ML18019A400

From kanterella
Revision as of 02:28, 11 September 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Forwards Addl Info in Response to SER Confirmatory Item 4 Re Design Documentation of ASME Components.Info Responds to NRC Concerns Identified by 850618 Ltr & Mechanical Engineering Branch Questions 210.80,210.81 & 210.82
ML18019A400
Person / Time
Site: Harris Duke Energy icon.png
Issue date: 09/26/1985
From: ZIMMERMAN S R
CAROLINA POWER & LIGHT CO.
To: DENTON H R
Office of Nuclear Reactor Regulation
References
NLS-85-338, NUDOCS 8510010302
Download: ML18019A400 (235)


Text

>>REGUL"-INFORMATION DISTRIBUT YSTEM (RIDS)Al,CEFSTON NBR:851001030?".'OC

~DATE: 85/09/26 NOTARIZED:

NO DOCKET*0 FACIL'.5Q>>400 Shearon Harris Nuclear Power Planti Unit ii Carolina 05000000'AUTH'At'lE AUTHOR AFFILlATION ZIMMERMANiS,R, Carolina Power L Light Co, RECIP~NAME RECIPIENT AFFILIATION DENTONi H~R~Of f i ce of Nuc 1 ear Reactor Regul at i one Di*rec~~n<m

SUBJECT:

Forwards addi info in=response to SER Conf irmator y Item-0 r e design documentation of ASME, components.

Info responds to NRC concerns identified by 850618 ltr 8 Mechanical Engineering Branch Questions?10,80i210

~81 L?10.82, DISTR'IBUTION CODE!8001D COPIES RECEIVEDgLTR ENCL-SIZE;,,Zm TITLE: Licensing Submittal:

PSAR/FSAR Amdts 8, Related Correspondence'OTES>-

REC IP IENT" ID CODE/NAME)

NRR/DL/AOL NRR'B3 LA INTERNAL)ACRS 01-ELO/HDSi IE/DEPER/EPB 36 NRR ROEgM~L NRR/DE/CEB 11<<NRR/DE/EQB 131 NRR/OE/MEB 18 NRR/DE/SAB 24 NRR/OHFS/HFEBOO, NRR/DHFS/PSRB NRR/DSI/AEB 26 NRR/DSI/CPB 10.NRR/DS I'/ICSB 16 NRR/DSI/PSB 19 NRR/DSI/RSB 23 RGN2 COPIES'TTR ENCL'-1 0 1 0 6 1 1 1 1 2 1 1 1>>1 1 1 1 1 1 3 RECIPIENT" ID CODE/NAME" NRR LB31 BC BUCKLEYpB 01.AOM/LFMB IE, FILE IE/DQAVT/QAB21 NRR/DE/AEAB NRR/DE/EHEB NRR/DE/GB 28 NRR/DE/MTEB 17 NRR/DE/SGEB 25 NRR/DHFS/LQB 32 NRR/DL/SSPB NRR/DS I/ASB NRR/DSI/CSB 09 NRR/DS I/METB 12 NRR/D RAB?2 G FI'L.04 8/9'MIB COPIES'TTR ENCL" 1 0 1 1~1 1 1 1 2 1 1 1.1, 1 1 1 1.1 l~1 0/L1'XTERNAL: 24X DMB/DSS (AMDTS)NRC-PDR 02', PNL<GRUEL'rR 1 1+BNL(AI1OTO ONLY)1 4 LPDR Q3>>1 1 NSIC 05 1 e 1 1+1:~L;1I>>>>,+Ikh, 4>>S+$3.TOTAL NUMBER OF COPIES REQUIRED: LTTR ENCL-

~I e L I~a eel I e~e 4 I 0'f~o le~~

CSt5E Carolina Power 8 LIght Company SEP 2 61985 SERIAL: NLS-85-338 Mr.Harold R.Denton, Director Office of Nuclear Reactor Regulation United States Nuclear Regulatory Commission Washington, DC 20555 SHEARON HARRIS NUCLEAR POWER PLANT UNIT NO.I-DOCKET NO.50-000 ASME DESIGN DOCUMENTATION

Dear Mr.Denton:

Carolina Power R Light Company hereby submits additional information in response to the Shearon Harris Nuclear Power Plant (SHNPP)Safety Evaluation Report (SER)Confirmatory Item No.0 concerning design documentation of ASME components.

The attached information responds specifically to the NRC concerns identified by letter dated 3une 18, 1985 and to Mechanical Engineering Branch Questions 210.80, 210.81, and 210.82.If you have any further questions on the subject or require additional information, please contact me.SRZ/mf (19013DK)Attachment Yours very truly, r S.Zi merman ager Nuclear Licensing Section CC: Mr.B.C.Buckley (NRC)Mr.David Terao (NRC-MEB)Mr.G.F.Maxwell (NRC-SHNPP)

Dr.3.Nelson Grace (NRC-RII)Mr.Travis Payne (KUDZU)Mr.Daniel F.Read (CHANGE/ELP)

Wake County Public Library Mr.Wells Eddlernan Mr.3ohn D.Runkle Dr.Richard D.Wilson Mr.G.O.Bright (ASLB)Dr.3.H.Carpenter (ASLB)Mr.3.L.Kelley (ASLB)SSZOOZOSaa 8so926 I I PDR ADOCK 05000+OOi E PDR LI 411 Fayettevilte Street o P.O.Box 1551 o Raleigh, N.C.27602

,t 4-I Shearon Harris Nuclear Power Plant SER Confirmator Item No.0 Provide revised sections of Volumes 1, 3, and 0 of the Westinghouse piping design report describing the use of non-code stress indices and flexibility factors and a commitment to include three additional sections as described in NRC letter of February 12, 1985, in the final design report.RESPONSE: In response to NRC's letter dated 3une 18, 1985,"Summary of Audit of Class I Piping Design Report Meeting," CPRL and Westinghouse have reviewed the NRC Findings and confirm that the requested additions to the Design Report (WCAP-9990) will be incorporated into the final design report.The additions to the Design Report will be as follows: A.(a)Selection of Corrosion/Erosion Allowance"A" in NB-3601.1:

Section 3.2.2"Pressure" of Volume 1 and Section 3.1.2"Pressure" of Volume 0 will be expanded to cover the selection of corrosion/erosion allowance"A" of NB-3601.1.(b)Branch Connections, NB-3603: Section 2"Criteria" of Volume 3, will be expanded to confirm that the branch connections, nozzle opening, meet the requirements of NB-3603.(c)Attachments, NB-3605: Attachments will be addressed in Section 0.5"Welded Attachments" of Volume 0.(d)Purchased Fittin s, NB-3609: Section 0.6"Class 1 Fittings" of Volume 0 will be expanded to address compliance with NB-3609"Pressure Design of Other Piping Products".

For the above changes to the final Design Report, reference will be provided for the detailed evaluations files.B.An Appendix will be added to Volumes 1, 3, and 0 which provides the files for generic calculations, design and as-built analyses applicable to Shearon Harris.A statement will be added confirming that these files are retained for as long as the Design Report.C.Section 3,"Loading" of Volumes 1 and 0 will be expanded to cross reference the Design Specification loading requirements (D-Spec.955239)with the analysis and qualification loading conditions.

85100)pgp>

(1941JDK/Ai)

Shearon Harris Nuclear Power Plant N C(C Your response to Q210.59 requ1res additional information.

In our review of your piping design specifications, we were furnished the specification identified as CAR-SH-M-30,"General Power Piping, Nuclear Safety Class I, 2, 3, and Non-nuclear Safety Class Piping." Your response to Q210.59 provided in your 9/19/83 letter indicated that the CAR-SH-M-30 specification when supplemented with CAR-SH-M-71 forms a complete design specification for piping and supports.However, the M-71 specification is not applicable to ASME Class I piping and supports.You have provided the Westinghouse Specification 955239 for Class I piping but appear to have no design specification covering Class I supports (non-NSSS).

a)Provide the design specification for Class I piping supports (not in the Westinghouse scope).b)Provide the complete design specification CAR-SH-M-71 for our review.c)Revise page 2 of the M-71 specification (paragraphs 2.00 and 2.06)to accurately state that the design limits and loading combinations for Seismic Category I fluid System Equipment will be in accordance w'ith the FSAR commitment (and not the PSAR commitment as currently stated).RESPONSE: The above NRC question is based on Revision 0 of specification CAR-SH-M-71.

These concerns are addressed in Revision I of the specification as follows: a)The scope of the specification, on page I, paragraph 1.01, has been revised to clearly indicate that the information necessary for the design and analysis of Safety Class I piping and pipe supports not provided'by the NSSS supplier (Westinghouse) is contained in CAR-SH-M-71.

Analysis of Safety Class I piping is discussed in paragraphs 8.01 (page 9a)and 8.08 (page 10).Design criteria for all pipe supports is given in Appendix l.b)A complete copy of specification CAR-SH-M-71, Revision I is attached.c)Regulatory Guide I.ff8 is now listed in paragraph 3, page Oa with the other applicable NRC documents.

The reference to the PSAR has been removed.(1941 JDK/mf)

/~

Pro5ect Identification No.CAR-SH-M-71 EBASCO SERVICES INCORPORATED EBASCO SPECIFICATION DESIGN SPECIFIAiTION FOR AI4~NUCLEAR SAFETY CLASSES 1~2 6 3 AND ANSI B31 1 NONNUCLEAR SAFETY/SEISMIC CATEGORY I AND SEISMICALLY DESIGNED PIPING AND SUPPORTS Rl PURCHASER: OWNER OPERATING COMPANY: PRO JECT-.UNIT NO.: LOCATION: SELLER: EBASCO SERVICES INCORPORATED AGENT CAROLINA POWER 6 LIGHT COMPANY CAROLINA POWER 6 LIGHT COMPANY SHEARON HARRIS NUCLEAR POWER PLANT NOMINAL MW 950 000 kW PER UNITS WAKE COUNTY NORTH CAROLINA i Rl"THIS DOCUMENT IS DELIVERED IN ACCORDANCE WITH AND IS SUBJECT TO THE PROVISIONS OF SECTION X OF THE CONTRACT BETWEEN.CAROLINA POWER 6 LIGHT COMPANY AND EBASCO SERVICES INCORPORATED DATED SEPTEMBER 1,1970, AMENDED"~Rl S ec.Status Original Date'3/II/78 Pre ared B: N Battiata/G Nariani Pages*<<R J Giorgio A11/is(~CPSL'pproval DateRev.1 3/7/85 R C Roeei NCPE No.11504 cZC~CE-15983 3/5/85

Ebasco Specification esign Specification for gllSX.Nuclear Safety Classes 2&3 and ANSI B31.1 Non-Nuclear Safety/Seismic Project Identification No CAR-SH-M-7I g)sm i Rl tegory I and Seismically Designed Piping and Supports~gqlllllllggg

'saaL 8)SO~~<llltqill<

I fN+'0 T S~'Ih Cr lO~Prof e ssional Engineering Registration Number 8 3K 4 in the State of North Carolina, certify that this design specification is correct and applicable vith respect to the requirements of Article NA-3250 of the ASME Boiler and Pressure Vessel Code Section III.

~vaa aaavvaa~vaaaa aaall EBASCO SPECIFICATION DESIGN SPECIFICATION FOR+NSXNVCLEAR SAFETY CLASSES 1, 2,&3 and ANSI B31.1 NON-NVCLEAR SAFETY/SEISMIC CATEGORY I and SEISMICALLY DESIGNED PIPING AND SUPPORTS CONTENTS Scope Definitions hpplicable Codes, Standards&Documents Environmental Conditions Classification of Piping Piping and Support Boundaries General Design Requirements Specific Design Requirements Plant Conditions System Conditions Quality Assurance Requirements Insulation Requirements hnalysis of Buried Piping Pipe Rupture hnalysis Seismic Interaction Study hllovablc Pipe Stresses APPENDICES (DELETED)~Para ra h 1 2 3 5 6 7 8 9 10 11 12 13 14 15 16~Pa e 1 2 4 6 7 8 8 9a 11 11 12 12 14 17 18 20 C-Thermal Mode Diagrams (B-1 thru B'.12,B-12a,B-12b,B-13 thru B-42)Nozzle Loading for System Components and Reactor Coolant Loop Piping (C-1)b-G Piping Linc List}364 B070 (D-1)Reactor Coolant System Design Transients (E-l)Loading Combinations (F-1 thru F-33)Containment Building Displacement (G-I thru G-3)Piping Supports Load Combination (H-l thru 1-6).Pipe Support Design Criteria (I-l thru I-19)Personnel Protection For 2"&Smaller Pipes Inside Containment (Up to 400 F)(J-1'thru J-14)COPYRIGHT 1978 EBASCO SERVICES INCORPORATED TMO RECTOR STREET NEM YORK Eb sco Specification Specification for$9STNuclear Safety Classes 1 3 and ANSI 831.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Rl Pro5ect Identification No.CAR-SH-M-71 SCOPE.01 This specification provides, in accordance with Article NA-3250"Provisions.

of Design Specifications" and related paragraphs of the American Society of Mechanical Engineers, Boiler and Pressure Vessel Code,Section III (hereinafter referred'to as ASME Code), the infor-mation required for the design and analysis of Safety Classes 2&3 Seismic Category I piping hand supports, and the design and analysis of the piping and pipe supports not provided by the NSSS supplier for Safety Class 1 piping.This specification also provides the information required for the design and analysis of 831.1 Seismic Category I and seismically designed piping and supports.".02 Station piping shall be furnished in accordance with Ebasco Purchase Specifications CAR-SH-M30 and CAR-SH-M30A.

Instrument tubing and supports shall be furnished in accordance with Ebasco Drawings CAR-2166-$

-429, 431,432 and 434>and Site Specifications 059&061~Hangers and supports for said piping shall be furnished in accordance with Ebasco Purchase Specification CAR-SH>>M30B.

The material, testing, handling, storage, cleanliness and shipping requirements for piping, tubing, and supports are given in the respective specifications and drawings referenced above..03 Systems covered under this specification ares Chemical and Volume Control System Safety In)ection System Reactor Coolant System Boron Recycle System Containment Spray System Component Cooling Mater System Residual Heat Removal System Spent Puel Pool Cooling 6 Cleanup System Sampling System (Nuclear)Condensate System Steam Generator Blowdown System Chilled Rater Supply System Demineralized Vater System Instrument Air System Leak Test System Miscellaneous Drain System Service Mater System Leak Detection System Ebasco Specification Design Specification for ANSZ Nuclear Safety Claasea 1, 2&3 and ANSI$31.l Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Project Identification No.CAR-SH-M-11 1.SCOPE (Cont'd).03 (Contsd)Primary Sampling System Hydrogen Sampling System Post Accident Sampling System Nitrogen System huxiliary Fccdvater System Main Steam System Chilled Mater Return System Fuel Oil System Primary Makeup Mater System Reactor Vessel Level Indication System Fire Protection System Feedvater System Emergency hir System Scrvicc hir System Screen Mash System Reste Caa System Paste Liquid System Rl.04 hny conflict betveen this specification and any of the reference documents shall be brought to the attention of the Project Mechanical

)Rl Engineering Supervisor for resolution.

2e DEFINITIONS The folloving 4efinitiona apply to the terms listed bclov aa used in this apcciiicationg

~pi~in-Includes straight pipes, tubes, piping and tubing bends~fittingas flangea, gaskets, bolting, and vclded integral attachments.

It does not include structures and equipment such ae building frames, valves, pumps, pressure vessels~)foundations, pcnctratione>expansion joints or piping supports;~gu orts-Includes supporters sprtng hangers'onstant support,"mechanical and hydraulic anubbera, rigid hangers, anchors, guides, thermal rcetrainte, seismic restraints, supplementary) steel for pipe supports, attachments for hangers, piping covering protection saddles and fasteners for hangers.It does not include pipe vhip restraints vhich do not restrain thc piping in Normal, Upset or Emergency conditions.

Rl Ebasco Specification Design Specification for&>>Nuclear Safety Classes 2 6 3 and hNSI B31.1 Non-Nuclear Safety/Seismic tegory I and Seismically Designed Piping and Supports Rl Pro)ect Identification No.CAR-SH" M-71 2.DEFINITIONS (Cont'd)Supplement-ar Steel Standard Support-hny structural steel framing betveen thc cxi'sting building members, that is required primarily to support the piping.I h support assembly consisting of onc or more units vhich are catalog items aad generally mass produced.Seismic Cate or I-Piping and supports vhich are designed to vithstand the event.of a Safe Shutdovn Earthquake (SSE)vith-out loss of capability to perform their safety functions.

Seismfcall Desi ncd-Piping aad supports vhose contiaued function are not required but vhose failure could reduce the functioning of those safety related systems/components designated to mitigate the consequences of wn accident to an unacceptable safety level are designed and constructed so that an SSE vould not cause such a failure i Rl I Essential S stems-Those systems needed to shutdovn the reactor and to mitigate the consequences of a design basis accident vithout off-site paver.High Energy Piping S stems Those systems, or portions of systems, vhose normal operating conditions exceed 200oF or 275 psig.Moderate Energy Those systems or portions of systems, vhich are maintained above atmospheric pressure, vhose maximum norma)operating conditions are less than, or equal to, 200 F and 275 psig.In addition, those systems, or portions of systems, vhich exceed either or both of the above conditions but only for a period less than tvo percent of the system normal operating time (not including testing), or arc in operation less than one percent of the plant normal operating time (not including testing), are classified as moderate energy piping systems.

Ebasco Spccificatioa Design Specification for Rl6X.Nuc?ear Safety Classes 2 6 3 and ANSI 331.1 Non-Nuclear Safety/Seismic tegory I and Seismically Designed Piping and Supports Pro)ect Identification No, CAR-SR-M 71 30 APPLICABLE CODES STANDARDS DOCUMENTS 6r DRAWINGS hSME American Society of Mechanical Engineers Boiler and Pressure Vessel Coda.Section III, Divisioa l, Nuclear Pover Plant Components 1971 Edition*, and Addenda thereto dated as follovsa 6/30/71, 12/31/71, 6/30/72'2/31/72'/30/73o

  • -For Mechanical snubbers,Section III'ubsection NF, 1977 Edition including Summer 1978 hddenda is applicable.

For hydraulic~nubbcrs,Section III, Subsection NF, 1980 Edition including hddenda thru Minter 1981 is applicable.

Section ZI Rules for Inservice Inspection for Nuclear Povcr Plant Components.

1977 Edition including hddcnda thru Summer-1978 (as ammended by 10CFR 50.55'l/1/79)

~ANSI-American National Standards Institute Ml.l-Code for Pover Piping, June 15, 1973 Issue including Addendum dated Junc 30, 1973.N45.2.11-Quality Assurance Program Requirements for Nuclear Pover Plants, 1974.N18.2-Nuclear Safety Criteria for the Design of Stationary Pressurized Mater Reactor Plants, 1973 N18.2a Revision and Addendum to Nuclear Safety Criteria for the Design of Stationary Pressurized Mater Reactor Plants, 1975 hISC-American Institute of Steel Construction Spccificatioa for the Design, Fabrication and Erection of Structural Steel Buildings (Seventh Edition, February 1969, including supplements dated 11/1/70, 12/8/71, 6/12/74)~MSS-Manufacturers Standardization Society of the Valve and Fittiags Industry.SP-58 Pipe Hangers and Supports.(1967 Edition)-4 Ebasco Specification Design Specification for ANSI Nuclear Safety Classes 1, 2&3 and ANSI B31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Rl ro)ect Identification CAR-SH-M-71 3~APPLIChBLE CODES STANDARDS DOCUMENTS&DRAWINGS (Cont'd)USNRC United States Nuclear Regulatory Commission.

NRC Regulatory Guide 1.48,-Revision 0 I NRC Regulatory Guide 1.67, dated 10(73 Design Limits and Loading Combinations for Seismic Category I Fluid System Equipment Installation of Ovcrpressure Protection Devices.NRC Regulatory Guide 1.29,-Revision 3 Seismic Design Classification NRC Regulatory Guide 1.84 Code Case Acceptability.

NRC Regulatory Guide 1.85 Materials Code Case Acceptance ASME Section III, Division 1 NRC Regulatory Guide 1.92,-Revision 1 Combining Modal Responses and Spatial Components In Seismic Response Analysis-Standard Reviev Plan 3.6.1,-Plant Design for Protection Against Postulated Piping Failures In Fluid Systems Outside Containment.

Standard Reviev Plan 3.6.2,-Standard Revicv Plan 3.7 3,-Standard Reviev Plan 3.9.3 Determination of Rupture Locations and Dynamic Effects Associated vith thc Postulated Rupture of Piping.Seismic Subsystem Analysis I ASME Code Class 1, 2 6 3 Components, Component Supports, and Core Support Structures.

a 4a Ebasco Specification Design Specification for ANSI Nuclear Safety Classes 1, 2&3 and hNSI b31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Project Identification CAR-SH-M-71 3.hPPLIChBLE CODES STANDARDS DOCUMENTS&DRAWINGS (Cont'd)USNRC United States Nuclear Regulatory Commission (Cont'd}Branch Technical Position hPCSB 3-1 Protection hgainst Postulated Piping Failures in Fluid Systems Outside Containment, March 1975.Branch Technical Position MEB 3-1 Postulated Break and Leakage Locations in Fluid System Piping Outside Containment, March 1975.Site Specificationsc 059 Stainless Steel Flareless Compression Fittings and Tube Fittings for Field Welding ASME Section III, Code Class 2.061 Stainless Steel Tubing hSME Section III Class 2 For PPC.-4b-

Ebasco Specification Design Specification for hhSXAuc2ear Safety Classes 1,2 and ANSI B31.1 Son-Nuclear Safety/Seismic Ca y I and Seismically Designed Piping and Supports Pro5ect Identification No.CAR-SH-M-71 30 APPLICABLE CODES STANDARDS DOCUMENTS 6 DRAWINGS (Cont'd)WRC-Me%ding Research Council Bulletin No.107 yhugust 1965 AS-American Melding Society Standard-A2.0-68 Standard Vclding Symbols (1968 Edition)Dl.l-Structural Melding Code-Steel (1975 Edition including provision from 1982 Edition for tubular steel)Ebasco Specificationss CAR-SH-M30 M30A M30B M31 M54 Ebaaco Dravingac General Povcr Piping Heavy Mall Seamless Pipe General Pover Piping (Hangers, Supports 6 Anchors)Heat, Antisveat and Process Heating Insulation, Non-Nuclear Safety Class.Nuclear Containment Mechanical Penetrationa, Components and Assemblies.

I I CAR-2166-B-429 Ebaaco Instrument Installation Details (%')~CAR-2166-B-431 Ebaaco Instrument Installation Details (BOP)~, CAR-2166-B-432 Ebaaco Instrument Liat vith Data and References (BOP)~CAR-2166-B-434 Ebasco Instrument Liat vith Data and References (MP)~CAR-2165-G-064 Containment Building Liner Penetrationa (Sheet 1).CAR-2165-G-065 Containment Building Liner Penetrationa (Sheet 2).CAR-2165-G-107/S01

-field Installation Tolcrancea for Hangers CAR-2165-G-107/802

-Pield Installation Tolerancca for Piping CAR-2168-G-6091 Standard Details Steel Structural Tolcrances hpplicable Vendor Dravinga oi Components vhich are supplied to the analyst via thc Ebaaco EMDRAC System.ETR-.1002..Design Considerations for the Protection from the Effects of Pipe Rupture, November 1975Ebasco Valve and Specialties List-1364 B069 Kbasco Specification Design Specification for AHSXNuclear Safety Classes 1, 2&3 and ANSI B31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Pro)ec t Ident if ication No.CAR-SH-M 71 Rl 30 APPLICABLE CODES STANDARDS DOCUMENTS&DRAWINGS (Cont'd)NSSS Suppliers Equipment Specifications and Vendor Equipment Design and Seismic Reports which are supplied to the analyst via the Ebasco EHDRAC System.4 Westinghouse Overpressure Reports-WCAP-7769 Rev.1 and Overpressure Protection Report for SHNPP (5farch 1980).ENVIRONMENTAL CONDITIONS.Ol The environmental conditions to be considered for all piping and supports covered by this specification are as folio@ac Containment Buildin Normal LOCA Stm Line Break a-Peak Temperature 5-Peak Pressure c-Relative Humidity d-Radiation Steam Tunnel 80-120oF Atmosphere 3.5xl06 Rads 1.3xlO Rads 7 252oF 36'psig 100'L 379oF 39.1 psig 100'X Dose one year after the design basis accident'ntegrated dose for 40 years of normal operation.

Normal LOCA Stm Line Break'a-Peak Temperature b-Peak Pressure c-Relative Humidity d Radiation lll F Atmosphere 20-90Z 1.0x103 Rads 2.5xlO Rads 4 340 F 22 psia 100K Integrated dose for 40 years of normal operation.

Dose one year after the design basis accident Ebasco Specification Design Specification for)5SXNuclear Safety Classes), 2&3 and ANSI$31.1 Non-Nuclear Safety(Sefsmic Category I and Seismically Desfgned Piping and Supports Pro]ect Identification o.CAR-SH-H 71 4.ENVIROAKNTAL CONDITIONS (Cont'd)F 01 (Cont'd)Auxiliar Buildfn Normal LOCh Stm Line Break a Temperature b-Pressure c-Relative Humidity d-Radiation 60-104'F 20-90X 1.0xlO>Rads 2.7xlO Rads 6 130 F hIH 100Z Integrated dose for 40 years of normal plant operation Dose one year after the design basis accident Fuel Handlfn Buildin Normal Stm Line Break a-Temperature b-Pressure c-Relative Humidity d-Radiation 60 104 F 20-90K 1.0xlO Rads 4 1.0xlO Rads 3 120 F 100 Integfated dose for 40 years of normal plant operation Dose one year after the design basis accident So CLASSIFICATION OF PIPINC 01 The classification of pfping covered by'this specification as S f t Clas a e ass 1, 2 or 3, or ANSI 131.1 Non-Nuclear Safety(Seismic Category I or Seismically Designed is identified on the Piping Line List, Appendix D.Sfmflarly, the classification of tubing is identified by the I&C Classiffcation System fndicated on Dravfngs 2166B-432&434.

Xbasco Specification'esign Specification for]tHSINuclear Safety Classes l 3 and ANSI 531.1 Non-Nuclear Safety/Seismic ry I and Seismically Designed Piping and Supports Rl Project Identification No.CAR-SH-M-71 CLASSIFICATION OF PIPING (Cont'd).02 Ebasco categories 1,2 and 3 correspond to Safety Classes 1,2 and 3 respectively, and Seismic Category I.These classifications are determined in accordance vith ANSI N18.2 and N18.2a.Ebasco categories 4,5,6,7 and 8 are non-nuclear safety and only those lines designated Seismic Category I or seismically designed are covered by this specification.

.03 I&C Safety Classes Nl&N2 correspond to Safety Classes 1&2 respectively'nd Seismic Category I.'Ihese classifications are determined in accordance vith ANSI N18.2 and N18.2a.7a Ebasco Specification Design Specification for ANSI Nuclear Safety Classes 1, 2, 6 3 and ANSI$31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Rl e ofect Identification o.CAR"SH-M-71 6~PIPING AND SUPPORT BOUNDARIES

~01 The boundaries of thc piping and supports covered by this specification are defined by the descriptions in hppcndix D, Appendix-5, and as follovss a-Thc first circumferential Joint in velded connections and the attaching veld of MPhs, the connecting veld shall be considered part of the piping.b-Thc face of the first flange in bolted connections, the bolts shall be considered part of the piping.c>>The first threaded Joint in screved connections.

d-Boundaries for penetrations arc shovn on Draving C 2165-065.e-Boundary for instrument tubing ends at the last fitting before the instrument.

f.For supports, the connecting veld to an embedded plate or building structural steel shall be considered vithin thc support boundary.~02 The specific dimensional locations and structural characteristics of all boundaries shall bc obtained from the follovings a-Piping<<From general arrangement dravings, flov diagrams, PSIDs, and applicable vendor dravings.b-Supports-Embedded plate and structural steel dravings..03 hllovable forces and moments at all piping boundaries shall comply vith the requirmcnts ef hppendix C.Forces and moments at all support boundaries shall be vcrificd in accordance vith Paragraph 10 of Appendix I.7~GENERAL DESIGN RE UIREMENTS 01.Thc design stress combinations vhich act simultaneously during thc various plant and system operating conditions to be considered in the pipe design and analysis are specifically indicated in the Load Combinations, Appendix F Ebesco Specification Design Specification for ANSI Nuclear Safety Classes 1, 2,&3 and ANSI B31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Rl ProJect Identification No.CAR-SH-M-71 7.GENERAL DESIGN RE UIREMENTS (Cont'd)02.For the systems covered in the Thermal Mode Diagrams, Appendix 5, the temperatures noted for piping shall be used in all pipe design thermal expansion stress analysis in lieu of the temperatures specified in the Piping I.ine List, Appendix D.For all systems not addressed in Appendix B, the maximum operating temperature listed in Appendix D for that piping shall be used in all pipe design thermal.expansion stress analysis..03 Unless othervise designated in the Load Combinations, Appendix F, the design pressure values given in the Piping Line List, Appdneix D, may be used in lieu of the peak pressure (P max)as allowed by ASME Section III, since the peak pressure and earthquake need not be taken to act concurrently.

.04 For tubing subJect to dynamic conditions (i.e., sampling lines), the process line maximum operating pressure/temperature specified in the Piping Line List, Appendix D shall be applied throughout.

For tubing subJect to static conditions (i.e, impluse lines)~the process line maximum operating temperature as defined above shall be applied up to the three dimensional clamp only and the process line maximum operating pressure specified in the Piping Line List, Appendix D, shall apply throughout.

Ebssco Specification Design Specification for ANSI Nuclear Safety Classes 1, 2, 6 3 and hNSI B31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Rl Pro)ect Identification o.CAR-SH-8-71 7.GENERAL DESIGN RE UIREMENTS (Cont'd).05 Stress analysis of piping shall be performed in accordance vith ASME Section III using a stress range reduction factor (f)equal to 1.0..06 Pipe cnd loads imposed by the piping on equipment nossles shall not cxcecd the values given in Appendix C, unless higher loads are approved in'vriting by the equipment supplier..07 Equipmcnt veights, center of gravity and locations and displacements of end connections required for thc design and analysis of the piping covcrcd by this spekification shall bc derived from the respective equipment manufacturers'ravings and specifications.

.08 Operating Basis Earthquake (OBE)and Design Basis Earthquake (DBE)loads shall bc developed from the applicable floor response spectra and anchor movements provided by the Ebasco Civil Department.

In the absence of DBE spectra, Safe Shutdovn Earthquake (SSE)loads equal to tvice the OBE Loads shall be used for thc DBE loads..09.10 No reduction in allovablc stress limits shall be considered due to environmental conditions.

Piping systems, or portions of systems, having a natural frequency greater than or equal to 33 Hs may be'considered rigid.In cases vherc the natural frequency ie lese than 33 Hs, a flexibility analysis shall be performed.

Thc natural frequency thermal displaccmcnts and analytical model, where applicable, for each are to be obtained from the respective equipment Design or Seismic Report.Vibration loads are not considered in the initial stress analysis.Excessive vibrations vill be determined during the thermal expansion and vibration monitoring program at thc site.Items of concern vill be addressed by HPES stress analysis ae they are identified.

.12 Pipe end loads for containment pcnetrations are specified in Ebasco Specification CAR-SH-M54, Part 2~Paragraph 4.06, and on Draving 2165-C-064.

.13.14 Pipe support design criteria ie given in Appendix I.Piping euppoitcd from flexible platforms shall bc designed utilising thc applicable floor and vali building response spectra.

Ebasco Specification Desfgn Specificatfon for PHSXNuclear Safety Classes),2 3 and ANSI$31.l Non-Nuclear Safety/Sefsmic Cs y I and Sef smically Designed Pf ping and Supports Pro)ect Identfffcatfon No.CAR-SH-M-7) 8.SPECIFIC DESIGN RE UIREMENTS.01 All Safety Class 1 piping, except that covered in Paragraph 8.09, shall be analyzed by Ebasco in accordance with ASNE Section III, Subsection NC for the purpose of suggesting support types and locations.

The NSSS supplier shall use thfs information as a starting peCnt in performing the Class 1.analysis for this piping.The NSSS supplier is resoonsible for determining the actual support types and locations and corr correspon ng loads.Upon receipt oi the completed Class 1 analysis, the existing Class 1 piping supports shall be evaluated and revised@here necessary.

-9a-Ebasco Specification Design Specification for DNSXNuclear Safety Classes 1, 2 6 3 and ANSI B31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports oject Identification No.CAR-SH-M-71 Rl 8.SPECIFIC DESIGN RE UIREMENTS (Cont'd).02 hll Safety Class 2 piping shall be analyzed in accordance vith ASME Section III,.Subsection NC..03 All Safety Class 3 piping shall be analyzed in accordance vith hSME Section III, Subsection ND..04 hll ANSI B31.1/Seismic Category I piping shall be analyzed in accordance vith ASME Section III, Subyection ND..05 hll ANSI B31.1/Seismically Designed piping shall be analyzed in accordance vith ASME Section III, Subsection ND.~06 In the case of non-Seismic Category I piping attached to Seismic Category I piping, the dynamic effects were included in the modeling of the Seismic Category I piping up to the first anchor or system of restraints vhich decouplcs the piping..07 (DELEIED).08 hll piping and supports exposed to external vind forces shall be evaluated.

vith regard to thc plant safety features t'o isolate the containment and safely shutdovn the plant.Any line vhose loss vill ieopardize these*plant safety features shall be analyzed and designed for tornado/hurricane.

~nd vind loads or protected from same by means such ae shields or:, barriers.Lines requiring said analysis are identified in the Loading Combinations, Appendix F,'along vith the applicable loads.The Design Basis Tornado/Hurricane and Vind Loads (DBT)are not assumed to act concurrently vith a seismic event.Rather the DBT Loads are to bc compared to the seismic loads to determine vhich is greater and therefore, should be used for design purposes.DBT loads are not to be considered for the Faulted Plant Condition unless the piping is required to provide a lbag term core cooling folloving a LOCA.~09 The seal vatcr bypass lines to the reactor coolant pumps are qualified to Safety Class 2 rules and are therefore, to be analyzed by Ebasco in accordance vith ASME Section III, Subsection NC..10 The vali thickness/schedule specified in the Piping Line List, Appendix D, includes an allowance for corrosion/erosion as necessary.

Ebasco Specification Design Specification for ANSZNuclear Safety Classes 1, 2&3 and ANSI 531.1 Non-Nuc!ear Safety/Seismic Category I and Seismically Designed Piping and Supports ro)ect Identification o.CAR-SH-M-71 R1 9.PLANT CONDITIONS 01.Normal Conditions Any condition in the course of system start-up, operation in the design power range and system sbutdovn, in the absence oi Upset, Emergency or Faulted conditions.

.02 U set Conditions Any deviations from Normal Condition anticipated to occur often enough chat design should include a capability to vithstand thc conditions vithout operational impairment.

