ML20206D553

From kanterella
Revision as of 11:47, 11 December 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Forwards Vapor Container Evaluation Summary & Geotechnical Engineers,Inc, Vapor Container Seismic Evaluation Soil Bearing Capacity Analysis, in Response to NRC Questions Re SEP Topic III-6
ML20206D553
Person / Time
Site: Yankee Rowe
Issue date: 04/02/1987
From: Papanic G
YANKEE ATOMIC ELECTRIC CO.
To: Mckenna E
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM), Office of Nuclear Reactor Regulation
Shared Package
ML20206D558 List:
References
TASK-03-06, TASK-3-6, TASK-RR FYR-87-034, FYR-87-34, NUDOCS 8704130372
Download: ML20206D553 (17)


Text

e Tilephons (617) 872-8100 TWX 710380-7619 YANKEE ATOMIC ELECTRIC COMPANY I

d4 . 1671 Worcester Road, Framingham, Massachusetts 01701

.YANKEE April 2, 1987 FfR 87-034 United States Nuclear Regulatory Commission Document Control Desk Washington, DC 20555 Attention: Ms. Eileen M. McKenna, Project Manager PWR Project Directorate No.1 Division of PWR Licensing - A

References:

(a) License No. DPR-3 (Docket No. 50-29)

(b) Geotechnical Engineers, Inc., Vapor Container Seismic Evaluation Soil Bearing Capacity Analysis, March 1987

Subject:

SEP Topic III-6: Ultimate Bearing Capacity and Vapor Container Evaluation

Dear Ms. McKenna:

The attached information provides Yankee Atomic Electric Company's (YAEC's) response to questions by NRC staff regarding the adequacy of the vapor container at Yankee and the soll beneath the vapor container footings when subject to seismic loads based on the NRC site specific spectra.

Our evaluation concludes that the vapor container is capable of resisting a combination of deadweight, ambient thermal, and NRC site-specific spectra loads. Our evaluation also concludes that the soil beneath the vapor l container footings has adequate factors of safety with respect to bearing l capacity failure and sliding failure when subjected to the above load i combination.

l 8704130372 870402 f l PDR ADOCK 05000029 0

P PDR ,,, 0 t

\

l l

United States Nuclear Regulatory Commission April 2, 1987 Attention: Ms. Eileen M. McKenna Page 2 FYR 87-034 A summary of the evaluation of the vapor container is provided in Attachment A to this letter. Reference (b) contains a summary of the soll evaluation and is provided as Attachment B hereto.

Very.truly yours, YANKEE ATOMIC ELECTRIC COMPANY G. Pap ic, Jr.

Senior Project Engineer Licensing GP/sj

' Attachment cci USNRC Region I USNRC Resident Inspector, YNPS b

ATTACHMENT A Vapor Container Evaluation Sumnary l

l l

l l

L

ISSUE

SUMMARY

The soils beneath the footings of the Vapor Container (VC) are not capable of resisting the NRC loads without exceeding expected foundation movements.

REFERENCES

1. Cygna Calculation 83033/11-/F
2. " Vapor Container Structure, YNPS, Structural Analysis Report,"

Revision 3, Cygna, April 1984

3. Cygna Calculation 86064/1-F, Set L
4. " User's Guide: Computer Program for Bearing Capacity Analysis of Shallow Foundations (CEBAR)," Office, Chief of Engineers, U.S. Army, June 1982
5. " Vapor Container Seismic Evaluation, Soil Bearing Capacity Analysis,"

