ML20235J969

From kanterella
Revision as of 16:27, 20 March 2021 by StriderTol (talk | contribs) (StriderTol Bot change)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Rev 1 to, Irradiation Study of Boraflex Neutron Shielding Matls
ML20235J969
Person / Time
Site: Waterford Entergy icon.png
Issue date: 08/12/1981
From: James Anderson
BRAND INDUSTRIAL SERVICES, INC. (BISCO), EECBISCO
To:
Shared Package
ML20235J956 List:
References
NS-1-001, NS-1-001-R01, NS-1-1, NS-1-1-R1, TAC-53531, TAC-53532, NUDOCS 8710020181
Download: ML20235J969 (56)


Text

_ __,

&f9

%G< [~]

bisco BISCO PRODUCTS, INC.

l TECHNICAL REPORT 4

NO. NS-1-001 IRRADIATION STUDY OF BORAFLEX NEUTRON SHIELDING MATERIALS l

l i l I

DATE s-12-81 REVISION 1 eggoo2gggggjg73agea bisco products, Inc.

1 p PDR 1420 renaissance drive park ridge, illinois 60068 one of the brand compenten

C

'c- .g 4 =.

r l I-s e I a

p, i a

a 4 ,,

[,; REPORT 748-10-1 J IRRADIATION STUDY OF BORAFLEX NEUTRON SHIELDING MATERIALS l[f ORIGINAL: JULY 25, 1979

REVISION 1
AUGUST 12, 1981 i

(1 -

. 1 I

  1. ',
  • J l . .

i

.u

~'

Prepared by: ,

l J. S. Anderson Technical Director l [_ BsAND INDUSTRIAL SERVICES, INC. (BISCO)'

l

. I.,' July 25, 1979 l ,

J --

Revision 1: August 12, 1981 f

u,r p -

1 I ,i .

REPORT 748-10-1

, IRRADIATION STUDY OF BORAFLEX 1

NEUTRON SHIELDING MATERIALS i .'

il -

CONTENTS Section 1. Summary. . . . . . . . . . . . . . . . . . Page 1 Section 2. Test Program . . . . . . . . . . . . . . . Page 2 Section 3. Test Methods . . . . . . . . . . . . . .

. Page 5 Section 4. Low Rate Irradiation Test. . . . . . . . . Page.8 i

Section 5. High Rate Irradiation Program. . . . . . . Page 11 )

ri Section 6. Physical'& Hechanical Characteristics. . .,Page 15 ,

a Section 7. Attenuation. . . . . . . . . . . . . . . . Page 27 f

J-Section 6. Halogen Teachability' Analysis. . . . . . . Page 31 Section 9. Doron Teachability Analysis. . . . . . . . Page 33 j n I f..r S'ection 10. Residual. Activity. . . . . . . . . . . . . Page 35 l i Section 11. Gas Generation . . . . . . . . . . . . . . Page 39 1

Page 46

{-L.

Section 12. Appendix . . . . . . . . . . . . . . . . . .

l l

[(

T j

Report 748-10-1 July 25, 1979

  • / Pcga 1 of 46 SECTION 1

SUMMARY

A study of the effects of gamma irradiation in various

' environments on Boraflex has been initiated and is underway at the University of Michigan. This. report presents data showing 0

rads gamma that the exposure of Boraflex in air to 2.81 X 10 1 from a spent fuel source result.s in no significant physical Data is also presented changes nor in the generation of any gas.

11 rads gamma showing that irradiation to the level 1.03 X 10 .

with a substantial concurrent neutron flux in air, deionized l

water, and borated water environments causes some increase in During hardness and change of tensile strength of Boraflex.

that irradiation a certain amount of gas is generated but beyond

/ 10 the level of approximately 1 X 10 rads gamma that rate of gas generation does not exceed the rate observed when a sample container fille,d with borated or deionized water only is irradiated.

No evidence has been determined that indicates that any deterior-ation of Boraflex through a cumulativ'e irradiation in an excess 11 rads gamma occurs to effect the suitability of of 1 X 10 Boraflex as a neutron shielding material.

]

9

M

  • e Ruport 748-10-1 July 25, 1979 Page 2 of 46 SECTION 2 TEST PROGRAM i

A test program designed in cooperation with the University of Michigan was begun in November, 1978. That test program,is described in BISCO Procedure 748-10, titled "Irrad,iation Studies of Neutron Shielding Materials" and is intended to examine the effects of irradiation and environment on the chemical and physical properties of Boraflex heutron shielding material as well as on specific cohnponents of that material.

Two radiation sources were used in the testing program, bot.h ,

sources are associated with the Ford Nuclear Reactor in the Phoenix Memorial Laboratory at the University of Michigan, Ann 1 l

Arbor, Michigan. The test specimens evaluated in the program  !

were approximately 6" in length, .25" in width, and 0.100" thick, l

' and were cut to conform to an appropriate. ASTM tensile die con-figuration. Two such samples were separated by a thin aluminum f I

sheet and encased in an aluminum tube with an inside diameter of approximately .75" X 6.5" in length. That tube was then filled j

' with the selected environment, pressure tested for leaikage determination, and rigidly fixed in a holding device to assure j i

location of the samples in a accurately mapped region near the irradiation source.

I i

Each sample tube was individually linked to the pool surface I through a vent access pipe of thinwall aluminum tubing which in 1
r. turn is. attached to a distribution manifold system to allow ,

R2 port 748-10-1

, July 25, 1979 Page 3 of 46 accurate monitoring and sampling of gas evolution. For high irradiation rate studies samples were placed in available fuel positions in the core of the reactor which is a pool type, highly enriched uranium, light water moderated, cooled and heavy water reflected research reactor. The reactor has an output of approximately 2 megawatts thermal and was designed and supplied by Babcock & Wilcox Company. The low rate irradiation studies were l

performed in the spent fuel storage area located in the pool adjacent to the research reactor. All measurements and data generated from this test program were made at the University of Michigan by its staff personnel, except for the analysis of the environment solutions for boron and halogen content. Those solution. analyses were performed by Energy Research Group, Inc.,

~

Ann Arbor, Michigan, a certified' independent testing laboratory.

l Samples were subjected to the various levels of irradiation in each of three specific environments: A series of samples were tested in normal laboratory air which, when sealed in the tube, was approximately 21 c and 20% relative humidity. No special 1 attempt to modify or filter the air was made. A series of ,

samples were evaluated in deionized water conforming to the chemical criteria of normal BWR fuel pools. The deionized water was boiled prior to-injection into the sample container to eliminate the majority of the discolved and entrained gasses.

A sample series was evaluated in. borated water comprised of deionized water mixed with l>oric acid to . result in a concentration of I

_ _ _ _ _ _ _ . _ . . _ _ _ . _ _ _ _ _ _ . _ _ _ _ _ _ ______._____________.____.m___ _

Report 748-10-1 July 25, 1979 ,

Paga 4 of 46

\

l boron of approxLsately 2,000 parts per million, and consistent l

,', This l with the chemical criteria of normal PWR fuel pools.

solution was also boiled to remove dissolved and entrained a gases. .

)

For long term comparison,a sample series in each of the environ-ments is maintained in a background radiation area to allow an evaluation of the effects of the environment only as separate

'.i Such evaluation will from the environment / irradiation exposure.

l be made followin7 the final radiation exposure series, which will represent a cumulative 10,000 hours0 days <br />0 hours <br />0 weeks <br />0 months <br />.

t i

This report is designed to provide an interim source of information l 8 -

related to progress and data generated from the test program.

l It will be supplemented at intervals until such. time as the test  !

' program is complete and the final report is issued.

l D

0 4

e 0

0

?.

Report 748-10-1:-

July 25, 1979 7-Paga 5 of 46 L

I SECTION 3 s.

TEST METHODS i

Data generated for this test program has in each instance been-based on' nationally and/or internationally recognized standard test methods, or where'such methods are not applicable, on carefully designed and written procedures. Each of these-methods have been accumulated as a formal procedure of the testing agency and are in-l

) Specifically the'fol-cluded as part of the appendix of this report.

I, lowing procedures apply;

1. Hardness - Sample hardness was measured by ASTM procedure designation D2240 utilizing a Shore A. scale durometer gauge.
2. Dimensional Stability - Dimensional evaluation of each sample was made in accordance with-ASTM-designation D1042.
3. Specific Gravity.'- The specific gravity of samples.was determined by ASTM procedure designation D792. l
4. Tensile Strength - The tensile strength of samples was determined by ASTM procedure designation.D412 involving die size A or E as specified.
5. Boron content - Analysis of the environment solution for leachable boron content was made by submittal  !

of appropriate samples to an independent testing laboratory. Analysis was made by standard wet analytical techniques.

(

' Report 748-10-1 JMy 25,1979 Page 6 of 46  ;

b

)

6. Neutron Attenuation

- Transmission measurements on '

l samples were performed at the University of 1 Michigan using a single. silicone crystal .

neutron refractometer according to standard written test procedures.

i Gas Generation - The evaluation of evolved gas in terms 7.

of quantity, rate, and constituents involved '

a special collection and monitoring device fab-ricated by the University of Michigan and sub- f I

sequent standard gas-chromatographic evaluation j f

of the collected gas. The collection, system i

and analytical procedure are described in the University of Michigan written standard operating f

.i

]

procedure.

o

8. Halogen Content - The halogen content of the environment solution for the various test specimens was f I

determined by an independent laboratory evaluation, using standard neutron activation analytical techniques. i The residual activity of irradiated

- l

9. Residual Activity f

' samples was measured by germaniam-lithium  :

detectors and interpreted by computer nuclide

' identification programs referenced to National i Bureau of Standards mixed isotope gamma reference standards. The activation determination cor-responds to the University of Michigan standard written test procedure.

1 l ,

o

Gr Report 748-10-1 l

, July 25, 1979  !

Page 7 of 46 l In addition to the specific sample data procedures, gamma and neutron dose rate measurements at the various sample locations are made by standard University of Michigan operating procedures.