The Upset Condition includes those transients caused in a system component requiring its iso1ation from the system, transients due to a loss of load or over and an s stem u set P not resulting in a forced outage.l~Thc Upset Conditions include the effect of tbe specified earthquake for vhich the system must remain operational or must regain its operational status..03 Emer enc Conditions Any deviations from Normal Conditions vbich require shutdown for correction of the conditions or repair of damage in the system.Thc conditions have a lov probability of occurrence but arc included to provide assurance that no gross loss of structural integrity vill result as a concomitant effect of any damage developed in the system.Thc total number oi postualted occurrences for such events shall not cxcecd tvcnty-five (25)for the life of the plant.(RX.04 Faulted Conditions Those combinations of conditions associated vith extremely lov probability postulated events vhose consequences are such that the integrity and operability of the nuclear energy system may be impaired to the extent vbere considerations of public health and safety arc involved.Such considerations require compliance vith safety criteria as may be specified by)urisdictional authorities.

Among thc Faulted Conditions may be a specified, earthquake for vhich safe shutdovn is required..

SYSTEM CONDITIONS System design stress requirements for piping for specified plant conditions are indicated in the load combinations presented in Appendix F.The allow-able stresses for support members are given in Appendix I.

Kbasco Specificatfon n Specification for/f57 Nuclear Safety Classes 3 and ANSI 531.1 Non-Nuclear Saic ty/Se f smf c gory I and Seismically Designed Piping and Supports Project Ident if f cation No.CAR-SH-M-71 11'ALITY ASSURANCE RE UIREMENTS The quality assurance requirements for the design and analysis of piping and supports covered by thfs specification, as defined in Paragraph 1.01, shall comply vith ANSI N45.2.11'uality Assurance Program Requirements for thc 5esign of Nuclear Pover Plants.12.INSULATION RE UIREMENTS F 01 The Piping Line List, hppendix D, indicates vhich piping requires insulation.

The insulating material for all piping located outside containment shall limit the heat loss during maximum operating temperature conditfons to not morc than 65 STU/HR-SQ FT of outcr surface of insulation.

The appropriate insulation thickness for each pipe located outside containment is to be determined from the Piping Line List, hppendix D.For pipfng 2 inches and smaller located inside containment vith a maximum operating temperature of 400 F or less, no insulation is required.Personnel protection from this piping is achieved by the installation of a pipe shield around the hot surfaces vhere personnel are most likely to be, i.e., near access platforms, valkvays~etc'he pipe shield system is fabricated from type 304 expanded stainless steel and designed for total and rapid removal and replacement.

The positive lockfng buckles for these pipe shields are seismically qualified.

Details of this personnil protection are given fn hppendix J, Personnel Protection for 2" and Smaller Pipes Inside Containment (Up to 4PPOF)~3Q I All other piping inside containment vhich requires insulation shall have reflective type insulation of the thickness specified in Table 12.1, vith thc corresponding veight identified in Table 12.2.

Ebaaco Specification Design Specification for gflSZ Nuc?ear Safety Classes~2 i 3 and ANSI B31.1 Non-Nuclear Safety/Seismic tegory I and Seismically Designed Piping and Supports Project Identification Ho.CAR-SH-M-71 12.INSULATION

(&nt'd)Rl.02 Insulation fo'r piping systems shall be as follovac a~REFLECTIVE

-For all piping inside of Containment.

b.COMPOSITE For piping subjected to inservice inspection in accordance with ASME Section XI (as identified in Ebasco Specification M-30, Appendix D)outside of Containment c.CONVENTIONAL

-Piping not subject to inaervice inspection outside of Containment.

d.Chilled vater system piping shall be provided vith~fiber glass pipe insulation vith an all purpose vapor barrier jacket consisting of vhite paper surface bonded to aluminum foil and reinforced vith a fiber glass yarn.An adhesive vill be needed to seal the jacket.I.ap shall be reinforced vith FSKL tape or approved equal.The insulation shall have a thermal conductivity of 0.23 BTU/oF-Hr-Ft2/In at 75oF mean temperature.

Based on the above the piping insulation shall be: Rl i)I inch for pipes up to 1-inch ii)1 1/2 inch for pipes 1-inch up to 4-inch iii)2 inch for pipes 6-inch and larger.03 Details of pipe insulation are covered in Ebaaco Specification M-31..04 Insulation requirements for tubing are detailed on drawing CAR-2166-B-431.

-12a-Ebasco Specification ll Design Specification for QNSc Nuclear Safety Classes 1, 2 6 3 and ANSI B31.1 Non-Nuclear Safety/Seismic

~~~~~~~~~~~Category I and Seismically Designed Piping and Supports Project Identification Ho.CAR-SH-M-71 l2.INSULATION (Cont'd)TABLE 12.1 Rl 140-200 ,INSULATIOH THICKNESS (IN.)INSIDE CONTAINMENT MAXIMUM OPERATING TEMPERATURE (F)201-251-301-351-401-451-501-551-250 300 350 400 450 500 550 600 601-651-650 700 3/4 NONE NONE NONE NONE NONE 0.975 0.975 0.975 0.975 1.475 1.475 2.0 HONE NONE NONE NONE NONE 1.313 1.313 1.750 1.750 1.3.3 1.313 1.313 1.313 1.750 1+750 2.250 2e250 1~250 I~250 I~188 1.188 1.125 l.250 1.250 1.750 1.250 I~250 1.750 3.0 I~250 1.250 4.0 I~250 1.250 2.750,'.188 j 3.688 1.750 1,750 2.750 2.688 2~688 3.188 2.688 3.6SB 3.688 6.0 I 188 8..188 0.0 1.125 1.188 l.688 1.688 1.688 2.188 2.188 2, 688 2'88 1.188 1.125 1.688 1.625 2.125 2.125 2.625 3, 125 3, 625 4, 125 2~125 2.125 2~625 3.125 3.625 4.125 5.125.5.125'.0 I 125 4 0 1.500 6.0 I 500 3.0 l.500 I~125 1.500 1.500 1.500 1.625 1.500 I~125 1.500 1+500 1.500 2~000 2~500 2~500 3~500 4y 000 4 500 5, 000 2,000 2.000 2 500 2.500 3.500 4.000 4.500 5.500 2.500 2.500 3.500 4,000 4.500 5.500 1,500 I~500 1.500).0 1+500 1+500 1+500'..0 1.500 1.500 1.500 2,000 2,500 3.000 3.500 4.000 4.500 5.500;5 500'.500', 5.500, 6.000 i i 6.ooo i'.000~6.500)6.500'~500 3.500 4,000 4.noo 4.500 F 000 3.000 2.000 2.500 4.50O 5.000 5.000 5.000 5,000 5.000 I~500 1 500 1.500 I 500 I 500 I.500 2o 000 1.500 1.500 1,500 1.500~0 I~500..0 1.500 3.0 I 500),0 1.500?~0 I 500 i~0 1.500?~0 I~500 2'00 2.500 2,000 2.000 3~000 3.000 3~500 3.500 3~500 3.500 3.500 3.500 4.500 4.500 4 500 4.500 4.5oo 2~500 2.500 1,500 1.500 1,500 1.500 3, 000 3.000 2.000 2~000 2.000 F 000 2~500 2.500 2,500 lo500.1.500 1.500 I~500 1.500 1,500 5.500 5.500 1.500 1.500 F 000 3.000 l.0 HONE NONE NONE NONE NONE I 343 1.343 1.343 1.343 1.343 1.343 t Eb o Specification Specification for pgcT.Nuclear Safety Classes 1, 3 and ANSI B31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Pro)ect Identification No.CAR-SH-M-71 TABLE 12.2 INSULATION WEIGHT (LBS PER FT.)INSIDE CONTAINMENT MAXIMUM OPERATING TEMPERATURE

~oF$40-I0$I5$50$S5$40$0$50$55$401 451 F00 ISO 500 550 400 450 500 550 400 450 700 II4 5.0 I.O$.5 1.5$.5$.5 R.!$.7$.7$.7 5.7 I.4 t.S I.S t.S I.S I.S R.~I.S 3.0 S.i 4.0 4.0 4.0 I.O I~5~5 0 5 0 5 0 5 5 S 5 I.I 4.0 4.0 4.0 4.~7.5 7.5 S.S 4.5 4.5 I.I t.O t.O 0.0$0.5$0.5 I.O 7.0 7.0 7.0 I.O t.0 10.0$0.5 11.5$5.0$4.0$4.0$0.~I.O~.0 I.~t.5$$.0$$.5$R.O$4.5$5.~$7.0 it.0 SI.D$0.0$0.0 10.0$1.0$R.I$5.0$4.0$4.0$7.0 it.0 I1.5$4.0$1.5$1.5$1.5$1.5$4.~$5.~$5.5$5.0 IO.O I1.0 t3.5$4.0$5.0$3.0$5.0$4.0.$5.S$4.5$7.5 IO.O t2.0 I4.5 IT.O$0.0 14.I$4.I$4.I$4.0$7.~$0.0 it.O I$.5 t4.0 tT.O Rt.5 IO.O$5.O$5.~$5.I$7.5 it.o it.I Ia.o Ia.o<<.~It.O II.O tR.O$7.5$7.5$7.5 it.~tO.I I1.5 I4.0 IS.~t1.~51.0 55.5 t4.0 it.O it;0..it;0 tD.S tR.O Ri.O t4.0 IT.O 50.0$4.5 57.5 t4.0 t0.5 t0.5 IO.S RR.O t$.5 R4.t ST.S SO.S 55.5 ST.O 40.~Se.o IR.O t1.5 S8.0 t3.5 tR.O t5.5 IS.O t4.5 It.S It.O 04.0 St.O 44.0 t5.5 lb.0 IT.O tS.O 51.~54.5 57.5'41.5 44.0 t5.0 t5.0 t5.0 IT.O te.t tt.S 3.0.54.5 40.0 4$.5 4I 5 ea.o ai.o ae.o ee.o 5O.D 51.5 53.0 545 4OS 445 5@0 400<2.0$3.0 IS.O 53.0 55.0 57.0 5t.h 44.5 51.5 57.5 41.5 13a Ebasco Specification Design Specification for A/5T Nuclear Safety Classes 1, 2&3 and hNSI$31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports t rojcct Identification o.CAR-SH-M-11 Rl 13.hNhLYSIS OF SURXED PIPING.01 Seismic analysis of Seismic Category I buried piping shall be based upon Nevmark'a method,"Earthquake Response hnalysia of Reactor Structur tf c urea and Hetenyi s theory, Seams on Elastic Foundations".

Thc analysis shall include calculation of atrcaecs in thc buried portion of the piping due to loads acting on the nonburied portion of the piping inside the building (interaction effect), superimposed on the stresses duc to various loads acting on the buried portion of the piping.Thc resultant stresses shall be vithin the~Ilovable stress criteria of the applicable portion of hSME Section III..02 Settlement in the filI along the piping due to differential depth of backfill vill not cause any significant etressea in the piping..03 ht points vhere piping leaves the ground and ia attached to structures, the maximum possible differential movement betveen the ground and the structure shall be determined.

The differential movement must be absorbed either by providing sufficient flexibility in the piping from the ground to the structure, or by the uae of flexible joints in the piping..04 In instances vhere piping vhich enters atructurca ie supported or anchored vithin the structure and not at the vali penetration, the vali penetration must be aised to provide sufficient room for differential pipe movement..05 Thc excavated area under the 30 in.and 8 in.service vater pipe lines, bctvecn the Tank Suilding and Turbine Suilding valle and the rock or natural ground, vae backfilled vith concrete vhich vill have insignificant differential settlement.

06 The fill in the yard area supporting Seismic Category I piping ia not subject to iiquefaction during a seismic event.07 For the analysis of Seismic Category I pipes buried in the folloving properties are to be usedc Soil Density (pcf)Soil Subgrade Modulus (lb/eq.in/in)Pressure Wave Velocity (fps)Coefficient of Friction Maximum Velocity of Free Field Earthquake Motion (ft/sec.)Maximum hcceleration of Free Field Earthquake Motion (ft/sec sq)Velocity of Compressional Wave Propagation in Soil (fps)Velocity of Shear Wave Propagation in Soil (fps)<<14-fill in the yard 135 50 1500 0.2 0.09 3.8 2300 870 Eba'sco Specification Design Specification for.WMNuclear Safety Classes 1, 2&3 and ANSI B31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports i ro)ect Identification o.CAR-SH-M-71 Rl 13.ANALYSIS OF BURIED PIPING (Cont'd).08 Field tests to determine the moisture content and density of the fill vere performed on the five types of random fill prior to construction in order to develop the construction procedure and also during actual fill placement.

hverage values of the test results are given beloved Type ls Brovn clayey silt vith yellov silty claya Dry Density 114 pcf Moisture Content 10 percent Compaction 97 percent maximum standard proctor density Type 2i Brovn clayey (sandy)silt vith pieces of siltstone and some sandstones Dry Density Moisture Content Compaction 125 pcf 7 percent 98 percent maximum standard proctor density jR1 Type 3a Brovn clayey silt vith yellov silty clays Dry Density Moisture Content 117 pcf 13 percent Compaction 99 percent maximum standard proctor density Type 4e Brovn clayey silt vith pieces of siltstone (rock sised up in.)e Dry Density Moisture Content 127 pcf 7.5 percent.Compaction 98 percent maximum standard proctor density Ebesco Specification Design Specification for@~Nuclear Safety Classes 1, 2&3 and hNSI B31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports ro)ect Identification o.ChR-SH-M-71 13.hNhLYSIS Oi BURIED PIPING (Cont'd)F 08 (Cont'd)Type 5c Brovn siltstone (rock Dry Density aired up to 21 in.)e 136 pcf from test fill section Moisture Content 4.5 percent Ebesco Specification Design Specification for ASS~Nuclear Safety Classes 1,2, 6 3 and ANSI B31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports rojcct Identification o.CAR-SH-M-71 14.PIPE RUPTURE ANALYSIS.01 Thc capability to safely shutdovn the plant and maintain a cold shutdovn condition must not be impaired by the effects oi the postulated pipe breaks.This is accomplished by a combination of design features such as separation, barriers and pipe vhip restraints.

After a postulated pipe break event, the consequences are considered to be>a.Pipe vhip b.Jet impingement c.Compartment pressurisation d.Compartment flooding c.High temperature/high humidity environment

.02 The criteria used for the protection against dynamic effects associated vith postulated pipe rupture are as follovss a.Branch Technical Position APCSB 3-1 b.Branch Technical Position MEB 3-1 C.ETR-1002.03 Main steam and fecdvater piping bctvcen the containment penetration and the pipe rupture restraint system outside containmcnt are not subJect to thc postulation of pipe breaks..04 In conducting the pipe rupture analysis, the folloving assumptions arc uscds a~If thc postulated pipe failure results in an automatic separation of thc turbine generator from the pover grid, or results in an automatic reactor trip, then offsite pover is assumed to bc unavailable.

b.Xf thc postulated pipe fiilure requires safety system response to the event, thc analysis assumes a single active component failure in either the safety systems required to mitigate the consequences of the event or their auxiliary supporting features except as noted in item 14.04d The single active failure is in addition to the postulated pipe failure and any direct consequence of the piping failure.co Operator action to mitigate the consequences of the postulated pipe failure is analyscd for each specific event.The feasibility of initiating operator actions on a timely basis, as vcll as the accessibility provided to allov the operator actions, is demonstrated.

Ebaeco Specification Design Specification for Ah!SX Nuclear Safety Claeeee 1, 2 6 3 and hNSI 531.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports roject Identification No.ChR-SH-N-71 14.PIPE RUPTURE hNhLYSIS (Cont'd)d.Mhere the postulated piping failure is assumed to occur in one of tvo or more redundant trains of a dual purpose moderate energy ceecntial system (i.e., one required to operate during normal plant conditions ae veil as to ehutdovn the reactor and mitigate the consequences of the piping failure), single failures of components in the other train or trains of that system only arc not assumed, provided the system ie designed to Seismic Category I standards's povcred from both offeite and oneite sources, and ie constructed, operated and inspected to quality assurance, testing, and ineervice inspection standards appropriate for nuclear safety systems.e.hn unrestrained vhipping pipe is considcrcd capable of<i)Rupturing impacted pipes of smaller nominal pipe eiecs, and ii)Developing through-vail leakage cracks in equal or larger nominal pipe eieee vith thinner vali thicknesses.

The energy level in a vhipping pipe ie considered insufficient to rupture an impacted pipe of equal or greater nominal pipe cise and equal or heavier vali thickness.

Jet impingement forces from a given pipe of specified nominal pipe size and vali thickness arc considered capable of<i)Rupturing targeted pipes of smaller nominal pipe siee and ii)Developing through-vali leakage cracks in pipe of larger nominal pipe cise and thinner vali thickness.

)5~SEISMIC INTERACTION STUDYIn NRC Regulatory Guide 1.29, the requirement to survive the effects of the safe shutdown earthquake include systems and components vhose function may not be required for safe shutdovn but vhosc failure may prevent a system important to safety from functioning.

To address this requirement, a seismic interaction study vas performed for the Shearon Harris plant.Wc guidelines, methodology, and evaluation criteria used in this study, as it applies to piping and support covered under this specification are summarized bclov: Step li The first step is the designation of structuree, systems and components ae targets or sources.h target ie defined ae any safety-related structure, system, and component required to safely shutdovn the plant and maintain the plant in a safe shutdovn condition, and certain accident mitigating systems such ae containment isolation, main steam isolation and main feedvater isolation.

hll nonsafety related systems, piping and components are designated as sources.

U Ebasco Specification Design Specification for ANSZ.Nuclear Safety Classes 1, 2&3 and hNSI 531.1 Non-Nuclear Safety/Seismic e sm ca y Designed Piping and Supports Category I and Seismicall D Project Identification No.CAR" SH-M-71 Rl SEISMIC INTERhCTION STUDY (Cont d)Step 2e The second step is the identification of i sources and t t Th on o nteractions involving piping dravings HVhC duct routing a g g o civil/structural design gs, genera arrangements and patial consideration n a tion, all ertinent s study+Step 3a Step 3 is the evaluatio ation and disposition status of identified interactions.

Based upon establi h d interaction ia evaluated and classifi d s e acceptance critex'ia e unacce tab c ass e as acceptable or ceptable and documented along vith the identification of interaction components sourc ()d (), the interaction, and pertinent spatial data.Step 4a Step 4 is the corrective action taken to res interactions.

The first en o resolve unacceptable e rst course of action is to relocate the nonsaiety system or component to an area vhere a interaction is not ossibl an area vhere an adverse system relocate systems or components due to e ui ment identified detrimental target.U bl e seismically desi ned to g prevent interaction with a e.nacceptable piping sources are seismi o d i t d"SD" i th Pi i ses o p ines need be seismically designed ses on y portions of li e Line I ist.Pi in 1 ese ines vill so be noted i n the remarks column of the Piping seismfcall desi ned ne st.Piping lines or portions of lines designat d e loadin and y gned are stress analysed to establi h d i g locations for supports and restraints.

s es gn Ebasco Specification Design Specification for hNSI Nuclear Safety Classes 1, 2, 6 3 and ANSI$31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Pro)ect Identification No.CAR-SH-M-71

,16'LLOWABLE PIPE STRESS.01 The allovable stresses for piping covered by this specification, except for the pressurizer safety and relief valves discharge piping under sustained and dynamic loadings during normal operationy are as follows'lant Condition~Euation Normal (8)(10}(11)Upset (s)(10)(11)Emergency (s)Faulted (s)Test (s)chere Sh, Sh, SY and Equations 8 thru'll Section III, Subsections NC 6 ND.S hllovable 1.OSh Sh h 1.2Sh h 1.8Sh 2.4Sh 1.35SY are defined by hSME.02 The allowable stresses for the seismically designed pressuriser safety relief valve discharge piping under sustained and dynamic loadings during normal operation are as follovsa Plant/System 0 eratin Condition Normal Upset Upset I Emergency Faulted Faulted Load Combination N+SOTU N+OBE+SOTU N+SOT N+MS/1%PB or DBPB+SSE+SOTF N+LOCh+SSK+SOTF Stress hllovables 1.0Sh 1.2Sh l.8Sh 1.8Sh 2.4Sh 2.4Sh vhere,

,

Ebasco Specification Design Specification for ANSI Nuclear Safety Classes 1, 2, 6 3 and ANSI B31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports oject Identification No.CAR-SH-M-71 Rl 16.ALLOMABLE PIPE STRESS (Cont'd).02 (Cont'd)N SOT SOTU SOTE SOTF OBE SSE MS/FMPB DBPB LOCA Sustained Loads During Normal Plant Operation System Operating Transient Relief Valve Discharge Transient (1)Safety Valve Discharge Transient (1>>Max (SOTU~SOTE)I or Transition Flov Operating Basis Earthquake Safe Shutdovn Earthquake Main Steam or Feedvater Pipe Break Design Basta Pipe Brcak Loss of Coolant Accident (1)May also include transition flov, if determined that required operating procedures could lead to this condition.

.03 Essential piping is indicated by the designation"E" in the ISI column in the Piping Line List, Appendix D.For this essential piping, the Emergency stress allovablea apply for loading combinations 4 thru 10 given in Appendix F.For all other piping listed in Appendix D and covered by the scope of this specification, the Faulted stress allovablea apply for loading combinations 4 thru 10 given in Appendix F.

Ebasco Specification Design Specification for bVST Nuclear Safety Classes 1, 2&3 and ANSI B31.1 Non-Nuclear Safety/Seismic tegory I and Seismically Designed Piping and Supports ro)ect Identification No.CAR-SH-M-71 APPENDIX A (DELETED)

Ebasco Specification Design Specification for 53'uclear Safety Classes 1, 2 6 3 and hNSI 531.1 Non-Nuclear Safety/Seismic tegory I and Seismically Designed Piping and Supports ro)ect Identification No.ChR-SH-M-71 hPPENDIX 5 Thermal Mode Diagrams 0

Ebasco Specificati,on Design Specification for]+~Nuclear Safety Classes 1,2&3 and ANSI b31.1 Son-Nuclear Safety/Seismic C ry I and Seismically Designed Piping and Supports Project Identification No.CAR-SH-M-71 SYSTEMS I Auxiliary Feedvater Boron Recycle Chemical&Volume Control Chilled Water.Supply&Return Component Cooling Containment Spray Feedvater Fuel Oil Main Steam Reactor Coolant Safety Injection/RHR Spent Fuel Pool Cooling&Cleanup Steam Generator Blowdown Service Water

l 5TH PI FE H V))I Vi Ft~FW THERMAL PIOEN='S EbASCO SPECIFICATION DESIGN SPECIFICATION FOR ANSI NUCLEAR SAFETY CIASSES 1,2&I AND ANSI bbl, I NON-NUCLEAR SAFETY/SEISHIC Rl.CATEGORY I AND SEISNICALLY DESIGNED PIPING AND SUPPORTS PROJECT IDENTIFICATIOH NO.CAR SH-N-TI~CON'EUITID 0 VI)EYE'TAQ)ID.'4 yi-NF-VIO)VFI(V23 V2 RS-VIIG)VI174VII8 Vb RF-FI)F3(FR.'H RF VIS&>V)57$QI56 Y5 F)F VIS2 VI77)V)79 V&RF-F'I S)F6 V7Ce-V)It)VVZ,<V'I3 V8 5W b75)877)87I{872 INSIDE CONT.OUTSIDE QONT.k<IL+ur,c meL)I me, s Loops VSp FCV Ve VG FCV Vg CO)IDEHSRTE STOhhQ ThNK, PCV t gFW+GFDR DRivbV au~PS r~ST%FRD)A 5ehvICt WAT~E~n~~PF'FW T)IRD~DRIVE)), FUhF.+-i peewee~ODes guraiHIf muw~n A Yb FQCHII 5fgV ICE II)A%%ST STEM b

flANT EVENT as-eX SII~TO IIOT g VS@,'Vak~LA'NT~M O>g w4 1~~weaimm HO'X I NoAhlL HOMAL.eetQL NII~eeSeL UPSET Uf%7 RNQ%1 uf4%T A 8 Sz.b@PE,~TING l24~<<c u TK MORAT URE fs HoT85'~Žv~~

RPiwŽ5-~~VC~aWB%0 N~IN cb~FJi4%TE

~ISWLCPy(IhllllPIUPl.

XS TIIIS ChSL>VN.VES V7 WILL C LOSE.3-hMS.TI4%3CPN~0 OH6 EACH dfVPIOggyi

~~wecNh tQPTUNj~g accus%0.ORNA iH4 Oa NORMALLY OPSY C~08lhkLT CNCD O V V gysco S~~god Peg~S~WCIITgg IN.%L SIIClaK~I,SPb toe Aeas Oa.l~.NCCOha~/h~CA~Z$Sa~i4Ati.g

~igPP+gy(SIItPI PRO~XSelVWOInai e.CN-SII-g-y(SEE SYSTEM f~DAA%AM@PL DtTwLAOF 8+STtuL MOCtSS DWQ~OItI~

CLItNt C.t'E A raoiccr SO".P toittct~pr~r r, ay C CHEV cetctto or ot~t No.~X'retc~ottc L fl)E tv<PogfoL G~1~AUPRR, vl vl 8 E F F~I V10]82.C V2 YF CVCS DORK.ACIP 1K RctfttS mihfoN RECYCLE p40lD VP'fK C g le'fk P d ERASCO SPECI FI CATION DESIGN SPECIFICATION FOR ANSI HUCLEAR SAFETT CIASSES l,l 6 3 AND ANSI b31.1 le NUCIPLR SAFETYISEISHIC CATEGORY I AND SEISHICALLY DESIGNED PIPING AND SUPPORTS PROIECT IDENTIFICATION NO, CAR SH-H 11 Rl NEOCCK U.VC RghItOR Fcco RSrt:foR ST/, fR,

t NltlikLL't COO4~4OOAALLY CLOSE V V V~~SPfcOI~~wi~eicerm a~~NREM QINPf~gag~f~LL jg.l Nut.AVCLIJA 4tN/%rSPNC CÃll5~f Z JW SKISHICNLY

$tsxn~j aueeKt5 flOJECT~IR~~Ho Chk-SH-0}.7f.5'EE O'%STCAM FLOw OV4P&kh M OOTaWOF c,~TRM~CCSS Oeri 5NOQ SYSTEM ammw 0 Lf EPOCHAL o E'lct Icc 5 NC f ORC I I VIV)OOIDLPL LITDOyAAI A<<~src i.2)c Vl CCW Egypt I D I I f Lf FPpttH HII I IRC IORC IAI R2~I~TD~CP SP wf~AAIIIO[FIOOI CA CH~ID FIAAAHICPLI2LR oj~%4t OR I RfOfIIERPTIVE ISX Vl CCOV I I I CCVF I I+la S%Sat HctINPt cotcO IHO TO LOOP 2 I.O.EPYESS LO Hr VS I I ttw CCAV I IC ig WAAI VCI I IIAAF C.lmqOL IAWK w Q REF BOOOR COLIC, I+AS STS.V IO VII Vlt I PLTCR+LTS AIPT Stcay C OAOO IMO FLOI Q PEISSUEIIE R St~VIS FCOAI pLOOP 3 I I I I I I I IB TIO LOOPS Wl A I~SIS~IT Jcc lolc I I J VF LO.0 I ccs LO I 3 II 422 RO V20'x CMR HX (21)R SOCAC>tl FILTER Clif AI.~IltlOP TAAAK LI V 21 y21 I C.TO PAID tttwI SELL Xll J.FILTERS (TOILO RRC IORC I ERASCO SPECIFICATION DESICN SPECIFICATION POR ANSI NUCIZAR SAFEIY CIASSES~lpIA pOW R FA llltHF IA2 6 3 AND ANSI b31 I NON NUClZAR SAFETY/SEISNIC SIRAPDII PIPER:I II'.<~PQ'ATECORY I AND SEISNICAILY DESIGNED PIPING AND SUPPORTS PROJECT IDENTIFICATION NO, CAR-SN N 71 Rl~IV~CO V L.O L O.Clll OG INC'r Pv wPS V2$DORIC AC I TOIIIIS 7~MIRE RbhE5 CHEMICAL VQI.Ut%COSITIIOL tt AW-nba OW>i~-wW A ww*.+PPCOIYPIAL

@%~Sit CH~I 4%HOKOJFPNQ NK V I7 W I (Nluj k Sue&vmr I CNlgf RS~~Bi M I P--tN-+4---1 I L CMaaE a POHPS ISIDOelQ ETHIC'f HX LCToorlN ck'IlIR IK RAM v6 y~hg gE6aalERA'TiOI4 DEH14ERALI?ERS v<e (TV>g (TFP)VIS ERASCO SPECIFICATION HIl~DESIGN SPECIFICATION FOR ANSI NUCIEAR SAFETT CIASSES CARaub A PO.I,l d 3 AND ANSI b31.1 N(N-NUCIEAR SAFEIT/SEISNIC SHIA>O<~H~""'I~~C~'ATEGORY I AND SEISNICAL1Y DESIGNED PIPING AND SUPPORTS PROJECT IDENT IPICATION NO CAR SH N FI IRON Rl caaoco aacnccs wcoateaavm THEf91AL~DE$CIIBI1ICAL mmrtE CONmCn.APFEtvC tg asar~~~~1 P VI 4~0~

'r'f VET pg I EORIC fCf)'TANK SON lC ACO BATCHlH6 TANK L O.Y 5 80RIC ACID A)5 FILTE.R V32 RNRlT I a, ElLTER~RIASH/SVSTEM N't LlPH.Y g ac@~<+R I I.f F<i.EA SKYWAY<'~TF ilqOit I BoRiC ACI TRANSFER RJMP5 VSI VCS OfARBl yy SUCll I I VvAPy f TD IIglTC BORIC ACID TRANSFER PUMP BYPASS uulT 2 CERSS~T NOTE:ONLY 2'OVER PIPIIIQ IS SIIOWg.T~rOII I VNIT'RCNA UIIIT t BORIC ENSmhaet EEASCO SFECIFICATION DESIGN SPECIFICATION FOR ANSI NUCLEAR SAFETY CIASSES I~2 6 3 AND ANSI b31 I NON NUCISAR SAFETY/SEISNIC CATEGORY I AND SEISNICALLY DESIGNED PIPING AND SUPPORTS PROJECT IDENTIFICATION NO, CAR-SN-N-71 Rl I CAEIOLINA POWER I UGNT CQAAPAHT SNAROH IIARRIS kJQIAR PClWN RlAHT t R.TIE TTI hM AL PlOPE5 CHRPIIChL VOLV~A3%f 4Dlg 5i8%KLJ~

<(lg ORILA I (Ho 81RS)oNS]AN%I AORIAAI.~'EIR.,Q~gglal (<b))gatkf.ORA)IO (s)~<L f<NT<LA<T GrSTSM;OPR<RA-I<<6 C<PKRAT<<<6 EVENT'Se<fp!Vg~<looc

)n)OoEZWTING lo)gg>f<S P Ig)fs)Cg)II3 rS I<a I/13 TEMP=Z 4, U IRP L fi3 g3 NOTES: f IIIIIEs)4, vALvf'e<srI<4<f A Kpcclplc4<

TIIB, Ilos<l<o<I Ig QO~REI.EVE'pff.tO-III'.~PECItlga PAODE<d:9FUELI<)

6 I hlORdIA!p~g(h,u<s)tIC ErCBSy I E,1Ooal<J tte<ul To PSST Acls pig 498 I~hPIS/g/%.'3$%.~rgo/Jp I~/3.II5/5 P3/C5 I I~I 4e!I N15~f%+A~E I I, I RP'<r j I l I I M.gfo RP'gg'I CAROllp)A POWER 8 UGHT COMPANY SH<fARQN IIARRIS NUCLIAR POWIR PLANT.CI I I I I I l I I)~4~p C O~~~;O saw<kv'l.'VR$y ,.~Q<o 4 0 C'1$73,IIII~0 C Sou I 0<C s.f<~vl~v5, v9'is~yll s>>I 0 I.0 C 0 Q c C C c'c'IC 1 Or:/SIR<'4 4T r On<4 1 V>LVF ToO'5<TIQQ r es,eq4 a4t QE>qS.E4<ttog.-I g.i~I FOIa.=e Al S Ct e~S-ash<sRCCE65~w6 SH H-7)EBASCO BKRYll KS INCOIIPOIIATCD

~~K ,.~Res...~>>'&~K4 t Cl4f!Ihl c<kl tut)l Lilted.~go!gbasco Spceiffcation Desfgn Speciffeation for AIISX Huclear Safety Classes 1<1 d 3 and AIIST b31.)Eon-Nuclear Safety/Seisnie Category I and Sefssieally Desfgncd Pipfng and Supports Pro)ect identification Eo.CAR

Earuhl T Cou514 u f POatIK lt.'a a~l.eaa xloe~ai PDRgha,l.llf)(lalo@R<)'hagjjasa&

JJDRh(/f I (lt)ChLII/IOaf

,/aao S!~Ce{I g<u4Shp+N plf H/)J-CIST 3opnlm NNfbat ochA4T 5YSTQQ OPRltA.ouCi,CaPRRAa aII6 a Q I~Id.gg$I8 pW 12/I'll, Aud j Oa)OPERA, iNG SS CC.IM)TE't1PFZA OZaa~=)Fi ig(,!gg Ol)(n)I: l~P~;~(go~a(faP.'l/SRP,~:/5~ad I N+ESl$Ques a valve.~alaoQ 5PKCIFIKca

'p6 pOQlIOal I~go-QKLKaaaAHT qO Z Htt gpgCICaSb PADD<.g l~, f Eru~b tIDgnflff-(IIPI at)Qua ncq al a (I()I l'ab'I ,~l.gal sol 4~.'D.I94~W./84'!~'5 l (W,IQ).'CIR Chd'g: 5'x.Vfp aa~aaaaa m 3',p,-f (SS)~KSD gfss FIIC%55 I5$AR[-Ifp ,'h4Rntffl I, I'~4 y.as'~'(i a~a~~g)".~)

III7)(~'1 l pP'if(OF aC~L~l Ir ru, IIS'.~:,g.

r a iaaf.'aalra~aaaaa 1~~/sIP I.Q Ilb I.yy gP e aaa I a I C, ia 0.aNVAtLY Gpuad vh LvE fao~ITIopd

's'DRar*tln'ctosrg)

'Ll'AROUNA POtVfR C UroHT COMPANY SHEARON IIARR;5 N'aCIIAR POWEI PLANt gaIIR IAI~1W'++l5f'a F~-Ll l4'rp ra.'a Casus aha(y r half aa'IS 1 Vila 2'ga~o~ig 0 I C b.QOpn aOW: C+0-c c~c C'a~0 C C I Jg C'af C t i..L-'ha+aa ,'<la'au i'"al:+aa aa'0/+aa u+, c c aa+a: c a 0'+5RK>iaa.Ks,=<Oah O!v Ravl)j FOIt.DKaAI'CF 5I5,KI fa'ROC K 55.Du/4 NSASCO SKIIYlCKS IIICOAPOIIA i KCI s~.~+-~ISiC't t Qkfsf f col aajotust'5 coty)ROI PQh A h z 5e f+rrX Rbasco Specification pesfga Specfffcstfon for hNRL Nuclear Safety Classes 1,2 L l and hNSI Nil.f Non-Nuclear Safety/Seisnfc Cstebory 1 and Sefsafcally Desfbned pfpfnb and Supports pfo]ect Identification No.Chk 58+21 CPERA, IhlG TEMP=RATU RI*or)CID)nbiI~AL (t40 Blk&)ogA>>If I g PCLuI: II.9xocp GEN Cg I'IIDI, j>>COIIkt Ag~Rfa.Q'SIIKQA I)II ILIIIIos}(s)coLl I PEPSI)IIP-<Qrw.uP I S>>~~>"'~'"P I-+CNlkg I (i),i'I,IS)

IC'W j I I T'4'TEM.,I)ISN:o>>ES>>., 4 G>>E,E,4/ig E'V'EAT~CCwm~ii LI'mOC UU V0'601!~tIQ'75 (i CZk (CIB./)o I m.m I'75'~b I.r~~~I}I I~I JF QPN ss Hd xx 2A 28 I la!S I cs)(s)j I ii ALIBI///o (s)~99/Di)I I<>I/Pl!/II'o'h/>'ISDCgl I I g 8'S%;anb ALII}I.N%PKS'/Im8 AA5I~S'PS~~jPI<~ZC I~gg ICZC, 1%I~>>I I I a P%p~;/&I AC}I I j I I I j I I I I AÃf I ANS: IllrIS'j&1 WAS: Ariel, Wg Am::/j/}1@

~NOTE 5: Ci 0~w g I)CI~>>Ch Lo~>>o Ch 0~ih 0 I~I 4 4>>C C 0 I 0~M'0 C 0 DD C 44 CL CL I 0 CL CL~h C DD CC 44 CI~>>~o>>0 Ch CE&0 C C.~Ch C CD W 0 DC 4>>0~4>>M I>>4>>0 Ih~I 8 0~I Ch 4)C 0 0 DD~o C 0~4~>>0>>M I C+~/I'0 C:~>>I/I I I>>I)0~~0 IL CAR'DU."lA P"'IP." U:Ht COI>.PANY SHW)O.'4 III>>'...I'C::AR F IAII M,',Il>>I}O)f A i>>4'g yge Ir IjgtuA I O':P~o 3~DC>>O>>i 4.II I il I}Tjf TIDAL 6 (0}COO'V~>>r.0$>>>>4~i'~~>E.F'04ITIOH'DLOZL.ALL>(Igggg'I y30jy311vg:

V j y:v.'I I I I I I I I I I SEE W'CS PO++K+I>>0 CF PRQCC.SS Dm6~II IO LOA8CO SLIC"I 6 I'LGOIII>>C}I}ITS:D 04ii~'6'I'5.Kt I CflFLIICAL

'kII)SIE Q30j~APPEHOIX 8 QKP>>k C~7 L.'Twomo (10j (4 Biles), c~~x R>IPEL (IRI~g+~g0bllll-Q(CgeII.RPi&llC C'-Ccap SuurOO!TN g+~4<".+)IA!!DC'A!IC g~/QR0IRI.+M%5~PI.h NT-Diseur~S~STXhI uPI~OPRRKKG CPRZ<T!Nb INr 0VIIIV,~,~~~ac OoKIRATING I I'EQUIP""%ATUIRK F)NOTES:~I V g V D.V V>>UI d&em VW!0 K D~IJ>>0!e~st>>4+!4 V ID e>>4 V d D D 00 X g~8 C g 4X>>D~1t V g g>>d>>>>00>>~I II~0 e>>TI V VVI>>Q'V V V%V g>>UI 0!Tl U R4 00 0>>V UTI II II V~lt>>>>0!D X~I L7 X>>TI CAROUNA PON" P 5 LICHT COMPANY SHIARON HARRIS NVClfAR POWfl P;ANI Cd:e<V~i.OPT'V4 LVE PO OS T IO4R GT I~Z!Ci!!i noiRO: C=R tw OTCR>.l4!0 4 O'PA.~md 0 1 3 f0 aQlg.P!III~5'LIT C COT I~r'!!ease V'.V V Y'iV!w IV IV 5RQ SII5>>fhI CLQ4, OI~dtM po a ORTS I<s oF s~5.6!I TTOIIIS.I+5 1'0: f6asCO SKRVI$$IhCORFORATCO

~I TM~$1 STC'r 1 QQCRR<C4L VOC!IRIC SOPOL Ebasco Specification Design Specification for 5+Nuclear Safety Classea 1,2&3 and ANSl B3].lÃon-Nuclear Safety/Seismic

~~~~ory 1 and Seismically Designed Piping and Supporta Pro5cct Identification No.CAR-SH-M-71 THERMAL MODES OF OPERATION CVCS NOTES')~9~ahovn unlesa othervise noted.2)AMB denotes: Ambient 3)When CBD is not tn use, f~pevatye ES hNB 4)One pump operation.

