ML17345A420
ML17345A420 | |
Person / Time | |
---|---|
Site: | Turkey Point |
Issue date: | 08/31/1988 |
From: | MEYER T A, RAY N K, SCHMERTZ J C FLORIDA POWER & LIGHT CO., WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
To: | |
Shared Package | |
ML17345A419 | List: |
References | |
MT-SMART-116(88, MT-SMART-116(88), NUDOCS 8809300063 | |
Download: ML17345A420 (33) | |
Text
{{#Wiki_filter:Letter Report MT/SMART/'ll C (8 Sp FLORIDA POWER AND LIGHT UNITS 3&4 REACTOR VESSEL HEATUP AND COOLDOWN LIMIT CURVES FOR NORMAL OPERATION August 1988 Prepared by: ay Verified by:~C.'~c mel 2 Approved by: 7 A'yer, anager Structural Materials Engineering Work Performed Under Shop Order No.FWCJ-106 Prepared by Westinghouse for the Florida Power&Light Company Although information contained in this report is nonproprietary, no distribution shall be made outside Westinghouse or its licensees without the customer's approval.~ls~>/Rlz~~y y~gE~gsE~p~Govt ooN EpjsoN(/'e) Co~u~urio/ ~'rr/"~'o'r/V.y/pR/ltr WESTINGHOUSE ELECTRIC CORPORATION Power Systems Division P,O.Box 2728 Pittsburgh, Pennsylvania 15230-2728 311 3e-001004:10 8809300063 8805'21 PDR ADOCK 05000250 P PDC TABLE OF CONTENTS Section 1.0 2.0 3.0 4.0 5.0 6.0 Ti tie INTRODUCTION FRACTURE TOUGHNESS PROPERTIES CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS HEATUP AND COOLDOMN LIMIT CURVES ADJUSTED REFERENCE TEMPERATURE REFERENCES Page 3113e 0410bb:10 LIST OF FIGURES Figure Title Page Fluence Factor for Use in the Expression for hRTNpT 9 Turkey Point Units 3 and 4 Reactor Coolant System Heatup Limitations Applicable for the First 20 EFPY (60'F/HR)10 Turkey Point Units 3 and 4 Reactor Coolant System Heatup Limitations Applicable for the first 20EFPY (100'F/HR) Turkey Point Units 3 and 4 Reactor Coolant System Cooldown Limitations Applicable for the First 20 EFPY 12$113s 05)06':10 KEATUP AND COOLDOWN LIMIT CURVES FOR NORMAL OPERATION
1.0 INTRODUCTION
Keatup and cooldown limit curves are calculated using the most limiting value of RTNDT (reference ni 1-ducti 1 i ty temperature) for the reactor vessel~The most limiting RTNDT of the material in the core region of the reactor vessel is determined by using the preservice reactor vessel material fracture tough-ness properties and estimating the radiation-induced hRTNDT.RTNDT is designated as the higher of either the drop weight nil-ductility transition temperature (NDTT)or the temperature at which the material exhibits at least 50 ft-lb of impact energy and 35-mil lateral expansion (normal to the major working direction) minus 60'F.RTNDT increases as the material is exposed to fast-neutron radiation. Therefore, to find the most limiting RTNDT at any time period in the reactor's life, hRTNDT due to the radiation exposure associated with that time period must be added to the original unirradiated RTNDT.The extent of the shift in RTNDT is enhanced by certain chemical elements (such as copper and nickel)present in reactor vessel steels.Westinghouse, other NSSS vendors, the U.S.Nuclear Regulatory Commission and others have developed methods for predicting adjustment of RTNDT as a function of fluence and the copper and nickel content.The Nuclear Regulatory Commission (NRC)published these methods in Regulatory Guide 1.99 Rev.2 (Radiation Embrittlement of Reactor Vessel Materials) .The value,"f", given in figure 1 is the calculated value of the neutron fluence at the location of interest (inner surface, 1/4T, or 3/4T)in the vessel at the location of the postulated defect, n/cm (E>1 MeV)divided by 10 , The fluence factor is determined from figure I, 3113 I-OO10N: l 0
2.0 FRACTURE TOUGHNESS PROPERTIES The fracture-toughness properties of the ferritic material in the reactor coolant pressure boundary are determined in accordance with the NRC Regulatory Standard Review Plan.The postirradiation fracture-toughness properties of the reactor vessel beltline material were obtained directly from the Turkey Point Units 3,E 4 Vessel Material Surveillance Program.3.0 CRITERIA FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS The ASME approach for calculating the allowable limit curves for various heatup and cooldown rates specifies that the total stress intensity factor, KI, for the combined thermal and pressure stresses at any time during heatup or cooldown cannot be.greater than the reference stress intensity factor, KIR, for the metal temperature at that time.KIR is obtained from the reference fracture toughness curve, defined in Appendix G to the ASME Code The K curve is given by the following equation: KIR 26 78+1~223 exp[0 0145 (T RTNDT+160)]where KIR=reference stress intensity factor as a function of the metal temperature T and the metal reference nil-ductility temperature RTNDT Therefore, the governing equation for the heatup-cooldown analysis is defined in appendix G of the ASME Code as follows: L'3]C KIM+KIT K (2)where KIM=stress intensity factor caused by membrane (pressure) stress 3113s 0$10M:10 K>T=stress intensity factor caused by the thermal gradients K>R=function of temperature relative to the RTNpT of the material C=2.0 for Level A and Level B service limits C=1.5 for hydrostatic and leak test conditions during which the reactor core is not critical At any time during the heatup or cooldown transient, K>R is determined by the