ML20206D571

From kanterella
Jump to navigation Jump to search
Vapor Container Seismic Evaluation Soil Bearing Capacity Analysis
ML20206D571
Person / Time
Site: Yankee Rowe
Issue date: 03/27/1987
From:
GEI CONSULTANTS, INC. (FORMERLY GEOTECHNICAL ENGINEER
To:
Shared Package
ML20206D558 List:
References
NUDOCS 8704130375
Download: ML20206D571 (33)


Text

,

t VAPOR CONTAINER SEISMIC EVALUATION SOIL BEARING CAPACITY ANALYSIS ROWE, MASSACHUSETTS March 27, 1987 Submitted to CYGNA Energy Services, Inc.

2121 North California Boulevard Walnut Creek, CA 94596 by Geotechnical Engineers Inc.

1021 Main Street Winchester, Massachusetts 01890 (617) 721-4000 Project 87085 8704130375 870402 PDR ADOCK 05000029 P PDR

GEOTECHNICAL ENGINEERS INC.

1021 MAIN STREET WINCHESTER MASSACHUSETTS 01890 (6171721-40 0 0 retva os. et Ta'.""T."!,*3 t'

":;'"O"crf"J"J'

. c,MC" ..

E"le'5' 'l's March 27, 1987 Project 87085 Mr. Michael Shulman Executive Vice President CYGNA Energy Services, Inc.

2121 North California Boulevard Walnut Creek, CA 94596

Subject:

Vapor Container Seismic Evaluation Soil Bearing Capacity Analysis Rowe, Massachusetts

Dear Mr. Shulman:

This letter report contains the results of our analysis of the soil bearing capacity and sliding for the Vapor Container Building footing foundations under seismic loading at the Rowe Nuclear Power Station. The scope of work is described in GE1 Proposal No. P1973-1 dated March 10, 1987.

The work was authorized by Mr. Michael Shulman of CYGNA Energy Services, Inc.

APPLIED LOADS The loads applied to the footings were provided to GEI by CYGNA Energy Services, Inc. and are presented in Appendix A.

These loads were obtained by CYGNA using a dynamic linear elastic time domain analysis of the Vapor Container structure.

The stiffness of the soil was represented by springs in the vertical, horizontal, and rocking directions with a soil shear modulus compatible with the level of dynamic shear strains.

BEARING CAPACITY ANALYSIS The analysis was performed using the bearing ca formulation adopted by the Corps of Engineers (1, 2)pacity .

I Numbers in brackets correspond to the references listed at the end of the text.

OFFICES. CONCORD . NEW HAMPSHIRE oENVER . CoLoRAoo

Mr. Mich: 1 Shulm n March 27, 1987 Figure 1 depicts a typical shallow footing foundation and Fig. 2 is a compilation of the key equations required by the method.

Soil Parameters The soil parameters selected for the analysis are shown in Fig. 1. For the purpose of this analysis, the soils were represented by two layers: an upper layer of backfill and a layer of glacial till extending from the base of the footing down.

The shear strength properties of the glacial till were estimated from field shear wave velocity measurements per-formed at the Vapor Container building by Weston Geophysical Corp. [3], shear wave velocity measurements for the Harriman Dam dumped till [4], empirical relationships between maximum shear wave velocity and standard penetration blowcount (SPT)

[5, 6], empirical relationships between peak drained effective friction angle and SPT blowcount [7, 8, 9], and measurements of the peak drained effective friction angle for the Harriman Dam dumped till performed by GEI [4].

The upper plot in Fig. 3 shows two empirical relation-ships between shear wave velocity and standard penetration test blowcount. Also shown are the corresponding values for a till dumped for the construction of Harriman Dam, located about six miles north of Rowe Station. The till is similar to the till at Rowe, i.e., it is a widely graded soil ranging from boulders to silt sizes with low or no plasticity. At Rowe the shear wave velocity is about twice as high as for the dumped Harriman till reflecting a much denser condition for the in situ till. Blowcounts for the Rowe till were deter-mined in borings performed in 1978 [10), and they were generally over 100 blows /ft with most values in the range of 150 to 200. Blowcounts are also available from a 1956 boring performed by Raymond [11]; however, these are in the range of 16 to 65. There is no explanation for the apparent discre-pancy. Blowcounts consistent with the measured shear wave velocity are of about 150 blows /f t as noted in the upper plot in Fig. 3.

