ML20138A133

From kanterella
Jump to navigation Jump to search
Forwards Draft McGuire Bart Evaluation Model Analysis W/Upper Head Injection (Uhi) Removed from Svc.Results Preliminary.Discussion of Calculated ECCS Performance W/O Uhi Encl as Requested
ML20138A133
Person / Time
Site: Mcguire, McGuire  Duke Energy icon.png
Issue date: 03/12/1986
From: Kemper R
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To: Watt J
NRC
References
NUDOCS 8603140082
Download: ML20138A133 (74)


Text

. _ _ - _ _ - - _

&/a N .' N ii d W A T T _ _ fW W67 __

Mec; Sr w Y. hA/ CLOSED PLEAsc /=7Alb A DRAFT COP 9 OF 77/E M?$-012E RAE7~ EvALVATlod foDEL- frA/ALVS /<;,

kitTHYUNT Erfov'sp F20M - SERVICE. $ESULTS AEe PBesearea is) THE s7Aapsea FSA2 dsese 8eese l6CCS ykA/Acisis F02P1A} ArtD k2E 72ELIVf/A/AEW.

N LSO Y dWCLc5 E D IS A DISC USS/0h) O F 7~ME

, G4LCULATe D _8CCS PceFoSPfANcE alt Ttico T UNX TO P20dlDE ADDITioWAL. . t N' F O R P fA T I O N Wfd/ci+ vou RAJE BEQUEsTED. _

- .Y_ _ _

$k. [EP1 ped

. . . - -. .. . . 6~5T/A) f=r fS00S E

. . . _ . (. _.

- 19 -

y -. -

w

g PREUM'1 NARY I V

RESPONSES

(

0 y

r TO NRC STAFF QUESTIONS A8OUT UNI REMOVAL AT Mc6UIRE l l

' j. .

M850:10/031286

-~----_____j

PRLIMINARY I. Unrealistic, highly conservative specifications of the UHI-large break LOCA evaluation model cause current McGuire Plant calculated peak cladding temperatures (PCT) to be higher with UNI installed than J without. Several conservative aspects of the UHI model are discussed below. -

1 The UNI upper internals have been designed to uniformly deliver injected UNI water across the core cross-section. Almost all of the fuel assemblies (185 of 193) are located underneath a guide tube or support column; only eight low power corner assemblies do not connect via a direct flow path to the upper head region. Extensive testing demonstrated the uniformity with which UHI water is delivered to the 185 assemblies.- Nevertheless, the evaluation model conservatively prohibits l quenching of the hot rod independent of blowdown fluid conditions. Thus, I the benefit of UHI quench cooling is limited to the non-limiting fuel rods in the core. Speaking in greater detail of the quench model, the data base for the UHI corewide quench criteria is the average quench i behavior of the thermocouples at each elevation in the G-2 loop test

{ facility; well over 6000 total data points comprise the data base.

4 The design quench line applied in the UHI evaluation model is not a true best estimate quench line but provides a 905 confidence that 50% of the l

true data population lies above the line. A true best estimate quench  !

j line would be an upper bound on the design quench line. The requirements of Appendix K are that heat transfer correlations predict conservative results in comparison to the mean of the experimental data throughout the range of parameters for which the correlations are to be used. The l

) design quench line fulfills this requirement. The data used in

developing the UNI quench criteria were obtained using boron l nitride-filled stainless steel-sheathed electric heater rods which have been shown in the literature to be more difficult to quench than l

! uranium-filled Zircaloy fuel rods. The design quench criteria would then l be expected to underpredict the fraction of the core quenched during a

) hypothetical LOCA in a PWR equipped with UNI.

J The model restriction that no quench may occur in an upflow situation

! restricts the time period during which quench is allowed. This f i

94850:10/031286

- _ . . - -_ - . -- - - - - . _ - - - _ - - - - . -_ i

c PRELIMINARY 1 l

restriction stems from the fact that all test data that were used in developing the quench criteria were downflow. At high flow rates there have been no significant differences noted in heat transfer behavior. 9 Thus, even though the local fluid conditions for upflow may be the same l as downflow, quench is not allowed in the calculation. It is believed this restriction results in an underprediction of the fraction of the core quenched during a UHI ECCS calculation.

L 9

An additional item that results in an underprediction of the core  :

quenching during a LOCA in a UHI plant is the conservatism in the film boiling heat transfer coefficient calculation. To quench a fuel rod the i surface temperature must be reduced to a point where it can be wet. The  !

conservatism in the film boiling heat transfer coefficient causes higher ,

clad temperatures and correspondingly less quenching. The UHI heat '

transfer model contains several instances where an arbitrary valve of 1.0 8tu/Hr *F-SQFT was assigned as a default heat transfer coefficient due to 1

a lack of test data within the range of the parameters. In these cases, l$ L the heat transfer coefficientArequired to drop from a value of 7-12 [

8tu/hr *F-SQFT to the 1.0 Stu/Hr *F-SQFT value for a very small change in parameters. This UHI penalty may be seen by examining Figure 6. The oscillations between 40 and 110 seconds are a result of the artificiality of the heat transfer model. A heat transfer coefficient inthe range of l 8-10 8tu/hr-SQFT-F would appear to be more appropriate during this time I period, b The considerations noted above cause the current UHI ECCS model to significantly underpredict the fraction of the core quenched during blowdown. The conservatism of the evaluation model negates much of the PCT benefit UHI has exhibited in tests under LOCA blowdown conditions.