Other pump{a)are prcssurised downstream at discharge check valve(a).130 P is maximum ailovab?e temp.5)Dovnstrcas of butterfly TCV'a>of 39 4 55 yields 46 to Chiller Surge Tank.6)During dilution, flov is straight through.During boration, flov is through branch.7)Mix)ng 92 vater from Moderatiag HX vith asia CVCS letdovn flov of 115 yields 104{est.)8)Mixing 250 vater from Letdova Reheat RK (T.S.)vith 293 main CVCS letdovn flov yields 280 (eat)~9)Similar to aote 7, vith 96, yields 106 (eat.).10)One valve normally open.hll three closed for RHRS Purification and txccaa T.et d ovn.Chemical Mixing Tank used intermittently for PH control, and for oxygen control during startup from cold position.This tank is aot necessarily used during Borate mode.12)Dilution Mode of Reactor Makeup Mater System may also operate it this time.Relevant points affected are as follovs: Valves V20&V19 are open There ia an additional Alternate Dilute Mode, vbere valve V22 ia 110 115 120 also open, alloving vater to flov to chargiag Pump suction header.Io other conditioas are effected.13)Borate Mode of Reactor Makeup Mater System may also operate at this time.Relevant points affected arc as follovs: Valves V23 and V22 are open.SS 8 Q n'n'li0'4) hutomatic Mode of Reactor Makeup Pater System may also operate at this time.Relevant points affected are as follovs: Valves V20, V22, V23, are opea.SS)(9/U 75 120 95 110)The highest Qn:Ferpfgyg t5, listed, and cxistaat initiation of this mode.When normal lctdovn line not available.

Flov through excess letdovn line may bc directed to RCDT..During startup, excess letdovn line may be used, vitb flov to RCDT, to supplement main letdovn flov.Conditions for flov to RCDT during pover operation are imilar except vhere noted.8-12a.

Xbasco Speci ficatfen n Specification for ARSE.Nuclear Safety Classes3 and ANSI h3].1 Son-Nuclear Safety/Sefsmic C gory I and Sefsxfcally Designed tfping and Supports Pr o)ect identification No.CAR-SH-M-71

'THERMAL MQDES OF OPERATION CVCS 17)Tee.f rctMrcs at these points differ as follovs: CVCS Purification 3QQ 300 300 f29 429 b c p Heatup 380 380 380 466 466 18)Aux Spray lfne may operate at this time.130 charging vater vill mfx vfth aain spray bleed bypass line from RCS.19)For Aux Spray line only (see Note 18).for Atl.Charging line,dc~pgreq f,s Avb.~~l I a.gyes 20)Charging lfne may b'e used at any tfme at operator preference.

Shen fn use, V2 opens, V10 closes, and condftfons are the same as charging line conditions.

Pt CC vill then see RCS conditfons.

Refer to Thermal Modes of Operation for RHRS&SIS for details in this area.Upstream of valve V7 fs 300.Charging pump header 500.DoMnstream of suction line check valve to pump auction is 300.24)To charging lfne check valve IRC, 25)To first fsolat fon valves.Plant Condition Emergency, System Condition-Emergency 26)Plant Condition-Normal; System Condition-Upset 27)Plant Condition-Faulted; System Conditfon-Faulted 28)Plant Condition-Faulted; System Condition-Normal 29)Plant Condition-Normal;

'System Condition-Emergency g>>VS VG 4~AH-SO AM-C3 AH-lg X-NNS IX X-NNS AH-29 IX-SA AH-2C I A-SA AH-IC I A-SA AH-IS 1A-SA AH-IS 1A-SA IB-SA AH-I7 I-9AM CII IAUT h CH UNITA (rrp)s AH-27 1A SA AH-S 1A-SA AH-20 1A-SA AH-7 1A-SA (Trr)A AM-2y IX SA AH 12 IA-SA 1b-Sb AM II 1A-SA AH-IO IA-SA AH.2S IA-SA AM-5 1A.SA AH-IS 1A.SA AH-E IA-SA CHILLED WATE.R POILU'ONDENSER CHILL EH WC-2 IA-SA CHEMIC AL ADDITIOII TANK 1Y-NNS LOSE D EXPANSION TANK IA-SA AIR ELIHINATOR FD~>~TR i)LINES DESIGNATED Ag A" ARE AT CARP.R1LINLS DE'%IIIIIATED AS'B;ARE AT hh'F.S)THE A8OVE tEMPE RATG6 TALL ISE USE P FOFIPlt PIANTPPER ATIN6 COHOI'TIONS.

h)OPERAT INO GOt4DIT 5 VITE dONFIRNIED VIA N O PROD HfAC IAATEO I.-T8.SEE FILE M-II 5)THIS IS Alt MVAC SYSTEM I)VlXEllONE TWINISAT SIND-HI TNE FLUIDIARY TIEACII ANIBIEIIT OONPITIOIIS.

'I)PIPIII&BEYOND THIS POINT ISTEMPORAR)!

8)AII UMES ARE AIWAYS FULL OF WIITE R.e)EEF.'CIL8~-We gb 409SOE OPE N R 2~+OPEN R S+'U O SO2.OPEIt g 2 IO)ONLY ONE TRAN OPE RATE 5 T A'TIME 5A V'I VB ESASCO SPECIFICATION DESIGN SPECIF ICATIIRI POR ANSI NUCLEAR SAFETY CIASSES 1,2 Cs 3 AND ANSI b31.1 NQI-NUCIZAR SAPETTISEISNIC CATECORT I AND SEISHICALLT DESICNED PIPING AND SUPPORTS PROJECT IDENTIFICATION NO, CAR SN H II Rl I CSASCO SNSIVICCS INCOIIP OltATmI'THEIEl1RL NODE.S CHll.LEP WATER SIJPPLY (RETURN APPENDIX

%rr 1%~tr"~~5~o~~~)U~rA Jfi.Aa.~~~L44%%RHhi'A'irlA"A.

~a h Vl VZ IIEET (vrI)a TRAIN~CHILLER AND PUMP ARRANGEMENT.

QTt)SEE TRAIK A SHEETS AII-20 AH-7 AH-'t 18-Sb 15-55 18.SB AH-27 IB-Sb AH-2 18-5 AH-5 18-SB AH-l2 AH-IS AH-25 iA-SA IA-SA IX-SB 18-SA 18-Sb AH-2 AH-2$1B-SB 1E-Sb AH.I7 I-Vl-5 AH-IC 15-$8 AH-IS 18-S~y C AC.Vl VZ,Vy Vi Oem IV Qvtr~v/jVg

~O AH-C 18-Sb D Ak-II ib-SB AH-III 1B-SB AH-8 18-Sb AH-10 iB-S~NOTE 7 V3 Vi SSASCO STICITICATIQI BASICS SITCITICATICN

~ASSI SIÃISIA SAITIT CIA5515 l,l 4 S N ASSI Sll.l%$WCIAAA SATSITISSISNC CAIICOAT I ASS tll5KICAILT ISSICSTS'TITISC AIO SCITCSTS~NVICT IDCSTITICATBS

~C, CAS SS&Tl Sl RSAOCO SKlhtICES INCOITPOIIATml THERHAI.~CHILL%1 WATER, SuRPa gaeTVR,51 NVEilPIx 8

~4~~85 55 gg K R KK~aLSL'ahP

~a k'I r~~r~4 RHW 58+I~i)~~~k~IJ~I SEE RSKl

'<C-v'<'"<<v2 lv 3<v~v3}dos+<"'333" v'v<<Wf<}<FC+Q<<IV 53 M<V fi}r PCW3}T Sf STEROL}p P~+T In<<ID,<3223 C}of%a~NIS EVK<<v 1;T~v'DC~C OPKI2a;ItuG<EHPORA7U!2K o plQ A/oRHAL gfISI 2//'Mid/'L HORHII L~I}r222~i I I CP IO5&8 I le I2&2.5 Not'ESI I2WS'TIIE PD gnome S p~(E~I3T'4)

A!3 A45}ALII}oSED o Spy KH>g THE QQR~" Ae e~d</Ž~~~ALL}li]05 EfM 4 I+I et.gL/S m%695~%'~XS Cnfy F'Fok 4 11%&Ql'R%~areIIIa>t'-+~<<ŽA"~g~gSSET~E2ATuRG I~+TART-I II/OZHRL II/ORH<2IL l05 I}IIIZI<III L}f25 Ify5 API8 I 2,2 I 27 IZI/i&4 I}&I2 4 i!4o!25 S MV TPOlVA/0/IRS QPRPfig L il4 4}IV 5 127<<<<<J L i9H~N 20 HR5 NDRHAL I<45 1<2~<3 2fk<<l<<v~43><25:<<2=.REFOELIH~

j i I I i~+'~'~l~f

/}/ORBAL I~g i}IORHRL ll2.<I r.I SAFE%!FRIILTED IP,7ECTIOII/

g,~!2D}~<4~y i PCS'T j<'FRVLTED RCQDE~A'RAI4L ll I a lu~R'IF'.i/P5ET gprsr~a~'--a%IM~" ace~EKRa.BI}g!r@8gl'%.

Il0',~zz v,:;!@AL3 C<<IES J 2<O'3<}2<<3: 'T AL,<T eacH L~lŽI ro,<<5~<25 SS'zf2I M~2'$s~sl'e ale iEPKR6.j'<<3 2<<<<'2L}4~IZ7 24t.IOI tidy AL I i I lqel IzLI 2<2<<<3<I ls: I<5:/<32.<2~0'u<<,0=}:'3~us YGig<3 t'J4LVK tu<C<03~308 C e<-C~~tatt~'COSgn.

~<" VV<V}V,'V'V

V<V iV'Y 1 i Qg SI<<S.gg 30'<P<~a'k

><<<}: d~h<aeco Specification neafgn Specification for f<u<c<%Nuclear Safety Cloaca l,2 g 3 aud ANSI b3I.I Non-Nuclear Sefetylgefenfc Category I and Seianically neafgned piping and Suppotta F OR.23gThll.e<

CO+AS: F5'pancakes.nwe NI dyIIt-2}Ã-f32-(8 Q,-S20 O-ggl;pJ~v I Pro]ect Identification-S-ll-yl gfvaSCO SEI}3<}CES 132COI<<3032AT< 9~nt Hlf+m3K j~~THERMAL HOKQ Coif po22}e'AI r cool-iaof Af Paint 5~f-Z 8 I 2<<K<el i r'Lt I.I~~'r'I(".2.g"0C'4Q.'"CSI I OIIJi II4+CCrICj~ 0'00~IrC~IrO+IIV ID0jjCjrjO 0'~Pl ANT'a.h V'2'iYSTK0jl CI<V T:OPC~WG OOMPH.ICIS 0'-N'I~=gr~Vu'mIa T 0 OPKRATIHG AA BsCC DD EE FF.EMP-:R j3T0 II!E QDP)66 HH zT.No IIHII c.Rfc%o03 START uP lIIIIRNat. NakHac':i~II5 o5 22 0 l2o 5 l05:Zl Ios I3 le I IO 05-IO5 hlgf ES-SHT.I SIIIITDOW 4'ISIIoTbOILIH i 2OIIaS~'IS eS O10DC iCCII y'.~C PAL'uF PO'SC Y ION y I v nl IREFIIEV h4$4$E TP t ,'zmcpe IPON lA(Cliff I3f I F ('.t.W of Paul%T'Ta~~II~~EM BlER5EKfl!I l9'5 g5 l22 5 ZZ-I o6 Io]y)!,~l go I 5'OHb'45 i'g()I r I0'n%IIV CC3 I I I I 5 I22J III 5 I I I I g5'Qadi I I!05 ICCS 5IC5I I&;~L0'OI l llS~iiQ.I05i~i@l~lg'.I I I~'I.g l QVIatVWa'CC N 7 C 0 CORNBALL'I CIQMQ)V IV,VVV I I IS I2L.IC5'S IS H5!IISI IS IID.U U V CI V CL V U~CO UC~p K V U IO V~00 X p'VUW CO~W%~t VCU V CO V'D l4 U~g C g I D~~li w U 8 II~v Haaw~v rc VI UUCO~t H Q'U KZ,O CO CO rc la D p D U 004 00 VrI V~v rc I38~LI U~I Isr I p I I~I U~I'~a D I3 SC%Sll 5 I CI I FLOW Qlr'Uakk~I FOa te OILS OF S'CUTt0 I PROC@'SS Qw5 SEE, 5IITi I IXIVI KbA5CA)Sf IIVICCS IICCDIIPCRATED VIV25H 5O ii8~a'I 5~E'N~EPHIIC HobEI'0 h>~poaesu Conc.i~war eomx ala I Ca.adit~S'TSTEN1'yCIe!T io>~~q~D,~< Odab~ll IV~I appa NORMAI-I oV Re TANv P QldlleD3II ~+MRS.LL!o'f3 105 n3 OPERA: IhlG Ve NN PP 9CI>8 (cS l45 to5$45 lo5 TEHPC RATU!3K F)NOTES: PH07le~Po HC5 RE~1-!o5~i I4 20 i'NPosT Atb u&S c4 Pause ,.554eu 0 ne m gS iA-IILanPIILQM~E MEAiEKQJ'>UPXIJBF I l , 5Ãt f00 800 I A%Q'CVS V V v!v:v v$OCIIO~va'.IV CW>A l aaa'4 1vK po sl T104~c<MRI':.tan caossoa~I Ie 4 0 4 0 0 4 V 0 4 m Vl M 0 Q VII De C 4~e In~w da 4 C~e v1 an 4 0 Ie II Ce~an 4 Dd~4 V~g 4 g aeK Dd 0~V g g~40 DI m Cl~~III 4~4 de In v van De De Q'0 K.Kg vl an 0 C v I44~w 4~4 CV 08"-L g 4 0~ee&I IR e3.$~ae'd a,dH D 51~~l F'Olt, PEfA II S CF O'IS~El e Dddaaad.DWd~ S1IT.I',Oj~IO,'DASCO SCRVI IHCORIIOAATCD ~n I." 44 W>STCII'L VlrsRHac,~bE5 COPfPeuEuf'ab3 id@.APPEHQlK;5 Vae I D'5

Q~s I.VALVES LI, Vg, Vq, Vg ARE jVORHhCLV CLOSEb.2.bulIwo cH&tlchL AhblTloll~ Qlh7QR A44ls~lovglI cNEPtICAL AQQIYloAI Tl<k-3.bE>4 ou7CET TEHPFNA]%$ AR4 fHEZAHE 4HAI RHR pu~f IS WTOJVOh'7I~ ~g, RHBIF47s~'~l2O'r ace'~zi5'F leo~lre r'Iyo-lgo'F 5.7FePHnfuiCS bueiOc~4 FNuT:~:OPS 2 ITS=c~?/HS 24NS-" RllPs~3/AP~3]/pip~gb5 l/s=4.8444pf/C'9 K PtQE t)$IIV4 TIIdSN lTSH$QI yyNg$/5 g)g(gH~)c.c.PPoOuC E THE~ST CdhlSFRVrSriVS AKSuc.VS (ueaSTQAE SATE).'7 ACA IHRltHATi&, uAIC4$$4e75b HAS foal dTWIJNfb F/'lFSTIAlgNotlSE C I4E ACT$05+I~8.RGB'RfPCf bPA4ANQ'SANO JAN'SAuhg Mlgfflr+graCf FP4 OI44RA'HS'AR 2lb5-4e-SI0 g>O g?I il I~55 ~~~4 WE~~~~~P r~ PLANT EVENT CS~'TEST<ac AvsoN OPLIIAti I b c p a'I 1 QPERATIkKi K L YEM~RCLTQ+f PF)lCFRS I-HhL,VE: pPgy~W~Awe ILES~+VhOCCL044S lFTKR VR IS tPfHE'P g-W~va tt%~~II SuCTIlIII g~HTHC ReST 0-aiNS tSE~PuRIW TNS OPRQTtHQ IOOK'0 Ot NCNNALLY~C~~1VIMLV CLOSED tl Vg.v3 V5 VC ll7 V V V V V S005Ce SfOQSKAaea ~~~eau ensaamrn VaevaS 5EE 515TRIA f~D~AH I>~V IAIIIg QQ.)QOlt HAgrIIL ZJNVFf KL Vggl DNT~LL M SV%TOIVI S g~sni~A~~tl/ba 4~aa (we~~/pe g~s~TINAAc.Rop~soA ahgt~NS e 9~8 ll je f lb (n (II g.pro]act Identification Nn.CAR SH-N-71 Pfg GFhl I j Vl I V4 y5 I I I g)pe H>u N$I v7I TG hAI THEhfllL lVIaeaS wYPx.cAt vow 3coopS Ebasco Spec if ication Deign Specification for gQ~T.Nuc1ear Ciasses F 2 6 3 and hNSY baal.l Non-Nuclear Safety Seiaeic Category I and Seisraically Designed Piping and Supports-LA 10 VA TAG n..Vl-Fw'24)V?75V28 V?F'W'5~FH(I5 V9-I'~F6)F7(F8 VQ-FVI V)OZ>V'103(Vl VS-W F9,FIO)Fll Y(n FW VIZ'IZ')VIZ5 V7-FHI V'33)V Z'I).VZ5 VZ.Sc ~LANT'f VI AIT~LA>>IT OPtILAT IN I HYbIIb vaaT SCS~'S-IOO%I~~ILIA L UPSET Q$3RS TO II%5~435~%as~>>IF OI a,m>I~a TEMPtRCTLJRE H)HoTCS I.Pggyee OF BtINB FhCWI.V-7ypTHE PEIIpTRATIoN ZS TO Sa a~~~~~Tan OPEMTl&~g-~LUGS ARBCLDSEP bE~ZSO'F~POSITk)H SPKCIFKP IS~%Ilgwu VALVE~5ITIQH q-MITIAL VALVE AS z.q as,evm~mPES. S-NOF~Steew a~Qe IIbIIIAALLY ~pe NOIb>>I ALLr CU7$tb C C c e o 0 V V V V V IIFE5at fl~5E'E SYSTEM FLCW OIAGRAM gSCo SftafI~~~NLIL'~+QQSTQ4SE5 rbII bETA>>LL OP SYSTt1h y.c4-Qt.+>~a Hams oF la!wrrauw 0 L.~555555>>WS 5~M>>555>>5>>>> tJ"*V'm~~~c~X~~~rai e'W~~~~KAXH FOCAL CCI STOLPAF TANKS 142.A L(21 Des f gni Spec if f cation f or fthbX?uclear Safety Classes 1,2 6 3 and AÃ51 h31.1 For.-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Pro)ect identification No.CAR-SH-N-71 oject identification CAR-SH-M-71 0%~Rl 0~~~0~FUS~CXL.f Pe Sll Tta~S>ca puNP8~/Flare PZESEL GE~RAToR, A OI,GAEL 1A tiFqE,RAT~ QAY TAHN,S TO/FADE PygSpl GENER.ATOR 8~ir YE.6R~CH Att1OVRR Ke~CO SERV)CKS!NCORPORATKO ThKRNAL NONg F OPE~ATZO FOCAL OZL, S'fSTEQ A,PPEMIOiX b H PLANT EVRNT LoSS&SF-4N tLAllT OPRAkT<TEM~R4TLJQQ PF)HOT%5'.10 QW L let+VALVE POSTS t HORMal.LY~o~MWLV CLOQ+)V V SE.E 5~M f~D~~OCTAllL Of%Y%TOI4~Specie~~a~aa~~W~~g.jse~~eav y ASasWDPra~ar~ pgpyecr~p&ireolV Hb CQ-St-H-7l THBlltllO~~OO Ofttl~Cga.SYS~ V2 (rrp FoR s)LO.yi~NAZN sT~.igaoea err))STN GE,N 5 VZ (ryp FOR 5)Y3 L.O.VI PD~Q RELIEF Sil.eVCeafe) COQR lATXOM'TO>i-rm-v},vz~v> YZ-HS.Rl vuaug,l5 V3-~S-PS lqc20 V0-HS-VB)Vg STN GEM C V2 C.8.i R.A.B.WvP roR s)1..0.y)5Q.AVE.FECOPVHP TVR8lMC r UILBIHI: Ebasco SpecificaHon Design Specification for ANENT.Nuclear Safety Classes 1,2&3 and ANSI B31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports I..O;Pro)ect Identification No.CAR-SH-N<<l 1 3~i~<8l%%l%5555SREEREESEE 5586meaillilMMSMS .CÃMIIklESSSIMEEM ~~~~~5FRCQMRRRSCEkiSWliSMES IRSESE59~35mmaRSMEMMMS 5MIRRERRH5RRSEMiSkSRMM 5HIE5ÃLH.-AEI$ ~3MREMRERSM>5 l&%%55$$kNRlkNkEESE IHIRHiESESE5i5$ ENiEiES IRHRNRINNIS)ISSIIE CQACERRR3RBESREERMCRERERERRRES D~%F%~RKRK~~~~~~~~W g~"%P%AF%P%&%%%%%%%% a g~~FilWFRF%MWWWWWWWH 'fi".i%Fi%MF%MMMMMMMMMW Hfdf~.)RFSFSFQF%88WMMWWWMW QMi~ERNRKRWWWWWMWWW& ~U~WWWWWWWWWWWWW D~WWWWWWWMWWWWW Ci~WWWWWWESWWWWWW

JW ger ,

C~p 1gr os C K V V5~~t r~rt'RPU P1tweQa~p cegtER V2..b PAESSt:Rtlf g 3P R2 I y'iPI~L~HA@FoLb r a A I'EEASCO SPECIPICATION DESIGN SPECIPICATION POR ANSI NDCIXAR SAPEIT CIASSES 1,2 4 3 AND ANSI b31.1 N(N-NUCIEAR SAPETT/SEISNIC CATEGORY I AND SEISNICAILT DESIGNED PIPING AND SQPPORIS PSOJECI IDENTIPICATION NO.CAR-SN4-PI Ir ,\RI~t tt i~i~p~ 4~$f-$3jj{j"'~'1))+Y.j.'f+P~O-Q+q-g-'l)IHRRseseiiiieeH18eem ~1-88818811 ggggag pygmy, g~RS~~~WWIMSM MS I/HRkU~WWWMWW~WM MMW ms wM'~4 I y~L., MH TL5T CVCS 5I We'll DER ec pE Bb I TRC iORC I AA AA 85 Bb L.C.eVOa)VOO>A To SILL K5 CL.LOOF I WC%CA LQIP 5 OCR CA LINIS IIIX VII K K T.OIRCC I%.IIR H IIII h RSCIRCOCOTIIOI ~ILL I I I I g5 IRREHAL CIItsIPL 4 1CJ IR QSP I TO IICL IIL LOOP b 1C'5 II LOOI'X1C r tl JV M VE H VIO Qllh PVH CssnI'Fo 1 QIIR POH LIST NET VIE OAIO ea PIOIOS (dP)ESASCO SFECIFICATIIRI DESICN SFECIFICATIQI FOR ANSI NUCLEAR SAFEIT CIASSES 1,2 A 3 AND ANSI b3lal IKEI-NUCLEAR SAFEIT/SEISNIC CAIEGORT I AND SEISNICALLT DESICNED PIPING AND SUPPORTS PROJECI IDENTIFICATION NO, CAR-SN+-Il CAROUNA POWIR 8 LQHI COMPANY R II Rl Wf Fo THSKFVIL WORKS f%SIOLIAL ikhT OVAL.$ISA':E~ZlQKCTIEoI gC a 'Cg LOOP I HoT l4lg lOul RSCI ALv~'I<yal XRC i ORC I J Vll I Ill JSLTmal'I SN I PI'F V'kE gK g p Ll~lA Vlb R1IR HX OL ga s LODE SN~Pli'ON s VIO I I D V I I E go V 19 V l9 RHR HX V 19 VIO RCfsNL lOOPS H VI7 S L OOP~ILHII euwP h I I I I 1 H I I Vlb Q L L-.-I ESAsco stbcltfCliiINI DESICN SPECIFICATIINI FOR ANSI NDCLKAR SAFEIT CIASSES 1 IE b 3 AND ANSI b31 I NON NUCILAR SAFEIT/SEISHIC CLTECORT I AND SEISHICALLT DKSICNED FIPINC AND SUFFOETS CAROLINA POV>.'R a UCHT muECT IDENTIFICATION SHIAEOH HAER>S NgQIA'R PIANO.CAR SN N TI RI RSASOO ONSTVICCS DKXX~IEATSD THER~AelrS$ÃCQehe HthT PEAFavhE.Scurvy&Wm "vvc!~v co C)Pm+TIP4Cs '-..TENPERATU gE HII ggRQ otal jOS3 AJ&ehC R.4g nag'?g~+~G:f)sin

~44 A~Pv gNT otse4r.'5'FSvTKH I*o~c ncOpK@tB AHB a Z ka PHg AYB//5/30 o P/b5 AHB/65 bS'65/C5/b~NOTES: I+ir'P5 HRC 2 I sso:/<5 I aol P/c5 i/LNjaf OC.~~g'.Fnv CWP~fcvlvof~P(f'.I fgEj~f&kR f/o C aLAT4j)IV0PH l f.+0k'APL I QIEPfgL i lRjgC i Bi/v/co los~!4o Nt SQ~~/5o I fol AP/I Cn/8 sos~2 I Ao.y~o')'//<'/5 I~I a~I//~g R+b/ZS-'Z/IS/IHa~~b AH c A!I~a.~o!ovvo 26o:wrote Iso 2vlo t'ai.'

C c I AHg, 8 too,sir<<rotaL CAIIr)LI<A PD'Foll%U"!HT COjjoANY SEC=4 HE..:.I."f'Ajj P.Vl!!PjARI~s.t4~Qwouarcejg jw&cc R j~<g j 9 y(Oj5c~g T'y E y 3 V4 c V j V(v y 5 0 jj!jg.>A.eY G?94 V>tewCK?OOjTIOnl~GO&Rl jALje CLOS'CQ>~@seto SpeclHcation Ijesfgn Specification for Kcc?.ijuclear Safety Classes I,g g 3 and ANSI h3l.l Non-Nuclear Safety/Seisnic Category I and Seisnicslly Ijesfgned piping and Supports.Pro)act Identification /go, CAR Sg-If ll~g~S.C~CtOW 0j!MRA4I s'ooe.jojiT!elj.4 o.=5E bc 4<oeocc eowe-o I ESAfjc)SIR'Iicpng \no.oRPcjR~ro 9 I: Jooc'.L~~cecr&gS~cbE O'I fM 7//R/g~.Iq,,=coo, 1 tc~Ff 3..5 ~r..u~L ru>a'g (N~<%0 J Q5+$%&5>MflklW c tF@4clhfp+4c 4.f DE5tQN STRESS COMSHATIDidS DUE TO SIQtAThMDDUS COseDITIDNS VRKLHT tft%55LIRE 'le 5%E 5$%OTHSA 5YSTItut CONIHTIOidS 9 5~Z g$Z pf O gz~.3 0.6 Z:t s.0 K fl Q C I Rc~4 g I lj IR JQ io+Vp~ii gh I."it II)4~p~)gty I-o cC V PORTE OPEIUITIOII bDIIyIAL TK TA WP OI DI DA bNQ CDW WH aV TESTIIidl SSK FhuLTEty UPSET PWLTEP aJz Jl l t15LS FdtIL~g SR+LOCA FAULTEII FAVLTEP PlULTEP lJ J'k 5%+~aeLTEO z J J gJ J SSE+HSLb FAOLTEP PIPE IEIPTIIAE FOuf.VIP NA l l J~ye~DgfQDE CDsffIDNPIEPff OtffrdgE VNThiI%III' 99~h Rf 4@V g~g~~IHIATeH It FDII FINITE 9-3 Sbssco peti f catioo Desi a MSSV mRE55~INWMS SYSTHh~6EH5UITDA hrWSONI APPINDIX F Smriti<Specification for IHSXÃuclear Safety Classes I~I S 3 aad ASSI Sll~I Son-Ãuclear Safety/Seisaic Catetory I end Seisaically Desisned tipfoS sad Suyports yHccyacr zyd~bncenosr e).~R.sff.h-7I a~AC~ DESIOIN STRESS COMSfkTIOlfS OIIt TO Slnttn.TP4ROUS CONDITIONS 1%ESSI/EE I/f SSa OTHER SYSTEM COfCDITIOMS... )8 0 8~RR D is 1)p-g Cf g ting)p 4 Pt I ai sf 0 ul gi 9)g H 1 my Dy l p5~J 45 I-tr d 4 R.0 X g ai o$FOREIGN OPEIVIT1 DII IIORy1AL TE TA<<T FD OI OW DZ Da ffsIC Csm RY LD P5T Fy TESTIIIfI~SL FddfLTEP HSLb FSSfL~QS%<UXII FSNjLTNI 5QL+Lf3CII FOUL'TOP Q SSE+M5Lh HQL~UF$4iT RlULZEP Pluf.&Q.FAR TKP.Ffklf.TF.P RIVLT/1P 8%5~C 8 J 9/J JZ g J J'SS'E+PALS FAOLTEP Ebaseo Specf tfcatfon Dcsffn Spcefffcatfon for CNSX Euelear Safety glasses 1,2 4 3 and AKS1$31.1 IIon-IIuc)ear Safety/Scfsnfe Cctefory 1 and Sefsnfeally DesfSncd yfpfnS and Supports prof@et ldcntfffcstfon IIo.Chn-SH-II 71 DESIGN STRESS COIChtNKAbHS SYcsTEhh wtstK6hs~DIX F WKZl~ DESI'rR!ss C Did5 bLII TD%lihLLTAIMu5 CObtDITIOhll TILER Id'aagbuLt gbt OTNIA SYSTIkL COSIIMIObI5 NbiLHQ.NODAL TESTIIlfg HD~AI-T%5T R Iw WIo SIS IIT PD J J u OZ DI DA vj I-Z c" o$PsT'I$x LOCA'IUL~QOLTfsP UPAS Ut4$7 FALILTEP ping~4 J Jz J J@SLY FdgdLVIP)j,55E+uXII FdLL~~~~7$St I LOCA FALA~~7FP 8'k~+~monte SSE+VCL5 FhUL.8LlIP J d/J J J J J g I g Ebaseo Specification Design Specification for KSX ltuelear Safety Classes 1,2 i 3 and aÃSI b31.1 Non-Nuclear Safety/Sefsaic Category I and Seisaieally Desfgned piping and Supports pro)act Identification No.cab-sg-II-)L TKSGH STRESS CONhtHh1lNJS SYSTEM WASTE LIOIIIP~DIX F~KLhkL Ebasco Specification Design Specification for AHSXNuclear Safety Classes 2&3 and ANSI B31.1 Non-Nuclear Safety/Seismic tegory I and Seismically Designed Piping and Supports Project Identification No.CAR-SH M-71 APPENDIX C ContainmentB<<lding Displacement CO."T.BL1>G.CYLI.0?ALL DISPLACEMENT DUE TO LOCA DATA: DISPLACEMENTS IN CYLI.WALL AND DONE DUE TO LOCA PRESSURE 45 PSI AND TEMP.RADIAL DIRECTION Elevation Pressure Temp.*Total Ft 45.0 PSI LONGITUDIN>.L DIRECIIOX+ Pressure Temp+Total 45.0 PSI 216.0 226.0 246.0 276.0 286.0 306.0 326.0 356.0 376.0 0.000 0.138 0.543.0.626 0.654 0.000 0.037 0.219 0.220 0.000 0.175 0.762 0.846 0.678.0.217 0.656 0.612 0.612 0.217 0.215 0.214 0.895 0.873 0.827 0.826 0.217 0.871 0.000 0.040 0.135 0.330 0.405 0.566 0.724 0.948 1.097 0.298 0.86: 0.363 1.087 0.460 1.408 0.525 1.622 0.000 0.0 0.063 0.103 0.105 0.240 0.201 0.531 0.234 0.639 ADDITIONAL DISP.(POINT TO SPHERE CENTER)404.0 419.0 435.0 0.613 0.613 0.613 0.215 0.215 0.215 0.828 0.828 0.828*THE TMP.DISPQCEMENTS INDICATED ARE DUE TO NORMAL OPERATING TEMPERATURE (90 OUTSIDE AND 120 INSIDE): THE DISPLACEMENTS DUE TO THE LINER INTERACTION ARE NOT INCORPORATED ~BUT THESE EFFECTS ARE NOT SIGNIFICANT. ~THE LONGITtVINAL DISPLACVKNTS OP THE INSIDE AND OUTSIDE FACES ARE DIFFERENT: THE DATA LISTED IN THIS TABLE ARE AVERAGE DISPLACEM&TS ~

Reference:

Calculation by M.Patel checked by J.Shen 10/24/77 (C-H Dept.)Ebasco Specification and AhSI B31.1 Non Nuc Category I and Seismic Pro5ec t Iden ti f ication Ko.CAR-SH-M-71 Design Specification for$}fSZNuclear Safety Classes 1, 2 6 3 lear Safety/Seismic ally Designed Piping and Supports Rl CO:~T.BLDG.CYJ.I~MhLLDISP. DUE TO TEST PRESSURE DATA: Elevation Fr.DISPLACE??ENTS IN VALI.MALL AND DO>K DUE TO TEST PRESSURE 51.75 PSI AND AXllOSPHERIC TENP.(SLOWER)RADIAL DIRECTION**LONGITUDINAL DIRECT: Pressure TEMP.*Total Pressure 51.75 PSI.Temp.*Total 216.0 226.0 246.0 276.0 286.0 306.0 326.0 356.0 376.0 0.0 0.159 0.624 0.720 0.752 0.780 0.754 0.704 0.704 0.0 0.025 0.132 0.147 0.146 0.145 0.145 0.145 0.145 0.0 0.184 0.756 0.867 0.898 0.925 0.899 0.849 0.849 0.0 0.046 0.155 0.380 0.466 0.651 0.833 1.090 1.262 0.0 0.042 0.070 0.134 0.156 0.199 0.242 0.0 0.088 0.225 0.514 0.622 0.85 1.075 0.350 1.612 0.307 1.397 ADDITIONAL DISPLACE?'KNT (POINT TO SPHERE CENTER)404.0 419.0 435.0 0.705 0.705 0.705 0.143 0.143 0.143 0.848 0.848 0.848*THE TPP.DISPLACPAENTS INDICATED ARE DUE TO ATHOSPHERIC TEHP OF 90 F (SAG'tER)ON BOTH SIDES OF MALL.THE LONGITUDINAL DISPLACEHENTS OF THE INSIDE AND OUTSIDE FACES ARE DIFFERENT:.THE DATA LISTED IN THIS TABLE ARE AVERAGE DISPLACEHEHTS.

