ML20136H343

From kanterella
Jump to navigation Jump to search
Forwards Addl Info Re Core Xviii LOCA Analysis.Info Suppls Analysis in YAEC-1496 Re Small Break LOCA & Address Impact of Top Skewed Core Power Distributions & 5 F Allowable Core Inlet Temp Increase
ML20136H343
Person / Time
Site: Yankee Rowe
Issue date: 11/19/1985
From: Papanic G
YANKEE ATOMIC ELECTRIC CO.
To:
Office of Nuclear Reactor Regulation
References
FYR-85-131, NUDOCS 8511250088
Download: ML20136H343 (31)


Text

,

"h o"n6 ") ' ' o YANKEE ATOMIC ELECTRIC COMPANY TWX 710-380-7619

" ~, 1671 Worcester Roact Framingham, Massachusetts 01701 2.C.2.1 d' . f .o FYR 85-131 s.1J1'.l:::,j November 19, 1985 United States Nuclear Regulatory Commission Washington, DC 20555 Attentioni Office of Nuclear Reactor Regulation

References:

(a) License No. DPR-3 (Docket No. 50-29)

(b) YAEC-1496, " Yankee Nuclear Power Station Core XVIII Performance Analysis," August 1985

Subject:

Core XVIII LOCA Analysis - Additional Information

Dear Sir:

Additional small break LOCA analyses provided in Attachment A have been performed for Core XVIII. These analyses supplement the information provided in Reference (b) regarding small break LOCA analysis and address the impact of top skewed core power distributions and SOF allowable core inlet temperature increase. Also provided in Attachment B are plots of predicted axial power distributions for both fresh and recycled fuel as a function of core average burnup. These figures show the axial power shape behavior during Core XVIII operation.

We trust that you will find this additional information satisfactory; however, should you desire additional information, please contact us.

Very truly yours, b

eorge Papanic, Jr.

Senior Project Engineer Licensing WJS/hja Attachments

\

00 t '\\

8511250088 851119 fDR ADOCK 050o00p9 PDR

/

ATTACHMENT A ,

Yankee Rowe Core XVIII LOCA Analysis Additional Information Additional LOCA analyses have been performed to further address the impact of top skewed axial power distributions and 50F allowable core inlet:

temperature increase- on small break LOCA analysis for Core XVIII operation.

.The most recent small break spectrum calculations for Yankee were performed for Core XIII and transmitted to NRC in Supplement 7 to ' Proposed Change No.145 (September 21, 1977). - The most limiting small break identified in that analysis was the 4.0-inch ID cold leg break. As such, this break was selected to perform the sensitivity studies for Core XVIII.

The Core XIII small break analysis is applicable to Core XVIII for the following reasons. -First, the fuel rod and fuel assembly design has remained

-practically the same since Core XIII; thus, Core XVIII and Core XIII

' hydraulics will be very similar. Second, core physics parameters which have not changed significantly since then will not influence small break results appreciably since the reactor is assumed to scram in a small break LOCA.

Therefore, the Core XIII limiting small break analysis provides a firm base with which to make the following assessments on power shape and core inlet temperature increase.

Core Axial' Power Shape Studies i Three Core XVIII T00DEE2-EM heatup analyses were performed to assess the impact of top skewed axial power shapes on the small break LOCA. These cases-

~

are the fresh fuel at 4 GWd/Mtu and 14 GWd/Mtu cycle exposure and recycled fuel at 4 GWd/Mtu cycle exposure. [Large break results for these cases were previously reported in Table 9-1 of the Core XVIII Core Performance Analysis Report (YAEC-1496).]-

The fuel- rod heatup Code T00DEE2-EM requires boundary conditions from the blowdown analysis. Since the reference analysis was-performed'over eight years ago, the computer input and output data files were not readily

-available. To expedite matters,-the RELAP4 (MOD 3) Core XIII input blowdown deck was recreated for the 4.0-inch ID break. The blowdown was then rerun in order to obtain the necessary boundary conditions for'the T00DEE2-EM heatup analyses. LThe original and rerun blowdown results agreed satisfactorily with each-other.

The Core XIII blowdown analyses was performed assuming a cosine core axial power distribution, wnereas actual power shapecs are being assessed herein for Core XVIII. -The integral core power versus core height used in the Core XIII analysis was compared to the Core XVIII axial shapec. The Core XIII analysis axial power profile produced more power at elevations 'above the core mid-plane than the core XVIII axial power profiles. Therefore, Core XIII) calculations

.w ill predict earlier uncovery for elevations above the core mid-plane and will, thus, be conservative for application to Core XVIII.

j Y,

Given the boundary conditions from the Core XIII limiting small break, the three heatup analyses were performed. The results are given on Table 1.

