ML082890206: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 19: Line 19:


=Text=
=Text=
{{#Wiki_filter:I H A I TENNESSEE VALLEY AUTHORITY BROWNS FERRY NUCLEAR PLANT ExtendedPowe rate-steam Dryers---7j]..October 14, 2008 Agenda* Status of Unit 1 and 2 Dryer Analyses" Decision on Acoustic Side Branches" Plan to Address SRV Resonance* Changes in EIC Removal Method* Unit 2 Noise Removal" Submodeling Questions* Review of RAI 19, 20 and 21 Responses* Schedule 2 Status of Unit 1 and 2 Dryer Analyses " TVA Decided not to Install Acoustic Side Branches (ASB)-No clear advantage" Unit 1 and 2 Stress Reports (June 2008) Need to be Revised-SR-a > 2.7 at CLTP-Evaluates CLTP only-Unit 2 anomalous low flow (LF) signal (19% power)-Newer strain gage data now available" Additional Strain Gage Data-Unit 1 startup August 2008-Unit 2 startup September 2008* Unit 1 Stress Report Being Finalized" Unit 2 Stress Report in Progress 3 Decision on Acoustic Side Branches* 24-inch Quad Cities Design Chosen-Governed by clearance limitations
{{#Wiki_filter:IH AI TENNESSEE VALLEY AUTHORITY BROWNS FERRY NUCLEAR PLANT ExtendedPowe           rate   -7j]..
* Acoustic Design Relied on Damping Effect-Assumed to eliminate Safety Relief Valve (SRV) resonance* Confirmation of ASB design by 1/8 Scale Model Test (SMT)-Damping effect less than expected-SRV resonance still present* TVA Decided to Cancel ASB Modification
        -steam Dryers--
-No clear advantage to Flow Induced Vibration (FIV)* Requires Stress Analysis to Address EPU-Bump-up factor 4 Decision on Acoustic Side Branches [BFNI With ASBs 2 5 .........S 20 ".....MSL A Upper 20 ------------------------------------
October 14, 2008
_ M SL A Low er_MSL B Upper__ MSL B Lower 15----------
 