Reference:

Calculation by M.Patel checked by J-Shen 10/24/77 (C-H Dept.)Ebasco Spec if ication Design Specification for SX, Nuclear Safety Classes 1, 2 h 3 and ANSI B31.1 Non-Nuclear Safety/Seismic ~~~Category I and Seismically Designed Piping and Supports Project Identification No.CAR-SH-M-71 1 Y m!oholn.P glBDVBA TO~!L Ll"8, CNo;g CLICNT~OOOJ OCT 1977-7tt ei-Ch 9)h,GOO Ei Qt:7.5 OUOttCT C IC&ttT~~Or O'CFTo OOo I.t~~~'s':~'t~'t~I~Qo A%a z t~o COME...AHO.3-hTA l DfsPf.hcKlAKHTs LN cYf.?.wALL Ahl~Pea To YKsT PREssuRE.sf.7s PsE'.'-!ATNO&PHEFLfC TSMf'.C>UMBER)Wo'~~~.BLEVATIOhl -'--2 15.0 TBlvf P.TOTA1.OFO..00.a.o.RADIAL DIRECTION PRE5SUFVi. OoO TEMP.l4)ice I-OiO.0 0++LAIC 1TUDI N AL 5 l F='.226,.g.'.: 24Cu.O 0,1.51 O.a 2A 0 025 de I'ol 2 0.184-0.755 0.040 Oe I55 a.O42 0.08-OeO'70 0 225 2 7lO.O'0.720 0 147 O.8G7 O.380 O.154 0 514'I ug C Wtl 4 M N V oio OO w 4 4J tA V 0 w w IO 0 4 M V 4 V u4C V OO g W+fE m~8 C 0 0 4 W~Cl~otl 8 8~4 wr4t0+4m'teal WwQ'0+w 4 0 U 0 e V CM o.0 cn cit 0 C 0 V OO&OO ew V 4 ee4u C8-u'26G.b.0.752" 50G d 0.780 0 f4&di 149'.S'fs*'e'f25 0.4GG 0 Co5f 0.15G O.G2-t L I 0 f'f1 0 85 4 V~Ft w w A Too I CX V I&CA , 520.0"'SG.O..'574.0 0 764 0.704 0704 0 f45 0 146 Oe f46 O.S'f'l 0 84'f 0 64'f 0.893 lF 0'fO fe2G2 O.'242 f.C75 0 307 r 1.3'17..0 350.I.Gf" I~~~~aJ ta~~~e oo~oo oot J)8 OOITIONAl hlSPLACEMK14 -(POINQ To SPHERE CKHTKR)s, 1 I I t I+~I~I'.!.o I:.404.0 0.7OS 4 fR TO 0.705 4%6 0 0.705 O.far o 848 a.f43 a 848, O 14@O.Sab oo~~~w I~m oo~~~~~L~o o~~wl e o~~~~~+~~~0 o p TH<TEMP.!OIOPLACKMKNlS fHf)ICATKb AR:-P tK ATMOSPHERIC TEMP OF f0 F.(SLfMMKR)0&i'DTH SlDB5 0F WAf-f~Le44T uÃrfl g gC tg Cg grVy OT 6 g It&f gg g+P OC'4C'I~ht-rCLC'ur ~lyf.DW 4Zfrr4 I'tI'Tnt'S Theta/aZ PTF.P:.':~ORW Nl OCT 7 ll Qg~~gggr Ebasco Specification Design Specification for ANSX Nuclear Safety Classes 1, 2&3 and ANSI B31.1 Non-Nuclear Safety/Seismic ategory I and Seismically Designed Piping and Supports 0 ro)ect Identification No.CAR-SH-M-71 APPENDIX H Piping Supports Load Combinations ecr..)tcsr aAIHT I 04DIHCI.CO+pl)I+@)IS loAO.Cob FBI hIATIONS fOR C LASS g, AH@3'Pl plh)6 SV PPORT5 ill I)rI)ll n 0 V IP o o 2 0 V 2'g CP 0 2>+Ir it 0 v4 n I-4 u Ceee)teste)r LI e)b,~Ct$5IIabb~.~I)-, Zy~I v t:+ew~a-'h...h~T 0 P PQ ePv Q'2 i%EST 7%.5T 0'IIOCh)h)LQRHAL.Ie)~III I-ee)+I~eg ir)t-Ir)y I iq U ql eel 0 U I~4 t I r)~W j<v 4 5 Io 7 6 g IO II l2 l3 I)pg+T eUp5+T I etta A I v II<IhuLT ED'Q ramrCD I~Il I ei..I I JQ I6 I'1 IS l9 0p I'".U)'SET.ya516)b foeMCI)ere)T SYSrf it Tb W)e 4K e t)~.'o.'S g ul)LP>>1)-2 g v2v 2 i 0 I.al oral)i 0 0 i I-,I rt.gTt.Te Ta I]'-" i~I a"Lr%-i Iit b)$L+~IC<<T OIIC f Dbf Il..II-7', e()e-'tr ei'a)~t')--g 4v ,.", It.lr.I+'I-'a r)t ii~'<<~.ve3~~.~*PI3~>IŽ-'I l~."-~n~Pa)~0 v e-I eeeeee rau 0<0ee~e r W v 4 I g, If~~Ve g.ti)IO i-'i;i-I)- J Ve~0 te eh%@vs)ter f+re<<Ivy OIX)g, e I$lV'I V'4, e V'V', lyly)'i TVVI/V v".v IV yri~y I&I~'V'I~IV~0~~Vy'IV eV, J~l'u+<I ilr'I~f 0 lg g/, V'IV V I<v'gv[)Ve< ~~ee<<e+: 'RE,STQfllll4T LohDS PUC To VARIOUS PiaC LOAD Co)ADIT)ot)Q 0 (Z P et eb I><i%a)a C 0 c~I-1 o oa)I eiw0 T0 0 C<4g~I Q V)S~""l L v L a)Nte V vIO Y,$A0 I<<Qe QP~t VE5)aug ItNl ClltC')heal.I)E SI~I.I.I;eCIIV).o)IOC Oq)ling ZIIVIRbtj)ILIIIIIL I Oel+)Ecl)e)(jht)%HE III,>R<<ITAS4ns).V Z~St I.Fame Xl r4-I:8 LNlll5 VE5+g~r<ttIt1 D<r)teer~rr~SI)ALI S): rlreretrt n~i.y e'r<<lie~))SCAN eN t CCae.tr~revere)OrreCR t Ohr)5 Hler rr hec onerV Crrrhe~rr rrr I'pnfcrf Srcitr5 1 b Nato')ra vA C)rb 4~Sl)rPa9T P<'"r~ill)g f Illrre)I il~HI.all).rl'.P>+egrh7+f.PIILWt~1)I'H THE ltES gp T>WI.H r ll).Il)lr~fig pnw>lrt~f)'lrTP CPt)re)r" err;OC T'>P~'"$>>-I+.Cfear).~rewr re+0 rS rerC)I+er I)Ebasco Specification Design Specification for AISX.Nuclear Safety Classes 1,2&3 and ANSI B31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Project Identification No.CAR-SH-M-71 , CAROLS MA POWER/LIGO CO.OM fJ M*RIZI$MOOLIIR PROO((7-~'.--O-I"odd!Plj COMdlkAI(OHS LOAD COMB j NATjohlS FOR C,LASS t AND 3 PIPll40 SUPPORTS~.I ie.cd%.tH pot~oo.~..icoO ~SeV~tjSC-6$ Q sade GHCOed dO~C 0>OII~I-2 7 0 L 0 V 0 I 0 l.V Z 0 I I-z 7 0 U Z Q V L a'0 0 Z r 7 0 0 II UPSET CEQGM TEST TEST IIslulaL IINHIL UPSET UPSET I l.sf 5.6 7 NRI t4>9 (0 II l2 I5 A KTE j4'5 (6 l7.i'hljL1ED CO Idl C LS C ISSN IN+5uet~e~t~I I.$s~I)Og Zy r 0 L D OI~l r L h I r~I r 0 00I)>I TP tQ iTdgTP.i I TA Vj CddNClt(rl 5 Y STLII TC dIP IIC cZ'~~GS o iZ xi'~a al g OaD RKSTRQIS4t LoaDS Duc To vaRlouS Plos L CosIDITIOQQ ~IIIICII'5 OOT CIIT I Obt I OLC rl kl (~os (I>I Nip)4 i 4$0>w P+04',I jb I)A Jqi 1 I Z~ZAN 0 II OI I I e~I Lg/LE~0 V 0 J~III-I gd-q Vj a-i)V OIj rll OI o.I Ili r}5 I Q l.1 4 I IJ IS~Or z g I 0 is Z i oI 0 00 C 0 I r I.zv~tv gjv v'>>P v.C 1-4 ld 1 ol z l)o I I.C 0 Iv)J C)z<<uj X 0 v'~v'u VPU v M VIIC I a)5daRSEII c0A0<OR ANT I mhP<<rl tIIPOf aS 04hltll II 0 selptrr SNAIL ht IlldOPVlrgI CIN Idl/Nrhlo Shsl 5 410 II IlmIIAIIIIC SNuAIIIRS rlIPPAg.IIIIiACT i oily oldl+SHALL IIC CdoOSIItO.CCQ ~WIIIllCR OOIg.d$L SulICO po Tlr.l.II 0cR Sllsrhlooc o A0IAIG rC ltd Pl rOa PIECIladr'-al-tlCLL vothi, 50A0 C INITIAL OIWP SIISTAIIICD) llalL bb Cood510CILCD ~@c,IIPI'llhT OE SItIIWA"IWI.L Olttol.4<<+-;TTIIIIT Pr hu lD~P t'I 1 mine.L4<<P': a'~q~),;ISg IIIc, orI III g r lid II',I l~fF.~9 If I 11 rll Ij,RtCIIIII'T I, Q I'III I'I rH II)c4TPIIPT P.I~INC'4 Ihll 4CrIIIIIIT I hler Illy E fJ lol: Ic Oil~I Ebasco Specification Design Specification for 4)SI.Nuclear Safety Classes 1,2 6 3 and hNSI B31.1 Non-Nuclear Safety/Seislbic Category I and SeisLIically Designed Piping and Supports I T I ll"I",I II'I'I"I': I IPAII I I lll C iITI lf lll'1 NII III I i I.1 oI-.I l TII51'PIN PI l",II gT I:r IIII'IT~, II" II'lhll.l<<I CI o~II Pro]ect Identification No.CAR-SH-M-71 ..-..cx~otrNA 7owrzlucmurca <<04 StAPlRtS htUCL$AR P<ozgcT~cover RA)I4T LOQDle4$f,Otrt tffg~rOqg~C~S(QSC PIKE kore p IP fo CroCCCC0 H~~ku r~E'l~ISC11L CsruC,rkt Llu+PCCSSVI~~7 0 I s Q f I O.OAD Ihfg ou-9 Q COrwcrsCvr SrSlsll Tc 4rrr I'"~cc 2 I D.~2 Z ff'8L.I g 2.I'f I 2~vZV otr gKS.T Rhf l4 ah troCCH'Ll y+rC,rf Ili)oiT l OADS DUC TO VAflIOL2$PIW L CORDI T IONA rR t 0 I-0 0 LI l-rP'Z p A SI L 0~0-r>4 t ecol 0 C>>l<<I 2 ll 2 v rs z5 05'DlIC I~S Cl 2~SO V 0I V~o 1 IP I sr~0-t finalJ~V rh 0 0 0 pl Id 0 VI j 0 I-g 7 v1.0 A 0 I" DO O0 OC 22 5Ls O C<>IC C T, a yf fI0+3.iv ou'+fg>ro+s c.I~.I I I k.o g holi'I 2ut~~ol~Cr c+duo 44'?-i r.ggc.>>C2>>)4h 2<-0 LI a>>cV o 2l.or 2C ftr oo u 7 hvt Qt 2 0 i.t 0 I O V 0 vc 4 v~c 2o'O o l2 r~Tp'Q'Ts iTs Itl 4 2 C C O I Is ISof ktv ksrr W'Vfg sft,lrls sit 5 fore roiisrm P sPC~rthrrrSIR IICarf SSlylh'PILI 1 trf.SfGN t A.ST g IIOKNAL$ltPsf.r d UPSET if.bT l C o.try~fok m0IAP.Lr.CnltrP.'tran>Kof rL V I>>rhrlrhsrLtf) r,clo2S~f 2'v'v" IIOASIAl.~UPMT (HLflQ flitL1tQ TnplhrhL l+%or.JrrL/Stre vhflslrf I SPRrue VhuCoctt~~42~rl I.W<v)I t gt li Tv Q LHOCS hIL Iffy P I W.soot~l.r htrb 1t<C fhrfLCC b f Lku1 rorrlb n Is ercCPf flIL POST OLhvl.fr I~C Rq+.SWt C'mOtfrrefS OP'tlrf.syhvCNI 5rrtf~s I ff1 1IIK.Stfsltc"I~PILrrJIL Phrs f R, ttr CCSrCiIJ SlrCCILO 4E I I I h S 1ct rr rrrrr~rlr~kf L trr C Iorfrfrnar S serf fPL<<PILIrrrr rrhWoL IC 5lfQQ f I I L C tr.v..l I scrlrh.ro T 1IC IIPKhrci LCAfsS Wf ffN2I2l aerrahcrrJCo Iri.Mulu hhkrokaILltP Lrrefs spt crkf Lb htkC SNl.f..yg t+WTAmCD r0rrLIL l~CssrpfrbhrS I o~4J q lor I Vr sl I c hr I Ih 4I~I~,~OP I yS~lrsÃt;R<0 Hn'IP'I (f t I r'f f I!l~)I'VJ.s fttf'.F.-Pg<P)ol)Glrive Elf Ohtgt(l'V'.:I ClllPIT 86 T'Isf I ht ttti.f'Irlf.'T hf f tpI AQHf I(IV&~If'l>cTgP.q glhf.,9NPhPT PE.t rtl" JAilt.fill<.ffM g.cp~lf't g)PCOft h'I tlt.tf, ENV!rtshl-t ttTfil.CCeR5 h'T if+0 TAGI'LJINI fht:lV Jr.a I t'IIlflf t 1'ltlff ft Ill-"f ltt Ebasco Specification Design Specification for/NSX.Nuclear Safety Classes 1,2&3 and hHSI B31.1 Non-Nuclear Safety/Seisfoic Category I and Seisfiically Designed Piping and Supports Pro)ect Identification No.CAR-SH-M-71 LOAD COMBlNATION5 FOR Cl.h~S'fl AND 3 PIPIN6 SVPtsORTS I~.CANNOLI GAIA I LI~i't tC q LIISHI LLF.~" I.AAOI4 IIAHIZIS hIUCLQQQ pROfrCf~RItt'IIAII4T LohblsIfI Lohl~t.grIoAIS ~r Stv g~-bKQ oilt 9-1'p-76 I CRtt+~O Or LOAD COMBINATIONS FOR CLASS I.AND 3 PIPIuo SUPPORTS FOR tFMII'rIALSrtrtIAS I-'7 0 0 DC Z Q~~II-Z 0 v v Z Q I-0 r u,f 4 Ir 0 I-4 1 0 V I-g t iIAULTKO IIOAMAL.L'f St'f OLSI 0 lv'I@ST 4CAMAL UPSt.'f 0 r, 1 0 4 V I CetPICIDt,lt T LIFIQ PRC$5ut E,S"IZ".t V I, o Pgiq if<<c I Tt" Vh gl J~II 0 t T V Fl v PU g, D.lJI~v oe o.P I rl n)5%RIFI o III L1 I AAf t'I 12 5 lil l~l6 17 I6 Y fAUL tEF~l I I!If oi o IL 19 20 Zl 7~T 1 lt Id e le;I-tl Vl VI'7 I g A I~o.1:I.r 4 I)&II r J SI p g~v rl I to.'I Z'QV UI vI~v g~II ColPIClmayf SYSlLIA TCSIP I..'g~r 4 I dl I1 1 d8II SLY xi)I-l d I.7v Z I'4 I-'D olil$il~l TD'Tr<To!Tv I To I~.gJ I II'I!if I+ii~, Z LIIr l<<It"i OU 0 74 V~'f 4 II 0~t rrinit-1t;.~u 4+~os go+o<<J~TCV1 I CSC,, DtC QIL VD~pI ev 3'I I'Klo~l p~-4 p'0: p.si o.o 0 D)op+I r)t I)I IFFY V 1 I$Mi.r.!.ltV)III'<,v'Ifjv'f/, i.~j/lV.'IP I If la'v V I J I IV'I I UIF'[)U>v lgl V Ifl~~m I'f'vI'W.F'P r.'U'.If V.t.If...f V'tlat:V'.I. V llf LF IflVV',V"...If V'O'.V..Ifl~If'W'fP.V..'v'v'u'.y'f..u',V. If>3 Agama'+tv qo.,.<ZDI IN RKSTRIIPD4T LOAn5 buf TO VnRIOu5 Place LOADIIVQ COI3ZII T IOUS I 0'o d 0 I~~O'.I r I,.l t r J j1j RIB v(a a 0 I III T I-0 10 Y.$,;~I~b AISL-C gurahT oeateuOS L CRCCEJLhTE IL%IIIIIhIIIT KhPLohP 4 OT~II%IIVIRCHIIQPK ~LOhPOI hC%IIIGOH TIMI 1 IQThsseflGL IIES R zls%lÃghccolPITRIlt III IIIIII'SSl6'g ~hitot DC'IPArCFF. IAI.bLQB.SgttLRtriit Ionia FS Piet Iltlgil~If~SHIIV db AIPIlrt>4AL7+ff bvCtf Hc.f rCptfivFAP Fraot C4ADS HWC'DI A@a Oneir ATFFaa~IITIV PJtOPCQ btSIVS OC lb hbvaceir hL IIL Hl:LCI 501'rhea g'f~~Q.PN6 Nl~OH TIIE IKS gfJ1%SII tHE WI+T~flP5 PIT~~'fTheuCRNT T'relCNM~'~-VACUOar SuneaT OE'Sjl hCCouo TFW Rl j Ebasco Specification Design Specification for hl4$X Nuclear Safety Classes!lt2 b 3 and ANSI 831.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Pro]ect Identification No.CAR-SH-M-71 tletat e Stqu i t tetn ra>rr Sa ey i.~atnt~.l>tcr-"lpga.AROINT lt 0 ST PAID e~r S tVg~al s a v"~~~.ee>0>t Cr CO>NC>SS>t'T Q>NQ t CIISSlt tA.5 RcsTRhlt4T LoAo5 Duc To vnR!ous v!oa L CD'Sb!T IOWA r~1~Ul 7 loni.0,+T Co>at Ci5LU T 5Y STt,tA 7 C,r>IV I~'O Z 0~$Ir Mrl v tt, t:u,+I.vt.t.I-0 4~J al8iII o~ltri I 7~0 t I M Z Z v O 7 x$D I..!~a.Z 0 0 7 0 V I Z L It ohryt stat 0 0 0 ttj Z 0 vt$S>lrettt>t(at >ill e~eeeeex we>eee'ee>J e>e Ol v vaeI g>LIQ'ge v~~eg et ts etl'l'(t (tet~1~U~I I-t e g I.z tl 5 v ts zo 5 I eo~o v~t ate 5 ee e ILr'0 0%ao 7 v I-Z IL t(I I o~V 0 z 7 0 t 4 1 0'5HEiu l TEST Z l!OIIH+L ul SET".5j 5v 0 J 4 r 7~r e>~r lt ata j n.v ql v)V)'f'g)[lt if cQ VTA~0>y o et r el aUt art>V~J vv,vz I~t v+I atl~.Ui oial Ct tJee y>A C res 1r J~rt t vlv IslL ttc IhP@Stttttteae trtAO tor atty OyltAtttC t Vll(T AS tnt'(lrtrO ttCPteV St>ALL he C'OstPUIEEI ON P>ILLOtitrrtl ehrES boa tty Pr he.ic,;ttttlior.P.S tttty(AL tt4PAC T<>etio Ct>>>et y SE rOMStt LPr Sttt>SBCP a((t a.ASIWWCO 70 ytCI n v br a SIPS rh trett.L>COADIAIO ACT(lSiV W pIO.itirttr~y SNUbOL%5 TottaL LOt>0(trt>7tAI y,ttlt SUSTAtetCO) St>A!.g t>$, CouSIDEILE b yttF r>T vI ITIII J114[I cAI.CvLhTK'STILalMT DWP LC%,Ilr!It Rl IhtI IrnÃtlMf IIL~NTI+ttrl I IIE, ht".TrlltrlT A"l;.t>t>tra"I ~ELF)co!Irrf ftAXrl~<~1$P65 1!qH.:iuirfb I'T EST tt&HAL'ur>sI,T I I tV!.l..V'i I ll(t'<e Ihl O'I~&'.~rt U)I I/))8 lg>J~>I I~w nin~UI et e l~OQ I to II 12 l3 l4 15 l6 I'I 18 v.v I'ADLIED 19 20 21 C SurPIttT Vt.'I(Tt.SHtlri ACCIII)ttt t+XIII'ffE.GTS f't!IC T IQl C TgggtPt AlllI tlgLA oQ~Q 11F..'>T t1II!alf'brt-1r:L I II lirTJ 1ttIIHT lII 1'Ift A"..Ktw.K*)gee'ti~TO '.g tc.>IN Ebasco Specification Design Specification for QQ>Nuclear Safety Classes 1,2&3 and hHSI B31.1 Non-Nuclear Safety/Seist!tic Category I and Seismically Designed Piping and Supports'~Pro)ect Identification No.CAR-SH-M-71.ARIZ Iv.Nue!.SAR PROSER.n,le oitt tl asJ75<<ostb.<TT.CohtfttghriouS C<<ICarerr...O t....).~..t.oAO COMSI t4ATelONS FOft CLASS R ACRID 3 Pl Pleo 5uPPogW POD fSMHrrhL SYST csuoiiNA Potuosr guour eo.~oo osggsIROp) QAR~IS NIJCLQAR~<ogggg-~-"5~~<<<<t'.meuq covauzr!sus ~ol ee.Ch+2t954 o OO+esor.oo.AQO.swu-.o.~o-2s-ru.CosCCaaeeO E.R Je>/>I>Is LOAD OIE2IBI NATIONS FOR CLh55 f 4Ny 3 PIPIIJO SuPleORvS FOIE CSSENTI L SYSTKMS II)lo VI vs V VI 53 I-ss.<Vl p EEI J III J III I-'Z 0 V,~e VI EI 0.'7: ti<ET 0 I 0 1 0 V I-~x 5 I=L f, L 0 LQCh IJOIENAL UPSET lfxskXC3 FAULT(0 TK Sl'I.I-0 Es Il p E g EJ i DKer,ll NORMh UPsE'T YI5T 2 4 5 0 7 7 C 0 Es Cps~I:rector SYSIKIA rCMP I Ce SEIC record Ls EIL'P ec55ss\'e S cZ EC CC Zc')2 I O'lb S~I I CI I 7I s v sl~g os V el soe P IQLFL v IV IO~I ol~I~L~I-: v~I Es.Is IB I ol I-FI,.Q fe Tl I~w g 9 1 Te'9 RKSTRhrNT LOAOS relr.'o5'L vstgsrt l Obt!I>P IIC.I r c g I~I s.glI 3xx a 1r, nnEI'I-r v+>>4'x 0 1 0)qy ES EI~rl 0 0 0 I-y~I~ovb~oJ V t~l~lsA+V"y Ilier'I DUE ro VARIOU5 I IPE LohQIHQ Coelolrioub C g Q<I Es vs 0 EJ ES+'&I 0 w~s 1~k~vEs OC~O Vf i)Esiss r ro.~0 r~thos 4'EEI.I)'E g+o47~v WorosLgEo esswzx)i+g5V4s ES EO{Ivy bo tc re0+Dc jfg IV~o Vl v vlf%0 4'4 40<I 1~C os oo i~0 a gI-l o Ee R'r 0 0 el}I I V1 e]v 3~n~8u ul 0 rO yn I 3 Ill 0(LII se VII WNlL sou'6;oh vhksabr.f. SIXIroln IIAssssC<.$ OSVI Js f>I IICsIIICy hs2ls IAIII.lyO Ir AIII~Ilr N S IIPsrs gsyllsr Ae VVS KxCatr nlrb PDSIUI I'IPb 1IJPI sshb rONDI Te OF tire$7$Tfs+5vmIbFgo by Art.5JKI<9%45 II~M M'IOAI Gllhll'~SsÃII AS lo A~p-TE IIQ PIPf oCQT IOUS Porrs Slit fliFI 7 5rrppoar rlrt erbrchr rOaDS Iirrr lolly bpr Is~lo2ss ISLAM IPArlhblltl7 FJC rotssTAIIT 5pgNlg IIANGMS Q Orle Aerp IIE1N Vhl'Elhslrll FOIE Hlxrhblr$PJIIM IJA3JGKRS go.gt 51l PIltIRF Pt,5YII)g, ilnr I I:AI.Cul.hI L Kl:.Irrnl Ir DLAIJIOAP I Ebasco Specification Design Specification for AQSL Nuclear Safety Classes 1,2&3 and hNSI 831.1 Non-Nuclear Safety/Seisriic Category I snd Seisrrlically Designed Piping and Supports Project Identification No.CAR-SH-M-71 Rl'-I'T Pe'YiN1."HtlLL RCCoUe/T F gg F)IP R FRSTIOIl IITIII IIIIIJII WEhlf'OIItIIE' AsII5T g-'~EM~l'E9NIII DF IIIPC IIII Ar: HtelIT Q JII I hel I p)tIFF'S S%9I TIJRE AI.VsA~I crrl I lIII Rth IIIIIQM ld el.V V IC.tP Il~nlllll Fl1/f:Irl ZQ Illg PI: r~zl Ebasco Specification Design Specification for ANSI.Nuclear Safety Classes 2&3 and ANSI B31.1 Non-Nuclear Safety/Seismic ategory I and Seismically Designed Piping and Supports Prospect Identification No.CAR-SH-H-71 APPENDIX I PIPE SUPPORT DESIGN CRITERIA Ebasco Specification Design Specification for Ah~M Nuclear Safety Classes 1, 2 4 3 and ANSI B31.1 Non-Nuclear Safety/Sefsmic ategory I and Seismically Designed Pfpfng and Supports rogect Identiffcation No.CAR-SH>>M-71 Rl Support/Restratnt (S/R)design shall be based on the follovfng eight (8)equatfons (the components for each equatfon vfll be provided vith the stress analysis transmittals): Equation 1-Normal Operating Equation 2-Operating Basis Earthquake (OBE)Equation 3-Hurricane Equation 4-Pipe or Equipment Accident Equation 5-Tornado Equation Equation 6-Design Basis Earthquake (DBF or SSE)7-Pipe or Equipment Accident Plus Operating Basis Earthquake Equatfon 8-Pipe or Equipment Accident Plus Design Basfs Earthquake. ~c s ss Xi-Eba sco Speci f feat f on Design Specification for hNSXNuc?ear Safety Classea 1, 2 4 3 and ANSI b31.1 Non-Nuclear Safety/Seismic ategory I and Sefsmically Desfgned Piping and Supports RI roject Identification No.CAR-SH-M-71 1~DESIGÃEQUATIONS (Cont'8)Ihe allovable stresses for Ia5or structural components and the supplementary steel are tabulated belov based on section strength S.for structural steel, S fs the required section strength based on the elastic desfgn methods and allovable stresses defined in Part I of the AISC Specificatfon for the Design, fabrication i Erection of Structural Steel for buildings (1969)~@hen external loads such as restraint dead veight or thermal expansion are added to the piping loads, the support/restraint must meet these a 11 ovabl as.TAI.K l I uation No.ssent a ystem.on-.ssennrnsysren Flexure 7lexure 1~S le S 1~S 1 S I 7 I 1.33S 1 eSS 1.3S 1~S 1~S le S 1~S 1~S I I I 1,5S 1.3S le S 1~S I I I I Ibe increase in allovable stresses fn Table l.l is subject to the f el loving 1 imi tat iona:.01 Compressfve stress fn compression members is limited to 2/3 critical buckling stress eaxfmum in all cases as determined from the follovfng curve. CO 0 Kcn c'O LLI i 40CII O Critical Curve Yield St th CRC Column Strength Corm Euler Curve Appendix F Curve~2 xCRC Curve 3 Appendix XW-2%3.4 Equations@,55 iso AISC)Kq.S,B BUCKUNG CURVES FOR CENTRALLY LOADED COLUMNS CO+CO W I~CC A C+I~ww 0 w n OI o p cs e CO eO Oo O Y lA H t~A I A Dl CA f 0 WC 0 0 C 8 4k I n~l W (W 4 W Q 0 n 00 WC IO n 0 0 A 8 0 Ol~CON'Q M gl~ft Sl CnV A CLwg 0 Cll g C R 0 un'0 0 0 0 Ol O~O.O.ON 0.4 0.$0.8 1.0$.2'l.4 1.6 P~SI.SNDSRRKSS RATIO LASIBDA=-J+$.8 2.0 Ebasco Specification Design Specification for AN~Nuclear Safety Classea 1, 2 4 3 and hNSI b31.1 Non-Nuclear Safety/Seismic ategory I and Seismically Designed Piping and Supports Project Identification No, CAR-SH-M-71 Rl F 02 Material yield stress shall not be exceeded..03 Loads on bolts are limited to the normal allovable loads in the hISC Specificationi ~04 Loads on concrete expansion anchors shall be limited to a 4:1 factor of safety based on ultimate load.Selt drilling concrete type anchors are not used on this project 2 S/R DESIGN LOhDS~01 For stress-analysed linea the folloving load cases shall be used in the design of supports.ChSE NO~TITLE Sustained Load (Dead Weight)DESIGN E UhTION 42 51/52 101 103 501 502 Test Weight (Hydrostatic) Fluid Hammer OSE XYZ Inertial Response DSE XYZ Inertial Response Highest Positive Thermal (Normal Plant Condition) Highest Negative Thernal (Normal Plant Condition) 503 Highest Positive Thermal (Normal or Upset Condition) 504 505 Highest Negative Thermal or Upset Condition) ~Highest Positive Thermal Normal, Upset, Emergency Condition)(Normal (Tea't y or Faulted 6, 7~8506 Highest Negative Thermal (Test, Normal, Upset, Emergency or Faulted Condition) 6~7, 8 Ebasco Specification Design Specification for PQQT Nuclear Safety Classes 1, 2 4 3 and ANSI 531.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports ro)ect Identification No.CAR-SH-M-71 Rl S/R DESIGN LOADS (Cont'd)Desi n Equation~02 The load cases above are to be combined for Support/restraint design as f ollovs: Case No.S stem Condition Load Condition 510 Normal Largest of a.(501+41)or b.(502+41)520 530 540 Upset Emergency Faulted (Largest of a.(501+41)or b.(502+41)or c.(503+41)or d.(504+41)or e.(41)+OBE (I+D)t (largest of a, Fluid Hammer or b Relief Valve Discharge or any other system transients)a Same as Upset (520)plus the larger of combinations f.(505+41)or g.(506+41).Also use DEE in place of ObE.Same as Emergency (530)plus LOCh plus Jet Impingement 7, 8 ,'R1*Fluid Bsmmer/Relief Valve Discharge Loads may be combined vith OSE loads by square root of the sum of the squares (SRSS)method if required The design loads for supports are Case No.510-Normal, 520-Upset, 530-Emergency, and 540-Faulted. When the computer-analyzed case 510, 520, 530, or 540 is not available, the equivalent load combinatior. shalg be manually generated. When the case numbers from the stress analysis output are not the same as listed here, the equivalent load cases and load combination shall be used. Kbacco Specification Decign Specification for WSiLNuclear Safety Classes 1, 2 4 3 and ANSI b31.1 Non-Nuclear Safety/Seismic ategory I and Seismically Designed Piping and Supports ro ject Identification No.QR-SH-M-71 Rl 2~.03~(')For supports on piping systems vithout a stress analysis, the folloving design loads shall be used.Except for plumbing.and drainage lines, vhich are not stress analyzed, these loads are subject to later verification against stress.analysis loads.a, 2" and Under Pipin Lateral and vertical restraints shall be decigned for the loads tabulated belov vhere MT is the dead veight of pipe filled vith vater TAbLE 2o1 LINE SIZE (Ih)1/2 4 under 3/4 1 1/4 1'1/2 DESICN LOAD FOR LATERAL RESTRAINT 1(Lbs)I 169 269 420 I I I I 585 842 1361 I I DESI CN LOAD FOR ERTI GAL RESTRAINT I 169+MT l2 69+ST I42~T'T l T I+~T I I I I I I 585+9'42+9 1361 The allovable support design streccec to be used vith these loads shall be those for hormal Operating Condition (Equation 1)as specified in Table I'.l.The maximum cpan length for each pipe size shall be as given in Table 2.4 and 2.S TAbLE 2,2 For anchorc on piping syctems vithout a strecc analysis, vhere piping on both cides of the anchor is seicmic, the loads in Table 24 chall be used.P1PE SIZE (in.)3/4 Fx, Fy C Fs (lbs)200 Nx, My C Hs (lbs-in.)1,600 400 3,200 1 1/4 600 4>800 1 1/2 1,000 8>000 1,SOO 16,000 Xbasco Specification Design Specfffcatfon for PIN&I.Nuclear Safety C?asses 2 C 3 and ANSI$31.1 Non-Nuclear Safety/Sefsmfc tegory I and Seismfcally Designed Pfping and Supports Profect ldentfffcatfon No.CAR"SH-H-71 2 S/R DESIGN LOADS (Gont'd)RI a: Cont'd Ihe above loads shall be considered as DhE loads, and the corresponding allovable stresses shel)be those for Equation 6 Table lola For anchors, the sfx components of forces and moments shall be applied simultaneously. b.2 1/2" and Lar er Pf fn-Loads to be used for the de shall be as shovn in Table sign of supports for 2 1/2" and larger piping 2.3.Ihese loads are considered to be DbE or Emergency condftfons. For vertical restraints, the vefght of the piping, and fts contents shall be calculated based on the vefght span method, and shall be added to the magnitude of the 1~terai restraint forces from Table 2 3.Ihe allovable support design stresses to be used vfth the above loads are those of Equation 6 in Table 1~X.Ihe maxfmum span length for each if pe site shall be as given in Table 24 and 2.S~ Ebasco Specification Design Specification for+5LNuc1ear Safety Classes 1, 2 4 3 and ANSI b31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supportsroject Identification No.CAR-SH-M-71 2~S/R DESIGN LOADS (ContDd)~03 (Coat'd)b.(Goat')R1 PIPE ZE--V2" PIPE~CH.I 40 2 Wg2 3 3, loo 1 500 COMBIhE&THERMAL 4 SEISMIC ANCHOR>>DBE FORCES LBS)MOMENTS TLORAL I C+Og++F~B BE 560 1 500 BO 1 2" 3%00 840 10 100 1 500 2,200 1 00 2 0200 36 900 5,000 40 80 1~340 1 800 3,000 3,000 9,400 12,500~1ARI 40 lo" 10" 0 6 0~4,200 8,000 10, 500 8,000 35,600 120000 18,000~~115, DDD 18,000 18,000~$18,000 80 40 8 80 12" 12" 14" le" 16" 23,000 15 000 23, 000 4,000 336000~i5i 236000 47~000 13 7,400 365, 600 9,ooo~6, tO 2670000 613 000 20" 20" 40 FD~5,000 496,000 40 24 4A 52,000 l,000 DMR~.il~f.750" Ps" 1.00" 30" 30" 90,000 116 000 1500000 h0000 15 0,000 158,000 1 04330000 l,ee$,000 I~~FORCES AND MOMENTS ARE CO%'ONENTS F~, P~P~H 0 M,C H zD yt sD+0 yD Ebaaco Specificatfon Design Specification for ANSI Nuclear Safety Classes 1, 2 4 3 and ANSI S31.1 Non-Nuclear Safety/Sefsafc Category I and Seismically Designed Piping and Supports roject Identffication No.CAR-SH-M-71 S/R DESIGN LOADS (Cont'd)~03 (Co'nt'd)c.Plumbin and Draina e Lfnes Rl Pipe-supports for plumbing and drainage lines shall be designed for the loads for lateral and vertfca1 restraints in Tables 2.4 and 2.5 below.Friction forces vfll not be applied.Loads tabulated herein are based on Pipe Sch.40.TABLE 2 4 LOADS FOR VERTICAL SUPPORTS PIPE MAX.AT OF PIPE SE IS HI C Dl FFKRENTIAL TOTAL DE SIGh SIZE SPAh (Ih,)I (FT)3/4 7 MITH MaTER (LSS)12 14 SEISNC COhDIT ION OBE FORCE f SEISMIC FORCE (LSS))OBE88.3G DSE 6G 34 4 57 114 I OAD (LSS)I 75 136 1 1/4 9 1 1/2 9 2 10 2 1/2 11 26 32 51 d7 OSE OBE OSE OBE DBE 180 120 142 284 320 640 16 10 15 30 26 12 222 162 208 43 I 79 3 12 4 14 6 17 d 19 I 10 12 23 130 228$35 950 1650 2346 490 OBE d30 1,660~2.000 40000 OBE OBE DSE ObE 5 500 38600~il'8 136 161 322 285 495 90 18408 659 2 024 20696 4~857 4,235 0 7,645 1 9640 18,~94 OSE 91 12,969~,ilY 14 25 3053 DBE I 18 22 8202 082 22,700 1,290 1291, ATT~ Ebasco Specification Design Speciffcatfon for AHSZ Nuclear Safety Classes 1, 2 4 3 and ANSI b31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Pfping and Supports o)ect Identiifcatfon '.CAR-SH-M-71 FR1CTION FORCES Rl Frfctfon forces shall be consfdered vhen the pipe can slfde against the support in the unrestrained direction. Friction loads in the unrestrained direction of the pipe shall be added to the design loads or load combinations fn the preceding paragraph 2 vhen the total movement of the pipe fn the unrestrained dfrectfon exceeds 1/16 inches.The frfctfon load fa each unrestrained dfrectfon shall be calculated as follovs: F~f1 V1 or f2 Vg vhfchever is greater Vhere: F~Frictfon reaction force~Coefficient of frfctfon for the surfaces fn sliding contact~For steel on steel"fl" shall be 0.6 for loads due to dead vefght and thermal force,"f2" shall be 0.30 for loads due to dead vefght, thermal~nd~dynamic event such as seismic V1~Dead Vefght and thermal load M2~Dead Veight, thermal load, OBE and occasional loads At points of support vhere excessive frfctfon cannot be tolerated, reduced friction slides may be used.Acceptable slide components are self lubricating bronze slide plates, as manufactured by, or equivalent to, Merriman Bros Inc Lubrite sli'de plates.h design coefficient of 0.15 shall be used'for this application. Ebssco Specification Design Specification for QNSXNuclear Safety Classea 1, 2&'3 and ANSI b31.1 Non-Nuclear Safety/Seismic ~~ategory I and Seislnically Designed Piping and Supports Project Identification No.CAR-SH-M-71 2.S/R DESICN LOADS (Cont'd)~03 (Cont'4)c.