Plots of peak cladding temperature versus time for the three cases are given in Figures 1 through 3. These cases have also been analyzed as part of the Core XVIII large break burnup evaluation study. The corresponding large~ break results are also given in Table 1. The axial power shapes employed for each

case were the worst case xenon perturbed power shape anticipated to occur at that time in the cycle.

The results given in Table 1 show that the small break LOCA results are less

' limiting than large break results even when top skewed axial shapes are employed. 1Thus, these results for Core XVIII, in conjunction with the small f

break cosine results reported for Core XIII, demonstrate that compliance to 10CFR50.46 is met for small break.LOCA for Yankee Core XVIII operation.

Core Inlet Temperature Assessment The boundary conditions for Core XVIII small break heatup analyses were obtained from blowdown analyses performed for Lore XIII. This Core XIII analysis used a Tinlet temperature of 5190F. The proposed Technical Specifications for Core XVIII allows the Tinlet-to increase to 5240F. The following assessments address the impact of the inlet temperature increase on the peak. clad temperatures for Core XVIII.

Since the plant.will be operating at a higher temperature, the primary side is expected to reach saturation temperatures at a higher pressure during the blowdown. The saturation temperature corresponding to 5240F is about 841 psia, as opposed to 805 psia for 5190F. Core XIII blowdown calculations indicate that 841 psia was reached at about 79.5 seconds, while 805 psia was

( reached at about 95.5 seconds. Therefore, Core XVIII with 5240F Tinlet p may experience saturation 16 seconds earlier than Core XIII.

The blowdown behavior may also be affected by two other parameters: critical flow and rate of energy removal. Moody critical flow for 805 psia and l 841 paia with -saturated liquid conditions .were calculated to be within 1.7%.

The fluid enthalpy for saturated liquid conditions were calculated to be within 1.2%. Therefore, it is concluded'that the depressurization rate will not be altared significantly. However, these parsmeters are trending in a

-direction that would increase the system depressurization rate, which, in turn, will increase the ECCS injection rate. Discounting this benefit, the l ECCS injection was unaltered and the core recovery predicted for Core XIII was retained.

l l

r Therefore, the major impact of the increase in Tinlet is an earlier time of i

system saturation (16 seconds earlier). The impact of this earlier arrival to saturation on PCT may be conservatively assessed by assuming the core uncovery 1

period to be 16 seconds longer. The Core XVIII calculation for 4,000 mwd /Mtu burnup yielded a PCT of 17000F. This calculation experienced maximum rate of temperature increase during a 120 to 160-second period. The ramp rate during this period.was calculated to be 9.60F/second. Assuming this ramp rate for the additional 16 seconds, a total PCT increase of 1540F will be calculated.- This will yield a PCT of 18540F, as opposed to 17000F for the

base case. This estimate does not allow for the impact of metal-water reaction, which may be important at these temperatures. To assess this l impact, a sensitivity study was performed with a modified T00DEE2-EM deck.

The core mixture level input was modified for this run. The core uncovery was initiated 16 seconds earlier and the duration the core experienced uncovery was increased by 16 seconds. The core recovery behavior was left unaltered.

A PCT of 18820F was calculated for this case.

This assessment indicates that a 5240F operation will yield higher PCT.

However, the PCT will be no more than 18820F, which is well below the 10CFR50.46 acceptance criteria of 22000F, I

l l

L

, i TABLE 1 Core XVIII Small Break LOCA Top Skew Power Shape Evaluations Results PCT Large CAB- Fuel PLHGR PgT* Elevation Break (GWd/Mtu) Tm (kW/ft) ( F)  % Core Height PCT ( F) 4 Fresh 11.00 1700 68.3 1971 14 Fresh 9.40 1520 - 81.2 2146 4 Recycle 10.50 1645 69.0 1924

.s

  • Z r-H2O local metal water reaction less than 1% for these small break results.

T l

L_

Attachment A FIGURE 1 8

. E n

a R

k 8

< t.L $

E 2. .N h

=

m 8 x

u.

  • A"

>$C.

d5 l4 /M E

.S s C.

m I-r 8 N

o .2

~

8,.