Geotechnical Engineers, Inc., March 1987

RESPONSE

The analysis of the VC [ Reference 1] and the corresponding report (Reference 2] are based on a soil rocking stiffness calculated assuming that the VC footing is in full contact with the soil. However, the analytical results indicated that the tensile soll stress introduced by the seismic-moment is larger than the compressive soil stress introduced by the axial force. Based on the assumption that soil cannot take tension, the footing will be partially separated from the soil. It was also found that a two-dimensional truss element, instead of a three-dimensional truss element, was used to model the diagonal tie rods of the VC. Using this two-dimensional truss element artificially increased-the stiffness of the tie rods significantly. Because of these deviations, the VC was reanalyzed in Reference 3.- Since the seismic stress introduced in the VC shell (other than the pipe penetrations) is insignificant, the reanalysis was performed using a model with fewer shell elements than that used in Reference 1 (see following figures). Additional changes in the mathematical model are: (a) adding horizontal soil springs; (b) the area of the diagonal tie rod is modeled as one-half of its gross area; (c) the reinforced beam-column joints were modeled with relatively rigid elements; and (d) minor modifications in nodal coordinates. .

I l To investigate the effect of the partial separation between the footing and l soil on the rocking stiffness of the soil, Moment-Rotation (M-0) curves of I

the footing corresponding to axial compressions varying from 140 kips to 200 kips as shown in the following figure were constructed. In constructing the curve, it was assumed that the soil rocking stiffness is proportional to the moment of inertia, I, of the footing area which is in contact with the soil and a square footing can be replaced by a circular footing with the same area. Due to the large soil strain introduced by the footing rotation, the j shear modulus of the soil is reduced to one-fifth of its value corresponding to small strain (90/5 = 18 ksi).

t _-l

m i

The reanalysis was performed for the most critical load combination f identified in References 1 and 2 DL 1 ambient thermal load NRC spectra loads. Using the trial and error method, (DT = 700),

the soil rocking stiffness of each footing was adjusted so that the moment and rotation of the footing is located below the M-O curve corresponding to the axial compression developed in~the footing.

The NRC spectra loads were input as the synthetic acceleration timehistories applied simultaneously in the N-S, E-W, and vertical directions. The soil was evaluated at different time intervals. The forces applied to the soil at the base of the footings are shown in Table 1. To serve as a basis for comparison, a response spectrum analysis of the VC, using the soil shear modulus (90 ksi) corresponding to small strain, was performed. The comparison of the soil forces obtained from the time history and response spectrum analyses is shown in Table 2. The evaluation of each footing against sliding and bearing using the forces in Table 1 is shown in Reference 5. The moment and rotation of all footings at certain time intervals are marked in the M-0 curve of the footing as a reference.

The structural elements were evaluated for the enveloped forces of the entire time span of the time history analysis. The maximum stresses or stress ratios of the various structural elements obtained from the time history and response spectrum analyses are shown in Table 3.

As shown in Reference 5 and Table 3, all structural elements and soil are acceptable. As shown in Table 3, the maximum stress developed in the column is equal to 0.90 Fy . This large column stress and the large footing rotation justify using a structural critical damping ratio of 7%

in the analysis.

- CONCLUSION The VC and the soils beneath its footings are capable of resisting the dead, ambient thermal, and NRC spectra loads.

l

. _ - . = - - _

i' TABLE 1 FORCES AT BASE OF FOOTING El(trl Wade load I e gj Y b b No, M0. (Asc (gsc.; ( eap) (tsps) (gtps) (in-k) (iri-k)

PL - 111.4 0 0. 2 4 0 ,

i erstno'r 0. 5 0.1 14. l 1632 12.

IIS 740 3-p gRc so.s2 of.2 66.5 17.3 28.5l 4216 (r.4) 7-9 ditc 11.0 2 - 11.o 4 I12.I 53.q 24.4 3276 34r5 j J, 10.3 2. -lBl.9 &&.6 41.& 4607 4220

$ 72 11.02- fl.04 -159 o 54.I 44.S 51le 7427

! pt. -205.7 0.1 0.2. 4 /

AT 4Ye 0.3 10 4 23.1 1605 7to lite ~14 l S-D WRC fo.26-f o.54 111.6 46.l 4.6 d50 352.5 l35.1 32.0 296b 27b 9 (p_gy 3-D NRL II.o - II.ob 84.b 7, 10.26 -(0.54 ~143 9 F&.h 33.1 4247 4236 7s 11. 0 - 11.0 4 -130.2 43.3 38.0 4546 3499 pt. -%71.) 0.% 0.I 2 i At t#f s.9 16.7 15.6 I f 72. (240 lig "lq 2. 3-D 4Rc 10. % -10.3 4 133.4 2.t .1 Ic.2 2723 7002.

