ML20093E100
| ML20093E100 | |
| Person / Time | |
|---|---|
| Site: | Hatch |
| Issue date: | 12/09/1983 |
| From: | WALWORTH CO. (SUBS. OF IU INTERNATIONAL CORP.) |
| To: | |
| Shared Package | |
| ML20093E088 | List: |
| References | |
| ADSR-31, ADSR-31-R, ADSR-31-R00, TAC-55488, TAC-55489, NUDOCS 8407170376 | |
| Download: ML20093E100 (49) | |
Text
.-
1 ALOYCO CCRROSICN RES STANT VALVES g
Report No. ADSR-31 Rev.O Page 1
of 50 DESIGN STRESS REPORT Customer Bechtel Power Corp., Agents Customer P.O. No. PEHA-470 Gaithersburg, Maryland Customer Item Nc.
002 Owner Georgia Power Company Walworth Order No.
LN29977
+
Project E.I. Hatch Nuclear Units 1 & 2 Walworth Item No.
003 Jaxley, Georgia
" Customer Spec. No.
GPC P.O. PEHA 470 Rev. O Date 1/26/83 Valve ANSI Figure Valve Assembly Valve Mark Size Rating Number Type Dwa. No. & Rev.
No.
16" 300 lb.
5281h'E Globe A-8868-M-9B 2E11-F016A,B 1
k...
i t Given Data:
Valve Material SA-216 WCB Max. Horizontal Acceleration 3.00 ASME Section III Nuclear Class 2 ' Max. Horizontal Acceleration 3.00 Design Pressure 450 PSIG ' Max. Vertical Acceleration 3.00 Design Temperature 225 0F Valve Orientation:, Pipe Line Horizontal Max. Diff. Pressure 450 PSI Stein, Horizontal Allowable Natural Frequency _.
33.0 Hz Type of Operation Limitorque SB-3-150 OBJECTIVES AND CONCLUSION: See Page 5
BEST SOURCE DOCUMEN'.' AVAIL.
1 A3LE. M AY NOT BE OF MICROFILM-ABLE QUALITY.
Prepared byNo0/ $ [ruk Date /R
[73 Mm.Date / / /83 Verified by e
Approved by fue 6.
22NDate /t f #_7 7QQf0N Certified b Date Md P
PE Lic. GE15569 State: New Jersey Tne w i.o,tn company o Aloyco oms'on 01400 W Ehneetn Avenue o Linden. New Jersey 07036 o Pnone (201) 862 4600
O I
Page R cf 50 RE*/ISION PAGE Rev.
ne.
cau I
ern r= l urm=
+ p a c=, =
ne,,,,e,,
Sv gv f,2/g/93 Initial Re;ce p,,
0 1
~
1 3
g o,
X 1
I E
1 I
1 c.
Recor
'ta. ADSQ -?)
1 X\\
Di ALCYCO
@i CORRCs!CN RESISTANT vat.VES Recor No. ADSL-31 Vev.
O 1
i CERTIFICATION PAGE I
A., VERIFICATION REVIEW STATEMENT I have reviewed the Design Calculations an. verify that the calculation method used is within the Owner's Certified Design Specification by the following method
@ Traditional Hand Calculation Method
@ Program Tape Method Other
) (
I, the undersigned verify that this Design Calculation is accurate.
I B
Date /A/9/33 i
'y i
x, wo B.
DESIGN REPORT REVIEW I, the undersigned, being a registered Professional Engineer and competent in the applicable field of design and related nuclear power plant requirement, have reviewed this Design Report, and certify that it is based on the Design and Operating conditions stated in the CWner's Certified Design Specification on Page 1 and that the valve design is adequate for the intended service.
Certified b
/Jonn t.. Hawley p
~P.E.
Registration No. GE15569 State __1.J.
Date
/JL/'Y/f3
//
(3 Aj Orm NE-33, Rev. B Page 3 of go The Warwoe Comeany :
AICyC3 o> vision : 14C0 W Ehsacem Aven, : uncen. New 3ersey 07036 : P" ore 8201i 962 4600
1 Report No. ADSR-31
(~~1 Page 4 of 50 C
1 TABLE OF C0flTE?lTS PAGE 1
Certification Page 3
1 I
Sumary of Highest Calculated Stresses &
Natural Frequency Determination b
I II Pressure Retaining Part Analyses (a)
Body Flange 7
(b)
Bonnet Neck Root 13 l
III Seismic Stress Analyses
(~3 (a) Sumnary of Resultant Stresses (Seismic) 20,2)
, Ql (b) Orientation Sketch 25,23 (c) Points of Highest Stress 27 j
(d) Properties Table 2g (e) Resultant Seismic Stress for Section A-A 30 g
(f) Structure Analysis 31 l
(g) Resultant Seismic Stress for Section B-B N/A l
(h) Resultant Seismic Stress for Section C-C 34 l
(1) Resultant Seismic Stress for Section 0-0 35 _
(j)
Resultant Seismic Stress for Section E-E 3G l
IV Natural Frequency Analyses f
(a)
Beam Orientation 4/
(b)
Frame Orientation 45 V
Bibliograpny 49 j
VI Acpendix 50 1
1
1 Report No. ADSR-31 Page 5 of 50 1
OBJECTIVES:
g a
To verify that the maximum stress applied at the mrst highly stressed cross section on valve assembly components such as the body / bonnet flanges, body-to-I bonnet bolting, bonnet neck, bonnet-to-yoke bolting, upper and lower yoke arms, and motor-to-yoke bolting due to the specified ccmbined seismic and operational loads do not exceed the allowable stress pemitted for the material.
To verify by analysis that the lowest natural frequency of the rigid part of 1
the valve structure is detemined to be greater than the allowable natural frequency.
CONCLUSION:
1 A review of the summary page (6) of this report quickly identifies the areas of the subject valve (s) whic1 are overstressed by replacing the motor operator.
Whereas the lower yoke arm, the Body-Bonnet studs and Motor-Yoke bolting all appear to be stressed over allowables, the Body neck-flange is overstressed far
,e beyond minimum yield strength and very near to the minimum ultimate Tensile
(
)k Strength. The load conditions that exist on the valve (s) are not acceptable and Georgia Power must remedy the situation by limiting those loads.
I e
1 1
I I
1 o
i kj i
1 r?
Recer !!o. ADSR-31
(
)
Page (D
of 50
~
.I SUPNRY CF 'd!GHE57 C.:LC'!LATI: STREIIEI Stress - PSI i
Area Evaluated Calculated A11cwable See Dsce Bccy Fiange fo 5.327
%.250 I ?,
Benne neck Root 19,'I45
%,'250 17 Ecnnet Neck at sec:ien -
A-A 9'330
%',250 So Ycke structure at section D-D 9'G69
%250 sg l
Lcwer Yeke Ar.n at sec:icn C-C 27,'fo 04
%',2 50 S4 U;;;:er Ycke Arm at Sec-icn D-D II',373 2(o,250 S5 l
Bennet /Yeke Bolting at sec: en N/A Mocer/Yeke Sol-ing a: Sec:icn E-E (q
25;174 25.000 40 j(
NATEL RECUE?tCI 00:14UIATICM Nat. Free.uency Calculated A11cwaole See pace Beam Crienca;icn l 7. 9, 33.O Q
Frame Orients:1en
.9(o. (o 33.O
_4s j
Body [ Bonnet, Studs: Minimum required Stress area:
26.31 In 2 g
Actually available stress area: 25.41 In I
I I
9 1
i f
t A
Page 7 cf 50 1
P.ANGE ANALYSI5 1
THE SOLTING MD FLANGE OF THE 300'l TO BCNNET JOINT SHALL BE DESIGNED AS FOLLCWS AND SHALL BE Ii ACCCRDANCE WITH NS-3544.1.
l MD ARTICLE XI-3000 0F ASME B&PV CODE SECTION III.