Another evaluation model requirement that diminishes the benefit of UHI is the need to model both the perfect and imperfect mixing of UHI water in the reactor vessel upper head. With the perfect mixing assumption no voids form in the upper head since the injection of the subcooled water begins prior to the system pressure reaching the saturation pressure in ,

the upper head. During the active injection period upper head subcooling

]

P l

I.

94850:10/031286 1-

PREUMINARY I

. continually increases -and relatively little flow out to the core occurs ,

i until long after UHI injection is complete. The imperfect mixing assumption allows voids to form in the upper head region during the active injection period. The subcooled UHI water is assumed to fall to l the bottom of the upper head (along with fluid entrained by the incoming jet) where it can be forced out through the support columns.

It is worthwhile to pause at this point to review the physical characteristics of the UHI hardware, specifically the flow paths for the UHI support columns and guide tubes. The relationship between the support column and the fuel.is shown in the sketch in Figure 7. The flow t from the upper head is delivered directly to the top of the fuel via the I support column ~and h'old down assembly. The gap between the hold down assembly and the UHI nozzle is on the order of 0.030 inches.

i The guide tube, Figure 8, is observed to be relatively open to the upper plenum near the base. A close examination of the guide tube shows a 2

significant flow area exists at each card location between the volume enclosed by the guide tube and the upper plenum. For these reasons, LOCA models assume that the flow from the guide tube enters the upper plenum.

The limiting initial conditions of the UHI accumulator as regards to pressure and water volume are exactly opposite for perfect and imperfect mixing cases. The conservative evaluation model methodology specifies that the bounding accumulator operating values with uncertainties considered be applied to each case individually. Thus, the impact becomes an inability to optimize UHI accumulator setpoints for either the perfect or imperfect mixing case because of the need to secure an acceptable result for both. Were only one upper head mixing assumption necessary, improved UHI Model ECCS performance could be calculated for McGuire by revising accumulator setpoints.

The conservatisms imposed in the UHI evaluation model cited above have greatly diminished the benefits of UHI observed in testing, i Nevertheless, UHI was still perceived to be a benefit under the 1981 4

Westinghouse Evaluation Model based upon the low flooding rates '

associated with the ice condenser containment pressure response together f

n 94850:10/031286 I

with NUREG-0630 burst / blockage models. The BART code provides a more mechanistic, physically correct prediction of core reflood phenomena l which leads to improved calculated reflood phase ECCS performance. The [

true benefit of UNI as calculated in the UHI evaluation model is due to enhancing of the core reflood rate via quenching of fuel in the core r during the bluwdown. The importance of this effect is greatly reduced when a model using BART is applied, and the more important factor becomes calculated ECCS hot rod performance during blowdown. Due in part to the .

conservatisms imposed on the UHI evaluation model as cited above, clad $

temperatures at end of blowdown for McGuire are much higher with UHI than without. Since the reflood enhancement obtained from UHI is no longer nearly as significant on calculated PCT (because of BART), the end of blowdown PCT penalty makes UHI the more limiting case. Also note that in best estimate large break LOCA computations the calculated PCT typically occurs during the first few seconds of blowdown, when UMI has little if any ef fect one way or another.

PRillM NARY I

I l

l l

b 9

94850:1D/031286

  • Ca* Cit f f ,I 8 'l If u I l

~

' ' Ca* nog

)

N Q

,Q in LL .

Y 5 2 t' k N co es LE

'h b b O U T d w a

<ct e b

w ..

.x m

D < c> .

a-

....e g M b b.

w cos v

d h cM '

" .... L >

d5 ID > %3 0 . M%

4 aw

  • _~

Q 2 ez

,- _ , _ . p ,

_-yr- .c - n __ -

000'C5

< a ,- ,--

au

.d. _

_ m,-

<=e5

'31 r s.en n 8 a =s---a PRELIMLNARY

=as4e esae a suggen $

88 h.

    • *
  • a ~ ,

E33 2 g d ~ ~ o3 o

.9. 9 o. e .

J-WN-21J/cag gqjgggjjjg) gy, y 6

__ .,. - . _ . . .,--0 .. - ,. - . . - _ _ , - . . _ _ _ . - -

~

9

/, /s:/

~

J / ^

?

' Support Column

~

/ ,

/ /

^ I -

e  ?

,$ U N $o?$ PLA T5 i

N UHI A, g- N i Notztc T---- ,

N .

I

/

p-- n

/ kh YA'er$cty -

h . P=, n pil d I il l il il* N h

' x;h l l l l;s '

//

- t

~'niIilix[ >

![/ 7 Fue\

bemoty c, , , - Top Mottit

, I L__a

' l. q

{//////////////////}'l

?REJMNARY Figure 7. UHI Column at Upper Core Plate

m 3

)I I C.

.. - curoc rved cAu F

0,. a

+

,,v ~

a wr mIe caos rvae cazcs I

,v ~7 O m ci e i n I

/

-/

>Y y- -

O m n CI m n G.utos 7v6B H0LSS I

v v 13 -- ,

. - ~ ,,

g ,

gj g ,ge.

es  :

FutL. hZ3E M8 L Y TkP NCsuS PRENNARY Figure 8 Lower Guide Tube L

II. UNI plants are equipped with very different reactor upper internals from other Westinghouse 4-loop plants. In order to distribute UHI water i equitably throughout the core,185 of the 193 fuel assemblies were located directly beneath a guide tube or support column which comunicates directly with the vessel upper head. The much greater flow casumnication which exists between upper head and core / upper plenum with the UNI internals design produces enhanced thermal-hydraulic conditions

[

within the fuel during a large break LOCA blowdown. As illustrated in p Figures 1 and 2 respectively, consider the CD= 0.6 O m G core f1 ws [

during blowdown for the McGuire and Callaway Plants computed by the [

Westinghouse SATAN code. The two units in question are 4-loop plants which are similar in design except that McGuire contains UHI-type upper internals. The core flows are similar for the first few seconds, but from five seconds onward the UHI internals are clearly beneficial.