____ MSL C Upper MSIS (1 Lower' 10-- -------------------------------- a --- -- ----- -0 50 100 150 200 250 Frequency (Hz)BFN2 With ASBs -MSL A Upper 7 .... .... ....r- , , -MSL A Lower_-- MSL B Upper 6 _ i ------- MSL B Lower 0 -- MSL C Upper-NISL C Lower 4 -- --- --- --I -- --- --- -,-- -- --- --e -- --0 0 50 100 150 200 250 Frequency (Hz)5 IRA Plan to Address SRV Resonance* 1/8 SMT Performed for each Unit's Configuration
Agenda
,- Data at each strain gage location-Data at CLTP and EPU Mach numbers* Bump-up Factors Calculated as a Function of Frequency by Equation: BF = PSDEPu At each frequency PSDCLTP Applied to Plant CLTP Strain Gage Data to Predict EPU Load PCLTP = CCLTP(CL TP -EICcLTP) -CLF(LF -EICLF)PEPU = BF[CCLTP(CLTP-EICCLTP) -CF(LF- EICLF)]P = Steam line unsteadypressure BF = Bump- up factor for SG location C = Coherencefactor between upper and lower locations EIC = Signal taken wilh zero excitation voltage LF = Low flow signal 6 Changes in EIC Removal Method SEIC Signal Taken by Removing Strain Gage Excitation Voltage* Electrical Noise is Removed by Using EIC signal Mechanical Component  
* Status of Unit 1 and 2 Dryer Analyses
= SG Signal -EIC* Additional EIC Signals on Units 1 & 2 EIC now Matched with Companion CLTP and LF Signals PCLTP = CCLTP(CL TP -EICcLTP) -CL,(LF -EICLF)P = Steam line unsteady pressure C = Coherence factor between upper and lower locations EIC = Signal taken with zero excitation voltage LF = Low flow signal 7 Changes in EIC Removal Method EIC Signals JiV BFNI A Upper EIC-- @ lD%,Pm.d FO (2M)AU 0.01 0.0001 0 50 100 150 200 250 Frqpency (Hz)BFNI B Upper EIC I a 0 50 100 100 200 250 Fmqumney (Hr)BFNI B Lower EIC BFNI A Lower EIC 0.1 0.01 I 01 a 0001I 00001 000001I 0000001I--UtE
" Decision on Acoustic Side Branches
--U*E. N %Po-4UdZW.D (5M) 8L 0.1I--
" Plan to Address SRV Resonance
FHzWO0W(1Bt
* Changes in EIC Removal Method
--UECO 2U) BL 0.01 0.001..0001 wV-.0 50 100 150 200 250 F.qmency (Hz)ffi2_LL 0 50 100 150 200 250 Frmoncy (Hz)8 Changes in EIC Removal Method EIC Signals iRA BFNI C Upper EIC 0-1-- (TW)OU-- U1E8 @o0Po¶.wtvo (2l8,cu 0.01 0001 0 0.0001 _00l0001 ...0 00 100 150 200 250 F-q-n..y (H.)BFNI D Upper EIC 0.1-- U~lECg ewlSS t4HPz WO(736) DU 0.01 0.001 e 0.0001 0.00000_ ....0 50 100 150 200 250 BFN1 D Lower EIC BFNI C Lower EIC I a--UIEIC @6%P01a11t'4 H4 2W0 (1161 C 0.001 0.501 [0001 0, 0001 _______ _ _ _ _ i i ____i i I a 0 s0 100 150 200 250 50 100 150 200 250 Fmquene (Hz)9 Changes in EIC Removal Method EIC Signals IM BFN2 A Upper EIC 0.1 0.01 0.001..-0.00001 00.001 BFN2 B Upper EIC 0.1-WEC@5%P ýw/HzW(4018U-WECG$3%POýnHZWO( 2)aU-WEC@WPOd4HZW(49)BU 0.001-S 0.00001 0.~0l00 0 so 100 ISO 200 250 Fmq-.ney (Hz)FBA quency (H.)BFN2 A Lower EIC 0.t 001-- _ EEG TO %Poý4536Hz'VFO (228q 0.0010,000001 0 50 100 10S 200 250 Frequency (Hz)BFN2 B Lower EIC 0.1 0.01 1 0.001 ul 0.0001 : :: 0000 0.000001 -* -.---'0 00 100 150 200 250 Frequency (H1)10 Changes in EIC Removal Method EIC Signals BFN2 C Upper EIC 0.1-0.01 -- ____ _0 0 1.0 1.020 210 BFN2 D Upper EIC 0.01 001 0.00001 100 150 200 250 Freqency (Hr)BFN2 C Lower EIC 01--L EC @81%,Pov,fOe'6$HzWD (ie) c-WEI@1,po.4S ztFD(4)O.0.01 0.0001 0.00001 _______0 so 100 150 200 250 Fmq.mnmy (Hz)11 Unit 2 Noise Removal* Additional Data Taken on Unit 2 to Confirm Signal Behavior-Electrical noise on Unit 2 varies with recirculation pump speed (VFD frequency)
* Unit 2 Noise Removal
-Relationship is not well understood
" Submodeling Questions
-19% power signal originally used for noise removal was atypical-Composite 19% & 30% power signals replaced* New LF signal at 5% Power and Companion 5% EIC Signal-All strain gages -on MSL D lower damaged-Substituting MSL A for MSL D due to strain gage failures-CLTP signal and companion EIC signal unchanged 12 Unit 2 Noise Removal PSD Signals BFN2 A UPoer BFN2 B Uppe 1.0E-01 1.0E-01 14 0 50 100 150 200 250 Fre.n1y (.z)50 100 Fq y(z 150 200 250 BFN2 A Lo BFN2 B Lower F1.00E-03I. 1 0-04 I.0E-05 1.0E-01 1.0E-02 1.0E-03 01 .00-04 1.00-00 1.00-06 50 100 150 200 250 Freqency (Hz)Froequcy (Hz)13 Unit 2 Noise Removal PSD Signals BFN2 C LpW BFN2 D Upep 0 1.00E01 10E-02 1.00-03 (0 .00-04 1.00-06 50 100 150 200 250 Freq-y (Hz)BFN2 D tow BFN2 C Loý0 1.0E-01 1.0E-02 1.0E-03 l.E-05 I .00-00 250 so 100 150 200 250 Frequey (Hz)FM.weoy (Ftz)14 Submodeling Questions Is the Stress Reduction Factor (SRF) accurate and unique?Would a different analyst get the same solution?-Limited, Specific Purpose o Avoid excess conservatism of shell model o Based on mechanistic behavior along weld line-CDI Shell Model => SIA Shell Submodel o Characteristic load matches CDI stress along the weld line Drain Channel-to-skirt:
* Review of RAI 19, 20 and 21 Responses
Bending thru the joint -See Figure 1 Hood Stiffener-to-Hood:
* Schedule 2
Membrane in stiffener
 
