ML20056A730

From kanterella
Jump to navigation Jump to search
Basemat Monitoring Program Special Rept 3
ML20056A730
Person / Time
Site: Waterford Entergy icon.png
Issue date: 06/30/1990
From: Burke J
ENTERGY OPERATIONS, INC.
To:
Shared Package
ML20056A728 List:
References
NUDOCS 9008090113
Download: ML20056A730 (51)


Text

- -

B a1

'O o

el '

+

7

.}

.i 1l N

L F

1 1.

u h

?

i N

ENTERGY OPERATIONS,:INC;.

j h

WATERFORD. STEAM. ELECTRIC--STATION' UNIT NO.'3 1

V'l g

BASEMAT MONITORIN'G PROGRAM, SPECIAL REPORT NO.

3-

, r.

l

\\

f A'-

r.

Prepared By:

J. Burke /S. Munshi

'l l

t-L' Reviewed By:

J. D. Hologa.

RE

)

o l

}'

.l

~

l June,'1990 t

t

.]

Entergy Operations, Inc.

P. O. Box B-Killona,: Louisiana 70066

?k

\\

p-H g

e

('

1

>v

(, - p '- !

,4

[

I a

N'

)

9008090 U

2

us

.4:

.: p lD i

1

-ENTERGY OPERATIONS, INC.

m

.MATERFORD STEAM ELECTRIC STATION UNIT-NO. 3 BASEMAT MONITORING PROGRAM SPECIAL REPORT NO. 3 TABLE OF CONTENTS

+..

I

^

iL

.Section Title Page:

1.0 PURPOSE 1

2.0.

' SCOPE ~

l

3.0 CONCLUSION

1 4O BACKGROUND AND PROGRAM OVERVIEW 3

~

4.1 Surveillance Frequency 4

5;0 RESULTS AND-DISCUSSIONS 6

-cI,

?

5'. '1 Survey Improvements-6 5.2 Basemat Elevation Survey Results 7

-5.3 Groundwater Chemistry 9

5.4 Seasonal-Groundwater Levels 9

5.5 Crack Surveillance 9

REFERENCES e

.}.

e

'._ \\ ;

{

1 e.

i '

w, l

/,

l:a g, '

3 ENTERGY OPERATIONS,!INC.

WATERFORD STEAM ELECTRIC STATION

' UNIT NO. 3 BASEMAT MONITORING PROGRAM.

SPECIAL REPORT NO. 3 I

(T LIST OF TABLES t

I Table No.

Title

.g 1

Basemat Edge to Shield Building Eg

-Baseline Differential Calculation-(July, 1984).:

2 Settlement Points' Differential Relative

~

to July, 1984, Baseline.

K 3

NuclearLPlant Island Structure -

Groundwater Chloride Content.

4-Nuclear Plant-Island Structure -

Groundwater Elevation..

l' 5

Crack Width Monitoring change in Crack Width

.n 1

without-Temperature Correction.

t1 6~

' Crack Width Monitoring -

Change in Crack. Width with Temperature Correction.

7.

k 1

I

~ 's o

11; 4

11 5 5

W

~

^~

9 0--

c y

i e

-y ENTERGY: OPERATIONS, INC.

1 o

W ATERFORD~ STEAM. ELECTRIC STATION a

UNIT NO. 3 g

BASEMAT MONITORING PROGRAM SPECIAL REPORT NO.-3 I

LIST OF FIGURES I

1 I

. Figure-No.

Title 1

Settlement Monitoring Points.

,s t

2-

' Groundwater' Sampling Wells and Permanent i

. Benchmarks.

3 Instrumented Arrangement at Crack Width Monitoring Station.

u 4

Crack Width Monitoring Stations.

5 Selected Walls for-Photographic Survey.

i 6.

Settlement Points Differential.

7 Settlement Points Differential.

8 Basemat Absolute Settlements

' December, 19851to November, 1988.

g i

'9 Basemat' Absolute Settlements December, 1985.to February, 1989.

10-Basemat Absolute Settlements December,~1985 to May, 1989.

~

Basemat Absolute Settlements 11

/

December, 1985 to August, 1989.

g f

12 Basemat Absolute Settlements u

December, 1985 to March, 1990.

j

-13 Elevation Variation of. Monitoring Points -

Points A, B, C and D.

,i 14 Elevation Variation of Monitoring Points -

Points E, F, El and E2.

E

,gL 111

,t.

z.

.m

-m T

-i

= ~ -,

h, ENTERGY OPERATIONS, INCL WATERFORD STEAM ELECTRIC STATION UNIT NO. 3 I

BASEMAT MONITORING PROGRAM

' SPECIAL REPORT NO. 3-LIST OF-FIGURES (CONTINUED)

Figure'Ho.

Title 15 Elevation Variation of Monitoring Points -

Points E3, E4, E5 and E6.

16

, Elevation Variation of Monitoring Points 1-s Points'E7, EB, E9'and E10.

17-

' Elevation Variation of Monitoring. Points -

Points Ell, E12, E13 and E14, i

18.

Elevation Variation of Monitoring Points -

Points M9, M10, M11A and M12.

19 Elevation Variation of Monitoring Points -

Points M13, W1, W2 and W3.

-20'

' Elevation Variation of Monitoring' Points -

Points:W4, W5,'W6 and W7.

I 21 Elevation Variation of Monitoring Points -

Points WB,.W9, W10 and Wil.

l Elevation Variation of Monitoring Points -

22' Point W12.

23 Groundwater Chloride Content Variations.

24 Groundwater Elevation Variations.

s h

4 25 Crack Width variations Crack Nos. 1 thru 4.

26 Crack Width Variations s

Crack Hos. 5 thru 8.

27 Crack Width Variations

I1 Crack Nos. 9 thru 12.

28-Crack Width variations Crack Nos. 13'thru 15.

iv

4

'lJ I

ENTERGY OPERATIONS; INC.

WATERFORD STEAM ELECTRIC STATION.

UNIT NO. 3 BASEMAT MONITORING PROGRAM SPECIAL REPORT NO. 3

'1.0:

PURPOSE The Nuclear Plant' Island Structure (NPIS) Common Foundation 1

- Basemat-Monitoring Program required by Waterford l3 ~ Technical Specification'.Section 6.8.4.e has been established to provide continuing assurance of -basemat integrity and to ensure that

~

conditions within the basemat do,not change signiftcantly.

The monitoring program is being implemented according to Entergy Loperations, Inc. Surveillance Procedures PE-5-033 and CE-2-100 (References.1 & 2)..

This is the third special report prepared to. summarize the pertinent observations, measurements-and evaluations conducted since Waterford 3 has been in operation.

2.0:

SCOPE This report documents the results of the Nuclear Plant Isl:.o Structure (NPIS) Common Foundation. Basemat Moni.toring. Program for the four areas'specified in' Technical Specification Section 6.8.4.e.

The four areas are:

a.

Basematidifferential settlement-I;.

b.

Groundwater chemistry c.

Seasonal variation.in groundwater level d

Crack surveillance i)

Crack Width Moni.toring ii)

Wall Crack Inspection The' Basemat Monitoring Special Report - No.

2. (Reference 3),

issued in September, 1988 covered the monitoring. data collected through August, 1988.

This report is an extension of the previous report and adds the surveillance data c o l l e c t e d -'i n

. November, 1988.through March, 1990.

I 3.0-CONCLUSION

' I.

The Basemat Monitoring Program has been active since Waterford 3-has been in operation.

The results of the monitoring program are summarized below.

. 1st l

~.

tr

~

3;O CONCLUSION'(CONTINUED) i

'E; a.

Basemat-Differential. Settlement - The calculated differen-1

.gL tial-settlements for all the sight - monitor'.ng ' points are within the specified action

%3tts of 11.0 inch.

The maximum differential during this reporting period was 0.468>

' inch, noted in February, 1989 for the east side.

The July,

- 1984 - baseline differentials for the eight (8) settlement 1 monitoring: points are shown in Table 1.

The settlement ll differentials for these eight (8) points with. respect to 5;

the July, 1984 ' baseline dif ferentials Lare calculated and j

. reported in Table 2.

The settlement differentials for all j

the eight (8) monitoring points were of the.same order of j

magnitude as previous values.

Cyclic behavior with slight ~

overall long term settlement has been observed.

.l s

b..

Groundwater Chemistry - The maximum level of groundwater j

chloride content analyzed was 48 ppm, observed in-June, 1987, for the east side, which was substantially below the H

defined limit of~250 ppm.

The maximum groundwater chloride content level for the third special basemat monitoring

.l report period was recorded at 43.20 ppm in November, 1989

)

for the east side.

c.

Seasonal Variation in Groundwater Level - Groundwater level variation i-small and-is similar in the east and west wells.-

The,verall variation is 2.20 feet for the east

-l K-well and 2.03 feet for the west well.