I The gamma dose rate was measuredw 'ith Reuter-Stokes RSG-12 ion chamber and neutron dose measurements were made in accordance w ASTM designation E261 which is a foil activation measurement technique.

1 i

h 1

i r

l

~I 3.

e 1

'l 1

Report 748-10-1 July 25, 1979 (

' Pcg3 8 cf 46 f

f SECTION 4 LOWRATEIRNADIATIONTEST Y

I A sample of Boraflex containing.40 wt.% baron carbide and selected from production batch 028 was irradiated to a cumulative 8

gamma dose of 2.81 X 10 rads in a normal air environment in the l spent fuel storage area at the University of Michigan, Ford Nuclear Reactor.

The irradiation history as presented in Table 1, n

indicates the sample received gamma irradiation at a rate of S.6 X 10 rads per hour with no measurable concurrent neutron \

f ,

radiation.

Table 2. lists specific measurements of pre-irradiated and post-

' irradiated physical characteristics and demonstrates that the a sample volume, density, and neutron attenuation characteristics remained virtually unchanged. A slight increase in hardness from 78 to 89 Shore A was detected with a corresponding increase in ,

No residual radio-lbs./sq.in.

tensile strength from 215 to 290

' activity of the irradiated sample was detected. The Boraflex sample was contained in such a fashion as to trap any evolved gasas; however no gas evolution was detected. A subjective visual

' ' examination of the sample after irradiation was made and no evidence of loss of physical or structural integrity nor any No tendancy towards cracking, crazing or crumbling was noted.

differences by visual examination could be detected between the pre and post irradiated samples.

I

~ . . . . . . .


~-_J

Report 748-10-1 TABLE I' July 25, 1979 r e P2g3 9 cf 46-IRRADIATION RISTTHtY 'l1 Sample-Identification Boraflex 028' _- 4 Boraflex 40 wt.4 B C_ ]

Sample Description' I Sample Environment' Air l

Irradiation Location NE Spent fuel l

5 5.6 X 10 Gamma dose rate (rads / hour)

NEUTRON FLUE (n/c /sec) i 0

' Thermal 40.55 eV '

0 0.55eV Epitherma141 kev 0 '

Fast >1.0 MeV 0

>2.9 HeV '

0

>3.3 MeV 0

>6.3 MeV 0

>8.7 MeV 501 Reactor Clock Time (hours) 2.81 X 10' Total Gama Dose (rad)

Integrated Neutron Dose (n/cm )

Thermal 40.55 eV 0 I

0.55eV 4 Epithermal (1.0 kev 0 Fast yl.0 MeV 0

>2.9 MeV 0 t

73.3 MeV 0 l - y6.'3 MeV o

>8.7 MeV 0 f

l L

? Report- 748-10-1

. July 25, 1979

, Pr.gs 10 of 46 TABLE 2 Physical Properties Sample Identification BORAFLEX 028 Sample Description BORAFLEX 40 wt. % B4C

/

Sample Environment Air ,

Total Gamma Dose (rad) 2.81 r 108 _

r Pre Irradiation Post Irradiation

.237 .242 width (lochtion 1) (in.)

width (Location 2) (in.) .240 .247

- thickness (loc. 1) (in.) .109 .105 thicknees (loc. 2) (in.) .110 .109 Weight 4.99847 5.00663 1.67345 1.68779

~j

.m Specific Gravity 78 89

-- Hardness (Shore A)

Tensile Strength (PSI) 215 290 Neutron Attenuation (.06eV) .d3006 .02984 s

I d.

Report 748-10-1 h July 25, 1979

, P ga 11 cf 46 SECTION 5 l

HIGH RATE IRRADIATION PROGRAM  ;

High rate gamma' irradiation exposure of the Boraflex sample series in each test environment has been made in the available fuel positions in the core of the research reactor at the University of Michigan. These core positions, identified in j

I i

Illustration 1 as " sample holder", have been carefully mapped l

for gamma dose and neutron flux by standard University of

/

Michigan procedures. The gamma dose rate as measured with a Reuter-Stokes RSG-12A lon chamber has a vertical profile ranging 8 rads gama per hour. The I from 6.3 X 10 rads through 1.02 X 10 l selected sample position is near the center of the profile ex-rads per hour rate.

posing the samples to a uniform 7.0 X 10 The accuracy of the gamma measurement equipment is + 0.4 rads per hour. l As a result of the reactor proximity the samples have a substantial concurrent neutron flux of approximately 8.3 X 1013 neutrons /cm /sec.

The neutron flux has been de-fined by' energy level in accordance with ASTM E261 which is a foil activation technique. Table 3 lists the neutron flux by energy as well as cumulative gamma and neutron exposures for the sample series at various measurement intervals.

No effort has been made throughout this phase of the test program to screen out any of the concurrent neutron flux, therefore all data presented reflects a combination effect of both gama and neutron irradiation.

I)K

~

R: port 748-10-1 July 25, 1979 Page 12 of 46 The operating cycle of the research reactor at the University of Michigan involvcs approximately 226 reactor hours for every This requires that the samples remain in the 336 clock hours.

test environment in the reacter position for time periods of approximately 44% greater than actual reactor time required for the specified total gamma dose.

l

? . .

e i

t D

I

Report 748-10-1 ,

July.25,-1979 i

Paga 13 of 46 I

. i

,1 r.r: ~ .

n c :.= .;.:J.. . y1: .. . .:l. .. :..;.; . :: :y:: :l==I::::,

==.;.. .v:=r__ _;

n-: = &u :: = 3..b:=. ':.u. . . . . .  :

E:.

.= .:p:n~!:. :;.g = :..u. s .:.4_ ~  : . d.:: =.:. _6 :  :: ..

T i..$'4:.#r" L  :. I O., T, i.E_-

. e..u: . .

E 59 *r- -t ;'":

ht.*:_. .4 =-

- E=

  • D1 . : =- .. " -ag i- ~:

... =::i:. = :sO- w=. - .. H^- .5E~- . g

= . . . -

.g.- .: =:: u. .: .u. ..: z. .

. ... ... .. =. . . - = . .

. c =_. .

.a.. .::: .

.. ;. . _ u

.=- .=c:-
r3lE: ::

=su -:: ar- ::.: e: ==.

=.

=.= . =.

gi === g - :;u. .m..-=:::s. = == . .= =.. =. _ = . . =_ =_-

y = == r- = .. . ._

_ , = . .=g

. s ..

. . . ... =..: =__ .rr = . . . . .:a_. _G.E . .. _.

=

.. . r.- .. .a- p-1_ = == _:- :== :: .r.9 v .g

===.

=...:: ==: u i

_. : . _= . .- = =- ..

e.

C. .= =..- . y. ,_ . g;i. = . . .=_

.m Tif.i = . . . .=.=.:.  :

?,:. .

=. .

I, .- .. ._.;g

=
.: -
=

=eu. =J -

. =

.- g.  : =

==

.:!! SE =.F.e=. s. .:=. ..E ...

---r.:r. =

=

w

=Es :'e =.:- :. .

g3 ._.

=: -:: w.- ==J.: - . ==- .

5 1 ~$ = =c WE EMi:- ME di ' = '

. s = KG2 s.== -sns: - -

s M o iET ht=.E i 2' #w IHiE 3E 5 #i "iE EP

.=

- E"__'.

e= - =. -:.a a :5:

.. _.; 2.

- ::- :.r,

= .

=.=-

- w. .: .

=u

=

==

.=._ +=e = _.

.a=

= ;y r . ._ =.: .,. .:: =..

..r u =.. .: =. . .
==. . _ . ,a 1

- __- _.. 4.=:

.:. - .:.:: :.. u .a =,-. . . =

= -= .c ..:. n .= = == = - --

i _.  : s.

= .- e.m . .is=-

r ..a..-s :=z: :-

. .=

=

=s g ;

gy.-.::

=*- - :. .:= - - --

g ==z , - ==

=* ' : '- :.:.

':: *;* .. =*. 3: .I l

_* * - *-:" . .6 ;c ;.=?: * %

. . = . =f:

p i

.jg=

3 r:.*. =."..

=

.- - .. ; =.=.I"s"-=y.ls. .y. ,*==M. f; , ,. g*:l-g; ,

=

.a =: : .-  ::::  :== ._ ...

"7 .tg...:) =.- :::: s .:- - .

. y: .- - ~

- . _ .,r.

.;Gi=:.  :  :::: : ,

. -*--*---4... .-

= ..,-: :::u c=:ter:t sen r :- .t=-t=L=_v -- - ".--. , , .:=t.m:-

. ' v 6 . "T'* ret a'yr- , . . . ...... ...

l l

,... DO 2. Tonk. . . . . . . ._ . w -

. o.

._. ... r .w . _

k ~$

~ ~ ~ ~ ~ ' ~ ~

!h h[fj  ::

~:~-'i$:  :

..Mj3 .  :=

y ='=--

...:L5 ~2 s

., .s*97j M.-22s -  :*, . . -

.. S .i;

  1. C.'.U i&,yhr....,%*---h

+n y ,;.

