 10 x 9.000 10f x x1010f 3.433 1.244 2.635 x x 1010l 1.00 2

33 Shear. 7.598 x 10 2 3.297 x 10 1 2.338 x 10 3 7.956 x 10 23 1.05

. Moment- 7.889 x 10 3

9.159 x 10 2 2.106 x 10 8.217 x 10 1.04 4.440 x 1023-3 35 Shear 1.679 x 10 34 5.966 x 10 1 1.738 x 10 4 1.04 Moment 3159 x 10 1.601 x 10 3 7.750 x 10 3.257 x 10 1.03 3

37 Shear 4.686 x 10 2 2.959 x'10 -1.01 Moment 2.920 x 10f 8.827 x-10f 6 786 x 10 - 1.183 x 10 1.369 x 10 7.023 x 10 1.04 2 2

.39 Shear 1.910 x 10 3 2.521 x 10 1.00 7.333 x 10f 8.248 2.269 x'10 7.340x10f 2.015 x 10 - 1,01 1

. Moment 2. 000 x .10 x 10 42 Shear -4.065 x 10 34 1.018 x 10 23 1.013 x 10 2

4.068 x 10 3 1.00 '

Moment 3 724 x 10 3.039 x 10 3.850 x 10 3.756 x 10 1.01 2 3 44 Shear 1.129 x 10 23 1.314 x 10 5.117 x 10 1.00 E Moment 5.111 x lof 1.045 x 10 5.758 x 10 8.438 x 10 1.050 x 10 1.01 Note: 1. Units: Kip, Ft.

. Page 5

  • HCGS Rev 1 DSER Open Item No. 66 (DSER Section 3.8.6)

,I,MPEDANCE ANALYSIS FOR THE INTAKE STRUCTURE From January 10 through January 12, 1984, the staf f met with the applicant and his consultants to conduct the structural audit.

The audit covered each major safety-related structure at the Hope

  • Creek Generating Station.

~

'As a result of the audit, the staf f identified 39 action items.

The applicant has submitted preliminary responses to 22 of the 39 action items. The staff is in the process of reviewing these i responses. The final resolution of the action items and any additional questions, which may be raised further, will be reported

-in the Final SER. The resolution of these action items will be needed before the iscuance of the Final SER.

RESPONSE

This item corresponds to Item A.16 from the NRC Structural /

Geotechnical meeting of January 11, 1984. A response to this*

item has been submitted to the NRC by a letter dated August 3, 1984, from R. L. Mitti to A. S chwencer. As a result of discussions with the NRC staff, a revised response to this item is attached.

l l

i 1

l l

e

~

[- K51/2-52 i

Y Ravised Response Revision 1

. August 3, 1984 Meeting Date: January ll,'1984 .

Question No. : A-16 Ques tion: -Perform sn independent seismic verification analysis (impedance' analysis) for the intake structure and

compare the results with design basis results.

Consider the effects of side boundaries, embedment and-the presence of water masses in the analysis.

Response

In ~ accordance with the requirements of the Standard Review Plan, Sect' ion 3. 7. 2 (NUREG 0800), impedance approach (half-space) seismic soil-structure interaction verification analyses of the service water-intake structure (SWIS) are performed by Bechtel. The ana-lytical method used for the impedance approach seismic soil-structure interaction analyses of the SWIS is described in FSAR Section 3.7.2.1. ,

The effects of side boundaries and embedment are considered using the method described in References A-16-1 to A-16-3. The wave scattering effect is conservatively neglected in the present imped-ance approach analysis. This is consistent with the requirement specified in SRP Section 3.7.2. .The effects of' water masses are also accounted for by adding effective water mass to the related

- nodal' points.of the structural model in accordance with procedures '

- described in Reference A-16-4. The structural model and soil-properties used in the analysis are given in Appendix A.

Figures A-16-1: to A-16-18 show the . comparison of the 2 percent damping response spectra obtained from the design basis finite '

element and the impedance approach seismic soil-structure interac-tion analyses. The impedance approach response spectra.generalL?

are enveloped by those obtained from .the design basis analyses at elevation 114. 0 f eet of the SWIS. For other elevations, the impedance approach spectral accelerations exceed the design basis

~

spectral accelerations in some frequency ranges. -These ranges vary approximately between 1. 5 and 10. 0 Hz. i

- As discussed during the January 1984 NRC Structural Audit Meeting,.

1:

sampling studies have been performed to confirm the adequacy of

- the SWIS design. The criteria used in selection of the samples c for-this study is given in Table A-16-1. The results of-the sampling ,

studies are as follows:

1. Structure All major reinforced concrete shear walls at the base of the intake structure have been evaluated for seismic forces and moments obtained from the impedance approach analyses. The shear stresses resulting from the impedance approach analyses were compared with those.of the design basis analyses. Table A-16 shows comparison of shear stresses. In all cases these revised shear ~ stresses were found to be within the allowables.

The moments in the walls, obtained from the impedance analyses, were smaller than those of design basis analyses.for both the East-West OBE and SSE cases, therefore, no further. evaluation of these walls is required.

Response ' to Question A-16 ( cont' d)

For North-South OBE and SSE cases, the moments obtained from impedance approach analyses exceeded the design Dasis moments. .l The increase in moments were mostly isolated to the eastern

{

' portion of the intake structure. This portion of the intake structure was reevaluated and the resulting moments were found -

to be less than the allowables.

Based on the above , it is concluded that the as-built SWIS can accommodate loads obtained from the impedance approach analyses.

2. Equipment The ef fects of the impedance approach response spectra was evaluated on- 8 types of seismic category I equipment located in ,

the areas _ where the impedance approach spectra were found to have higher spectral accelerations than those of the design basis response spectra. The equipment evaluated _ represents over 30% of ' all equipment located in the intake structure.

