ML20214N725

From kanterella
Jump to navigation Jump to search
Process Control Program
ML20214N725
Person / Time
Site: Hope Creek PSEG icon.png
Issue date: 11/30/1986
From:
Public Service Enterprise Group
To:
Shared Package
ML20214N696 List:
References
PROC-861130, NUDOCS 8612030728
Download: ML20214N725 (312)


Text

i i

O .-

I i

l l

l PU BLIC SERVICE EL ECTRI C & G AS COMPANY PROCESS CONTROL PROG RAM HOPE CREEK GENERATIRi STATION O

Revision 1 November 1986 f

O 8612030728 861125 PDR ADOCK 0S000354 P PDR

t'%

I \

\s,/ TABLE OF CONTENTS ~~-

SECTION TITLE PAGE(S) 1.0 Purpose..................................... 1 2.0 System Description.......................... 5 3.0 Waste Sources............................... 14 4.0 Process Control............................. 19 5.0 Sampling.................................... 24 6.0 Waste Classification........................ 25 1

7.0 Temporary Radwaste Processing (Contracted Vendor).................................... 25 8.0 Administrative Controls..................... 27 1

d.1 Quality Assurance...................... 28 8.2 Training............................... 29

() 9.0 8.3 Documentation Contro1..................

Revisions To The PCP........................

33

33 ATTACHMENTS
1. FIGURES Figure 1, Solid Radwaste System Block Diagram Figure 2, Radwaste Supply and Exhaust Ventilation Block Diagram Figure 3,* Waste Processing, Sequence of Events Figure 4, Operational Responsibility Chart Figure 5, VRS Process Data Sheet i Rev. 1

~-) *

- ,e- , --- -- ,- - .-,n,-,,-... -

.--- , - , , - - , - - - , - - ~ - - - - - - - - - - - , --n--.-- ,--,- ---- - - - - - , - , - - -n - - - -,--

,/ . TABLE OF CONTENTS (Cont.) ___

Figure 6, ASTM D-312-71, Type III Specification Requirements Figure 7, Werner & Pfleiderer Test Equipment Arrangement Figure 8, General Arrangement, Temporary Radwaste Processing Facilities

2. APPENDICES Appendix A

- System Operating Procedure

- Alarm Response Procedures

- Station Administrative Procedures

- Chemistry Procedures

- Radiation Protection Procedure

- Bypass System Operating Procedure Appendix B

/ - Process Control Nomographs Appendix C <

- Attachments 19, 20, and 21 from RP-RW.ZZ-004(0)

Appendix D

- Waste Stream Composition Appendix E

. - BTP Testing Methodology 11 Rev. 1 O

l l

\

i TABLE OF CONTENTS (Cont.)

3 Appendix F

, - Waste Form Performance

! Appendix G i

- 55 Gallon Product Test l Appendix H i - Compressive Strength Test Data i Appendix I

! - Irradiation Test Data

)

l Appendix J l

4 - Bartha Pramer Test Data i

Appendix K 1

- S-R Analytical Laboratory Leachant Analysis O

s l

iii Rev. 1 O

e b

  • 1.0 PURPOSE __

The purpose of the Hope Creek Generating Station (HCGS) .

I Process Control Program (PCP) is to describe the envelope within which processing and packaging of j' Low-Level radioactive waste is accomplished and as such provide assurance of complete solidification of various

! radioactive " wet wastes" in accordance with the applicable portions of NRC regulations and general l industry guidance which includes the following j documents: '

l 10CFR61 " Licensing Requirements for Land Disposal of l Radioactive Waste" t

10CFR20 " Standards for Protection Against Radiation" i -

10CFR71 " Packaging of Radioactive Material for*

Transport and Transportation of Radioactive Material

under Certain Conditions" 49CFR, " Transportation' l

NUREG-0800; Standard Review Plan Section 11.2, i " Liquid Waste Management System NUREG-0800; Standard Review Plan Section 11.4, " Solid i

Waste Management System" Branch Technical Position (ETSR) 11-3 " Design

, Guidance for Solid Radioactive Waste Management

, Systems Installed in Light Water Cooled Nuclear Power Reactor Plants" t

Branch Technical Position Papers pertaining to Waste i Classification and Waste Form as transmitted to

! Commission Licensees in letter from Leo B.

} Higgonbotham, Chief Low-Level Waste Licensing Branch I dated May 11, 1983.

Werner & Pfleiderer Volume Reduction System Technical Manual: 10855-M137A-463.