Because of the very dense nature of the Rowe till, the undrained strength of the till is higher than the drained strength, and thus the analysis of bearing capacity was based on drained strength. The lower plot in Fig. 3 shows empirical correlations between blowcount and peak drained friction angle. Also shown is the range of data obtained for the dumped till at Harriman, indicating reasonable agreement with the empirical correlations. The apparent blowcount for the h OECYTECHNICAI, ENGINEERS INC.

Mr. Micheal Shulm:n March 27,1987 Rowe till of 150 indicates a reasonably conservative value of peak drained friction angle of 45*. A parametric study was also performed in which the friction angle was varied between 35' and 45*.

A value of total unit weight of 145 pcf based on results presented by Weston Geophysical Corp. [3] is used.

The soil adjacent to the footings was excavated to about the footing level. Thus the footings are surrounded by com-pacted fill which will not be as dense as the undisturbed till. Therefore,fwe have conservatively neglected the shear strength of the backfill material. A total unit weight of 125 pcf was used for the backfill soil based on a comparison with similar soils.

Results ,

Figures 4, 5, and 6 present the safety factor of all 16 footing foundations for internal friction angles of # = 35*,

40* and 45*. Appendix B presents a summary of the calcula-tions performed in order to arrive at the results presented in Figs. 4, 5, and 6.

From the figures we can see that for a friction angle of 45*, the lowest factor of safety is about 5. For a friction angle of 35* , the lowest f actor of saf ety is 1.3 for footing (F15) and all other footings have a factor of safety larger than two.

We conclude that the footings have an ample factor of safety with respect to a bearing capacity failure.

SLIDING ANALYSIS Based on the horizontal and vertical loads provided to us by CYGNA, we computed the safety factor against sliding for all 16 footing foundations.

Photographs of the construction of the footings show that the footings were poured over a bedding layer of crushed stone. Thus, we believe that a friction angle of 35' is reasonable. We conservatively neglected any contribution of the soil above the footing level in resisting sliding.

Figure 7 shows the safety factor for all 16 footing foundations for a sliding failure mode. Appendix C contains a ,

table that present the computations. From the figure we can see that all of the footing foundations have a safety factor greater than one and all except two have a safety factor greater than 1.5. The lower factors of safety correspond to oEOTECHNICAI. ENGINEENS INC.

Mr. Michael Shulm:n March 27, 1987 footings F-11 and F-10 that have a safety factor in the vici-nity of 1.1 to 1.2. Due to the transient nature of the seismic loads and the conservative assumptions used in the analysis, a factor of safety only slightly larger than one is acceptable, and thus the footings should be considered safe for a sliding failure mode.

If you have any questions, please do not hesitate to call us.

Sincerely yours, GEOTE A EN NEERS INC.

Alf e b Ur ,

Pr ject Manage lo Castro Principal AU/GC:ck Enclosures I

OEOTECHNICAL ENGINEEHS INC.

l,

REFERENCES 7

[1] Mosher, R. L. and Pace, M. E. (1982) " User's Guide:

Computer Program for Bearing Capacity Analyses of Shallow Foundations (CBEAR)," Instruction Report K-82-7, U.S. Army Engineers Waterways Experiment Station, Vicksburg, Mississippi.

[2] 'Mosher, R. L. and Urzua, A. (1986) "A Microcomputer Program for Bearing Capacity Analysis," Proceedings of the 4th Conference on Computing in Civil Engineering, TCCP Div/ASCE, Boston, Massachusetts.

[3] Site Dependent Response Spectra Yankee Rowe, Report pre-pared for Yankee Atomic Electric Company by Weston Geophysical Corporation, February 1980.

[4] Geotechnical Engineers Inc., Report #81807 on, "Harriman Dam Studies, Phase 3," June 1981.

[5] Ohsaki, Y. and Iwasaki, R. (1973) "On Dynamic Shear Moduli and Poisson's Ratio of Soil Deposits" Soil and Foundations, Vol.13, No. 4, Tokyo, Japan, pp. 61-73.

[6] Imai, T. (1977) "P and S Wave Velocities of the Ground in Japan," Proceedings of the IX International Conference on Soil Mechanics and Foundation Engineering, Paper No. 4/15, Tokyo, Japan.

[7] Sowers, G.B., and G. F. Sowers (1970) Introductory Soil Mechanics and Foundations, 3rd ed., the Macmillan Company, New York, 556 pp.

[8] Bowles, J. E. (1977) Foundation Analysis and Design, Second Edition, McGraw-Hill Book Company.