Between 5-10 seconds the UHI internals give a greater water delivery into the upper plenum which produces a notably higher positive (in Figure 1) core flow rate for McGuire; likewise, at around 20 seconds the enhanced water delivery from the upper head at McGuire permits a much greater negative core flow surge than Callaway exhibits in Figure 2. These greater core mass flow rates directly cause a significant (greater than 100*F) benefit in calculated peak clad temperature for McGuire relative to Callaway at the end of blowdown.

PRELIMINARY b

i l

94850:10/031286

,l M9 i -

I 0 4

G L

^ C E

D

~ I 0 6 _

3 0

=

) D

' C E

S

(

E C

t e

a r

w M l o -

I F Y l 0 T

C e

r o

2 3

f 1 i

e r

u g

\ l

~

0 1

F

/)

1

/ -

- , g O

0 0 0 0 0 0 0 0 0 0 0 5 5 0 0 2 2 5 _

5 7 - - - ,

]Rl ' - W<I(N zb<

a u _v.s E

- i. I

o 9

tn i

o

+

- o h v> - e o a u

w B 1

m a -

sq O

1 w .

2 o u

Q. O F o 2 -

N {,

o F'

Nh!'o m:

e f

o e ,i e

- o

- w m

o o o o o O O O O ' #.

o o o o o o i o m m o o n m N u m b  :

i i I 1 1

(oss/em manowz

(

PREUMINARY i 9

6

~

mis.se

. n --

yREu n gy REACTOR TRIP (COWENSATED PRESSURIZER PRESSURE) SIGNAL, L PurED SAFETY INACTION SIGNAL (HI-I CONT. PRESS OR LO PRESSU D PLAPED SAFETY INKCTION BEGINS (ASSUMING OFFSITE POWER AVA w .

COLD LEG ACCLAAA.ATOR INKCTION w

N CONT. MAT M MOVAL SYSTEM INITIATION (ASSUMING OFFSITE POW PurED SAFETY INKCTION BEGINS (ASSUWING LOSS OF OFFSITE POWER EPC OF BLOWDOWN REFILL ,

y BOTTOM OF CORE MCOVERY R

E COLD LEG ACCUMULATORS EMPTY L

O D

CORE QUENCHED T

$ SWITCH TO COLD LEG RECIRCULATION ON RWST LOW LEVEL ALARM N . (WANUAL ACTION)

~

e T

l E SWITCP TO LONG-TERM M CIRCULATION (WANUAL ACTION) g .

M C

O >

j o l L

2 I N

G V

Figure 15.6.41:

Sequence of Events for Large Break Loss of Coolant Analysis

BImWDoWN L END CF CIDWDOWN REFILL,REFIAOD L I

(EOB)

IncTA IncTA 4 L j

b yWEt,Roo TWEnNAL . 30o GROIETRY l MEAT TRANSFER COEFFICIENT i NECRANICAL CONDITION:

l DURIng an -

1 l

___________, - nea? Tnamuren conomens DumInc martmoo ai g

l

}

l SATAN I i . - T, i .

I Inta? zurnALyr j

anss , ENEnst arransa g j mes , cons TuranournanoLIc caso m ous suaIns agawoouw l 1 ,cq i i c0NDITIONs I i AT 808 d

l g i 2 I

1 WREFIDOD/COC7 I h

_ WREFIAOD

- - ss .

sf - . g v

~

X LOTIC cnIceIATus couTAInumwT panesens Fipee 15.6 2 APPROVED WESTINGHOUSE APPENDIX K IDCA EVAIEATION NODEL WITH BART

?RELN NARY \

l J

N L 0 0 T C R T CORE PRESSURE, CORE U A

  • FLOW, MIXTURE LEVEL M AND FUEL ROD POWER P HISTORY O< TIME < CORE COVERED

- V m

- Figure 15.6.4 3: Code Interface Description for Small Break Model

- - - - .. . , . . . - . _ - . . - _ ~.. - , - - - .

---.~~--.-,....---,,r . , . . . . ~ . .,.,,-.,_.y_ - - _ _wy, - . , ,

l PRE.MNMY l

W

. --YO: y s ame!====d& =--

w .

w .

C U ,

w t m.

%w::i p u i

6 4 -

4-  %$ 3 a

m y w l

, g

. vi 1

i

\ _

s_ i

'b N

'N

^ w R

i 11N3333d) OlWlJ JO All"lun0

s i

I6 i

i .

i z

h13 i If

. ,, u .
. . . . -

i I j /

I I I

d l

g m ;

I o r y

. B l

w e y

) Ill 2 f >

  • 4 } , m---

- t f .r

' l, ,

l BiC

] L ---

j 2 2

j 3::=

o
s -

l 198 188 Ig2 gg5 -

l TIME ISCCI i

a i

i Figure 15.8.4-5: Fluid Quality, C D=0.6 DECLG l

{

I l

. ?ENuay -

i 1

4

}

(

i

.c

}

A h

- 9 g

l' I

i W a  ;

1 = Q l 1

w w- \

4

  • g .