(Cont'4)TABLE 2,5 LOADS FOR HORIZONTAL RESTRAINTS Rl PIPE MAX.bGT OF PIPE SIZE SPAN t ARITH MATER SEISKC SEISHIC DIFFERENTIAL TOTAL DESIGN fORCE lSEISlGC FORCEl'OAD (IN~)l (FT)i~3/4 12 OBE OBE (LBS))CONDITION (LBS)lOBEi.3to (LbS)22 BEBB 6C 4 37 (LBS)821 1/2 2 10 2 1/2 ll 3 12 26 32 51 87 130 OBE~BE OBE DBE OBE DBE OBE 60 120 125 250 10 315 16 15 30 26 39 68 136 8~140 280 236 354 0M 12 I 23 14 25 16 27 6 17 8 19 10 22 228 535 950 1650 1 2346;, 3053 4301 OBE 540 1 8080 DBE OBE OBE 2 400 0 7 200 , 00 OBE 0 B~E ,800 , 00 OB~E 15,200 DBE~1,300 68 136 161 322 28 495 990'408 2,581 608 1 214 1 441 2.%22 5, 0 8, 190 404 11 08~816 8,890 17'81 Xbasco Specification Design Specification for ANZ.Nuclear Safety Classes , 2 4 3 and ANSI B31.1 Non-Nuclear Safety/Seismic ategory I and Sefsmically Designed Piping and Supports Pro)ect Identification No.CAR-SH-M-71 2 S/R DESIGN LOADS (Cont'd).03 (Cont'd)Rl c.<Co nt d)In addition to the loads given fn Tables 2s4 and 2.5, the effect of concentrated loads such as valves obtained by using the folloving factors multiplied by the veights of the concentrated loads shall be added.Effect of aoncentrated loads Vert~Real Su orts OBE DBE 3.3G 6.6G OBE 2.4G DBE 4 8G Horfxontal Restraints d.PLUMBING LINES IÃCONTAINMENT BUILDING For plumbing Ifnes fn the Containment Building Unit 1 vhich are supported against the columns, design loads for restraints shall be determined as described herein.These loads shall be used for 105 veils only.Design loads equals~F span+F dfspl+F conc+Valve/Pipe vt Valve/pipe is for vertfcal restraints only.~e components of the above design loads are gfven in Tables2.6 and 2.l belov.TAKE Z.6 SEISMIC SPAN FORCES (F SPAN)LBS LATERAL VERTICAL BQ B BE I>1 6 100 300 200 300 600 250 400 240 400 I I 640 I TABLE 2 sl SEISMIC FORES PER PIPE SIZE (LBS)OBE DBE3 I 30 45 30 90 lPIPE SIZE IVALVE/PIPE) BLDG REL~7h.X QI'G~5gJ F DI+P QGT C C BLDG REL ISP 60 63 42 126 84 l 6 80.120 I 80 240)160 Ebasco Specification Design Specification for.hN5I.Nuclear Safety Classes 1, 2 i 3 and ANSI$31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports roject Identification No.CAR-SH-M-71 Rl 4~SEISMIC/NON-SKIS>Q C INTERFACE ANCHORS Design loads for seismic/non-seismic interface anchors shall be obtained as follows: a.For Equation 1, DVs+DM s Or DVs+DV>>+THs+THQs Mhere the subscript s denotes the seismic portion and ns the non-seismic portion of the pipe.DV~Dead%eight TH~Ihermal Forces b, For Equation 2, D"s+Dgs+T"s+THns+3OIKs+2OLs+2SSDs%here OL~Occasional Loads SSD~Loads due to Seismic Displacements c.For Equation 6~D"'s+Dks+THs+THns+3DgEs+2OLs+2SSDs d.In addition to the design load criteria given in a.thru c.above, one of the following criteria must be met for seismic/non-seismic interface anchors: i-'lhe interface anchor will be designed to a bending moment moment that causes initial yielding in the pipe, ory ii-Two (2)two~ay restraints shall be designed on the;...non-seismic side of the, interface anchor. Ebasco Speciffcation Design Speciffcation for AHSLNuclear Safety Classes 1, 2 4 3 and ANSI I31.1 Non-Nuclear Safety/Seiamfc Category I and Seismically Designed Pfping and Supports reject Identfficatfon No.CAR-SH-M-71 Rl 5.STANDPQU)SUPPORT COMPONENTS Standard support components to be used must have thefr load capacfty data established by the manufacturers. No additional calculation to qualify the component standard parts is required unless the parts are used outside the scope covered by the load capacity data.SlJPPI.EMENTARY STEEL Supplementary steel and any structuraI parts that have to be qualified shall be designed in accordance ef th the AISC Specification for the Design, Fabrication and Erection of Structural steel for building.increase in the normal allovable stresses for the various design equations shall be in accordance vith paragraph I except that the deflection at the support points due to all load combinations of Equation 1 t Normal Operation)or Equation 2 (OBE)for frames supporting snubbers shall not exceed 1/32" in each restrained direction, and this deflection shall shall not exceed I/16" for all other frames, including anchors.7 QE1DED PIPE ATTAClkEhT ~01 Velded pipe attachments shall be analysed considering the~ttachments as structural members for load transfer, and for additional local stress coneentratfon they impose on the piping.The load combinations and the a]lovable stresses for the design analysts o'f the velded pipe attachments as structural members shall be a's defined in paragraphs 1 and 2.The local stress analysis of ASME Class I piping fs not fn the scope of this document.Hovever, for the purpose of support design only~the velded pipe attachments on ASME Class I piping shall be treated in the same manner as those for ASME Class 2 and 3 pipfng sub)act to later design verification of the pfping by~Class 1 analysis.for ASME Class 2 and 3 velded pipe attachments, the load combinations to be used in determining additional local stress concentration shall be as follovsf Code Equation S!P+DM Code Equation 9 (Upset): t+DM+ObE+OL Code Equation 1 (Emergency or Faulted)c P t DM+DbE+OLCode Equation 10 (Normal, Upset, Emergency or Faulted)!TH or TH+SSDe Code Equatfon 11 (Normal Upset, Emergency or Faulted): P+DM+(TH or TH+SSDe)eSSD is included fn Code Eq.10 or 11 only if it has been excluded from Code Eq 9. Ebasco Speci ffcatfen Design Specfficatfon fot~Nuclear Safety Classes 2 4 3 and ANSI 131.1 Non-Nuclear Safety/Sefsmfc gory I and Sefcmically Designed Piping and Supports Project Identification No.CAR-SH-M-71 7 VENDED PIPE ATTACHMENT (Cont'd)~01 (Cont'd)Rl%here Code Equations above are from AS'oiler and Pressure Vessel Code Section III paragraphs NC-3650 and ND-3650, and f~Frecsuti and DW, TH, ObE~DbE, OL, and SSD have been previously defined..02 The allowable strecces fot tbe total combined strecces from tbe existing pfpe ctrecces and the addftfonal local pipe streccec shall not exceed the folloving! Code Equation I!1.0 Sg Code.Equatfoa 9 (Upset)!1.2 Sg Code Equation 9 (Emergency ot Faulted)!1.6 SI, Code Equation 10 (Normal~Upcet~Emergency or Faulted)!SA 0 Code Equatfon 11 (Normal~Upset~Emergency or Faulted)!Sh+SA~03 The local strecces fn the piping due to velded pipe attachments shall be determined vbere applicable by the method given fn Veldfng Research Council Bulletin No.107 (MRC 107)~Nere MRC-107 is not applicable, other acceptable methods such ac finite.element analysis or other'onservative methods vftbin the state of tbe att may be employed.For Code Equation 8 or 9, only the primary stresses shall be considered. For Code Equatfoa 10 or 11'oth the primary and cecondary stresses shall be includedi Allowable stresses for velded pipe attachment velds to the piping are the same as those for the pipe itself at the point of attachment Piping equations given in Paragraph 7.02 must be satisfied for the velded pipe attachment velds.04 The acceptance cifteria fot tbe local strescec due to velded pipe~ttacbments are the same fot ASME Sectfon III paragraphs NC-3650 and ND-36SO, ie Code Equations 8, 9 and one of Code Equations 10 and 11 have to be satisfied 8 SPRING CONSTANT Spring constants shall be calculated for all AS)K Clacs 1 pipe cupports and shovn on the detafl drawings~Spring constants shall account for the combined stiffnesses of tbe component parts and ctructural framing in each restrained dfrectfon for each support. Ebasco Specification Design Specification for ANSLNuclear Safety Classes 1,2 4 3 and ANSI b3l.l Ron-Nuclear Safety/Seismic ategory I and Seismically Designed Piping and Supports Rl r object Identification No.CAR-SH-M 71 0 VELD DESIGN CRITERIA The ailovable veld stresses shall be in accordance vith AVS Dl.l, Sectioa 9-Design of Nev bridges, for open structural shapes and plates, and Section 10 Tubular Structures, for tubular structural sections.Ihe increases in a11ovable veld stresses for various design equations are as given in Table 1>>l except that ir all cases the shiraz stress at the base metal shall not exceed 0.55Fy>>For fillet velds using E70XX electrodes, the allovable veld stresses for Normal conditions are 18.32 XSI for ASIA A36 base metal and 21 L'SI for ASTM A500 Cr b base metal~Veld symbols to be shovn on the pipe support details shall be Sn~ccordauce vith American Velding Society Standard-A 28-68, Standard Velding Symbols, vith the exceptions listed belov>>The vord"typical" shall not be used vhere it creates ambiguity or confusion>> Ihe all-around symbol shall be used only vhea the all-around veld vithout~ny break ia contour caa be made>>Tne folloviag exceptions to AVS StAT~ard h 2>>0%8 vill be~lloved:~01 for skev T-)oint velds vith a dihedral a'ogle betveea 30 and 60~fillet veld symbol shove shall represent a partial penetration groove veld.Veld sixes shall be determined by subtracting 1/4" or 1/8" from the aa-velded groove)oint, as described be1ov Ihe effective throat of this partial penetration groove veld shall be assumed to be 1/4" less than the specif ieo gr oove dep'th f or d il edral angles betveea 30 aad 45~nd]/8" less for dihedral angles betveen 45'ad 60~~02 For a 90'-Joint betveea tvo unequal vidth square or rectangular tubular sections,~fillet veld symbol may be used on the curved portion of the larger tubular section provided the vioth ratio of the smaller section to the larger is not greater than 0>>8>> Kbssco Specification Design Specification for Al(S>Nuclear Safety Classes 1, 2 4 3 and ANSI 531.1 Non-Nuclear Safety/Seiseic Category I and Seismically Designed pipiag and Supports pro)ect Identification No.CAR-SH-M-71 10, EMBEDDED PLATE AND STRUCTURAL STEEL VERIFICATION Kmbedded plates Type 1 (fi" x 3/4 strip p?ate)and Type 2 (S" x 1" strip plate)shall be design verified as part of the support design calculation. The allo+able loads for each component for the above tvo (2)types of plates shall be as given in Table 10.1.The term"concentric attachment" means that the veld pattern)oining the structural attachment to the embedded plate is symmetrical about the longitudinal centerline of the embedded plate.Deviation from this symmetrical arrangement shall be vithin the tolerances given on Ebasco Drawing CAR-2168W6091, Zn Table 10.1 , x is the longitudinal direction, x is the transverse direction and y Xs the normal direction of the embedded plate The subscripts xa, ya and sa denote the allovable load for each of the corresponding component acting alone, Ti e total load interactior, shell satisfy the following relations Fx/Fxa+Fy/Fya+Fa/Faa+Mx/)lxa+fly/klya+kh/hsa g 1 Rien the interaction above cannot be satisfied, the design should be chatted vhere possiblei Nere the design cannot be cl anged and the interaction check fails, the footprint loads at the point of attache.ent shall be forvarded to Kt.asco Civil Design Kagineeriag for revie~and disposition. Ia all cases, footprint loads shall be shovn on the support detail dravings for final reviev of embedded plates by Kbasco Civil Design Engineering. Verification of support loads on structural steel and on embedded plates other than Types l and 2 shall be done by Ebasco Civil Design Engineering. 'Rl Ebasco Specification Design Specification for fiNS'r NucIear Safety Classea 1, 2 4 3 and ANSI b31.1 Non-Nuclear Safety(Seisaic Category I and Seismically Designed Piping and Supports Project Identification No.CAR-SH-M-71 10.EMBEDDED PLATE VERIFICATION (Cont'd)TAbLE 10 1 PLATE TYPE ALLOl" SLK LOAD (KIP, ZN)FIa Fya Mya N.a 1 (With Tolerance) I 5 i 5 I 5 I I I 13o2 13e2 2 (CON CEliTRI C ATTACQZliT) I 46+6 20,0 24+7 62o3 302i8 57.7 (With Tolerance) 40+4 12ol 247 55+0 302i8 49+5 Ebssco Specification Design Speciifcetion for RHK Nuclear Safety Classes l, 2 4 3 and ANSI 131.1 Non-Nuclear Safety(Sefsaic Category I and Seismfcally Designed Piping and Supports Rl ro)ect Identiftcatioa CAR-SB-M 71 IN-SERVICE INSPECTION In service inspection requirementsfor ASME Section III Class l 6 2 piping shall be in accordance vith Specifications I-30 and M30A.Support design shall provide access for the required in-service as indicated in Figure ll.l.FIGURE 11.1 CIRCUMFERENTIAL hELD CLEARANCE CRITERIA le i'll CREATER OF 2T+4" OR 6" K1N1KUK CREATER OF 2T+4" OR 6" K IN IKUH CREATER OF 2T+4" OR gate IOTXS: '1)Tntcrfcrencc such as pfpe hanger, pfpe vbip rcstrafnt, vali penetration, etc')rt spools of~trafght pipe rust bc provided betvecn fittings less than in dfs=ctcr.Also, no tvo velds in strafght pfpe should be closer together than the dfstance shova. 0 Kb o Specification D Specification for 4NSX Nuclear Safety Classes 1, 3 and ANSI$31.l Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Rl Project Identification No.CAR-SH-M-71 APPENDIX J Personnel Protection For 2"&Smaller Pipes Inside Containment (Up to 400 F) Speci f ication D Specification for AN~Nuclear Safety Classes 1, 3 and hNSI h31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports R1 Project Identification So.ChR-SH-M-71 The folloving criteria is to be applied to determine piping inside containment to be fitted vith personnel protections Only piping vhich is 2" or smaller and vithout insulation need be considered. 20 Maximum operating temperature of 140 F to 400 F.Per hPPENDIX D, Piping Line List, pipes up to 140 F do not require insulation, and therefore do not require personnel protection devices.30 Only piping vithin 7'-6" vertically and 3'-2" horisontally of areas vhere personnel are most likely to be (access platforms, valkvays, etc)need be considered. ased on the above criteria, the piping listed in this hppendix requires personnel'protection to the extent indicated herein.The corresponding veight of the personnel protection for each case can be determined from the folloving tables WEIGHT OF PERSONNEL PROTECTION , PIPE SIZE (in WEIGHT PER FOOT (lbs)1/2 3/4 1 1 1/2 2 1.5 1.55 1.6 1.7 1.8 Ebasco Specification Design Specification for AMSZ.Nuclear Safety Classaa 1 3 and ANSI 531.1 Son-Nuclear Safety/Seismic ry I and Seismically Designed Piping and Supports Project Identification Ho.CAR-SH-M-71 PMTzouS.0P,.PSPzs.Zd'~]R,h'.4 P6R)ONbei, co~6((N I.wg~: 1 3 ii-.dZ.-.J y SJ;~i-t1 ldsk..g>fi E,4~i.ii5 7csii$3 7ES<-.4~7d~>i-Po i Tos~fj$).i 7 Si ,7 Si.;.AS't..S>~ =5l:-l.'.. 7cs%.-~sz-,i.. ac 3 6it.i, 58 4.6U'$($-)4$-Jl gxTEN i&Pi'&SON4rI. PgOTBCTlop Sike/Il ON'fliEOT I-Ql~Sg lq l WOO P PP0~<<\g+J+, I I!it I P~PP 4'a~ee't..'/ ~.63(l.QSJi~4-d-6@.s~.!~.t~~aoOa=}a a-.qadi='i i.6M(L 2.-575 U..Au.'x~-.320.L. S'IL'i<.34.4 J.I.~+!~i t.~=zb=L Pb.tpzoiv5~ ~iPES,'Ã6quiRINj PERSOMN KL:PROT'(fliN 5'xTCHT oF.f~scheet,.FAUTE'Q'lkv ~>M be 9~ET'!M+-1 14~24.Z-.)4.t-:m is..rci'.e~>C.SM.3 ggM-8~7i53i 2bs.-.~ha4 25s-J4+2$S 2 SR)I..2c.sf~-S Sil.'-.i kc$J.5.'R¹t I 1 Qgi Z~l3'Hz.'~1 i i 1 e 6<(.g i'Vq~i.i-6wL2+So~i Ebasco Specification Des 5 pecif ication f or AHSXNuclear Safety Classes 1, and ANSI h31.1 Non-Nuclear Safety/Seismic Ca.ry I and Seismically Designed Piping and Supports Prospect Identification So.QR-SH-M-71 eo sc~~e'tr.P Lj~t Mo.7cs~]j-4'~'-I 7c>>/g.&r~k l 7cS 4-(B7-I)cd t-oc-l 76$l 47-I ,les)-4S-)ac~(-=-2-I 7CS j--'r-s)-~4-I PfEF..oM~>~4-/3S dd O~K 2 T6<P.l(0 7CS<.-CPS-)les~(4-08(o-)ac,'4-o87-)~~P'U)iii STAhtQPJP&(t'YP.'P t)PLRTF EL 28.&00.q.@LE.V.7c 5-D4-I 7C6;DS I VC5-0 8-I est-44-I 7C Si-41-l 7<Sl 49-)4+lg qJQ~Sc R'D CAP 7c si-N~-l 7CS!-5m~l 7Cs t-54-) 0 Kbasco Specification Design Specification for%~Nuclear Safety Classes 1,2 h 3 and ANSI 531.l Non-Nuclear Safety/Seismic C ry I and Seismically Designed Piping and Supports Project Identification No.CAR-SH-M-71 A/0 ScA4f P(t8'>zE 8)c")il 1&o CI Kbasco Specification Design Specification for QN5+Nuclear Safety Classes~~1 3 and ANSI b31.1 Son-Nuclear Safety/Seismic ry I and Seismically Designed Piping and Supports Project Identification No.CAR-SH-M-71 P(fe St?P L(qg Alp.YGeP (&o~phoo<4'(g p Vg Ebasco Specification De Specification for Cga.Nuclear Safety CIassas 1, and EST$31.l Non-Nuclear Safety/Seismic Cat ry I and Seismically Designed Piping and Supports Rl Pr o ject Identification No.ChR-SH-M 71 Ny scAkg>>PE ilXF (tt go 7cS~4-51-l 7cs I-g4.-l S Zc>w-Ic o-j]Egg g NQ~Oi (3&Ol~I 0 ko~o TGHP J&O gl D~r~/%g-b pe boa b g]t ly Jy)s (0 peal yf~g C+6 S'S.(Pq 7~4 Oi(a/ X5asco Specification Design Specification for PM5XNuclear Safety Classes 1, 3 and ANSI 531.1 Ron-Yuclear Safety/Seisatc C y y I and Seismically Designed Piping and Supports Pro)ect Identification No.CAR-SH-M-71 Pl P8'I XF Na sc~af~C'ou 0 YB+P.K-5 3x'i W8>.8'LL.sess-i)85~-l pZC 5re 5)2F>/y'rl I CI~E Mo.ZcS>y-t4t sv-I 2c5 2-97sg-i pcs I-cssss-j d'u cZ.'0 8 l5 o)P L-t t GAP.f50 rS Kbasco Speci f ication Design Specification for PgW Nuclear Safety Classes 6 3 and ANSI h31.1 Non-Nuclear Safety/Seismic gory I and Seismically Designed Piping and Supports Project Identification So.CAR-SH-M-ll No sc~au s sr'IXE 2">/g"'5/y"+i/g Lt~e'o.~~4!L2-52.4 l~~ciL~4-oooo-I bitt.>l4-leo (-l C'i/L>/y.f002-l ff EP.'+$~(O.4-l2'0 Z 5 g e7 V'GAP I7O~OOe p" Pl~).pl>e~+c~2p Ebasco Specification n Specification for ANSXHuclear Safety Classaa3 and ANSI h31.1 Son-Nuclear Safety/Seismic C gory I and Seismically Designed piping and Supports Project Identification Ho.CAR-SH-M-71 A/0 Scwkg s sir Slit I-lQC'd.g~~o.d'o~oeO re~p GAL Z-370-j 4-IKQ S'-9)70 Cvli-Rc OZ.-l~(u WL 2 570-I 5" PiPE ELEK Vl E.M! Ebasco Specification DeSpecification for Rg5LNuclear Safety Claaaea 1, and ANSI 531.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Pro)ect Identification No.CAR-SH-N-71 Pt P8'~ze~C'an 0 TEAR K-IS 2dO ELEV Vl E.W Ebasco Specification De Specification for QNSXHuclear Safety Classes 1 and ANSI h31.1 Ron-nuclear Safety/Seismic Ca ry I and Seismically Designed piping and Supports Pioject Identification No.CAR-SH-M 71 A/y Scabs pv rF SlWE g 2 2 LING<C Ilo.dw~2-i>as-i fv/~Z-l7<g-f<19LZ!7bO-I ML 2-325-l~W~O, 4-12)J7O Y-1Z C'0 OCQ~6M P.6~i G pii-sS l~-4'NL-9 25 l-l 4wL Z.525-l (CnMIL2-l'75s-I O g3/y C'~s C4/LZ-l75'0-I C ec-9fl&9-I S4-" Cwc-of!$0-l jc CE'K/P0~.~At Cow L2-525-I bwc-t 23z-l Gee)-lac o-I Ebasco Specification De n Specification for AJAX.Nuclear Safety Classes 1 3 and ANSI 131.1 Non-Nuclear Safety/Seismic C ry I and Seismically Designed Piping and Supports Pro)ect Identification No.CAR-SH-M-71 Ha sc~sg~ire StzE e 2" Q/N L(oe uo.guyed~(o,'-l29 V'GwP.20 0'Sc.R.Cai O'HL-D 242.l C)R OWL 1244.l t ux?cu~L 4-33).l oR t m~4%w s" PtP8-5x2 Res, SLL.JSO~FCQS ~s" g+sp J sTUVsps>IV's4II)II Els+EVERT slsTDM i O:,s'ID<I!DMDA ws DMD.5 K'ViN'T: qy~g~n'i'TODC MORHAt@ORBAL QtdORH4l.'Par4T&gg,>gal 5HOCGA)l 4.bt+-~@gELi+NlH4C.FA4c 7&au.Sit~MORHW C gOl84c, AJAtltJI c Sop pt@'<AHB g4)AHB~~QRg k 4COQFVT RbK~~g FPA,~OtPJAC.14OI/4h I~.CLED os%~~WgPfIIP4 TRI1~~AHB AHA 4 H8 OPERATING TEMPERA ERE AeB S5 nH 6'8/6 3>ABtaS o/Q Am s5 4W I~~~d alii EII8r 0 1'l'0 PH8 AQ 7&~88 PH8 08 B~OAVI~@lli~!EE'HAB Rd IEIIB 4V/go t-K Ng[ES: V V g V 0 V U V ws VI d EP V'U V Vww 50~s U~SI DS l0 V I5~s~I4 V VI ws I V U V g V 50 R w ss U~S~~4 ER rs 0 V~4 w U SS va ss sl gl ws~III V V VDDUI U VVI ssss 4~l U U'0~V USE~~f!8 ss U sl A~ss I C X V I'U 0'S IA I~I IP o~gogA Og.lr'Z", u.".HT COEPPANY 3',pe Hp.".,:$N'O.IAR POWE't PLA4<XR>>Li Y CPS'J4LIDPE.PO 0 a TLOH'E IIPZsiaili gIPggy)is CEPI00.OPE>~IG.'Vl Vg EVg I~lg~~I.'~3hnam<3+V Vg C C'v'Va'V9 V 101 VII'X T o o~o.n'0 0 0 V('n is Q 0 IDEE>WSIE4l FLOi D<A4 k~/FOR, bE, allA CF 5)5,EEwi PSQSSIs.swS 0 0 6.Tg, 1 l O.'IM 5~00 I j I O 0 0 0 O C 0 0 C 0 o o C o c C)KElAIECO SERVICE" INCOR.MRATCD.e~J5 wa/s+Pg D=.'IE>.'.5 SIT.l&~:5.~ I.IF&rle44E INST~f FI+T PA/5~Oh'HEt!k VlM 00rlN/)MS'IIAWOII COAiht.IS ASSVItEb, TNE 4'N<TPlKW~TNAE 4gg(g(itsy BRl&N Cg'DIES gP Q TIIg FiST HONKS[OPECl7Ãb QAg.VC(eORIta Cy CC4SCP)QICC.SE 2.Aeaenh>t.,LIAI f Vy)PgQTygg g5+5goP r~T SiCC,a.~E>AE9~ppt1C4Y FIC,gab IINcESf IJOTgb 07IIEgidtSE. ~~BAtt'<+4 Om~PSaeoaS ZS@SO'r-.~~i~rVE~a I Hub9~E@dies S fS~/f~T iu$8'RVIt E.7 A8ItiwRaC C.WE~~q.~~~8.88A>wwc, 9.r4tt8 60W-I2a'f (ouVSiyC CouVaiiittqitT) Rtt8~IIRA4Ixo F (wc'ntirlttittgitT) il (PEIEr.6D) A+~~V~<~~~<+><~QSl4Q TIIOSE Cod&ITiWS E)TH5t'TAMP ~P WINTERS~4iC4 Cl&E TIIE HOST$EVE>>Crt'.iq<I+MItlTidd &S 8fEAI bEEItIEb FPOH t CaEriW~Crrur CS7 Foe PuerSX'~I FIASCO g gtpsT;Ffy'z epws: EBMJ-gz4, cent-4 50t'Esw I 1 59 If A4tb Owly dPTo VAiyE Iaehg jgaVE t'itaykra Fm C>~Width>~i~<. KSl5eo a%c>Rceiiu l,z.q5&M cfg.l NNY~BN'.NFAY cevesey x-(sesmoa~ seri~P supaevS fgNECr TP&n'>~ittV gl, Gg-SH-h-7] CAROU~A POWi." E LICHr CO%ANY SHARON HAt~" tt'CsÃR P~~WB PLAHf of~mM PESibu4t PelT W~c, 94~g&gfcTio~9)c75ttg W~btf ~i i~asset%a%eW v7 lg,~SP E NT FUEL POOL C~WET VS NEW FUE.L POOL~e>g I~(3 V5 FOEL POOL HX I l4A SA VN v>FNL ve P~ii~Vl IQt g~ggggVi~VO yAgyE.~gOS.SHOO OM SN.5 FOEL POOL H)f I$4B-SB/Mls WOM Ca.I Rl CHES,HAL N9ES f%:tL CNLNeAps~ESASCO SFECIFICATIISI DESIGN SFECIFICATIOI fOR ANSI NDCIEAR SAFEIT CIASSES li2 6 3 AND ANSI$31@I 1KS NUCLEAR SAFETY/SEISNIC CATEGORY I AND SEISNICALLY DESIGNED PIFINC AND SUFFORTS FROJECT IDENTIFICATION NO, CAR.SH-M Fl AttEHOIX Q 5~~ T IA HOME: yygatO Oi WReaLLV Co aestaa~v r't vi Vli V C SEE STNEM FLOe OQ4Aaal lOII DOTAlLS Of QCST~eorms ovA~I~~})OKS OF&S Xbasco Specification Design Specification for 4$5+Nuc1ear Safety Classes 3 and ANSI B31.1 Non-Nuclear. Safety/Seismic Ciy I and Seismically Designed Piping and Supports Rl Pro)ect Identification No.CAR-SH-M-71 Correlation to Valve Ta Number V 1-SF-B V 2-SF@0 3-S%-i V 4-SF-B V 5-SF-B V 6-SF-B V 7-SF-B V 8-SF-B 205A 6 1%A&ISA&3SA&9SA&19SA 6 28SA&29SA 6 B18 SB B2SB V2SB B4SB B10SB B15SB B24SB B30SB V 9-SF-B 31SN V 10"SF-B11SN &B16SN V 11-SF-V4SN V 12-SF-B32SA 6 B33SB V 13-SF-B22SA 6 B21SB V 14-SF-B17SA V 15"SF-B34SA 6 B35SB V 16-SF-82kSA 6 B25SB NOTES Modes correspond to the folloving: Node 1-Both trains operating Mode 2-One train operating. Temperature given applies only to that train operating. Second train is assumed to be ambient.Mode 3-Both trains are assumed out oi service allcaring the pool to boil.Subsequently, one train is started.Temperature given applies onl to the train vhich is operating. This condition is not nostulated to occur coincident vith the SSE.pgpp g-one cruin c.s essence 6 hemic servcb=The rewcincpl~tS gperatcn.Te~pereco gc~ellW!i<5 why tM~-~g j.S o~~~M c'&bt2 i5 PSCM(~tell ~OcCc r~cement mi<the5%-2.3.4.6.The system is arranged such that the trains may be cross tied.This means that, one train operating"can be taken as pump" A" feeding heat exchanger"B" or vice versa.Temperature indicated is for bothÃev and Spent Fuel Pools alligned to the pumps.If only the Spent Fuel Pool is alligned, this temperature is ambient.The Purification System vill be isolated in this mode due to temperature limitations of the Demineraliaer. Valve is open or closed depending on vhich pools are in use.Valve(s)is (are)open for filling operations only.The.temperature in this case vould'e taken to be"ambient" and System Operating Mode"Normal.~iH$-/R o~~o-e&L2~At t 1 OVER K8ASCO SERVICES lMCORPORATEO F o.'=FC~Jf.'.Sf'ENT FVEI tMI CMLIN5 (cLKAH gP SY(TE A>PE"4~ix, 8 SvKKT'-w' -N'7-50f'f 86YF STfhg Q f HE KhToh g Vg/,Sii 3j Nh'i 54 WtY L h YUf'YpichL Fob, YllbfE 5/q Ebasco Specification Design Specification for pg5QNuclear Safety Classes 1,2&3 and hhSI B31.1 Ron-Yuclear Safety/Seismic Category I and SeismicalIy Designed Piping and Supports'l Project Identification No.CAR-SH-N-71 yivB~LH.oe~a Dk>t At t ROYCE KBASGO SKRVlCKS INC4RPORATED THEORY\gL ggPEe 0~Qf="p5:.;.JL) 5,'YEf-vi gt~~=F,pan, ED~JDo'~>SY5'7E,Yl AGAPE<>IK 8 SHK Tl w