. . ~

Control . Sample Spec.iol Standard Fluion ,

Rod Holder Fuel el. Fuel el. Chamber i

' i.

l l 1

i I

+  !

i 1

- UI e Illustration 1-- Core grid of.the 2 megawatt "Jh Ford Nuclear. Reactor l

h d

t

1 Report 748-10-1

. TABLE ~3 Rav. 1 August 12,.1981 Page 14 of 46 )

HIGH RATE REACTOR SOURCE Irradiation History l

l o

RATES -

Gama dose rate (rads / hour) 7.0 x 1U7 NEUTRON FLUX (rf/cm /sec) ,

Thermal 40.55 eV 1.0 x-10 13 0.55cV. Epithermal 41 kev 8.0 x 1011 Fast >1.0 MeV 110 x 1011 1

>2.9 MeV 6.0 x 1010

>3.3 MeV 4.0 x 1910 ,

>6.3.MeV 6.0 x 109

. >8.7 MeV 1.0 x 109

+3

. TOTAL DOSE l Reactor Clock Time (hours) 226.4 '355.93 1470.2 Total Gama Dose (rad) 1.6 x 1010 2.49 x 10 9 1 1.03 x 10 11 Integrated Neutron Dftse (n/cm )

Thermal 4 0. 55 eV 8.2 x 1018 1.3 x 1019 5.3 x 1019 0.55eV 4 Epithermal <l.0 kev 6.5 'x 10 17 1.03 x 10 85 4.2 x 104e Fast >l.0 MeV 8.2 x 1016 1,3 x joi7 5.3 x 1017 4.9 x 1016 3.2 x 1017

>2.9 MeV 7.7 x 1016

. >3.3 MeV 3.3 x 1016 5.1 x 10 16 2.1 x 10 17 76.3 MeV 4.9 x 10 15 7,7 x 1o15 3.2 x 1016

>8.7 MeV 8.2 x 10 14 1.3 x 1015 5.3 x 1015 1 .

)

Report 748-10-1 July 25, 1979 Page 15 of 46 SECTION 6 PHYSICAL & MECHANICAL CHARACTERISTICS Boraflex samples irradiated in the various test environments' were comprehensive.ly evaluated for effect of that irradiation on various physical and mechanical properties. Specifically, those l

samples were analyzed to determine the effects on physical dimensions, sample weight, specific gravity, hardness, and tensile strength. Tables 4, 5, and 6 summarize the data generated for Boraflex containing 40 wt.% boron carbide and irradiated in air, deionized water, and borated water, and with specific data points 10 rads gamma, determined at cumulative radiation levels 1.6 X 10 10 11 rads gamma. The same 2.49 X 10 rads gamma, and 1.03 X 10 properties are tabulated for Boraflex containing 25 wt.% boron 10 carbide in Tables 7, 8, and 9 and determined at 1.6 X 10 and 1.03 X 10 11 rads gamma.

Sample hardness has in many instances been accepted as a significant indicator of durability. Tables 10 and 11 summarize the hardness data (as Shore A) derived from Boraflex containing a range of boron carbide level and at specific cumulative irradiation levels 10 11 rads gamma. As expected, the of 1.6 X 10 rads and 1.03 X 10 pre-irradiation hardness of Boraflex increases as the boron j carbide content increases, however, an examination of the results indicates that no appreciable effect on the post irradiated-sample hardness is noted as a result of either irradiation level, ir-I radiation environment, or boron carbide content.

1 N

Re@rt 748-10-1

  • July 25, 1979 Page 16 of 46 Tensile strength evaluations of Boraflex samples were made in 3

accordance with ASTM D412 procedures using a tensile testing device suitable for recording maximum strain at point of fracture.

The device is not suitable however for accurately monitoring the stress / strain ratio at intermediate points of the curve, therefore, an accurate modulus of elasticity is not available.

A degree of variation in the tensile measurements was noted and it was determined that in certain samples accurate tension con-As a result' figurations could not be maintained during testing.

of the selected tensile die configuration, the Boraflex samples During were necked down to a section approaching 1/8" square.

the loading of certain of the specimens into the sample containers 9 prior to irradiation, the necked down section was forced out of an

. absolutely linear orientation. As the samples underwent radiation induced hardening, a permanent set occurred as shown in illustration

. 2. The tensile data generated from such samples in some instances -

reflects modes of failure to.which materials are far more sen-citive.

The resultant post irradiation data is in these cases substantially lower than should be expected-in specific tension configuration. In order to overcome this data limitation a second series of samples was prepared having an increased cross These samples were section from the 1/8" to approximately .5".

10 rads and retested specifically in tension irradiated to 1.6 X,10 mode.That retest data is included in the attached tables for the Additional " tension mode only" samples irradiation level tested.

for greater irradiation levels have been inserted into reactor 1

Report 748-10-1 July 26, 1979 Page 17 of 46 sample ports and will be evaluated. However, data reflected 10 1 in the 2.49 X 10 rads and 1.03 X 10 rads cumulative level groupings does include certain samples not absolutely suitable for an accurate tensile measurement, or in some instances where the curvature of the sample was extreme, no tensile evaluation.

was made.

1 .

~

I 1

I 1 .

X .

M .

I.

W t

t 1 d T 2 0 6 6

a S 3 3 5 6 9 9 r O 1 1 9 l P . . .

1 l 3 0

1 X 5 1 0 5 3 E 3 0 2 0 4 0 8 8 0 R 1 1 M 1

. P .

4 1

1 '

t w

s 4 2 0 4 2 4 d 7 1 7 a T 6 7 0 3 0 2 1 9 g r S 3 3 0 0 0 O 1 1 1 1 1 nr ii 1 P . . . . .

2 0 3 nA 1 i

an x ti 1 9 M n 9 0 0 od E 0 9 1 7 0 9 4 cet 4

. R 4

3 4 0 1 5 5 7 1 1 0 6 xa 2 P 1 1 E. ei -

3 1 I ld B fa A ar T rr s 8 7 oI 2 6 B d 5 9 9 4 e a T 4 4 5 0 0 7 3 9 nd r S 3 3 9

0 O 2 2. 1 1 8 oi 1 P . . . . . .

b 0 5 1 sr 1 ta cC 9 7 e X 8 4 fn 0

~

7 1 0 9 9 fo 6 2 7 5 E 1 1 M Er nB o 1 R

P 4

2 3

2 1

1 0

6 6

1 7

o ,

i t p a 1 2 e i 2 1 5

/

c )

d l .

a I f c c m A R o o )

(

g e

. . L L m c c ) ) g y r o

o o n n (

t L L i i i h

( ( t va S

(

) ) h r n n s s g G i i s s i s

( ( e e e c s e

n n W i h h k k f i

n t t c c ce d r

d d i i i i h h p a w w T T S_ H

l

t d T 8 5 8 7 6

a S 2 2 1 4 8 9 r O 1 1 6 1 P . . .

1 1 3 0

1 I

~

X 0 8 1 0 2 0 3 E 3 4 0 7 8 8 0 R 1 1

. P .

3 1 4 1 t .

w s 8 3 0 1 7 d

4r a T 5 2 7 5 gt e r S 3

3 5

3 0 0 8 1 8.

0 O 1 1 1 1 0 0 9 na 1 P . . . . . .

i W 0 3 2 n 1

! i d ae X .

tz 7 0 ni 9 9 9 5 on 4 E 8 7 3 8 4 4 co

. R 3 3 1 0 3 5 9 E i 2 P 1 1 1 1 0 6 7 L xD . . . .

B e . .

3 1 Y A T

ln fi a

rd s oe d f Bt ni od a

a 1 0

a r . S T

O P

9 9

4 8

0 5

9 0

1 9

0 1

9 1

0 6

5 0

8 9

9 2 sr 0 1

tr cI e x '

_ fe 6 '3 3 1 9 3 3 fd E 1 1 1 0 3 7 7 h

Ei 1 R 5 5 1 1 3 6 7 b P . . . .

nr . .

8 1 oa iC '

t i an c Y io dr ao l

I 2

1 1

5 c

2 1

c

. /cn r

)

A RB o o )

(

g e

. . L L m c c ) ) g y r o

Y L o o L . i

(

n i

(

n (

t i

t v

a (

h S

) ) h r n n s s g G s s 5 i

(

i

(

s e

n e

n i

W e 'c i

f s

e n

h h k k i t t c c ce d r

d d i i a

Y i w

i w

h T

h T S p

H Y ~

Y M

t -

5 9 4 d T_ 8 8 5 6 M 1 a

r S

O P

2 1

3 1

3 0

9

. 4 2 1

0 1

M X 4 1 5 0 0 2 7 3 E 3 4 8 8 7 tr 0 R 1 1 . .

.e F  !

M tt wa 1 3 1 0

W f 4d 1 2 M e s 8 4 gt d 8

3 na ir a T 2 1 1 1

0 1 6 3 7 r S 3 3 1 0 9 no 0 O 1 1 1 1 iB P . .

M_ a tn 1

0 3 2 ni 1 o X 4 3 cd 0 M, xt e 9 .

5 9 6

3 8 4 E 6 9 0 5 8 6 ea . R 3 3 1 0 1 1 6 7 li 2 P 1 1 1 . .

E fd . . . .

1 aa 3

..k L '

B rr A or T BI 2 ne s 1 odi d 4 M a T_ 3 5 r S 0 9 sb 0 O .

~

tr 1 P '

2 ca 0 eC 1 R f fn Eo X -

5 1

6 9

0

. 6 5 3 2 5 7 6 n 'ro 6

. R 4 3 0 0 7 9

7 6 7 oB 1 1 N i t

a 1 R P

2 2

5 1

i l d 2 p

l a /c M . R l I

2 8

I c

1 c

m g

)

A o o )

( e

. L L m r

. g y c c )

n

)

n ( o M L o

L o i

(

i

( t t

i va

'h S

(

) h r

)

s s g G n n h i

(

i

(

h k s

e n

k s

e n

i W

e i

f i

c s

s e

n h t c c c d t i i e r d d h p a M i w

i w

h T T S H f .

l

a 2 0 9 6 d T 2 1 8 9 6 -

a S Y. 1 1 0 8 9 r O . . . .

1 P 3 1 1

0 1

M g X 5 5

~

6 n E

_ 3 2 2 6 9 2 5 i 0 R 1 1 1 6 7 8 n . P .

1

_ M.

i ar ti 1

3 1

1 nA o

.M cni a 2 -

d 5 3 x a T 4 2 2 7 0

- ed r S 1 7 8

_ le 0 O 1 .

ft P 1 1

. M-7 aa ri 0

1 od

- E Ba X L - r 6 B nr 6 0 2 8 2 A oI . E 3 3 9 9 6 5 T se 1 R 1 1 3 6 6 8

_ P . . . . 1

_ td } 1 ci

.M eb fr fa l

de EC )

A nn W

_ M-oo ir to )

)

m g

(

y e

r o

aB n (

t i h

)

i i

_ i ( t va S s

.M d% p

(

a5

) h r R2 n s g G

(

i s i s -

e c

~ '

(

e e s n W i e l n

h f i k

_M t

d i c i c

e d

r s

n

- i h p a e w T S H T

. b.