4 i h '

a  ::= "

O-l " '

6 NN 5 t -

G 1 l'

>  % 18 C

, - ;- ~

s

. - c

, s y

.2 u.

f J } } k 5 l

/ f ~

& s

' " g

( e e 1 1

i \ _

s_

l, h

s i w

+

f J

O T N E E T N

=

= = - 9

.I 11N3383d) . 0101) JO All'1 WOO t

t

..-,..w, ,n-.n.-~,,.__n_-,-, .,,,,,-,,-v._,_~n_,

4

.l l

!6 I4

.~

5 e12 5

  • z a w 3

l N f $

a ,
bf i,,;

5 /

d 6 a

  • f

) Yh5/ > ,.

~

' % f) f f ,

Py i

e les ,,e ,,3 ie,

' TINE ISEC1 .55 i

I Figure 15.8.4 7: Fluid Quality, CD48 Max. St DECLG

l L

l l

PREJMLNARY i I

I i

I '

I..,

~

O  ;

w a t

" U l W t

.Q ,

, so  ;

s... - U .

3 E

s_s _ >  !

.~

w I ,

- m 1 ,

x e  !  ;

4 .

f -

- g s g a a

.s

~ ~ -

N N N Nm

~ ~

w
a -

=- s -

e x =

(DN EAJ/ ell . Altoolm ss w

a PREVMINkRY -

1 l 1

1 I 1

1 i

)

i  !

i j

(i- '

i as I ] L

== G

"" ~

!  ; C '

.J

> w .u \

i.

( 9

> , h .Y  !

j g _

. u

\ y S-4 '

j q ' Y mN N x

N

=g 4 5

% 4  !

s h 1

k ~ .

i N

t N I

=

(

t i

i r

b h

l  :  : -

i  ? 't 8 8 t ggg.g3pam .

A11301X SSUN 1

i i  !

4 ,

u  !

, I

,..-.- - .-- ,- - ,- -.--, _ . . . . . . ~ - - , . . -

l l

?EMNMY -

s I

f,

  • h
  • % o a

4

.O

o h

.- o O

- 1 y a 9

..=

r 3

, +

d f -

d' m 1

- =

w -

s l

- r r j

x a a = z -

x. =.

1335 81J/8H . All3073A $$WN

+

_ . - , - _ _ , - . , . - _ ._,. , . , _ ,m - , ,.,-.,., , p.--____..%_ -p 9. ,-,,-_,,___w,m.-w 7.,_. ,_-,-p,,..., , , . , _ - . .

1 i

N G

0 C,

I L fl .

a *

,s , YA n.

" a y2  : e

  • T L Dm*

w 1 A, y7 o J

w

()

gg W C s E, .

%  ?

~

8

  • s 8

-- eM e g'-

7 w >

c.x E m

~

N x N ..

U N ~ - 4 A 4 e

i k NN Nh w

1

)

a = n i i i g333.ElJ/BM

i 185 y

I a As

- o 3

i a le2  :

I w

f z

h* m. L *

  • 2 2
  • e (M y
t. u 'W 'wh 1*

, *A x- - -

w liu k lA I

e IBI ~O i

' E Z

.& l'r1 I w

.F ec Y "

E 2"

3>

I,.

.:o 5 25 55 75 les 125 158 175 298 225 258 275 596 T

! TIME ISECl

.l e

J Figure 15.6.4-12 Heat Transfer Coefficient, C =0.8 D DECLG l

1 i

I i

_ _ _ -- . _ _ _ _ _ . . _ _ _ _ _ _ _ . ~ . . . - - . . __. _-. _, __ _ _

l 1,

1 I

395

?

' 6 l

! 1 5 a I .

l 1

  • 2 q j e le2 I- 1::

mr ,

2 z a v1 E

  • I L _-

s m _m -

3 j .

r 1r v av ,-

3 ,fg i mm ,

\ u n _=T_ ' ,m, , ,

b L Dm l [

y f N 7L l;

5 e, i.i \

i [

o w D

)

M &

m l

ggE

[

5 25 58 75 IN 825 158 175 298 225 258 275 558 TIME ISEC)  %

~<

4 i

i i

J 1

1 i

Figure 15.6.4-13: Heat Transfer Coefficient, CD=0.6 DECLG l

i

i 8

)

i i

} .

1 I'

Is8 y ,

I a

k h Ig2 y . r M * *

  • i o n . . _

'~

l E W t . ,

4fV t"' h .

l 5 I MI Y

$m I.i i c

=_

2 E

W >

o i

1

~<

i o = ,

S 25 58 75 ISO 125 ISS 175 290 225 258 275 585 '

TIME ISEC1  !

i i

Figure 15.6.4-14: Heat Transfer Coefficient, CD=0.4 DECLG t

I

i J

185 Y

l 1

  • l

. .E J l S Ll$22n m

IBy .

t. ,

, _ n,

, y

' r, -

" 7 7 t w ,

4 5 i A A

, C L L[Nd*8 k* lh '

! g g7 fvy'

, . ,81 '

1 z '

i E 4 ,_

! e M

.i i **

i 188 8 25 58 75 188 125 158 175 288 225 258 275 588 j TIME ISECl I

Figure 15.6.4-15: Heat Transfer Coefficient, CD=0.6 DECLG, Max. Si li

U i-u UNF: Y _2% 2M

. 0 5

I 0 4

4 G .

L C

w . E

- D I 0 8 3

0

) =

C D E C S ,

( er E u s

M s I er T P e

r 0 o I

2 C _

6 1

4 6

5 1

e r

u

~ ig I 0 F 1

O _

0 0 0 0 0 0 _

0 0 0 0 0 5 0 5 0 5 2 2 1 1

-< oema~

mg4 .

~

lll.