[9] Peck, R. B., Hanson, W. E. and Thornburn, T. H. (1974)

Foundation Engineering, Second Edition, John Wiley and Sons.

[10] " Geology and Seismology Yankee Rowe Nuclear Power Plant," Report Prepared for Yankee Atomic Electric Company by Weston Geophysical Corporation, January 1979.

[11] Letter from Mr. A. S. Lucks from Stone & Webster Engineering Corporation to Mr. J. Mayer of Yankee Atomic ,.

Electric Company, August 1978.

Bearing Capacity Fo rm ulation Typical Footing Foundation H o mp U

-( . Backfill

'4 f t 3) _ __ (2);

6-14.25.f t p 2e. y y = 125pcf n . . .

cM.

ai .in p

p.aa,

'H" '

k~ an ~- , <xgin mag n 8 Glacial Till

" Y= 145pcf eP =

g.' s B - 2 e = '1 W = 45 (3) effective width I.) Groundwater location based on conversations with G. Harper from YAEC.

2.) Shear strength of backfill soll is neglected.

3.) See figure 3 for internal peak drained friction angle estimation.

4.) Dynamic load provided by CYGNA Energy Services. Appendix A.

m. ,

Cy8na Energy Services, Inc. Vapor Container Seismic TYPICAL FOOTING Walnut Creek, California Evaluation Soil Bearing ASSUMED SOIL PROFILE Capacity Analysis GEUTECHNICAL ENGINEEIE INC.

  • * * * * * * ^ " " " Project 87085

] March 27,198 7 Fig. 1 i


. , - . ..-y , , _ _ , , , , _ . _ . _ , _ _ . _ _ , . . , . - - , - , . ,.,,__.._,_,._,,---,--_.m_-,-- - -,-_- ..-.-.,_..v.. . . - . _ . , _ ._ ,, - _ _ . - - ,

Bearing Cap 6 city Formulation Pult 8 ' l' 89 I i490 Ng + SySy j BT N r / 2 where :

Nq , N, = bearing capacity factors Sq , Sg = shape factors Sq ;,$ = inclination factors E = effective unit weight of soil B',L'= effective width and length of footing qo = effective overburden pressure on a plane '

passing through base of footing Ng = e"i "# NW Ny = (Nq- 1) tan (1.4 g) ,

NW = tan 2 ("4 + 8/2)

B' = B-2e, L' =

L-2et F. S. = Pult/P Cygna Energy Services, Inc. Vapor Container Seismic EQUATIONS FOR ,

Walnut Creek, California Evaluation Soil Bearing BEARING CAPACITY Capacity Analysis ANALYSIS

% OEOTECHNICAL ENGINEERS INC.

? *'** *'a * ***^ce Project 87085 March 27, 1987 Fig. 2

)

1

r h 2000 ROWE tn N

r E h.

. k

- l

( [ 1500 5 OHSAKIB IWASAKl o

IM Al w 1000 -

4 HARRIMAN, DUMPED TILL z

4 E ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

500 m 0 50 100 150 l ROWE-45- so m S U

~_ l PECK, HANSON w

f

/ a THORNBURN zW 40 -

42 /

4 =

D / '

SOWERS E $ 35 W

Q.

/

H ARRIM AN, DUMPED TILL lIl u.

30 O 50 10 0 15 0 Ni , blows /f t Cygna Energy Services, Inc. Vapor Container Seismic FRICTION ANGLE FOR Walnut Creek, California Evaluation Soil Bearing GLACIAL TILL Capacity Analysis

/\ GECHTCHNICAL ENGINEERS INC.

(J ,,

= <>. rea. - - Tre Project 87085 March 27, 1987 Fig. 3

m m _--

FS-BEARING CAPACITY 5

i 4n g

LL

<C N (J) 3 -

LL O

FRICTION ANGLE = 35 . /

g a- . . .. .

I O i

' E O E 4 i_ .

g LL g

~

i I I F31 F2IF l F-16 F-s FI s F-7 FsFsF4 I I F-15 F-14 F-13 F-12 F-11 F-10

, FOOTING NLMBEF Cygna Energy Services, Inc. Vapor Container Seismic FS - BEARING CAPACITY Walnut Creek, California Evaluation Soil Bearing  ? - 35' Capacity Analysis cooTocliNICAL ENGINdERS INC.