W W

W d s

a T

S 5

2 1

5 2

1 7

7 1

8 5

9 5

9 0

5 r O . . . 1

% P 4 1 5 r W 2 e g a i

nW t 1 0

X 5 0 7 3 0 5 nd 3 E 2 3 5 9 7 8 i e 0 R 1 1 5 6 M a z . P . . . . 1 t i 1 3 1 n n o o ci e

xD s 7 e d 7 8 3 l n f i a T 2 1 8 7 8

r S , 1 1 6 a 0 O . . .

rd P 1 M 8 o e 1 0

B t 1 4 E. a I ni X B od 6

& A a 6 1 6 8 2 T s r . E 3 2 8 9 1 5 t r R 1 0 6 7 8 cI 1 1 1 e P . . . .

3 1 f e f d .

Ei b W n r )

o a . V A M i C ) 9 t m (

o a n ) g y r i o n (

t o )

d r i i h i a o ( t va S s

& R B )

n s h

g r

(

(

p i s i G s

( e e c s e n W i e l h k f n i t c i d s c r n d i e a e i h p T

w t S H h

. 3NN*.aa75'. UU i

a & <$

. yew N* o* $ _

s T 9 8 4 7 1 5 d S 1 9 a O 2

1 7

1 7 9 r .

I P . - 3 1 r

e 0 t 1 -

a g

W X 3 0 2 9 5 nd 3 E 1 3 8 9 6 8 i e 0 R 3 1 6 1

.nt P 1 1 . .

i s 1 3 1 .

a r t o nB o

c in s 3 0 6 -

d x a T_

S 5 8 3

2 8 ed r 2 1

9 l e 0 O 1 .

f t 1 P l' a a 0 ri 1 9 od B ar X 6 E n r 8 '0 2 5 oI 6

E 2 4 2 9 9 5 B .

R 1 1 2 6 6 8 A s e 1 1 1 T P . .

t d .

3 1 ci eb  :

f r x f a fn )

E C A g

nn o o

)

m

( e r

g y i r )

n ( t o )

i t o i i h s

i aB ( t va S

( p d % ) hg r (

a5 '

n s i G n R2 i s e c s e

( e e l n W i f n i h k I d s t c r n d i W a e i h S H T w t

' l i{ , 1 ,ll;ill!l]fl!ll,i ,1 l

ggnq*?"?s

%*e 4

M h' u" n o"'

  • *m R T 6 1 E S 6 9 T O 9 U 8 A P _

W ,

D

  • E T

A E R 9 7 O R T B P 4

5 N 6 7 _

N ~

E M

N n R '

o O .

i I t V R T '

5, 7 5 a N E 5 - 9 i

ia d E T O 9 M 8 d a A P a r N W r O r 0 :I D i 1 T E ,

0 A Z -

n.1 I I 2 ose X D N E 1 8 A O 4 U 7 7 tg R I R 5 ,

R E P nn6 '-

ea .

I D 0 th 1 1 nc n o '

~

E C) o .

L Ai t ~o T' ' .

B e T -

0 4 de a S A

T iri bod O

P 7

9 N ,

8 9 _

rh a as r .

C( ri R I

ns A - ,

os m re a 8 6

on m E R

5 U 6 7 -

Bdr ag 5 P i fa oh la '

sd t te o

  • ccT eu fd fn Ei xy 'x x C x C e C e 4 e 4 el lh 4 lhB lhB~

l n ftB ft ft f o ai% ai%

a ai rw rw r r rw% o o .

o e o B t B t B my B .

w w t

l w 5 0 o 5 2 4 P ,'

!!iJl1t

l l, !lil ;I l fi 4

gg"N7gE prM $' 5d yet.s U O*

  • T R S 5 6 _

E 9 9 m T O _

A P -

W D

E .

m f'

A R E 9 7 O R 6 7 _

T B P _.

. N _

E M .

N n R o O .

i I .

t s V R T ~

5 6 m a' d a N E 8 9 9 i

d a 1 r E N

T A

W ha - ,

r 1 O r 0 I D i 1 T E A E I

n.X os I

D N 0 0 e A O 5 7 8,

tg 3 R I R -

nn0 R E P 1

ea 1 th I D _

1 nc n

- o E o L Ce

)Ati ,

T e

6 B S

. 6 9

A de a iri O 9

T P bod rh a as r C( r i R I

ns A '

os re a _

on m Bdrga E

R 2

7 0

8 P

fa oh l a ~

sd t I te o ccT eu fd . ,

fn Ei g xe C x C t y e C 4 e 4 el lh lhB l B l n ftB,4 ft .f f o ai4 a a ai rw r .

r o e r rwt o o . o t B . B t B B my t w w l w 5 0 o 5 2 4 P

( lf lf

R; port 748-10-1

. July 25, 1979 Page 26 of 46 I

i 1

p.

f 'h W ;j 'T ';~~ ql T q gg p 3

Al .

. Ih h

~

-l ! .__ .s' _ 0 l .? .j ,,

!A Af

, ~

p , / jt,, _ ,, e $ i [I" '

Illustration 2. Deformation of Tensile. Specimens resulting from force loading into restricted area sample. containers.

E '

l I

l

Report 746-10-1 ,!

July 25, 1979 Page 27 of 46

]

SECTION 7 ATTENUATION Neutron attenuation measurements of all Boraflex samples were made prior to and subsequent to irradiation. The attenuation measurements were made at the University of Michigan by tise of a neutron difractometer coupled to a 6" beam port neutron source ]

j originating from the heavy water tank located adjacent.to the t reactor core. The emitted neutron energy spectrum is isolated to .06 eV.by the silicone crystal defractemeter with count by a BF detector. The data presented in this report for attenuation 3

characteristics is shown as neutron transmission in terms of the

. . ratio of the non-attenuated neutron beam to the attenuated neutron r beam after both counts have been corrected for background . levels. j

  • i The transmission characteristics of the series of samples irradiated 10 rads gamma in the high rate exposure series are to 1.6 X 10

.I summarized in Table 12. That data ge.nerated for samples subsequent 1

I to irradiation to a cumulative gamma level of 1.03 X 10 rads is presented in Table 13. Measurement accuracy is also listed'in each table in terms of the 954 confident limits (1.96 a-) .

C Evaluation of the data presented indicates no discernable trend nor effeet by any environment or any variation of boron content f' within the Boraflex rslated to change of attenuation. Most data correlates within confidence limits to the extent that it may be concluded that neither irradiation, environment, or Boraflex 4

1

e-I .

Report 748-10-1 July 25, 1979 Page 28 of 46 composition, in conjunction with gamma irradiation through at least 11 rads has any effect on the neutron transmission of 4 I

1.03 X 10 Boraflex.

~

j.

I I .

1 1

16 -

1 i

1 I

1 1 .

[$

E n

0 0 92 8 7 3 n 1 1 R T 32 7 0 2 o E S 8 5,

3 0 80 2 0 1 i

s T O 6 . . 0 . 0 s A P 3. . ._ .

i W 1

(

1

(

i

(

m D s E ) )

n T

)

6 6 8 a A -

0 8 .

1

- T r

T R

O B

E R

P 2 1 7 6 1 .

70 70 3 .

8 7

2 0

0 6

9 0

N 4 0 . 0 n -

o E

M 6 i (

(

i .

(

i .

r N t R ) ) )

u _O 6 3 6 e I 1 3 9 9,

N V R T 2 3 '- 22 9 0 9

N E S 7 0 '60 2 0

. n E T O 7 . 2 . 7 . 0 o A P 6 4 9 0 N W '. i, ,i .

(

i

) O ( -(

a I D m T E ) )

)

m) aB A E 6 .

,6 5 2

I I 0 8 g D N 2 1 0 8 0 6 s,

- A O E R 7 0 . M0 f 5

0 9 0

, RR I 1 . 3!

2 d E P 0

,M (1 1 aI 6 t-0 I D . i(

. i

- r/ - (

E B L 0 )- )

)

B - (1 .

4 ) 8 A 0 g

0 3 0 T 1 T 9 3 62 3. 1 8

  • I s S 62 2 0 4 a X a O 1 0 10 2 . 0 4 .

0

  • - = ,

P 6 4 .: 0 6 n '. (+

. . i

.Tw (

1 ( o R (

( h I s A ) ,) )

'n 6 8 o s -

2 6 6

8 1 6 i

t t

i E R

7 1 ,30 M8 0 7 2

0 0

9 0

a m 1 0 0 0 i i P 6 . 4 . .

d l t i i

a ( ( (

r e r c I n e

f d o i f .

s n o

xy B -

xe j c x.C e

t el e C c c l n lh 4 lhB lfth B e ,

f o ftB ft f 1 a ai ai4 ai f

E 5

9 r r rwt o

tw o

'rw%

o o e B B t B my t w

B.

^

l w 5

- o 2 P 5 '

p p-

N

_ NdEw % $oh

' s$e

^ .

U$ g o, ,

m

) )

5 4 6 5 8 2 8 0 6 0 n

R T 3 0 0 0 o E S 0 . 0 i T O .

s A P + i s T I . ( (

i m D s E ) )

n f' 5 0 a A -

8 2 6 1

_ r R H 5 0 9 0 T O R 5 0 0 T .D P 0 . 0 D.

N . .

n E t i o M ( (

r N t R )

u O .5

_ e I 7 2 N V R T 8 0 N E E 2 0 n E T O 0. 7 o A P

'.. N i l I(

)

a O .