PLANT lVINT II Oi%Ak7<A 8 C P gp~TfMQ TEMPERA'.T LJRE I NAYH0PLMg 9~L6AP N0RNhL.+~'X~Ma lb t4Mt%L.UPSET 8 SR'aut%FAOuSP NORNS NORl1M HOhAhL r4l t$0 FAuueD V 0%i ss7%7 7 lf%: i.aEt.55 aL c~-q5c4 seep Thr&4aga.-QerN Whlyi.k-aLL XkeaAT~~~AIL CLA%0Q, 0-Peavey raeanrp i QFC?~KIN%T OIIIFQQSt 5-Ll&l$OLNEY~~uw l4 MFTY lOg+OtltORKKLT OPCN C+NOtM4.LT CLOUD SA step QK VI Vt V V V V V V~SFEQ~SE.E SYSTEM FLOW D~f4aRcr~~4et~C~l~'%7FAK 4fHNAT~ TO SmNu~4YSTQ4 CIIILltRS C4$COl ATION T YALVL TACj l4IIIAMk Vi-SWSSSA)bS5b YC SIVV4SISA 4 V4605b WW SIVhbilh 4 bfeSSb$4 SWV2%75A)V25b5b Vj SWVtKs5A 4 V2(a75b-3fb SW$55A I b4$b VtiSWSISA$bRSb~.SWS70$i, 4 b VISA.SWb72Sb l b705b-SSFa74SA 4blSSA<y}e705b)b77S b TO f CRttllttARSIf PUH&%iP CLNM10i%5fRJISQNR% VI VI TO k0%NITA~STRVCTIIaa 4%COOL%K OSW FAIPS TCt 55%f IRAN P%7T CC T I 0 l4 booOTOR tQMPS ESASCO SFKCIFICATltRt DESIGN SFECIFICATION FOR ANSI NUCLAR SAFKTT CIASSES I,K 4 3 AND ANSI b31.1 NIRt-NDCIEAR SAFETTISEISNIC Rl CATKGORT I AIID SEISMICALLT DESIGNED FIPINC AND SDFFORTS FROJECT IDENTIFICATION lIO CAR SH4-TI V7 V%5W IRITARS OC45glf ILL OTRIICTVRt. AUXIUARV Rt5%ltVOIR tff ECIAAL NQNOS SaaV ICa mt'FNSmtK~wsa~ OPF RAT(MQ TEMPERATURE pF)~0~(r i 4')\~1'9 SARAN QI54TIDII 5 tO 10 re 95 IaS IQ.IC5 l IZ.re5 sA.l l7 l/if I HN%e~~A"~A'o~.2 OtHth~WILLI-OMIT LIFI>>l tAA MNUH4~RWST ISCP+AIFL s-evoked runes poeQOTHlS Nlc4%;+NBFEgtGP lIDSmoab a40 XQ'Pl CA1%P~Ho&&SR)W~(~)Ne:~~VA4%'~)@IS caClAKPi g vaqre%amAS5 ~ro)%VV'"F0@V 4-5evk Loots)HE haus~cc.f~IS RGQPllthP'- el~wothcAb~'/IS liLUQJOO,HOT 4+~H~leONLf~hPIHO uM 4.~,"N O r HORHRLLV OPS@Ce M'M<LV CLOSED v!v v v C C C C~L)Ã~~~~gsa J>>ctu y)gal~))rrr)I wyggg+5%Cf'QA7$ 4~IIii NA 04-~7l SEE 6'ISTIM fLOir D~felt DCTAI\A Of AvSTSI)I~aacess owr~ ~J r r~~',~.~~~~I I~~ Ebasco Specification Design Specification for/gSLNuclear Safety Classes 1, 2 6 3 and hNSI B31.1 Non-Nuclear Safety/Seismic ategory I and Seismically Designed Piping and Supports 0 roject Identification No.CAR-SH-M-71 hPPENDIX C Nozzle Loading for System Components '1 Ebasco Specification Design Specification for ASI Nuclear Safety Classes 1, 2 6 3 and ANSI$31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Pro]ect Identification No.CAR-SH-M-71 Rl Allowable loads for nozzles interfacing with piping covered by this specification shall be obtained from the applicable vendor specification or drawing provided, through the Ebasco EMDRAC System, or the applicable Ebasco specification or drawing.In the absence of Vendor Information, the allowable nozzle loads shall be determined as shown below: Maximum 0 eration Tem erature F 0 0 eratin Condition 140 and above below 140 F Normal 500 A 625 Z 300 A 375 A Upset 700 h 875 Z 400 A 500 Z Emergency 800'A 1000 Z 460 Z 565 Z Faulted 900 A 1125 Z 500 A 625 Z Self limiting thermal loads included in all above cases 400 Z 500 Z 200 A 250 Z wheres h~Metal area of connecting pipe (in.)2 Z~Section modulus of connecting pipe (in.)3 F~Total resultant force acting in any direction (ibs)M~Total resultant moment acting in any driection (ft-lbs)Notes F and M are assumed to act concurrently Kbasco Specification Design Specification for~~Nuclear Safety Classes 1, 2 6 3 and hNSI b31.1 Non-Nuclear Safety/Seismic Category I and Seismically Designed Piping and Supports Project Identification No.CAR-SH-M-71 hPPENDIX D Piping Line List Ebasco Specification Design Specification for RH53 Nuclear Safety Classes 1, 2 6 3 and hNSI 531.1 Non-Nuclear Safety/Seismic ategory I and Seismically Designed Piping and Supports Project Identification No.CAR-SH-M-71 hPPENDIX D Piping Line Liat 1364-S070 Ebasco Specification Design Specification for gl/5X Nuclear Safety Classes 1, 2&3 and hNSI B31.1 Non-Nuclear Safety/Seismic tegory I and Seismically Designed Piping and Supports roject Identification No.CAR-SH-M-71 hPPENDIX E Reactor Coolant System Designs Transients Ebasco Specification Design Specification for gg5+Nuclear Safety Classes , 2 6 3 and hNSI 531.1 Non-Nuclear Safety/Seismic tegory I and Seismically Designed Piping and Supports Project Identification No.ChR-SH-M-71 Reactor Coolant System Transients are not included because no Class I piping analyses are being done by Ebasco. Ebasco Specification Design Specification for Ag~uclear Safety Claaaea 1, 2 6 3 and hNSI b31.1 Non-Nuclear Safety/Seismic ategory I and Seismically Designed Piping and Supports Pro]ect Identification No.ChR-SH-M-71 hPPENDIX F Loading Combinationa ('<<oesebt atty%>OPS bus To stbttLTwxous coatfNnoNS THERMAL VRJ4NT t, ss5 OTNNk 1YSTE~NDIT lOlds-..FOW EfL OFEhATEOEE HOhNkl IKXNhL TK TA I 9 r NfS SET FD FT I NI V g el ss el 2 OI Ii g OA OI Oa I>o+g ff Ug PI 5 WH Rv X c" o$I I-H v)P 3 tf FVC 3X-J 4 f dl 1 NOu LOQ eSLb QS%iLOCR SSE+LOCh ps%+~FhULTEP FhULTEP FNEJLTKP FAUL~FHJLTEEt U'PSST endta3 (omig 4 (QorEg)(~gQ 8 g J J'J J J J J'S'E l FESLS FhVLTEP yoWX)m~~LS FtyghuPT~pa 9%I%8K'f~ESSEHfDg.hF~>RhULmt3 AR H04%!sSatDg fag~.Sbasco Specification Desfbn Specification for AQ5I Nuclear Safety Classes l,2 6 3 and ANS1 b3Ll Non-Nuclear Safety/Sefsnfe Cstebory l and Seisnieally Desfbned Pipiab aad Supports l'to3ect identification DESGN STRESS GOQQNITIOHS SYSTEM WhTEK hFFNNO IX F seax~~ cci QESICIII 5TRES6 C~TIDII>DOE TO%Isa%.TAMRDIIL COsIDITIONS TII 2 R L4hL WSKsNT tNESSLIRS OTHE h EY STE htI COINS ION%)S 8~fR I i.C~t~)I.gx jy IS py gJ-j 2Q I pK g~cf Vg g'I III 5 i5 I~h~I c" o$C CI.gu 5 pp)I-3 III u bu J 4 g II la f cl 0 8 FOIsf ER OPEIUITI Oil TESTIIki NOhHIL HOhfiilg.hDhylhL l.T%$T?tffs W5 SIT tb OL OA M DA bNI'a WH hv SSE LOCA FAULT EP FAULTEO UPSET S 4&uLfEP 5 a J eSLb Fgg3L~g4Q+LOCII FAIIL'TEII SSZ+LOCA FATES)t 5%+IIIMI Wm0 SSE+HSL5 FAQLTEQ PIPE NPTLNtE FhILTEP 4 FAULTEP 7 J FIRTH'P 8 PWf.TEA'9 J ESP Jj J J J J J J J J J J Blanco Speci ff calf on Oesfgn Speefffcstfon for fl6XÃuclear Safety Classes 2,2 g 3 and gaff Sll.l Non-IIuefear Safety/gefsafc Category I and Sefssically Oesfgned piping and Supports tro$eet Identification Eo.Cag SH II-yf F-2-DESIGN STRESS GONhlNITlOHS AS'TeM~%C,VCR APfsessOIIf I

I I A QKQRRgg~I I I~~515WQSa~RIESNISElklEIR RRRSEH51155i5$ 5PR855l55555i5iL 51555I1I11EI1$ klRHRII>R RRER75515555WHSIIIkP1>RRkt5$ kRR RNSCQIRISR555i1ii55M1555M5i>RR eammaeeeammeaaaeaaaaaana mmmmmeaeemrrmmrmnrraaaraa ERREE55555SHE58k551515555kSEW ERHERI55555585kk55S11>5>ISklIH ERRR5885515$ 55$55EI>5ESEE55% HLRS$515%15>l>IR>SISESSIR: I-at DESICIN STRESS COINSNATIONS OIIt TO$lsatn.TIIIEOIIi COssOITIOI4L VRtgIIT.t$t%$5ULE g%$E'L$E OTNgk 5YSTEIA CO~TIONS lL')Pp$a SI S~gV o<PJ I v af Ic f3 Qy I gJ Ug If i I IIIf 45 h~C SI o'$5 a py 0 POP ETL OPEIVITI Ogl NRNIII 1 WP SIS SIT PD OI OA DA bNre Ci ada WH RV UFSST LOO 115 Lb FdgfLW QSSt+03CII FIfLm 55K+L4Cfi FIUI.&P kW+~ream 6I%R6.C ENI86.68@6.8 J PIERS.8%86.J x J J J J l J J J'bssco Spec if fee'tion Design Speciffcstion for 06XNuclesr Safety Classes 1,2 L 3 and hNSI$3l.l Non-IIuclear Safety/Seisnfc Category 3 and Seissicslly Oesfgned tiping snd Supports trofect identification No.CAl-SH-II-y I lÃSQN STRESS GOI4hlNNlOI45 SYSTEMS f:uzi W stl~y IFfsENO IX F~a~ p ~~Qg IA~~~~mmmm~I~e t'I~~-~I I I I~'pjpgggggggg~g~g~~ ~~~~~mam!mmm~~gggggmggggIII~~ RaiaaŽ'aaaeaEEaaEaaaEm ga eaa11e, i Iaimaraaeaaa eallmamiieieeareairmnarar INIIECNR115amaR15amnaua ERSM58855ERSEIERLSJEREERMA& CjEERIII%515iSRSiHRHSHRl5R 551b555E8151ISSRÃ1III>SEE NE55$S$$1PSiSSPQ IIIIERIII8585ESEEE58ESEEREMMk& l151II5kl1HIERSH arllrrarraXarnununna mruaaaaa~aanaaaaaaaa>aa I~~~ ggseN@guns cogIISIS IIOIdS Dul To stsgu.TpalSOuS COieOITIOSIa TIIIRHhL paSSsugg OTRNg sYSTRlrl.COHOITIOIgs h~fR it~I-I I t I t I Ki ggP-$>O t-o+g~o ug I I I I i)5 V)isg 45 hg~I X~I gX I uI CK~~0 POX Efl OPEIEATI Oll Hbhllkl NO&RL Tll TA FT OI OA OI ha It V LO PST RIG l.OCh~SLY FHJLTKF QSRtuXR FOOL~k SSE+I%tB FRI3L~~+MOLD FhULYEP T%$T R V l'.$%T (l5<uf)4 (gne$5~'LQ~a)v (~f)8 (~N)(en+:1)m z f g J Ebaseo Specification Design Specification for IKSX Itueieer Safety Classes I,2 g 3 and ASSI S3l.l Son-Suelear Safety/Selsnic Category I and Selealeally Designed tlplng snd Supports trofect Identification Ito.Gtg-SH-II-II .ea s:-@~ma ESSEIfhAL PIII lf4')~hgSeVL PIPPIN I FW~2$AKR~L I%7PES AW MHPEH~YK 5)STEW ME XgaVPIEP wrAV~~kRYF5%~77/H?N4L~WS-~N gfRESS GOIOQNKAOHS ~TEM COHWalIIH8 ~I<F+~I liZZKRUggg~ l 4~y I I I 4 I gg~+~--aaaawaraaaaaaa RRammmgraaa ~~aaaaaaaaaaam ~ERIIrgggaagga ggggg 5 5 ggaagrraraaaaaa~ ggggg~RaÃ555aggaaararaaaa~ 88MREEaaaaaaraaaara~ raraaappaaaaaaaraaprra &55MRRsaaaraaar ararat age eaREEEraaeaaraaaaaam 85raa18aaasraaaraaarw rama1%185rsaaraNaNH RRaaa~uaaeaaauaaanrarr ~~s ~, 0 -OEaa14 SmaaS COEESESATIaddS nua TD ERSIth.TNdIEOIIC CetdDITIOAIC TIISRMAL pfES1IIT tSIEESUkf fk l%5 ESI OTtIER EYSTI~ldDtTIOMR)O 9g 8~fR 0 I Oy l$~C u3'I Iti aJ E(I'c" tl f'2 l-a.H IuZ fc~nou NhNILL TKSTIN4>~hL IKNAL T%5T R Z J FD PT Ok OA CC DA bhaga WH RV LQ UPSET 65%LOCA f15 Lb FhULTEP I'hULTEO FSEJLT%0 I FAO LTD 4 FhV LTEP 5~LAP C gJ)f.$%+LDCh FhULTE3I SSE+UXA FSSJL~FgL&P 7 RluI~P 8 z f J J k~+~FfhIL~55%+Ntlb FhVLTEQ FAVI TEg cl J Xbssco Speclflcatfon DesfSa Specfffcatlon for fttcXHuclesr Safety Classes 1,2 S 3 and ANS1$3I.I Non-Ituclear Safety/Sefsafc CsteSory 1 and Sefsslcally DesfSned tlpfnS snd Supports traject ldentfffcatfoa No.CAR SB II 11 El F4 DEc't6N STRESS QOIChlwkDMS SYSTEM~le l PEMlllf RAUZSP<<IIITER~t DESIGN STRESS COIIIIINIDNS DII%TD$IWLII.TAINOIIi CONDITII3NS TIIER MAL PSI$5$IILE QL$$t$$I OVRia$r$Ti~bb3IT 0 a.p 0 g Z g gs>-)8$g t n')C~t-I 6~)N t-6$85 Ug I tsg aJ a)v>d pipfng and Supports prefect identification bo.CAk-SB-If-yl P)gPLZ~Ta FD FIP1+ate)QB QAV TK TOT//E'P<5E/ ~~~~~FO PPI~FR/)e T)f6@TORAH TK-TOTHER MYTHS Rl~ygftvtgga IeeCCNCPCHtATSD ar JSt/eeF DES+M STRESS CCHtNhnONS SYSTEhh FOE>Or.L AfePSPSD I)t zezl5L I3E&oN 5TREss CONSNATIDNs Du%To slihta.TAIItous coNDITIDNS TIISR MAL IHfAallT FRESsuaE gk ssf ssl OTHEk SYSTEM CONDITIONS FOMEII OPERA'I Oll TESTINESS)8~1L T%ST as al y I-g FO%J I v af sy ss+2 OI Oa WN RV LSI k,a UF$4iT SSS FAULTKP FAUL'KP LOCA t1SLB QS%tLOca FhULT8P FAS3LTElI FatjL~FkV LTEP PAUIFAULTj37 FIULT%P FRUL1%9 SSK I HSL5 FAOUKP Ebsseo Speclflcetlon Deslsn Speciflcatlon for IHSXÃuelesr Safety Classes l,l A 3 and ANSI S3l.l Iton-Iyuclesr Safety/Sefsnle Catesory I and Sefsnfeally Deslsned'pfplnS and Supports Pro)eet ldentf f Ication Ilo.CAR SII II)l~g N STRESS CGIChNKDONS 5Yc'yTElh AFIsENO III F>sarJaL I 0 I I Rgggggg~g'.~I 0 I I 0 I Eggggg~~~ammgg gggg gaglgml 1iagkgrNF ianeaiiaa Rm~@858 ii>Ra Rg@ggggg~+815>b5Jgg WSkRRlgg~CggRn+g@+SENeggg>SalAIISE +RICO egg+~~MSgggg+~MggJ~Eggy'Hggg Wiling~E@gggggg 8$5gggggg~ENgg~gm<RI<>RlNEmea>i EulRiaL ggmg555unanagnema auaNa+Rlgggggg RSggggggg SIE~SSagg~SEa DESI%14 StRKSS CI3%IBOLNlOldS IIII%To SINu.TANetfi coseDITIONS TllSRMAL~T..PSfSSSUkf+Sat%$a QTIISR SYSTR~faOITIIljlj )8 Qg S~eR Dal~I-g 0 g SI Q ul g$I m)f3 cr I-jy~a'g)I;,~I-'Af mop SI a8 45 mp I-g g SI o$R TSI TA IVIa Yf OI OA DZ DA NfII RV LO QOIIl%1L~1L s TKSTIH4 HOIOIQ%%ST UP%T UPSfT FhUlTEP FAUUKP t1SLb FJSJL7%P QS%tlQCh g~~pgg~S,/$St+LOCA FNA~FlcIUQKP.k~+FSLS vena@e I SM t MLS FhVLT%0 NIIt tlJtTW'E Ebasco Specf ffcatfon IIeafSn Specfffcstfocl for 865;ltuclesr Safety Classes 1,2 S 3 and hSSI S3L1 Son-Nuclear Safety/Sefanfe CateSory 1 and Sefssfeally IlesfSned yfpfsS snd Supports project ident f If eatf on Ito.CAS-SH-Il-yl F.15 IKSSQ STRESS CNCQHKntgS W~DIX lc SYSTEM tHW, DESIIII4 STRESS C~BOIIS DUN TO%IRIS.TAIIEOtfi COiaOITIONdS TIISRHhL NNSSSIJNE gk SSE SSE OTHNR SYSTRIVL CO)dOITIOlkL-0 9 yF)5 I Se TE TA IVfs.Ij W5 sf T I>>1 S~g OL Od>>DZ U I\J g I: DA'Ig g~O oj WII RV LD f saf H6%'KlL lgRylAL HOOPS.TEST R UPSET UFSE T 0 Fhllf TEP FRILTEP,4 z J LOCA+SLb gS%+uXR g SSE+NIMS~d.YICL5 tltt llPTWtE~u c FAULT%Pkk.TEJ)FAULTED Rk)ITEfI 8 FPE3nm jauCTEP 9 FAUL~re~m J J J z gJ J J/J/Xbasco Specifics'tfon DesfSn Specfffcatfon for frISXNuclear Safety Classes 1>>2 4 3 end ANSI$31~I Non-Nuclear Safety/Seisaic CateSory I and Sefsafcally DesfSned pfpfoS aod Supports pro)act Identification 'No.CAN-SH-II-yl F-5 IKSXil4 STRESS CiOQMNNlOM5

SYS7)os]IEA'K iEST DESIGN STSIKSS COISNKTIDNS DIN TO Slants.Thous coaIDITIopdL TIISR ldAL 1hklSIIT rhaSStiat I/i SSE SSI OTIIDR SYSTIM~ONOITIOStl z 0 V 0 g as TA IVP al y I-gf g OI g3 W5 IIT~T OI I e t I dt y OA Xgy I g)K giO 48 I-hp g aP Rv.I-Z c" VX I PST I 0 g V 4zg fey Pout%tPEMITI Og HOh'KhL~IL S.TESTIQ%HOHPtlL T'LCT UPCAST VFtf T dS Fhl/LTap erlsafs.LOCh HSLb QS%iu3CI FhULTEP FSQLVRp Wl/LT C FIN.TKP J 2 k SSE+~FSOLIEQ@AU SSE+HSLb FhVt.TEP~T fO PI~tvmeE HR HA J z fleet~sco Spec on~es I~g~CgP+/ggAOg5 Ffg Plfj~SyIIE55 S~~CNtY g SEFEK TT3 tlhhGRATII

$OII oSTIII5 5PEQIQCIsl TIIS htPt.lorn IDW OF PN'/Ifyh.IFFECrBI aSS g@porn-5-I~enscq~q.Desisn Spcelf ication for IHSXItuclesr Safety Clos I,y i 3 snd ASSI S3l.l Son-Nuclear Safety/Seisnie ln and Su OtedyITItkl Coed/ggW'tg T%AF)5F~OCHCX DESIGN STRESS COatwgl~S AFPssaollt 5YSTEM~~HI 3-ada'a/~~g. Cate ory l and Selsnleslly Deslsned pip S pports toh~~~onH/E 03aI~II//'~IE~~ yredscT XuemnotlIOI TOTIIE~S II5.Call SI Il 7j. 0 e~h~+Iiu yo 1 gn Whap>w~<<pl.p i~L'+~Vl>Pg fbi~I3ESION 5TRESS CCH45NATIONS DLIS TO%WLATAMROVS COlaDlTIOpdL TNSRldhL VRKNT.Pfgtsstlkf.Its sj%OTTO%SYSTI~SOITRBI5 O gg f5 II~I-g 0 g TK TA lVP WS lIT PD OI OA DI OA WN I-X c" tl X I U J3+0 Wa l 4 QV 4.NIAL NIAL TESTIN+A)ltythL T%$T UPSET Uter Z~v LOCh HSLb QS%tulCh FhULTEP'ezmI , SfgltZKP.//JJl J J J J/J J J/55K+LQCgt kI SSE+~SSE+YOL5 Pltt Rl~ltE FSSJLTEI FRlLTEP ffOLTE9 FILL~I FhIILTEQ FhVITEP J J J J J JJx/Xbasco Speci fi<<ation Design Specification for FKSXHuelear Safety Classes l,l 4 3 and ASSI$3l.l%on-Xuelesr Safetyigeissie Category I and Seissieally Designed piping and Supports pro)ect identifies'tion lto.CAIt SH H yl DESGN STRESS GOIRIWQlON5 ~Olx SYSTEM hl5%uAHEDuS 7hhtxS DESIGN STRESS COfd804ALTIOHS DUE TO Stlttg.TASOOUS COssDITIOpdS lHSCLHT tR%55olC gk 5%%55C OTNSR%YSTI~IJDITIDML. g)8 I C I r h~1-g~III~3 sI Pp ul Ol]I sj~K I.I+0 pK g~a oi ll (Isl 45 h)I-Z c" o$~R)0 uI lao'PO'HER OPEIUITIOII -TESTING Nba AL HQRl4lL INITIAL TA SIT PD tT OI DI DA 65K FAIILTKP UtSKT lpfIIUL IEp LOCA NSLS SSNI VGP fglL%P.QSStiuXA 5%+LOCA pa++~SSIE t Vglb NPS aWuha FAULTSII ROLAND FAVL~v J 8 J gJ gbasco Specifics'tfon Design specification for fslsxitueleer safety classes I~I g 3 and ASSI 531.1 gon-Iiuclear Safety/Seisnfe Category I snd Seissfeally Deaf gned tiping and Supports trofect Identification No.CAR-SH-II yl DESlGt4 STRESS COI&lNAnONS ~Ix SYSTEM ll DESIGN STRESS CCH4IttATIGbIRhllt TD%NLLTPdftOtti CONDITION j TIISRMhL Pgt55LILE gt 1%5 5$I OTHth tYSTE~idbtTIDNj POPES Oft hitTI OQ TESTIN4 jtI HOh'KLL NORyliL liORFIRL TILT TE Wts W5 ty I-g ss g I~0 g 02 PD tT OI OA 0 jl Q.jg I DA vi"l ig gAg)55~P I~I 45 L~LlPSET UtSST FN+TEP%III.TEP LQCh FfNJLTQI pfttl I-'TKP'l f15 LS QSRiuXR 5$K tl4Ck Q SSE+lhRS fllJLYEP Ffllll TEP ReI.TEP FNJL~FfIILTEP ROL~9 SSE+MOLD rauLmP~LEAP Ebssco Specification Desftn Specification for FH5XHuelesr Safety Classes 1,1 5 3 snd ASSI 53l.l Iten-Huelear Safety/Seisnic Catetory I eod Seissieally Desi toed pipinS and Supports pro)set Identification Ho.CAR SH-ltyl DESSM STRESS CQLi5hKAOM5. SYSTEM P06T ICagsIT$gPEHRs QPPOHDIX I~gg~lbS t,, p;)'e>>cg<<<<', q'c ntvr.i<<4<<i<<~ <<<<<<<<.'<<<<ft <<<<r<<>>---~~><<<+u<<<<Lr*'<<>>'>><<>><<>>~r~M DESI'TIIf 55 COSSEgNKTIOHS SIIS TO SigtmTAH'EOtIS COiSDITIONS THERMAL lH54IIT tRSSSukg Tg g%5 0TH SA SY STRE COfdOIT IONS<<...Kg f5-I 5~.55 Pcg S~gV o'n oem I I~)I V0 9I5.I c" ty X (IL M)~P I-IO Sm 4zg ksef POs/ER OtEIMITI Oil TESTIQ/HOhWSL~L IKAWIL TA IVY WS IIT FD PT OI OA DI DA slII Rv LD P5T Pgc 3 Q 6SE I.OQ t1SLb QS%+u3CR$5t+LOCAL FhllLTEP HOLT'dgILTIF FHJLTID FIUL~Uf'SfT Hk/LAP J 1 g Sa+eRS SSE+ILLS Ebasco Specificstioo Oesfgn Specification for fitSX ltuclesr Safety Classes I,I g 3 and OSI gll.l Iten-Ituclear Safety/Sefsnic Category I and Seisnically Sesfgned tiping aod Supports traject Identiffcatioo Ito.CAR-58 H yl DEMIN STRESS GONE'HkTlONS SYSTEM AFfsSHD III F we~ OESIO14 5TRKSS COldedfATIDSIS Dug TO SllauThMCOlfs COeeDlTIONS TIIS RMAl VRK'aNT PRSSSult Irg SSe ssa OTHs R SYSTINI C OlaDIT ION%..taf z)PJ 4 4 4g S~tR 4 I~I af Ii g I~)N ui I Z.c" o$OO JC I gzg)ef dlOu PON ER OPS hhTI Ofl HflhHiL%S SIT~D PT OI Oa DI Oa bW RV Lgt TESTINfI T%$T VPSST LOCA+SLb QS%+uXR FIICdg5P, RO LTD PAuuVP gbaaeo Speef 1 1eatfon Deafgn Speefff<<atfon for 06XÃuelear Safety Claaaea 1,2 d 3 and ARSI g31.1 Son-Suelaar Safecylgefanfe Category I and Sefanfeally Deafgned tfpfng and Supports tro)eet ldent1ffeatfon Ito.Cag-SH II)I DESIGN STRESS COI4WknONS ~Dlx F SYSTFhh+~~II DESIGN 5TREss C(NBMiWQkR MR.TD sllhts.TAIlsous co laDITIONL Uf I-2 i9 kf gg gi p 0 g V 0.lbkOHT t II Ol~V.K alp I-g PII aSS cia!g g I j 0 g g sit'a 8 I gJ/gal Ug I-H fS gg h ,hp a(OTIIek STSTR~OCSTKBIL. IU III 0 gism k e Of'FO'WE'LL OPKIUITI Dg TESTING LOCA HSLS~hRLL lghNQ FQaTEP IIalfPIAL T%ST 2 UP%ST B%II%.areW.TE'A J J J z J z IIT F D Pl'I OA J g PZ Dk 5'II RV LD PST VVC QS%+uxrl 5%+LI3CII)a aa+pmN FfIN.TED FIULTKP ROL~%%+.7 ENEP6.9 J J J g J a FhVL'PEP Z J Ja 5AE 1'e~cosTSwarIOIISPSScSIMII IISIISIII SIVkC bdbISSP upear flsnE 56cT.3a cofIdAdss I,/sAcorA~~frSSTruIIIrr SStSCTIINea<<.y'. hCrVAI PIPI~S~5 SHIIT Sf;Oaau>yrp bW mS'ISSS SVnu8t QASfaOeu%) BeSSTI uRW Vmrg CchSS X IIIIal.TSW Q T III'OIIO COIWIIIHIITIOg ISPIOIflPS QgfjII+aratsS atr~ay~y.- 2'0ffvftsovrsIof coarsMEKf'5 RvPTLNS 33ISIQE eaoTAaNBlf F-Z.Xbasco Speefffcatfon SesfSn Speclflcatloo for ASLItuelear Safety Classes 1~3 S 3 and ANSI S31 1 Son-Nuclear Safety/Sefsofe Catecorv I and Sefsofeally DesfSned pipfnS aod Supports~Z pEII7IFIC/IfIOII No.Wg-sH-+7/DESGN STRESS,03IRMnCgS ~a DIx s<L'%%HAS L CH PIPI w~sL DESIGN 5TSIFSS CObSISIATIDldS bIIS TD SIWltA.TAIIEouS CONDITIONS THERMAL ltRAIIT FRSSSuaC SSt OTHSR SYSTIM COIdDITIDQS. )8 I n!K at~I-g 0 g 0 st e w 02~~I~Og g$I Iy 0 ej!g>O Vg 45~c hp c" o$gZg fI()POVEEL OFSIVITI OQ HOhHSL~AL'IIT FD OZ DI DA EI Id'II IEV TESTIH4 HOAPtN.T%$T i@SET UFO'OCA FAULTKP Sauf.TE:fI F AULD muf.mP t1SLS/Setula FSH/C,VrP FM-T/bfvcypp 7 FUSIL~~mp R%JL~FSRJI.Tgp B FAV LEEP f}Rk.ysp Ebeaco Speclf Ication Deelbn Speclf Ication for OISX Itucleer Safety Claeeea I~I 4 3 and ASSI b31.1 Son-Ituclear Safety/Selente Cstebory I and Selesleally besfbned plplnb and Supports pro)eet Identfffeatfon Wo.GO-Sb-II II IN~~~ggNjjnQ45 ~IX SYSTEhh auma VaSSaL ISYSLruOIDSTIW