3-D dE4 11.0 -1112 137.~1 15.1 21 9 so44 232.g (77)

Yi to.u -10.54 -137.o 49.0 33 9 3047 4243 Is 11.0 - it.it. -832,1 30.0 39,G 42&& 4569

-264.4 0. 2. O.s 2. O PL Ais$10'r 0. 3 23.0 6.G 4l@ 1632.

lib ~19 3 7-D #tc 11.o2- i t.oS l'It . 2 0.7 MI 3G4J- 2356 7-6) y, ,,,,3,,,,,, _ ,35,.I 31.9 4 S.6 'seb2 abib h II.c2 -st.ob -142.9 51. 9 G5. ~1 4264 5460 1

TABLE i (CONT'D)

FORCES AT BASE OF FOOTING Elem Wok load 1$ehal fgh N $ H5 As W' O' dst. ($H..) ( >tps) (Qi) (Vips) ( in- k) {in-k)

QL. - 3b5. I c.*2 0 1 0 D1s 47DT 0.1 25.l I.o 6I i71s 11-) 144- 'l-D Alft. /o.26 -1032. 44.5 20.5 F9. / 3566 3o44 (p-5) 3.D Mft, 11.o 2 - 11.0 9 43,I I7.1 64, r 3460 257O L la10-IO.13 - l bS. l 44.2. 54.-1 3b46 #DIl 22 11.P2 -lI.88 -1714 41.6 65.*f 4022 4143 VL- -267.1 0.2 o.I O o hist 70V o.1 21.2 10.o 111 1564 it9 ;4g 30 Wf4 1o.26-10.34 56. & 34.4 65.4 3646 3467 3-p de ll.oz - li.oS Ster. 56.~2. 46.r 402o 3o02 (F-4) 2.i 10.2b - 10.34 - 21 0, 6 61.3 76.G 4Alr 50F6 Is. 11.02- 11.06 -2l4.4 54.6 79,9 4142 4571 pt. - 271.1 0.1 c.1 O O AT

  • 17tfr 0.2. 15.4 16.4 124o ll72

{ 119 196 M WRt. f.4&- 4.02 ff&.4 15.6 41 6 3440 1954 3 D altc 4.66 -4.44 41 6 52.6 G4.7 36G4 314 5

] (p,3y 3-0 W4. lo.s - is.o 43.6 49.3 64.9 4075 aos Zi 9.44-4.a7. -154.5 il.O G6.4 G200 SISI j 72 4.66 - 4.44 - 224.1 69.1 71.6 447.9 4267 l

Zs 10.4 - 15. 0 - 22 6. 3 #3.6 61.9 5333 5577 tN -2116 0.1 0.7 I l 47 170) 0.5 6.0 21.6 1687 6:2 ggp 5-D #44 6.42-4.06 12o,2. 30.5 31.4 3644 2626 q47 7-D W84 10.6e 63.5 I l.6 43.5 5697 4565 (F-2) -1529 96.k 5617 7, BA t-4.02 53.7 6241 Zs it.66 -304.b 65.*7 65,5 5315 517 9 I

TABLE i (c0NT'D)

FORCES AT BASE OF FOOTING Ekm Wade 1. cad 2)Nal kr b b MS O No. No. Q4c, g gg ,y ( pap) ( tripg) (g;pgj (in.k) (/,1-k)

PL -297.4 0 0,2. 2. 2.

afst70): 0. 5 0l 22.5 2G4 52 I'll 746 34 wec OA6 4.e4 l i q,2. 36.4 26.7 4 Bob 2454 22.l 550o (f n} 19 dtL so.66 815.l bb.o 4040

7. 9.46-4.04 - l 69. % ~57 I 44.4 6447. 9006 7s 10.6 8 -17z.5 46.7 44,e 6194 5434 DL - 241.4- c.1 0.2 2. 2.