Table A-16-3 summarizes the results of the above evaluation for equipment in the Intake Structure. .It is concluded that all category I equipment can accommodate the response spectra obtained from the impedance analyses.

3. Cable Tray and HVAC Supports All cable tray .and HVAC supports were evaluated using the

-impedance analysis results. All supports were found to meet the impedance approach spectral response requirements.

4. Piping and-Piping Supports Piping and pipe supports.were evaluated using the screening techniques discussed in Table A-16-1. The results are summar -

ized in Tables A-16-4 and A-16-5. The analysis results show that piping _ stresses and nozzle loads are within allowable limits. There was no load increase found on existing supports.-

It is therefore concluded th'at the existing design margins -

associated .with the present project design basis seismic loading

(, are .not af fected by the consideration of the loads generated l

from. the impedance approach analyses as demonstrated by ' the SWIS piping systems.

References:

A-16-1, Ap sel , R. J. , (1979) " Dynamic Green's Functions for Layered Media and Applications to ' Boundary Value Problems", Ph.D Thesis, University of California, San Diego.

! PES /3

Response to Question A-16 (cont'd)

References (Cont'd)

A-16 -2 , Wo ng , H . L . , a nd Luc o , J . E . , (1978) " Tables of l Impedance Functions and Input Motions for Rectangular l Foundations", Report No. CE78-15; University of California, San Diego.

A-16-3, Barneich, J.A. , Johns, D.H. , and McNeill, R. L. ,

(1974) " Soil-Structure Interaction Parameters for

- Aseismic Design of Nuclear Power Stations", Preprint 2182, ASCE National Meeting on Water Resources Engineering ,

~

Ja nua ry 21-2 5.

A-16-4, Newmark, N. and Rosenblueth, E. , "Fundamtntals of Earthquake Engineering," Prentira-Hall, Englewood Cliffs, N.J. (1971) 9 l

PE5/3

APPENDIX A Impedance Analysis Structural Model and Soil Properties In the soil-structure interaction analysis, using the impedance approach, the effect of dynamic stiffness of the foundation medium is represented by the foundation impedances, which are functions of the base mat dimensions, embedment depth, elastic properties of the foundation medium, and forcing frequencies.

Witn.the foundation impedance known, the structure-foundation system is modelad by coupling the fixed-base structure model with the foundation impedances through the basemat (FigQre A-16-19).

The impedance approach seismic' soil structure interaction analysis of the intake structure (Figure A-16-20) is performed for both the SSE and OBE cases. The foundation soil is assumed to be

.a uniform linear visco-elastic half space. The weighted average of the final iterated shear moduli of 3,655 ksf (shear wave, velocity of 1,007 f t./sec. ) and 6,404 ksf (shear wave velocity of 1,333 f t./sec. ) . respectively, are used in calculating the hori-zontal SSE and OBE impedance functions. Since the groundwater table is located at elevation 98.0 ft., a compressional wave velocity, Vp, of 4,800 ft./sec/ is used for the vertical analysis.

The computed OBE and SSE translational and rocking impedances for the embedded intake structure foundation are given in Tables A-16-6 and A-16-7.- ,

PE5/3

, ~, .

TABLE A-16-1 PROCEDURES FOR EVALUATION OF It!TAKE STRUCTURES, EQUIPMENT & COMPONENTS USING IMPEDANCE ANALYSIS RESULTS INTRODUCTION ,

The results of the impedance analysis are _ used to assess the I existing design of the HCGS intake structure , equipment and l c ompo nents. A sampling approach is used. The procedure for this evaluation is as follows: i A .' _ STRUCTURES:

Since the maximum shear and axial forces and the maximum overturning moments occur at the base of the structure , and the design margins for- the upper elevations are greater than

- those of the base , the ef fects of these loads at the base of the structure are evaluated.

U B' . EQUIPMENT:

The bmpedance analysis spectra in general are not cocpletely enveloped by the design basis spectra in the 1.5 to 10.0 Hz and in the ZPA range throughout the intake structure.

The following procedure is selected for review:

. Review the significant frequencies of at least 30% of equipment located in the areas where the impe dance ap proach spectra were found to- have higher spectral accelerations

< than those of the design basis response _ spectra.

. If the significant equipment frequencies fall in the range I where the dif ference in the spectra exist, additional eval-uation is necessary. No -further evaluation is necessary if the significant frequencies are outside the frequency range in que stion.--

._ The evaluation "is performed either by comparing the test response - spectra of the equipment with the impedance spectra .

(if the equipment is qualified by- testing) or comparing the.

' actual-to-allowable stress ratios' with the spectrum exceed-ance ratios.

. If the above evaluation shows the equipment may not be qualified for the impedance spectra , detailed evaluation -

consisting of analysis and/or testing is performed.

As a result of evaluation, if equipment requires modifica- I tions, the sanple size for- this evaluation is expanded -as 1 r equir ed .

G5/48

- * ' - - - - - -__e -

I C. CABLE TRAY AND HVAC SUPPORTS All cable tray and RVAC supports are evaluated for impedance

, analysis results.

D. . PIPING AND PIPE SUPPORTS _

In general, impedance curves resulted in significant reductions in spectral accelerations as compared to those of the design basis curves. However, in some curves, the peak acceler-ations showed small increases. To evaluate the ef fects of the increase in peak accelerations a " biased" sample of af fected piping systems is reanalyzed and reevaluated. The sample is selected as follows:

Individual impedance curves for various elevations and structures are superimposed on their corresponding design basis curves to identify those impedance curves which are not enveloped by design basis curves. Those impedance curves are then superimposed on the design basis " enveloped" response spectra used for various piping system design calculations. If the design basis enveloped response spectra curves af fecting a calculation did not to tally

- envelop all the corresponding impedance curves, that particular calculation is then identified as "af fected" calculation and a candidate for sampling.