metal temperature at the tip of the postulated flaw, the appropriate value for RTNDT, and the reference fracture toughness curve.The thermal stresses resulting from the temperature gradients through the vessel wall are calculated and then the corresponding (thermal)stress intensity factors, K>T, for the reference flaw are computed.From equation 2,.the pressure stress intensity factors are obtained and, from these, the allowable pressures are calculated. For the calculation of the allowable pressure versus coolant temperature during cooldown, the reference flaw of appendix G to the ASHE Code is assumed to exist at the inside of the vessel wall.During cooldown, the controlling location of the flaw is always at the inside of the wall because the thermal gradients produce tensile stresses at the inside, which increase with increasing cooldown rates.Allowable pressure-temperature relations are generated for both steady-state and finite cooldown rate situations. From these relations, composite limit curves are constructed for each cooldown rate of interest.The use of the composite curve in the cooldown analysis is necessary because control of the cooldown procedure is based on the measurement of reactor coolant temperature, whereas the limiting pressure is actually dependent on the material temperature at the tip of the assumed flaw.31138 081Nb:10 Ouring cooldown, the 1/4 T vessel location is at a higher temperature than the fluid adjacent to the vessel IO.This condition, of course, is not true for the steady-state situation. It follows that, at any given reactor coolant temperature, the hT developed during cooldown results in a higher value of K at the 1/4.T location for finite cooldown rates than for steady-state operation. Furthermore, if conditions exist so that the increase in KIR exceeds KIT, the calculated allowable pressure during cooldown will be greater than the steady-state value.The above procedures are needed because there is no direct control on temperature at the 1/4 T location and, therefore, allowable pressures may unknowingly be violated if the rate of cooling is decreased at various intervals along a cooldown ramp.The use of the composite curve eliminates this problem and ensures conservative operation of the system for the entire cooldown period.Three separate calculations are required to determine the limit curves for finite heatup rates.As is done in the cooldown analysis, allowable pressure-temperature relationships are developed for steady-state conditions as well as finite heatup rate conditions assuming the presence of a 1/4 T defect at the inside of the wall that alleviate the tensile stresses produced by internal pressure.The metal temperature at the crack tip lags the coolant temperature; therefore, the KIR for the 1/4 T crack during heatup is lower than the KIR for the 1/4 T crack during steady-state conditions at the same time coolant temperature. Ouring heatup, especially at the end of the transient, conditions may exist so that the effects of compressive thermal stresses and lower KIR's do not offset each other, and the pressure-temperature curve based on steady-state conditions no longer represents a lower bound of all similar curves for finite heatup rates when the 1/4 T flaw is considered. Therefore, both cases have to be analyzed in order to ensure that at any coolant temperature the lower value of the allowable pressure calculated for steady-state and finite heatup rates is obtained.3113 s M1088:10
The second portion of the heatup analysis concerns the calculation of the pressure-temperature limitations for the case in which a 1/4 T deep outside surface flaw is assumed.Unlike the situation at the vessel inside surface, the thermal gradients established at the outside surface during heatup produce stresses which are tensile in nature and therefore tend to reinforce any pressure stresses present.These thermal stresses are dependent on both the rate of heatup and the time (or coolant temperature) along the heatup ramp.Since the thermal stresses at the outside are tensile and increase with increasing heatup rates, each heatup rate must be analyzed on an individual basis.Following the generation of pressure-temperature curves for both the steady-state and finite heatup rate situations, the final limit curves are produced by constructing a composite curve based on a point-by-point comparison of the steady-state and finite heatup rate data.At any given temperature, the allowable pressure is taken to be the lesser of the three values taken from the curves under consideration. The use of the composite curve is necessary to set conservative heatup limitations because it is possible for conditions to exist wherein, over the course of the heatup ramp, the controlling condition switches from the inside to the outside, and the pressure limit must at all times be based on analysis of the most critical criterion. Finally, the 1983 Amendment to 10CFR50 has a rule which addresses the[4]metal temperature of the closure head flange and vessel flange regions.This rule states that the metal temperature of the closure flange regions must exceed the material RTNDT by at least 120'F for normal operation when the pressure exceeds 20 percent of the preservice hydrostatic test pressure.Table 1 indicates that the limiting RTNDT of 44'F occurs in the vessel flange of Turkey Point Unit 3, so the minimum allowable temperature of this region is 164'F.These limits are less restrictive 'than the curves shown on figures 2, 3, and 4.