I FRE SC0Y DIAGRAM SHCWING THREE ODfESIONAL SEISMIC, OEAD WEIGHT AND GPGATIONAL LOA 03 STEM HORIIC.WAL l
l 0,
x Psur OS
(-
p-f sv T
Q n
W FTaune A NOCCr*, No. ADSR-31
_1 Page 8 of 50 Repod No. _ ADsR-31 F1ance Analvsis Weight of valve ;:ar.s aheve body flange = W:
2.593.25 13 Centar of gravity above body flange
= C. G.
4 l. O f in Hort::ntal seismic ac:aieration - G 3.00 3
Vertical seismic accaleration = Gy 3.00 Seismic Forta = '4G Hori::ntal = Feg; =
7j779. 78
.T 3 Refer to Ffgure A
~
l
rSug
7779.75 c,
ver: test
= Tsy.
7 779.75 lb
\\
Fx = JFe- [ v \\fsy v n:)4 l 2 Q (o (c. 2 5
=
g Seismic Mc=en: = M = Fg(C.3.) = 53l;745.81 in-13 Fd=STEMTHRUST(OPERATIONALLOAD)
ORIGIN N
GATE
/
GLOBE LOAD = lb.
P [o<.
.25tr D2AP 80521.S PRESSURE
.25,r SEATING FORCE
.75 Tr O
.757tDAP(Sin 0 +
STEM LOAD Md Ap
\\
/tCos0) 7 gg 2
Seating Angle O=
15 r = Totai = g7.75s.1 is e
Thrust Seat Diameter D=
15.094 3.50 Stem Diameter d
=
46O Pressure Diff.
=
Friction + Seat Angle c( =
m(y f.
Tan a =
O,2
l Page 9
of 5B Calculaticn do. A Dsq-yj (d
STEM THRUST GLOSE VALVES Definitions Qq = Total axial force to close the valve Fp = Axial force to resist line pressure Effective area x fluid pressure
=
Fs = Axial force at the seat face
= Area of seat edge x
- clamping pressure Y2 2
F TDp
=
P 7
Terms D = Seat Dia.
s
(.063)TrD(Sino+ Ecsc)*6P(2)
F
=
P = Pressure
=.75n0(SinotuCoso)P O = Seat Angle
,7 = Coefficient of Friction s(Jt
)
Q
= F +F d
p s x-2
= tr0 P +.75HD(Sino p Cose)P T
I I
s r
I
\\
/
f i.t t
?'
'? P P P E
S d %g o
a Re y p,
id l
F O
g Pressure Force Seating Force I
- The force F is similar to the compression load frcm Article 3-3 Sec. VIII s
of the ASME Code, therefore the clamping pressure is a multiple of tne line I
pressure. The value 6 is frcm Table 3-320-1 of Sec. VIII under gasket factor for solid flat metal, 4-64 chreme.
I
R.NiGE MlALYSIS gj, Page 10 of 50 t
Calculatien No. ADSR-3) j Boav nange
/
1 A
=
c G
)
I
- s-T r
I
.o 5,
~.
-R h
j o i Mv? V A t. V G. S
' r j
4 corPv7 w uus.3l
/^s
$y Lj (
e
' Reference Drawing Number A-86b8'l-3 Material S A-916 WC.B g
OA-30.75 in
.g t -
2.875 in gy=
18,000 g
@s-18.7 5 in
@h-
- 0. 0 in gm-5.5 l
]
G c 27.75 in g) P -
450 PSI
,t i G = 20.6708 in
~
O.9 -
125 in
- n. b. 0A146 in asa-3.25 in 1
(22) l%"oia. stude z
@ g=
25Al in e g,-
1.25 in l
10 (,F +Fsg').' 95,53 5. l La@C.A5aET oD=
21.500 i
l 3
Allowable stresses:
- 43) gas n. r iD -
18.750 s
15 Se is. M o. - 531;745.8 sa 0 10 F -
17;500 psi
@ s*b1 e ico F -
25;000 psi]
Flange Bolt 1rtg l
]
n sag 0220 =
17;500 psi s*b2 0 225F = 25;000 psi'
]
A - 193 B-7 t
Flange Design Pressure 9
I
+
E*i PFD = P +
2 2
- G
- G 3G Recort No. ADSR-31 i
FUNGE ANALYSIS Bod
,Jj
.Page il of 50 i,.j Calculation No. ADSR-3L M
= Longitudinal bending mecent caused by,s.aismic force acting at center of mass of upper valve assadly.
j Fsy = Longitudinal ferce acting en bannet caused by the seismic accelerations in b ykrtical direction.
j F
= Longitudinal force acting on bonnet frem reaction to closing force.
d Bolt Leading:
Operating Wk=Pg (.785G2+2:bGm) 657647.3 lb Gasket Seating Wm = vbGy =
484;fo03.1 lb 7
Bolt Area:
W W5 5
Required A,= Larger of 2
cr 1
2b.3l-in2~ ;
=
l 0*b '
- b 3
g p,
Actual A
25Al in2
=
b s'~j t
Flange Design Solt Load j
. Operating loS7 647.3 lb
=
Gasket Seating (AgA)
~W 4b 448.) lb b
J i
2.
a b1
]
Flange Mcment Operating Ccnditiens 2
.g=(uspg/4)(R+.sg)) =
1;Il 4; 3 9. 0 in-1b M =,(22bech j(c s}, '
l;09i,525.0 in-1b g
g
~
R+c-1 +.5(C-G) 2,,
I.(G,3.),m..
M8;934.3 in-16 n.4 4 I
2
_1 s=y
+n+y=
2A54.5 Min-1b,
o V
a i
I j
s IB
j FUNGE ngl.YSIS Body
,p i
Page I2 of SD Calculation No. ADSR-31 Flange Mc=ent Gasket Seating M ' w(c-a).S =
2,288l55.0 in-11 o
j Shape constants K=A/B =
I.b4 g)/g, =
1.00 t
h,={Bg,= 4.8412 h=
0.0
- h/h,=
0.0
- p 450 pst
=
}
T=
- 1. G505 z =
2.1837 Y=
4.0994 U=- 4.5049 F - 0.908920 y = 0.5 50103 f=
1.000 e= F/h,= 0.l8775 2
G.94 6/2 L.
d=(U/V)hg l.31G53
=
+
=
o a Flange Stresses:
~
Longitudinal Hub Stress:
o 2)+(ps/4s)=
65;327.2 psi Gl;0ll.9 psi G
,(.
s=(m,/Lg3 a
g a
j Radial Flanga Stress:
2 S =(1.33w1)M,At a =
% ; W.6 psi R;265.2 psi g
g Tangential Flange Strass:
I 2
S =(YM /t 3)-Is =
19;797.1 18;454.7 psi st 7
c g
1 Allcwable Stresses:
Operating
.SS af 2b;250 psi
=
. ?-
1 Gasket Seating 1.55 a 26.250 psi
=
f 1
1 1
Sg 1.ssa7 s 1 1.ssaf l
7 I
l3 of _5'o PASe g
Bonned Neck Rock O oi #* AUS#~ '
F
'V) 6y/9 80L'S 464EAfD O. =
RAblus OF PLATC WHEN m obELCD FcR i8rtRWAL PRESSu b h
,. O UTSI DG
. AN.h oFVRATOR 's TttRUST.. _..