E 2 oz W oc e u-

%o

$~ -

t o LLI -

"E*

3 O .gZ j.

a:

7 7 8 8

a t t S

S E- E*

g J

  • ga $

d WS C -8 l- R g gg lm-m E5 55 o

" O E

- - 9 3,.

O m:

oo 00 941 00'00't co'st oo'of 00 0s3 00 s43 oo'ods 3 01moo'st's(d) 3Hn'os 1idW3dW31 ON100873

Y Attachment A 1

FIGURE 2

.R E m I

8 g 4 8 =

a H w" 3 $

u y t.

E, o o

is.

5 .2

=

3 6-m 5  !

a

<. m-m x a w oz o

w e u R'c w

g. -m -

5 BW o g-M.

me e-5 -

S d 8

w. o S e  :

Id

= = . o Y.

l8= o 0R

'~

5 E

o r u -

o l

O E S s

o E _

8 ao'oss 00'948 00'0d3 00'941 00 00'981 00'Dd' ** ' $ *** W 3 0Ia (J } 3Hn'011i:lH3clW31 ONI00873

Attachment A FIGURE 3 E.

. R E

C D o C W o s uJ E-

!.w>.T- A"

.E 2

1" M[5 e o

o A. .N D

>=

E 8 s

C S-b,.

03

  • ~ Q w EE n

2"-W

%- w b-2 old
  • E C

35 t

E I

$ 7

' C E I E-  !! @

L g e

  • N
  • d E-M3 Em l  !

-E

=

e

-g Ew a

d o G E *

- E g 4.

w a

E

" 8 00'033 00'983 00'0d3 00'94'1 00'0!'1 00'981 00'00'1 00'd6 00'Of i 0la (3) 3801383dW31 ONI00873 l

~ . . ,

l l

Attachment B J

l

CORE 18 NOMINAL AND XENON POWER PROFILES FRESH FUEL RT 0 MWD /MTU 1.5 o - NOMINRL SHRPE o - XENON SHRPE 1.4 -

1.3 .

1.2 -

1.1 -

e y 1.0 -

o Q- 0.9 - g

? E d

- 0.8 - e e E

N g 0.7 - "

[ 0.6 -

c -

d e

0.5-0.4 -

0.3 -

0.2 -

0.1 -

0.0 ... ... ... ... ... ... ... ...

90 100 20 30 40 50 60 70 80 0 10 CORE HEIGHT (%)

CORE 18 NOMINAL RND XENON POWER PROFILES BURNED FUEL RT 0 MWD /MTU 1.s ' o - NOMINRL SHRPE 1.4 -

o - XENON SHAPE 1.3 - _ O -

1.2 -

1.1 -

or y 1.0 -

O Q- 0.9 - >

b 0.8 -

o M =

w a

g 0.7 - 5

[ 0.6 -

c Ed 0.5-x 0.4 -

0.3 -

0.2 -

0.1 -

0.0 ... ... ... ... ... ... ... ... ...

90 100 70 80 0 10 20 30 40 50 60 CORE HEIGHT (%)

{ll  !! i j

%5I,h 5!"

0 0

1 E O P . N RE HP SR H

LS A O NN N _

IO S _

E MN L OE I NX .

F - - 0 O 7 R oo P U T

. R E M/

W D O)

O P W N %(

M N 0 T O 5 H N

E 2 Y O G

I N E X TR H

- O N L E R E R L U 04C O

R F N H I

S M ER O

- N O F N

- 8 1

E R

O O C N 0

1 O

4 -. . - 4 -

1 8' 7 6 5 4 3 2 3 2 1 0 9 '

s. 4, .

0 0 0 0 0 0 1 1 1 1 1 1 O U 0 g ' dM o>[by0 l

CORE 18 NOMINAL AND XENON POWER PROFILES BURNED FUEL RT 250 MWD /MTU i

1.5 o - NOMINAL SHAPE o - XENON SHRPE

1. 4 -

1.3 - 2 1.2 -

1.1 -

e 1.0 -

O Q- #

0.9 - 5 E J

b 0.8 - h m

h x n 5 C ,

g 0.7 -

[ 0.8 -

e u 0.5 -

e

0. 4 -

0.3 -

0.2 -

0.1 -

0.0 ,,, ,,- ,,, ...