.t L

d.

1)

Crack Width-Monitorh', - Fluctuation in crack width of a

the fifteen instru,nted cracks over the surveillance l

period is below the prescribed action limit of 15 mils l-(0.015 inch).

The-maximum increase in crack width was 4.65 mils which wa measured in March, 1988 for Crack No. 12 as reported.~in Special Report No. 2 (Reference L

3).

The crack width variation is cyclic in nature.

3, n.

The last inspection and j

i; 11)

Wall Crack Inspection photographic survey of the lower portion of the shield E

building and selected exterior walls in the cast and 1

g west cooling tower areas was conducted in May, 1989.

lg l

The inspection results were evaluated against the.

action limit requirement that no cracks greater than 15 mils in width are visible in the walls selected for inspection.

The cracks were verified to be below'the action limit requirements.

No significant changes were noted - over the previous survey.

Therefore, in accordance with the Waterford 3 Basemat Monitoring Program, Entergy Operations, Inc. has discontinued the photographic surveys of walls.

(Reference 4).

1 l

n

~(

h

3.0 CONCLUSION

_tCO;ITINUED)

The data collected between August, 1988 and March, 1990 has I

satisfactorily been below the action li.mits requirements and no unusual behavior of the basemat has been detected.

The continued integrity of the basemat

has, therefore, been vnrified by the surveillance program.

4.0 BACrlGROUND AND PROGRAM OVERVIEW A surveillance program for the Nuclear Power Plant sland

'n' Structure (NPIS) Common Foundation Basemat has been in place 3

since 1985 and was instituted to provide continuing assurance of basemat integrity and to ensure that conditions withir, the basemat do not change significantly.

The Basemat surveillance Program is divided into fcur major

)

areas:

a.

Basemat elevation, which is the primary method of identifying the gross response of the basemat to loading, soil consolidation and environmental changes, and flexural l

_I variations within the basemat.

b.

Groundwater chemistry to detect any changes from the

'E current absence of significant robar corrosion potential E-within the basemat.

c.

Groundwater 1cvol to dotcet any correlation of fluctuations in the groundwater icvel with measured basemat movements or measured changes in crack width.

ds crack surveillance to provide an indicction of changes in the state of strain at the top surface of the basemat.

ThS first Basemat Special Report was submitted for the data collected through December, 1986 as part of the surveillance program to the NRC via Refcronce 5 on January 5, 1987.

The report documented and verified that the basemat was continuing I

to perform as designed.

However, no definite trend of the data j

was observed.

The original surveillance program established in 1985 was modified to obtain more meaningful data as a result of the experience gained in the monitoring.

The revised version of the surveillance program was presented to the NRC in Chapter IX I

of the Basemat Summary Report (Reference 6) and was approved by the NRC as documented in the Safety Evaluaticn Report issued on October 27, 1987 (Reference 7)..

4l

%-vJ

I' R

4.0 BACKGROUND

AND PROGRAM OVERVIEW (CONTINUED)

The second Basemat Special Report documenting and evaluating I

the data collected through

August, 1988 as part of the Surveillance Program kas submitted to the NRC via Reference 3 in September, 1988.

The analysis of the data collected demonstrated that for the four major arcas of the Basemat Surveillance Program, there was no unusual behavior of the basemat.

The monitoring data was satisf actorily below the action limits. requirement and the basemat uas considered continuing to perform as designed.

A detailed program overview 1

of the various elements of the Basemat Monitoring Program is described in detail in the second Basemat Special Report I

(Reference 3) dated September, 1988.

The crack surveillance program consists of taking precision I

measurements across representative cracks that were chosen based upon

location, visual appearance, crack depth and accessibility.

A total of fifteen (15) cracks have been instrumented using mechanical strain gauges (0.1 mil accuracy)

I as shown in Figure 3.

The location of these instrumented cracks are shown on Figure 4.

The quantitative data collection technique is discussed in detail in the Second Basemat Special Report (Reference 3).

4.1 Surveillanco Frequency a.

Basemat Slevation Survey A baseline date of July, 1984 was established for this I

monitoring and readings were initially taken quarterly in accordance with LP&L Procedure PR-5-033 (Reference 1).

The program allows extendir interval after

+'

three (3) consecutive satisfactory surveillances.

The surveillance interval was increased to semi-annually after the

May, 1985 survoy as the I

preceding three consecutive surveys were satisfactory.

At completion of the basemat confirmatory analysis and as a result of subsequent meetings between the NRC and

~ a g-LP&L, the surveillance frequency was revised in June, 1987 to require quarterly readings for one more year concurrent with instrumented basemat crack data.

The revised surveillance procedure requires that after four (4) ronsecutive satisfactory surveillances in both areas, the interval may increase to an annual frequency and then to a refueling frequency after I-1 three (3) consecutivo surveillances in both areas.

i

3

?

a.

Basemat' Elevation-Survey (Continued)

Due. to the problems encountered with the surveying I

I techniques in the

June, 1988 quarterly survey as discussed in Section 5.1.1 of the Basemat Special Report No. 2 (Reference 3), four additional quarterly surveys were conducted after the August, 1988 survey.

These four surveys gave satisfactory results and hence a sen.1-annual survey frequency was implemented af ter the August, 1989 Basemat Elevation Survey.

b.

Groundwater Chemistry Sampling and analysis of groundwater for chloride content was initiated on August 19, 1984 and monitoring is being performed quarterly, c.

Seancus1 Groundwater Levels j

i This element of the surveillance program was intciated I

in June, 1985 and. groundwater level readings ara being j

taken on a quarterly. basis at the same time as the groundwater chemistry samples are taken.

n d.

Crack surveillance i

i)

Crack Width Measurements Four (4) cracks were initially instrumented with

[

' baseline readings taken,in August, 1985.

Gauges I

were installed on eleven (11) additional cracks with baseline r6adings taken at the end of May, 1987.

Crack. widths were monitored on a quarterly basis until' August, 1989.

The surveillance frequency then was increased to semi-annually as described in Section-4.l(a) above.

t 11)

Wall Crack Inspection

^

The inspection and photographic survey of selected walls were performed every eighteen (18) months with the first complete survey conducted in June, 1986.

The last survey was done in May, 1989.

The photognphic su17ey was discontinued after the completion of two 18 month surveys since no

,I significant changes were noted in the selected wall cracks.

1

~5-

l. ~

i-

1 4

i 11)

Wall Crack Inspection (Continued)

A letter was transmitted to the NRC cn January U

26, 1990 (Reference 4) to inform them of the discontinu: tion of the photographic survey.

=

540 RESULTS AND DISCUSSIONS

,3 The surveillance data collected through March, 1990 for each 3

element of the Basemat Monitoring Program is presented in the following subsections.

5.1 Survey Improvemer.ts A number of improvements in the surveying procedure hr:.

been rade since Basemat Special Report No. 2 submitcal.

I I

Use of a

more precise optical level fitted with a

micromoter has been it.corporated into the procedure and i

two ar.w onsite benchmarks have been installed near the pl a n',.

(See Figure 2).

r The existing offsite master benchmark used-ror all sur reyin'; done on the Waterf ord 3 site is located on a foo:ing of the abandoned transmission tower located about 1

one half mile east of the plant.

The long distance betvicen the benchmark and the plant site makes it d'.fficult to close the survey loop in one day within the i

Olowable tolerances due to heavy vehicular traffic or.

edjacent Highway 18 and other factors such as wind and

-I' comperature.

In an effort to improve the surveying procedure further, two permanent benchmarks (SBM-A and SBM-B), with protective bumper guards were installed on I

the plant site located. outside the protected area fence (see Figure 2).

g Entergy operations, Inc. believes that the vicinity of the 3

new onsite permanent benchmarks will give more control t

over the survey and eliminate possible error introduced due to the distance traversed.

The next survey will I'

utilize the offalte benchmark located on the abandoned transmission tower to establish the fixed elevation for l

onsite benchmarks SBM-A and SBM-B.

The new onsite I

benchmarks will then be utilized for the future Basemat Monitoring Surveys.

Surveyors use the offsite master benchmark located on the abandoned transmission tower footing every time a basemat elevation survey is conducted.

I I

Q

~

?

5.1 Survey Improvements (continued) f Elevation for the onsite benchmark, SBM-1, inside the protected area f ence is then determined and the loop is closed back to the master benchmark.

The SBM-1 elevation is then used to determine the elevation for the monitoring I

' points located on the NPIS basemat (see Figure 1).

The first survey on February 20, 1990 established SBM-1, located on the east side of the Fuel Handling Building, at clevation 17.022 feet.

The survey for all the other I

basemat' monitoring points was completed using this elevation value for SBM-1.