I 4 = ourbiDf' RADNJS of A' ATE NMEMMODElfp fbg q As867 Sperktg MAPS.
b,',
INsihE RAbwS OF PLATE.
=
l
.. C = Bot.r.. CMcLe. 2inmrTzg.
-.q = En scrive DiamerER OF GA SKET.._.._.
h g =
NT[PMAL.PA'E$St/RE
. % = qGNER$c. EAhl4S. OF ANytAK Lcab. SUBSCR577 -lDEdrifiES SPEC lPic loc t = IMINIWl/M TM/CKHESS of. PLATE T = OPERATOR'S 1
THRUST AS SEY ON THE tor age Jul/TchES h1
- O?'# ATO# 'O
- A4' N'I' S#'# A#AO f**## 'O AA AA'IAA#Y b5NNO 0""
T g
% = 4ASKETbPRELoAD ExFREMED AS ANPNutM t. CAD AT THE qASKETh EfffCTV N = CsASKET'S Eff*Ecrivi kllDTH.
h 71l = Q ASKET'S FAcrog AS SMclFlCD By ASME B 9V Code Seden~VlK Y = 4ASkCT'S.MA1 NQ._ STRESS.AS. 3fEC/N ED_Ey 8iPV Ce&e Cechcm Vlll1 1
=
VERTICAL. SflSMEC-. ACCEL 6.q)richt.
= THE.YNb /bARCA TRL SE/SA/C AcccLggar/cyf,..... _. _ _
_..a
/
O ~ ANGLE..of..idc5DGdCE of rnt. t%4TE fgot4 796 RcRi?.MTAL PLA r/E..
)
-... - 0 E MoetEATb
,_%g sraesses
. R, T, L 5 RADIAL, TAtt1QENTIAL, LONcpITUOINAL 02 Op6RAr/0/vb4 L OADINg h1 4A5ktr SEATING REACTION l
S = seissuc Poiss ons envio i
=
1 Pr3e l4 o4 30
(~}
Aepoet No. ADSR-3)
C/
VEFEREHCE '.
b
_$o A R h'S._"foAmu'A S.FoR. 6 TRESS R^!b 6rtraid
,5A EDi ION f
l Orsariaa.__Couniricas.:-_ Cases t9 enne 33s e _s40 sueadme j
e, 5
---* E _ W.._.
..._......-..... g = 2 c. (o71.& cuss 1
y$
..,,,i.
k a =..s =.lo.'33 6__ias i
w,
.........g a
z I
- y. _.
b, =...fo<0--
INcHe 1T
'th -
.__...Ed =_T= 87,755. 4. s s.. _ _
. _.._ g, = g,, = g, =. 3.D..
}
.weianr_.ox__vatvs_sraucruns nBovt_BosaEr_dcx:2091.9ta.s
_ g. 2.=
d-5.0.fsi__
=
_ c. q. of vm vs srgqcms_68cve_2caser_.accx.:. 4(o.5 itcus _____.
O nu.
sS_ consipgggp _y_os'TICAED. }loRIto^) TALL'l,7//f 4fdlT BENbl&Q P10MENf' Af b 19 L l(
lF VRLVE L
T = ("N Y $H x WE QH l2TT bo
.2. LB/iN (PER../NCH. 0F. c/NC//MMER&dC G 1
1 QASKEE _SE8Z~/NCy ZOMDLT QASJ_ CASE /;f PAGE_.33_G C = 2_h7E NcHG 1
E.
. lhaD/$/cNE'
..__ q.
\\
7 L
b..=._h.O_._idenes -
o 7
A 4
L
- 1
]
'4, = 4/2 = 10.33fo._1, T-9 __
'm.= 5.5 Cuningss wh
~-
$ = OAI5 irtent s.
.._ QASKGT PffloAD:
1.dcy = W M /'n' Q = lalo 0 Lof}N Y=l0,000 P${
WA1 = l./lAGEA OF THE Two Nvi, Mp Wm.t I
t 2
l Vm,=
w G+2nfgm tT = 372;l75 tss.
I
+
J l O
'[
by',= n t q y = 485,101 te s.
1 723e.
l.5-of 50 8eport No. ADSR-Si G'
openarian.$rnesses g ippet RADws N :
j
_$b =2.375idcHES 1
Mz, = M e 1-Ma,,;-= - + b -14 L
- (o)82.7 m. Lss
. s &Jes 9=o
-b N
~~ I,8 54,8.. irJ L 85 g
_87 74 g
l
=. g m = ssrs.s ei e,
g,
_ fr =
.M
-lf 73.0 Pd 4
q=0
(
h opexnring Arnesses gr OlnG2 RnDks k' :
_Sa.= 2.375 idcneS Q,-.=. LUr a, (Lg_. caLe)4.qu.,(L:
=.4,880.8 is. tas Ce I-g g
=5)41.6 P$i G
M
-. q
=
k E
o o
1
... q
=>Mz, G
= \\,557. 6 P.Si -
]
e.
.t. h. 3 << - g) psa.u.v
]
ua 2%
o 1
i
Ib _ of 60 f G.3 0.
g Repc4 No, aosa-al_
GASKET.SE87$MG LOAb
.67RESSE S
/]7~ lNMC/l RAD US "b#
h Y -2.375i&cHCS b
4
___. Mg
. = -4 g 4 = -5,328S
/a.ess I
'~
4 bMS
=.-1,598.7 ist. zas
..M7
=
}
4
.... G'g' S
..M g
_=.~5,loGb.A.. PSl A
9
(
9 h
. Q
.z
.... = I; LOO,la 93l
~
PS
_ _ _. _..Q's = 0 __...
k.
GR4kET JEAl~tdCy 40Ab,STRES$CS
/?T THE 007tK RADiue "a '
..k = 2.l')5 i4CHC5
._-. _.._Mg
.= h)c, cvq (L
=I4,408.7 !N-LB5 3
j Mr
=QM
= 4,3 2 2.co. 1" ' ' 1 a
4 aa
/#
g g
_1 M.. =.19;14 5.1. __F 5/
j
.G-
.. =
g'
'4 Q
q O
]
__.. _ _6F
= J. Mg
.= 5,743.5. re/
4 4
]
= _L M bc
= l,520,1 l>s 4
t.L E s
9 _
1 1
j l7 o i 50 fogt
_7 Reporf No. ADSR-9I N.)