-See Figure 2-SIA Shell Submodel => SIA Solid Submodel o Incorporates weld geometry o Applies characteristic loads o Accurately captures load transfer mechanism and stress distribution through weld-Submodel attributes (loads & boundary conditions) are not unique, but SRF is unique & accurate.
Status of Unit 1 and 2 Dryer Analyses *
So a different analyst would get the same result.15 S ubmodeling Questions IRAI Submerged Skirt -Figure 1 Node 98156, Skirt 1000 800 CL C U)4-600 400 200 0 50 50.1 50.2 50.3 50.4 50.5 Time [ s ]16 Submodeling Questions Inner Hood Stiffener
" TVA Decided not to Install Acoustic Side Branches (ASB)
-Figure 2 Node 104843, Hood Support 5000 [4 0 0 0 .... ... ..............  
  - No clear advantage
---3000-- --CD 2 0 0 0o o ..... .... .. ... ... ...-U)-.-Surface : Ci 1 0 0 0 -m id d le -- .. ........ ......... .......-- .. .... ..... ..... ...bottom 0)0 50 50.1 50.2 50.3 50.4 50.5 Time [s ]17 Submodeling Questions I-- ft-A-1* Are the submodel loads statically equivalent to the CDI model?-No -not statically equivalent, nor required-Limited objective is to capture stress along weld line-Simple Example: REAL BEAM EQUIVALENT BEAM Objective:
" Unit 1 and 2 Stress Reports (June 2008) Need to be Revised
Design Connecting Weld (For FEA Model)For Real Beam Using FEA M ,=-- M= k-ft I , k ,M 10k-ft 10k+~ILZ Z 0M = 10 k-ft-21 18 Submodeling Questions Are the times used the ones which yield the largest stress intensity after application of the SRF?Refer again to Figures 1 & 2-Alternating stress defined by either membrane or bending extrema-Extrema states produce maximum strain (i.e., fatigue usage)-SRF should be based on the extrema stress state-At other points in time, the product of stress intensity and SRF would have a lower value; i.e., be less conservative 19 Submodeling Questions Demonstrate that the uncertainty in calculating the SRF is small-Approach produces high certainty that bounding stress of weld line is captured-Solid submodel mesh sensitivity study demonstrated convergence
  - SR-a > 2.7 at CLTP
-Weld factor of 1.8 retained-Low level of uncertainty subsumed by bias and uncertainty applied to overall process-20 Review of RAI 19, 20 and 21 Responses I-RA-1* RAI 19-EMCB.147 (Unit 2 only)o New Unit 2 stress analysis o Revised response based on revised analysis-EMCB.192/150 o SRV Resonance EMCB.181 Follow-up o 0- 2 Hz mean filter EMCB.182 Follow-up 0 EIC removal (Unit 1 only)(Unit 1 only)-EMCB.183 Follow-up (Unit 1 only)0 SR-P values in table 21 Review of RAI 1 9, 20 and 21 Responses ITVA_" RAI 19 (continued)
  - Evaluates CLTP only
-EMCB.181 (Unit 1) & EMCB.147 (Unit 2) Follow-up 0 PSD plot filtering-EMCB.186 & EMCB.187 Follow-up (Unit 1 only)o Sub Modeling* RAI 20-EMCB. 194 (Unit 1 only)o 9% signal coherence-EMCB.195 (Unit 1 only)0 Fan noise 22 Review of RAI 1 9Y 20 and 21 Responses I-R- A-1 RAI 20 (continued)
  - Unit 2 anomalous low flow (LF) signal (19% power)
-EMCB. 196 (Unit 1 only)o EIC plots-EMCB.197/153 o Strain gage penetration location-EMCB.154 (Unit 2 only)o 9% signal coherence-EMCB.195 0 Extended frequency plots -VFD 23 Review of RAI 19 20 and 21 Responses* RAI 21-EMCB.198 (Unit 1 only)o EIC removal-EMCB.155 (Unit 2 only)0 EIC removal 24 I Schedule Item Date TVA response to RAI 21 on Channel Bow 10/17/08 TVA submit Unit 1 stress analysis & Unit 2 status 10/31/08 TVA submit Unit 2 stress analysis 11/14/08 Tentative ACRS meetings 2/09-3/09 Unit 2 outage begins 4/09 NRC issue EPU Amendment for Units 1, 2, and 3 4/09 Unit 2 startup at EPU 5/09 Unit 1 implement EPU 6/09 Unit 3 implement EPU Spring 2010 25}}
  - Newer strain gage data now available
" Additional Strain Gage Data
  - Unit 1 startup August 2008
  - Unit 2 startup September 2008
* Unit 1 Stress Report Being Finalized
" Unit 2 Stress Report in Progress 3
 
Decision on Acoustic Side Branches
* 24-inch Quad Cities Design Chosen
  - Governed by clearance limitations
* Acoustic Design Relied on Damping Effect
  - Assumed to eliminate Safety Relief Valve (SRV) resonance
* Confirmation of ASB design by 1/8 Scale Model Test (SMT)
  - Damping effect less than expected
  - SRV resonance still present
* TVA Decided to Cancel ASB Modification
  - No clear advantage to Flow Induced Vibration (FIV)
* Requires Stress Analysis to Address EPU
  - Bump-up factor 4
 
Decision on Acoustic Side Branches [
BFNI With ASBs 25    . . . .           .     .         ...
20 ".....MSL S                                                                                    A Upper 20 ------------------------------------                     _   M SL A Low er
_MSL        B Upper
__            MSL B Lower 15----------
____         MSL C Upper MSIS (1 Lower
      ' 10
              -- - - - - - - - - - - - - - -     - - - - - - - -   - - - - ------ a - -- -- - ----   -
0               50               100               150                   200               250 Frequency (Hz)
BFN2 With ASBs -                               MSL A Upper 7     ....             ....             ....               , ,r- -           MSL A Lower
_--       MSL B Upper 6 _                                                   i -------             MSL B Lower 0                                                                   --           MSL C Upper
                                      -NISL                                                   C Lower 4   ----------I-- ----,-- -------e
                                  ---                             ----
0 0               50               100             150                 200               250 Frequency (Hz) 5
 