=o*=""****^*"*" Project 87085 March 27, 1987 Fig. 4

=S-BEARI\G CAPACITY 12 11 -

>- 10 -

LU g _.

LL '

<C B --

(D ~ '

7-o s- FRICTION ANGLE = 40 ,

5- a

/,

CC O 4 -- i l E C._) 3- g

<{ 2- -

1 -- - -

8 N

S

=

0- i i i i i i i i i i i i i i l

F-9 F-8 F-7 F-5 F-5 F-4 F-3 F-2 F-1 F-16 F-15 F-14 F-13 F-12 F-11 F-10

=00T::\G \UV 3EF 4

Cygna Energy Services, Inc. Vapor Container Seismic FS - BEARING CAPACITY Walnut Creek, California Evaluation Soil Bearing = 40*

Capacity Analysis GEOTECIINICAL ENGINEEfts ?NC.

"*"*"""8 Project 87085 tiarch 27, 1987 Fig. 5

=S-BEA DlG C AP ACI~~Y 30 28 -

> 26 - l t

)

24 -

'u L

LL 22 i

<{ 20 -

W is -

[L 16 - \ n O i4 _. FRICTION ANGLE = 45 a

/ j g 12 --

O 10 - .s

' 5 l B- 1 C3 x 6- g 4

4- d 2- -  !

s=

r i i i i i 0- i i i i i i i i F-9 F-8 F-7 F-8 F-5 F-4 F-3 F-2 F-1 F-16 F-15 F-14 F-13 F-12 F-11 F-10 C f gna Energy Services, Inc. Vapor Container Seismic FS - BEARING CAPACITY I Walnut Creek, California Evaluation Soil Bearing j - 45* l Capacity Analysis coorrritNICAL ENGINEERS INC.

-5'5 a * """^""" Project 87085 March 27, 1987 Fig. 6

(

FS-SL:: JI NG 3.0

2. 8 -- l
2. 6 --

4

' 2. 4 --

<(

2. 2 --
2. 0 -- -

FRICTION ANGLE = 35 /

W i .8 -

1 1.6 'H~ m /*-

O i . 4 -- m~N , ,/ '

l 1. 2 --

7 _____i, i

O a

1. 0 --

iw O.8 -

'o 0. 6 --

E x

g

<t 1 0. 4 -- l 0.2 - 8 m

s=

0.0 - i i i i i i i i i i i i i i F-9 F-8 F-7 F-6 F-5 F-4 F-3 F-2 F-1 F-16 F-15 F-14 F-13 F-12 F-ti F-10

=00T::4G NU4BEF Cygna Energy Services, Inc. Vapor Container Seismic FS - SLIDING Walnut Creek, California Evaluation Soil Bearing e - 35' Capacity Analysis GEOTECliNICAL ENGINEERS INC.

"*"*""S^"""

Project 87085 March 27, 1987 Fig. 7

l l

l a

APPENDIX A

LIST OF SYMBOLS F-1 .......................... Foooting Designation P ............................ Vertical Load Vy,V: ........................ Horizontal Loads in y and : directions Vt ........................... Total Horizontal Load My,M: ........................ Applied Moments in y and : directions

l TROLE R.1 VAPOR CONTRINER FOUNDRTIDH LORDS' YRNKEE ROHE Footing Hode Time P Vy Uz VL Hg Hz sec k k k k in-k in-k F-9 790 11.02 159.0 54.1 44.3 69.9 5114 3427 F-8 '791 10.28 143.9 56.6 33.2 65.6 4247 4236 F-7 792 10.24 137.0 38.0 33.9 50.9 .3897 4243 F-6 793 11.02 143.0 31.9 55.7 64.2 4264 3968 F-5 794 11.02 171.9 41.6 65.7 77.8 4022 4293 F-4 795 10.28 210.5 61.3 75.5 .97.3 4417 5056 F-3 796 10.40 226.3 83.8 81.9 117.2 5333 5577 F-2 797 10.68 209.6 85.7 65.3 107.7 5315 5178 F-1 798 10.60 172.3 66.7 44.8 80.3 6184 5434 F-16 799 10.66 142.1 52.8 33.1 62.3 5418 5276 F-15 800 10.66 133.8 40.3 38.1 55.5 5310 5468 F-14 801 10.66 165.2 32.5 44.8 55.3 5261 5787 F-13 802 10.66 204.2 35.7 50.7 62.0 5827 6978 F-12 803 10.40 213.0 61.3 81.1 101.7 6186 6294 F-11 004 10.68 241.4 104.1 105.4 148.1 5479 5385 F-10 805 11.06 184.3 85.6 70.6 111.0 4775 3937 Geotechnical Engineers Inc. Project 87085 March 27, 1987

> . I

_ . . . ..- . . . . . . . i .