I D m f E ) )

A' E - 5 0 m

a )B I I a2 6 1 g 6 H 5 0 9 0

- A H 5 0 0 0 s O '0 3 d g RR I R 0 .,

1 aI E P .

t r/ I D (

t (

E B L ) ) )

1 1 ,

0 B 1 (

3 2

A 0 1 g 6

4 0 T T 4 0 0

X Is a S , 8 0 j

4 0

3 = n O 0 0 P .

i . i 0 Tw 1 ( o

( (

I h, R s I ) )

'n A 8 0 o s 8 1 6 1 i t 7 0 9 0 t i - R '

2 0 0 0 a m R 0 . 0 .

i i P . 2 d l i (

i a (

r o r c I n

, e f d o i f

s t

n o . t, y s e C a

e C

4 xe .Cj c c el l n lh 4 lhB lhD, e f o ft$ ft ft f 4 n ai att ai%

f 5 E 9 r r rwt o tv.-

o t ro w~ .

o e D . B B' t B my '

t w w l w 5 0 o 5 2 4 P

~

I lll{

y --_

Report 748-10-1

' July 25, 1979 Page 31 of 46 l

SECTION 8 ,

i l

HALOGEN TEACHABILITY ANALYSIS An analysis of the deionized water and borated water used as j

specific environments for Boraflex neutron shielding materials were evaluated subsequent to the irradiation of the sample in that environment for halogen content. The analysis was to I determine the quantity of leachable halogen present in the

~

Bornflex sample that might be extracted into the environment l solution by exposure to that environment in the presence of radiation. The analysis was made by Energy Research Group, Inc.,

Ann Arbor, Michigan, by standard activation analysis techniques.

10 The results of data generated on samples irradiated to 1.6 X 10 The accuracy of the data.

rads gamma is presented in Table 14.

ll presented in the table for each identified halogen is + 1 ppm with the exception.of fluorine which is identified as a con-servative maximum concentration. The data indicates no evidence of increase of halogen content of either test solution environment as a result of maintained exposure to the environments following irradiation. A minor variation of the chlorine level is noted to a maximum of 29 ppm, however this variation is considered within the expected fluctuation of the test solution and the interaction of that solution with the aluminum sample container.

I 1

I b

% Report 748-10-1 W July 25, 1979

- - Piga 32 of 46 TABLE 14 l

Analysis of the Halogen content g the irradiation environ-ment solution following 1.6 X 10 rads total irradiation.

Environment Sample. Solution Cl Br I F None DI water 7.8 0.24 4.30 420 I 0.36 4. 30 410 j None Borated Water 10.0 Polymer DI water 23 0.09 c.20 410 l 4

only l Polymer Borated Water 29 1.30 42 4 10 only Boraflex DI water 11 0.40 4.30 420 5% B4C Boraflex Borated Water

~

11 1.30 4.70 430 ~

l 5% B C l 4 '

1 Boraflex DI water 23 0.69 4.30 (20 25% B4C -

, Boraflex Borated Water 27 0.53 4.30 (20

+ 25% B4C Boraflex DI Water 22 0.61 4.30 4 20 40% B4C Boraflex Borated Water 25 0.74 4.40 4 20 40% B C4 l

l a

A

~ '

Report 748-10-1 July 25, 1979 Page 33 of 46 SECTION 9 BORON TEACHABILITY ANALYSIS The solution environment of irradiated samples of Boraflex

- have been evaluated for boron content to determine the stability of the boron matrix in the neutron absorbing material. Table 15 lists the results of the analysis performed on the deionized water l

and borated water solutions from samples of Boraflex containing 10 rads gamma.

a variety of boron loadings and irradiated to 1.6 X 10 It is evident in the data presented that no discernable increase of boron was found in the borated water environment following irradiation. The samples of deionized water changed in boron 1

content by a total of only 14 ppm when compared with deionized I

water irradiated with no Boraflex sample contained. It is

' necessary to note that boron carbide conforming to ASTM C750-73, nuclear grade 1, will typically contain as much as 0.10 wt.%

soluble boron, a quantity which can account for far more than the 14 ppm differential observed.

The analytical results conclusively demonstrate that no significant boron leaching occurs when Boraflex is subjected to deionized or borated water under concurrent neutron and gamma irradiation.

Those results also strongly suggest the efficient encapsulant function of the Boraflex polymer in preventing dissolution of normally contained soluable boron species.

'4 R port 748-10-1 July 25, 1979 Page 34 of 46 j TABLE 15 10 Boron content of irradiation environment following 1.6 x 10 rads total irradiation (in PPM).

Environment Sample DI Water Borated Water Hone 0.25 3,900 Polymer 1.10 2,900 only Polymer 0.25 1,700-5% B4C

- Polymer 14.0 1,400 25% B4C Polymer 14.0 1,800 40% B4C 6

0

.s OO 2

'l e g.*- ,

sie.3n.

-

  • R9 port 748-10-1 July 25, 1979 p Page 35 of 46 d 1

q J

+ .

SECTION 10 l

RESIDUAL ACTIVITY The residual activity of irradiated Boraflex samples was

, determined by University of Michigan personnel utilizing i

'" germaniam lithium de'tectors matched to a computer analizer l system for counting. The counts are calibrated using a National  !

J i Bureau of Standards Mixed Isotopes Gamma reference and nuclides. l 4

1 ideritified using a library stored identification routine.  !

_ Typical error factors in residual activity for the various nuclides as detected by this method range to a maximum of 10%.

Specific residual activity of various Boraflex materials reported

  • -by nuclied is shown in Tables 16, 17, and 18. An evaluation of the data pre.sented in those tables indicates no effect by the

- irradiated environment on the residual. activity. So'me minor variation is caused by the change in concentration of boron l

carbide in Boraflex, an effect which is wel'1 within the antici-pated range.

=

ar 6 3

s IS

_______-_____________.__._____2_ _ _ _ _ _ _ _ . _ _ _ _ _ _ _

lf

,l\A_

[.8nc g,o*e i

r s Er  !.

H$o *y .-

?1 g om .* -

3 2 . 2 C - - -

- X E

L B

4 0 1

2, 0

1 0

1 FT% X 0 X X AA. 1 2 7 R t 6 0 O w 0 B

8 0

1 4 1 -

0 , .

4 7 1 1 3 2 2

~ 3 2 C 0 ~ - - -

X 4 1 0 0 0 0 _

E B 1 1 1 1 L X 0 X X FT% 7 X X AA. t 4 6 3 2

_ R 2 1 8 -

4 O w 3 5 6 4 B 0_. , 6 1 6 0 5 .

6 . .

2 8 1 1 1 *

) r 2 2 mi 2 a a C - - -

r X 4 0 0 0 g n E B 1 1 '

1

/ i L 3 s FT% X 9 X X e a A A ..

R t '9 5

0 9 i m _

r m O w 4 1 6 3 _

u B 5 c ga 2 3 6 5 .

o 1 4 4 1

r s cd E i a 2 2 2 L (M r B - -

A 0 XR 0 0 0 T Y EE 1 1 1 T 0 LM 6 I 1 FY X 2 ' X X V AL 7 I X RO 1 4 2 2

T O~P 1 2 7 C 0 B 3 6 6 A 6 7 6

1 '

L 1 -

- A U o T ~

D t N  %  %  %

I EE )  %  %  %  %

2 3 3 S d RM E 3 2 5 3 3 0 E e U RV 1 2 5 9 7 R t S OA . . . . .

8 a A R( 6 0 6 7 7 1

0 i E R d M E

  • a r E 0 1

r F s s i I L s E s a y

3r xra s y

x - r 4y 2r

.a 8u o 8e 1a e F k 4a -

2y 3d l L 2d 3e 1h f A y 1y .

a H 1 r

o 2 _

1 0 4 B E 0 5 5 0 5

D 6 6 1 4 4 4 I ,

L - - - ~ - --

C n U n u 8 r K N C, E E 8 A M llll jlt !ll!!l  !  ! l;! !il

l (I

[hcr7?'l

[U ='0m ;

M 3 3 2 C ~ ~ -

0 X 4 0 0 0 E B 1 1 1 1 L 2 _

FT% x 0 X X K AA.

0 5 R t 9 1 3 O w - 1 1 2 2 6

5 3

B 2 6 0 .

4 2 3 1 9 r 2 e C 3 3

~

2 t ~ 0 0 a X 4 0 0 0 1

W E B 1 1 1 1 L 4 d FTt x 0 X X X' X e AA. 7 8 1 z R t 8 7 7

) i O w 9 3 5 5 3 mn a o B

5 1

4 6 9

ri 2 6 9 1 1 1 gD

/ _

s n 3 2 3 2 ei i C ~ - ~ -

0 r a X 4 0 0 0 1

um E B 1 1 1 cm L X o a FT% X 7 X X r g, AA. 5 c R O

t 3 8 0 3 7 2 0

i's w 0 . 2 7

md B 6 4 4 4 7 ( a 5 . .

3 1

1 r 4 1 Y

E T0 _

L I1 2 2 2 -

B V 0 - - - _

A I 1 0 0 0 T T XR 1 1 1 C x EE A 0 LM FY X 1 8

X 'X L 6, AL 1 3 8 3 A . RO 4 . 4 1 -

U 1 OP 7 3 6 1 D B . -

I o 1 9 9 S t E

R d e T-t N g  % g 4  %

a EE ) t g .

3 3 i RM E 3 2 2 5 3 3 0 d U RV 1 2 5 9 7 .

a S OA . . . .

0 8

r A R( 6 0 6 7 7 r E R - 1 ,

i M E x E 8' e F a 0 l I

.s a Is 1sr ,

f L a - r 4y y xa y r F a 4a $ 8 e f, o L . 2d 1h 2. y B A y -

H . 1 2

E 0 5 5 6 1 -

0 4 D 6 6 1 4 4 4 5 I .

L - - - - - -

C .

n U c, n u o r X H E E S A M

, i e

Il lIll llt lP!

.p -q1 Jl\

C ,

I

1 p

IN $d c

g~ s E$ $ ^A g 3

1 3 2

X E

L C

B 4

~

1 0

~

0 1

~

0 1

7 1

0 b I

FT% X X X X X-AA. t p R 4 2 6 6 _

_ O w 2 '3 4 4 0_

B 2 1 7 9 ;h.