The SBM-1 elevation was appraised for its correctness.

The Stationary Benchmark GBM-1 showed excessive elevation variation when compared to the elevation data collected in the past.

l Later, the evaluation of the surveyed data became obvious that the.SBM-1 elevatio.. is a questionable one and cannot be used to determine the elevation for other monitoring i

points.

The SBM-1 21evation was determined again on l

February 23, 1990 to authenticate the initial data l

evaluation.

The second survey established the SBM-1 elevation at 17.048 feet.

To elevate the confidence level in the resurveyed SBM-1 elevation and to validate the nnN r

SBM-1 elevation, it was surveyed a third time.on March 12, 1990.

The third survey returned 17.040 feet elevat. ton for

-g' the SBM-1.

An average of the second and third survey for 3-SBM-1 elevation, 17.044 feet, was then used in determining the rest of the basemat monitoring points elevation.

5.2 Basemat Elevation Survey Results I

Ditferential movements of the eight (8) points located at l

cast and west edpes of the NPIS foundation mat relative to the two points located adjacent to the shield building are i

being monitored and compared with the action li.mit of 11 inch.

These - ten (10) points are now located on the surface of the basemat.

The sot of baseline differential i

for eight (8) monitoring points are recorded in Table 1.

The differences between eight (8) sets of differential settlements and their corresponding baseline differentials for the entire period of December, 1985 through March, 1990 are listed in Table 2 and have been reviewed and evaluated for their acceptance.

The maximum difference of 0.54 inch was noted on December,

1985, for differential settlement between monitoring points "E5" and "F".

The maximum differential during this reporting period was 0.468 inch which was noted in February, 1989 between monitoring points "E5" and "F."

This is well within the action limit of 11.0 inch..,

'8 w

a-h

+

c


w

--e--

-v-

  • u-w

-w t

I i

r I

f 5.2 Basemat Elevation-Survey Results (Continued)

{

These eight (8) sets of settinment point differentials

,I relative to the baseline are also pictorially represented in Figures 6

and 7 f or better comprehension.

These figures aportray that dif ferential settlements are cyclic I

in nature.

Since the differential settlements are within the action limits without-any unusual

behavior, the element of the surveillance program related to the basemat differential settlements during this period is acceptable.

i In addition, all the settlement monitoring points on the basemat surface have been monitored and evaluated as a i

I group to review the overall < flexural behavior _ of the foundation mat.

The first elevation survey of.most of these points was conducted in December, 1985.

Any meaningful comparison-of the later surveys

can, l

therefore, only be made relative to December, 1985.

The i

results of subsequent surveys are represented as contour plots of Basemat Absolute Settlement relative to December, i

1985.

The contour plots are shown in Figures 8 through 12 and represent accumulated settlements since December, 1985.

A review of these plots reveals that the contour configura-tion for the various intervals is somewhat similar with fluctuations in the elevations, again representing a

cyclic behavior.

l L

The elevation variation for 37 monitoris.; points, located l

l on che surf ace of the basemat, with respect to the July, 1984 or December, 1985 readings are shown in Figures 13 I

a Lg, through 22.

(

The first available elevation reading is represented by

'l' the initial zero reading of the plot.

A dotted line in W

the graph represents a lack of elevation reading for that period.

Twenty-seven out of thirty-seven monitoring points are compared with the December, 1985 actual or I

derived readings and the rest of the ten points are compared with the July, 1984 readings.

These figures c

clearly depict cyclic behavior with a slight overall gradual settlement of the basemat.

The basemat elevation surveillance is considered

-37 satisf actory and acceptabic since no unusual b:ahavior in E.

the contour configuration and elevation survey of the monitoring points has been observed.

p-l

_g.

I e

i

/;

I 5.3 Groundwater' Chemistry The chloride content of the groundwater has been analyzed I

in accordance with LP&L Surveillance procedure CE-2-100 i

(Reference 2).

The groundwater chloride content values obtained from the start of the surveillance program I

through February, 1990 are listed in Table 3 and plotted on Figure 23.

The chloride content varied from 20.9 ppm to 48.0 ppm for the east well and from a low of 5.0 ppm.to

,3 a high of 28.50 ppm for the west'well..

These values are W

well belov the action limit of maximum 250 ppm and are, i

.herefore, acceptable.

5.4 Seasonal Groundwater Levels f

The groundwater elevation in the two wells from the start i

of the program through February, 1990 are listed in Table 4 and plotted on Figure 24.

The seasonal variation of i

groundwater levels is similar between both wells.

The overall variation is 2.20 feet for the east well and 2.03 feet for the west well.

The data is acceptable as tnere has been no significant variation.

l l

5.5 Cracks Surveillance-5.5.1-Cracks Width Measurement a

The change in crack widths without temperature corrections for the fifteen (15) instrumented cracks are listed in Table 5.

Table 6 shows l

crack width variations after temperature l.

correction is applied.

The values given in the I

tables are cumulative. variations in crack width L

with respect to f the baseline reading which was established in August, 1986 for Crack Nos. 3, 5, 11 and 12 and May, 1987 for the remaining eleven (11) cracks.

The crack width change was calculated from the two sets of gauges installed across each crack and the algebraic average of the two (2) values was taken for each surveillance period.

The crack width variation with respect to its base reading for each crack from start to March, 1990 is also pictorially represented in Figures 25 through 28.

"k i

i 5.5.1 Cracks Width Measurement (Continued) l The results show that maximum increase in crack i

I width was 4.65 mils which was measu',d in March, 1988 for Crack No. 12.

This variation has since been reduced to 1.85 mils.

The increase in width of the cracks was well below the action limit of 15 mils.

Cyclic behavior of the crack width variation can be easily seen from the plots confirming the cyclic behavior as observed from the elevation i

survey of the monitoring points._

Since the crack width variations were below the action limit, the crack surveillance element of I

the monitoring program for this period was satisfactory and acceptable.

5.5.2 Wall Crack Inspection The last inspection and photographic survey of the lower portion of the selected fourteen (14) walls (Figure 5) was performed in May, 1989 in accordance with LP&L Surveillance Procedure PE-5-033 (Reference 1).

The inspection results were evaluated against the action limit requirement that no cracks greater than 15 mils in. width are visible in the walls selected for t

l inspection.

The cracks were verified to be below the action limit-requirements.

Therefore, the wall crack inspection element of the surveillance program is satisfactory and acceptable.

The photographic survey is used to assist in determining the integrity of the basemat.

The

,l first survey was performed in June, 1986 and a l

subsequent survey was done in December, 1987.

In L

accordance with the Waterford 3

Basemat

(.

Monitoring Program, Entergy Operations, Inc. has discontinued the photographic surveys and notified the NRC via letter dated January 26, 1990 (Reference 4) about discontinuation of the photographic survey of the selected walls.

I W

REFERENCES 1.

LP&L Surveillance Procedure, "NPIS Common Foundation Basemat Integrity Check," PE-5-033, Revision 3.

2.

LP&L Surveillance Procedure,

. Chemistry Technical Specifications, Surveillance Performance Coordination,"

CE-2-100, Revision 5.

3.

LP&L Report, "Waterford Steam Electric Station Unit No.

3, Basemat Monitoring Program Special Report No.

2,"

September, 1988.

.4.

Letter W3P90-0605, R.

F.

Burski

.o U.

S.

Nuclear Regulatory Commission, Docket No. 50-382, dated January 26, 1990.

5.

LP&L Report, "daterford Steam Electric Station Unit No.'3, Basemat Monitor ng Program Special Report," December 30, 1986.

6.

LP&L Report, "Waterford Stean Electric Station Unit No.

3, Basemat Summary Report," July, 1987.

7.

NRC Safety Evaluation Report, "Basemat Confirmatory Analyses and Surveillance Program, Waterford Steam Electric Station Unit No.

3," Docket No. 50-382, October 27, 1987.

t

. I q,

m

+ =.

y er e.

,is--

ee-s si----

.. J i

N

/

\\

TABLE 1_

ENTERGY OPERATIONS, INC.

WATERFORD STEAM ELECTRIC STATION REPORT NO. 3

.l-m BASEMAT MONITORING PROGRAM SPECIAL REPORT No. 3 t

BASEMAT SETTLEMENT MONITORING BASEMAT EDGE TO SHIELD BUILDING I.'

(JULY, 1984) l BASELINE DIFFERENTI AL CALCULATION Baseline L

Monitoring Points Baseline Elevations (Ft)

Differential (Pt)

+0.002 E5 - M9

(-35.284)-(-35.286)

=

+0.050 E5 - E13

(-35.284)-(-35.334)

=

+0.052' ES - E14

(-35.284)-(-35.336)

=

E5 - F

(-35.284)-(-35.'438)

+0.154

=

+0.076 MilA - M10

(-35.364)-(-35.440)

=

-0.076 M11A'- M13 l-35.364)-(-35.288)

=

l' MilA --A

(-35.364)-(-35.420)

=

+0.056

=

+0.242 M11A - D

(-35.364)-(-35.606).