LTs 110'r 0.6 OA 20.s I627 ~141 lit 14 9 3-D WAc g.46 4.06 106.4 41 7 78.5 4040 2545 (p.ib) 3-D NfC 10.66-l0.66 I+8.6 45.0 12.6 3564 4462.

2, 8.49- 4 06 -l94.0 50.7 66.6 6719 6339 L 10.66 -10.66 -14 2. / 52.6 93.I g416 Gz7G 9L - 24 4.4 o.1 0.1 l 2.

ate t*lofr 0.lf 16.2 l6.0 1454 I442.

11 % @00 3-D WRC 4.0- 4.04 74.2. 37.I 56.4 5447 14 4 o (F-is) 34 WRc lo,66 - 10.7 160.l 24 0. 22.0 3016 4024 L 4.0 - 4.s4 -220.3 53.4 74.4 6452 4414 Is 1o.66 - 10.7 -193.6 40.3 19.1 sSlo f466 i Ot. - 314.4 0.'2 0.1 0  %-

AT tWF c.S I4.5 9.k 6b9 Iqbb 12A $0! 1.D niec 4.o2 - 4.10 5b.0 20.4 62.4 5946 124 %

13.0 36.1 4346 1819

,,g 3.D NEL 10.bb -lo.70 14 9.'2.

2: 4.01 - 4.10 -256.4 34.9 71 1 6764 3160 h 10,66 -10.70 -166.1 32.6 44.9 62.61 6107

-]

TABLE i (CONT'D)

FORCES AT BASE OF FOOTING Elw NO.

Wade A0.

Load

&4L 1$eNal (SH .)

f ( >ty)

N (Yqs) b (Virt)

H5 (in-k)

NE Ut'l-k) -

DL -527 6 0.2 0 / /

, hs:4yy I.I 20.0 f.4 I50 2540 17 6 M 3-D Mf4 4.4s -4.44 $"17 (8.4 43.4 FOO 7. 7644 3 D NE 10,66 -10.66 122.5 15.5 44.3 5676 4257 (f-IS)

L 4.42 -444 - 294.0 90.6 44.6 5 52 6439 h 10,66-16 6 - 2M1 35.7 50.7 5027 b 14e 9L - 246.6 0.3 0,1 2 3 i aid 7a*p 0.I 22.7- 6. 5 445 2040 l2b 90) 3 0 NRC. 4.1b-43b Olho \ "> .4 47 6 44IS 2667 (p,12) 3-D WR ( 0 .11. - 1 3 . 0 93.7 36A 74.5 5534 425l l 1, 4.24 - R.sb -212.~1 37.6 54.A 50&O 494o T1 80.4 -l*>. 0 -2t s. 0 bl.5 61.1 6t&b 6244 l

UL -260.7 0.2. O.1. 3 3 67 h0% 09 30.S Ib.6 1052. t22.&

117 904 FD dRL 4.42 66. u. 70.4 54.6 3641 bc2 (p,gi) 3-D N 6 ro.66 I9.G 93.4 99.4 4424 4I56 1 4.42. -l41.4 51.6 76. & 4446 1631 h,. IG.b6 -24l.4 10 4.1 10 5.4 54~14 5595 PL - 257.6 0.2- 0.2 4 i Afsf.70$r 05 10.4 23.6 #454 655 l29 gog 3-D dA4 4 4 - 4.50 66.6 46.5 34.e 3325 1744 3-p Witc 10.32- 41 9 66.l 46.0 913 5 "+464 Y*IO 39 $tt Il. 0b '"It. b 14.5 46.6 35I9 52ff L 4.46 - 4.70 -168.9 67.6 63.4 4795 2455 j Z1 103 2. -Si5.4 41.1. ~71.9 4543 4g2 I

Z3 #1.06 -36 4.3 94.& 70.6 4775 34'31 i

TABLE 2 COMPARISON OF FORCES AT BASE OF FOOTING ryte op MAufsis 5 Vy Vs M+ Ma Fene (kips) (kifs) (kips) trips) (eire,)

Time- Hisht'y 10.60 II5.I 66.0 22.I do40 Swo At Time SPon 0~ 15 II9.2 66.o 26.7 4e06 Sseo feSponse <fr&+ rum lib *l2- 24 455+ 5035 Time - His4 cry to.bb - to.66 l't.6 43. & l 2. b 3569 4462.