SEl.5MI C LCAh
,$mESSE5 CA$E 21 PAGE 3
4 68
~
-2.375 lacucs -
l m3 U =2:515 it cMGS J
g 1
9 Y
b, 0.= 10.33Co (Hcuss 3
-+- 1*b
)
b = (o.O 5t/CHES I
b/a.=0.58
... Wrigar of VALVE frar7uRE ABcvf" BosHEr N'scx : 4/=M9I.9 as' L
1
.C. 4 n
a n
u a
u 46.5 spcneg
]
.gv= 3.0; g. 3.o ;
p= Y 3+ 3 e 4.24 (1$ - (4.24)(16 5 )(209I.9 ) = 412,439 In Las
}
}
- C.Q. t G)
Af b/ DER Ml"S "b "
EN
=
s =5,857,5 Psi n
( )y f =.0.828 id1ERPdAD FROM CASE 2i's TA BLG w
I RT Ot/ tee /AD!bS "a "
. E ' = f 'Ec M S I
N ee
- 3,400.9, PSl.
l tco = b l
Summngy of
.sreisses :
BONNer Neck OPERATSCWAL {SfiSMt c 4 Asker _ SEATING
\\
E = Sqq r =lis76.sl4l58s1.5l= \\\\2,A34.1l Psi oJ; =-5%6.A PSI g
q l
Q =.~l173.0 PSI q,.== -l700.6 Psl Q = o PSt Q = 0 Psi 1
Q= R,+. Q -
s\\9I.8, + 3400.1fl 6592.0 psi 6~ = Iq,I45.l psl q
9 = 1557.5 Psi 6~
= 5,743.5 PSI 7
{
Q=1256.9gsi 6~g = l,520 lPoi
1 P's L6_ d so Report No, ADSR-S)
V Plo.te. Consk.ds:
eera; gam sea j
C"---
3 C=
0.3 315 0.40G5.._
5 5
5
_.C.g=_
I + Y +[l' Y)(g )2 c.
3
.C3=
0.7679 0.7154 j
oo d Conshis :. -Po r ope re.-hn3
=- conddions 4,= b ler both pressure.
]
_ _.... c.n d opero.+ ors thrust loo.dmq
..for _psket seo.4-ing do = $
~,
(]
L*
2 k3 L[=0.061G o.o209$
6 g b-5 *g r. 4,)j i
._ L = 0.2478.._ _.
]
Lo =.4
.. :F-Il'I'E a~
~..O.1758 _.
3 g=.. I[_ a _- 4 I
.__ L 7 _ ___Lg =_n.o_o_qG u_ /a 4,
s g
.Lg {;
l._ Q E--- -
2 I _ K -' b4 ; ) + ' I a q l + (l+ 9)M -
~
I b
g a/
9 g
._...L
=.O.0674-
.._.. N q
]
I
~
~
l
_-.une.g h8h
I Page N
of 50 Calculation No. ADSR-3)
YOXE SEISMIC STRESS SYMBOLS P
= Design Pressure A
= Cross-Sectional Area of Section (other than Bolting)
A
= Cross-Sectional Area per Bolt y
C
= Distance from Neutral Axis to Outer Fiber D
= Seat Bore Diameter d
= Stem Diameter 1
F
= Direct or Operational Force o
F,,
= Vertical Seismic Force F, g
= Horizontal Seismic Force j
G,
= Horizontal Seismic Acceleration G
= Vertical Seismic Acceleration v
= Moment of Inertia b
= Tipping Moment Ann for Bolting
\\U M
= Vertical Seismic Moment sv M
= Horizontal Seismic Moment sg 6P
= Maximum Pressure Differential W.r
= Total Weight of Components Above Section Y
= Center of Gravity of Combined Components Z
= Section Modulus p
= Coefficient of Friction x
= Seating Angle + Friction Angle O
= Seating Angle 4
= Stress from Direct Force Go
= Stress from Direct Moment 6v
= Stress from Vertical Seismic Force b,
= Stress from Horizontal ' Seismic Force 6
= Stress from Structure Analysis t
C~r
= Total Resultant Stress l
S y
a
= Allowable Stress. ASME Section III. Table I-7 I
i
Page 20 of So e
,- j Calculation No.
A Dsc -3l
\\
)
ORIENTATI0:1 di
SUMMARY
OF RESULTAt1T STRESS 1
SECTION TOTAL RESULTANT STRESS (6.,. ) psi 0 -A
"[e. t 9,330 C-CYdh.I23 27,(o04 I
tM*f*-
2 s,i74 3
1 1
x,
'] ['
FREE BODY DIAGRAM SHOWING THREE DIMENSIONAL SEISMIC, y
DEAD WEIGHT AND OPERATIONAL LOADS I
x g
F, q O,}
F, -
C. G.
s,
=
y Fs v v
u, r
I It has been determined that the above orientation results in the greatest stress.
1
I Page 2l of 50
(#]
Calcuiation tio. A DSR-31
-va ORIENTATION #2 j
SUPl%RYOFRESULTANTSTRhSS I
SECTI0tt TOTAL RESULTANT STRESS (6. ) psi D-D Yoggk%
.,373 I I I ,A, t ( FREE BODY DIAGRAM SHOWING THREE DIMENSIONAL' SEISMIC, DEAD WEIGHT AND OPERATIONAL LOADS E x Y L N u,'F-C. G. r f^ ( n 1r h Ysv Y s, l I w x I l It has been determined that the above orientation results in the greatest stress. I 1
3 b "i Page 21 of 50 ORIENTATI0M di Calculation flo. Aose.g; P E F h sg 9 V. x / p'"' S W v 7 j - s D i X / 3 N g V y V Cx Ot g i E ,I v( y k k , _ _ = _, 3
w, w I P25e 29 ai 50 t'~0 ORtE:trnic:t iz calc:ia ::n :;o, po,q.3, \\sA y I p w r {su x,A *' R* f %-(x O 3 1 E 6 [ D y C {a'1 s v i N h ) I. A s Y O h '(% y c 3 ) /. y ) A g w - y E
- q S m
- ::,'.:: c:::,s
3 Page
- 24 of 50
,f] Calculation tio. A DS 2-31 J 1 CROSS SECTIO!!AL PROPERTIES I j Y-ab i f1 L f 1 3* ((((54)x R* $k ) 3 0 X x 3 Y Y FIG. A FIG. B J In Radians where d = 3 3 ( Except in Trig. Functions 0.66666 (R - r ) Sin 8 (R2 - r2) A f' f in Radians Except in Trig. Functions VAR. FIG. A (REF. 6) VAR. FIG. 8 (REF. 4) R r' [n 4] -sinJcos7 [fn 4] 4 2 y+SinJcos) -Ad Point 1 Point 1 C1 R Sin y C1 RCosy-d h [In.] [In.] Point 2 Point 2 C2 r Sin y C2 rCasp-d H [In.] [In.] I I/C 2 I/C [In.3] [In.3] [g,2)
- 2) ( R "" )
,23 2 2 J (R -r ) (TwoSegments) (OneSegment)
I Page 25 of _ _ So Calculation tio. _ A Dsp -31 1 CROSS SECTIONAL PROPERTIES 1 Y Y I 1 1 I t 2 H hg 2 1 y X H I ] n u
- b 3
4 g Y Y FIG. C FIG. 0 7- ~ VAR. FIG. C ( REF. E) VAR. FIG. D (REF. 9) Point 1 3 3 h (B+b-C )3 +(C )3(H)-(Cj-B)3(H-h) I -y BH /6+bh /6 y j h [In.4] [In. ] j ~ Point 1 Point 2 C1 H/2 I ~/ f (C2)3+(B+b-C2)3(H)-(b-C2)3(H-h) Y h [In.] [In.4] Point 2 Point I g2(H-h)+h(B+b)2~ h/2 C1 2A C2 1 [In.] [In.] Z Po nt 2 ~ g2%WBM2 f [In.3) I/C 2 (B+b)- 3 gg, A 1 [In.2] 2BH+2bh g [In.3] I/C 1 (TwoSegments) A BH @ [In.2) (One Segme.nt) i
Page 2(o of 30 fa Calculation tio. A Ds p.31 p k / I CROSS SECTIONAL PROPERTIES h Y Y lX N X x h b + DL Dj 3, Y Y FIG. E FIG. F m (__j \\ IL VAR. FIG. E (REF. 8) FIG. F (REF. 8) g 4j h(D-0)+bh/6 h(D-Of). 4 3 x-x or O 0 /2 DI' [In ] 0 O [In.3] I/C I/C g,2) (w/4)(Of-D)+2bh (w/4)(Dh-D ) 2 2 Y-("/64) (D -D ) + O CIn. hb +(2bh D 2 O +b 6 2 2 I 1.