~ ^ -

eyp e PREUM 1Agy ggy,g,g e .

    • e=o+.e-

= - .. .- _ ...

a . . . . .

~ * = = = = =

4

~ O 4

C J

U e

uJ O

=

2 ?O U U g e Y

E U

_ g 5

4

.4a w=

.6 u.

_ O e

o a

- a_ R (vtsd) awnssawd l

J

PREJMINARY R

. o S

U w

O.

w R 1O u u-d

. a.

u

_ g s

4 ed N

e

.5 u.

9 I I I I o (vtsol 3Wnssawa

t !' .- I .i :

_2pg4 i . 3..

. 1. . g

. , iI j'. .i..tl' l t* .i  :

_v Wi

- ;t rr _

0 5

I 0 4

i G

L C

E D

8 I 0 0 3 =

D

) C C e E t a

S r

(

w o

E l M F f

I T e r

._ o C

I 0

_ 2  :

9 1

4 6

5 _

_ 1 er u

g i _

F I

o t

i e 0

o 0 0 o 0 0

0 0 m o 0 0 o o

v 0

5 5

2 5

2 0

5 '-

=oW g wr< eA _

i: t ,  ; ' ' i i- \li' 4  !< ] ,

11

)RE JMLNARY.- 14715.11 S

8 a

- g 3a s o o

W

~ if E }.

%- ~

a g

M a

) -

e d .

I I

\ I s '

O (oss/e7) 31vamo v-Z l

. . tI ,i3'

- i

. , 1;: !

' owcir _g

- >m<_

- 3E=

fi i

o s

I 0 4

l f G L

C E

D 4

_ I 0 0 3 =

D

) C C e E t S a r

(

w E l o

M F I

T e r

o

- I 0 C 2

1 2 -

4 6

5 1

e r

u g

i F

I 0

1 r

0 0 0 0 0 0 0 0 0 0 0 0 0 0 s 0 0 0 0 s 2 s- 7 7 s 2 -

s Ugs3. .(Id4

. .!k ' i'  :

i

?RE_TNARY l

  • I I

J O a

  1. r s

/ '/ = s o

  • v tw e

d g 'o

~ o 4

?

,; ==

0 *

/ f~ ]-

u

  1. / N 1

. g

~

]

n r

=

4 e

-

  • Id m

w

=

b f .

! l !-

u =>== >

!.>, m _,s .

I

~' - - - - - - . _ . , . . _ _ , , _

2588 t i O 2005 5

g

    • 'O N*
  • s
  • v e

' 1988 W "

w

  • V  %
  • l h,

E

\ N gISOS f ,

-Q W  %  %

e rri F

g 598 ) h i d Z l

t 3>

! 8 25 58 75 188 125 158 175 296 225 255 275 586 - '

TIME ISEC1 1

4 i ,

i Figure 15.6.4-23: Peak Clad Temperature,.CD=0.6 DECLG

2588 E

  • i h
  • i

~

1588

& 4 Z's ,

I 8

" \ N l

l

}

g IO98 2

N N x T d *

, e 2 .*

h c

1 g SOS E I

d 2 L 3>

Z i . --<

l e .  !

8 25 58 75 ISS 125 158 176 286 225 258 275 586 TINC (SECl e

j Figure 15.6.4-24: Peak Clad Temperature, CD=0.4 DECLG i

i

I.

5

  • / / m S

8 os 44 g

=

l

]

j s

  • q .

e f.o A - .

/ 8 o

,/ h m m fR

/

~

  • s-I n\

%N

  • m R'

b s E

~

  • 1
  • m h g ie 1

E d

e A

  • =

E E E  ! I 003 10H dH31 OAy gy33 E

IJ S338030) 6

2999 C 1755 0

  • Nises ,/\

s

- \ l fase 3 h..

Vvvt i

<A W e dISOS D N

  • e
  • 9[  %

'l E; E 750 * - ( Q ,

A h T

  • N N E
sa

=

h xs -

2 3>

e - . g m 2se i'

8 8 26 56 75 ggg ggg gg* I'G 200 225 258 275 5g8 -

TIME ISECl 4

' Figure 15.6.4-26: Fluid Temperature, CD=0.8 DECLG ,

I i

2988 C 1758 0 *

$1588 l  :

'j 1250 '

I 1988 ( Nm T w

M g 758  % \ '

  • ~

j g F '

N \

  • E N
  • ~

e e 3 x

N

\ g m

.l

! N j 250 m

$ .h i

8 -

9 25 58 75 lee 125 158 175 288 225 258 275 588 TIME (SECl Figure 15.6.4-27
Fluid Temperature, Co=0.6 DECLG 1

t

1 2998 C 1768 .

5 55a l d

~

irse f /*  ;

I 3 ;

lb ,* .

V 'f

) j"% s N lies.

3 I

g::

E 758 y

  • Q~* _

e ,

M 3

g R **$

i N A Z See P o

_ N 'W j

3,

' 258 s-* N s ~

l '

! 8 *

5 25 58 75 158 125 ISO 175 299 225 250 275 506 l TIME (SECl i

i .

Figure 15.6.4-28: Fluid Temperature,.CD=0.4 DECLG l

0 0 o, .