Plan to Address SRV Resonance                                                                   IRA
* 1/8 SMT Performed for each Unit's Configuration
  ,- Data at each strain gage location
  -   Data at CLTP and EPU Mach numbers
* Bump-up Factors Calculated as a Function of Frequency by Equation:
BF = PSDEPu At each frequency PSDCLTP Applied to Plant CLTP Strain Gage Data to Predict EPU Load PCLTP = CCLTP(CLTP - EICcLTP) - CLF(LF - EICLF)
PEPU = BF[CCLTP(CLTP- EICCLTP) - CF(LF-         EICLF)]
P = Steam line unsteadypressure           C = Coherencefactor between upper and lower locations BF = Bump- up factor for SG location     EIC = Signal taken wilh zero excitation voltage LF = Low flow signal 6
 
Changes in EIC Removal Method SEIC Signal Taken by Removing Strain Gage Excitation Voltage
* Electrical Noise is Removed by Using EIC signal Mechanical Component = SG Signal - EIC
* Additional EIC Signals on Units 1 & 2 EIC now Matched with Companion CLTP and LF Signals PCLTP = CCLTP(CLTP - EICcLTP) - CL,(LF - EICLF)
P = Steam line unsteady pressure C = Coherence factor between upper and lower locations EIC = Signal taken with zero excitation voltage LF = Low flow signal 7
 
Changes in EIC Removal Method                                                                                                                   JiV EIC Signals BFNI A Upper EIC                                                                 BFNI B Upper EIC
                                            --     *C @lD%,Pm.d   FO(2M)AU 0.01 0.0001 Ia 0   50   100               150               200              250                0 50  100              100                200           250 Frqpency (Hz)                                                                   Fmqumney (Hr)
BFNI A Lower EIC                                                                 BFNI B Lower EIC 0.1
                                                                                                                            --                 FHzWO0W(1Bt tfEZ:QeflflPov.m*
0.1I                              - - U*E. N%Po-4UdZW.D(5M)8L
                                              --UtE @86%Povmrl4*zWIOrO)AL
                                                                                                                            --   UECO WIk*Oa01*Hz1W0{
2U)BL 0.01                                                                             0.01 I    0001I                                                                            0.001 01 a    00001                                                                            . .0001 wV-.
000001I 0000001I 0
ffi2_LL 50   100 Frmoncy (Hz) 150               200               250                 0 50  100 F.qmency (Hz) 150                 200           250 8
 
Changes in EIC Removal Method                                                                                                                       iRA EIC Signals BFNI C Upper EIC                                                                    BFNI D Upper EIC 0-1                                                                                     0.1
                                              --    -WQet~floVSJUFiZ*WD (TW)OU                                                   --U~lECg ewlSS    t4HPz WO(736)DU
                                                -- U1E8@o0Po¶.wtvo (2l8,cu 0.01                                                                                    0.01 0001                                                                                   0.001 0  0.0001                                                     _                        e 0.0001 0.00000_      ....
00l0001                . ..
0    00    100              150                200                250                0 50    100             150             200             250 F-q-n..y (H.)
BFNI C Lower EIC                                                                    BFN1 D Lower EIC
                                            -- UIEIC@6%P01a11t'4H4 2W0 (1161 C
0.001 0.501    [
I a    0001 Ia 0, 0001                                _______ _ _ _ i _      i  ____i    i 0   s0  100                150                200                250                  50   100             150             200             250 Fmquene (Hz) 9
 
Changes in EIC Removal Method                                                                                                                            IM EIC Signals BFN2 A Upper EIC                                                                            BFN2 B Upper EIC 0.1                                                                                0.1
                                                                                                                                          -WEC@5%P  ýw/HzW(4018U
                                                                                                                                          -WECG$3%POýnHZWO( 2)aU
                                                                                                                                          -WEC@WPOd4HZW(49)BU 0.01 0.001-0.001
    ..-
S    0.00001 0.00001 0.~0l00 00.001 0  so            100                ISO          200          250 FBAquency (H.)                                                                                Fmq-.ney (Hz)
BFN2 A Lower EIC                                                                            BFN2 B Lower EIC 0.t                                                                                0.1 001
_ -- EEG
                                                *                (228q
                                                      %Poý4536Hz'VFO TO 0.01 0.001                                                                           1    0.001 ul      0.0001              :          ::
0000 0*00001-0.000001    *  - * -  .  ---
0,000001                                                                                                                            '
0  50  100                10S            200             250                     0  00            100                150          200          250 Frequency (Hz)                                                                                 Frequency (H1) 10
 
Changes in EIC Removal Method EIC Signals BFN2 C Upper EIC                                                          BFN2 D Upper EIC 0.1-0.01    --             ____        _                                                 0.01 001 0.00001 0    0       1.0               1.020                              210                100               150 200 250 Freqency (Hr)
BFN2 C Lower EIC 01
                                              --L  EC                (ie)c
                                                    @81%,Pov,fOe'6$HzWD
                                              -WEI@1,po.4S        ztFD(4)O.
0.01 0.0001 0.00001                                    _______
0     so    100               150             200               250 Fmq.mnmy (Hz) 11
 