At ~7Ime 6 PA*1 #- IS ifs.6 54.9 36.5 4090 4637 F- 16 fMPonse S tOYMM T iia b7 _

Sb '455 5531 Tin 1e - MIS $01y 10.bb ~ (0.7 lbO.7 24.0 '22.0 50 *lS 4024 at "Tiene Stan 4-15 160.7 44.1 56.3 5447 42se

$tsf0rist 6ftL4Yum ll0 54 55 5002. 4007 Time - Michry lo.bb -lo.1 I49.2 l S.O Sb.I 4595 5919 p ., ,4 Af7Tmtspe 4 -15 149, , 26.9 62.+ 5996 3019 fespfnSe SycClYun ltb b9 60 ST10 4757 gg The - His1bry l A 6b -Io.66 122,5 15.5 44.5 5676 4257 p.4 At " Time Span 0-15 121.5 lb.6 5 l .'1 ~105b 4257 lesfhtle Wh!" ~

Il6 20 5b . 65tl 40th Time - Hislory 10.u -Is. 0 6 a.7 19.9 94.5 55s9 +1sl p Af Time Span 0-15 477 30.9 74.5 6257 4251

  1. 86fFrfse Spec / runt (19 91 46 5070 4316 gg Time - Hislory 10.b6 lb.tJ- 05.4 99.4 4424 4tSb p ,y at Tinse St u o- Is 90.-l e1.4 99.5 44a9 41sb fe3 Ante Spec ktas (24 b3 ~71 4363 3703 Time - Hisidry l l.06 72.6 74.5 46.6 B319 920)

Af Time 6 pan 0 - IE M. l 97.l 5"}.3 4146 d4b2.

32esponse Spec.4rwm l1.'s *lA 45 Sb54 +093 b

TABLE 2 (CONT'T)

COMPARISON OF FORCES AT BASE OF FOOTING F, V V3 My M3 9

F#De ~TYM OF MAW 616 (kiPb) (kifs) (kips) t rips) (tip.)

Time- Hishry ll.02 -Il .04 i \ 2.1 65.9 2o.s sz1s 34s5 N 790 gg. g , 4p,n p- f g 11 2 . 1 15.9 26.2. 4165 4686 F-9 ft$ponte <fe& hum 822. 12 25 5940 4b55 Tirne - HMorg so.2s -to.34 s2I.s 46.s 9.s 2bss as25 Af De fem 0 - 15 is 5.2 55 1 se.o s992. se9z F-8 gefpon6e hrthum 125; 4/46 87 37 3770 T/,3e - Hiffory 10.24 -10.34 1%t+ 21.1 10.2. 2723 Goo 2 N 742 d Time S ten 0-/5 137.7 se,e 50.7 4104 G alo F-7 Ste&4 rum ltesfonie (21 40 so 4299 4065

-Time - His/ pry 80.26- to 34 126.4 14.7 40.2. 3262. 2994 g 7q3 p.6 Af 7 me M -/E 12 6.4 28.0 ~11 1 4540 3522.