- 0 ~

4 2 8 2 1 o1 r

e t

_ a 3 3 -

, 3 2 C

edI W ~ - - -

X 4 0 0 0 0 d E B 1 -

1 1 1 e L 7 X X 'X X

- t a

r FT4 AA.

R t 1 X 7 0

. 0 5 0 7

o O w 5 2 2 8 4 4 _

B B 3 9 2 2 0 5 . . .

- )

mi a

n 2 3 6 8 1 r

g aa 3 2 2 2 .

r

/ m C ~ - - -

s a X 4 0 0 0 0 e g E B 1 1 1 1 i L 7 r s FT% X 5 X X X id AA. t 0 ma o r R

O w 9

4 7

. 2 6

0 9 1 7 -

=

r B 9 9 9 2 c0- 5 . . .

8 i 1 3 1 1 2 1

(

m0 -

1 E .

L Y X 2 1 1 B T - - -

A I 0 XR 0 0 0 T V 6. EE 1 1 1 I LM 9 T 1 FY X 7 X X C AL 4 A o RO 9' . 0 '0 ,

t OP 4 3 5 2 L B 0 0 0 A d . . .

U e 2 1 1 D t I a S i T ~

E d N g R a EE )  %  % 1 t  % 4 r RM E 3 2 2 5 '3 3 3 r U RV 1 2 5 9 7 3 0 i .S OA . . . .

A R( 6 0 ' 6 7 7 0 8 x E R . 1 e M E l -

f E a F 9

r I s s o

B L s s 's 3r r s

- r 2r 8u a F a .a 3a .o e L e y fa 3e 8 1h A

H .

" 1. y l' 2

E 0 5 5 6 1 0 i D 6 6 1 4 # 4 S I

L - - - - ~ - -

C U C, n u c # X n -

N 2 E S ^ .

M -

I -

Report.748-10-1 Rev. 1 August 12, 1981

  • .Page 39.cf 46

- SECTION 11 GAS GENERATION _

'Boraflex samples.in each of the three irradiated environments were monitored for gas evolution in terms of-total volume, rate, and composition.. The gas collection device consisted of an aluminum tube from each sample container within the reactor area-to a distribution manifold located at the surface'of the pool.

This manifold allowed the operator to vent gas from each individual sample container into a volume measurement cell and subsequently into a sampling port for syringe sampling for gas chromatographic evaluation.

g-Gas measurement was performed on a. daily basis or as dictated by In specific pressure measurements within the s. ample containers.

those instances where container pressure was less than 1 psig no gas sample was drawn because-the small accumulated volume would .

Gas

- create unacceptably high' error factors in measurement.

measurements were made more than once a day as necessary to maintain sample container pressures less than 5 psig to assure that the rate of gas evolution was not effected by a high pressure

[

f- induced equilibrium condition.

specific cumulative' volumes of gas evolved from various samples 11 at 1.6 X 10 rads and 1.03 X 10 rads gamma are tabulated,in 10 Table 19. It is apparent from the data presented that the average gas evolution rate throughout the exposure period decreases sharply F- .

I Report 748-10-1

  • July 25, 1979 Page 40 of 46 ,

between the two listed exposure times. In every instance where j

a Boraflex sample is evaluated, the time-weighted average of gas evolution decreases dramatically as the exposure period lengthens.

Also shown in Table 19 is the effect of irradiation on DI and borated water only and on boron carbide only in the two solutions.

In both cases the total volume of gas generated with no Boraflex l

present far exceeds that amount of gas generated in any sample container with Boraflex included. This data further supports the function of the Boraflex polymer as an encapsulant for boron carbide, I

significantly reducing the interaction between the boron carbide f and the solution environment.

I I Table 20 graphically illustrates the decreasing rate of gas evolution of Boraflex containing 40% by wt. b'oron carb'ide in

. borated water, deionized water and air. irradiation environments.

Typical of all data evaluated to date, any Boraflex composition l 1 irradiated in air tends to cease all gas generation as cumulative  !

gamma irradiatio'n approaches 1 X 10 10 rads and maintains no further 11 discernable evolved gas at least through 1 X 10 rads gamma.

I Boraflex irradiated in deionized or borated water environments continue to exhibit a decreasing gas evolution rate trend at

} least through 1 X 10 11 rads gamma. That gas evolution rate in

( each case is substantially lower than the gas evolution rate of either solution irradiated to the same level without Boraflex samples included, strongly suggesting that the contained Boraflex

] sample in either water environment contributes little to the 2

gas evolved.

O

^

..( ,

Report 748-10-1

  • July 25, 1979 Page 41 of 46 Analysis of the various gas samples was made by gas chroma- .

( tography at the University of Michigan. At the time of the gas collection, care was taken to preclude all background gasses by evacuating each cample and collection lines and backfilling with helium. The results of the gas analysis for various samples are reported in Table 21 which lists the average of various data accumulated at sample times from the beginning of irradiation 9

i up through a total gamma irradiation of 1 X 10 rads. Table 22 l

lists a comparable analytical correlation of samples drawn l

9

[ following irradiation periods excess of 1 X 10 rads and up to 10 In each instance, as the cumulative l a maximum 1 X 10 rads gamma.

9 gmuna irradiation of the sample increased beyond 10 rads, the l

I quantity of gas collected decreased 'substantially. These smaller collected sample quantities increase the risk of the introduction l 5%

of contaminant gasses causing the analytical error factor to

['

increase for those samples by a factor of 2 to 5 over the larger i

volume, low level irradiated samples.

I T

k .

1 i

i i

1 l

3 t

=

e

Report '/ t o M O- s . k Rnv. 1 August 12, 1981 l Pcgs 42 of 46 .

. . TABLE 19 Gas evolution as a function of total Irradiation.

Total Gas Evolved Gas Evolution Rate (E) (E/hr/gm)

Sample 1.6 X 10 10 1.03 X 10 11 1.6 X 10 10 1.03 X 10 11 rads gamma rads gamma rads gamma rads gamma 99 16209 I 0.048 1.10 DI Water only 3530 16051 1.61 1.09 Borated water only .

B4 C in Air 8800 21475 4.46 1.60 B4 C.in DI water M 2M 4.35 1.60 B4 C in Bora W water 733 1588 0.6,1 0.19 Polymer only in air 2415 5160 1.98 0.60 Polymer only in DI water 4705 7060 3.70 0.80 l

Polymer only in l Borated water 713 1803 0.53, 0.20 Boraflex 5% B 4C in air 1541 3551 1.22 0.4 4

Boraflex 5% B 4C in DI water 2328 6173 1.74 0.69 Boraflex 5% B C in Borated waker 663 984 0.44 0.11 Boraflex 25% B 4C in Air 2321 4203 1.69 0.40 Boraflex 25% B 4C

' in DI water ~

~

2449 5153 1.54- 0.55 Boraflex 25% B C in Borated wat8r 581 780 0.34 0.065 Boraflex 40% B 4C.

in Air 1575 4029 0.94 0.37 Boraflex 40% B 4C in DI water 1779 5875 1.08 0.53 Boraflex 40% B C in Borated watdr

e m

- hx te m-l nf o ar i

eo mB

  • g t f o d.

n C 0 on4 W.

2 ioB ti E at t *'

L iu. r B dl t e A ao w t a

T rv re04 W 3, i

s d 3, r fag e i o gn t A w

i a r

gQ. n sfn o i toi  %

c a eet B

d ftn n e t

f a o Er c i  %+

  • a d
  • i e d t  % .,* a a r

%%h

- i r d

a e I rst r

a w

I t a.

idaDI.

\ r

. \ rn .

N Ii

\ \ =

1 1

  • 1 11 =

\ b1 =

[

4 0 6 2 8 4 .

2 2 1 1 7eN~

2E co - e$

l

f Report 748-10-1

. Rev.1 August 12, 1981 Page 44 of 46 ,

TABLE 21 '

j Composition of Evolved Gas '

average of various data 9

Total gamma irradiation 4 1 X 10 rads Hy " N 'y ~0 2 *U 2

Hydrocarbons DI water only 57 9 33 40.5 d.1 ,

Borated water only 4 38 0.2 4 B4 C in air 53 57 6 35 .6 <.1 B C in DI water 4

54 .5 45 .4 .5 B4 C in Borated' Water 62 27 9 3 4.1 Polymer in Air 16 9 1 3 Polymer in DI water 70 5 6 4 3.5 Polymer in Bora'ted water 81 66 14 12 6 2.5 Boraflex 5% in Air 72 18 7 3.3 4.1 Boraflex 5% in DI water 83 4 2.3 4.6 6.

Boraflex 5% in *

,- borated water 16 7 6 .2 Borafleic 25% in Air 71 84 8 4 3.6 .6 Boraflex 25% in DI water 81 7 3.5 4.7 3.7 Boraflex 25% in borated water 50 26 8.4 .5 14.1 Boraflex 40% in Air 57 31 8.5 2.7 .5 Boraflex 40% in DI water 60 7.5 3.5 4.3 . 25 Boraflex 40% in Borated water ,

e

R; port 748-10-1

  • ,- July 25, 1979 Page 45 of 46 TABLE 22 j

Composition of Evolved Gas '

~ average of various data 9

TotalgammairradiationfX10g rads to 1 X 10 rads i 0 Hydrocarbons H2 N 2 2 cotc 2 4.1 4 DI water only 57 27 10 0.9 41 0.1 0.5 Borated water only 58 35 11 <.1 4.1

~

B 4 C in air 55 53 2 46 .2 4.1 B C in DI water 4

' 54 .5 45 .4 .5 B4 C in Borated Water .