$113I-Ml ON:10 4.0 HEATUP AND COOLDOMN LIMIT CURVES Limit curves for normal heatup and cooldown of the primary Reactor Coolant System have been calculated using the methods discussed in section 3, and the procedure is presented in reference 5.Transition temperature shifts occurring in the pressure vessel materials due to radiation exposure have been obtained directly from the reactor pressure vessel survei 1 lance program.Allowable combinations of temperature and pressure for specific temperature change rates are below and to the right of the limit lines shown in figures 2, 3, and 4.This is in addition to other criteria which must be met before the reactor is made critical.The leak limit curve shown in figures 2 and 3 represents minimum temperature requirements at the leak test pressure specified by applicable codes The leak test limit curve was determined by methods of references 2 and 4.Figures 2, 3 and 4 define limits for ensuring prevention of nonductile failure for the Turkey Point Units 3 and 4 Primary Reactor Coolant System.5.0 ADJUSTED REFERENCE TEMPERATURE From Regulatory Guide 1.99 Rev.2 the adjusted reference temperature (ART)for each material in the beltline is given by the following expression: ART=Initial RTNDT+hRTNDT+Margin (3)Initial RTNDT is the reference temperature for the unirradiated material as defined in paragraph NB-2331 of Section III of the ASME Boiler and Pressure Vessel Code.If measured values of initial RTNDT for the material in question are not available, generic mean values for that class of material may be used if there are sufficient test results to establish a mean and standard deviation for the class.$1130-Obl 058:10 hRTNpT is the mean value of the adjustment in reference temperature caused by irradiation and should be calculated as follows: RT[CF]f (0.28-0.10 log f)NDT (4)To calculate ART at any depth (e.g., at 1/4T or 3/4T), the following formula must first be used to attenuate the fluence at the specific depth.(~24x)(depth X)surface (5)where x (in inches)is the depth into the vessel wall measured from the vessel inner (wetted)surface.The resultant fluence is then put into equation (4)to calculate hRTNDT at the specific depth.CF ('F)is the chemistry factor, obtained by multiplying each measured hRTNDT by i ts corresponding fluence factor, summing the products, and dividing by the sum of the squares of the fluence factors.Capsule data from reference 6 was used.At the vessel inside radius, the calculated neutron fluence for 20 effective full power years (EFPY)is 2.022 x 10 n/cm at the critical weld, For the limiting circumferential weld, the chemistry factor is 200.5, based on ref.1.From equation (4), the ARTNDT at the inner surface is equal to 239'F (200.5 x 1.192).Regulatory Guide 1.99 revision 2 provides a formula and rules for establishing margin: Margin=2 a+a 2 2 a>=O'F for measured value of initial RTNDT a=28'F for welds (critical material)-This value is cut in half'to A take credit for credible surveillance data used to calculate CF.Margin=2~0+(14)=28'F 2$113~-M)OM:10 ART=10+239+28=277'F Using the vessel thickness of 7.75 inches at the beltline, Equations (3), (4), and 5 are used to calculate the ART at the 1/4 and 3/4 thickness locations. These are 252.5'F and 200.4'F respectively. The above analysis was used to develop the Turkey Point Units 3 and 4 heatup and cooldown curves shown in figures 2, 3 and 4 respectively, 3l 1ls~10bb:10 Figure 1.Fluence Factor for Use in the Expression for hRT NOT 3 I 13s-ODIN:lO MATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL }tELPi i INITIAL RTNPT 10 F o[I]RTNDT AFTER 20 EFPY: 1/4T, 252.5'F 3/4T, 200.4'F CURVES APPLICABLE FOR HEATUP RATES UP TO 60'F/HR FOR THE SERVICE PERIOD UP TO 20 EFPY.NO MARGINS ARE GIVEN FOR POSSIBLE INSTRUMENT ERRORS.2500 2250 Leek Test L1IIt 2000 1750 1500 IL 1250 a.1000 Q 750 0 X 500 250 Ilnacceptab1e Operation IIeatup Ates gp to 50 FIIIr Acceptabl~~Operatloa IIILIIIII Crl tlcal it@LIalt Iased on-Inservlce H7d static Test Teeperature (380'F)for the ServIce Perfod up to 20 EFPT 0 50 100 150 200 250 300 350 400 450 500 INOICATEO TEIIPERATURE (OEG.F)1 F)gure 2.Turkey Po)nt Unjts 3 5 4 Reactor Coo1ant Syltea Heatup L)aftatlons Appl)cab1e for the First 20 EFPY[1]See reference 6.sl 1~loss:10 10 MATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL MELD INITIAL RTNDT'0 F RTNDT AFTER 20 EFPY'/4T 252~5 F 3/4T, 200.4'F CURVES APPLICABLE FOR HEATUP RATES UP TO 100'F/HR FOR"THE SERVICE PERIOD UP TO 20 EFPY.NO MARGINS ARE GIVEN FOR POSSIBLE INSTRUMENT ERRORS.2500 2250<eel Test ie<t 2000 1750 UNcceptebIe Operllt'IM 1500 1250 1000 u 750 500 250 geetup Rates ep to 100'P/Hr lccepteb1 e Operet)on Crit Tce11tg Lfa1t N sed on Inservkco HQ stet$c Test Teptreture (350'F)for the Service Per1od up to 20 EFPT 0 50 100 150 200 250 300 350 F00 450$00 INOICeTEO TEMPERATURE (DEC.F)Figure 3.Turkey Point Units 3 4 I Reactor Coolant Systea Heatup Lkmltat)ons Appl)cable for the F)rst 20 EFPY[1],See reference 6.N>~>oeL>o ~~I~~~I~'I I~~I I I~I~~I I~~,~'a.I~~I~~EEEEENRNEENEEENNENNNNENSENENEENNEEEEERNIINEEEERESS ~NNNNNNENENEEEENNEEBNENENEEENEEREEEEEENENRNESNENE ~Ekkakkkkakakkrkkkrrkkakkkkkkkkkkkkkkbkk>krkkrkkkk ~Nkkakkkkakkkkakkkkbkkrkkkkkkkkrkkkkakkbkkrkkkkkkk ~NENRSNEESSRkNNESRNERNEE'NSSSEESNESEEENEREEEESSEEEE ~NNNNNNEEEENNNNNNNNEENENNNNEERENENNNNNNIJEERNNNENSE QNNQNNNEENQBNNNNQEQQEQQNENQQEENRQQENN NEENNENRNENENEQaakbkkkkrkakkakaakakaarbbkbkkkkkkk ~aaakraarrarkarrarakararaaaaraaarkaaaaaaarakrakakk ESNSENNEEENRkkaSNRSSSNENNNSNSNNRNNENNNRNSERNRRNNSN ~QEQQNQRNNBNHHEQQEENNQNBENEUNBRQEEEEE ~EEQNRNQBQBNNHNNEEENQNEQEQEQ'>ESHQEQEE QQNNEENQEQNNQNBNEQEQQENNQNNEBQEHHQN ~ENNNNEENENHEENNNNENEEENENNHNENHREENNNNEQNEENE QQNNEBEEEQNENNNBEENNNENENQENNNEEEQNBQNQN NENNNNENNNNENNERENNENNENNNENNNENNNQNHarrrkkQNNN ~ENEENSRNENBEENSaakrkkkkkbkarkkkkakbrrrkkbrkkkkkk ~NQNNEENNEHEE ~RENEEEEREENREQEENN ~ENSNNRSENNRNES ~SkkSRakarkkbkkkkkkk ~SESEEEEESNRENN "~>..NNNNEFakrkkkbkkrkkak ~Nkkkkkrkkkbkak NEENENEENEENRNESEENN ENNESNERENEEEEN ~kSkEREENEEERNNENSNE ~ENNEEESNNEEEESENNENEE ~kkEKkkErkkkbkkkkkrk QNBEENNNEQENQNHENEEENENNQNNEEQHNNEREQNSNN ~ENNNEEEENEEENNHHEEEEEEESNEENENNNNBNNNNRENNEEEN ~NNNEENNNEERENNESENEENEEEEEENNEEEENNERRNNEEENNNNEE ~NEBNREENEENNNNENNENNEEENENNNNNNNNNNNEHENENNENNN QNHNNHNNREQNNNHNNENENENQHEEREENBNBEHEEQ ~Nkrkkkbaaakkrkkarrbkkkkkkakkkkrakrkkkbakkrkrkkkkk Nrkkkkaakkkkkkkkbrkkrkkakkrakkk~lrkakkbkbkkakkkkkkk ~Nkkkrkkrkkrkrkkkkrkakakkkakakyrk rk~NNNNENEENEENENNNNRENNEENNEENF >kk~N~Nkrkakkkkrakakrkrakakkkkkbka~(.REN --~i..Nk NEEHNNNENNENENNENEENNENENEW)/)Nrk ~NEENNNESNEENNNENEEENNEENEF /i/irk%a~Nk SNEER%EN%EN%EN%SERA/ikkrrrksa Nkk~Nabkaakrkkrkkbrrr/irkkkrkkbkkbbkkakkkkkrkk EEEEEEEERRRSaarrir~jbkakaakkraraaaaakaakarkk EkkbkrkkaiPiiiCkkbkkkkkrEERNENENNERQEEENN alirr~grleitr>~Jar>rkarkaakkrakaakkbkkkkkkkk aeir Ir1ERRENNNENQENSENERNNEENNNNSEE CRFaesiiK'orb'EQSEEEEEREEREESEEEEEEEESNSEEES ~ssaakkkaai~iikrrkkakakkkrkkbkrkarkaakkkkSNE ~Is>b aaSEEEEHESSHEENENREHHHEQEQQ ~NNEENNNENNENEHNHENEENNNNEENNNENNNNENNNN ~ESEEEEEEEEEEENNREEENNENNEEEEENEEEQNENENN ~Rk~ENEEEENEEEEEEEEEEEEEENNNENHNEERENRERNEENEE EN%SEE%%%%%%%RE%%%REER'ESNE%%%%%%%%%%%%%%%%%%ENSE'EE ~ENENNEENENRENEBEEREEEENEHEENENNEENEEENERNNNNENE ~ENNEQEEEEENEENENENEEEEEEENNENNQRNNEENNEEQEENNN P TABLE 1 TURKEY POINT UNIT 3 REACTOR VESSEL TOUGHNESS DATA (UNIRRADIATED) ~Com onent Material~Te Cu Ni(d)P NDTT RTNDT(a)~F Cl.Hd.dome Cl.Hd.f l ange Ves.Sh.flange Inlet nozzle Inlet nozzle Inlet nozzle Outlet nozzle Outlet nozzle Outlet nozzle Upper shell Inter.shell Lower shell Trans, ring Bot.hd.dome Weld (inter to lower shell girth weld)A302 Gr B A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A302 Gr B SAW(c)0.058 0.079 0.010 0 0.72 0.010 44(a)0.65 0.010-23(a)0.76 0.019 60(a)0.74 0.019 60(a)0.80 0.019 60(a)0.79 0.010 27(a)0.72 0.010 7(a)0.72 0.010 42(a)0.68 0.010 50 0.70 0.010 40 0.67 0.010 30 0.69 0.013 60(a)0.010-10 0.26 0.60 0.011 0 0 44-23 60 60 60 27 7 42 50 40 30 60 30 10(b)Xl00e-00100&10 13
TABLE 1 (Cont'd.)TURKEY POINT UNIT 4 REACTOR VESSEL TOUGHNESS DATA (UNIRRADIATED) ~Com anent Material~Te Cu Ni(d)P NDTT RTNDT(a)~X~X~X~F~F Closure head dome Closure head flange Vessel flange Inlet nozzle Inlet nozzle Inlet nozzle Outlet nozzle Outlet nozzle Outlet nozzle Upper shell Inter.shell Lower shell Trans.ring Bottom head dome Weld inter.shell to lower shell girth weld A302 Gr B A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A508 Cl 2 A302 Gr B.08.054.056.72.68.71.84.75.78.68.70.70.69.74.69.26.60.011 10(b).008"20 30.010-4(a)-4.010-1(a)-1.009 60(a)60.019 60(a)60.008 16(a)16.010 7(a)7.010 38(a)38.010 60(a)60.010 40 40.010 50 50.010 40 40.011 60(a)60.010 10 10 (a)Estimated values based on procedures listed in U.S.NRC Standard Review Plan, NUREG-0800, Rev.1, July 1981.(b)Actual value I/(c)Wire heat No, 71249, L'inde 80 flux lot 8445.(d)From material certified test report 14 6.0'EFERENCES 1.Regulatory Guide 1.99, Revision 2,"Radiation Embrittlement of Reactor Vessel Materials," U.S.Nuclear Regulatory Commission, May, 1988.2."Fracture Toughness Requirements," Branch Technical Position MTEB 5-2, Chapter 5.3.2 in Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants, LWR Edition, NUREG-0800, 1981.3.ASME Boiler and Pressure Vessel Code, Section III, Division 1-Appendixes,"Rules for Construction of Nuclear Vessels, Appendix G, Protection Against Nonductile. Failure," pp.559-564, 1983 Edition, American Society of Mechanical Engineers, New York, 1983.4.Code of Federal Regulations, 10CFR50, Appendix G,"Fracture Toughness Requirements," U.S.Nuclear Regulatory Commission, Washington, D.'C., Amended May 17, 1983 (48 Federal Register 24010).5."Procedure for Developing Heatup and Cooldown Curves," J.C.Schmertz, GTSD-A-1.12.6.Surveillance data for Florida Power 5 Light Company.Letter and attachment (JNS-MCI-88-084, May 4, 1988)from R.S.Boggs to J.C.Schmertz 15 APPENDIX A HEATUP COOLDOMN DATA POINTS 311 ij 0010M:10 A-1 FPL100F/HR HEATUP CURVE FOR FPL, NRC 1.99 REV.2 WELO 08/10/88 THE'FOLLOWING OATA WERE CALCULATEOFOR THE INSERVICE HYDROSTATIC LEAK TEST.h-i'7""::-'-."-'.':"'.MINIMUM INSERVICE LEAK TEST TEMPERATURE. f 20.000 EFPV)" g'."-'".".'1 "'.,'"","'~;."~;..""",~o"'"."'RESSURE-(PSI)TEMPERATURE (OEG.F)2000 358 iY"-'c~2485 g(/'-g~A tl(gl))PghV(Pgg (PAL (pl*'4'~'""g+'"'N'~~Miihc<~'5"wq'~ '4~~~z..k."'g"..)->I.4;;"~A:%(~:" Pp':F.'~"j;.."g gc'~~<<"'"g 4 p 380'-PRESSURE.PRESSURE STRESS 1.5 KIM;*'","'"'"". -(PSI)--'-{PSI)"'(PSI SO.RT.IN.)