DESIGN 5TRCSS'C~TIOHS leg TO Slntu.ThMMUS COSsbITIONC TIIS RHAL akgtHT fRSSSU$$$OTIlmk SYSTN~ONOITIOIIS )PJ ty l-g es g I 1 I n Pr p t$I ii g H I jy S hJ 5)ZO g>O 00 9)Nf I+.Z d:" ty X I-H C UI V t'Zg k e of 80h'AIL IlORILIL TA IVP NT PD OI~DI DA WII FVG UPbET T'EST UFSliT R J 5 LOCA'HSLb QSR+uXR 5Q+LOCA je aa+eas FAULT aP FAULTED FdglLTRP FHL'TED Ffdh T5P RQLl%9 FAV LTD its:s)(HSTS 34)(QÃQH)Qaat~)5 C 7 B 9 J Z J J J J J J J J/.g J J~ge QKAAPP f If IIPPt>TEST Tbfly.Cagftf~fsl SdleTDh TEh COOE~~ID'oVr+y~ ~~g~gg Iffy+nWyfIWtf&0 ~~D~PITSRgTiesf IS Soit ttPF 1UPTUhf SThgSS~J J llPlK l~iREKEK$POR 45$9IT~PPI5'I R4J Ll@FOh~6sseJrug.Pt weJSC~sco pecif cation Design Specification for~buelear Safety Classes 1,2 4 3 and AXSl b3l.l lion-Nuclear Safety/Sefsnfc /+eery g@dpf~snfe lly Designed piping and Supports le.og-@Fit) 'ESIGN~~G)IRgNhTl045 AFOadDIX SYSTEMS ~IIN 5TRfSS COMSHkTIDNS Dub TO SIeittb.TAIISDIIS CO+DITIOpdb PRSSSIIgg Ssb OTII~Ig SYSTblvl CONDITIONS.-.. g)O Ul'0-.P 0 y TA IvP il I~bIS NT PD OI OA 0\J Oat b Hfe IIe hp'I SI iJ Ig)sJ CL Rv LO P5 Id bl cP FV 4zg kcN FOR EfL OPEIVITI Ogl TESTING NORRQ.NDRtlaL gloRptbL TEST UP5ET VF SOT b LOCA FhULTEP Ng~P~I@~A g J t1SLb Fdg3LTSly gSSE+uXII SSt+U3CSI FAIL~Akkygp B k S%+~lFWL me pep~SSK+Y4L5 FhVLTEP FPODKP I J z J tbia ceo S peci ti cat ion Design Specification tor ALKItuclear Safety Classes le2 g 3'and hXSI b31.1 Son-Ãuclear Safetylgeienic Category I and Seiesically Designed piping and Supports trogect Identitication Itoo CAR Sb-II)I DESIGN STRESS GACQNWON5 SYSTEhh'5hNfLeg (OnHN)~0IW F~~ISA t%5ION STRESS COMBINATIONS OUE TO SllhtAT&tOUS CONDITIOPJS TIIERMAL PRRSSIJIN ff.%St SSE OTHER SYSTEM CONDtTIONS )8 ee tg I-g ff C~PP I'0 0 f Ny~4 P0 Sf tJg So)~J'R c" O$Ov JC 6~Iat~C'I-V b.1OMER DPEIVITI Nl bORYlAL Wts W5 gT PD DI OA DI DA bNG CbAJe kv TESTING TEST R IJP SET 8 SSK LOCA PT5 Lb FJSJL~JOT'Eig (%%4)C (INII6+V QglESQ 8 a J SSE+NAILS FAVL~f/hsco Specification Desidn Specification for INSX Nuclear Safety Classes 1,2 S 3 and ASSI$31.1 Son-Nuclear Ssfetyldefsnie CateSory 1 and Selsnleslly DesISned piplnS and Supports proJeet Identification Ito.GO-SII-II-J I EbAEDO SERVICES WCOWORATRIS ~JSC DESGN STRESS CONSNClONS SYSTEM GENRE IhbSH K4>Mba@JJCV RARbLEJJTIAL PIAA'ITAL~ feR Noel-CSg~SP~APPEND III F mmz~<' OEMN StaSS C~TIONS Oti TD aWtL~ua C.DND1TIDNa Tltg R MAL.SRI4NT PRSSSUkg)g 1%5 DTHSR SYSTItst CA7NCnTIOikS... cs POwaR OPEhhT1 Og%Oh'L NODAL fz Sf TA WP SIT PD%J 4 g C oz i)jg IR DA Vg~J.I-X c" o$J CA>o s-u FhllLTrP UFIIIT RltLTEP LOCh NSLb FAS3L~)f.SSEtuXa FhUL~~+LOCh FPIJL~k S%+~Fftglnm SSE+NSLb FhULTEO P1PI!AJPTlA%RSa~p F%uaap.F'fgt.yfTP glkcVCP~rap Blasto Specification Design Specification for fHSXNucleer Safety Clsssea l,l g 3 and ASSI b31.1 Son-Ruclear Sefatylgeisnic Category I and Seisnically Designed piping and Supports traject Identification ho.CAR-SH+71 F-Zs pEMtg STRESS CONhtNkTIONcs SYSTEM SERVICE hler, hPPIssD IX F I

~U)i&l4kTIO14S OLID To swuLTAN\oub cossDITIoNL TIISII g4AL VRKLIIT paagguat I/g ggb OTNIR%YSTC IVL COP4OIT IOltL.0 z 0 V 0 8+fR i D h~p.s j I s V g e ss~z I)Qi f3 Q~s T g H ii I-O+g>ey VSI 9 I Z c" u$R z~4 g jfef TE WP SIS'NT PT DX DI DA bldg Rv LD PST lghPIAL IIONRL f.LOch nSLb QS%+UXa HQRPIbL TTST R IJPkKT UP~FN/LTD (aq6U)4 PhULTN~)5 PASXTbfI CeeRf)C fAULTN/(gmflQ J J z J FPd3L~Qleaag 8 yearn Phl)LmO~Q a)J J J a Ebaseo Speef f Station Desfgn Speclfleetlon for FHSXItuelear Safety Classes l,g g 3 and ASSI$31.1 Son-IIuelear Safety/Selsnle Category I and Selsnleally Oesfgned tlplng snd Supports tro3ect Identfffeatgon %o.CAR-SH-II-yl -2 DESI6iN STRESS GOCLINkTlONS SYSTEM DERV ICE IdgfLtf<~~~C5$ClgLPJbfA5) VAtJLTFD PA IQH~CHPlht.~. hPfsbsaD IX F DEaaN sag.ss cotsebt<>ops bus To astu.Tsstbous coss+T<oNs %RANT raasbugg Assi.'sa OTH)h srSTCtut COhgltTfoffb -.--f 5 315 L O 8~gV%J V g Sl v I 1 S I II IR u0 I X c" o$7~tu C 4)8$ct<g)ef gt 0 u tShNIL~iL TK TA lvP WS IIT PO PT OI OA DA 5IQj WH RV sue TESTIN4 HOHPLhL'T\$T P UP4tT utaaT o LOch HSLb QSSE+uXh 5$t t ff3Ch pa++~FhULTEP (%%if)4 Fdg3L~QOra a FdgjLTQ (C%5f)7 Fbfh~(jNK5<Q 8 (pgmaQ Fhllt~(aeratL)m zJ J J J a J J J z J J x i'bssco Specfffeatfon Desfgn Speeifi<<atfon for CHSXÃuelear Safety Classes l,l g 3 and ASSI b3!.1 Non-Su>>lear Safatylgefsnf>> Category I and Seisnieally Designed piping and Supports'kKTEO~14HE55d<<MT'. RP+5 Hme1%EP48qE~y RA G~pdy3hf-~i bl prefect ldentificatiotl bo.CAS Sb-ff-)I DEB6iN STRE.SS Celmw~~g~o>x SYSTEM RJEL Foot.GooUN4)cfststvp JHKLBRL Shearon Harris Nuclear Power Plant~~~CICi\.8l The staff review of your response to Q2I0.64 finds that we need additional information regarding how assurance is obtained that Code requirements in NB/NC/ND-3600 are met.Your response states,"In the case of pipe wall thickness determination, Ebasco Design Criteria MNE-65 for pipe line sizing applies, and a standardized worksheet (MNE-WS-16) is employed to document this calculation." Provide several, examples of the above worksheets for various ASME Class I, 2, and 3 piping applicable to Shearon Harris for our review.RESPONSE: Attached are three examples of pipe wall sizing using the standardized worksheet, MNE-WS-16, for each classification of ASME Section III piping.In addition to the worksheets, other pertinent portions of the piping wall thickness calculations have been included in order to assist you in reviewing them.Items included in the calculations which do not pertain to determining the wall thickness of the example pipe lines have been so noted.The example calculations provided are part of the following calculations: Pipe Calc I IO-ASME Section III Class I-Reactor Coolant System Pipe Calc 80-ASME Section III Class 2-Fire Protection System Pipe Calc 65-ASME Section III Class 3-Component Cooling Water System(1941 JDK/mf) rr'Ri W'AA<I 7/<>/+0~igo~BASCO SERVICES IHCORPORATEO 'r CHHD.HV'~HIII Cutst~~<i~l~tO V~tt.Q.%M SAT C'Cubit 4<<5HQE,'T Ol Ql orsslo.~+'>>sso.'3+~gOJggy SAC AigHOt4'4&A.P Lb f4V4-i~R V'OLL'~A~LAt4'i FIJI JggT Hi Q Q big fg L+hJQAL ChtLIH.QS kgb 4 g f Qg, S$'p 5'Qp7 Fu~Powe: 'TAE'O&1<SQ oF THi>~kl c.gi.AwoH l%%0+KRlmV kt ttt thaN INANE t.Tttta V talr%%tAa+atttanaWV/< lpga ttrH$1-L.oilt EA8 c.lf 0 g.>05+g7 L.lg(', 0r..Ir tr~C Q.e'e a,~<%-.~~854~~~~uZksua=-r. I)SsgSCC.eeaa.n ic C TCCSV eAa-SA-0q-3e arV.14 2)uuz<<~Y~e l>~q-Bova mes.lg 5Q WS-14 Dipl WML~Clcv~tB, i CN bOWC gg~gNS44VEst4 })Pw~%R PIPiQG~zh=.AQsl B'5~~1 M~THLo 5l'i>3 S}MA%~PLPLO44 Ch~LC 4%5.Nb LO ('Net.O'UI4C>if<>V)tH)A<vta sccntrtt~IRvt 4tH~aa 5 tII'IS CCRC'.t.lB SLOH.'Hkt..gVi<L ~'C~uE55/NNOR~~UuBLS .~Si K<<~i~T'Ji.i'.E....... 4 f..bpp~&C.K. <~.S.u.tea<~ P 1')~g~.cALC,~~hl,.f rf~p.~L.c.ue.C~~S(S)dAK.&tfkNa..PJ SSQ RHF DOLE LIE Cuu: P&(g)~t,t r I'td.-A>....... 6~a.......... ~, u 1H-0/..'I<i6o.114-C S'2.gp........5'3 .=114-P...... 1....J.60 114-E/'T...,2 114-F P'.~~2.4.1g-Z>Q 4 (6.0....3, 24 t14+1 R (4....I62...(D,.ZW.'/a~au.=.Zi.ZS.1~(AD....ie.o .H.AM=K...~/a........ 40.$........J~, P.~JJCALL-S.6.@S...itt,2A Ig III-H,./y=~ .=l, ll JJLIIIE-ILI2 B0E ItS,'26.o,.26 Jf JL4~.i8 Ze~U4=4 M.Oos...... is,.zr~-IIDI=H~HJ H,tl~k=WQ~K 2Z~C ttttTtQLtKD ntt PCHI IS/HI'l1 t rial Q Z10.81 pZ of Z EBASCO SERYlCES IHCORPORATED CALL..P/~~-/4.SHEET~OF~At ors co.Mcs"~~+Cc~Ai~rt.y;.c CHKO.BY DATE v o W POM&/sacer I C I.I E H T PROJECT SuBiECT o.O'RR S cl 68'o arS PEA'W~v 4)<)NESS ewe o c iron/F c?ow rrr-&PRE?ufc8$ (0)6 To Dk r/~~ious~rM~A'cc.7+/cg<MFsS vlcc/pal&;~T<pgg~L.E~8NA~.IOrrHFRr=. P=lrurr~CSC OPSiCCOr P??8ZZVer=,gPCZC)(err~4~r csS D=Pu?Scion=DIAI.gP PZP+(Cu)(krorrr@coro C,SX/C?cr%S=eZS Z<~ca<<ac<~~ASS r~n~.-~arzC.<ps2)(&c Ref F IIC).F=TG'/4'7 FFF (E=)&r sea~Asg~,p~)P C 0</Ct)C/<A r (P Oc V Q/Orms]C'+<g$p)p~Ag~~g~c~/=c/R.~/Nj'm~~s/I?<c~c/AL 5/A<]</Ep (o.~d'+./ZgA'JA'8'QoZ'Rolrou A SCAN~Abc r J W/gC,.TO@/.HHCE C SNAP CHESS Pea j')g=5 (</~j'/gy) 0, o]p (pro rc I?f c's 2 II 5)L Pz a z~Pg/o~gSBI/0%I q Z>0.81 F94 Z.g gg~yt.p p~.'..~.-.p'Cv btNvtCE5 IHCURPORA r'EO P-t4 SMEKT~OFM~CMKO.bY CI,IE MT OATC OI.'I/'OrS WO.>cc~An~PgoggcT SAMA~A>FRY C WA los n~W 7"4t c/~$n(Cve~s c u ALS~, S=-E'SrAHDARDl'SEP WORK SKEET C.>PAL fl+g FR@~, gr./FR+><< C 6)N)Al/~p'pyy g ggQ 7ff/C/~~+8 S Do>c<<~>~)2(I~Su+2488<<o.4)l&)100 0.4~>o, gg{2)bE7:iZ.meuZ 8 io8gogi o~'ii ii gcvg~c 8: C eius</S7-)oi 14.Il 114 A ILL'~, VgL?0 F0q L rl<~'g>4 hthRKC'y WT ON 7'HE LEFT HINES I l sI~&0~TKE ATTACHED LING LT5T,

P/P~-li~MEET OP~~7 CG~PHm~>>..y CHKD.SV~0ATE CLIKHT o c)A Gc&W ZI e~W~i~7)zI)e,~CIICCC>>='l'<g y/j,XEASCO SERYICES INCORPORATED navm~CANC.PAolgcy SAMA C 8'A d&J9'i.a&7 su since/C I C'S n Cue~rien Acs, s:E 51 ANDARbTXEP WORK 5qefT cAt-6 1 I 4 V F N~'~]PrF+4/HC<=C 4)-Nlk'/~4)'W ICE R4.C-7A C Ic'&+5 S Do ZgS~~P))24 84<IDGE 2(IS;sec~ZSSS-o I).-g.gq7<SS P C, 065 C~O~(4'Q eh>2)DEŽuE A codkosiom Afhou AA/e E.REP Ca.)Ctm c.iS>)A+QM~R 4 s TQ+<.875 A=~.ZiS+o,875-a l4z e.os cd(l4 P""" (~CR r~e Le~r~A~C E 5Zc OF THS A TThCqL 5 LtNF PZ/D.8ip>$Z7

SY CHKO.SY CI IIPHT O*Ta Ro 4)A ocul cur it/'PPPr g r/Tg/~P~P"PPP<PPP.P<<Il4 l>l 0'IFIGUKt QRA I hp~PP-I SIIEET~OF OEPT.HQ.I,'aO>aCT~A~A SUBJKCT C WA HC n WiI r 4rcrc s's 8(c uc'P~o~3.At a~I S=-=-STAAIDARDTZEP CWORK[graf 7'A wc.I l 4 c.C 6)A/A I~P'~SSr Jglgh 7P/(/Do res~~~)208't2.7S 0 (l-0,'~0~4f OO 2(W<oII~24IIS~o.e)l(prob MJIP 0'f+Q)><+:<~~+rI, codRosiom/IgLuopppImc Z:<<)Fuo~IIC~Cx)C 4/Ar')Z C.l~+)'c V@A=<~,~y o.svS--e~Coo A=l.t25+o,875-0 3'~eg o.ogcf P ll4c'kt,SQ, VA'-0 ibad L T tG~4$hehR<C'i)Wf TQ Ohl T'E f.aFT I SiDc, OI 7HB A TTACHE 9 L7NP Lf 5T, 54 I/4SCHEDULE SELECTED IiCH(6O gC<160 IICN IW SCtl g E IO o IHSIOE DIAMETER OF PIPK, IH.(Ste NOTE 1)C ALLOwaHCE FOR MINIMUM STRUCTURaL STAbILITY Y COEFFICIENT m o MINfMUM PIPK WALL THICKNESS, IN 9 (See NOTE 2)n HOMINAL WALL THICKNESS, IH.(See NOYE3)s FIRST STANDARD SCHEDULK THICKNESS EQUAL TOOR GREATER THAN n SCHf DULK (CORRESPONDING TO s)SCHKOULE SELECTED~PID 2 EcA~201 90 2 (SE+Py-P)Use either of the following equations fo determine fm: 8ASED ON OUTSIDE DIAMETER 8ASED ON INSIDE DIAMETER (Set NOTE 1)PxD C 2 (SE+Py)C 00 Allowonce for minimum structural stability w 0.065oo (or 1/2 to 3.1/2 inch nominal pipe sist HW~L.la~TC~+F'LE&6@8.: 50 0.000 for d Inch nominol pipe sist ond I~reer SEBB Mosimum allowobl~stress in motorial dve to internal pressur~ond loint ef(icioncy, ot the design temperature, psi.8 00.03d for pipe ordered to specified machined I.D.with topered backing ring ond ostrvded pipe specified by I.O.with topered boclcing ring.00.000 for the above pipe with flat beciing ring or other typos of pipe with ony Design Guide M 4 backing ring.y w A coofficIent hoving values as le(lower IYeeNOyf4) TEMP.F Ftrritic Steels Avstenitic Steel~900 AND BELOW 950 1000 1050 1100 1150 AND ABDVE OA 08 0.2 D.r 0.2 0,7 OA OA OA OA OA5 0.7 NOTE 1 o (fse moslmIEn possebfe inside dI'omtttr with eff its toftIoIIces on well thIcintss onct ovtsIEtt Itlomtftrs, tsctpt for pipe erdtred to specified mochIIItd I O.ond esrrudtd pipe specified by I O.where nore d, porogIce5h 4 o(Design Cvlde MNEAS governs NDTE 2~Tht pipe wolf thlcintss rtavlrtd tor a given pIt E curt rtmperorure ceIwtI'rien Increases es pipe sist Incrtoses. NOTE 3-For stwIIftss plpt vst'O d)g I ltr ony slat of piers plpt, tdd 0.010 inches te the colcvfored m re obtain 50~NOTE d Tht value ot y moy be Inrtrpeftred)5ttwton 50 F velvet shown*ovr. For nonftnevs moterlels EsId cost iron use y t 0.*GENERAL NOTESE Set (ytslgn Gvl Jt MNE 65 Pipe Line Sls'ng for specific lnformatlono CLtbNY CA IZ~(/I/A'ne/?4ldH'7 t"o.STATION otoi009~A~P~M'~/dl C EP a=A fbd'Arci Phf STANDARDIZED WORK SHEET PIP E WALL THICKNESS AND SCHEDULE DETERMINATION Crtgcttf O AD CND5NEED~H OATC gdasCO SEAVECCS ttECOAPOAAYCO MECHANICAL.HUCLEAR EHGlHE ERIHG appnovco gSgotg I'toyg ESNDCDWISOe0 WORK SHEET MNE.WS 16 OATC R'i+W<Auld V($te~~cs6D EDI HFrrtca z/go/dv-+'z/Io 8I II 7$27 9 SYSTD f>.1 ST RKVI SION 18 (02/29/1984 )653 REACTOR COOLAN'I UNIT<<1 CAROLINA POWER 5 LIGHT CO SHEARON HARRIS NUCLEAR POWER PLANT UNIT<<1 REPu4T SYSTEM RC PIPE WALL THI Ci<NE SS OR SCHEO.~$$$5$~$~SPEC O.D 1 RC31 2SN 1 RC 27 1/2 35N 1 RC 29 45N 1 RC 31 el1 RC 27 1/2 BSB 1 RC 291 RC 31 ii4-AkYRC 27 1/2 95N 10SA SCH 150 IDENT IF ICATION C S NOMINAL A Y SIZE CHANL 8 7$$$$~$~$~$~$~$$$1 RC 29 1SN, DESIGN PRES TEIIP P (F)$$~$2485 650 ASMK Ill 2485 588 2485 650 ASMK 111 1 2485 589 2185 550 ASME 111 2185 644 2485 650 ASME 111 2485 588 2185 550 ASME 111 1 2185 589 21b5 850 ASME 111 1 2485 841 2485 550 ASME 111 2185 588 2485 850 ASME 111 1 21b5 589 2485 550 ASME 111 55-1 2185 611 A-375-304 MAXIMUM OPERATINQ IDKNTITY, PIPE COOE-~~5~~b~~PRES TEMP IAL (F)$$~~$$~$~$$~$~$~~$$~~ASME Ill 2485 641 PRES SYS STO.HYDR OR TEST ANSI PRES RATG PSIG~$~106 INS-ULA-5 TION I GRP.r$B STRESS ANALYSIS SEIS THER-MIC.-MAL I-H YES 3108 C I-H YES 3106 C I-H YES 3106 B I-H YES 3106 C I-H YKS 3108 C I-H YES I-H YES 3108 C I-H YES 3108 C I-H YES 1500 3108 8 I-H YKS RK MARIC5~$~$~$$$$$$$$$$$$$~~LOOP 1 REACTOR COOLANT HOT L EG FURNISHED BY MESTINGHOUSK 29$10 WITH 2.33 MIN WALL LOOP 1 REACTOR CDOLANT CROSS OVER LEG FURNISHEO BY MESTINGHOUSE 31"IO VlTH 2.18 MIN WALL LOOP 1 REACTOR COOLANT COLO LEG FURNISHEO BY WESTINGHOUSE 27.5 IO WITH 2.21 MIN MALL LOOP 2 REACTOR COOLANT HOT L EG F URNI SHED BY ME ST INGHDUS E 29"IO MITH 2.33 MIN WALL LOOP 2 REACTOR COOLANT CROSS OVER LEG FURNI SHED BY WEST INGHOUSK 31$1D WITH 2.18 MIN WALL LOOP 2 REACTOR COOLANT COLO LEG FURNISHED BY'WESTINGHOUSE 2 7.5 10 WITH 2.21 MIN MALL LOOP 3 RKACTOR COOLANT HOT L EG FURNISHEO BY WESTINGHOUSE 29 IO WITH 2.33 MIN WALL LOOP 3 REACTOR COOLAN'f CROSS OVER LEG FURNfSHED BY VESTfNGHPUSE 31$ID WITH 2.48 MIN MALL LOOP 3 REACTOR COOLAN1'OLD LEG FURNISHEO BY WESTINGHOUSE 2 5$f V 2 21'.OOP 1 HOT LEG INLETTO SIS H I 8 LO HO RECIRC R.E V~t<uv~ii~lu (es~~8<44>D Of~wzwsw pa%i g T 00 O SYSTKM RC RKACTOR COOLANT UNIT 41 LINK LIST REVISION 18 (02/29/1984) UNIT 41 CAROLINA PONER 8 LIGHT CO SHEARON HARRIS NUCLEAR PO'NER PLANT PAGE 654 REPORT SYSTEM RC IDENTIFICATION S NOMINAL Y SIZE CHAN/8 S (IN)LINE NO~S~S~S~S$$$$$~~S RC 3/4 I ISA PIPE NALL THICKNESS OR SCHED.sssrdrsss SPEC 0.0$$~$$$~$$SCH 160 MAXIMUM PRKS SYS OPERATINQ O'ESIGN STD.HYDR IDENTITY PIPK CODE-OR TEST artsd<<st~sssd~s~s PRES TEMP PRKS TEMP ANSI PRES CLASS MATERIA!.PSIG (F)PSIG (F)RATG PSIG~s~$$$~$$$~s~$~$$$$~s~s~$~s sr r ares s~s~ASIIE 111 SS-I 2485 644 2485 650 5500 3108 2 A-378-304 INS-I ULA S TION GRP.s ssrs 8 STRESS ANALYSIS SEIS THER-MIC-MAL~s sr~r~s I-H YES RC 12 12SA SCH 140 ASME RC RC RC RC 2 13SN SCH 160 14SN SCH 160 15SN SCH t80 ISSH SCH 180 ASME 111 I ASMK'Ill I ASMK 111 ASME III 2485 55-2-376 3 S 24 5 A-376-304 SS-I 2485 A-376-304 SS-1 2485 A-378-304 55-5 2485 A-378-304 644 24S5 650 1500 3108 644 844 2485 850 1500 3108 844 2485 850 5500 3108 RI~)~15~5 1ooo 3 100 I-H YES 8 I-H YES I-H YES I-H YESygkht 2 Rc Os 3/4 2 RC 3/4 2 RC 3/4 2 RC~'4'I)g~l RC)~I RC k'Q I RC 3/4 17SN SCH 160 ASME lll SS-I 2485 5$8 2485 850 1500 3108 C 2 A-376-304 ISSN SCH 580 AS15E Ill SS I 2485 58S 2485 650 1500 3108 C 2 A-378 304 19SN SCH 160 ASMK lll SS-I 2485 5$8 24S5 850 1500 3508 C 2 A-37b-304 20SN SCH 180 ASMK lll SS-5 2485 5$8 2485 650 1500 3106 C 2 A-378-304 2150 SCH 150 5535 lll 55'I 2155 olol2ioo 5~5 1500 3105 I A-378-304 22SN SCH 160 AS51E lll SS-I'485 5SS 24SS 650 1500 3t06 C A-378-304 I-H YKS I-H YKS I-H YES I-H YES I-H VKS I-H YES I-H YES~<~maid~rzvtss~client>S(23SH SCH 180 ASMK 111 SS-I 24S5 5$$2485 850 1500 3108 C A-376-304 R K REMARKS V ssr~rss~s~$~sss~sssrss~s~ssr ss LOOP I HOT LEG TO PI 405 ANO 00 PT 403 1 VALVE 2 RC V 1SA 13 LOOP 5 HOT LEG OUTLET TO RHR 00 SY T LOO 5 T LEG UTLKT RC RTD LOOP I HOT LEG OUTLKT TO RCS 00 RTD LOOP I HOT LKG OUTLET TO RCS 00 RTD LOOP I HOT LEG OUTLKT TO RCS 00 RTD BUTT MELD ENDS VALVK I RC V, 2SN 13 VALVE 1 RC V 109SN 13 LOOP I CROSSOVER LEG TO FLON 00 TRANSMITTER 4 56 I VALVE 2 RC V 3SN 13 LOOP I CROSSOVER LEG TO FLON 00 TRANSIII TIER 4 55 I VALVE 2 RC V 45N.53 5.OOP I CROSSOVER LEG TO FLON 00-TRANSMITTER 414 1 VALVE 2 RC V SSN 13 LOOP 1 CROSSOVER LEG FROM FL 00 ON TRANSMIFTKR RETURN I VALVE 2 RC V 65N 13 5.00P I CROSSOVER LEG INLET T 00 0 RCS RTO I VALVE I RC V 5055N 13 VALVE I RC V 5405N 13 LOOP I CROSSOVFR LEG OUTLET 00 TO NPS RCOT PUMP 1 VALVE I RC V RSN 53 VALVE I RC V I SSN 13 LOOP I CROSSOVER LEG TO CVCS 00 NORM LTON 5 VALVE I RC V 500SN 53 EBASCO SERVICES INCORPORATED bY I-25-CNKD.bY~DAT'E f~$4>Q(Qlg p lA'(0 L'L GVl 7 (QWlP+<<Iv~'p, V (p/aA<e-8O 0~HECT DF I 3 5QP gg~u QAg.g.i5 QOC.LEAfL PCluJ<W HsN waa~.TH~M w<s<hLeo aw, w vol, 4lHc~Eh~cH6p Lt4e Ll~~PbR,Pa~a.WM'O~PC 4~OF TH>S~iCg~aWDV i>%0 Vt~Smy k<vi oxeN wasv mac V~~wS wee~Otcn~T/4~w~~atoN $l.'l.OW b OL C.E WO g.SQQ~Qg t-LHg.R.z peamc.t.I)SSNC.C~ifaCP'~V"%auld a4R-SA-f't-3<Re IC 2)LIME L(s7 wcL, l$49-B<>c')7 3 QQf-g5-I4e P)pp gALL>Cgu~g 4, ScHK OUIJA 9)QPN'>>Y(i@I PM~%R PlPLuC~PE AQ<l S<)I'97l THQQ@(ATE~P<Pi&4.CAmmg%0.Ho.LO QW, SUMt l,t f>W)Ci)A<Ho 5eaZWSI~lit(4>~mu 5 F91'5 5p.g p g G'~~P a>~c Sow SHEET OP 2 3 a@a NO~'~'~~O.'BASCO SERVICES INCORPORAT ,I-<'E-r f......,~~..~>-"I gib%le V'4.-9.L IA'T<+OPAL PlloJEcT 5 gc.Hh<~(L U t.t+Q'P~~~l u~hid TH<vB5 WL<w+KT<<A W(4\K'4 E'E'6 ATTICA'CD Ll i~L<)I~7<X C.a~~w(n,~~(')f (<U')(/)g.own" LL~~ii%7 FMit RaF'r g.CH C%(<)k g5)d.~m (Lief a l%T} SYST)M P~DKSICN PRESSURE.PSIG T~DESIGN TEMPERATURE, F 0'I LINE DEIIGNATION NO.'5CC 9'IITAONCG5 LI II%L'I 0 (ES PIPE SPECIFICATION IL GRADE E~ALLOwaBLE STRESS, PSI D~OUTSIDE DIAMETER OF PIPE, IN.C~ALLOwaNCK FOR MINIMUM STRUCTURAL STABILITY y COKF FICIEHT m~MINIMUM PIPE WALL THICKNESS, IH, (Sre HOTE 21 n~NOMINAL WALL THICKNKSS, IH.(Ser NOTE 3J FIRST STANDARD SCHEDULE THICKNESS KQUAI.TO OR CREAT ER THAN SCHEDUI.E (CORRESPONDING TO s)SCHEDUlE SELECTED C), C)Q ID~INSIDE DI AMET E R OF PIPE, IN.(See HOTE 1)C W ALI.OWANCE FOR MINIMUM STRUCTURAL ST ABII.ITY y~COK p FICIEHT m A MINIMUM PIPE Wat.L THICKHK 5S, IN.(Sre NOTE 21 n NOMINAl WALL THICKNESS, IN, (Srr NOTE 3)s~FIRST STANDARD SCHEDULE THICKNESS EQUAL TO OR CREATER THAN SCHEDULE (CORRESPOHDING TO s)SCHEDULK SELECTED~PvIDe2SE~2 PC+B 2 (SE+Py P)se either of the following equations to determine tm: BASED OH OUTSIDE DIAMETER BASED ON INSIDE DIAMETER (Sre NOTE 1)P<D C 2 (SE v Py)C 00 Allowonce (or minimum sttuctvrol stobil0ty 00 0.065" for)/2 to 3.)/2 inch nominol pipe sise BE 0.000 (or i inch nominol pipe siss ond lorger-SETE Mosimum ollowobl~stress in moteriol due to intemol pressure ond jo0nt~f(iciency, ot the design temprroture, psi.B 00.038 lor pipe ordered to speci(ied mochined I.D, with tapered bocbfng ring ond ertruded pipe specified by I.D.with topered beeline ring.00.000 for the above pipe with fist becoming ting or othet types of pipe with ony Design Guide M-d boching ring.y EB A coef(icient hoving volues os (ollows: (See NOTE@)TEMP.F Ferritic Steels Austenitic Steels 900 AND 0 ELOW 95D 100D 1050 1100 1150 AliD ABOVE DA 08 09 B.T O.T 0.7 OA OA OA O,d 0,$0.7 NOTE 1 Use rreci5990099 possibfe insidr di'oVNerrr with oil its references en Evoff thfclnrts oildovrsfdr C'Iomrrrrs, ercept for pipe ordered to specified mochinrd.I.D. ond rstrvdrd pipe tprcif.rd by I.D.Bvhrrr note 8, porrgioph 4, of Design Guide MHE45 governs.fvOTE 2 The pipe woff th cl rss rEI iredf<<o g'n p~cs<<e rr pr et<<e condition I c roses os pipe rise increosrs. NOTE 3~F<<srrr91(rss pipe vsr~gg 1 for ony sire of pter~pipe, odd 0.010 inches to the cofcvfored m te obtain tn NOTE d~Thr vefve of"y moy be'jnrrrpoforrd brrwrrrl 50 F vefvrs sho90n obove.For nonferrous motrriofs ond cost iron vc~y~O.i.'GENERAL HOTES.Srr Drsigri Gvi'dr AINE d5 PI'pe Lfnr Siring w for specific infonnotion CI IKNT Qf)Est@is HP Ir'<ver@-<I'LCiH s C~yqp(EB sl gN aosKcT 5 g.0.~%&A(Lated sit3c L~7+'s~((ti.AH%S~i 3 ot=g STANDARDIZED WORK SHEET PIP E WALL THICKNESS AND SCHEDULE DETERMlNATION C00KCIIKD APPhOVKD c5 ii00 N NCC tsvrcrvlsorr DATE WORK SHEET t'f)KIO.SJ)0 52+S7 MHE WS)6 Kg*geo sKavrcKs tttcoapoaaTKD)MECHANICAL-NUCLEAR ENGINE ERING EBASCO SERVICES INCORPORATES OFS HO.bY I 2 CHKD.DY~DATK~k\cLlfHT~~L L ply Qo~4 IL%QL GKT Cotl'PhKL C//~)Ci f/@P SHEET-OS 5gq gg~~LL4g.LL.L> QQC.L.EAg. VOu.'<W lI~I Sub~aCT+Lg Vane.l.'THL~WWC GAL-CUik~i~Q f'c'-L l LHC KS~8Ef Vl L6 UL Pbas DSL.=: 'TILE'LI>P<4t OF tilt C4,L.Cgig~oQ LS tO V'KQIPQ WK III AII I ITIN WAI I.TIGRIS'-V IOAW'I IAIEEETIIIEE tiEla T/<oIEA<<IHN P L.L.OLA WWLC.F WOg.Su,S~C<L LNE.RC PC R.AaC.%.1)66WSCa~ipse.i&LC.C TLCQ CAR-SA-tq-3~Rru.IC 2)LLuC=l i'e I>t 9-B 4'7+~.'l7 1 3j P gf g5-'l4 PLPg ghLL.>CgV~5 4'SC.llew OQWC'P<7l:PML<4YL ~LAI PLPLILCs~PF AIL<I B~L~$)9 jl TLLQO 9 I'L'l3 5)MA,V~PLPLe44.C.h~imQ%.b.He.LO Reu.S'UILC I,L'7'f)C)AHA@-.SE OBSESS~IR 7I h'IO~au 5 IQV3~~4~LQ 5Lbl4/-b/tIog IS PDS CPVA75, SF.SA C,C.a S ACFe SAP E'-~MO<<OAi A,/Pl~~F 5h'E~E P,LC'Z 3 5HEET~OF OTE HO.HO.KjjP 3 i HEPT.g'3 Cl EBASCO SERVICES INCORPORAT .I-<<-r f CHKO.OT~OKTE~~1 Me,cii~h Vi"c.O~iC.~t c~Po.~EHEIECT EK l h u'l H TEI CiLHILih WLC IE LIKE IHHI 7-(E LI'El f'OEO.OTITHCCO~TP EI I LI5 I S=~~LL-C.G)4).oz4/CI~=+y,.AS LL<%.<L%+Fmiw agq.~<<~~c.~(a)k(s)g.Z97 g.gg7)(.P7)=Q,O'L(o J" (i<we<ized)O.god f-O.ou.I L<<'i 0 v<5.LSTL'5'Iim ~ESJIR rR(r.~'~-AM~'A CW>trk~'1 NISE IA 1 S I P.DK SIGN P RE SSUR E, P SIGF T~DbhlGN T EMPER ATURE, F~l'IPE SPECIFICATION b GRADE~d5-f SE~AL LOtr ABL E ST R ESS, PSI M OUTSIDE DIAMETER OF PIPE, IN.C~ALLOtrAMCE FOR MINIMUM STRUCTURAI. STABILITY y COEFFICIENT m M kiIHIMUM PIPE WAI.I.THICKNESS, IH.(See NOTE 2)n~NOMINAL WAI.L THICKNESS, IN.(See NOTE 3J~~FIRST STANDARD SCHEDUI.E THICKHESS EQUAI.TO OR GREATER THAM SCK E DUL E (COR R ESPOMDING T 0 s 1 SCHEDULE SELECTED E),O~0 O,z37 ID~INSIDE DIAMETER OF PIPE, IH.(See HOTE 1)C ALLO AMCE FOR MINIMUM STRIICTURAL STABILITY y 0 COEFFICIENT m~MINIMUM PIPE WAI.I.THICKNESS, IH~(See HOTE 0)tn M NOMINAL WALL THICKNESS, IN.(See NOTE 3)s~FIRST STAMDARD SCHEDUI.E THICKNESS EQUAl TOOR GREATER THAMSCHEDULE (CORRESPOMDIHG TO s)SCHEDULE SELECTED PTRID+2S C+2 P S 2 (SE+Py-P)se either of the following eqvotions to determine m: BASED ON OUTSIDE DIAMETER BASED ON INSIDE DIAMETER (See HOTE)J I C Pi D 2 (SE v Py)C 50 Allowonce (or minimum atrvctvrol stobility EE 0.065" for 1/2 to 3 1/2 inch nominol pipe site EE 0.000 for 4 inch nominol pspe siss ond lorger-SEER Mosimum ollowobl~stress in moterlol due to internol pressure ond joint effic(ency, ot the design temperorure, psi.8 05.038 for pipe ordered to specified machined 1.D.with topered boc'king ring ond ertrvded pipe specified by I.D.with top'ared backing ring.BR.000 for the obove pspe with f lot bocking ring or other types o(pipe with ony Design Guide M-IS boc'king ring.y BB A coefficient having wolves aa follower (See NOMe)TEMP.F Ferritic Steel~Avstenitic Steels 900 AMO BELOR 950<000'1050 1100'150 AMO ABOVE.OA 08 OT O.T O.T 0.7 D.d OA 0.d 0.4 0.5 0.7 NOTE)Use moEimLETT petaib)e<nside dlomefer with oil lrs rolenBdces on well rhicbneta o<<dolrralde d<'ometeFS,~ECept (or pipe ordered to specified mochined J.D.ond estrvded p:pe specified by J.D.where nore (L p<<og<<rph 4, ol Design Gv<'de MMES tfovems~FDTE 2 The pipe well thickness 909tu(red for 0 give<9 p<ettvre remperotuF ~cond<t<on increases os pipe s(te increoses. tECTE 3~For seer<(ess p<pe vse~;for ony~Ise el plo<~pipe, odd 0.0)0 inches to the co(cu(ored tm re obroin 50.NOTE 4~The volve ef y moy be into<pe(ored betwee<R 50 F volves shown obove.For nonferrous moteriols ond cost (<on use y~0.4.GENERAL, NOTES.See Des<gn Gv(de MNE.dS Pipe Line Sising<<for specif<c in%%drmot(on. S~i S ot=g Q&~OL<WP.9c..eyt.<1 kC-HŽB (-~O~P(s STS)M'AR<ART~5%ALB N<AAILILIB TAUT Lvve rR A.l<sic<5'I4T OATC c'z.~-f9 STANDARDIZED WORK SHEET PIP E WALL THICKHESS AHD SCHEDULE DETERMINAT)OH c SAScO sett Ytcc5 ttEcortportATco MECHANlCAL-NUCLEAR ENGIHEERlHG A P Pit OY CO 9~v~cev ssoer OATC WORK SHEET t))zrd.8/+rd$zy MHE-WS 16 ~, l'~vVEE~VIEtl E 4 V IY Cg DATE i CHKD.SY M DATE'I~~1 L'hie T'~iA-'0<4a GKV COt'it i<>C~-P,L m t 3~HEEE-Of PgDyEQT 5'<+gw ioi Lid.P.L4 hLV C.L.EAR.7'0 u'wW+~\Nlll WAl.g'THLCENI a'i CAEClEEktfOOE f'QR UtlE'SKS~MPH t.the L.L'KW Pbaeawi:-.<A<V'L~>W~>~~F~i>~lCg<amoe LS~O VZaymy Hl Ml EbllN W A l l.ilil C lEt46E'R Q 8+ULEEE tlEhl+/C lEA EOl HO Pl g OW iAX~C.P WOg.$0+~gg L LHC~Q,~pea,~a-v: L)gegSC.C eegC.iVi<t ~LOH CAN-SA-t'L-><RCV l4 2)Liu~L.iCy~e i>t Q-BO'Va ter.)7 3 Nut-W5-14 vier WiLl TH Cgoe~+SCLLe OaiC ygTLpo>W>riov P~~~a PLeiulMOi OLL~L S~L.~>ZVL~ALLO S>1~3 MAM~PLPie4C.CO~iu 4%,0.NC3 LO Reu.SUI4C I,LC>9)I)AOKC SEOgfOOf~lfivl hiO~au 5<<l13 C~C'.we Sided.'l-+ooq IS p Dl Q>aft, Il Ef.P u.flu*OfCA-RP CCIEIEOf IOAI Ii~~0.cSV'0/I+1 Zgcr, Bl/4 Z7 C6 i::..~'~)a h~~~C.U ie'.~uter viii s av CHKP.bY M~PATE I CLIEHT W'Edit NA.V G V-'S.g-ill A$C~+PAt4 Q.PL~2 SHEET OF~pip~~~.OEvt.y 30 P 0 E T~~p Qg HhRA lS, util,WQ..VO+cL+Vibhu S SUBJECT 4 l fE u'.t.<TRL~QHX WALI W7(b&W'L<l L ll 6'SQg 4~g%D Q~+~LL)l vs~m~~ca C.@)o.o gran