l l l i m ah y2! n o, grEa 2. hS. U r 1 d n F a +( ~ j t y G I s F ih d 1 ht de S h SER TS l +;( a T E S t 1 E Y l y i Y G G I I d F l i ah E l i O T SS S d E A R n {} T a S J-I w TS E G t-( L 1 I l l F O M Y T G S I T F N i D I O 1 F O 5 P C = 2 G I l I F l 52 Y Y TN s L.y I O t P E 5 1 = 1 t y y Y B 5 j A t G I Y F s Y ( u i a 1 x da
1 Page 28 of 60 ,e- ] Calculation No. Ana,p.3l 'N PROPERTIES TABLE @ Pt.#l SEC. A-A SEC. C.- C SEC. C-C. SEC. E-E (SEC. j Cescription: Lescription: Gescrip; ion: Gescription: escription j Bowwe.4 'foke les yokeleg 'foke pide. nee.% boHom strue.ius shve.ture. FIG. F FIG. C FIG. D FIG. F F G. p, 8.00 B,0.7s o B = 0. 75 0 0,.16.000o y,.j$$ D," 4.7g) H ,5 Df 3.7500
- k. o,75o h- 0. 750
= = 6.2 5 g f:(0.50 A s,29.358 I -x 175.4139
- 34. 512.G
/ \\ x tv-v 5.3525 3907.2803 l \\ j c 4.0000 S.2500 0 8604 8.000 / \\- 7 43,8535 10.6193 6.2207 400.9099 / \\ / l A 32.3l28 13.6875 (o.8438 19 0.0171 / \\ >I ut. 2091.91 1903.62 1903.G2 (560.00 / \\ 7 46AG 36.77 30.77 9.30 f \\ b D U D E 1
Page 29 of 5d Calculation No. A 052-3/ PROPERTIES TABLE Pt.#2 SEC. D-D SEC. D - O SEC. E-E \\SEC. SEC. / Cescription: Eescription:
== Description:== L>scription: Lescriptico 1 yoke. lea yoke. le.g yoke, pkhe b'e shvd ure. shudom FIG. _C FIG. D FIG. F FIG. FIG. j S= 0,75 8 0.75 0 = 16.0 86..s H: G.5 o b= 3.875 b e 3.875 D,: 3.75 j h = 0,75 h
- 0.75
~ 6.25 I A=l0.5 segg,358 / h, = 29.281 / ) I -x
- 34. G005
/ \\ x ty-y IS. G o2 1192o7.2803 1 / \\ l C 0.375' 3.3803 8.o00 / \\ z
- 92. 2 G79 4.0168 400 9099
/ \\ em A 15.5625 7 7813 190.0171 / \\ L-_N _ut. 1673.99 lb 73.99 ISGo.bb / \\ N 7 lbA3 lb. A3 9.30 / \\ l 11 11 11 Il D I o y I y 1
I ORIE.17ATICN 41 Page 30 af 50 Calcuiacicn 30. _A DS R.3I RISL*L7 KIT SEIS:iI: STRISS FOR SECTIcn A-A bonnd nee.h I Ceed Veient snd Yeatical Seismie L:ad: y 01 rect Mccent: W:? = Msg = 97,190.1 in-1b. m Direct Stress: MFD /I"90" -2;2Ib 2 PSI Verciesl Seismic L:sd: Gy= 3.00 Vertical Seismic Forca: W:Gy = F y = A275.7 lb. 3 Vertical Seismic Mc=ent:FSVI"MSV = 241,570.2 in-lb. ] My/I=Gy= fo;(o48.7_ PSI Vertical Seismic Stress: 3, l Ceerstional and Heri: ental feismic Lead (F g ) 3 87,755.3 lb. g Direct Forca: FD-F /A "$0"2;715.8 - PSI Direct Stress: D 3.00 g Hori: ental Seismic Lead: G3= Hori::ntal Seismic Force: W Gg3=FSH) = 6,275.7.lb ]j( 3g /A = U~SH) = 194.2_ PSI Hori::ntal Seismic Stress: F u { H'or-i: ental Seismic Lead (FSH ) g Frem Structure Analysis Pg. - T /4 PSI SH2 g Totsi strass MD + ISV + 70 + ISH + SH "7= 330.4 PSI 7 U 2(o;250 Allowable Stress:
- SA = 1.5 Sa PSI
- Sa = l7 500 For S A-% Gr Wc B at - 225
'F I I 1
Pa e 31 of 50 Ca culacion No. Apsa-3l STRUCTURE ANALYSIS ASSUMPTIONS:- 1. Structure consist of rigid supports with no rotation o-displacements. 2. The influence of different moment of inertia is taken care of by using the stiffness coefficient K. It is assumed that the moment of inertia of any member remains constant. SYMBOLS:- A. B. C. D = Special Points of the Frame. I, Ig = Homent of Inertia. K = Reciprocal of Stiffness Coefficients. H.M M = Bending Homents. ag e N o g ,7-H.H = Horizontal Reactions. 3 e \\ NJ V.V = Vertical Reactions. g o b = Dimensionless Length = m/t N = Denominator in the Formulus for Determining g Statically Indeterminate Quantities. K = Constant from " Rigid Frame Formulas" g A. Kleinlagel Pg. 272. Il z s i e. a g e ~m ~ g n ' y.*f h y I, 7. i A _4 o A I i"M a d_e 4 l jD
- p. o y,
a A m 7m 9 ( x! 1
] I Page 32, of FO calculauon No. Ansa-3) OR!EtTATION di STRUCTURE ANALYSIS:- ] (1/1 ) (S/m) K 2 j 2814.fo401 (m/t) "A - 0.8i952 K(1+A)+A(1+K) .K2 GIG 5.992 2 2 2(1+A+A)g,x2 10974.8906
- N2 5 710. 8co w,c FSH2 n
g 6.2207 z SECTI0il __ C - C. ) BENDING MOMENT:- 397 ih lK -F 2 7.H - a,. 279(oo.85 in-1b. .n 2 STRESS:- (j i T 4494.83 PSI sfz. 3g SECTION N/A BENDING MOMENT:- p FSH2h 1K(2+%) t AJ "M ""Mc. in-lb. 2H2 h STRESS:- H/z C sH P$! 2 D I 5 xJ 1
Pa e 3R of Sb .Ca culatton 40. A ps c -3/ Y ORIENTATION 82 I @ P t. # 2 STRUCTURE ANALYSIS:- Il07. 59// (1/1)(S/m) x 2 1 l (m/L) .A-0.5952 K(1+A)+A(1+K) =K2 - 2426.7463 2(1+ A + ;\\ )g, y2 "N2 2 43Ib'9492 wr-IG79.99 g 502l 97 wtay. FSV ]
- 4. 0f fo8 z
SECTION N /A BENDING MOMENT:- k (W+Fsy) h AK: 1 i "M " "Hd in-lb. = a M/Z