Unit 2 Noise Removal
* Additional Data Taken on Unit 2 to Confirm Signal Behavior
  - Electrical noise on Unit 2 varies with recirculation pump speed (VFD frequency)
  - Relationship is not well understood
  - 19% power signal originally used for noise removal was atypical
  - Composite 19% & 30% power signals replaced
* New LF signal at 5% Power and Companion 5% EIC Signal
  - All strain gages -on MSL D lower damaged
  - Substituting MSL A for MSL D due to strain gage failures
  - CLTP signal and companion EIC signal unchanged 12
 
Unit 2 Noise Removal PSD Signals BFN2 A UPoer                                  BFN2 B Uppe 1.0E-01                                        1.0E-01 14 0
50 100              150 200  250              50                  150 200 250 100 Fq      y(z Fre.n1y (.z)
BFN2 A Lo                                      BFN2 B Lower 1.0E-01 1.0E-02 F1.00E-03                                        1.0E-03 1*-
1 0-04 I.                                           01 .00-04 I.0E-05                                      1.00-00 1.00-06 50 100               150 200 250 Freqency (Hz)                                 Froequcy (Hz) 13
 
Unit 2 Noise Removal PSD Signals BFN2 C LpW                                      BFN2 D Upep 1.00E01 10E-02 1.00-03 0
(0  .00-04 1.00-06 50 100              150 200  250 Freq-y (Hz)
BFN2 C Loý                                      BFN2 D tow 1.0E-01 1.0E-02 1.0E-03 0
l.E-05 I .00-00 250              so 100             150 200 250 FM.weoy (Ftz)                                   Frequey (Hz) 14
 
Submodeling Questions Is the Stress Reduction Factor (SRF) accurate and unique?
Would a different analyst get the same solution?
- Limited, Specific Purpose o Avoid excess conservatism of shell model o Based on mechanistic behavior along weld line
- CDI Shell Model => SIA Shell Submodel o Characteristic load matches CDI stress along the weld line Drain Channel-to-skirt: Bending thru the joint - See Figure 1 Hood Stiffener-to-Hood: Membrane in stiffener - See Figure 2
-  SIA Shell Submodel => SIA Solid Submodel o Incorporates weld geometry o Applies characteristic loads o Accurately captures load transfer mechanism and stress distribution through weld
-  Submodel attributes (loads & boundary conditions) are not unique, but SRF is unique & accurate. So a different analyst would get the same result.
15
 
S ubmodeling              Questions          IRAI Submerged Skirt - Figure 1 Node 98156, Skirt 1000 800 CL 600 C
U) 4-400 200 0
50    50.1       50.2            50.3 50.4 50.5 Time [ s ]
16
 
Submodeling Questions Inner Hood Stiffener - Figure 2 Node 104843, Hood Support 5000    [
4 0 00    ....                                    ... ..............                                      - - -
3000--                                                                              --
CD
.-U)    2000oo .....      Ci
                                      .......... .. ..
                      -.-Surface        :
0)0 10 0 0  -m            id dle    .. . . . . . .--
                                                        .. . --. . . . . . .. . . . . . . . .. . . .. . . ...      . . . .. . . .
bottom 50                    50.1                      50.2                    50.3                50.4                50.5 Time [s ]
17
 
Submodeling Questions                                              I--
ft-A-1
* Are the submodel loads statically equivalent to the CDI model?
  - No - not statically equivalent, nor required
  - Limited objective is to capture stress along weld line
  - Simple Example:
REAL BEAM                          EQUIVALENT BEAM Objective: Design Connecting Weld          (For FEA Model)
For Real Beam Using FEA
        ,=-- M=
M        k-ft                      I k  , ,M      10k-ft 10k+
                                                        ~ILZ      Z 0M = 10 k-ft
                          -21 18
 
Submodeling Questions Are the times used the ones which yield the largest stress intensity after application of the SRF?
Refer again to Figures 1 & 2
- Alternating stress defined by either membrane or bending extrema
- Extrema states produce maximum strain (i.e., fatigue usage)
- SRF should be based on the extrema stress state
- At other points in time, the product of stress intensity and SRF would have a lower value; i.e., be less conservative 19
 
Submodeling Questions Demonstrate that the uncertainty in calculating the SRF is small
- Approach produces high certainty that bounding stress of weld line is captured
- Solid submodel mesh sensitivity study demonstrated convergence
- Weld factor of 1.8 retained
- Low level of uncertainty subsumed by bias and uncertainty applied to overall process
                                                                      - 20
 
Review of RAI 19, 20 and 21 Responses               I-RA-1
* RAI 19
  - EMCB.147 (Unit 2 only) o New Unit 2 stress analysis o Revised response based on revised analysis
  - EMCB.192/150 o SRV Resonance EMCB.181 Follow-up (Unit 1 only) o 0- 2 Hz mean filter EMCB.182 Follow-up (Unit 1 only) 0 EIC removal
  - EMCB.183 Follow-up (Unit 1 only) 0 SR-P values in table 21
 