A " biased" sample of the "af fected" calculations was selected which emphasized the following important piping parameters :

1. Stress levels in the existing pipe stress calculations.

Samples included systems with high stress levels.

2. Dif ference in "g" level (ag) between impedance and design basis curves in the af fected frequency zones. Sample selected to include curves showing significant dif ferences. .
3. High equipment nozzle loads in existing calculation.

The number of calculations included in the' sample is:

f Total No. No. of Cales No . o f Cal cs No. of Cales Building of Q-Calcs Reviewed affected 'in the sample j

l-:

Intake S truc tur e 'll 11 5 1 Results of the analysis including support loads are compared against the design basis values for acceptability.

9

. G5/48 g  %.

e w- y v-w-g- , - --www+

o .

l

l Table A-16-2 i Intake Structure Shear Stress at the Base l

Base Wall. De sign Impedance Allowable l Elevation Location Base Approach ~ (psi)

. Column Line (psi) (psi)

Col..A 79'-8" (East Wall) 80 124 630 79'-8" Col. Ac 66 98 630 4

79'-8" Col. Ak 47

^

73 '630 Col. C 70'-0" (West Wall) 47 77 126 Col. 5 7 9'-8 " (South Wall) 230 214 630 E

7 9'-8 " Col. 7 200 176 630 Col. 9 17 9' - 8 " (North Wall) 230 214 630 Notes: 1. Concrete f'c = 4000 psi.

2. See . FSAR Figures 1. 2-4 0 and 1.2-41 for wall location.

t l

f PES /3 I

w -,e,a --- ,--r-,a . - - - - - - . - - , ----a e,,, ,,--..,, .w ,,,w...,.,n,u ,, , . ~ . - , , , . . - - - , . , - , , -

Table A-16-3 Intake Structure - Seismic Category I Equipment Equipment Fundamental Methsd of or Tag No. Elev. Freque ncies Seismic Applicable l Camponent (Hz) Qualification Note Travelling 70'-0 "& Horizontal - 7.4,14 Water Screen 1( A-D)S 501 114'-0" Vertical - >3 3 Analysis 2 (T. W.S . )

C,ontrol Panel Horizontal - 21, 30

( fo r T. W.S . ) 1(A-D)C515 107'-0" ve rtic al - >3 3 Testing 1 Service Water Horizontal - 28.4 Pumps 1(A-D)P502 93 '-0 " Vertical - >3 3 Analysis 3 Supply Fans OAV558 128'-O " Horizontal - >33 Analysis 2 OBV558 Ve rtical - >3 3 Vane Axial Fans 1 AV-DV5 03 122'-0* Horizontal - >33 Analysis 3 1AV-DV504 Ve rtical - >3 3 HVAC Control Horizontal - 15, 22 Panel 1 ( A-D)C 581 93 '-0 " ve rtic al - >3 3 Analysis 2 Travelling Screen Spray Horizontal - .>33 Water Booster 1AP-DP507 7 9' - 8 " Ve rtical - >3 3 Analysis 2 Pumps I

Trans former Horizontal - 29,31 Panel Board 10Y501-504 93 '-0 " vertical - >33 Testing 1

( Notes: 1. TRS envelops impedance approach spectra.

!. 2. Impedance appoach spectral acceleration is lower than that of the design basis response spectra in the major equipment fr equencies .

3. Although impedance approach assetral acceleration exceeds that i of desip basis resIonse spectra in the equipment frequency range, a more detailed calculation showed that the equipment stresses l

, are within the code allowables.

l l

f l PES /3 l

L

Table A-16-4

' Intake Structure Pipe Stress Strmary Max. .Seisnic -Stress Ratios A9tE Code Equation

' Calc. No. Evaluation Verdor Equipnent Max. Incedance Stress Eq. 9B* Eq. 9D* Nozzle Allowables Max. Design Basis Stress Code Allcw. Code Allow. Met CBE l SSE Upset Faulted C2019 - 0.46 0.51 0.26 0.14 Yes

PES /3

Table A-16-5 Intake Structure Pipe Support Ioad Stmury l I

-Calc. No. Total . Ib. of No. of Supports ' Average Percentage Supp3rt Supgorts with lom$ increase in load Design increase i Upset I Faulted Adequate C2019 15 0 WA WA Yes l l 9

PES /3 E

TABLE A-16-6 VALUES OF SOIL STIFFNESS AND DAMPING COEFFICIENTS OF 3-D INTAKE STRUCTURE (OBE CASE)

STIFFNESS DAMPING DIRECTION ,

CO EFFICIENTS CO EFFICIENTS I I VERTICAL 6.03 x 106 k/ft 3.81 x 105 k-sec/ft

'l TRANSLATION l l

NORTH-SOUTH , 4.00 x 106 k/ft 2.22 x 105 k-sec/ft TRANSLATION l l l 1 EAST-WEST 4.40 x 106 k/ft 1 2.36 x 105 k-sec/ft TRANSLATION l 1

i TORSION 2.88 x 10 10k -ft/ rad l 8.45 x108 k-ft-sec/ rad ROCKING ABOUT l l- NORTH-SOUTH AXIS l 2.50 x10 10k -ft/ rad [ 7.71 x_108 k-ft-sec/ rad l'

< l i

~ROCKI'NG ABOUT l l EAST-WEST AXIS 3.14 x.10 10k -ft/ rad l 1.12 x 109 k-ft-sec/ rad 1

I F1(82) l-l L

i

~

l l

TABLE A-16-7 V ALUES OF SOIL STIFFNESS AND DAMPING COEFFICIENTS OF 3-D INTAKE STRUCTURE (SSE CASE) .