T SV
~~ PS! SECTION D-D BENDING MOMENT - hkK(2+A) (W + FSV) i 3883 W _T r' a 2N -- m g T STRESS:- M/Z =I 9Isl8,50_PS! = $y 0 I o
3 l ORIE.17A7::n di Page 34 of_So g py,4; calcuia:1cn ao. _.g ow.y E!!L'L7All? !!!!MIC 57RE!3 FL.1 !!c7:ct C-C ycke Ic3 boitom, Cetd Voicht and Ver:1:21 feis ri ' :.i d: i Direct Mcment: W:7 MF0 = fo999fo.l in-lb. Direct Stress: Mp:/I = C~vo = fos 91.4 ps: Vertical Seismic L:ad: Gy=_ .9.00 Vertical faismic For:n: W:Gy = FSV
- 5710.9
_'b. Vertical Seismic Mcment:FsyT = Msy = 3099881 in-lb. j Vertical Seismic Stress: M y/I = 0$y = _ l9774,3 _ ps! 5 j oeeritional and Hori: ental reismic tead (Fsg ) I g' Otruct Foren: to _87755.9 lb. l Fe/A = UfD
- M ll.9 PSI IJ1 rte: Stress:
g Hori::ntal Seismic L:ad: Ga = 3.00 Hori: ental Seismic Force: W Ggd=FSH) = -5710.9 lb Hori::ntal Seismic Stress: Fsg1/A = ($Hj = d l 7,'2 PSI { Hori:entalfoismicLead(Fg) l Frem Structuro Analysis Pg. 3 2 C~sg 4494. PSI 2 3 Tots 1 f tress
- V h* (TFD
- V5H*{Vf
- C*T* AI00A'O PSI sV 5H i a Allowable Stress:
MA = 1,5 Sa - 26250 pst J
- n. = 17;500 For S A -Qifo _e wc8 at too
'F G
l g l OR!!.'1TAitCn q Pa e 35 of So Ca culauon No. _Aose-wi au RCSL'LTANT SE!5MIC STRESS FCA SECT!0tl D-D I foke. 100 hp ) w l Heri: ental softnic Le g (,$g,) Horizontal Seismic t. cad: GH = 3.00 ] Horizontal Seismic Force: WGg H,, = FSH2 S0'12.0 lb. = l Horizental Seismic Mcment: FSH2 = _3 2S 7 4.1 in-lb. Y*NSH2 /Hgg/z.(H 5(o7.7 PSI Horizontal Seismic Stress: 2 l 0:erations1 and Heri: ental seitmic t.ead (Fsg ) I Direct Force: F 87755.3 1b. D F /A " $D " 3;fo38 A PSI Direct stress: D Horizontal Seismic Load: Ga - - 3. b0 Horizontal Seismic Force: WGgg=FSH = 5d2,0 lb. ( Horizontal Seismic Stress: Fgg /A U"5H) = 3 2 2."7 PS! 7 J $84d W410ht 4Md Vertical $41191C (04d!, m Frem Structure Analysis Pg. 33 .$y =9668.5_ PSI Tot 31 Stratt [ khkFD+Ff+[$vf a d~t
- II;372.9 5H Ps!
Allowable Stross:
- 5A = 1.5 Sa " 2b;250 P5!
- Sa = 17; 500 For S A Mc Gr WO. 6 at _ 100
- F 2
e
l 1 Page_34 of 50 Calculation No. A D SD-3) i Motor Uni t-To-Yeke B_oltino S tresse_t j
- 8 Bolt Unit b,,
= E a q b) 9 a b~ l 8 -b, d ML-l l4 y l l 5 1 e a i 1 f K-2 1( b, a - +., e 4
- Fs,,,'
b, Fo3 Fi r, \\ b __ 3 ,t _,o N b. + 3 9 u 4 f _X j }
- Et ther Golt 7. 6, or 5 will be the Y
r highest stressed bolt. s w, l 1 J r. a @ pad Wetabt and Vertical Seismic Loadt
- Assume Leading Attempts Rotation about x-n Axis.
I i ( F5 acts on Bolt 5 y I r' r# J t}s t'4 g ) :,' g I4 acts on Bolts 4 & 6 iQ y Hiv b, J F3 acts on Bolts 3 & 7 ~ b ~. l F2 acts on Bolts 2 & 8 1+3 q b e Fj acts on Bolt 1 kg = ~
E P' age 37 of 50 Calculation No. _A D3 2-3l MOTOR UNIT-TO-YOKE BOLTIrlG B } UI ENx-x = F b +F b +F b +F b +Fjbj 55 44 33 22 y (2)6.,k,h,E,/_5 } b1 b2 b3 b4 b5 where g [ = h = bolt deflection i The length (L), Area '(A)' and modulus of elasticity (E) are the same for all 8 bolts; thus: 'g (3) F1 F2 F3 F4 F5 W E*Si"B "Si 4 3 Putting eq. (1) in terms of F S j MFD or [b 2 2 2 2) 5 b4 b3 b2 b3 m (4) gV =F5 i + 5 +b (for Bolt 5) +b b5 + (b5 b5 5 / Putting eg. (1) in terms of F 4 M [b 2 b2 b2 (5) FD or b2 b)2 (for Bolts 4 & 6) 5 4 3 =F 2 MSV 4 + (b4 b +b +Q+b 4 4 4 j f Putting eq. (1) in tems of F3 N (6) FD or, p ) 3 + + + - + (for Bolts 3 & 7) Direct Moment: WY* MFD " I4: 508 in-1b T Direct Stress: l (4) MFD b5 (b 2+b 2)+2(b 2+b 2+b4) N 2 5 j 2 3 r (5) FD I M b4 \\ ( (b5 +bj )+2(b2 +b3 +b4) MM4&O =MM N' 2 2 2 (6} 3 2 2 (Bolts 3 & 7) E T (b5 +bj )+2(b2 +b3 +b4 )) = MD = _354.8 3 Psl y ( 9 (Use Highest Stress) 4
Page 38 of 50 MOTOR UNIT-TO-YOKE BOLTING Calculation No. f_pE) (,,) WGT V = Fey (o80 lb Vertical Seismic Force: = M y = 43; 5 24 5'artical Seismic Moment: Fy 3 in-1b 3 Vertical Seismic Stress: N b (b 2+b 2)+2(b 2+b 2+b 2) T 5 1 2 3 4 ) ( b4 2 (Bo m 4 & 6) b = %.G = AT m (b2+bj)+2(b2+b2+b2)j 5 2 3 4 [ 3 I (6) MSV I = l,0(o4.48 PSI (Bolts 3 & 7) SV = AT .((b2+b2)+2(b2+b2+b2)/ 5 j 2 3 4 (Use Highest Stress) @ Operational and Horizontal Seismic Load (F g)): 3 Direct Force: FD= 87.755.3 lb Direct Stress: ' M;743.32 PSI FD 8AT D" i t Horizontal Seismic Force: WOTH=FSH3 j D f Horizontal Seismic Stress: F g) = g-SH) = 1,2(o6.29 PSI I 3 @ Horizontal Seismic Load (FSH } 2
- Assume load attempts rotation about y-y axis.