I=

NOTE:_ For location of Monitoring Points, see Figure 1.

~

- - - - - - ~, - - - - - - _

w TABLE 2 EN M GY OPERATIONS, INC.

WATERFORD STEAM ELECTRIC STATION UNIT NO. 3 BASEMAT MONITORING PROGRAM SPECIAL REPORT No. 3-

~ ~ '

SETTLEMENT POINTS DIFFERENTIAL RELATIVE

.TO JULY, ~1984 BASELINE (b)

(inch)

(Action Limit = 1 1.0 Inch)

MOR110 RING Points (a)

DEC 85 JUL 86 DEC 86 JUN 87 SEP 87 DEC 87 MR 88 AUG 88 Nov 88 FEB 89 MY 89 AUG 89 MR 90 E5-M9 0.1%

0.180 0.192 0.168 0.168 0.348 0.324 0.132 0.336 0.336 0.276 0.264 0.360 i

ES-E13 0.120 0.276 0.324 0.114 0.252 c.192 0.288 -

0.300 0.288

(

ES-E14 0.096 0.300 0.324 0.091 0.192 0.1%

0.264 0.288 0.240 5

{

ES-r 0.540 0.228 0.084 0.480 0.408 0.468 0.4%

0.310 0.288 0.468 0.276 0.420

-0.360 M11A-M10 0.228 0.168 0.288 0.084 0.216 0.312 0.348 0.215 0.a06 0.300 0.264 0.252 0.324 i

M11A-M13 0.0%

0.060 0.060 0.084 0.108 0.1%

0.144 0.145 0.192 0.132 0.096 0.1%

0.132

[

M11A-A

-0.G24

-0.1%

-0.024 0.036 0.420 0.0%

0.420 0.102 0.096

-0.060

-0.024 0.036

-0.060 i

M11A-D

-0.060

-0.140

-0.024 0.000 0.396 0.060 0.384 0.024 0.108

-0.024

-0.036 0.000

-0.024 t

i l

[

NOTES: (a) For location of monitoring points, see Figure 1.

(b) Differentials are calculated as " Baseline Differential" minus " Actual Of fferential."

I.i 1

l h

n.

TABLE 3 l

t ENTERGY OPERATIONS, INC.

WATERFORD STEAM ELECTRIC STATION UNIT NO. '3 I.-

BASEMAT MONITORING PROGRAM SPECIAL REPORT NO. 3 NUCLEAR PLANT ISLAND STRUCTURE GROUNDWATER CHLORIDE CONTENT (ppm) g

g (Action Limit = 250 ppm)

LOCATION DATE EAST WELL WEST WELL 08/29/84 22.00 17.50 11/29/84 35.00 28.50

'E' 03/04/85 37.00 25.00 g

06/13/85 35.00 22.00 09/21/85 23.00 14.40 11/25/85 46.00 18.00 03/06/86 35.00 16.00 06/02/86 33.00 15.00 09/05/86 33.00 20.00 11/20/86-31.00 20.00 02/26/87 38,00 15.00 06/09/87 48.00' 7.80 09/03/87 22.00 5.00 12/14/87 36.00 7.70 03/15/88 22.50 24.80 06/14/88' 29.80 10.10

'g 08/15/88 21.00 6, t '$

3-11/17/88 17.00 c.e

'02/20/89 21.00 3.60 05/15/89 15.90 5.20 08/15/89 12.70 5.00 11/14/89 43.20 15.00 02/23/90 19.50 16.70

,~

NOTE:

For location of wells, see figure 2.

I e

u

i l'

P TABLE 4 1

.ENTERGY OPERATIOHL, INC.

3 WATERFORD STEAM ELECTRIC STATION r

UNIT NO. 3 BASEMAT MONITORING. PROGRAM SPECIAL REPORT.NO. 3 I

NUCLEAR PLANT ISLAND STRUCTUR2 GROUNOWATER ELEVATION (FT.)

4 (No Action Limit)

LOCATION j

DATE RART WELL WEST WELL 06/13/85 11.50 11.50 09/21/85 10.70 10.97

'11/25/85 11.65 11.52 03/06/86 11.57 11.70 06/02/86 11.67 11.80 09/05/86 11.75 11.91 11/20/86 11.90

'2.11 02/26/87 12.00 12.01 06/09/87 12.05 12.35 09/03/87 11.90 12.11

-12/14/87 11.36 11.18 03/15/88 12.00 12.16 06/14/88 11.92 12.13 08/18/88 12.23 12.26 11/17/88 11.65 11.81 02/20/89 11.60 11.61 05/15/89 12.15 12.02 08/15/89 12.15 12.39 i

11/14/89 12.10 11.85-02/23/90 12.90 13.00 L

NOTE:

For location of wells, see figure 2.

I.

.I.

TABLE 5 ENTERGY. OPERATIONS, INC.

WATERFORD STEAM ELECTRIC STATION UNIT NO. 3 BASEMAT MONITORING PROGRAM SPECIAL REPORT NO. 3 CRACK WIDTH MONITORING CHANGE IN CRACK WIIM'M (MILS Inch) (b)

[

(Action Limit = 15 Mils)

Without Temperature Correction CRACK NOV.

FEB.

MAY SEPT.

DEC.

MAR.

JUNE AUG.

N0Y.

FE8.

MAY AUG.

MAR.

NO. (a) ' '86

'87

'87

'87

'87

'88

'88

'88

'88

'89

'89

'89

'90 l

f 1

0.45 1.40 1.85 0.90 0.50 0.45 1.30

-0.65 1.30 1.50 2

0.15 1.00 1.70 0.40 0.25 0.90 1.05 2.05 1.90 0.70 I

3

-0.40

-0.20

-0.20

-0.20

-0.10 1.35 0.05 0.00 0.25 1.20 2.50 -2.80 1.75 4

0.05 3.15 3.35 0.60 0.05 0.90 2.70 1.25 2.00 0.20 5

-0.10 0.00 0.50

-0.05 1.20 1.10 0.05 0.00 0.70 0.10 1.60 1.40 1.70 I

6

-0.15

-0.50 0.15

-0.25

-0.45

-0.20 0.00 2.85 2.60 2.30 7

0.40-0.90 0.80 0.15 0.05 0.10 0.15 2.35 2.30 1.55 8

0.50 0.35 1.25 0.20 0.05

-0.20 0.20 2.50 2.55 2.05 9

0.45 0.15 0.25 0.80 0.35 0.45 1.10 2.30 2.25 1.75 10 0.65 0.75 2.00 0.65=

0.30 0.85 1.20 1.90 1.85 0.80 11 0.10 1.50

-0.60 0.35 0.70-1.65 0.55 0.35~

0.80 1.05 1.95 1.85

-0.95 12 1.30 3.50 0.70 0.10 1.30 3.95 2.30 1.25 1.15 5.35 0.50 1.15 2.45 13 0.20 1.10 3.40

-0.05 0.45 0.85 1.90 1.75 1.95 0.75 14 0.00 0.55 2.15 0.45 0.10 0.65 2.20

-1.70 1.50 1.40 15 0.80 0.95 1.65 0.40 0.90 1.05 1.45 1.90 1.75 1.85 I

j NOTES:

a.

For crack designation and location. see Figure 4 b.

Baseline date for Crack Nos. 3. 5. 11 and 12 is August 1986.

For remaining cracks, baseline date is June, 1987.

I g

Y<

TABLE 6 ENTERGY OPERATIONS, INC.

WATERFORD STEAM ELECTRIC STATION I

UNIT No. 3 BASEMAT MONITORING PROGRAM SPECIAL REPORT NO. 3 CRACK WIDTH MONITORING CHANGE IN CRACK WIDTH (MILS Inch) (b) i (Action Limit = 15 Mils)

^

With Temperature correction CRACK NOV.

Fte.

MAY SEPT.

DEC.

MAR.

JUNE AUG.

NOV.

FE8.

MAY AUG.