I l STIFFNESS DAMPING DIR ECTION l CO EFFICIENTS COEFFICIENTS l

3.81 x 105 k-sec/ft VERTICAL 6.03 x 106 k/ft '

TRANSLATION l l

NORTH-SOUTH 2.43 x 106 k/ft . 1.67 x 105 k-sec/ft l l TRANSLATION l l l EAST-WEST l 2.51 x 106 k/ft 1.78 x 105 k-sec/ft l TRANSLATION TORSION l 1.66 x 10 10k -ft/ rad 6.39 x108 k-ft-sec/ rad

. ROCKING ABOUT NORTH-SOUTH AXIS ! 1.43 x10 10k -ft/ rad 5.83 x 108 k-ft-sec/ rad l 1

l l ROCKING ABOUT

l. EAST-WEST AXIS 1.83
  • 10 10k -ft/ rad l 8.62 x-108 k-f t.- se c/ rad

.l -

1 Fl(75) 6 4

+

y e y - . - , w , ,y--er, ,-

I L

L .-

E E .

rC ps e t

a O D .

s (e t

. 0 5

sD A

S L .

s E e

cT .\

t M .

sC E

DM .'

, O'

, .I ..t * .'gt O N-O' g.' O S3

\ I9G R .N I

s N .'.*,- A VI

%*\' ) PEP 1**

1 O 2 ML M S

. H O C

EA D

- ( 1

- \ Y

- T t

y 3 C

6 1 AA%

R 2

. q -

g N A E T E U E C R ,

O R EUE p./

f E U PT S f.* R G SCS

.*.l F I U

. F E R S.

.I:lt*I !*. ST O N O

S-N

.t:' .

.!' 1 PE

/ ..

'.. SK

}/ ". /

EA

- i f RT 5 N I

/ /r ,

O

/

  • I

. e O

5 O g O T 1

g E I

wo I

u v KE En

_ } E .

_ a g ~ 2O .

b<rWsMuu< -8<EFoWgW ns cs g.t rn o^

g-1 i

U-L E E .

rt te E

A .

. 0 D . .

S E 0 _

I r . 5 S

A t B L .

e E .

B T MM .

S C .

E E D e k-

. O' o

N-O'4 1]

,,' o S I I

I G RI A . I N

., PVP 1

O

)

z MEM H OLA 5

t 2 CED

! . Y 6 1 A T "/.

\

.. C A-RA2

. N T E

U E C E .

O ERE R PUS l- E U STS 4

.-- R G C F

  • f /

I F EU .

/ SRS I- NT -

l o OSN

/ ** I P

/.

/. SE

/ , EK

/

RAT

/ s N j '.,

. I o

/, .

/_. -

e

. I o 0 o O 0 T

. . . I 3 2 s No U

w

_ Ke

_ En E .

_ n m 2 O . 4 >E W J_w u u < J < E > u w a.m R4 C4 L

E .

Pn

_ Oa Hc 4

I. S .

littlen saSt$ (SetLLS SECNTEL artRANct -----

i

^

t \

a 1

CD , .t ..

g l

x O /

l \'

i H" _,I 4 I m  ;

N f y d

u /  !

is t s i o 4

I <

\

i

.2 \

i 4 /~. 1 i , E ,

  • s ,

F u

2 >

(

u Eg / '

i n / '

! i.

t i .

'./ \.N

. i t ,s--

j '

j . .-- ..... . .,

l

\

} *

! O. O O. I O. 5 1. 0 5. O I O. O 50.O

FREORENCY tHz)

FIGURE A-16-3 RESPONSE SPECTRA COMPARISON, nope cattu uwtT I INTAKE STRUCTURE AT ELEV.135'-O".

cao.ts2.ncv o N-S. SSE. 2*. / DAMPING

u- - '

t .

t E eC 0 .

t8 A 0

(

D . .

$ E . 0 l

P .

5 sD A

S L

s s E .

- s eM l

S E E

~

DS

\

~

  • 3 .O N-

\ 0 O'

'\ .

S3

\ e' 0 1 I R 9G

\ '.'

. N

.t*, A VI

, '.'. N ) PEP

.- T 0 z MLM

- . H O C

EA D 5 ( 4 6

- T

. Y 1 A A */.

  • -. , , ^ C R 2 N A- T E

- E C R ,

- U E e,

! ... Q R E UE E U P TS

.!* - R G SCS lJ. F I U F E R W.

ST

..:i it 0 N O S-E

_ t:t.:- .

1 PE l / SK

.*. EA

>( RT l

N

f 5

0 I

/

/.

/. _

8 s 0 5 O O r1

. . s 1

1 o O uO uW nE ER E .

.D.,zo p4Ew> woo 4 J4Ee0waa eC. n7

.e3 L

t .

rp oa wc l ."  :' ;ii' 1!i!.ii1< i ]- ' ) I :4 l'

,i ,

I -

L '

L E

P c t .

Wsu

(

s O

s .

S t O S r I

a . S A

B y

L s E s

cT t u sc t s oe

. ,O

,1 i1 s

O N-

. O'4

\ ,*.

0 S I s 1 I G s>t\ '.'

RI A .I N

,.' *.s PVP O

)

z MEM

. % . H OLA 5 ( CED 5

Y C

6 1

AT %

RA2 N -

A T E

U CE E ERE

./ ) O R PUS

E U STS

/ i R G .C

i. F I F EU .

SRW f

O NT-

!eI f! !: * .

OSE

,/ 1 P

/ . SE

. EK

/ RAT

.. 5

. I N

) .* -

0 I

. I S 0 5 0 O T

. . . I l 1 0 O No U y Kc

. n En

. E .

a O

  • 2oe.F4Ews_Wuo* J4EeUw AM n CoL E .

Pn O^

H" i ,-

~

~

~

I L .

L ..

ME C I

B 4

M 0 S .

5 E 0 8

5 r S A B S . -

N S G .- \

I HT S C EE '

D S '

l

.' ,O

,~

O N-

.t ( O'5 O

S

\

'1

,^

I I3 G i:::::1 R1 A .I N

j

\ PVP O

)

z MEM j\:1' . H OLA CED s 5 4 6

._ Y c AT V.