1 L

l APPENDIX B e

e

l LIST OF SYMBOLS Thata .......................... Orientation of Footing from Project North Mu,My .......................... Moments in Local Coordinates u and v Eu,Ev .......................... Eccentricity of Soil Resultant due to Mu & Hv Magnf'n Factor ................. From Teng(1962) " Foundation Design" B',L' .......................... Effective Footing Dimensions due to Mu & Mv MIN DIM ........................ Minimum Effective Footing Dimension Maximum Effective Footing Dimension

  • MAX DIM ........................

Fqa ............................ Surcharge Shape Factor = 1+NpB/L Fga ............................ Weight Shape Factor = 1+NjB/L Fqi ............................ Surcharge Inclination Factor = (1 f /90)'

Fgi ............................ Weight Inclination Factors = (1-f/p)*

DEPTH .......................... Depth of Footing Base below Ground Surface OV' BURDEN ...................... Effective Vertical Stress at Footing Base qulti .......................... Frictional Component of Ult. Bearing Capacity quit 2........................... Surcharge Component of Ult. Bearing Capacity qult-tot ....................... Total Ultimate Bearing Capacity

'A' ............................. Effective Area of Footing (i.e. B'L') l Ultimate Load Capacity Pult ...........................

P(vart) ........................ Vertical Load F.S. ........................... Factor of Safety against B.C. Failure Gaotechnical Engineers Inc. March 27, 1987

TR8LE 8.1 8 ERRING CRPRCITY BNRLYSIS; d = 35' 'Page 1 of 3 Yankee Rowe Hode THETR. THETR tiu tiv Eu/L Ev/L tiagnif'n Maximum Oeg Rad in-k in-k Factor Pressure ksf 790 180.0 3.14 5114 3427 0.26 0.17 4.8 6.92 791 202.5 3.53 5545 2288 0.31 0.13 5.2 6.79 792 225.0 3.93 5756 245 0.33 0.01 4.0 4.97 793 247.5 4.32 5298 2421 0.29 0.13 4.7 6.10 794 270.0 4.71 4293 4022 0.20 0.19 4.0 6.24 795 292.5 5.11 2981 6016 0.11- 0.23 3.6 6.87 796 315.0 5.50 173 7715 0.01 0.27 3.0 6.16 797 337.5 5.89 2929 6818 0.11- 0.26 3.9 7.41 790 360.0 6.28 6184 5434 0.28 0.25 7.0 10.94 799 22.5 0.39 7025 2801 0.39 0.16 10.0 12.89 800 45.0 0.79 7621 112 0.45 0.01 13.0 15.78 801 67.5 1.18 7360 2646 0.35 0.13 6.6 9.89 802 90.0 1.57 6978 5827 0.27 0.23 6 11.11 803 112.5 1.96 3448 8124 0.13 0.30 4.9 9.47 804 135.0 2.36 66 7682 .00 0.25 2.65 5.80 805 157.5 2.75 2905 5465 0.13 0.24 3.8 6.35

)

)

Geotechnical Engineers Inc. Project 87085 March 27, 1987 l

__ I

TABLE B.1 DEARING CRPRCITY RNRLYSIs; g = 35' Page 2 of 3-Yankee Rowe Node B' L' HIN OIN'Nt1AX OIN'N Fqs=Fgs Fqi Fgi OEPTH OV' BURDEN FT FT FT FT FT psf 790 5.14 6.91 5.14 6.91 1.27 0.54 0.10 7.92 745 791 4.08 7.85 4.08 7.85 1.19 0.53 0.09 7.50 718 792 3.50 10.20 3.50 10.20 1.13 0.60 0.17 8.92 807 793 4.33 7.68 4.33 7.68 1.21 0.53 -0.10 8.08 755 794 6.34 6.60 6.34 6.60 1.35 0.53 0.09 8.33 770 795 8.14 5.74 5.74 8.14 1.26 0.52 0.08 8.58 786 796 10.37 4.82 4.82 10.37 1.17 0.48 0.05 9.00 812 797 8.17 5.08 5.08 8.17 1.23 0.49 0.05 9.00 812-798 4.52 5.24 4.52 5.24 1.32 0.52 0.00 10.25 890 1 799 2.26 7.21 2.26 7.21 1.12 0.54 0.10 10.25 890 l 800 1.01 10.36 1.01 10.36 1.04 0.56 0.13 10.25 890 801 3.07 7.83 3.07 7.03 1.14 0.63 0.22 12.25 1015 802 4.80 5.74 4.80 5.74 1.31 0.66 0.27 14.25 1140 803 7.80 4.14 4.14 7.00 1.20 0.51 0.07 10.00 874 804 10.45 5.20 5.20 10.45 1.18 0.42 0.01 J6.00 625 805 7.07 5.56 5.56 7.87 1.26 0.43 0.01 6.00 625 l