70 80 90 100 60 0 10 20 30 40 50 i

CORE HEIGHT (%)

Attachment B FIGURE 5 i

8 Ed CL ca -8 x a.

ln C I

)(n C ~

O ZZ 7D (n mO ta :C Z

,_) O [d m ZX

[n- I I ':

O r8 M OO o- O M E (J N l 3

C O gm l E- 1 -

N E ~

Z O / E-*

O W

(l) h Id x ,_. _s -

C g O

. I 2 J (I Ed l

C [d M A a ~0 0 M L wo 1

2 e-o I g

O U 2

m 8

(t3 M

O TO "w

y y T T Y Y Y v Y Y gY F g* T g* Y gY Y gY Y Y gT T gT Y w y y v y y Y

$ $ 9 9 $ 9 $ $ D H H e S N O

N O O

  • .e w w w .-* O O O O O O O 83M0d 191XU 3AI19138

.~.

CORE 18 NOMINAL AND XENON POWER PROFILES BURNED FUEL AT 500 MWD /NTU 1.s o - NOMINRL SHRPE

. 1.4 -

o - XENON SHAPE 1.3 - - -

1.2 -

i 1.1 -

cr W 1.0 - -

i 3:

O -

Q- 0.9 -

=

E

, J c S C g a

- 0.8 -

  • X
  • 5 i C ,

g 0.7 - .

, =-

i "g 0.6 -

C J

w 0.5 -

cc 0.4-0.3 -

0.2 -

l 0.1 - .

0.0 80 90 100 0 10 20 30 40 50 60 70 CORE HEIGHT (%)

Attech- nt la FIGURE 7 o

Q-C (d -@

I a_

(n C I

1(n C

ZZ -O MO (O lC Z Ed O [J

a. ZX C l l z-
  • O LO OO M E-*

[J E 3  %

O O .

Q. 3 -8 N-r ~

Z O O Z O J H

(d O y 1 X w g a .-. -s ta 4 1

Z C C (1 3 e l C a Z k g

-@ b r r O (n Z [d M

(D

.-e

[A

-8 (d

M O

O

-8

-e

..,.. ..,. .,-- -O

$ $ $ 1 5 9 $ H D H $ . 9 N N k

  • w w * *
  • O O O O O O O O O O

' 83M0d 1UIXU 3AI19138

I Attechm+nt B l

FIGURE 8 8

I u

! O_ _b C [4]

IQ (O C I

J CD CC ZZ -g

.- O (n EZ y O [a]

a ZX C I I I _O" CD -> 00 C E o s 3O O A 3 Om Q- E a) ,y Z

@o g

O O

I I g

I CD y O~

s u a

z C I C 3 Il gg

( [d M g- D O g [A. -O O

~

E c O [4]

g Z M D

- m -?

Et3 O

O O n

-S O

1 9 H D . $ 9 O O O O O Q O O O

  • w w w w w O i

83M0d 191XU 3AI19738

Attachmtnt B FIGURE 9 8-

[d Q_

C [J -@

r Q_

(D C Z

J (D C

ZZ e ca (n WQ

[d EZ

) O [d e-4 ZX >

[A. i I a O

& OO N Q. O H

E r

[d N 3 O O 2 - 8 g.

a_ r w Z O O O f-*

z o ( ) 1 O

[d N "O M X Lo

[-4 C (C Z (D C [d d

3 a m

y I'- -@ b

- r r cn O [d Z M

-8

[a.

CD

.- e

[d K

O o .g

-e

,,.. .,, ,,. .,. .,. O

$ $ $ $ 5 3 $ $ D $ H . $ N . 9 O

w w w w w w O O O O O O O O O 83 Mod 191XU 3AI19138

Attachmtnt B FIGURE 10 8-

[4.3 0 -

C Cd -

I a_

ln C I

3(O C e ZZ 7O (n >-< O ta EZ

,,_) O [J

>-4 Z ><

ta_ i I o -R E OO

a. --) ,_e

& E N

O (

3 O 3E

  • Om TOwx 0-Z H z

ca O

m l p 5

X -@>-4

^

[- e O C f t ZC [d J [I Ca.3 E

D _O g

g- Ca- eOO Z Q

>-4 E

O gZ ,

Z p 'b G3

[a.1 M

O _g O

-e O

N N $ $ D Q w *

  • * *
  • O O O O O O O O O O 83 Mod 191XU 3AT19138

Attachmtnt B FIGURE 11

( b laI O_

C [a] -@

r n_

(D C I

--) in T

ZZ a (n *-4 O a) taj EZ

) O t.t]

+-e ZX ti_ I I o

E D0 O

N Q. D '

E*

E E IAJ N 3 O t O 3  :

Q. E

-8 Q -

z O O O z o I>

E-*

I

[AJ t G X

F-4 -O E'3 H

Q C Z CD

, C J

[4]  ; CAJ 3 D C [a _O*O O

z e- (10 I .