5

  • x 5 7

2 k N 0 5

2 i

S

  • x a

M 5 ,

2 G

,~

  • 2 L C

E, 0

D

  • 0 8 2 0

=

D

^ N y 5

7 1

C er u

y 1 C t a

N [k 0 S 5(

E r e

p m

ll 1 E e 4 M I

T T

d i

A 7 " 5 u

" 2 1

l F

0 A

0 9 2

6 -

0 4 1

8 A*A - 5 1

5 e r

u

  • e 7 i

g F

8 5

Jyr 5

2

  • 1 k 0 _

0 8 e 8 s 9 6 8 0 _

0 5 e 5 s 5 8 5 8 7 5 2 e 7 5 2 2 1 i 1 l

- 0W wEegIW i

> i j!f ,

28 17 5 15 E

3 251 j W

U .

18 i

6 "V E W

" 75 A E

5 g p - 2>

,' ' / M 25 , -<

/

, 8 Y- -

48 68 88 IOS 128 148 168 ISO 288 228 248 268 288 588 528 -

TIME ISEC1 Figure 15.8.4-30: Reflood Mhadlewis, C =0.8 D DECLG i

~ try)

e -- m - < - - . - s-me -ws _, - - - - - - - - , -- - - - --

e PREUMINARY .

G t

=

B E

. a 0

.J

, . 3 e O

  • 1 O

. O g -

. a t

.- E_ ~

B i ge <

r

_ 1 3"

E o

= O

. ~ w 4

sn

~

3 e

- y b

. t

. 5 N

%s W 8 #

a g g R a

- a

- - 3 a 9 (1Jn3A34 531WM

PRELIMINARY
  • l E.

E E

.J ,

g 2 a x

. ?o A  ;

e, o a ~

),!

E.s #

l.3

.  ! av E

\ g g

4 4

a .

W 1 1 -

E  !

1

( n m

. k '

E

.\

A-~

l N ] E ,

h i 7

=

3 2 g . 2 ~ .

t1Jn3A3a mason

-r k

, , ,,,,--u ,--., y., _y ,_m~..--p.m_7..-y-,pg9e e e gmmyg..-p .evny,,.ppypy,,,w ,.e., w e a..m--64,__.%w, g.pge.w w .,

  • n w em,

PREJMINARY m

G m

m 9

N m i m

a C

_J m O saa u O m

. 40 s

f m- O O

t.J e m m

y v

\

g e- _.s

\

e

- ],

) m

- g ..

R 4

e e a

e

=

  • - .5

- m ,

- (y i g i

, \

s 4

LD S N

= t - ~ - - N t13)~13A3"n B31Un l

1 l

?E

_ _ . . , - , , . ~ , _ ,, . _ _ _ . . _ _ , . _ - _ _ . - _ _ _ . . _ - , _ . . . _ _ . - . . _ _ _ . . _ _ _ . . _ - _ _ _ . . . _ _ _

l I

l l

1, ,

6

) i I

o.- 1 5 W

s 1 .

s E

! y F .-

1.g - - -

i

\

g r ~ .

\ 6 i 1

"PO

\

\ 5 4

\

g i

2 -

) ~2>

m 1

i .

! 4 = in in i.. i is. m. == 2.. a. ... ,,,

! TIME ISEC3 .

j I

2

{ -

J Figure 15.6.4-34: Core inlet Velocity, CD=0.8 DECi.G

~

.L

~ .

2 g15 W '

3 s .

M \  %

a --

l 00 ~

I \

8  %

!, S t

2 l

! S i

""U J Z m

, L_

48 68 89 ISO 128 146 168 199 298 226 248 265 296 588 528 g

, TIME ISCCI -

2

'2>

i 1

o 4

1 i

Figure 15.6.4-35: . Core inlet Va.!ocity, CD=0.6 DECLG k 'I 4

l

g --

l GI5 b!

s .

5 G.

o

. e i v

~ ~

w T d W m

C I

i s E I

~2" 3>

M f .

! 8 .

. 68 50 ISO 128 148 168 168 288 228 248 268 258 588 528

Tit 1C ISECI -

t i Figure 15.6.4 36: Core inlet Velocity,_CD=0.4 DECLG 1

2

l 2

r.

i l

GIS M '

i t'E 8) o d '

_ - T W

l rY1 s i C

E 2

) y i . Z 8 -<

48 68 88 188 128 148 168 198 288 220 248 268 298 588 529 TIME ISEC) ,

J j Figure 15.6.4-37: Core Inlet Velocity, CD=0.8 DECLGl Max. Si 4

l , I1 J

. .' .*I [ . -  ; .

g . G.E IIIi  !*ljl t,e. .

. :  !.. :f N"U$ 5g>Z<- .

0 5

i 0 4

i G L

C E

D 8

0 0 I =

3 D C

) ,

C n E i o

t

. . S c

( e j

E i n

M - .

r I

T o

~ I 0 l

t a

u .

2 m u

c c

A 8

3-4 6

5

- 1 I

I O e r

u g

i F

0 0 O 0 0 0 o 5

0 0 4 - 0 0

3

- .. 8d

' I  !

4 . * ; ij tli! )3 i1 ' ,j j ;1 i! a i,I!'

, . l 5at I .t L

. i :t 1  ; ' t!

T TMrF~5z>M<- ' :, 3 . ,

-.,du

. i i

t 0

5 l 0 4

i G

L C

E D

6 0

=

0 D I

3 C n

. ) i o

C t c

E e S .

j n

( i r

E  : t o

h I l a

T u m

u 1 0 c c

2 A

9 3-

- 4 -

. 6 5

1 e

r u

g I 0 1

. i F

O _

0 0 0 0 0 O _

0 0 0 0 0 0 0 0 0 0 _

5 4 3 2 1 _

. -uW@smJ~ gak. .

1 , 1 1 5i ii. -l( ' i! -

,  :! 4\:  ;; iij;, j ,11i i i4

4 l iI :k 1

.j l::!' ' :l. *'

! i .