~N N F acts on Bolt 7 p y F \\ 10 io 9 8 F acts on Bolts 6 & 8 f t., M s,,, g 1 , r 7 F acts on Bolts 1 & 5 yy 8 F acts on Bolts 2 & 4 7 7 i g3 F acts on Bolt 3 6 h 7 m 3 b, iI \\
Page 39 of 60 I; Calculation No. p osa-]) V N0 TOR UNIT-TO-YOKE BOLTING (7) 1 M.y
- MSH2 y
=F b 10 10+Fgbg+ Fab +F b +F b 8 77 66 (8) 10 d9 [8 [7 d6 010 bg
- b8 D7 *b6 where g,
(9) F F F F F 10 9 8 7 6 bl0 k k k k putting eq. (7) in tems of F 10 (10) gSH =Fa 0 ,b b 2 3 + + (f r Bolt 7) 0 putting eq. (7) in tems of F9 2 2 2 2 (11) Msg = Fg bjo bg2 b8 b7 b6 2 (for Bolts 6 & 8) ( bg bg bg bg bg / putting eq. (7) in tems of F \\ 8
- i (12)
M F + + + + SH2 8 (for Bolts 1 & 5) Horizontal Seismic Force WGTH=FSH2 " 4)(o 8 lb Horizontal Seismic Moment: F3H2 = 49;5.24 "MSH in-1b 2 Horizontal Seismic Stress: 9 (10) H2 bl0 (Bolt 7) I T !;995.90 _ PSI ( (bl02 +b 2)+2(b 2+b = SH2 7 )/ 2 6 g 8 (ll) (Bolts 6&8) SH AT ( (b I;723'l5 - PSI = 24 2 )+2 @g2 4 2 4 2)/ 2 10 6 8 7 6)+2(bg+bg+b2)/ (Bolts l&S) I
- 064.48 PSI AT
( (b10 +b 2 2 2 SH2 2 7 (Use Highest Stress) L
Page 40 of 50 M_0_ TOR UNIT-TO-YOKE BOLTING i ~ @ Maximum Total Stress: g 'd.D+ k FD+ ISH + SH2 T - 25,173.9 PSI Bolt h is Highest Stressed v w4 @ A11evable Stress: for A-193 B-7 25,000 PSI !4 S 3 WT-1560 0 lb bi be - I.00 in. ,N 9.3 in. ba = b7= 3.05 in. y = AT- 0.462 In.2 ba = ba - 8.00 in. t FD* b7 755.3 lb b4 - bg - 12.9 5 in. 3 a= 3.00 v bs b o-15.0 0 in. i c-3.00 f a + ( 1 I c i l I i l j 9 i m
Page 4l of So Calculacion No. ADSR-31 ] FREQUENCY ANALYSIS Beam Orientation - 4 Part ASSCMPTIONS:- 1. The yoke or the yoke section of the bonnet will be the piece subjected to the frecuency analysis; therefore, the valve bonnet or the lower bonnet in the bonnet-yoke ccmoination will be considered to be a rigid foundation. 2. The structure will be considered a simple single degree of freedom syste.v. 3. The moment of inertia will not be constant throughout the yoke leg. The yoke leg will be dividea into 4 equal sections each with its characteristic mcment of inertia (explained below). 4. The effect of damping on '.he response of the structure will be considered to be negligible and therefore the-structure will be considered. to hava no damping. l E. Igg >> Ig or T32 22 ll UP I PI 6. Mass of the frame or beam is neglected. 7. Deformation dt.e to tension and ccmpression are neglected. I SYMBOLS:- r = Modulus of eTasticity (PSI) 9 = Acceleration due to. gravity (In/Sec) I 44 = The moment of inertia at the yoke ~ top and assumed constant one-fourth of the way dcwn the yoke Teg. a I = The moment of inertia down one-fourth from the tcp of the yoke leg 33, and assumed constant to the mid point of the yoke leg. I2Z = The moment of inertia at the yoke leg mid po' int and assumed constant one-fourth of the way down frem the mid point. Ijj = The moment.of inertia down three-fourths frem the yoke leg top and assumed constant down to the yoke leg bottom. 155 = Moment of inertia of yoke plate. '(In.') W = Weight of motor operator, gaar unit, or handwheel (LS.) op K = Spring constant (lb/in.) g 4a = Height of structure frem yoke bottcm to yoke plate (in.) L=4a+c = Length from yoke bottcm to the center of gravity of the operator (in.) f = Natural frequency of operator and yoke system (CFS) n ,s . _ a _ 1. _ l, _ p.ci,i.d b, _. - <,> '\\
pac e 42 c5 56 Ci C.A L C.V L t.-~lOM AJ o, A DS R-3) 32AM o R i e v r 4 7 / o d - 4 f A# [ / vALvr v o i<. e t t. c, / t a e.,r e n,~- a + E + E Q U At
- FA2ts, i
rg a e u 'y ( Assums 1 ;'S c 5 T 'P R_) 68 O Og g. ") ? In9 -a M. In i p g 13' T&4 TSF t t. r / F E D C B A I l: Q. Q. =, a. O. C. IEFLEC.TioW y X %N og A c o-C.
- */ sr.,
2.S 25._ e= tz e=n 77 g, n
- a. v a
~. V i i l
Ppc.s 43 oF So IJ C ALc y L. A'TICAJ MO. \\~ ads R-31 EE.AM o R i e v r AT to u - 1 Pac r-r '- SA" O b' f = 5. Y ( Ae E C) [s = 51. P c a; .[z P 2. 3 P e a_ P g E_g (,3/ -c._.g z.- -st c ss 3 IE St E -~n. E -I z u. -;-l 19-k, 3 Pa ' //Qf fx** ) O-EI, E I,, 3 /\\.1EI, / i ~ c_ pt 3 a. c_ -2.a.' f a. c + l e a
- i re. c -17 E
, a l 0 c + 74 a.'