\ C I RA2 N A- T E

u E CE ,

c R ERE

/ E PUS U STS

,l[f" R G C P I F EU .

SRW lle l $ NT -

[ ,*, 0 OSE

./ s P

/ / SE l

. EK

.l' RAT

- 5 N

I

/ *.

O I

~

_ ~

/ #

I

. e S

  • 3 O O T

. - . . t I ' O O no uy

_ Kt En E .

Ow g 5 EWJWuU< a4E>Oea.* d n3 e5 t

e.

r0 e4 wc

,
i\ llI

ll S - _

L .

L E E eC D N .

t A 0 D .

sE t

e 0 saB . 5 e L s E ~

eTH Q t

sC .

E E D B ,' .*

h s ,

,. \ .

Ns\ ,O 0

NG O

S 3' N

1,i 0 I I9

.P 1

% R AV M A

.', ) PED 0 z ML 5

. H O C

E7

( 7 6

T 2

. Y 1 AA R

. 7 ,r C ,

t' N

E A-T EE S

./

  • U E CR S
.I O EU R PT E U SC ,

.'. R G

,.'e ; F I U LA F ER C

/ / S TI

. 0 N ST O

. R

/ .'e ,l f P EE

/ .

S KV EA

/, ,

. RT

- , **- 5 N I

O

/ .

/ '

=

I O

5 O s 0 T f 8 o O mO t

V KE ER D 2 p4EWJ.Wuu4

. E .

eEw J.4g*umEe n0 e3 I

t .

_ eD

_ oA nC

S L -

L .

E E .

rC es .

t A O t

D ..

sE .

. 0 iM s . 5 A D .

B L _

e E s T y -

E ,-

D N .

S C .

E E DS

~~ ,

1

,, . O"

- 0 NG O'

S 4 N

.., 0 1

I I

I RI P A .M PVA O

)

z MED

. H OL CE%

r 5 ( 8

- - 2

- Y 6 1 AT ,

- C RA E N A- T CES f.

. E

. U E ERS

., , O R PU E U R G ST ,

F I CL

- F EUA SRC f'.

p NTI T 0

OS R P

SE E 1

  • .=.

_ /, . EK V RAT f.. /

~

5 O

N I

~

~

/ #

p.

~

I

. i O

0 0 O O r 5 . S .

1 t

3 . O sO p

4

. 1 u V

nE ER

_ n t .

.a m O ~ 2O.> 4 Esna 3.s l uu4 E tO3, A4 i

4 n5

. c4 L

A mD C

4 ,

) - - .

L -

L E E .

FC .

Rf da .

t .

S .

O.

S E 0 I

S r 5 A B S . <

I E R i' _

GTN I

i s\

5 S C E E .

l l

g p

.\ _

\ \.- ,

.~

~.t , O"

.t \-

>t'

- O NG O'

S 5 N O

h;*'

I I 3I

.- R1 P

.'< A .M PVA

)

O z MED _

i

. H OL

" .' *tL

  • S t 9 CE%
  • - 2
  • Y 6 AT

/.(

C N

1 RA E.

  • .J A- T

!e E

/ *, U E CES ERS li  !- Q R PU E U ST ,

_ :I R G CL

? F I EUA

': F

'j SRC O

NTI T OS R t P SE E 1

/ .l*

)F ' .,/ EK V I

. RA T

, / '.' . ,

  • S N

I I A O f j

l. .

_ 8 e

S O 5 O y

. . . . t t 8 0 O uo

~ u v aE mn e.

. (D w 2Ow><a'maWoO4 -s4E>owa.? t s4 e5 a

t .

ro oa pc j

i' b n - ,'

s -

L L -

tt B

_ rt Be --

I n 0 t - . _

S E 0 S r I

A b 5 _

S I E GT I SD I

E E I

I a f[

h. .

\ ,O

\.,s N- -

\ o. O' _

. o S3 .

g I9G -

 % R .N -

,- % A VI -

L

\, s ) P ME P 1

% 0 z L M A

. H O ED

. , 5 t 0

1 C

A T Y 6 r:!

!y C 1 R A% 2 N A- TE

. - E E CR U

r! ! O E R PTB U E

- E U SC O R G

. F I U ..

F E S R S

/!

0 N O

ST- N

. 1 PE

' SK EA

/ RT

.,, 5 I N

- O e

s O s

0. "

i E O t

s f I a*

t

_ a" s"

s-a w ZO.+<Ew2.Muu<

s.4EeuWa.e a' c"

E

P oo "*

s"

C l 1lI ll l

. I L

L .

Et .

re .

Bm t

e ..

O St .

. 0 I

S r . 5 A a .

S .

n a .

em s

sc .

E t ll Ds N . ,

O

\ s.-

N .i O N-O S '4

  • ,O I I

I G

,)

RI A .I N

'\ PVP O

)

z MEM H OLA S

( 1 1

CED jl '. Y 6 AT4 C 1 RA2 N A- T

. E U E ERE CE .

T' Q R PUB f

E U STO i

-, R G C F I F EU .

SRS

[ l,-

O 1

P NT-OSN SE

' _ EK

?

. RAT

?

6 N I

O

/ ,*..

i _

/,

~ ,

l

. e .

S, O _

S O O r 1

. . s O

I 0 O uo u

v _

ate _

rn t

s .

D

-Co Z2e<EwJ.wuu4 J.<K>uWa.ne oz ca t L.

ro oa

- sc o

4 f' 8

S --

L L

E E PCe '

Bt a O I

D .

SE 9 I

r f S

A B B L -

0 E 9TH 8 X 5C EE BS .

fl ~

s ,O s N-t k O. O' 5

..% O S I

I 3G RI N

,\N

't- A .I i.1 PVP

)

i O

)

z MEM

-  % H OLA 5

(

2 1 CED el Y 6 1 AT l

I= C R A F.