MAR.

l' W

NO. (a)

'86

'87

'87

'87

'87

'88

'88

'88

'88

'89

'89

'89

'90 i

1

-0.35

-0.20 0.45 0.20 0.10 0.05 0.30 1.25 1.30 0.90 2

-0.65 1.30 1.10

-0.90

-0.55

-0.10 0.65 0.25 -1.10 1410 3

-0.50 0.20

-0.30

-0.20

-0.40 1.05 0.15 0.20 0.45 0.50 0.20 0.10 0.45 g

-0.55 2.35 - 3.15 0.60 0.65 0.30 2.00 0.25 1.30 1.80 4

g; 5

0.00 0.40 0.50

-0.35 1 10 0.00 0.35 0.00 0.80 0.20 0.50 3.00 0.30 6

-0.35 0.70 0.55 0.65 0.65

-0.60

-0.40 0.55 0.10 0.20 7

-0.30 0.50 0.20 0.75 0.55

-0.40

-0.95 0.25 -0.80 0.55 I

8

-0.20 1.15 0.45 0.90

-0.75 1.60 1.00 1.00 -0.85 0.45 9

0.25 0.15

-0.25 0.00 0.15 0.55 0.80 0.20 0.05 0.55 g

10 0.75 0.25 1.40 1.15 0.40 0.35 0.20 0.00 0.15 0.50

,g 11 0.50 0.10

-0.50

-0.35 0.50 0.05 1.95

-0.15 0.50 0.45 0.75 0.35 0.65 12 1.20 3.70 1.00 0.10 1.90 4.65 2.00 1.55 1.05 4.45 0.50 1.25 1.85 13 0.20 1.00 2.40 0.15 0.15 0.75 2.50 0.45 0.15 1.05 14 0.80 0.55 1.95 0.05 0.90

-0.65 0.80 0.10 -0.40 0.40

-l'

=-

15 0.70 1.05 1.75 0.50 1.20 1.75 1.35 1.30 1.55 1.45 E.

NOTES:

n.

For crack designation and locatior. See Figure 4 b.

Baseline date for Crack Nos. 3. 5. 11 and 12 is August, 1986.

For remaining cracks, baseline date is June 1987.

4

g 9

-e

~~

N um tg trii-U.c

)

D If i

Wlo El,

,,0

,Wil

'W3 El3.

l-D l'

.W4

El4, i

r--

h "'I gl[a ES d RCO l

E6 *

Ml2, I

Y w

E I

E W8 ElO W9 Ell 4

E#

(3 I

IE

  • C I-F.

'I O.

E.

s

(

ENTERGY OPERATIONS Waterford Steam Electric Steion # 3

(

SETTLEMENT MONITORING POINTS FIGURE I g

PR0fEtt0A 1 CAP E

  • ~'

BUWPEn

/,

ADMIN.

2 FL1 POSTS f'

9 T

".N

^

' 6 ' -6

'./

\\

T tvp.

I 26'-o rn " M CONC. SLAB

/ A.g++p o

FHB g.

,, o

. m r

RCB

,9 6 RAB U

1'-

TURBINE d' OlA. PVC

._._._._.-._._.J l

_ crucwt PLAN GROUT l

BENICNITE 6'-6 S M L1NG GL SEE DETAIL 1

)

PLUG

?'

1 kf 1

s Pyc $CREEN l

a

-[

[t10/1000*OPNG'$)

CROUNDING

/ CABLE l

e i

SAND I /

EL.

' 4

,, I FILTER

~

35.00

-40.0t 6 EL.

xm h'

I k LEISTOCENE 9

b-s CLAY e

SECTION A L

DETAll 1 ENTERGY OPERATIONS l

BENCH WARL N-ft.

w-ft.

EttvaT10N 50terford St00m El8CirlC Station St0 tion d GROUNDWATER SAMPLING WELLS saw A 4529.65 3451.s7 15.195 ft.

seu-e 4477.32 3997 30 16.653 ft.

& PERMANENT ONSITE BENCHMARKS FIGURE 2

c N

4-t/4 04A. STAINLESS STEEL EXR ANCHORS (HAND TISHTEN)

\\/

\\

NON CRACK j'\\

s, MONITORING POINTS N

4

\\

_ PLATE C

'N s-

's /

PLATE 9 i'N

.g*

+

N f,

g 4,

c x

\\

'x ' ]- )s PLATE A

/

l t

m/

J s

y s

%j sN, 'y)

'N

'O '

i x

s

, /

p

/

e

\\

/

s ENTERGY OPERATIONS Waterford Steam Electnc Station # 3 INSTRUMENTED ARRANGEMENT AT CR ACK Wl0TH MONITORING STATION FIGURE 3 0

1 n

m m

m m

e

^

U

~

D FHS g DW!7 3

WEST DI Jg p

S b

M an

%d Ke g

M*"'"

gcg

.13 4.

' De57 3

i g

4 e

Sel7 I

RAB B~*~

'~~

- CRACK IN BASE M AT O woaiToaiaa STarioN ENTERGY OPERATIONS Wotorford Steam Electric Station # 3 CRACK WIDTH MONITORING I

STATIONS FIGURE 4

..-_. _ _. _. _ _ _ _ _ _. _.... _. _ _ ~.... - -.

I

~

' 1,,

U p

FMS 3

,8.

.L I

4 4

l l

r-W12 f

g n

Ik D

["~

O 3

1

] C.

1 j-

~~~"~

W8 I

lI RAB

~~~

I ENTERGY CPERATIONS Wotorford Steam Electric Station # 3 SELECTED WALLS FOR PHOTOGRAPHIC SURVEY FIGURE 5

4 e

e s

s m

a I

a a

0 e

m.

2 sn S

0 e

0

.a 0

U.

.0 09 4

8

.f

.v 4

a 2

a.

6 a

0 2

t 0

5 s

5 e

se

.s o'

9 E

e F

0 e

n

'm

.n s

.w e

O L

L 0

t W

A A

e 13 0

I 0

.G T

0

.o M

u u

N n

a e

e E

4 s

g 2

R 5

.a 3

.R E

a E

0 F

w F

0 7

r F

s 0

F e

I I

e D

.C D

e

.cc E

O o

0 F

4 r

8 r

e 1

9 o

0 5

.e E

.P E

e 0

E 8

5 S

s r

E 7

0 E

o

.=

.N e

U o

J J

n n

te oc

.c

.C O

c E

o.

L D

2 t

2 e

0

.e A

t

.t u

I U

O.

J J

TN S

s s

O e

c E

C E

e D

c R

t s

s 3

2 t

t 2

e s

4 3

2 e

t s

e e

e e

c O

a 4

e e

e c

e e

e E

F F

I g~~ 3y O+-

5,= T

,i=5 g - [ O" 3

=E

{,a3!=5 D 6 m

S T E N R IO U P G I

TN F e

e s

s R

a e

a E

m2 a

e M

m w

n es 0

0 E

05

,o O

.G 3

u L

ua 0

n 1

e 6

o s

.t

. V.

t 72 f

0 aW S

e 2

n e

9 6

3

.s 1

.e 3_

E 0

t 0

e e

2 s

s 5

.v g

.V 2

o 0

0 n

8 O

8 L

0 0

L 2

8 A

3 n

.a A

1

.n I

I U

T u

O a

0 a

N T

s t

e N

4 e

E 4

E 2

2

.a 3

.a R

3 a

R a

0 E

0 w

E Mr F

re F

e F

F

.C I

.c D

e I

E D

O 4

o r

r 3

9 e

2 e

1 0

o

.e 0

.P E

2 e

4 E

1 s

S 5

5 r

0 r

E e

E 8

.e

.n 6

N 1

U u

a J

e J

t te e

N

.c

.c c

E D

o t

0 o

8 e

s

.t

.t t-5 U

u J

O 5

J s

s e

e C

. c

- i -

E c

D o

e s

s 3

2 1

t 2

t s

s 3

r o

t.

s e

e e

0 e

e 4

4 e

e o

0 o

4 a

Z~3"O>$Ajw"gW5 i 5" $

7- { O* IC3 = y y g.aE l =ma

<!l;'

1 4.

.q

[

}

t 08 R

R 9

h0 e

A 0

u N.-

A 0

e yA s

e a

e

.G g

s U

g A

,G e

U W.

. A s

A Y

es

,v M

0 A

0 s

0 e

0

.B se L

0 E

A F

L

,s m

\\

s A

e E

F I

s

.W f

O T

e E

N

,w R

se s

o e

E es E

.G R

s e

e P

U F

E S

,G F

Ae F

O U

F e

s A

ID

.R D

I s

e A

,R W

A 0

A T

s D

e e

A

.C 0

A 1

E 1

D 7

1 E

M D

0 8

1 t

0

.P M

~

e E

~

.P E

8 S

E 7

S 8

8 F

.NU

.e e

J B

y.0 U

es J

L s

.C e

.C A

E ED E

I e

D T

S 0

2 t

N m.