- ^~
~ 62 L I \\ In 4 r. T-s i u <v aPea.r-P& . n P c a. + 3 Pa.' 2 Pe r -r.- S~ Pa.'~ c., :. 5 (. A t E. A) i a = +- H ahqg
- , g, = 3,;,
g ; r,,
- Pca. + ~7Pa.'-
AEf n i [ I pc. F 4c*+3ac cc' q c c c u ra c. g c % u /c ' g*q_ GE =* z n ku r,, i l t
l -.~ P ME W o p _ 50 C M.e.utA no.u m, E O R-t E u r AT t a y _4 gg [r :: P'
- ~ ^ '"'C dCI 14' +iru - sc z t
t 272 -3c21 4 c,744 %,e 4 7 GQ I a s _'n z zu dr = 0.033153 fa. $# dir ( f Vr / w,,, = g g _ ,gg where g, _ %,. dr 4s =. 33.0 c es t We 15(oo.o ts l h ' 34.51% su* i' a = 2_8.675 xlo' Ps t Ir. t = 34,594G i xi. + ,l
- 3. =
3 f (,, ig, c,- Ts2 = 34.5565 nn. L = 73gog ,y, A A
- SA.5785 IH
- C
= l0,80 m, ^ l 9 I 1 'i j i l i i l
} Page 45 of 30 Calculation No. 40stz-3), FRE00ENCY ANALYSIS Frame Orientation - 4 Part ASSUMPTIONS:- 1. The' yoke or the yoke section of the bonnet will be the piece subjected to the f.equency analysis; therefore, the valve bonnet or the lower bonnet in the bonnet-yoke combination will be considered to be a rigid foundation. 2. The structure will be considered a simple single degree of freedom system. 3. The moment of inertia will not be constant throughout the yoke leg. The yoke leg will be divided into 4 equal sections eac!i with its characteristic moment of inertia (explained below). 4. The effect of damping on the response of the structure will be considered to be negligible and therefore the structure will be considered to have no damping. 5. Mass of the frame or beam is neglected. 6. Deformation due to tension and compression are neglected. ( SYMBOLS:- E = Modulus of elasticity (PSI) o g = Acceleration due to gravity (In/Sec) j I44 = The moment of inertia at the yoke top and assumed constant one-fourth of the way down the yoke leg. i t I33 = The moment of inertia down one-fourth from the top of the yoke leg and assumed constant to the mid point of the yoke leg. I22 = The moment of inertia at the yoke leg mid point and assumed constant one-fourth of the way down from the mid point. Ijj = The moment of inertia down three-fourths from the yoke leg top and assumed constant down to the yoke leg bottom. W = Weight of motor operator, gear unit, or handwheel (LB.) ap K = Spring constant (lb/in.) t i 4c = Height of structure from yoke bottom to yoke plate (in.) f = Natural frequency of operator and yoke system (CPS) n f = Minimum acceptable natural frequency specified by customer (CPS) s L
PA sE 4(o og So c A :. : v :. A s w M o. 'l A DSR -31 / FREQUEMCy Ap A t v 5 is FR A M E o 2. i E. u r A-r o u ( Pf 2 T AREA McMEMT NETHob. 7*# 6 Y A L V E. ST R v CT U R G. IS B i? o g g g / 7o Eo v A ESuAL 9 ARTS L z n ca Ps War p -r /
- 7.,,
',4 1 1,, ' 0 ,4 / -pt PL : 4Pc ( Nosaa-D A G it At\\ s 1
- u.,.
u,, s O EI 3 ec zec !.s o cy i I.,1 Z :n ' a _PC i EI., i T l l e 1 I 1 1
i FA ca 47 o p-go (} C A t. c u t a, n o w ,v a 7 NAI _ RAME o n se x; : 4 ; ia a. 4 p g a ;- 1A' C a-t Pt. O E A - o -- O i 25 N O E A. o :. j N, c_ ( E +.f.. h. ' p c,1 N t. 33
- gj 1,a 4 q 1
fC
- 2,, P C p7 1 P c' 33 k
T, L L 3Pc'4 i. Pt. J. ii ) S C L v F. 7 0 ft H, l T -h,
- l 4
1-I) h, = r,, 1, =,,
- a. -. x 1
.t i 2. -4g I I 'I. i 3 n t t.
- 0) dd 2 (AC6 A) (,5 )
_'.Sc f c '. ~2.5
- 2) E I-M,d
~_L. 3_.. f__,.2. ' _P c '. i c. P: a L3 7 3 5
- .T 33 3 g
zg 2., 2. L-9 2 ti n l w h , FC . ~ +, .-+ b AT h },, LL ag a de M M N k e g _u In I,.,_ r,, 7 23, I I 3 l z u. ii h es r#e DE FLtcTiosV F o rt. ouE FEAMv L i: $ i r h 'f CML T " 6 Lt. G o tt 7 y c z < -u 2. I I i i
PM. a 48 or 5'o C A L t v t AT i o u W. _ f IL A M E O L IE si T A Tto+) t' h c T '. c. f "" '_ \\d, c ' [
- k,.*k,)
(L T* ~ S ' 1 1 /f 37 )j ss o 13 4 (-; . 2_. 2. r}., I,, 2,.
- ~
t 1 "*4 In 4. r, InAx - O. 0072,9(o 19-W /L,. - K < -213815. 79 "/> " E ]3Y/%e=.5,- S co.Go 8 c" .p3 - 33.0 cFS 1 ( W, e = l5G0.0 te I= 5.3525 r ^'- o 3B6 '*c' L s.
- G.9709
' " - + 28.fo75 x 10'.P5 ' In= 8.8740 1 "-
- E.
= b i-T%- II 0789 1"- 10.8 0 d c 1
] Report No. Ap32-3) Page 49ef 50 BIBLICGRAPHY 6 I i 1. ASME Boiler and Pressure Vessel Code, Section III, Nuclear i Power Plant Components, the American Society of Mechanical i Engineers, New York,1980 Winter 198R Addenda. 2. ASME Boiler and Pressure Vessel Code, Section VIII Pressure i Vessels, the American Society of Mechanical Engineer, New York,1980,Winkr'B2 Addenda. 3. J. E. Shigley, Mechanical Encineerino Desion, Second Edition, McGraw-Hill Book Company, New forx 1972. ) 4. R. J. Roark, Fomulas for Stress and Strain, Fourth Edition, McGraw-Hill Boon Company, New form 1965. 5. Handbook H28 (1969) Screw-Thread Standards for Federal Services, U.S. Department of Commerce, 1970. 6. O. W. Eshbach, Handbook of Encineering Fundamentals, Second Edition, Jonn Wiley & Sons, Inc., New form,1952. 7. Taylor Forge, Modern Flange Desien, Fifth Edition l Bulletin 502, Taylor Forge & Pipe Works, Illinois,1964. 8. E. Oberg and F. D. Jones, Machinery's Handbook,18th Edition, Industrial Press, Inc.,1969. 1 I ) -}}