N A- T .

E CE E .

U ERE i

I[- O R PUB E U R G SYO

/ F I C

F EU ,

/l ** SRS NT-f 0 OSN P

f[/ .

1 SE EK RA

/' T

/ 5 ,

N I

, e

)/

/ ,

I 5 O $

c

. O. O r r

e I 1 O s0 uV yE rn t .

D

.E- p4Kss.sou<

s e n a a4g>U8la* a. n0 e7 L

A mD c

. 4 , I j ; ;i ! - !! , ,  !:  !  ! ,1 '  ; i  :  :!'

)

I L

L EE rt s .

Bme I .

O St .

S r M I .

A a .

m s a .

et l o e

5c Es Be

.O N-5.\~. 0 O

\ S 3'

% o I9G s I R .N

,4 A VI

) PEP wN O z ML M A

. H 3 O C

ED s t 1

- T Y

C 6

1 A A 27 R

N A- T E

. E C R ,

0 E EUE r

0 R U P TB E

R G SCO

/,e- F I U F ER .

STW

/  ! ! o N S-E O

f 1

PE SK

  1. EA 5

RT N

I

/ O

/

/ .

s O o r s 0 -

e s

I a E u wO t

V sE sR E ,

m emw e4EWawuu4 a<Ekuen RS cS t

L m o.

aa ec s

! i4ll' 1
aj,! !i! !i i ;i 1!1:{ lj,1 l1!lil ll.

)

t L

f t rre B sa

(

a O.

$ O t

$ M S A B S L E

i MTs I e SC EM D

,O O

N-O'4

' , ' ' O S I I

I G k\

\,

RI A .I N

sQ PVP b

)

z MEM O. H OLA S (

4 1 CED

~ Y 6 1 AT%

C -

A T RA2

_ N E

U CE .

E ERE

_.. Q R PUB E U STO

./' R G C F

F EU .

I

~ SRW r./ ' '.

O I

NT-OSE P

' SE EK

/ =

/ RAT f 5 N I

s, O l

r-I

. I

, O 5 0 O T 8

1

, O

. I N0 U

v as tn s.

. n.

O 22>4aWJ.w00< J<

g s.* as ca L

_ s, pn

_ oa ec s

(lll1> f s -

u-  ;

n.

an ce a O e

m _

0 ss sa ar e

9 I

e L .

e s t y.

ew e

sc tt ee ,b -

0 N-N'%

\x.

O o

s O'5 S 3 I

RI A .I G

N L

PYP o

)

2 MEM 9

5 OLA E 9 t 1 C ED

~

~ Y AT 7 N- RA2

~- C N A T E CE

. E .

U ERE

O R PUB

-<' E U STO

./ R G C

/ F F EU I

SRW i NT-OSE

_ / /,

o, .

P I

SE

/

/r /<, EK RAT j f , 5 N

I 0

/

. /

. s

- s 0 5 e, 0 t s

s 1 0 a uO J

t

- W aE

_ tR

. a .

s, t- a1 E E<dua_tuo*

e s.4eDuaGaM i c7 e.L rD cA a

sC

! ; .,l 4

r .

3 -

1-D E 7C '

9 NA O iB -

5 t F U _ 0 S _ 8 A B -

S L nE T w NE S C I

E BN ,

~

~

's.' .O

' O.

NG O'

S3N T1 O I 9 P I

[ I R .

AVM

) P E AD

,' N O z ML

. H 6 OE7 C

5 t 1

- 2 A T Y 6 R A .

- 1 sf C -

N E

A T E E, 0 E C Ri

..** 0 R E UO

~

E U SCP T .

R G L F I U A F E S RTI C

  1. /, /'

?,,

0 N

O ST R 1

P S EE

/, KV

' EA RT

/

/ '., <

S N

I O

/ #

_ l..,

_ ~

_ ~

I

- . s s O # 5 v O

. O. O i so s

s 1 O uv uE sR h t .

.Ow GOY <EWJsuo( 3.4EFuWn.e n

-a es s

. csL s.

eo oa wc j ' < j 1' 4 ;iIji1il i 'i ' I J ', l; - 1

s ll UL E t rce Bf e

=

t h

O St 0 I

S r 9 A 3 S L B E ST I

\

SO I

E E I S I

,O N-O O'G4N O

S 1 I I

I RI P

+ A .M O z

) FVA nED H OL A t 7 1

CE%

2 Y 6 AT C

N 1

RA E ,

. A- T E

E CEB

. O R PU

- E U ST .

R G CL F

F EUA I

f s,/ ,

O SRC NTI T OS R P

1 SE E

. EK V RAT f..

, 5 N

I

/

O

/

I O O 0 , O Y

& E 1 , t nD

_ uW uE

_ tR t

. #w 2o >4esJ.too4 J.<g6o8ta* a. -

a f

a - a3 l

c8-t t -

rn oa ec s

! j!. 1i  ; .l
i'I;< I ,.I)ii 1 ' 1)'1 lI j1iii'Iji

S - .

L L

t E ,

I eC Dl Ae . O t

D .

S E 0 S P I

5 A B S L N E G

I H T

b G

S C E E D S

\

r.

i' . O" N-O. O'G yt O S I

5 3I N

I R1 P

~ A .M L PVA

~ O

)

z MED OL H

5

(

8 1 CE%2 Y 6 AT

.,f* C 1

- RA E.

N A T

  • E U E CEB O

ERO R PU

?, E U ST ,

R G CL F

F EUA I

SRC f ',"'*./ /'

O a

NTI OS TR P

SE EV EK

/ .

/ RA T

/

s 5 N I

O

/ *

/_ .