2 2 9 4 .1 ]

Polymer in Air 88 11 3 6 1.3 i 3 Polymer in DI water 78 2 21 1.4 1.7 7 ,. Polymer in Borated water 75 78 12 4 6 4.1 i Boraflex 5% in Air 71 .4 3 1.8 20 l

,,,) ,Borafinx 5% in DI water j

[' ,

66 6.5 2.7 3.6 21.2 Boraflex 5% in-borated water 83 7.3 3.6 6 4.1

= '

Boraflex 25% in Air 15 8 8.5 1.8 Boraflex 25% in DI water 66 73 15 7 1.7 3.1 Boraflex 25% in *

' borated water 53 27 13 7.7 4.5

.Boraflex 40% in Air 7 3 2.4 6.1 j Boraflex 40% in DI water 82 60 4 8 2.8 24.2

-l Boraflex 40% in

-i Borated water 7

~

1'3 Report 748-10-1 L July 25, 1979

, Paga 46 cf 46 SECTION 12 APPENDIX i

CONTENTS s

, 1. BISCO Procedure 748-10, rev. 1 " Irradiation Studies of Neutron Shielding Materials". L

2. University of Michigan FNL Procedure " Physical Property Measurement Procedures". ,

9

3. University of Michigan FNL Procedure " Sample Gas Collection and Analysis Procedure".
4. University of Michigan FNL Procedure " Neutron Transmission Measurement Procedure".

. 5. University of Michigan FNL Procedure " Residual Radioactivity Measurement Procedure".

6. University of Michigan FNL Procedure " Gamma and Neutron Dose Rate Measurement Procedure".

~

REPORT AND 'C ALCUL ATION REVIEW- COVER. SHEET Q.8

1. SUBJECT / TITLE __ l.0% TEAH BapFLSL&xPosueA TD 6 AHkA RAYS AT THE k$65-3 SFJL
2. ' Author _ g. 4. Hggeenost 3. vile # t/,,

'4 INITIAL REVIEW

5. Assignor / 'O M/I'A A. Date Assigned I~ /l*/I
7. Reviewer 5 M N" / d3 E. Date Due 8 ~Ii'I 7

?. Assignor's Comments / Instructions 'N rhorn

  1. "" ' '/ roa'/

I

10. Comments Attached? Yes/No 11. Reviewer /Date ~S~

fl&4m e-2e e 7

12. COMMENT RESOLUTION
13. Assignor E / U kN ai 14. Date Assigned I' /I'l 7 1
15. Resolver E S b'**3 16. Date Due $ 'IT'I 7 l

l

17. Resolution Completed by Resolver /Date 6 A b M dd F- [ 0 - le ' 0 7' J
13. COMPLETION OF REVIEW
19. Assignor /Date M. b b I-/['/ 7 1
20. SS!!/Date u

L

DOCUMENT REVIEW COMMENTS Dscument No: Drafc: _ R,eviewer: 7. N. $4) sew

Title:

lono k erxler4 No Expa.wre To Ga m b, ML 05Es 2 S Fs2.

O

  • COMMENT RESOLUTION
i. w 3 a . us..,t. 3 i. sa er u f- . -e Clas'Sy 4Ls ge.eMe\ry using W O3 **' ' N *
  • C hour assemdie,s b d's cm 3 c. ske\d er :4/cbc . '

"f * " ' * *** ' W e d og descrip g.La in assvm p W 3 , pa3e '4.

or sent m1.h .

i I

I i

1. Reviewed By: 2. Coments Resolved By:

kN REVIEWER ,

S -IS -51 DATE fM 1E9fH6R N s-is-s7 DATE NOTE 3. Resolution of Coments Accepted / Concur.

i If no cot:nents, please sign in Section 3 to indicate concurrence.

g, g. p REVIEWER j DATE

. CALCULATION WORKSHEET mm;- Nuclear Services Division i of 6 i l i l  !  ! i  !

' i Lc46 TGR m 30M n.E 4 EX FosusW! b6AHMA 4 Sys  !

AT THE w365 -3 Gr34T FvEi. l Em 2^06 l E%cS I (dFshI _j i i s  !  ; .

p! .

PuAPosA ._ _ . _ _ . . . .

iT.kcale d b is9 o pale an(Sf'W io/ N u m doCC. _:._J __

I ekpopyje.'fo -l La br af' le 90:ky e mNfe<sd_pNf.Spe.!)pt.{__. .

e _

! ass e- nll,'as ar c. dnclime d si le &S?sR. 7b cases Will I bc_C ensthred th %_ tz Ics /Juka

p) a hl abseklid W eM 'a lew bwsvA (~J 7 dw o/wT L)j.oJ 'M h o!H 4 tsN m ilw Id w & W4 m oc s4 5ssD/KT b ,(I ul .T'or & j s(ped fl.,ke' cases w . ll he Yr. u 'de, d 4o see W tUe ) of Dota eN hi'chrN l kw % re so iI:s Tiu o am.: C a <e caoe. e r danUsJ Nowe} Y2Y i ia Ilo w- = < .- ,k N /, c,F evele.id/ %w W4.v = ,wl .ib x,xf 44, I l

i

!hl b cks ( Lo- H[-H ;l a<. td 3) a HJ -Mi- lo Mwd,- AS /o V

g.

i

_ )

Bomfic Porken t a 4adA N!d,8ke!enejfo{._

i / i

h ga m o s

close er A < --

l t siaa is leorra fe l . pow A fo c o r-c kow es- ;ou l, bu wMbQ_ \

Serv ice s.Tdc.(5.5.rb.ha<hsls$u y a .

! W M_ s a r. leed b ,s Svsh  ! l

, , c. . ,

i ' t

; I <

l I I I l t I

%fdre" scc 5  :

! I I l l l LT dekkaW i  :

f, r o m $ 6. 'Fru w.I N & R. H .; u),%%.s cic}cd 8-17-87 l l 4,4fi 4. ! 041.<,i , $oH -oh, . I .  !

I l l l l -

I  ; i '

i _O Telt&aml bh E. A;. 4leen%;t. (i._f3.L) bd_B.oh . k'Ifh. (CE) clafed l  : Bi-5-87.  !  !

i i

i I t I i i3) M. M. SI-Waw l. Mad m- Mlea4 ransM,er . ! Ad6,3 La Gra n yb rt L.

1970 p p.

4E 5--484 .

I  ?

, , , i 3

( Mo rc; u and TLcme 9 in d e. (e$ cf. bbd t sktns ipr #fe< h .

, , i Chn k ijtuE 6ms ., NdW [cr c 19 73 . y * . ! 12.2. .

I i o I T' i .

m .____. _-

.)!:

rs Wake wA. ww, n 1a1707 -tec-r-sis. me ,ivo;, , 19 79.

~

PREPARED BY '

E DATE DOC NO REvtf WED BY DATE PAGE NO

CALCULATION WORKSHEET '

ra,n.o;-

Nuclear Services Division 2cffo A 55mb

! I i1 i as '

i  ! !i; I i L- Limbm emv3d d i 14k cami'd.ebe !calevlabbs .bu ssr (L.igjf.m! i W ijsek w cli' m_,i i

l 1 i P Ii} >

i l

! 2!

Iri idl be dsd4A 404 ' all Ac 'mL raajafk' predeced k, i

Nuf !as'sd dk ' is recsdd / h : +4. BeaAl.<* EHbut I  !

w Ae .A4hre n E p<A,a.s ' d.$) dcsis {

aek J vdM r, iUi (z h l?E N pc'v4 'e A i

\

kN f kisd Kai \

l

' o sb rdel N4.a of l 1 Ie tog rads /h r 4 daA nt 'O etAtlu chu f d< u.,e rabfA i rm i sh - m Iwe.LiIfls), f4W I JJse rahrCMEsN.Ne$

4. N, a m, f as3 %#hw ,. I i '

ele kdAe <

c6 i

! i 1  !.

i 't 3

! i i i

{

i ,

} l i i

l I 1 3 -

Tdar Sw nn =d,lo r.s : wik kik i I i

add s,k;O iwe e ps avg., l ol$cdd adsiend 4o a % flier?re se/ +..

'k m s ,n /v TYe ass ,did sill I p,~ el. bM.es oIt,e . TWsjauv,,w h,n la/so .

prodhers l i

a a eYve e d, nde o,'- % QD m u a d cge. I l

i Ber<pfi,e.s. Seat i3. 2.

s '

$ vs'Id u h $ 'fi d l fe,- seeick of S,i hv t.psnss e ),) M _

t

! {

4 -

We pswh on es pmver 4 DhLS is k n I i i! l  ! j dene& llo dbse role \

(rafs!/Ar) b/vMa 1 /w cc 4veksibi Aw I

i12eh.Ch Ui-ab6Ylc. sk eldid. {$ cws;W % k nectroiA(oi 20 rids Rbje ncpb.  !

I Ip r $ d x i d a'n o vae ed,dde n-i' i9 $$

( a&f Bol.' $ce5 dun k Wef._(S)

.. j

,i ) i iI s ,_.

5- A pea 3- fo- acac,e de m M i e.s u.4 4e 13 will be. I

{ lused .fr4 tes Tdih ' vale cs/2de><-

' s f u k A d i. FN 6 ned 9' 4 ht(s)endend.c,J.g h,A g ..a___

^

1 preds tis o v>Le ef_.1}L. \

'l~' l ,! ,!

lo -

Tk k s of ura n wn

' o,. r+3 ec 4 cd W Adessdnhit, will_Les Sho f6% marim .

I

' I I

~ ,

i I i i <  : -

i i  !  ! , . i i i I I I l >  !

' I i e

!  ! ' i

! I ' j

. , I i , .

!
i l'

,,,,..E. ., E.4.#en uc6z _ o 1, _ 8 - /8 -8 7 ooc ,,o MEVIEWED ST-

_ - - _ _ - @Q?O _ _ _ _ m_ _

.~

CALCULATION WORKSHEET muav;- Nuclear Services Division 4 of (,

l 5-

% vs'n % vdes b Tchs. W s.rd 2. is 4.( 3) ge + ,

v $ eV l res sI fs i s Tohlcs B and T s'm i .Th ce n'vss, d,hdors 1 k Er (z) we, e obfai u e /%

f2e#5.(31 an M4) 1 i  :

T41s 1 .