feSpense SpeChun i2l SS 67 4456 3740 I

g7 7,we - Hishry ti.02 - il.oo 93.1 17.1 64.7 34bo 251o pg At ~Ume span O-/5 119.5 22.0 75 1 4596 sf55 lesfAt.fe @huik 125 24 72. 4525 3607 Tim - Hidory ~ lo.16 -lo.s4 Sb.b 39.9 bS.4 Sb9b 9497 l p, d Time Span 0-IS to g.o 46 5 17.1 44co s957 Resfome Specfrunt I23 37 bb A2bo 190.7 Tinsg - HiSlpq 10.4 -l 9. 0 45. b b6.5 64.0 4o]S 4405 F-5 ## I'"# $ f#^ #~ '# "6# 68'S ##' ' ##75 *#

fe$@nte Sfeckunt l2.1 SS SI 40lb AM9 Tinte - Hislorg to.bb 65.5 ~17. b 45.S BbR 7 456S H 'lR~l F-2 Tat G Pan 0 - 15 12 o. 'J. 77.6 45.5 3099 4565 b$fon$r Sperfram llg 'lI 3G 54GS S057 Y

TABLE 3 MAXIMUM STRESS / STRESS RATIO DF THE VC STRUCTURAL ELEMENTS STRUCTURAL ELEMENTS TIME-HIS0TRY RESPONSE SPECTRUM ANALYSIS ANALYSIS ANCHOR BOLT STRESS AT COLUMN BASE CONNECTION 0.06 FY 0.66 FY COLUMNS AT BE AM-COLUMN JOINTS:

COMBINED AXIAL AND BENDING STRESS 0.90 FY 0.78 FY STRESS R ATIO 0.95 0.74 STRESS R ATIO FOR THE COLUMNS BETWEEN THE BEAM-COLUMN JOINT AND TOR 0.35 0.35 0F TIE ROD STRESS RATIO OF BEAM 0.79 0.60 DI AGONAL TIE RODS:

TENSIUT STR E S S 23.0 KSI 18.0 KSI STRESS R ATIO 0.81 0.63 BENDING MOMENT OF FOOTING PEDESTALS 0.69 MY 0.83 MY e

98 9

i e

I'

_\ -

M

/-

.e

~~ ~

r

$ I N=s =

=

'h y

pfj'Myst')

f m

VC W!1M $1P'LIFIED Saf[LL

  • DL 4 Die *70 l VC WITH SIMPLIFIED SHELL l

I l

l t

NODE NUMBERS

'P89

. rgir

'rth 36 't:0

.23 9 es; 185 III it00 Se lt20 g f33 39 't06 ll23 ts2 1

f J ag i n -

f)

'86 II ' ris to 94 PCD 999

{. ,

I 10 'I*

.t00

,i.

f26 s 9.1 t,,,

' 1.O.

I '21 j

,3, '7M IS II 40) fe, .g g att ifi n 795 Q1 qs 7- ,

rio ,

106 191 P90

,gg

'O '

109 f93 P92 VC N11M SIPPLIFIED SMILL

  • DL & 07.-70 '

l l

l l

s EEMENT NUMBERS 11 10

.i

- a ~

3

~

e ry 1% so t n ,,

to Ilh t #4 f

l5 0$

to -

w g 3' N , li

.a  ! .1 16 '

I3 v 173 122 57 i' ,3 6

  1. 1 174 II h'4 U

W Ph i

f ,

L2 I b2 l^

mj l[9

'l s '

>4 f;

' 17 OI 8 I6 119 tg l2 L8 in , g et W 0 llt

53

" _ u 117

0 i2

!!S si r

l19 fl6 135 i TE WITM $1 pt!FIED SMELL . DL & DTe-70

  • I l

12000 (0 000 ps 800') -

v

,  %( fsl60 e ' 902(204 )

803 (2is)

~

17

$ poco -

p= tso " .

  • ***)

sos *sM-

  • 000 (su) W I)

K (\WS) 74o(159) 49 * , M us6p00 -

N7 (lM)

T 2 ~144 las (iso)

(172) %6h053)

(050 o*> wa wi 4ppo - (f= 153 )

BE6fNI46 0F FMRTIAL EfARAfloN I BETWEE4 FOOTING AG soil 2000 4 a

l i I I I f

.001 .002 .00s .004 .cos .006 ROTATION 9 (mA.)

r VC FOOTINGS - M0ENT - ROTATION RELATIONSHIP l

i

.o ATTACHMENT B Soil Evaluation Summary J