SYSTEM LIHE DESIGNATION HO.~CE PL~4<H%.'D L Kt IOE U'5 5 I P~DESIGN PRESSURE, PSIG T~DESIGN TEMPERATURE. F i IPE SPECIFICATIQN d GRADE E ALLOwaBLE STRESS, PSI CS-I A/0C" 5I3 D OUTSIDE DIAMETER QF plpE, IH.C~ALLOwaNCE FOR MINtMUM STRUCTURAL ST ABILITY y COEF F ICIENT m MINIMUM PIPE WALL THICKNESS, IH.(Ser NOTE 2]n~HOMINAL WALL THICKNESS, IN.(Sre NOTE 3l FIRST STANDARD SCHEDULE THICKNESS EQUAL TO OR GREATER THAN SCHEDULE (CORRESPONDING TO to 1 9 SCHEDULE SELECTED 0, C7+ID~INSIDE DIAMETER OF PIPE, IN.(Srr NOTE l)C ALLOWANCE FOR MINIMUM STRUCTURAL STABILITY y COE F FI CI EHT-MINIMUM PIPE WALL THICKNESS, IH.ISre NOTE I tn~HOMINAL WALL THICKNESS, IN.(See NOTE 3)s~FIRST STAHQARD SCHEDULE THICKNESS EQUAL TO OR GREATER THAN SCHEDULE (CORRESPONDING TO s)SCHEDULE SELECTED~PN ID~2SE~2 PC 2 (SE+Py-Pl se either of the following equotions to determine m: BASED ON OUTSIDE DIAMETER BASED OH INSIDE DIAMETER (Sre NOTE II~v-0 PVE D 2 (SE v Py)C 50 Allowance (or minimum structurol stobility 00 0.065" (or 1/2 to 3 1/2 inch nominol pipe eisa 00 0.000 (or 1 inch nominal pipe sis~ond larger SELv Mosimum ollowobl~stress in'oteriol due to internol pressur~ond joint~fficiency, ot the design temperoturr, psl.B n.038 (or pipe ordered to sprcified machined I.D.with topered backing ring ond ertrudrd pipe specified by I.D.with topeled backing ring.00.000 (or the obove pipe with (lot boching ring or other types ol pipe with ony Design Guide M.4 boclaing ring.-y A coefficient hoving volues as follaws: (SeoNOTE4] TEMP.F Ferritic Steels Austenitic Steels 900*NO BELOW 950 1000 1050 1100 1150 BNO ABOVE OA 08 0.7 0.7 0.7 0,7 OA OA OA OA 0.5 0.7 NOTE l v Vtr mrsim5099 pOSShble inshde diameter with oil its tolrhanC~S On wOII thiclnrts ond outside Ciomerrrsh ~SCEPt lor pipe orclrred to speci(1'rd mochh'nrd I D.olid rstrhhdrd p pr speci(1'rd by I D.where norr 0, poroghct5h W, o(Design Cuh'dr AIH&$$governs 0 NOTE 2~Thr p'pr<<oll th clnrss rrEtuirrd for o gi~press re tr prroture condition increases os pipe siss increases, thrOTE 3 v F<<srlsvhlrss phpr usr Qtr i for ony siss ol piete pipe, odd 0.0IO inches to thr calcu(otrd m re obtain tn~NOTE k Thr volur el"y moy-be intrrr7o(etrd between SO F voIurs shown*eve. For non(mous met<<iols ond cost iron use y s 04.CENERAL NOTES.Srr Drshg59 Cuidr MNE.65 Pipe Line Siring for specific In%%drmatlon. QM-I.Oap tr'.<L hC (A 6 t>P&S~a S ot-Q STANDARDIZED wORK SHEET PIP E WALL THICKNESS AND SCHEDULE DETERMINATION HKCKKD APPROVKD c5 SN NECN Osurcevlses5 OATK~OaTK OATK WORK SHEET if'/lg.zs)p/(s$z7 MHE.WS 16 KIASCO SKRVtCKS ttrCORI ORATKO MECHANICAL-NUCLEAR ENGINEERING TEM~F LIST REVI SION 17 (12/01/1983 )Pn 459 FIRE PROTECTION UNI T N I CAROLINA PO'WER d LIGHT CO SHEARON HARRIS NUCLEAR POWER PLANT UNIT 2$1 REPORT SYSIEM)FP PIPE WALL THICKNESS OR SCHEO.~sasd~~as SPEC 0.0~S~S~$$~$SCH 40 80-P 2 Fr 1195M SCH 40 IDENT IF I CAT ION C 5 NOMINAL A Y SIZE CHANL d T 5 (IN)LINE NO 6AF.C.~~~~~~~~~O,2 FP 6 I l626 PRES SYS STO.HYDR OR TEST ANSI PRES RATG PSIG~~~~ST~~150 219 ASME 111 C5-1 2 A 106-GRB 160 105 175 125 150 219 MAX I MUM OPERA'TING DESIGN IDENTITY PIPE CODE-~aasds~Sa aa~Rdsssa PRES TEMP PRE5 TEIIP CLASS MATERIAL PSIG (F)PSIG (F)~as~sss~~~ss~$~~~$$RRRS~~s~s~ss RS~S ASME 111 CS-1 160 105 175 125 2 A-106-GRB STRESS INS-ANALYSIS I ULA-5 TION SEIS THER I GRP.-MIC-MAL~~Ssa~$$~ASAR I YES I YES R E M A R K 5~s s~~s R a s s R~s~R R R s s s R R s R 6'6 R R FP TO CONTMI'LDG SPRINKLER SYS 1 VALVE 2 FP V aSSn 1 VALVE 2 FP V 46SN FP TO CONTMT BLDG R E V~R 00 13 I5 00 2FP 1 80 2 FP 1205N SCH 80 1215N SCH 80 ASME 111 2 ASME 111 2 C5-1 A-106-GRB C5-1 A-106-GRB 160 105 175 125 150 219 160 105 175 125 150 2'I 9 VALVE 2 FP V 1 VALVE 2 FP V I YES FP TEST CONN 1 VALVE 2 FP V I YES FP TEST CONN 445A 13 48SN 13 00 475N 13 00~~SFP 3 8op 8FP 3 80-P 8 FP 6 go-'FS FP 3 8FP 4 8FP 4 8FP 4 122 123 124 SCH 40 831.1 125 SCH 40 831.1 126 SCH 40 831.1 127 SCH 40 831.1 128.SCH 40 831.1 SCH 40 831.1 SCH 40 831.1 C5-2 A-53 GRB C5-2 A-53 GRB C5-2 A-53 GRB C5-2 A-53 GRB C5-2 A-53 GRB C5-2 A-53 GRB C5-2 A-53 GRB 160 105 175 125 150 2 10 160 105 175 125 150 210 160 105 175 125 150 210 160 105 175 125 150 210'160.105 175 125 150 265 160 105 175 125 150 265 160 105 175 125 150 265 50 SD SO SD SD SD 50 NO HOR TO SPRINKLER SYS IN CONTMT BLDG NO MOR TO SPRINKLER SYS IN CONTMT BLOC NO HOR TO SPRINKLER SYS IN CONTMT BLDG VALVE 8 FP V 249 NO HOR TO SPRINKLER SYS IN CONTMT BLDG NO FP RISER IN CONTMT BLDG COL 19,POST SSE STANDPIPE 1 VALVE 8 FP V 50 NO'FP RISER IN CONTMT BLDG COL 12.POST SSE STANDPIPE VALVE 8 FP V 51 NO FP-RISER IN CONIMT BLDG COL 4,POST SSE STANDPIPE VALVE 8 FP V 52 1 VALVE 8 FP V 250~l3 ll 13 ll 13 Ob o dot Ape'~'~<V~ go mg<~p~vlowdevgm~~ 5YST EM lOOlr)P~Df SIGH PRESSURE~PSIG DESIGN TEMPfRATURE, F PIP f SPECIFICATIOH b GRADE 5 ALLOWABLE STRf$$PSI 0 c (8'" LINE DESIGNATION NO.iSO AS'S-I-/f7(.5cj)8/S ooo OUTSIDE DIQrlfT f R OF PIPE, IH.C~ALLOWAHCE FOR MINIMUM STRUCTURAL STABILITY y COEF FICIENT m v MINIMUM PIP f WALL THICKNESS, IN.(See NOTE 2)n~HOMINAL WALL THICKNESS, IN.(See HOTE3)tov FIRST STANDARD SCHEDUI E THICKNESS EQUAI TO OR GREATER THAH SCHEDULf (CORRESPONDING TO ta)SCHEDULE SELECTED I5',oo" l~~INSIDE DIAMET E R OF PIPE, IH.(See NOTE))C~ALLOWANCE FOR MINIMUM STRUCTURAL STABILITY y-COEFFICIENT. ~MINIMUM PIPE wALL THICKNESS, IH~(See NOTE 21 n~NOMIHAL WALL THI CKHESS, IN, (See NOTE 3)FIRST STANDARD SCHEDULE THICKNESS EOUAL TO OR GRf ATER THAN t SCHEDULE (CORRE SPOHDIHG TO a)SCHEDULE SELECTED PII ID+2$E~2 P 2 ISE+Py-P)se either of the following equations to determine m: 8ASED ON OUTSIDE DIAMETER 8ASED ON INSIDE DIAMETER ($~NOTE)I+Px 0 2 (SE~Py)CED Allowance for minimum structural stability BB 0.065" for'I/2 to 3 1/2 inch naminol pipe siss BB 0.000 for d inch nominal pipe also ond larger-SEBI Maximum ollowobl~stress in materi ol due to internal preasur~ond joint~fficlencyr ot the desfgn temperature, psi, 8 BB.038 for pipe ordered to speciRod machined I.D.with topered backing riny ond extrvded pipe specified by I.D.with tapered backing~iny.Bo.000 for the above pipe with flat backing~iny or other types of pipe with ony Design Guide M 6 backing ring.y BB A coof(icient having voluea aa follower (See NOTE d)TEIAP.F Ferritic Steels Austenitic Steels 900 AND 8ELOW OA OA 950 0.5 OA 1DDO 0.7 OA 155D D.r OA 0.7 Od 0.7 0.7 11DD 1155 IIIO ABOVE v T QACOLL HP tr'c5v>LTT- <LLC Iw~l CD~pox STANDARDIZED WORK SHEET PIP E WALL THICKNESS AND SCHEDULE DET ERMINATION STATION QOJKC'T 5 (L46 BAIZE.I 5 bS)3 ct\~II Irsxa CHCCKCD C I-~7~ill.QiAP3V g DATC CSASCO SKttVICKS IICCOllPORATKD l-~r MECHANICAL-NUCLEAR ENGINEERING DATE g/Q, I p 2.g 7WORK SHEET MH EDWSv)6 s EBaot195at9 NOTE)Use marfmcrrc possible insicfe Ciamerer with all It!rofenBnces on wall thfcirIess and outside cfiamerers, except for pipe err(ared to speciRed machined I.O.one(extrvcfed pr'pe speal(ied by l,O, where note B, parcrgrca5h i, o(Oesiyrc Gvr'da MHE4$governs.NOTE 2~The pipe waif rhIC iness trctBr'red (ar o y fvec9 Pres svre remparorvre concfr'rien increases oa pipe Sire inC reases.NOTE 3-For seamless pipe vse~;fcr~ony sire of pfore pipe, odd 0.0)0 inches te the calculated m ro abroin n.NOTE d~The volvo ol y moy be inrerpafared between 50 F valves shown above.For non(anovs mareriols crcd cost fran cze y~0.4.GENERAL NOTESO See OasI'gn Guide MHE 6$Pipe Line Sisiny~far speci(fc information. EBASCO SERVICES INCORPORATED pavE CHKP.IY pavE 5HE EV OrZP pr5 Hp G ktK 33~ap.', H>q Wg<l.THAN+ 5~AS C<LCuiaiOa f'OC.COm/CnPn7-/in" caiE~V~CLOLl E i>PP w 4 0 4 l l GA 7 C<l Lt hW~5QQ ggog ll+Q.P.(h bLUC-l CAR.rO~~W>m i Ga/CCi (a f'0>>~~PbR.Pc St.'TH%'O>t<4<F~l'5~l CQl Q~oQ lS'Ta V~~l~y WlK kl Ml NON WAl I.t%le VNL&%l4f+ullTent&T/e~<T<l~'N gl.L.4W 4i<C-L=, WO C.SOS Wc q l-lHK.R,Cc PC Q.Ch4C.%.I)SSWSC.C WeaaiwiC.CV<OO Wa-SA-tq-3~Re.IC, Z)l.lug uSC~e l>r q-lg C~O aCV.55 e 3j HuK WS-l4 D<PP Wall.~CgV~5, C SCAN Oui'g~lEWiuarioe 1~~%'R PlPll5Cs~PL.fall%(B'3l~)'I<7l YH5LQ 5'l l'l3 IJAV~PLPle4C ChTa u'%,5.NO.LO RRV.SaJMC I, tR>'t)C)A<Be 5tezc~H~11'll to Mau 5)175 LQ 5/dt's f<<eoeh L;ne ed'h.s gys-/equi ChE'Pcdcxv(Corrosi'on Ql/g~q<ce ('s'recTdei-Phon 81(p SPeC;fice(+PI)og ence.T$eie f'~re,+he I'cg/(dh c4ners jJ cydeI, gape&r e~ch I.ae'5ESIMS EBASCO SERVICES INCORPORA7ED I Te~)f CHKD.bY.)LC DATE CLIENT~Re<L QA.V O u-'%9-4 LC Qf'~'ttPAt4 OFS HO.SHEET OF~3 pf PT.NO.8/d.c i Sub>ECT NL H~A l-4 TIL'MGA~L~~T<<<WP-4%Q 6].-g 4/S'tv~(gg~g y~g~p 4)G.OPh'a=(+>>ossa') -t Li&%<\4',p zs (Lief<LCT)Zid.8)zX z7 0 ~iw 9 e.~~SvSTEM C C P DESIGN PRESSURE, PSIG DESIGN T EMP E RATURE, F PIPE SPF CIFICATIOH S GRADE SE~ALLOwASLE STRESS.PSI~~LINE DESIGNATION NO.S'0 Ps5-I.--0'68 ls ooo D OUTSIDE DIAMETER OF PIPE, IN.C~ALI OWAHCE FOR MINIMUM STRUCTURAL STABILITY y COEFFICIENT m 9 MINIMUM PIPE WALL THICKHESS, IN.(Set NOTE 2)n~HDMIHAI, WALL THICKNESS, IH.(See NOTE 3)~FIRST STANDARD SCHEDULE THICKHESS EDUAL TO OR GREATER THAN g.9'2?SCHEDUL E (CORRESPONDING TO~)SCHEDULE SELECTED Sc/g ID~IHSIDE DIAMETER OF PIPE, IN.(See NOTE l)C~ALLOwANCE FOR MINIMUM STRUCTURAL STASILITY y~COEFFICIEHT 'MINIMUM PIPE wkLt.THICKNESS, IH~fSee NOTE 2)tn Y NOMINAL WALL THICKNESS, IN.(Set NOTE 3)FIRST STANDARD SCHEDULE THICKNESS EOUAI.TO OR GREATER THAN SCHEDULE (CORRESPONDING TO s)Sch/0 SCHEDULE SELECTED Use either of the follow>P 55 IO0 2 SEC w 2 P C 2(SEc Py P)'ng eqIIotiona to determine tm: BASED OH OUTSIDE DIAMETER BASED ON INSIDE DIAMETER (Ste NOTE II 0 P5 D 2 (SE w Py)C w Allowance for minimum strvcturol stability 88 0.065" for 1/2 to 3.1/2 inch nominal pipe also 88 0.000 lor 1 inch nominal pipe cise ond lorger-SEe Mosimum ollowobl~stress in motorial due to inttmol pressure ond Ioint~fficiency, ot the design temperature, psi.B w.038 for pipe ordered to specified machined I.D.with tapered backing ring ond estrvdtd pipe specified by I.D.with toptrtd boching ring.80.000 for the obove pipe with f lot backing ring or other types of pipe with ony Design Guide M.1 backing ring.-y 88 A coefficient having volute os follawat (See NOTE@)TEMP.F Ferritic Steels Avslenitic Steels 90D AND 80LDW 950 1000'1050 1100 115D AND ADDYD 0.1 0.5 0.9 D.i D.i 0.7 OA1 OA.OA1 0.1 0;5 0.7 NOTE l Qst mesimum possible inside direneter with oil It~tefenmces on well thrclIness oncl outside diameters, tecept fer pipe ordered te sptcified mechi'ned I.b.ond tstrudtd pi'pt specified by I.D.where nett d, poiogieph 4.of Design Guide MHEAS governs.NOTE 2~The pipe well thicbntss rteuIred f>>o yiven pressure temperature condition Increases os pipt sist Increases. NOTE 3 For sersrifess pipe~st~jTfor ony sist of piers pipe, odd 0.010 Inches te tht cercvlartd m re obroin n NOTE 4~The value ef"y moy'be inrtipeiered between SO F veiuts shown obcwe.For nenfeneus moreriois rsid cost Iron ust y~0.4.GENERAL HOTESD Ste Design Guide MH&5 Pipt Line Sisiny for sf>>el(is Inlbnnotien. .7 Q~C.(HO pouutTT-e t KC Hi C<tqP(s 5TATIOH PROJECT 5 9-cs&LhAKyl 18 400 II IIICS CHECKED~13e t.~WwC~QiAt4T~C Pf-OATE STANDARDIZED WORK SHEET PIPE WALL THICKNESS AND SCHEDULE DETERMINATION ESA5CO SERVICES INCORPORATEO MECHANICAL-NUCLEAR ENGINEERING s P09889959e95 (5)8/d 96I/I g~ORK SHEE'T 5 z7 MN EAW 5.16 OFS HO EBASCO Sr R V'1~<~iHCORPORATED I<"'v" aevi~~Olfl(6.SYA~DATE'~~CLIEIIT CA.'Rail VK V C u-'rP-<L4 W<N 4 v taoiacv~~Rh Q4.[R 0<tFAA2-V A'P<AH a sueieav QLN wkly<Tll uGA WLCA~T<<W W(l (4 6 STREET I oF OE>T.ICONS (~~=PDo aQscw~y)yg C)(t 62.S)+~Z (Izooo+tb>x c7.<)27

9 kg/SYSTEM (P DESIGN PRESSURE.P SIC DESIGN TEMPERATURE, F PIPE SPECIFICATION 4 GRADE SE ALLOWABLE STRESS, PSI LINE DESIGNATION HO'.2ao cs-i)KI-/0&&RB/5 L3OO.o.'(5a (" 0 OUTSIDE DILMETER OF PIPE, IH.C ALLOwAHCE FOR MINIMUM STRUCTURAL STABILITY y COEFFICIENT m MINIMUM PIPE WALL THICKNESS, IH.(See NOTE 2)HOMINAL WALI.THICKNESS, IH.(See NOTE 3)s w FIRST STANDARD SCHEDULE THICKNESS EQUAL TO OR GREATER THAN SCHEDUL E (CORRESPONDING TO s)SCHEDULE SELECTED 20',ZW S7O ID~IHSIDE Di AM ET E R OF PIPE, IN.(See NOTE 1)C~ALLOWANCE FOR MINIMUM STRUCTURAL STABILITY COE F F I CI EHT m~MIHIMUM PIPE WALL THICKNESS> IH~(See NOTE 2)n~HOMINAL WALL THICKNESS, IN.(See NOTE 3)FIRST STANDARD SCHEDULE THICKNESS EOUAL TO OR GREATER THAN SCHEDULE (CORRESPONDING TO')PSKID+2SE o 2 PC i B 2(SEe Py P)Use either of the following equations to determine m: BASED ON OUTSIDE DIAMETER BASED ON IHSIDE DIAMETER ($00 NOTE il D+C 2 (SE e Py)e C SE Allowance for minimum structurol stobility 0.065" for 1/2 to 3.'I/2 inch nominol pipe siso Rl 0.000 for 6 inch nominol pipe siss ond larger-SEWE Masimum ollorobi~stress in moterial due to internol pressure ond ioint efficiency, ot the design ternperoture, psi.B RE.038 for pipe ordered to specified machined).D.with topered backing ring and ertruded pipe specified by I.D.with topered baching ring.w.000 for the obova pits~with f lot boc)sing ring or other types of pipe with ony Design Gvide M-4 backing ring.-y RE A coefficient having volues as follower (See NOTE@)TEMP.F Ferritic Steel~Austenitic Steel~900 AHO OELOW 900>000 1050 1100 1150 AND ABOVE OA O.S'.7 0.7 0.7 0.7 OA OA OA OA 0.5 0.7 NOTE I~Use mosll>99ESS passible inside dlcvr>erer with oil its toleronces on waif rhicinets and ourside dio>Haters> ercopr lar pipe ordered~e specified mach>ned l>D>ond esfrvded pipe Epeclfiesl lry l.D.where note d>poragrcph d>of Design Gvide MNE45 governs.O NOTE 2~The pipe wall thicirsess required for o given presture rel>>Perature ce>>d rien increases os pipe else increoses. NOTE 3 For secET>fess pipe vse~d (for ony siss or plate pipe, add 0.0lg inches to the colcvlatod m re obroin tn~>v NOTE i The volvo of"y moy be interpolated between 50 F valves shown above.For nonferrous mater>'als ond cost i>on vse y E 0.4.GENERAL NOTESE See Design Guide MNE 65 Pipe Line Slslng~for specific Information. C.T MOCi~p.P4vut~.~uC t'ai t"-i>pa',---;i0 CHECKCD El>IOEEe OATC OATC~.r O.EEn(+4,Q.Q~gt)e I IETER8.~uS A'PWAHV STANDARDIZED wORK SHEET PIP E WALL THICKNESS AND SCHEDULE DETERMINATION EBAsco sKhvrccs tttcohpohATf D MECHANICAL-NUCLEAR ENGINEERING s paar>9>vrl WORK SHEET MH E+WSe)6 'EBASCO SERVICES IHCORPORA"i'FD bY 0 a T K~+CHKO.bY'ATE~Row\ted&.V 4 u-'~<\<IA'7 c-~H At@OFS NO PgogEcT S Qc'h~t~0 L~Q V~~w~P'L~Q\5ubiECT H,LN mkL4'Tlt VGS WL<<~Y<b<WQ i'LUG 5HEET OF a9'E>T.HO v'mn m=~~m C.)(Q~~=PDa zQsc+pf)/KO~C=2(is~go irt.-(.~)) 0"gg y G'.,37'

TEM CC Pj PC gS E LIST REVI SU'I 16 (9/15/1983) AGE 115 COMPONENT ilDL ING WATER UNI I 4 I CAROL POWER d LIGHT CO SHEARON HARRIS NUCLEAR PO'WER PLANT UNI T>I REI SYSI cM cc'DFNTIF ICATION C 5 A Y T 5&$$3 CC NOMINAL SIZE CHANL 8 (IN)LINE NO~'sass~saass~s 18 2SA~t PIPE WALL THICKNESS OR SCHEO.s~aadsa~s SPEC 0.0~$$$$~~~s STD 3 CC 18 3SA STD 3 CC 18~4SA STO ASME I I I CS-I 3 A-106 GRB ASME III 3 CS-I A-106 GRB IDENTITY PIPE CODE~sasds~as asasdssa~CLASS MATERIAL$$~asssssa$$$$$$~~~ASME III CS-I 3 A-106 GRB MAX I MUM OPERA I ING PRES TEMP PSIG (F)s~s~s~a'108 116 DESIGN PRES TEMP PSIG (F)sass a~$$150 200 PRES SYS 5 ID.HYDR OR TFST ANSI PRES RA'fG PSIG a'ass~s~s 150 188 108 105 150 200 150 188 108 I 16 150 200 150 188 Cc fc<]oe~oq at REMARKS aas sssssa~ss'asa'asassss RTN HDR IO CC PMP IA-SA SUCT ION.I VALVE 3 CC 8 ISA I VALVE 3 CC 8 SSA I VALVE 3 CC 5 ISA CC PMP IA-SA OISCH TO CC tlX IA-SA I VALVE 3 CC 8 2SA I VALVE 3 CC 8 3SA I VALVE 3 CC V 162SA CC HX IA-SA OUTLET R E V as 07 13.13 13 00 13 13 13 00 3 CC 18 3 CC 18 3 CC 1S 3 CC 8 3 CC 20 3 CC 12 3 CC 12 558 STO 6SB 5TO 758 STO IOSN SCH 40 11SN STO 12SA STO 13SA STO ASME III CS-1 3 A-106 GRB 108 I 16 150 200 150 188 ASME III CS-I 3 A-106 GRB 108 1 1 6 150 200 150 188 ASME III CS-I 3 4-106 GRB 108 105'I 50 200 150 I 8S ASME I I I 3 ASME III 3 A E II 3 ASME I I I CS-I 3 A-106 GRB 108 145 150 200 150 188 CS-I 108 105 150 200 150 188 A'I06 GRB CS 108 114 150 200 150 188 A-106 GRB 8 120 150 200 I 0 I A-106 GRB 1 VALVE 3 CC 8 4SA I VALVE 3 CC 8 19SA RTN HOR TO CC PMP 18-58 SUCT ION I VALVE 3 CC 8 658 I VALVE 3 CC 8 I ISB VALVE 3 CC 5 358 CC PMP IB-SB OISCH TO CC HX IB-SB VALVE 3 CC 8 1258 I VALVE 3 CC 8 17SB I VALVE 3 CC V 16458 CC HX IB-SB OUTLET I VALVE 3 CC 8 I VALVE 3 CC 8 CCW HOR TO RCP ISSB 2058 HOR TO HX'5 g R 1 HX tA-SA INLET 166SA I VALVE 3 CC V D Q Q RH HX IA-SA OUtl.ET 13 13 07 13 13 13 00 13 13 13 00 13 13 00 00 13 00 VAI.VE 3 VALVE 3 CC 8 CC V 2 ISA 165SA 13 13

Shearon Harris Nuclear Power Plant , NRC(R i 2.R The staff has reviewed your response to Q210.77 and finds it acceptable. However, your response does not necessarily follow from the Westinghouse design specifications. The problem is that Piping Specification G-678866 is a pipe material specification and does not control fabrication. The staff believes that the appropriate place to control the fabrication of a girth butt weld is in the fabrication specification (i.e., specification G-678803). Thus, the staff recommends that the specification G-678803 paragraph 5.3 on Butt Welds, be r4.vised by adding a subparagraph 5.3.5 which would reference the minimum wall requirements in Specification G-678866.For Example: "5.3.5 The minimum wall thickness at girth butt welds shall not be less than the minimum wall thickness specified in 3.1.3 of Specification G-678866." Provide a commitment to revise your specification as suggested above or provide the basis for assuring that the above requirements have been properly incorporated into the Shearon Harris facility.RESPONSE: According to Item MEBQ210.82, the NRC recommended that the shop fabrication specification G-678803 be revised"in paragraph 5.3 by adding a reference to paragraph 3.1.3 of Piping Specification G-678866.This action is being requested in order to insure that the minimum wall thickness at girth welds made by the piping assembly fabricator is controlled. The NRC recommends this change made or that Westinghouse provide the basis for assuring that these requirements have been properly incorporated into the Shearon Harris facility.Westinghouse notes that revising the shop fabrication specification (G-678803) to incorporate the above request is impractical for SHNPP since the purchase order with the vendor (Southwest Fabricating 2 Welding Co.)is closed and the hot and cold leg piping was delivered to the site in 1976 and the crossover leg piping was delivered to the site in 1981.However, in accordance with the proposed alternate section, Westinghouse can provide assurance that the subject piping meets the requirements for minimum wall thickness in the area of the girth welds as well as the entire piping assembly.The basis is as follows:2)3)Paragraph 2.0 in Specification G-678803 for Shop Fabrication states"The following specifications, standards, or codes plus addenda form a part of this specification." Paragraph 2:1.2 in Specification G-678803 specifically lists Piping Equipment Specification G-678866 as an applicable document.The vendor's (Southwest Fabricating &Welding Company)fabrication drawing show the following in Note 22 for the different piping assemblies as follows: Hot Leg Piping Drawings-29" min.design thickness=2.27" Cold Leg Piping Drawings-27 I/2" min.design thickness=2.15" Crossover Leg Piping Drawings-31" min.design thickness-2.02" (1941 JDK/mf) 0)The vendor drawings are consistent with the minimum wall thickness requirements as stated in Paragraph 3.1.3 of G-678866.These drawings were submitted to Westinghouse for review and approval.5)The"as-built" revisions of these drawings have the"as-measured" wall thicknesses listed in a table at the top of each drawing.These revisions are sent to Westinghouse for review and approval prior to shipment of the piping assemblies. 6)7)Each piping assembly has a nameplate attached that provides information as to girth weld location and the measured wall thicknesses at these locations. Westinghouse QA insures that the vendor's inspection data is valid.Based on the above, CPRL concludes that the specifications invoked and fabrication/ inspection methods employed were adequate to insure that the piping assemblies delivered to the Shearon Harris Unit l Site meet the minimum wall thickness requirements. (1941JOK/mf) A C I 4 1'I}}