I a

1 i,

i t Page 1 of 34 Rev. 1 l

i

)

1 i


ne .~,,,,,,,,,n__~_v-,,--,,----n-,---w, ,,--,,v,, ---r,- , w n -, ,-,,,,n ,m --

)

- Werner & Pfleiderer Volume Reduction System Topical ___

Report WPC-VRS-001 Revision 1, dated May 1978 (proprietary).

Regulatory Guide 1.143 Rev. O, Design Guidance for Radioactive Waste Management System, Structures, and j l Components Installed in Light-Water-Cooled Nuclear

! Power Plants.

l - Properties of Radioactive Wastes and Waste l Containers, BNL-NUREG-50957, Nuclear Waste Management J Research Group, Department of , Nuclear Energy,

{

Rrookhaven National Laboratory, August 1979.

4 j

NUREG 0123 " Standard Radiological Effluent j Technical Specifications for Rolling Water Reactors.

i South Carolina Department of Health and Environmental Control, Radioactive Material License No. 097, as i amended.

j NRC Special Nuclear Material License No. 12-13536-02, as amended, for Barnwell, SC.

State of Washington Radioactive Materials License

  1. WN-IOl9-2, as amended, for Richland, Washington.

i g_jn

]

NRC Special Nuclear Material License No. 16-19204-01, as amended, for Richland, Washington.

ANSI /ANS-55.1/1979, American National Standard for Solid Radioactive Waste Processing System for Light

Water Cooled Reactor Plants.

l l -

Waste Chem Topical Report entitled "10CFR61 Waste Form Conformance Program for Solidfied Process Waste Produced By a Waste Chem Corporation Volume Reduction and Solidification (VRS) System" as

transmitted to Mr. Malcolm R. Knapp, Chief Low-Level l

Waste and Uranium Recovery Project Branch, Division

of Waste Management, NRC, in a letter dated May 30, l 1986.