Ib se Rck .ond Assemble Fe web-s -/ cm Nef 1 9 Pdgi) -

(edb[

cA sc rat Efe. '(b) kawek th) l A -

Ave. Nu' 2 % 6 7

. 33 ,o?

B-- Hi. H;. Lo%s 226 6 7 E7 C4 C.

L:r Hi. H; Ye w sc4 5 7  % YA5 3 -

5051. Asse- Ws 2.as E 7 M. 17 !

l Toole 2. Llea<aCVaIm %m at.d (ww.sae./m+C l C'A 56 (n Mo 2 YE G 3 Yi 5 6 YR$l 14 YGS A 7 bO!s 3 1. ?fo -E4 3. A1.E 4 1.1 2 60 .

2.017 6 4

'i I l

$ 7 92 6 3 f.% C4 LS564 '

l.il 6 4! '

2 M6 (4 i

l  ; ;Ci 7. Fo e 3 f.t2 64i i il4(of 4. 2!co cq I , l ' I -

lf.38e 4l ,

- .' 1 i i i i

' G A2)G 3 8 2h3 l9.54 c $

1 02. e 4 _ i. i4 6 4 l

l  ; ;I i i i

~

Table 3.t ' L-eysked Game e.ie e n Bre/h...(go s). . __ -

l '

i IMs6 i 6Mo a ves!

i 3 ves!i ;6 % -

14 yc5 e .' A ! I 3 04 6 8 E.04 56 548 EA 6.86 E 8! '

83968 ,

I i -

i i, i i,  !  : l, i

. B 2.59 C B 445 66, I is.08 6 8 ,

6.256 8L.; 7 7568 l i

! i i i .

I l c l3 31 6 8 5386 B 1 !6.096 d l i7 3EES B.8268  !

I  ; 1 I ,  !

l' . . i t

3) ' 2JoS E B i344 E 8 3. 86;E 8 4.z268 4.7I6 e j ii' I I I i i i 1 1 1 i ' e i  ;

i I l

PatrantD sv b*

  • 6 tM A b 2. Daft b'l8*b7 Doc.**o htwitWED SV Daft PaGE No

4 L

O 1 l01 . . , . .

. - .e -- s - .. - - - - + i i !i g  ! 4 -! - i i  !

. ;..; q. 2 .. F. ..

t ..-

I '

.' . . _.i I.

._ . . . _ . _.p .. .

.v a-. -.- - . - . --

1 -! r - - -

e 7

. L. '

.. _ '6 . . , ., . - _ . .

%. u. -

l t

.1 . z. : ': a .  :.=. .

l- .

.._y .. ,

T

~-

. .: .  ; ~~ ~ . ; . ..

l_.

ll  ; '.. .

4

, . .., ..,. - ., + .. ". . .h ' + . .

~_

....e,. *

",. J. ~. F

.,, .,. , , -.t i 1 ,w.

on m, , *.. . * - "y,

.t m.. ' ,,. _ .

N '

5N 5- '

L' @ i- 2 d:- W CF t . _ _ ._ .

. . _ .. . . . .... . . . . . . . . __ _ _ . ~ . ..

_J .

r . . .

T' : .: . ^ -. -. ~'

'.". .L~ * + -

e - ~ - -- *-

._'. W . ~'":~~2. .*.,.'.~.1 ,. .  %..~.~ . .w .".Mp~. . . .  %. .' ..*_ . .- .

2 *

..4

~_-- .4 ~. . ..

-,~~

.~

.j

. . . , .... . . . . .,e

. .. . - -s

,- -- .-.. ,- +-r . - -

- . - . . , . -v.. .

.. ,. + .

- .# i

< . . _ . -~ .. . . . _ ,. ,

._L _,._ .. l

, L- r -

t

~7.

.mp

+ .4

.i

-p , + - -

, OatR.,5 1

)

.t-+ , 4 T+3 o.

....r. -. . . .

q .. . . .p... ,. ...

4 .,.q 1 H-4.'. q. .

in H .

+ .2 .. . -- ...

- rs 10 10 _-. , - . .. .- ".-" ' * . * ~' ' * . * '--. " ..

g _ h(A.-

. ._ . ..~ . i . _. j_. . - l-

- . . -e-*. g g . . . _ . . . . .

,- l

, . _4 _ .~. , , . .... . . . . i -

.~ -

.p, g, - .

j

, -,....p.. .

..g.y.  ;.... , .

g l ,.

.,... . _ _ . . o __,._ 7 -

- , g w.

y 6

  • + ~ . . _
w. :

. g7 6-7 .-.. - .- . -- --. -

i

=. .

a.

..t ._..

I

.- o. .a j p

. L; o g~. , 1 i'

. . [, i

~" O" ~ ~ ~ ~

^ ,. . . . .

~ ~ ~

~. . .-

~ ~~

~. ' J. ~ . . . . i

-l

.. . , .i . .l ,.

"""",,. , i i

,I,

.i

.l..

- i.4 . . . . +.. . .

i 1

. g. . .. ._ . .. .

.l __q y (. . ./y .

. .j . - .i

.T~~~.- ,

g) ,

.ha. ipc. - ._u ....O.._._ . . . . - _

-7.. . . . .-

iL l- r. +-

,5-[, _ L l l:

- 1 I!  : x l

l W ,  ! _ . - - l 1

.i ,.. ,

9 . i, .. ,

i L.

1. l. , . ....

1, l p ' l t

. _ .D . . ., _ . . . _ . . . . . . - . . . - . . - . . . ... _. ..J ] j

.4. .. .. i .4 i

i

. / ,/..,/. . -

..;.. . . . g.. .o. -

. - - - , ..._ + as , .

} , ,

i... .

. ~ . . . , , , . ,

' l .

-l.

.. . .. f.. . . ..

m.t. .i ..L. . .

4

-.. ~, ..

a

, i

.4 j --

.;. i n

f. - .

,- I l

.r .6.. >

I

. j - . fg[ l. .

. . , . s l

l. g i.

l g, -

.g . .

_. .+ , ,, m .g.

~- ..-

j  : e' .f: ,

~

.! . I:.

. .... " ^ _'.~'.!,".;'.

. ., i I' .....

t l

i 4

.. . . ....i ..., ~. ,,..

l 9 -

i

. e..

4

.e

+

m... w.p

,c,.,. .

},.

_ 4

.. 6

.J -

.+. .m. .

i

. w. .q

,u,r.

.. . ,. .w.-  ; . ..4, , .

., i. .

d.

+}

i

,. p l

J . .. L. . . . , o + . - . . . -4 . m.7 . { ,, , . .. i -4 . - . ~

l l 3 -

. 4 ... l l

T.m 1*...

" . . = ,.:l.l.. ..' _!! '.

.~ i *

.7 _'-*. n. T .. . . . . .T

..~~.J.'

s /;,

J. _ , ,,__

_no

. , . .;-~1..~._7 .. ..

. " * . - ;*n. .';**2

.'~+~;T.

. . . ~ . " " ..:a" L* .~. .

. ,
i~*-*. -._

.~.

. . . .* ??

. .J.

t

. .,... ...,- .~.

r.~.

+

.4. ,

. . ...+

.. _.7,..r _L.. . n,., .

..,. ,. e. ..

_m.-__.4 .. ~.,..

. - ...t. .;_ .

. . .~ . .g..

4 . . . . _ . .

7.,- . . .

. , . . .a ..,m..

7.r

,7

- g . . .

e ,

g .g z ._,r ..

s_ _

... , ..r

- w .*

a.

--e

.+.--_m._7

m. -. -+

. .4-, . ' n..q. .

p'

.+.-- . .

.g- . . ,. q+ .".

l .y

+.

q e- - - -

[.

1 2 3 4 6 6 7 8 9 to 2 3 4 6 6 7 8 9 10 2 3 4 6 6 7 e 9 10 D N 100 0 loy -

('

l Ccq Time. Ader bcke AMows 1

Ts.(byO Vtyi Bora{la Expsure Af 4 ee %de skddown. 4% heah.-

k,______-__ --___m ____.______ _ _ _ _ _ - . - - . _ - _ _ . _ _ _ _ _ _ . _ - - . _ _ . - _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _

a

CALCULATION WORKSHEET I

. m i.w;. Nuclear Services Division 6c%

C :wdes,h; The (13 ma+ be use d fr ore ctd -f a ow m m clone J J be s'l du c> or A) Baculex at re r 4 76 Rs anet us m l4 vows & e xces wa. LA er use eucas us ed a w .h-A i -

JE s pecid ic casas C bv_nhg q n G ux)/wiu and 4ss usM ru) i m %peu ,-c %,u

, I,i, k r,u. cur ,e c i n m cc is . ,

cens>ukA l ku & li m iFina/ ense Itw 6 ur $v oipew.e h b-r cu c w ahin r4-*ws. cod. IT ku Id Le corsMak4 as -

ne asYsw b !v w ith 4k es kF em- d 'n +f cm ,6 pre, cb s A he &# Io se em W B$w le e wi sen a u i

I i i i

A 1-4 e ik l61 1 Trrnd.34.-m poiJ I Ael I I arm i i A4 _

A3: !iI asCW Asodfie of '

N_ $\ F)  !

!  ! .I  :  !

NI I N ckb .  ! M ('. '

i i  !

! iI 7,? tN i -

I I

l l Al DAE! N hatf[P[,-[

!'l'I I I

I Ivorn_105sem.bil st._...

_.S N ea<n=r- -

! I ' l l

I ll _

!  ! _ e i' -

' i t i  :

I I Fi q2-

. Gm . ew,cu lvihv% $. < c m adia ed h, eI css edfie.s .

ble Irdfora(a nakielsm <bdiJiM -/m 4~r - answ M.c af

& ek us .M & eu &ct m Bdade,,.,k we a< . % -

woke,'et is ex pos ecf 4o Le .pd w&u, e. e on!v. \

- - > a ,,

. .,i i i

,.E A.Eo ., E.4 # u., m acz. oA1E 6 8 7. ooc ,,o.

REvtEWED BY DATE PAGE NO