Review of RAI 19, 20 and 21 Responses               ITVA_
" RAI 19 (continued)
  - EMCB.181 (Unit 1) & EMCB.147 (Unit 2) Follow-up 0 PSD plot filtering
  - EMCB.186 & EMCB.187 Follow-up (Unit 1 only) o Sub Modeling
* RAI 20
  - EMCB. 194 (Unit 1 only) o 9% signal coherence
  - EMCB.195 (Unit 1 only) 0 Fan noise 22
 
Review of RAI 19Y20 and 21 Responses     I-R-A-1 RAI 20 (continued)
  - EMCB. 196 (Unit 1 only) o EIC plots
  - EMCB.197/153 o Strain gage penetration location
  - EMCB.154 (Unit 2 only) o 9% signal coherence
  - EMCB.195 0 Extended frequency plots - VFD 23
 
Review of RAI 19 20 and 21 Responses
* RAI 21
  - EMCB.198 (Unit 1 only) o EIC removal
  - EMCB.155 (Unit 2 only) 0 EIC removal 24
 
Schedule                            I Item                           Date TVA response to RAI 21 on Channel Bow               10/17/08 TVA submit Unit 1 stress analysis & Unit 2 status   10/31/08 TVA submit Unit 2 stress analysis                   11/14/08 Tentative ACRS meetings                                     2/09-3/09 Unit 2 outage begins                                 4/09 NRC issue EPU Amendment for Units 1, 2, and 3         4/09 Unit 2 startup at EPU                                 5/09 Unit 1 implement EPU                                 6/09 Unit 3 implement EPU                             Spring 2010 25}}

Revision as of 12:06, 14 November 2019

TVA Slides - EPU - Summary of October 14, 2008, Meeting with Tennessee Valley Authority Regarding Steam Dryer Portion of the Extended Power Uprate Review (TAC Nos. MD5262 and MD5263)
ML082890206
Person / Time
Site: Browns Ferry  Tennessee Valley Authority icon.png
Issue date: 10/14/2008
From:
Tennessee Valley Authority
To:
Division of Operating Reactor Licensing
Brown, E, NRR/DORL, 415-2315
Shared Package
ML083030525 List:
References
TAC MD5262, TAC MD5263
Download: ML082890206 (25)


Text

IH AI TENNESSEE VALLEY AUTHORITY BROWNS FERRY NUCLEAR PLANT ExtendedPowe rate -7j]..

-steam Dryers--

October 14, 2008

Agenda

  • Status of Unit 1 and 2 Dryer Analyses

" Decision on Acoustic Side Branches

" Plan to Address SRV Resonance

  • Changes in EIC Removal Method
  • Unit 2 Noise Removal

" Submodeling Questions

  • Review of RAI 19, 20 and 21 Responses
  • Schedule 2

Status of Unit 1 and 2 Dryer Analyses *

" TVA Decided not to Install Acoustic Side Branches (ASB)

- No clear advantage

" Unit 1 and 2 Stress Reports (June 2008) Need to be Revised

- SR-a > 2.7 at CLTP

- Evaluates CLTP only

- Unit 2 anomalous low flow (LF) signal (19% power)

- Newer strain gage data now available

" Additional Strain Gage Data

- Unit 1 startup August 2008

- Unit 2 startup September 2008

  • Unit 1 Stress Report Being Finalized

" Unit 2 Stress Report in Progress 3

Decision on Acoustic Side Branches

  • 24-inch Quad Cities Design Chosen

- Governed by clearance limitations

  • Acoustic Design Relied on Damping Effect

- Assumed to eliminate Safety Relief Valve (SRV) resonance

  • Confirmation of ASB design by 1/8 Scale Model Test (SMT)

- Damping effect less than expected

- SRV resonance still present

  • TVA Decided to Cancel ASB Modification

- No clear advantage to Flow Induced Vibration (FIV)

  • Requires Stress Analysis to Address EPU

- Bump-up factor 4

Decision on Acoustic Side Branches [

BFNI With ASBs 25 . . . . . . ...

20 ".....MSL S A Upper 20 ------------------------------------ _ M SL A Low er

_MSL B Upper

__ MSL B Lower 15----------

____ MSL C Upper MSIS (1 Lower

' 10

-- - - - - - - - - - - - - - - - - - - - - - - - - - - ------ a - -- -- - ---- -

0 50 100 150 200 250 Frequency (Hz)

BFN2 With ASBs - MSL A Upper 7 .... .... .... , ,r- - MSL A Lower

_-- MSL B Upper 6 _ i ------- MSL B Lower 0 -- MSL C Upper

-NISL C Lower 4 ----------I-- ----,-- -------e

--- ----

0 0 50 100 150 200 250 Frequency (Hz) 5

Plan to Address SRV Resonance IRA

  • 1/8 SMT Performed for each Unit's Configuration

,- Data at each strain gage location

- Data at CLTP and EPU Mach numbers

  • Bump-up Factors Calculated as a Function of Frequency by Equation:

BF = PSDEPu At each frequency PSDCLTP Applied to Plant CLTP Strain Gage Data to Predict EPU Load PCLTP = CCLTP(CLTP - EICcLTP) - CLF(LF - EICLF)