1 1

Geotechnical Engineers Inc. Project 87085 March 27,.1907

TROLE B.1 ' BERRING CRPRCITY FIHRLYSIS; # = 35' Page 3 of 3 Yankee Rowe-Mode quit 1 quit 2 quit-tot R' Pult P(Vert) F.S.

psf psf ksF Ft^2 kips k 790 1040 17124 18.2 35.5 644.9 159.0 4.1 791 669 15088 15.8 32.0- 504.4 143.9 3.5 l 792 1053 18104 19.2. 35.7 683.6 137.0 5.0 793 767 16230 17.0 33.2 564.5 171.0 3.3 794 1221 18460 19.7 41.8 824.1 171.9 4.8 l 795 942 17299 18.2 46.7 851.9 210.5 4.0 l 796 411 15330 15.7 50.0 786.7 226.3 3.5.

797 475 16175 16.7 41.5 691.0 209.6 3.3 798 745 20365 21.1 23.7 500.2 172.3 2.9 799 405 17948 18.4' 16.3 '299.4 142.1 2.1 l 800 204 17256 17.5 10.4 182.1 133.8 1.4 001 1197 24397 25.6 24.1 616.2 164.8 3. 7 -

002 2582 32762 35.3 27.6 975.4 204.2 4.8 803 558 17871 18.4 32.3 595.8 213.0 2.8 804 92 10384 10.5 54.3 569.1 241.4 2.4 805 137 11246 11.4 43.8 498.1 184.3 2.7 Geotechnical Engineers Inc. Project 87085 March 27, 1987 1

i l

l

____---__u

1 TABLE 8.2 OEARING CRPACITY RNALYS15; g=40' Page.1/3 Yankee Rowe Node THETA THETA Hu . -Hv Eu/L Ev/L Hagnif'n Maximum Deg Rad in-k in-k Factor Pressure ksf 790 180.0 3.14 5114 3427 0.26 0.17 4.8 6.92 791 202.5 3.53 5545 2288 0.31 0.13 5.2 6.79 792 225.0 3.93 5756 245 0.33 0.01 4.0 4.97 793 247.5 4.32 5298 2421 0.29 0.13 4.7 6.09 l 794 270.0 4.71 4293 4022 0.20 0.19 4.0 6.24 795 '292.5 5.11 2981 6016 0.11 0.23 3.6 6.87 796 315.0 5.50 173 7715 0.01 0.27 3.0 6.16 797 337.5 5.89 2929 6818 0.11 0.26- 3.9 7.41 798 360.0 6.28 6184 5434 0.28 0.25 7.0 10.94 799 22.5 0.39 7025 2801 0.39 0.16 10.0- 12.89 800 45.0 0.79 7621 112 0.45 0.01 13.0 15.78 801 67.5 1.18 7360 2646 0.35 0.13 6.6 9.89 002 90.0 1.57 6978 5827 0.27 0.23 6 11.11 803 112.5 1.96 3448 8124 0.13 0.30 4.9 9.47 804 135.0 2.36 66 7682 .00 0.25 2.65 5.80 005 157.5 2.75 2905 5465 0.13 0.24 3.8 6.35 3 {

l Project. 87085 Geotechnical Engineers Inc.