E CD '

O EsJ Z M -

[a_  :

CD

-8

[AJ M -

O

-8

-2 igw w iy v gy v gi V Y gV v gu v g7

  • gT T g' 'gY 'g* T g7 Y gi *gi w

.-e w w N

w w k $

O H

O O H

O O O O O N

O O 83M0d 19IXU 3AI19138

Attachment B FIGURE 12

{

8 Es.)

n_

C [t] -S r a. -

(A C X

.3(D E

ZZ o in wO 7m M EZ

,_) O [4.3 e-4 ZX CL. .

a i I E OO I{ O e r M O 3 g (13 Q. U -8 ,Q Z o O O ,-*

O t3 Z ff -

-s x ,-.

C 'W e a -

4 Z __) (1)

C ta] [t1 D &

3 c [^- -g 8 O []()

r o O Z 2

m = (

-s CAJ E

O O _g

-2

-o

$ $ $ N N $ $ $ D H $ $ $ N

  • * * * *
  • Q O Q O O O Q Q O O 83M0d 19TXU 3AI19738

Att ch- nt B FIGURE 13 8

~

(

w Q.

Ce *O I (1.

(O C I

J CO C

ZZ o co e-4 O (n EZ W Ow Q_ ZX C af r o LO OO D

M I-*

w E 3  %

O O (I1 G- 3 z N Z

O O Z Q f-*

w o 13 1 X CO g O f_. - s w-Z c C IX)

I ._) U J (J  %

C D Z tu -Q O e-e E I IJ O O (D  :

Z (d M

(D tw 'O

  1. (

[]

e E

O "

O

  1. 8

-2

.,. .,. ,-. -,-. -O 9 9 9 9 9 9 9 9 D 9 9 #. 9 9 9 9 m ~ e m ~ m o o o o o o o o o O 33 Mod 1UIXU 3AI19738

T CORE 18 NOMINRL RND .ENON POWER SFRPES -

BURNED FUEL AT 6000 MWD /MTU

!.s a - NOMINRL SHRPE t.t -

o - XENON SHAPE 1.3 -

1.2 -

1.1 -

C 0 -

6 b S

e y 1.0 -

a n- 0.9 -

J #

b 0.8 3 c

E x a B

E C

g 0.7 - j

> =

[

C 0.6 -

d e

0.5 -

0.:-

0.3 -

0.2 -

0.1 -

0.0 .- .- ,- ,- ,- ,- ,-

60 70 80 90 100 0 10 20 30 40 50 CORE HEIGHT (%)

l

CORE 18 NOMINAL RND XENON POWER PROFILES FRESH FUEL RT 8000 MWD /NTU 1.5 o - NOMINRL SHRPE 1.5 - o - XENON SHRPE 1.3 -

4 1.2 -

U E- o

c p 1.1 - c c 0 - -

tr tu 1.0 -

3 O

Q- 0.9 -

_2  : #

b 0.8 , h k E

0.7 -

i  ! lg g *

> a

[c-0.6 -

d

=

0.5-0.4 -

0.3 -

0.2 -

0.1 j 0.0 ..,. ... .... . ...... ... .

0 10 20 30 40 50 60 70 80 90 100 CORE HEIGHT (%)

Attechm nt B FIGURE 16 8

(

ti)

O.

C CAJ -8 x a.

(A C I

3(D C

ZZ o a)

(n *-* O lC Z

(

[t]

,,,,3 O [L1 e- ZX li.

O i I

' U -

O

% -> 00 e Nr 3 O 1 3

E -8 Q -

2 o O

9O l F-4 z

mo N f-4 C -@ U

! a l

.Z J (X) lA3 l ( [A3  %

g D 0 0 g- la. + O

.-. O (2 O r W I Es e = n o -8 LL3 O

O 13 ( .g l

l w

.,, -Q

$ $ $ 1 N 9 $ $

O D

Q H

Q Q Q Q

N Q

N Q

9 Q

w w w w w

  • O 83 Mod 1UIXU 3AI19738 i

Attechment B FIGURE 17 8-(13 Q.