s.2000, 21 1 12,.84324~'p)~.g e"'",W p.'+'%ca:)
.",'-,'".>;.'-.-"'.'..>."'.>a~-:'."':",-,~-."~'-, 2485,'--"'::.26282.~'- .105679 (J)f*rr 5 7 C A-2 FPL 60F/HR HEATUP CURVE FOR FPL, NRC 1.99 REV.2 WELD COMPOSITE CURVE PLOTTED FOR HEATUP PROFILE 2 HEATUP RATE(S)(DEG.F/HR) +60.0 IRRADIATION PERIOD'20.000 EFP YEARS 08/10/88 INOICATEO , INOICATEO'-'-.--TEMPERATURE '"'PRESSURE (DEG.F)(PSI)1 , 85.000 477,25 , , 23: a-.2-.90.000-:--,,-'88'4>:.".2~~',w: "-'l 3 95.000 461.90...25;-'*4'.,: 100.000,.'=,': 457i42%%%MS~i>>26 5,.105.000,, 454,68,,..., 27"--:-'"'-'-'-110.000>:.~~"".~453't3'-P'4>'~~">28 7 115.000,, 452,78,, 29'~;~'" 9'-~';:;"- 't20.000,~YA"";.:453.24'~%~4:..-- " 30 9.125.000,.454,58 31: ".40;'".'f30:000,>:~~"'.458'.52~.."'V~"-- 32 11, 135.000,.459.1533'..~if'-'12'. >~-".140;000"~4j 482"29 4-"~Y-.:-34 13, 145.000,.466.02,,, 35 i.-'<<t4='-'-;" 150;000,~':.'..-";-. 470:22'>>"-':.;.-.== 36 15 155.000 474.98 37'e.:." 18>>'~'"160.000 ~'i.:,",4'480;21 '"'-,,i';-'," 38 17.165.000 486,0039'"'l'.120;.000'-"'<~'.:492'0 ~<'",',~'-. 40 , 19 175.000,,499. 18,, 41"..::.20<4-""..180.000..-."""a~'508;55>>'~.~ ~"','-42 21, 185.000, 514.64 43 190 000'-~"t'-':523 38""'4 195.000 532.84'00.000-"-543.02 205.000 553.92'..-210.000.-'.1565.75 215.000 578.52 220i000-592.24 225.000...606.92."-4 230.000'>: 622.$3 , 235.000.639.94 240.000"=." 858.21 245.000 678.02"~~250.000"';~899.06 , 255.000,, 715,32 280.000"".-~732.77, 265.000, 751.38'70.000'->'i,'~'71.57 275.000 793.05.',-2SO 000',".<816.39 285.000, 841.23-';~-290.000>'-;, B68.17.....295.000 ...,.896.90: 300.000"'.927.97 45 47 48 49 50 51 52'-53"-.-'-54=55 56 57'-'.-5S 59'.">60 61 62'-": 63*."~~-64." 65 66 305.000 310.000 315.000 320.000 325.000 330.000 335.000 340.000 345.000 350.000 355.000 360.000 365.000 370.000 375.000 380.000 385.000 390.000 395.000 400.000 405.000 410.000 961.21 996.90 1035.22 1078.61 1 120.88 1168.46 1219.52 1274.21 1323.17 1375.50-'-'" 1431.54 1491.55..1555.62.-".1624.77.1698.28 1777.59 1862.13 1952.64 2049.30 2152.71 2263.24 23S1.19 INDICATED INDICATED IND I GATED INDICATED TEMPERATURE PRESSURE TEMPERATURE PRESSURE (DEG.F)(PSI)(OEG.F)(PSI)C~7 A-3 .FPL100F/HR HEATUP.CURVE FOR FPL.NRC 1'9 REV.2 WELD 08/10/88 COMPOSITE CURVE PLOTTED FOR HEATUP PROFILE 2 IRRADIATION PERIOD>20.000 EFP YEARS HEATUP RATE(S)(OEG.F/HR) ~100.0 r INDICATED INDICATEO INDICATED INDICATED INDICATED INDICATED TEIIPERATURE'-.PRESSURE .-: "'EMPERATURE PRESSURE,'EllPERATURE PRESSURE (OEG.F).(PSI),(OEG.F)(PSI)(OEG.F)(PSI)1 85.000 , 475.S4 ,,, 24 ,200.000 45S.60 , 46 310.000 890.67."'*2'"'-.90.'000"."': 462.00.<<.".~-<4,"~."'25'-" 205.000 463.36-'.47'315.000 931.88 3 95.000 450.76 , 26, 210.000 471.84 48 320.000 976.16~'I<~~4'." 100;000<<<:~ 441 29"';"~~>.27""-."'215.000~-481.09~-: '-'9--,'25.000'023.58 5 105.000 433.54, 28 220.000 491.13 50 330.000 1074.45'~=".8,.'-<<':.1 tO;OOO'g~a~" 427".t3;:~<'kY,";<>w 29"".225.000<-".50t.95.~'-5l: ';<<335.000-<<~ -"'1128.85 7,, 115.000., 422.08.30....230.000 5'l3.75 52 340.000 1187.47 8-:"'120;000'--',~:"418:09&X'~ ~<<" 31".;:.235.000 <<526..53.-53 345.000-1250.26 9 125.000..,415.18.,,,.. 32....240.000,.540.33.54 350.000 1317.24"'-10'----.130.000->.'.-";"- <-.,413;t3:,.<<'<."::%P33"'=>"'; 245.000.."555.12-..55.