March 27,

TROLE B.2 BERRING CAPRCITY RtH.YSI5;g=40' Page 2/3 Yankee Rowe Node B' L' MIN DIM'HMRX OIM'N Fqs=Fgs Fqi Fgi OEPTH DV'80ROEN ft ft ft ft ft psf 790 5.14 6.91 5.14 6.91 1.34 0.54 0.17 7.92 745 791 4.08 7.85 4.08 7.85 1.24 0.53 0.15 7.50 718 792 3.50 10.20 3.50 10.20 1.16 0.60 0.24 8.92 807 793 4.32 7.68 4.32 7.68 1.26 0.53 0.16 8.08 755 794 6.34 6.60 6.34 6.60 1.44 0.53 0.15 8.33 770 795 8.14 5.74 5.74 8.14- 1.32 0.52 0.14 8.58 786 796 10.37 4.02 4.82 10.37 1.21 0.48 0.10 9.00 812 797 8.17 5.08 5.08 8.17 1.29 0.49 0.10 9.00 812 798 4.52 5.24 4.52 5.24- 1.40 0.52 0.14 10.25 890 799 2.26 7.21 2.26 7.21 1.14 0.54 0.17 10.25 890 800 1.01 10.36 1.01 10.36 1.04 0.56 0.19 10.25 890 001 3.07 7.83 3.07 7.83 1.18 0.63 0.29 12.25 1015 802 4.80 5.74 4.80 5.74 1.38 0.66 0.33 14.25 1140 003 7.80 4.14 4.14 7.80 1.24 0.51 0.13 10.00 874 804 10.45 5.20 5.20 10.45 1.23 0.42 0.04 6.00 625 805 7.87 5.56 5.56 7.87 1.32 0.43 0.05- 6.00 625 s

I 1

l Geotechnical Engineers Inc. Project 87085 March 27, 1987 l

l

TR8LE 8.2 8 ERRING CRPRCITY RNALYSI5;g =40' Page 3/3 Yankee Rowe Node quiti quit 2 quit-tot 8' Pult P(Vert) F.S.

psf psf ksf ft^2 k k 790 4407 34768 39.2 35.5 1390.8 159.0 8.7 791 2927 30243 33.2 32.0 1061.8 143.9 7.4 792 3762 35870 39.6 35.7 1414.3 137.0- 10.3 793 3285 32599 35.9 33.2 1190.3 171.0 7.0 794 5412 37927 43.3 41.8 1813.0 171.9 10.5 795 4242 35049 39.3 46.7 1834.8 210.5 8.7 796 2252 30621 32.9 50.0 1643.0 226.3 7.3 797 2583 32619 35.2 41.5 1460.8 209.6 7.0 798 3429 41599 45.0 23.7 1066.8 172.3 6.2 799 1664 35486 37.2 16.3 606.0 142.1 4.3 800 777 33552 34.3 10.4 358.1 133.0 2.7 801 4046 48503 52.5 24.1 1265.3 164.8 7.7 802 8584 66836 75.4 27.6 2001.4 204.2 10.2 803 2613 35845 30.5 32.3- 1243.3 213.0 5.8 804 1104 20785 21.9 54.3 1189.1 241.4 4.9 805 1424 22786 24.2 43.8 1059.4 184.3 5.7 Geotechnical Engineers Inc. Project 87085 March 27, 1987 I

TROLE8.38ERRINGCRPRCITYRNALYSIS;f=45' Page 1/3 Yankee Rowe Node THETR THETR Hu Hv Eu/L Ev/L Hagnif'n Maxivnum-Deg Rad in-k in-k Factor Pressure ksf 79r 180.0 3.14 5114 3427 0.26 0.17 4.8 6.92 7" . 202.5 3.53 5545 2288 0.31 0.13 5.2 6.79~

792 225.0 3.93 5756 245 0.33 0.01 4.0 4.97 793 247.5 4.32 5298 2421 0.29 0.13 4.7 6.09 794 270.0 4.71 4293 4022 0.20 0.19 4.0 6.24 795 292.5 5.11 2981 6016 0.11 0.23 3.6 6.87 796 315.0 5.50 173 7715 0.01 0.27 3.0 6.16 797 337.5 5.89 2929 6818 0.11 0.26 3.9 7.41 798 360.0 6.28 6184 5434 0.28 0.25 7.0 10.94  ;

799 22.5 0.39 7025 2001 0.39 0.16 10.0 12.89 800 45.0 0.79 7621 112 0.45 0.01 13.0 15.78 801 67.5 1.18 7360 2646 0.35 0.13 6.6 9.89 802 90.0 1.57 6978 5827 0.27 0.23 6 11.11 803 112.5 1.96 3448 8124 0.13 0.30 4.9 9.47 804 135.0 2.36 66 7682 .00 0.25 2.65 5.80 805 157.5 2.75 2905 5465 0.13 0.24 3.8 6.35 l .