3- =

u2 a- 2 :: E

. il,l:  ! :i ; i!

3r-:!

22m<~

, , ;li 0

5 I 0 4

7_ G L

C E

D 4

0

=

I 0 D 3 C n

) o C i t

E c S j e

(

I n

E r M

I t o

T l a

u 0 m I

2 u c

c A

0

. 4-4 6

5 1

e r

I O u I g i

F 0 0 0 0 o

0 0 0 0 0 0 0 0 0 0 0 0 5 4 3 2 1

-ys3 - e e

L ""'

i . ; M NA1y 6

5 -

O

~ 4 -

m Q.

  • W E

D W 3 -

E 1  %

2 - ,

I t

O t00 200 300 TIME (SEC)

Figure 15.6.4-41 Compartment Pressure, Minimum SI 9

w-n y-p-e- ., -- ---m+e g--- e ,,,n n o , ,-p---s --y-y-.4, --my, ymws

  • =*d--6=*==* w **-+-==- ** d ** * * * * * * " * ** * * ** *

=b..... _

-*..* * ++

e ,. . .

i t

~

PREl. M NARY l

?

i 1*

- j

d. .

O to iD li i

O U

i i

_ g =

- 3

. o -

g

, .M. .

C w

0 W

2 D

W l

ee '

i >-

8 r

2

& I 3 l

=

  • an i

. N i

.5  ;

u. e 1

i i l i 1 0  !

8 8 8

)

m

  • I i

I (S/4 7) 31YW NOIlO3rNI  !

l 1

1

" " ~

PREJMINARY D

6 5 -

g  ;

- 4 -

U1 Q.

W g .

D U1 U)

W 3 -

1 0.

2 f

, I I o too 200 300 TIME (SEC)

Figure 15.6.4 43 Compartment Pressure, Maximum SI

--- --- . - - . , , , . a. ,. - . , - , -n v, - , , , - - - ,.-..-e-,-..--..,

PREUM' NARY 147 s.se 1200 1000 -

u1 000 -

d w

F .

y EO - .

E t-o W

2 400 -

- 200 -

I I I I O

o 50 100 150 200 250 TIME (SEC)

Figure 15.6.4 44: Pumped ECC Injection Rate, CD=0.6 DECLG Max. St

ii l

l b

5

'l i

PREUMINARY . -

FIGURES 15.6.4 15.6.4-59 HAVE BEEN DELETED 5

I t

. l

/

5 0

n- *

  • 2 st' . -s m -

/

No Chsnge From 1984 FSAR Update

?RE232-

.e C

4

(

f -

e

- ao

t. -

t-

- oG E

w

' 8 u

1

- w

- m

~ )

l i I I i -

o E C o e a w n o (JJ/m) Uh0d 00810H i

SMALL BREAK POWER DISTRIBUTION ASSUMED FOR LOCA ANALYSES i McGUIRE NUCLEAR STATION Figure 15.6. I.-60

% 1984 Update

~

\

~

No Change From I h,hi

. 1984 FSAR Update

- 'e -

3

- m

- ~

.E. -

a. -

= - ~

z e ~

E = en

= 8 a .

- o

.w - l I

e

.~ g S2<

m ) t l.

= w

_ ~

O

=

- ~

Jllii i l l lll , , , l ,. l,,,,,, _

'2

  • 8 a

h . .~  % - . ~  ?

g 1 83 Mod 1Y 11vm/s11yx CORE POWER AFTER REACTOR TRIP (APPLIES TO ALL SMALL BREAKS)

McGUIRE NUCLEAR STATION '-

F'igure 13.6.4-61 1984 Update

- - . . . - ., -,-.__c. ---.- , . - - - _

~

14715.62 PEM NARY 2500 .

2000 - .

~ 1500 -

0] 1000 -

E 500 -

l I I I I I I I 0

O I00 200 300 400 500 600 700 800 900 1000 FLOW (LB/SEC)

.. . . l l

1 i

Figure 15.6.4 62: Safety injection Flowrote vs. Pressure 1

i l

1

^~

~ -

14715.43

.__._.__.__ . . _. _._ . _.P RELIMINARY _ _ _ .._.

2500 -

2000 -

e

[ 1500 -

~

w _

{ 1000 -

500 -

O I I I I O I000 2000 3000 4000 5000 TIME ISEC) i Figure 15.6.4-63a: 2" Cold Leg Break RCS Pressure vs. Time

-. -.m. . - . . . - , m. , _ , . . , , . - , _ . , , _ . , ,,--47...,.%,,__w,, , . ,,_,.,,...,._y...-,.,, , _ , - _ _ . , , . . . . - . . . , . ~ ,

-~ ~

14715.64 '

_. ?REllMINARY  !:

  • I i

40.00 -

I l

l 37.50 - i t

- l

>- 35.00 -

l

- P 32.50 -  !

i

~ .

\

30.00 $.

g j g

x i 27.50 -

2 [

t 25.00 -

l 22.50 -

~

I i 20.00 I I I  !

O 1000 2000 3000 4000 5000 [

t t

TIME'(SEC) f i

i i

I l

Figure 15.6.463b:

2" Cold Leg Break Core Mixture Height vs. Time I

i i

l I

='

oEJM. NARY ~~..

ki .I N

e O "-

8 8.

=

0 !6 w

U1 m e

w a

F y

2 "O M o U

a&  :

M E

r SD 4

(6 m

,=

! - . 6 u.