  • I O

5 O 5 O T

. . . I 8

I 0 O NO U

V KE ER, E . -

A M w ZO.k4EwJWuo4 -

J.4EDowge R2

. C7 t

E ._

PD OA HC

1. ;- gr 1

1 REGIO BASE MAT Kyy T

SJ "++ 7 XX C yy Q K VV

\\\\\N\\

FIGURE A-1619 IMPED ANCE APPROACH FOUNDATION MODEL i-I L .

l .

r

m C B Ak A J A A M.-7 M(2(39393 h

i 1 2 2 3 EL.135'-O C v O 5

B*

EL.328'=0 m na 3 S' " 4 7 s i O, s ll s , .

8 ,

5 12 13'

) EL.122'-0 h

is( s

, 1 s ), 7 O. ls i s( )EL.ii4*-o g 25 26 27, EL.107'-0 8 24

, s , 1 , EL.100*-0 22' '2 3 i 2 II  : ,

b s ,

., 30 m ', 33,.s ,-..

, s 38 b 37-

) EL.

93*-0 2s Q so"i "32 I ,

i 34" 35' I' g 44 g EL. 87'-4

@ 4:g 42- ) 43 E i.- s t * -0 s b g..-) Q 45 d7 ' 8.g EL. 79'-8 e

39( _

as g

g 8 E

-;- - -- - EL. 70'-0 C- -- - - - --;;50 53 de X 8 l St EL.S5'-4 d -

Q -- 2 g gw p YtNS)

- i s. o- - l 2. 7 5 ' 23.25 7 m 2 9. 25'

{2. s' l_ - 3 9. 7 5' ___-28.C' _ b b- 8. C' L__l 8. O'l I S. O' _l _l _! 44.O' ___

i n i i  :- 1 6 i i 6 l

O NODE NO. EW WALL EL M T NC. ns watt

[ SPRING NC. yLcom suzzzzza RICID ELEWENT FIGURE A-16-20 FIXED BASE LUf1 PED MASS STICK MODEL l OF INTAKE STRUCTURE

. L Lp;c t - PS 8 hAu d w o.pufd el4 k be. k,'oerkJ B 4c l y, 1 sVL cA iLM4:c.h sca.

we w d ide ho a me uaa M ~ L cA 7; cl;KareaMa-k 4 k- voa-sdely appl lca%s.

cA L saffty apllcdao ,4Le ca[Jjabh w;il Le pa 4 a M u k J c d a 1 6 9 wili le W . Tu m:// le M & = q y s J e A w .sopty yel,'c~- a A pa.<  %

,9 A e L. Aln ~4e JL 5 -Ila e Q a A,,a4

, a4A+aa y i  % a y~ -ny s .

P will be sd m:0y N h a rwt n.ach wJ r L P5A2. $d yn h v% & oJ A-s . ,

86*-

go 9- 8 39 - 30 /2 l

L.

n RBS ESAR X XXX X X X XXX $

Unit System Part Color Service Number ***'

Code 3

I Unit - Identifies the station's unit number.

. System Code - Three characters identifying the system.

! Part - One symbol which can be either an alpha or a numeric designator, e.g., an MCC cubicle section or one pump of a group (A, B, C, etc).

i

! Color - An alpha symbol indicating whether

< the cable is safety-related or

nonsafety-related.

i Service - An alpha character indicating the type of service for which the cable will be utilized.

Number - Three characters assigned to specify each individual cable number.

i

{ Example: 1 ENS AR H307 I heduled cables are-identified by cable identific ends and by a color-cod (h

i , ggrf- number at . er at or safety-related intervals not excee ft of th

-cables, except for those ca talled in conduit. and H

'p'Jb

>and L cable tra cribed in Sec .3.1.4.4.2, which.

do not have or identification at 5-ft vals, as j disc in Table 1.8-1, compliance with Re L

-6c e 1.75.

The raceway identification has the following format:

X- X X XXX X X X Unit Type Service Number Color Condu/A Condu/N I Unit - Identifies the station's unit number.

l i -Type - Character indicating the type of raceway.

Service - An alpha symbol which indicates the service of cable to be carried in the designated

. raceway.

.. l

}.

Amendment 11 8.3-64 January 1984

)

a a.

4 1

pp n .

Insert A

-All scheduled cables are identified by permanent colored markers attached to the cable at each end adjacent to the cable alphanumeric

. identification marker. The background color of the alphanumeric identification marker may be used as the permanent colored marker.

Except' for cables run entirely'in conduit, color code identification.of a circuit is either by the color coded jacket of the cable or by printing the cable jacket with proper color at intervals not exceeding 5 feet. .For cables _ running entirely in conduit, any color coded jacketed cable can be used. .Only the permanent colored markers attached at each end of the cable run -or where the conduit run is discontinued (e.g. at shake space or sleeves) will serve as color coding identification of the related circuit.

e e

GULF STATES UTILITIES COMPANY P O S T O F FIC E BOX 2951 . BEAUMCNT, TEXAS 77704 AREA CODE 713 838-6631 August 9, 1984 RBG- 18,565 File Code C9.5, G9.19.2 Mr. Harold R. Denton, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Dear Mr. Denton:

River Bond Station - Unit 1

. Docket No. 50-458 This response supplements Gulf States Utilities Company's (GSU) June 22, 1984 letter to your office regarding the Nuclear Regulatory Commission's (NRC) Safety Evaluation Report (SER) confirmatory item No.

(3) identified in Section 2.5.5.2 by the Structural and Geotechnical Engineering Branch (SGEB). Addressed herein is the factor of safety against sliding for the service water tunnel (G) that leads to the Unit 2 excavation area. Attached are changes to Section 2.5.4.11 and Table 2.5-16 to be provided in a future amendment to the FSAR.

This completes GSU's response to SER confirmatory item No. (3).

Sincerely, J. E. Booker Manager-Engineering Nuclear Fuels & Licensing River Bend Nuclear Group Attachment F

Attechmtnt 1 of 4 RBS FSAR 2.5.4.11 Design Criteria The major plant buildings were analyzed to assess their sliding and overturning stability during the SSE and OBE.