PEPU = BF[CCLTP(CLTP- EICCLTP) - CF(LF- EICLF)]

P = Steam line unsteadypressure C = Coherencefactor between upper and lower locations BF = Bump- up factor for SG location EIC = Signal taken wilh zero excitation voltage LF = Low flow signal 6

Changes in EIC Removal Method SEIC Signal Taken by Removing Strain Gage Excitation Voltage

  • Electrical Noise is Removed by Using EIC signal Mechanical Component = SG Signal - EIC
  • Additional EIC Signals on Units 1 & 2 EIC now Matched with Companion CLTP and LF Signals PCLTP = CCLTP(CLTP - EICcLTP) - CL,(LF - EICLF)

P = Steam line unsteady pressure C = Coherence factor between upper and lower locations EIC = Signal taken with zero excitation voltage LF = Low flow signal 7

Changes in EIC Removal Method JiV EIC Signals BFNI A Upper EIC BFNI B Upper EIC

-- *C @lD%,Pm.d FO(2M)AU 0.01 0.0001 Ia 0 50 100 150 200 250 0 50 100 100 200 250 Frqpency (Hz) Fmqumney (Hr)

BFNI A Lower EIC BFNI B Lower EIC 0.1

-- FHzWO0W(1Bt tfEZ:QeflflPov.m*

0.1I - - U*E. N%Po-4UdZW.D(5M)8L

--UtE @86%Povmrl4*zWIOrO)AL

-- UECO WIk*Oa01*Hz1W0{

2U)BL 0.01 0.01 I 0001I 0.001 01 a 00001 . .0001 wV-.

000001I 0000001I 0

ffi2_LL 50 100 Frmoncy (Hz) 150 200 250 0 50 100 F.qmency (Hz) 150 200 250 8

Changes in EIC Removal Method iRA EIC Signals BFNI C Upper EIC BFNI D Upper EIC 0-1 0.1

-- -WQet~floVSJUFiZ*WD (TW)OU --U~lECg ewlSS t4HPz WO(736)DU

-- U1E8@o0Po¶.wtvo (2l8,cu 0.01 0.01 0001 0.001 0 0.0001 _ e 0.0001 0.00000_ ....

00l0001 . ..

0 00 100 150 200 250 0 50 100 150 200 250 F-q-n..y (H.)

BFNI C Lower EIC BFN1 D Lower EIC

-- UIEIC@6%P01a11t'4H4 2W0 (1161 C

0.001 0.501 [

I a 0001 Ia 0, 0001 _______ _ _ _ i _ i ____i i 0 s0 100 150 200 250 50 100 150 200 250 Fmquene (Hz) 9

Changes in EIC Removal Method IM EIC Signals BFN2 A Upper EIC BFN2 B Upper EIC 0.1 0.1

-WEC@5%P ýw/HzW(4018U

-WECG$3%POýnHZWO( 2)aU

-WEC@WPOd4HZW(49)BU 0.01 0.001-0.001

..-

S 0.00001 0.00001 0.~0l00 00.001 0 so 100 ISO 200 250 FBAquency (H.) Fmq-.ney (Hz)

BFN2 A Lower EIC BFN2 B Lower EIC 0.t 0.1 001

_ -- EEG

  • (228q

%Poý4536Hz'VFO TO 0.01 0.001 1 0.001 ul 0.0001  :  ::

0000 0*00001-0.000001 * - * - . ---

0,000001 '

0 50 100 10S 200 250 0 00 100 150 200 250 Frequency (Hz) Frequency (H1) 10

Changes in EIC Removal Method EIC Signals BFN2 C Upper EIC BFN2 D Upper EIC 0.1-0.01 -- ____ _ 0.01 001 0.00001 0 0 1.0 1.020 210 100 150 200 250 Freqency (Hr)

BFN2 C Lower EIC 01

--L EC (ie)c

@81%,Pov,fOe'6$HzWD

-WEI@1,po.4S ztFD(4)O.

0.01 0.0001 0.00001 _______

0 so 100 150 200 250 Fmq.mnmy (Hz) 11

Unit 2 Noise Removal

  • Additional Data Taken on Unit 2 to Confirm Signal Behavior

- Electrical noise on Unit 2 varies with recirculation pump speed (VFD frequency)

- Relationship is not well understood

- 19% power signal originally used for noise removal was atypical

- Composite 19% & 30% power signals replaced

  • New LF signal at 5% Power and Companion 5% EIC Signal

- All strain gages -on MSL D lower damaged

- Substituting MSL A for MSL D due to strain gage failures

- CLTP signal and companion EIC signal unchanged 12

Unit 2 Noise Removal PSD Signals BFN2 A UPoer BFN2 B Uppe 1.0E-01 1.0E-01 14 0

50 100 150 200 250 50 150 200 250 100 Fq y(z Fre.n1y (.z)

BFN2 A Lo BFN2 B Lower 1.0E-01 1.0E-02 F1.00E-03 1.0E-03 1*-

1 0-04 I. 01 .00-04 I.0E-05 1.00-00 1.00-06 50 100 150 200 250 Freqency (Hz) Froequcy (Hz) 13

Unit 2 Noise Removal PSD Signals BFN2 C LpW BFN2 D Upep 1.00E01 10E-02 1.00-03 0

(0 .00-04 1.00-06 50 100 150 200 250 Freq-y (Hz)

BFN2 C Loý BFN2 D tow 1.0E-01 1.0E-02 1.0E-03 0

l.E-05 I .00-00 250 so 100 150 200 250 FM.weoy (Ftz) Frequey (Hz) 14

Submodeling Questions Is the Stress Reduction Factor (SRF) accurate and unique?