~

8 C CAJ x Q.

U) C X

__1 y)

C . o D

ZZ r mO (f) EZ tij O [AJ ct ZX C I I *

" *O

--) OO ~

e (t3 y

\

O O. f1

.g -g Na 0- r "

Z O H O

2 O I I Ia3 O CD X

O O.

~

b I

g i z C C CJd tiJ

)

e

-1 ts3 *@ O Z k "

E ig Z

f CAJ

.oM m [E O

  • [J (13 tr O .o O l

-S

-o 9 D 9 9 #. 9 9 5 9 9 9 9

  • 9 9o o o o o o o o o I

B3 Mod 191XU 3A11U138

Attrchront B FIGURE 18

( -

a CL ~O m C [d I [L (D C I

-1(n T _O ZZ

  • HQ ()

(n EZ ta O [d CL ZX C

E t (?

~O N in D DO f-*

E E

[J N Z Q O Z I1 O_ E _g N-Z O O O i-*

Z O I I (J O CD x .-<

_ g e-<

O e-. m Z C I

(, C t a

._3

_.) tu Z C D ~O +O O-Z [u e-<

r O } O O [d Z Z M

CD D _g

" EU [] O

[d M

O O _O

() O

-e l

-Q 9 $ $ D H $ N N 5 N

$e N

w 5

w

  • O O 7 O O Q O O O O 83 Mod 191XU 3A119138 r

~

s g Attachment B '

FIGURE 19 -

r

(, o k

(2.3 O- -i cy e I Q.  % .

A (o cc '

I

.1 (D z .-e

-g zz o

cn -O y Ez J O tu3 m zX Ca g g O gj _o N 0O 0- g

% r N O h E

13

-g x

n. w z O .,

O o H z o a r y N C x M <

yF $ w.9 W

I i O z o CC CLIJ 'M

+.

{~ > O z

  • C eo f

C z e $ *

  • _g i

CD L'" () *

  • t] (

ta.1 '

E  ;/

O (3 ,

s h@ ,

e

,. -O  %

. ~,

4 y y -

y y y y y w y y y y y y y y y y y y y y y y y

Y y y i y W. t3

  • O.

We W w

m. N. O. N. .

t')

. N. . o. ED.

Q O e.

O *'O O O O

.-* * * *

  • O O O 83M0d 191XU 3Allul38

.g

Attachment B FIGURE 20 8-

[d CL C ca -S I CL -

(n C '

I

._3 CO  :

C e ZZ Te (n MO O I gg EZ ,

a m

O ld ZX

  • O I I E D DO (2 R Q E-*

E '

M N

[d C 2 2 0 O E -

8 x-Q w O  :

2 O O O g Z 03

[d M C M ' S w.D t.Q H

( O C I Z r2  : ra CC 1

[d M

J D a: c :So

- o Z (3 0 a

E [d ,

O Z -

Z E o D *n CD CD I2 O m

f.a.]

E O (2 O "O n

v v v v v V y T T ' 7

  • Y g* ' ' ' ' 'g' ' ' 'g' 'g' ' '

$ $ 9 9 N 3 $ $ D H $ $ $ O w e w w w a o O O O O Q Q Q O 83M0d 19IXU 3Allul38 l

l

i Attachmtnt B )

I FIGURE 21 o

I O cd D.

C [d *O X n-In C I

J (O C

ZZ

[O MO EZ o -8

[d J O CJ H ZX

[i-o i I E OO U '

o

-)

E-M \

[d O 2 3 0 r o_ _o-

  • Nm 7 O O O z O '

E-

[J # I

  • CD X o m a f* [d Z C g I I 3 ta

_) [d cr U O (I-z ['- ~O O

- )

E M O U z M

[A- o co e O _n

[d M

O O [] ( a

_ ca 1 Y T Y Y y y y y y y y y y y y y g y y y y y , , g y

- - - - - - o o o o o o o o o a 83M0d 19IXU 3AI19138

CORE 18 NOMINAL AND XENON POWER PROFILES BURNED FUEL RT 14000 MWD /NTU 1.s o - NOMINAL SHRPC

1. 4 - o - XENON SHRPE 1.3 -

1.2 -

1.1 - O -

bI 1 *0 - O

^

O Q

Q- 0.9 - #

_) m g b 0.8 - 5 E E E !

g 0.7 - N [

[ 0.6 -

5w 0.5 -

cr 0.1 -

0.3 -

0.2 -

0.1 -

0.0 ... ... ... ... ... ... ... ... ...

0 10 20 30 40 50 60 70 80 90 100 CORE HEIGHT (%)

_. .