-355.000-='389.46 11 135.000,,412.02 .,,,34, 250.000 571.19,.56, 360.000 1466.46 3"<12-'.140.000"'-<,"-'411.58.-"-'<<~'.~'.'-'35 '<:,'-<<'255.000'".""".'"'588.51 " 57'-'65.000"".1535.99 13 145.000 411.88 36, 260.000, 607.04 58 370.000 1596.96"-t4'-;."';-'150.000 .'";~~412.75.<r-<<5<<'~ ';37<<285<000'>',:627.14 "'.:.,'>5975.000'1662.18.;'.15 155.000..414.36,38 270.000..648.6260 380.000 1732.01.15.-"~'160.'000".-",Ã~ 418.54 s<~;~"., 39-<<=:275.000 "'71.89: 61" 385.000-1806.82.17 165.000 4 19.35, 40 280.000.696.75 62 390.000 1886.78'.'-t8'"'VO:000",-: 422.V2".:".'--'-4l'*'85.000':;" 723.66--<"63='95.000<<-1972.l2 19,, t75,.000426.70<< <<.,,, 42,,290,.000,.752.40 64 400.000 2063.56"..'2" 20'-~',.180.000",7-'.431.25'i<-.="." 43;"'95.000:". -783.47.-.'.65.405.000--2t61.'l 21 t85.000.436,42,... 44 300~000...816.71,66, 410.000.2265.38 5;">22'.'."':r,,".190<<OOO.k",':,'>,-'"'442."t0:;~ >'!:xi'=<45'.<<.~<"305<000'~~",< 852.37':.;.".'67<<<~'415.000',, 2376.73 23 195.000 448.54 r<<r rtr<:<<<<'<<a',<'P'< <"'~>..)'<V- '+~<<<+.r<<r<<<<"<<<<'r+).~'~ <<".'<<.~r.><',"<<<;~<<.~'<."~<<1 6~<o'<<;5i)>')~~<<<~',".V.-."""'" r<<<<<<'<<<<<<A-4 FPL COOLDOWN CURVES FOR , NRC 1.99 REV.2'WELD 08/10/88 THE FOLLOWING DlTi wERE PLDTTED FaR caoLoaw PRaFILE 1 (sTEADY-STAT'E caDLaaw)1RRloliTIOH PERIoo'cc,=20.000 EFP YEARs l INDI CATEO INDICATED.INDI GATED INDICATED TEtiPERATUREXPRESSURE.,"- .-'-,-'." TEtiPERATURE PRESSURE.(OEG.F)(PSI),(OEG,F)(PSI)85.000 503.06.,23 195.000 580.67 eO.'OOOh'.504.'-SS"'c+ ."-"24: 200.000-=588.'OO 3 95.000 , 506.15 , , 25 205.000595.7500.000'~507c87':h".i;S.. "~.'6-210.000'='604.22 5,,105.000 509.72..., 27, 215.000 613.33~c~p-:.'~ 110.000"-": cc-;St 5 70 ZVgkY-"28h '20.000.';'623.12 7,1 15 000, 513 84,,,,29 ,225 000,, 633 64<5~'.8~~cc,h520.000'.-,;i..r."- 558 c 54~:~(K'ZF.'--30. '"".::~230,000:-..'-'-:": 644.81 r'125.000, h 518,61,, 31., 235.000 656.98 6."rto~'";r r 130.000~ccio'.r.525c27"~9:c4ri 32"" 240.000',670.06 ,11,,135.000, 524, 13 33245.000,,684. 10-".t2;r" 140;000>".;'r.-"~527:20'c;-".:@<<~34.~" 250.000*:-'-'99.06 ,, 13, 145,000...,530,50 35...255.000, 715.32'l4',~~rt50+000':C'Nr.'.'534;06 C~~W<C,h:,,'-.36 .~260.000 ."'732.77 15 155.000 r 537.87 h37 265.000.751.38;"'6"'..'<', 160.000 c~C'h<54f.ee'4'" 38'.'70.000.'.-"'.771.57 17 165.000 , 546.29 39 275.000 793.05-18=:'"'70.000"'="cr-- 551.03"'s+r 40'280.000-"'16~39 19 175.000, 556.13,., 41 285.000,841.23~20-..180.000 r'-c,': Setc62"".'cr'.'42-: 290.000'.r'68;17'"","-.,, 21 ,185.000., 567.51.43 295.000 , 896.90'"'22"-"--'-'90.000 '"='"" 573.85'-'"'44.," 300.000'.'827.97"."': '"INDI CATEO TEMPERATURE (DEG.F)45 305.000 46-310.000 47 315.000 48'20.000 49 325.000 50""330.000 51 335.000 52'.-340.000 53 345.000 54" h 350.000 55 355.000 56".'60.000.57 365.000 58-370.000 59 375.000 60:: 380.000 61 385.000 62-," 390.000 63, 395.000 64'.'00.00065 405.000 INDICATEO PRESSURE (PSI)961.21 eee'.eo , 1035.22 1076.6t 1120.88,*-'168.46 1219.52 t274.2t 1333.21 1396.39 1463.95 1538.81 1614.70~1697.98"-1787.80 1883.56 1985.97 2095.91 2213.23 2338.69 2472.58 Ch hq~rhh'hXrhrP' '-:->','C r*.hh*h A-5 FPL COOLDOMN CURVES, FOR , NRC 1.99 REV.2 MELD 08/10/88""" THE FOLLOMINQ DATA MENE PLOTTED FOR COOLOOMN PROFILE 2'20 OEG"F/HR COOLOOWN)IRRADIATION PERIOD+', 20.000 EFP YEARS X NOICATED ESSURE (PSI)INDI GATED INDICATED INDI CATEO I TEitPEAATUAE PRESSURE.:.