Would a different analyst get the same solution?

- Limited, Specific Purpose o Avoid excess conservatism of shell model o Based on mechanistic behavior along weld line

- CDI Shell Model => SIA Shell Submodel o Characteristic load matches CDI stress along the weld line Drain Channel-to-skirt: Bending thru the joint - See Figure 1 Hood Stiffener-to-Hood: Membrane in stiffener - See Figure 2

- SIA Shell Submodel => SIA Solid Submodel o Incorporates weld geometry o Applies characteristic loads o Accurately captures load transfer mechanism and stress distribution through weld

- Submodel attributes (loads & boundary conditions) are not unique, but SRF is unique & accurate. So a different analyst would get the same result.

15

S ubmodeling Questions IRAI Submerged Skirt - Figure 1 Node 98156, Skirt 1000 800 CL 600 C

U) 4-400 200 0

50 50.1 50.2 50.3 50.4 50.5 Time [ s ]

16

Submodeling Questions Inner Hood Stiffener - Figure 2 Node 104843, Hood Support 5000 [

4 0 00 .... ... .............. - - -

3000-- --

CD

.-U) 2000oo ..... Ci

.......... .. ..

-.-Surface  :

0)0 10 0 0 -m id dle .. . . . . . .--

.. . --. . . . . . .. . . . . . . . .. . . .. . . ... . . . .. . . .

bottom 50 50.1 50.2 50.3 50.4 50.5 Time [s ]

17

Submodeling Questions I--

ft-A-1

  • Are the submodel loads statically equivalent to the CDI model?

- No - not statically equivalent, nor required

- Limited objective is to capture stress along weld line

- Simple Example:

REAL BEAM EQUIVALENT BEAM Objective: Design Connecting Weld (For FEA Model)

For Real Beam Using FEA

,=-- M=

M k-ft I k , ,M 10k-ft 10k+

~ILZ Z 0M = 10 k-ft

-21 18

Submodeling Questions Are the times used the ones which yield the largest stress intensity after application of the SRF?

Refer again to Figures 1 & 2

- Alternating stress defined by either membrane or bending extrema

- Extrema states produce maximum strain (i.e., fatigue usage)

- SRF should be based on the extrema stress state

- At other points in time, the product of stress intensity and SRF would have a lower value; i.e., be less conservative 19

Submodeling Questions Demonstrate that the uncertainty in calculating the SRF is small

- Approach produces high certainty that bounding stress of weld line is captured

- Solid submodel mesh sensitivity study demonstrated convergence

- Weld factor of 1.8 retained

- Low level of uncertainty subsumed by bias and uncertainty applied to overall process

- 20

Review of RAI 19, 20 and 21 Responses I-RA-1

- EMCB.147 (Unit 2 only) o New Unit 2 stress analysis o Revised response based on revised analysis

- EMCB.192/150 o SRV Resonance EMCB.181 Follow-up (Unit 1 only) o 0- 2 Hz mean filter EMCB.182 Follow-up (Unit 1 only) 0 EIC removal

- EMCB.183 Follow-up (Unit 1 only) 0 SR-P values in table 21

Review of RAI 19, 20 and 21 Responses ITVA_

" RAI 19 (continued)

- EMCB.181 (Unit 1) & EMCB.147 (Unit 2) Follow-up 0 PSD plot filtering

- EMCB.186 & EMCB.187 Follow-up (Unit 1 only) o Sub Modeling

- EMCB. 194 (Unit 1 only) o 9% signal coherence

- EMCB.195 (Unit 1 only) 0 Fan noise 22

Review of RAI 19Y20 and 21 Responses I-R-A-1 RAI 20 (continued)

- EMCB. 196 (Unit 1 only) o EIC plots

- EMCB.197/153 o Strain gage penetration location

- EMCB.154 (Unit 2 only) o 9% signal coherence

- EMCB.195 0 Extended frequency plots - VFD 23

Review of RAI 19 20 and 21 Responses

- EMCB.198 (Unit 1 only) o EIC removal

- EMCB.155 (Unit 2 only) 0 EIC removal 24

Schedule I Item Date TVA response to RAI 21 on Channel Bow 10/17/08 TVA submit Unit 1 stress analysis & Unit 2 status 10/31/08 TVA submit Unit 2 stress analysis 11/14/08 Tentative ACRS meetings 2/09-3/09 Unit 2 outage begins 4/09 NRC issue EPU Amendment for Units 1, 2, and 3 4/09 Unit 2 startup at EPU 5/09 Unit 1 implement EPU 6/09 Unit 3 implement EPU Spring 2010 25