I - i l I o

a a

a  :

(VIsd) 3anssaud soa

, . - - - , , , , , - + - .n-,- . - - - - , , , - -,n,, ,- ---...,~,--e-.sw<-, . . ,

=~,

......i.....-- .,. _

_ _ , 3

,..,. - - . ~~ - ~ "

~' ~ ~

BREUM May -

. - - - . . - ~ ~ . - - - - ' - - ~ ~ ~ ~ - "

~'

l .

O 8

m p

I e

s E

B

\ - .E

- p E

)

s s

' O w

1 a-a r

o U

i, 8

+

ts s

R e

.s u.

l  !  !

O s e R 8 (13) 13A313anixIn 3W00 4

- - , - - .+,%- . , , - - + , y -.---%.+g- -- - - ------eew- , - s -r- e --m--<- - - - - =r-

.. . . . .....ea- . s ....= . '. . 66 .. m- 7J---

"="

PREUM NA1Y 2000 1750 -

E 1500 -

m w

1250 -

_s 1000 --

N 750 -

Q )

d 5* -

250 -

1 1 I I g

o 500 1000 1500 2000 2500 TIME (SEC) ,

. Figure 15.6.4-65: 3" Cold Leg Break Hot Spot Clad Temperature vs. Tim,e l l

l l

y-

. ._. . .. . . . . . . . PRil.lMINARY .

_ 8 r

l f

$ 5 e

N e

m l

o Q j e

> _ gEw 1

l

= m F 3 o

- 8n F

b

+

~

E

.5 i

g u.

~

I

, I I o l

i (yIsa) 3Wnss3Wa saw  !

l l

+

, , - - ~ , - - , , . . . , . - . - , - , , , . , , - . , , , . . . . - - - - , . , - . . , , . . . -

M s

50 t i

i i

40 -

l .i ,

!. k. -

l

' ~

'l l

l d '

.j l r, 30 L i

j l

.X.

o I 2 20 _

Mi El - rT1 a

b ' r o E, i

f N

) to - ' 2 l i 2=. i j 23: i l

i.

. Mi 4

l o I I I I l l l O 250 500 750 1000 1250 1500 1750 2000 ' .

I 1

j TIME (SEC) f 1

i e

w 1

Figure 15.6.4-67: 4" Cok! Leg Break Core Mixture Height vs. Time b i

l b

4. .-'.
a. .w- - - - - - - - - - - - - -

g

.. . _. .PR LIMINARY. ..

3000 -

k.

2500 -

tn u) 2000 -

i -

F 1500 -

O .

F ,

1000 -

(D O

< 500 -

)

o .

l I I i

o _

500 750 1000 1250 1500 TIME (SEC)

Figure 15.6.4 68: 4" Cold Leg Break Hot Spot Clad Temperature vs. Time

Qi.I *

.~ - '

. . .- 2 I

, . . _ j

\

14716.30 '

. .. . .. . - ')REw,MINARY l e

l a .i.-

8 W r- E -

I

~

- .h O

m 1 a

F W

M I

" 8 8

+ i.

I

. _ + .

to e ,

- .5 m

_8 I I I O

S (VIsd) sanssssa sos i

4

_ . _ . . . . - . - . . . , , . _ . . ~ - . . , . . , -,, , _ - . , . _ . - , _ _ _ , , , - . . , , _ _ . . . . . . _ . , _ . _ _ . - - _ , _ .

._ m

. . . _ . . . . . _ _.______ _ __ _. .._ . .. _ P. _R.._E. ._LI.M._ _._I.N."""' _A. R. .

i l

1 h.'

~

- R 1 1 E & '

I!

- 8 b

z t

B 8, U

.5 lE-o

~$

$ j m

H E 8, so I o I to

~ 6 N

l 4 si

- 8 N

vi e

E

.5

- 8 I U l l O

O o

  • 8 _O (14) 73A37 3Wn1XIM 3 Woo

I 2- -- ..

, . 14715.32 PREUM NARY 3000 k.

, 2500 -

$ 2000 -

E .

1

- F 1500 -

9 1000 -

Mo -

O l l I I I I

. 200 300 400 500 600 700 goo goo TIME (SEC)

Figure 15.6.4 71: 6" Cold Log Break Hot Spot Clad Temperature vs. Time l

~

2000 1750 -

U w

1500 -

us ^

\

El . ,

g 1250 -

8 g 1000 -

1 ~t1 5 750  %

r un m

r--

W .

E B 500 -

i o 2 '

3>

c I 2"iO - -

^

~

f _

I I I I ,

O 1500 t O 500 I000 2000 2E - ,

tin 4E (SEC) i i '

i 2

2 3" Cold Leg Break Core Steam Flow vs. Time U

Figure 15.6.4-72: w L

,. . . . . ~ . --

. m. -

9

  • -....7-. 14715.34

<> _ g

.i-s!

a .E n

8 3 8

. O

~

n lH =

E g

/ -

y .

U b

- ,8 =

~ y a

2 o

0 Ed 4

E e

. tri e

_ 8 .5

_- m

}lllI l l l llIIl I l l lllll l l  !

F) N

_O If1 N O III N O W N -

4 WH-21J.'n19 ASSY 10H *JJ303 *SNYW1 1Y3H I

a

14715.e0

- p 2000 .

1750 -

l500 -

k.

in W

1250 -

s' 7 1000 -

o 750 - -

3  !

d .  :

500 -

t 250 -

I I I 0 I O 500 1000 1500 2000 2500 i

TIME (SEC)

Figure 15.6.4 74: 3" Cold Leg Brook Hot Spot Fluid Temperature vs. Time

- _ ._ . . . _- __ - . . _