(k The analyses included the effects of the Unit 2 excavation and ponded water levels that result from the accumulation of runoff in the Unit 2 excavation as discussed in Section 2.4.

Although the groundwater level will be slightly affected by ponding, the stability analyses conservatively consider the 18 groundwater level equal to the ponded water level to simplify the analyses.

For the sliding 'and overturning analyses, a structure is cud coil- assumed to be driven by the seismic response of the prac;ureg - structure and dynamic soil and water pressures. Resistance 3, N is assumed to be provided by base f riction , -and- wall frictiod, where appropriate, in the case of sliding and by and soil the dead weight of the structureVin the case of overturning.

Since many of the structures Pressure, will have a shake space adjacent to them (for seismic where isolation from other structures), passive 8PPropriate 13l soil pressure is not relied upon for resistance in this stability analysis. The compacted sand backfill was modeled with a friction angle of 36 deg and no cohesion. Test results on the backfill indicate this friction angle to be conservative (refer to Fig. 2.5-74 and to Report on Engineering Characteristics of Granular

Fill 8'78). The friction angle for backfill against formed concrete is taken as 50 percent or the soil friction angle. (Qs The base friction angle for concrete poured on compacted U*

fill was taken as 90 per :nt :f the soil friction angles"

'd e E2re rcduccd in ir en A the laboratory test results of Potyondy*8 For the sliding analysis, the base shear

[*((# resistance is based on the effective stress during the seismic event.

The seismic responses of the structures are the results of the dynamic analyses described in Section 3.7.2. The seismic structural analyses were made for the SSE and OBE cases for soil shear moduli of.12, 18, and 24 ksi. The dynamic analyses provide the axial forces, shear forces,.

moments, and the three components of acceleration at the -

foundation level. From these data, the forces and moments' acting at the base of the foundations were computed. 'The -

critical sliding or overturning situation for a fiven structure is then based on the least favorable direction of the earthquake in combination with the least favorable soil shear modulus.

For the stability analysis, the soil- and water-driving Insert A pressures were computed as shown on Fig. 2.5-79T Note that the increased K. due to compaction was include Dynamic Amendment 13 2.5-124 June 1984 for the at-rest condition a

m - -

Attachment (cont'd) 2 of 4 Insert A .

except for the analysis of the service water tunnel. Toward the east end of this tunnel, the backfill is placed to the same elevation on the north and south sides of the tunnel. Therefore, it is assumed that at-rest earth pressures act near the east end of the tunnel. Toward the west end of the tunnel, the backfill on the north side is 28 ft. higher than the backfill on the south side. It is assumed that near the west end of the tunnel sufficient movement of the tunnel occurs to reduce driving earth pressure from at-rest to a condition that approaches active earth pressure (K = 0.35). For intermediate sections of the tunnel, driving earth pressure is varied from slightl'y above active at the west end to at-rest at the east end.

0 1

s

i I

~

'Atzchment (cont'd.) 3 of 4 RBS ESAR

)(ff v

' structural pressures.

response and~ the seismic soil and water Section 3.8.5 specifies that, for sliding and overturning, the-minimum required factors of safety are 1.1 for SSE and 1.5 for .OBE. .The results of the sliding and overturning

analysis are presented in Table 2.5-16, which is a listing of the calculated factors of safety. Note that even with the conservative loading conditions and soil properties used in the analysis, all factors of safety for overturning are 8

above1fpWandallthosefor sliding are above 1.@j' 7. All. l 2 lts major , structures have adequate sliding and overturning stability for OBE and SSE loading.

The- ~ stability of the major structures against flotation was evaluated by comparing maximum buoyant pressure during PMF with total average distributed dead load for a given structure. Table 2.5-17 lists both of these quantities and the ratio of the two. The lowest factor of safety against flotation is 2.6, well above the minimum acceptable of 1.1 l13 which is set forth in Section 3.8.5. Hence, flotation is not a realistic possibility for the plant structures, even

.under flood conditions.

2.5.4.12 Techniques to Improve Subsurface Conditions

/ The only techniques used to improve subsurface conditions

-were the excavation and backfill beneath all Seismic Category II, structures (Section 2.5.4.5). In addition, the surface of the excavation was thoroughly compacted with the same vibratory equipment planned for the fill before any backfill was placed.

2.5.4.13 Subsurface Instrumentation The instrumentation program- is intended to measure the magnitude and distribution of ver.tical soil movements caused by unloading .of the foundation soils during excavation and by settlement or reconsolidation of these soils during and ,

subsequent to placement of the structural backfill And-

, foundation loads. The locations of instruments have been .

chosen to measure both the vertical and horizontal "

distribution of soil movements, permitting construction of profiles of vertical movements.

The information obtained from this program is used to assess the changes _in the subsoils caused by excavation and .

backfilling, the effects of'these changes on the structural foundations, and the long term time-dependent behavior, of .

the foundations.

p Amendment 13 2.5-125 June 1984

E

'* Atachment (cont'd.) 4 of 4 RBS FSAR TABLE 2.5-16 SLIDING AND OVERTURNING FACTORS OE SAFETY FOR MAJOR STRUCTURES Factor of Safety OBE SSE Structure Sliding Overturning Sliding Overturning Diesel Generator 2.6 6.5 1.6 3.6 Building Control Building 2.3 6.0 1.6 3.7 Fuel Building 2.9 3.8 1.7 2.0 Turbine Building 4.2 23.7 - -

Reactor Building 5.1 6.5 2.9 3.8 Auxiliary Building 3.3 4.5 1.6 2.4

. Standby Service 2.7 7.4 1.8 4.7 Water' Tower

' Service Water' 2. 1.Y Tunnel 3.3 4 1.2 8 Amendment 13 1 of 1 June 1984 1

1 J  % "