-.'EllPERATURE PA (OEG.F), (PSI), (OEG.F)85.000 464.97,,,18 170.000'.:90:000.-": 488.'37~>.',iF::.'.";t9 ".175.000 3..95.000 ,, 467.91, ,20,.180.000~,',4"-" t00.000?-";."",489',55:-zr .",',~'~...21"='"-;'185.0005 105.00047 1.3522.190.000 ,-'.:8".~1 10.000"V">'73i'28'-!4ÃvYi 23~.198.000 7 1 15.000 475.38,, 24 200.000.'~.'j'.8'..-'20.000.,~G 477 64Y'%.".".",wt:?25 '.'<!:-205.000 ~."=-" 9125.,000,480.10.,,,,,26,, 210.000.,-"<I-10"".",',"~,'130.'000 AY=~V~482.74"'"-P'.i%~ 27 ('.~;: 215.000",". ',-, 11135.000,,,, 485.61..., 28...220.000"';t2:<<:"'" f40;000~."-l'488.69i""':..'.29"'1'"228.000' ~'3, 145.000 492.03 30.230.000.">",, t4.~-.':-'150.000 ';."7'495.62:.; -'.31'"'35.000*".: 15 155.000,,., 499.52 ,...32 240.000.."it8.i".-'??:-t60;000'w;.~.:-: 503.601-?'ii.'3'45.000'~'7 165.000508, 13,, 34 250.000 512.99 518.25 523.90 530.01~536.57 843.86 551.17 859.39 568.23 877.76 588.01 898.93 610.81 623.81.637.36 882.06 668.00 35 36 37.38 39 40 41 42 43~44 45~48 47 48 49 r, 4 50 3 255.000 260.000 265.000~270.000 275.000 280.000 285.000 280.000 295.000 300.000-305.000 310.000 315.000" 320.000., 325.000'...330.000 685.16 703.47 723.35 744.54--767.55 792.08 818.71 847.1 1 877.84 810.78 946.11'-984'.tt.-.'-1025.18 1069.t4 1116.37 1 1 67.1 3-.-.:: "..';INDI GATEDINDICATEO TEilPEAATUAE PRESSURE (OEG.F)(PSI)+i?'Qq$'.r'Q.@r~g'rr+ir.g?r*?? FPL COOLDDWN CURVES FOR , NRC 1.99 REV.2 WELD':, THE FOLLO'itINQ DATA WERE PLOTTED FOR CODLDOWN PROFILE 3 (40 DEG"F/HR CDDLDOWN)IRR40IATION.PERIOD ~" 20.000 EFP%EARS 08/10/88 INDICATED INDICATED INDICATED INDICATED TEMPERATURE',. PRESSURE'='TEMPERATURE PRESSURE (OEG.,F,), (PSI)...(DEG.F)(PSI)85.000426,07 ,18 170.000 474.29 2-0.000-"" 427=39-" s.".19>;, 175.000.479.72 3 , 95.000 ,428,85..., ,20 180.000 485.57.-'4,, 100.000.-,'-'30!43!'.-.':-."";21~.'I85.000.491.91 5.105.000 , 432.18.22 190.000 498.72--..'-).5"-,'110.000'~~'<-434;054";.':-~4.4'23"".-195.000:,.506.02 7 115.000 436.13 24 200.000 513.96"-."'-"-'-'120 OOOY@>..-."",'438'r35"+3-'P<<"-.25.'>>..205.000:"'-'. 522.56 9, 125.000, 440.80.,26210.000, 531.81~,.'IO)~.:",: 130.000'>;:~-.'".;443) 44>K~;.:0,',"..:c 27~'>~"215.000.'.'- 541.81=135.000, ,,446.25,,28 , 220.000 552.46 12.;..">>-140.000:-;.",:;:;;~i449.35'-."-".-' "'29'-."-225.000 -."-" 564.09 , 13,, 145.000452.74, , 30 ,.230.000 , 576.58">" 14:.,'";-"1 150;000.~".)~;458.39'>>-: " 31'35 OOO'90-09" 15 155.000>>>460.36 , 32, 240.000 604.48-;-"..'-'5 %.""'60.000 ',,;'~"'.~464.64.>-":.r:.'3 -.245.000-'620:15 ,,17, 165.000 469.29 34 35 36 37=38 39 40 41 42.43: 44 45 46 47 48'-.-4$250.000 255.000 260.000 265.000 270.000 275.000 280.000 285.000 290.000'295.000 300.000 305.000 310.000 315.000 320.000 325.000 636.99 655.05 674.60 695.52 718.19 742.45 768.74 798.86 827.27 859.80" 894.91-932.81 973.38 1017.05 1063.97 1114.49 INDICATED INDICATEO TEMPERATURE PRESSURE (DEG.F).(PSI)+r>>)A-7 FPL COOLOOWN CURVES FOR , NRC 1.99 REV.2 WELD=THE FOLLOtIINQ DATA WERE PLOTTED FOR COOLOOWN PROFILE 4.(60 IRRADIATION PERIOD'20;000 EFP VEARS.-'EG-F/HR COOLOOW)08/10/88 1 r 3 c,>><<'-:::-;..;=.6 .7.9!'iVtO 11~"=;-12 13.