1

. L e

1

.L U

0 J

U E

6 5

J R

8 5

C E

e E

E

~

C e

4 3

2 3

,3 2

D F

0 0

0 0

. 4 2

.e E

e 3

2 1

e 0

0 0

2 2

D F

D 7 I

_ 30 { 3 wa $ [ @. J. h 5 g t a r 2:

f]," $

g f5g=g S E W

6 TN R U

IO P G W

S I

T F O

N 0

R 8

E 4

A R

M 2

8e 2

A 3

s 3

w W

0 e

1 E

e

.G 6

0 G

.G L

U 5

f A

U i

9 0

A 8

i a

7 e

s 4

,Y t

M A

5

'M it e

0 s

s 0

9 e

0 E

,B 3

F E

L 0

s 0

e F

A 04

.V L

e 2

s I

0 T

0 O

A 9

,W e

0 O

I g

N s

T N

0 3,

8 E

7

.G N

0 5

0 R

9 U

E 1

.G 4

A E

e R

0 U

8 A

F 8

s E

s F

3

.R 4

e 0

A F

4

.R f

g D

M F

A 1

7 I

0 W

D 0

7 2

0

.C 6

9 1

5 1

3 E

3 1

.C 0

D M

F 1

0 ED M

0 F

A o

0

.P g

E 1

t S

A

.P t

E 1

O F

1 S

M O

1 7

.N e

U M

. N J

e U

S O

J e

s

.C e

g E

D 0

. C E

s 8

e.

0 6D

.t

.t O,

6 8

0 U

0 t.

2

,J 2

J e

SS g

C f

E o

s S

e D

n 2

0 3

2 O

O D

L 0

. O s

5 4

3 2

1 0

t O

0 0

0 0

0 i.

_k g g*- >ywg gg@. sl55ts I3; (3g g Jb m *5 j2 l

il'

M M

M M

M W

M M

M 'm m

m m ~ m ~ m-m m

N' L

~b_

~-

-( REACTOR BUILDING 0

T 12A 12A r-g

\\

\\

er

\\l t

g-es, E13 14

-15 T

s Ag E% T~ r

  1. ~

} 12M "J E" O E2 E E4 ( m2 / I 10A ? i gu / Es t'o -38 5 t, 7FH h C. 9A 6FH f to -8A j 5FH f _{UILDIE g AGTOR m ,3,,,,,, 4FH [ l 3FH 6A -g I 5 5A l 2FH f

  • e

_3o IFH I i r-- % \\ f 4A -[ I A = g v( ' e .so V' 3A v;v v r-2M l IM [ ~ [N ~'g Y } :I iA S 2A f to 's e _/_ su 1 I I.. I I I I I I I I I 1 1 I I I I I I I I W V U, T2 T 5 R 0, F. N M L K J H G NOTES: 2 CONTOURS ARE IN 0.001 FT BASEMAT ABSOLUTE SETTLEENTS i~='"ud!!70Rince0iNr ""EN*** 35 MONTHS FIGURE 8 n v

m W M-. m m m m m m m m M M M M M M M M N =4 ~- ~( REACTOR Bull DING 12A 12A r ] L g, t, f K "a 12M m l 9M -bzo 'g I 10A .{ E' _so n 7FH hc_ 9A l 6FH wo t. gg ,FH 4FH n rURDW ,A _ 3 ? 3FH g 6A 5 i s' d / i ~ E ~ lI 2M ..s T 3A ,M n____. f y3Q.. o'~ 2A I _"2 M Idd E L ** 1A g I I I I I I I I I I i I l II i 1 l W V Us Tz Ti S R 0. P. N M L 4 J H G NOTES: CONTOURS ARE IN 0.001 FT BASEMAT ABSOLUTE SETTLEENTS o0e4 ',j =g9 0 RING POINT 38 MONTHS FIGURE 9 4 1

n.. ~.- g g g g. m m W W M M W M M M' E-M E E E l $a'4 i N, ,,. 4 m4 v-( REACTOR BUILDING 1 1 1 x i x x 12A 12A - -; 6 4 ln /- x 3-7 -d N h /t' 11A En E, 12M t; "'2/f I gu \\ d,2 [ (E3 Eg 5 10A 7 5- ) ( Ei f Eto 20

  • c P

-30 7FH a gg N .FH E. 5FH -wp w:ers." I \\ ( REACroR 4FH K f va BUILDING 3FH 8 -' O 6A I 5!' / N I .e 5A 2FH 1FH i-* -s@ o, ,y h _,3 4 .i 3A =6 IM J gy___ .7, \\ IA ,/ Tf q k ,*1 1A 1A l l l l l l l l l l l i l I. l l l W V Us T T. S R Os P. N M l. K J H G NOTES: coNrouRs AaE iN o.ooi rr BASEMAT ABSOLUTE SETTLEMENTS J 7'" i?"on: PERIOD DEC. 1985 10 MAY 1989 Nc eoINT 41 MONTHS FIGURE 10 c. .-..u.

E. M M M M M M M M-W-W W W W W W W W W I 3 -. N' 4 -4 _( REACTOR BUILDING v \\ X IIA 12A ( 5_l )T l i. ci , - - - -m. C ' l Ejt l-r 1 12M a 10A 7 gu ,,');" c:c < -n s ,,h 9 7F ri l ga I 6FH sra ( -ts to gg 1 ..s__ _. _7 /n , g,TeR 7 l -5' ? 6A g { f 3FH 9 ) 5A 2FH i '{ 4A ~ "'d . -e.., r 3A zu >s n _)_ 7,_ _/WQr> Mi ,A 2* t L" r.as I! I I I I I I I I I I I I W V Us T2 Ti 5 R 0. P. N W L K J NOTES: contours ARE IN o.ooi rT BASEMAT ABSOLUTE SETTLEENTS ( - 1 = DOWN PERIOD DEC. 1985 TO AUG. 1989

== MONITORING POINT y g74 ~IGURE 11 e m --m_.--_____m.. y

!~ M M M M M M M M M M M M M M M M M M M i f l-l l l soo -o L N' .s. 4 1-4 I h-( REACTOR BUILDING / / II 12A l' ' i [k [G / h, E j e,3 y_ s we s, .s. 10A ? 9M s m

  • I b I

9A 7FH _3, I J 6FH -35 to gg i / / r3 i sra at.c r. .,.,s.. ~ ~ I 4FH ~ ~ i { l 3FH q r A 5A l 2FH J .s -70 IFH ir 8 g 4A [ l L -3s k[ T 3A 2M T = iu L .j 2A y l 1A ~ IA l ll I I I I I I I I i l W V U, Tz T, S R 0, P. N W l. K J H G j NOTES: coNrouRs AnE in o.ooi rr BASEMAT ABSOLUTE SETTLEENTS l [j @ 70Rinc potNT PERIOD DEC. 1985 TO MAR. 1990 f 51 MONTHS t FIGURE 12 i ~

. ~.. -. - - - t 8 B l . l, = n. u. I. E 'l i 8 g ? I i. ,9 .l ,~ .g g y n ~ 5 g 5 g g .i .i = l .l .i ~

l

=k

l g

v, .i .E / s o n a g i i i ie i ia s s s a i i i i iiii. g SSR882*@$$TSS8 88%882*@@8@S.S@ C') v-(14 600'0 ) S1m 144 NOuVlWVA NOLIVAE13 (Id L00'0) S1M NI NOuVluVA NOLIVAE13 LQ x N3 g0 t <E 8 E E ,I 1 S i, .i .i k 3, E .h I' g o, e i ? i 'i j - I 'i o 2 ~q .j j j + ) g .I i 8 i i a a a 't 't e 8 - c-e[ - 8 o )v j v n i.1...... (14 L00'0) S1M NI NOt1VlWVA NOLIVA313 (1d LOC'O ) S1M NI NOuYlWVA NouYA313

.c c ' ( 4,'i , l p ,t a 7, /,- .g o s, g

e(

-~. )- j ^ 1 K 't. 1 .i i a 9 g m +

s 1

~( 11 1 i .l 'l e a .E 'N y 'N' ~B~ a ~g "1 'l En g 3 g o-l g '[ 2 .2 i

'N

~[ '. l g .g g 1.,,,, i H.... 1 e 888822*?RR98$R SS4'RR2*iR8VS$8 er (U t00 0) s1M NI Nol1VWVA NOLIVA313 (U L00'0 ) Sim NI NOLLVWVA Nol1VA313 b: a llD ' O _ E' a a >~ /* I: l 2 A 1 '.t 2 I-e g 9r .I ( 8 l n l .l g 9 e W o Z .I .I j g ,? j w ~ ..( n o g g .u 3, .I, m Q u ol .o 3 .g .g n N Y 'g 'g 3 3 . o. W 'g ( a s .s s. ia i s e i i i e i i i. S2%882' ?RRVSS@ SS%RR9 ERR %S$@ +-l (U L00'0) S1m NI NouVWVA NouVA313 (U Lwo) S1M N1 NOuVMVA NouVA313 i ++ V l ~ .~