Geotechnical Engineers Inc. Project 87005 March 27, 1987 I

TH8LE B.3 BERRING CAPACITY RiRLYSIS; g =45' Page 2/3-Yankee Rowe Node B' L' HIH OItt'HMAX OIt1'N Fqs=Fgs Fqi Fgi OEPTH DV'8URDEN ft ft ft Ft Ft psf 790 5.14 6.91 5.14 '6.91 1.43 0.54 0.22 7.92 745

[ 791 4.08 7.85 4.08 7.85 1.30 0.53 0.21 7.50 718

.y 792 3.50 10.20 3.50 . 10.20 1.20 0.60 0.30 8.92 807 i

~

793 4.32 7.68 4.32 7.68 '1.33 0.53- 0.21 8.08 755 794 6.34 6.60 6.34 6.60 1.56 0.53 0.21 8.33 770 795 8.14 5.74 5.74- 8.14 1.41 0.52 0.20 8.58 786 796 10.37 4.82 4.82 10.37 1.27 0.48 0.15 9.00 812 797 8.17 5.08 5.08 8.17 1.36 0.49 0.16 9.00 812 798 4.52 5.24 4.52 5.24 .1.50 0.52 0.20 10.25 890 799 2.26 7.21 2.26 7.21 1.18 0.54 0.22 10.25 890 000 1.01 10.36 1.01 10.36 1.06 0.56 0.25 10.25 890 801 3.07 7.83 3.07 7.83 1.23 0.63 0.35 12.25 1015 802 4.00 5.74 4.80 5.74 1.49 0.66 0.39 14.25 1140 803 7.80 4.14 4.14 7.80 1.31 0.51 0.19 10.00 874 804 10.45 5.20 5.20 10.45 1.29 0.42 0.09 6.00 625 005 7.87 5.56 5.56 7.07 1.41 0.43 0.10 6.00 625 l

l l

l l

\

I Geotechnical Engineers Inc. Project 87085 March 27, 1987 l

l

TABLE 8.3 8 ERRING CRPRCITY RNRLYSI5; (=45' Page 3/3 Yankee Rowe Node quit! quit 2 quit-tot R' Pult P(Vert) F.S.

psf psf. .ksf ft^2 k k 790 17829 78036 95.9 35.5 3407.4 159.0 21.4 791 11936 66825 78.8 32.0 2521.2 143.9 17.5 792 13605 78118 91.7 35.7 3273.2 137.0 23.9 793 13305 72266 83.6 33.2 2038.G 142.9 19.9 794 22583 86223 108.8 41.8- 4551.5 171.9 26.5 795 17683 78469 96.2 46.7 4490.2 210.5 21.3 I 796 10181 67371 77.6 50.0 3876.1 226.3 17.1 797 11726 72616 84.3 41.5 3500.1 209.6 16.7 798 14531 94043 108.6 23.7 2572.3 172.3 14.9 t 799 6506 77078 83.6 16.3 1363.4 142.1 9.6 800 2879 71307 74.2 10.4 773.8 133.8- 5.8 165.2 17.5 801 14100 106086 120.3 24.1 2B95.0 802 30229 150874 181.1 27.6 4998.0 204.2 24.5 803 11027 79274 90.3 32.3 2919.3 213.0 13.7 004 6501 45847 52.3 54.3 2843.7 241.4 11.8 805 8171 51016 59.2 43.8 2590.0 184.3 14.1 Geotechnical Engineers Inc. Project. 87085 March 27,

1 APPENDIX C l

i

TROLE C.1 SLIDING STABILITY RNRLYSIS: e - 35' page 1/1 Yankee Rowe Node P Ut Vt/P F.S.

k k 790 159.0 69.9 0.440 1.59 791 143.9 65.6 0.456. 1.54-792 137.0 50.9 0.372 1.88 793 143.0 64.2 0.449 1.56 794 171.9 77.8 0.452 1.55 795 210.5- 97.3 0.462 1.52 796 226.3 117.2 0.518 1.35 797 209.6 107.7 0.514 1.36 798 172.3 80.3 0.460, 1.50 799 142.1 62.3 0.439 1.60 000 '133.8 55.5 0.414 1.69 801 165.2 55.3 0.335 2.09 802 204.2 62.0 0.304 2.31 803 213.0 101.7 0.477 1.47 804 241.4 148.1 0.614 1.14 805 184.3 111.0 0.602 1.16 l

4 j

Geotechnical Engineers Inc. Project 87085

! March 27, 1987 i