>>',>>'g.t4 15ccj6 17>>4 INDICATED INDICATED INDICATED INDICATED===TEKPERATURE.. PRESSURE'-, TEKPERATURE PRESSURE-(OEG.F)(PSI), , (DEG.F)(PSI)85.000 ,386.31 , 18 170.000 434.89 SO.OOOS<<. "~.387.'55'(;'.R'"".'9 '.175.000: "'.440.52 , 95.000 388.94 20 , 180.000 446.51--100.000-;-.-'SO:46."'"'- "~21"-'.185.000 453.10,105.000 392.15 22 190.000 460.21'!;:-",.'"ttO.OOO .";-,.-&3S3;SS -"4:w-".~23: 1S5.000'467.93 115.000 ,, 396.03, ,24 200.000 , 476.24': ',:->>120.000 '4-';N.-388.24:W'i'",='---," 25-: '05.000"-,'85.25 125.000,400,68,.26., 210.000 494.96<<"<~>>130;OOO 'F'~V~'.403.'32'";~~~-"'-.'.l,':27 ='~215.000'i'505.39 135,000 406,23,,,. 28 220.000 516.71'.<<-=::.140.000 7<<--~.-409.37-'>> ..>'--: 29-'25.000.-:"-'28.96 '145.000,, 412.75., 3P, 230.000,, 542.15"'>>.'>".1'50.000'.": 8'"418'.47-'~ ~"'~'."-3t'.'235.000'*;-:~556.31 155.000 420.54 32 240.000 571.67-"" 160.000.",'.=.-'~~ 424:83>>i'<<':~'w 33'=245.000'l".; '88.26 165.000,,429. 72 34.35 36 37 38-39 40 4t 42"43 44 45 46 47 48'.-'8 INDICATED INDICATED TEKPFRATURE PRESSURE (DEG.F)(PSI),250.000 605.99'."~>>'55.000.' 625.29" 260.000 645.89 265.000"*668.30 270.000 692.24 275.000..: 718.26-,-'.'-280,000...746.05 285.000 VV6.22 290.000 808.49 295.000 i 843.2V 300.000 880.85 305.000 921.1S 310.000 964.57 3 15.000~1011.2V 320.000 1061.44 325.000 1115.44 lc>><<i~~, g-.>c.$-p>>N ray~.~, 3>"->>'.>>>>>><<>>A-8 FPL COOLOOWN CURVES FOR , NRC 1.99 REV.2 WELD 08/10/88'THE FOLLOWINQ DATA WERE'PLOTTED FOR COOLDOWN PROFILE 5 (100 OEG-F/HR COOLOOWN).'IftRAOIATXON PERIOD 4"h:20.000 EFP YEARS INOICATEO, INDICATED,.INDICATEO INDICATEO" TEMPERATURE,"" PRESSURE--'.'i'.~'-" TEltPERATURE-PRESSURE (OEG.F), (PSI)...(OEG.F)...(PSI).1 ,, 85.000303.9717 , 165.000 ,, 348.28":."'.""-.;~ 90.000'*';: 'i'=305:05554:~"'w'~-18 '" 170.000.353.85 3, ,95.000 306,32,,,,,19 175.000 359.95 4;"'.""':ifOO:000 '..-g.";307 12P&a'8 20'--'.180.000'."66;55 s<<;"'.:: , 5 105.000309.33,21 185.000 373.72 kV~'8-':<<~-'1 0.000~:-"""<<>.31 1.CIQ<<~~%?."."-'-22 '-;190.000'.':w-'. 381.$2 7, 1 15.000,, 313,09,, 23 195.000 390.03 P~:.i'.8~',"'~r 120.000".-??': ".-8f 5"28'-i~P~+kD-.=24,~X 200.000.-.."X=.399.2 f-"-'-j,,"i ,9 125.000,,, 317,74, 25...205.000, 409.21<<"" rfO'~i-130:000 (<~"'<<<NO;42K?',@~~r28" r"" 210iOOO'.-"."'.-"~'419.94 ."1, 135.000323.4127, 215.000,431.67~A+~'f0";-.:;-.140;000:~K""".'(~.328:68'.1-.;;,.:"-A "~28"""-220'00,-.l"~444.32 13 145.000 ,330.2229 225.000 457.98":".'-r'f4'"'150.000:=~!i'<<334..14 Žh-"";"=.."'0 """ 230.000"..='." 472.79"-15 155.000 338.45, 31, 235.000 488.84-"-~f'f8"<<?"-<<r t60.000"'~-;343'13 r.',~,?'-", 32'='-240.000-""'06.06".'r-'h"rhr-.I<<+"?h<<r".."? '<<'iN?'."<<'"'": '">~<<?.o i'-'" r INOICATEO INDICATED TEMPERATURE PRESSURE (DEG.F), (PSI)33 245.000 524.81 34--?250.000 545.01 35 255.000 566.76 36".r" 260.000'--590.32 37, 265.000 615.66 38".', 270.000"a,"'43.07 39 275.000 ,, 672.59., 40;.280.000=-'704.34'1 285.000 , 738.7542.~" 280.000'-'75.7f 43, 295.000 815.56 44 300.000-858.43 45 305.000 904.65 46":.310.000-.".954.39 47 315.000 1007.97 48<<,: 320.000~'-t06$.55 r?*'.<<, c:i 0 yh rex ,",.C~g h<<P?m'...~??hh'(r'%&'. 1?s<<P., r'+;'-r'~'v'*r<<~i',";=.c.==<<"~',",;,.jL<??.,'r r" r, j=';r r'*"~herr~)q, g~<r C.~r~~~rr?P.hh?rh<(r'.;?hr<<r:"h ?'-*r r,h A-9}}