'::l v I ) -w _I .l. Rl 'i - e r 4 t. m I. I [I. [I e. .I - .i. e 1 I = m a 1 m B i y ? 9 p"- .I .l a l s 5 's 'N a E l g g .3 l o i oi Q I 'l 'l 3 g g ..s 3, 5 ~ g .. i i. ,-i... 8S%RR2*@RRVS$$ 88%AR2~9@?%9$@ m,- i ' I' (Id LWO) s1m NI WouYWVA NouYA313 (13 LWO) Sim NI NOuYlWVA NouYA313 g-We D-O ,N Il 5-8 1 1 3 1 S S 8 4 3 . i. .n '. t. a 2 'q e ,i .i J = = 3 = Y m ,1 6 1 a G-g i m s-i g-e e 1 = s R 3 ,3 .j n n = i 8 .j os i i o i i' 'i 'i " s s ,{ '{ s Fg 'g .s a .....i; . i i i. 3S%RR2 E@8%S$8 88%A82*E88%SS@ -- (13 SWD ) 11M NI WouYWVA NouYA313 (43 LWO) Sim NI NORVlWVA NOuYA:n3 s

-i .\\ l s 'h h , I, , I, a e a 1 - l-I a 'l 'y, s 4 . l[ -l (( g(. yi g 3 i o l t.. [7. E' i-E 8- 'l r m i t I i s (.;: i 9 'g { g- ) u = s t l- -l g \\ i .I e a e e ? 'M 6 'y .) s. E' b i i 2! l g a .s L-g g <I-a g .g 3 3 g g. q i i i

  • i i iiiii i i e i i i i ii.>

83%8.82*E?8%S@R S S ? 8.2 9

  • 3 $ 8 y S. S. R, he 3

1== ' (u too o) s1M NI NOuVlWVA N"XLVA313 (b toc'o) Sim MI NOuVlHVA NouYA313 g [ocM

n5 ll3 -

0 LLi E s 8 [8. - 4 R. N Z ~i g' r 'i I -l l- ~. 8 ? 2,

  • i

- i i g J a\\ l 9 'l 7 W s s2, ) n. -) U R ~$ ~ i 5 i s a E i 't s s E s 'M s a E 9 l E s 'y oo y l' ] g 3 (-- : j 'i O s 'I .' t 8 8 - e :- g g 1. 3 8 -i....i g g i i i., ... i. ..i... SS?8R2

  • R$% SSP SSS283*

R'$ % S 8 R NJ too'o) Sim NI NOuYIWVA NOuVA3B (y too o ) S7M NI NouVlWVA NouYA373 s ) ._l_-_ ,m . ~

a.s ....s=-. c.m 3 i ,j I s'

l i

e i 1 -l -l v .g I i t g l l t- .-l- ? - l-P,y w e e I .t ' w-ig w-ig-l -l 9 g g g e a 2 'l ,N 'l i- .a ,a g I i a-s. I a o e e 4.

  • f f

'l, i a b-1 "q / 'g (f) i e r o } o n g o

)

G .y e a 'E 'E E l { i iii,i g i i.. i i... I'., S S S'8 8 9 y '$ R V S $ R SS%889 2889S$8 2 X ON 3: v- - (u t00'0) S1m N: NOuVWVA NouYKO3 (u tW0) S1M NI Not1VidVA NOt1VA313 4 LIJ. '; O gg; 2y005 s Yt 8 3 n 4 ~ g* '[ 9' 'j; n o z 3 ~. - Il. .l j g t X g ,g. Q e e g, W J E g i W .I e a 1-w n. 9 .M m .l L. . =I 1 i ILL o sv a = 'I 'I E .j / .j =a g p; i 's 's !. ~ M. - .m / 3 S o '3 N I OII 'l 3 3 'i 'i 'I 'I e s 'E '5 a g i,,i.,, .g 8SS8 8.S.*98R'7 8$$ 883289 2 8 8. %. S. S. R. l !? (u two) slm NI NORVMVA NouYA3B (u tWC) S11P NI NOuVlWVA NouYA3B p- ) j i ,,_.,,4

J. 8 s .I y 9 e . i.. n n I .I l m-e .I. >v i e O( g 3 .l [ >? g 8 i a .8 f e' 'l 9 l C g 't l g 'I- .l ,e e l u[ si 5 ~ ~ o ~ '5 p '[9 ,. -l j g i i iii i i e i i EE%88I S@8%@$@ 8S%8K' 3 2RR%8$g tll: e (sd 100 0) S7m NI HouVlWVA HouYA313 (13 500 0) S1M NI NOuVlWVA NOUVA313 P 4 LU O tt: ll3 s a E' =g g ? ( .i we a .i .I j g i 2 -l 9 .I R .I k l l

l T

? g ? 4 1 ~ . I -. 3 5 i R j 5 j = m a 'l 9 'l g .g .l 8 5 g

s 9

,l- .l a I a,. .' g - o e t E Y 8 h 8 m g c-c 1-1 na g g 'b

  • J x

x ...i i i i i i i-g i i i i i ie iie i

j S S 7-R 8 2 * @ $ R @ S $ @

8 8 % 8 8 2 * @ @'S % S 8 8 + (ad too 0) 51m NI NOuvlHVA mLVA313 (13100 0) S7m NI NOuYlHVA NOuYA313 i g

i ; 8, l . I. - a [ .g- [ e .l .c 9 r 9 ~ n-E C 3 9 i 8 'N-E % I. 9 a 4 -l. 4 -l a s a e y y 9 1 cn g 8 'I 'N g- .a .a 4 oi oi g i i e a 'l 'k~ h' l l ' t:: - 1 8S%882*?8$$S8R 8 S % 8.8 2

  • 2 8. 8. %. S. 8. R.

-l (is two) slm NI NOuVluVA NouVA313 (13 L00'0) S1m NI Not1VlWVA NouVA313 g g-l

m i

g. 3

50 i

i n: 4 1 ~s 4-~k i s I 1 e E-a .a m [ 9 [ LO' 'j g ~ Q .{ c. b .l m W '.i r t-n g n g .I 4 n$ g g d j-~ y s a, i j g a i

j ii-j s

s-r' ' l N

  • E h

a e 7 "l i-g= o 8 5 ,s N I -I l g' .{ / .g o s s 'j .j ." l ~ )p-4 m .l .l l3_g-y c. 3 j ( s a i i e i a a a a a i i i.i

i. i i a

i : 8.SL% 8 8-2!* @@R@S8R SSS882*@$8%38y I '! i l-;. (?i L0(r0) S1M NI NOuVlWVA NOuVA373 (nd iocro) S1m NI NouVlWVA NouVA313

T .n ; 'u g 5-l- C. 5 o n l N l -) I ,a9 g g. E ] 'g in s 5 .n E s J ~ j. e - e. s a '( i 'l s s I 'l 'l s 8 0 .oi oi g 'i 'I k .s. t .t i e r e a '5 '5 a rc .. i i i . ii..i g -- i i i i i. .i g 3-S S.% 8 R S

  • 2 8 R $ S $ R S S: %RRS*?8898$R

{fo o.

(u two) S1M NI NOuVlWVA NouYA313 (u 100'0 ) S1m NI NOl1VlWVA NQuYA313 M N 4 LIJ U E

' I-ll3C s _ LA= i 8 k 9 8 ,i e ,i i 'i 2 'j i .j .Q 9 + g r 1 .i 4 m e l l 7 9 a. W R. .g g a W .) '.l 3 o w- . B. g .g g 9 ) S .i ? E a. ? .I Y di s q . n. n n. s s L. i 'g 'g .g s e 't 't lig; .l .{ E'- ,... i. L ,i_i.... g B-St%-R 8-21* 2 8'R % 0! fa R SS%RR2*2RRSS8R (u two) S1M NI NOuVluYA NOuYAfD (u two) S1M NI NOuVlWVA NouYA313

c i

3,. 4 e '} {1 I, o

f. [ ' I. '[

in .s a I' 'g - l_ 'g. l .s- ~l 9 'i.'j l 6 9 g g a g g g n .l-o ,o y q 2 i. s 1, [ 1. y' g g ? g a ;' S- .S g e' .St I e e 'g' La-g e e a e a 't 't e oII g- - ol g O Ij i 6. .s .s e. g g E: e e ~ g g g 3 3 Q i i... g g. ...-.g 8 S % R R 2

  • 2 $.R V S $ $

88%8R9* $8VSS$ I, (id too o ) S1m MI NOuYWVA NouYA313 (Id tKO) S1m NI NOl1VIHVA NouYA313 =h b.W oc h3 <e E E s .I I g n s n' i e .i z e ~i

9..

i = X. .a .a p .I g 8 e I W 'T I I 8 J 'I W 3 'g 8 S i Ll- .g j s 3 g i l-- E g .S' o. r E a 3 r, 'I i-E 't a. e I;

e:

3 y g 3 s j; c' 4 g 's g g. [' l. 2 g n. 's l- ...'5 3 3 i.... s p* g i.... ~-S S % R R.S * ? $ R % S $ 8 88%RRS 9-@ $ % 8 8 6 (nd two) s1M NI NouVWVA NouVA373 (33 ggo) Sim NI NOuYlWYA NouVA313 -t-3 l w, g -w.4 -e

7,, ~. g, 3 Y s .a POINT W12. .so E'- ? - ',s g, E 40 - ' 8a 30 - so 20 - a 5' 10 - o -E 0-10- 's -15 20 - 's -t s E s -23 i i - 30 .s-28 -27 .e. ,3 -40 .r,o _ -e 3 m. m. +.W..e.w.---6.s,.e,-e w w-. 4.u a-. 4 I l 1 i } ELEVATION VARIATION OF MONITORING POINTS FIGURE 22. a = - = ~ - .u. - ~ s-- n' n-- s

~ '~ ~ ~ E .~ ~ 5 ,. - ~ - ~ ~4 4 ~k 50 - 5 t 5 NORTH-EAST WELL d O E A A a fL v F 40 - --------------- Z N z 6 O o. gg O g 30 - t - O s U E N I 20 -- -- ------- 3: o


E E-

~T 3 O g E 1 O 10 - i NORTH WESTWELL 0 1, 1 I I I I I I l i i I I l l 5 I I i . I-I i AUG84 NOV 84 MAR 85 JUN85 SEP85 NOV85 MAR 86 JUN86 SEP86 NOV86 FE887 JUN87 SEP 87 DEC81 MAR 88 JUN 8 AUG88 NOV88 FE888 MAY88 AUG88 NOV88 FE880 t 5 NORTH-EAST WELL ~ NORTH-WEST WELL i A l GROUNDWATER CHLORIDE CONTENT VARIATIONS FIGURE,23. 4 4 ye -4, ...-r--. u.s ,,n, .w.... ,._4 u ..<.m.. y y

1 } -( 7 g t,.J 4... - 15-w:: 14 - --------------------------------------------------------- ---------------- asz .OF iE<> z 13 - b I O P< D NORTH-WEST WELL l su i e ( 12 - t az g a NORTH-EAST WELL o 11 - i 1 10 i i i i i i i i. i i JUN95 SEP 85 NOV85 MAR 86 JUN 96 SEP86 NOV 86 FEB87 JUN 87 SEP 87 DEC 87 MAR 88 JUN 88 AUG88 NOV 88 FE88e MAYse AUGes NOVse FEB90 E NORTH-EASTWELL A NORTH-WEST WELL GROUNDWATER ELEVATION VARIATIONS .A FIGURE--24 ' s--

    • y y_

4 g ,g = .2"

s ,e r ~ ' E' . 1 E: 1E: l.

g g '
2. g 7

CRACK NO.'2; ~ CRACK NO.1 7-7 $ 6.- @6-5- g-s-8j o.4-g ; h .3 - 33-5- 1 ~ W 1.10 1.10 2-125 130 0 90 z 2 h I~~ 0.00 -0.10 ^025 I ~ 000 0.10 !.-N v N = ~ 4 05 I -1 '4.35~ 020 I 0 65 -0.55 O -0 90 1 10 ' 0 I-I .3 - g N .4 - 5 U3-U @ $ s ~t o O - -7 4 oec or um se am se aus se asov es reea un se aus es um se aner a er eec or esan se am se== m moves. esese eaa, se masse. esan a amer see er B CRACK NO.4 CRACK NO. 3 7 i 7 @6-2 6-y5-g5-o 4 - E4 - 3.15 $3 - 2.35 7,, 1 00 33-3 2-s,- 030 025' 0 20 0 45 0 50 8# 1 - 0 00 g \\ /- ' 020 b 0.15 1 - 0 00 020 4 20 si iu N z N v m E v = 0.1e 4.30 1 -1 0 35 -1 0.50 43o 4 40 g e 2-I 1 %a-g E.4 - g .4 - 5.5 - g .5 - 54-0 o -7 cec er man es ames - aus es isov es neee nvas mus es esaa ns -7 aus es ww u ree er am or se p er osc ar uaa m am m avo w mov es ste es== = mm es nam es amor ste er L CRACK WIDTH VARIATIONS (WITH TEMPERATURE CORRECTIONS) FIGURE 25: . ~..-

.. ~....,...

.3

- M". l _.M q. _q. g_ q 3 , ~.. ~ ., g ~ CRACK NO. 5 ' CRACK NO.6-7- 7 7 6'- 6- .y 5- 'y.5-S. 4 '- .S 4 - 3-3- 2.- 1.10 2-0 80 z h I ~ OQ O 0 00 0 ~9 -0.00 4.30 g -1 ~ 4.35 -_f O i, z 4.10 4 4 50 1.35 . 010 4% '4.85 ' 4 66 4 to. 44 4 55 ' h g -2 ! x 3 3-3- 5 5 4- ; -D ' U 5-b k 4-6- 0 0 -7 7 AUG se NOW e6 FESSF AM$F StPSF (IEC $7 BAAn88 Assto AuGas tsOV8e Fttse teAVao AUGSe esAn es age 37 $EP SF fpfC 07 GAda se AM 80 Auth W Gs0, W pcees esev es auG es tema m 1 CRACK NO.7 CRACK NO.G 7 7 6-2 6-( 5-g 5-g 4 - E 4 - 3-3- 2-2- t. 0.50 0.55 1 - 0.00 g 0.45' 020 0 00 j g e g E .i - 2 -1 4 20 = g 4.95 -1.15 -1.00 -1.00 2.o -3 ' - E g 4-4.- 5 5 6. -7 -7 cecor i4An se am u Aus se uov as reeu asAv = Aus ao van se an er we er ac or wa se amu Aus se n0w a seese. ama,e aus Se esan se aner ur er CRACK WlDTH VARIATIONS (WITH TEMPERATURE CORRECTIONS) FIGURE.26.

l.. _ q l-

[Ml -)

i.. g. ' CRACK NO.9. . CRACK NO.10 - 7 t . 7 6 -- f 6' - 8 s-8 5-E ' 4 - s 4- 'h 3 3-3- '5 s. 2- -j ;; 2-1.40 - 2 "M _ C '2'"

  • " '5
  • ' '==

L j

f a=

' <t - 0.15 -0.25 2 -< z 2-I $. i F l 0 '5 4 _ 5 5 .s _ .s - g 4- ~0 - O a s, war a. s. a. a. s.

. aos

~7,,. or s e, w e,

a. a.

v. 4. ase ~7 mee um ne mm. -e, CRACK NO. -11 CRACK NO.12 7 7 d'6-7 6-4 65 4.45 y 5_ g 5-310 cs-4 _ n 4_ 2 80 S 3-3 3 - im 5 iso t.55 i e5 5 2~ 015 0 65 'f z 0.50 0 50 0.45 1 00 Z 7 I - 0.00 00 g 1 05 a v z vw 5 0 00 0 05 -015 -1 a 10 cm g 2-t - _oy 0 50 -0 35 g 7 z $ $ E E 4 _ x 4_ y U o 5- <g @ .6-1 -7 -7 auses oves eteer amar sneer encer emes asees ausse oves nees = vee me. se - aua. ov. neer amor weer oec or umes me.. auses evee nee -vos muses umso Ii r CRACK WIDTH VARIATIONS (WITH TEMPERATURE CORRECTIONS) FIGURE 27 a i s -+- - a~ ,,m 4 .-,._m- .w,.

s M. ~ ~ nE; ',E. E.

,E-E

.) p

7. (

~ ~ A ! CRACK MO.- 14 - CRACK NO.13.. 7' 7. ~?.;. 6 - ? 6- . E L5 - .g 5'- od 4 '- ~ B 4 - $,3-2.50 3-2.4o 1 95 2- . 2 2-2- R45 ~ 0 05 l Ej 1 - 0 20 0.15 0.15 0.00 4 10 1 - OM -0 5. I 1 - -0 90-I --0 65 0 4 80 0 x. o O 5 5 4 - 4 - r Y o 5-0 5-I [E ) u -7 -7 ' cec or man es am u ausas sev s. eenu uni s. aua a man s. amar see er cec or man as ames ausa sev es esese near se aosa mana mm ar see er CRACK NO.15 7 f 6-y 5-oi 4 - 3-2- 1 05 1.20 1.35 1.30 1.55 145 2 T Z j 0.70 0.50 r us ') 0.. 1 - 0 00 <xO 2-x E T 5 I 6-O -7 ,~.7 ava - v. ..... - ua wa m.7 ac.r

a.., - -

l CHACK WIDTH VARIATIONS . (WITH TEMPERATURE CORRECTKWS). t t- - FIGURE 28 -.}}