i i

i j Page 2 of 34 Rev. 1 s

I O 2 -

Supplement 1, Biodegradation Test Results; to the

\ Waste Chem Topical Report entitled "10CFR61 Waste

~~~

j Form Conformance Program for Solidified Waste Products Produced by a Waste Chem Corporation Volume Reduction and Solidification (VRS) System" as transmitted to Mr. Malcolm R. Knapp, Chief Low-Level Waste and Uranium Recovery Projects Branch, Division of Waste Management, NRC, in a letter dated August 5, 1986.

The results described herein demonstrate the compliance l of the generic waste forms tested with the applicable waste form criteria of 10CFR61. The provisions of 10CFR61.56(b) require assurance that:

the waste does not structurally degrade through slumping, collapse, or other failure of the disposal unit and thereby lead to water infiltration; 1

the waste is in a recognizable and nondispersible form to limit exposu re to an inadvertent intruder.

I 10CFR61 requires that these overall objectives be met by providing assurance thatt (1) the waste has structural stability and will

,j generally maintain its physical dimensions and form under the expected disposal conditions; (2) liquid waste, or liquid contained in waste, in no

, case exceeds 0.5% of the volume of the waster (3) void spaces within the waste and between the waste l and its package are reduced to the extent practicable.

The waste forms evaluated have been shown to meet paragraph (1) above by subjecting them to all of the tests described in the NRC's Technical Position on Waste Form.

l Page 3 of 34 Rev. 1

!O .

, - - - . . _ . - . . - . . ,_,_ . _ - _ _ _ . - - . . , , . - . , , , . . , _ _ , , _ ~ - - - _ . - - - -

~S A summary of these tests and their results*is as follows: ---

Recommended Test Acceptance Criterion Test Results .

Compressive Strength > 50 psi at 10% >50 psi at 10%

deformation def ormation for all waste forms Radiation Stability > 50 psi at 10% >50 psi at 10%

deformation af ter deformation for 10% rad exposure all waste forms after 10% rad exposure Leach Resistance Leach index 6 Leach index 8 for all waste f o rms f or Co, Sr, Cs Immersion > 50 psi at 10% >50 psi at 10%

3eformation after deformation for 90-day water ,11 waste immersion forms, af ter 90 day water immersion O'

except evaporator concentrated neutralization waste.

Thermal Stability > 50 psi at 10% >50 psi at 10%

deformation after 30 deformation tt.e rmal cycles after 30 thermal cycles for all waste forms Biodegradation for Less than 10 weight Less than 5.49 all was te forms in pe rcent degradation weight percent Hanford soil in 300 years degradation in 300 years for all waste forms Biodegradation for Less than 10 weight Less than 4.57 all waste forms in percent degradation weight percent Barnwell soil in 300 years degradation in 300 years for all waste forms O

Page 4 of 34 Rev. I

4

[h b-Paragraph (2) of 10CFR61.56(D) regarding liquid waste .has been met for all waste forms tested. There was no free liquid present in any of the samples produced under this program.

Paragraph (3) of 10CFR61.56(b) regarding gvoid space is met in several manners. Hope Creek's waste filling stations are " turntable" style. Each waste container can

, be rotated thru more than one time to allow cooling of partially filled containers. Additionally, the temperature profile shown in Paragraph 4.4 can be adjusted (last barrel) to prevent the " dishing" effect from occurring. The experience with the Vhs System installations in radioactive service, demonstrates that fill ef ficiencies are greater than 85% for all wastes processed. This experience includes wastes which have i been tested under this qualification program as well as i additional generic waste types and the preoperational i

systen testing prior to release to Operations , here at Hope Creek.

In summary, all waste forms meet the requirements of 10CFR61, for structural stability, free liquids and vo id space.

In addition, all waste forms are in strict compliance O with the recommended test criteria ot the NRC's Technical Position on Waste Form, with the single exception of the immersion tes t results for evaporator concentrates-neutralization waste. Since this waste form meets all other criteria, including leach resistance, it too is seen to satisfy the overall stability requirements of 10CFR61.

This PCP will also ensure that solidification will be performed to maintain any potential radiation exposure to plant personnel "as low as reasonably achievable" (ALARA) in accordance with Hope Creek ALARA program procedures .

2.0 SYSTEM DESCRIPTION The Solid Waste Management System (SWMS) collects, reduces the volume of, solidifies , and packages wet and dry types of racioactive waste in preparation for shipment of f site to a licensed burial site. The SWMS is des ig ned to operate on a batch process basis. A block diagram of the Hope Creek SWMS is presented as Figure 1.

Page 5 ot 34 Rev. 1

A

() The SWMS accepts. dry solid trash, evaporator bottoms from the concentrated waste tanks, and powdered and bead resin and filter media slurries from the waste sludge phase separator, cleanup phase separator, and the spent resin tank.

The resin and filter media slurries and concentrates are processed for preliminary volume reduction by removing

, the free water. Final volume red uct ion is accomplished 1 in each of two (2) extruder-evaporators. The initial volume reduction process varies for each waste type,

e.g., a centrifuge for resin slurries, a nd a crystallize r for evaporator concentrates. These radioctive waste ,

products are further reduced in volume and mixed with

asphalt in the extruder-evaporators.

Extrude r-evaporator "A" receives dry cake discharge from the centrifuge or slurry feed from the centrifuge feed tank or concentrates from the crystallizer bottoms tank.

Extruder-evaporator "B" receives slurry feed from the centrifuge feed tank, and concentrates from the crystallizer bottoms tank.

The extruder-evaporators mix the waste streams with j asphalt at approximately 1 gpm in a range of 325 to 350*F (supply temperature). At this temperature, all remaining IT water is evaporated. The extruder-evaporators through

\s l their kneeding and mixing action also compact the waste and asphalt, producing a denser product. The waste and asphalt mixture is deposited into a 55 gallon drum.

The solid radwaste monorail hoist places empty drums on i

the turntables, which position the drums for filling under the extruder-evaporator discharge ports. The same monorail hoist removes filled drums from the turntables.

The filled drums are placed on a conveyor and guided to a capping-swipe station. At this location, the drums are capped; swiped, and labeled. Radiation readings are also taken. The drums are then conveyed to the truck bay

, where they are placed in the temporary storage area j located in the north part of the auxiliary building by the storage area bridge crane. This facility provides for over 30 days of storage space, prior to shipment off-site.

l Page 6 of 34 Rev. 1 O

q_) The radwaste area ( Auxiliary Building) ventilation .---

systems (Figure 2) are arranged as follows:

outside air supply to the balance of the radwaste areas in the Auxiliary Ruilding, consisting of two one-half capacity trains with low ef ficiency and high ef ficiency filters.

ventilation of all tanks in the radwaste system.

This consists of two trains of low efficiency prefilters, HEPA filters, charcoal absorbers, fire protection nozzles, and high efficiency after-filters.

ventilation of the extruder-evaporator discharge consisting of one train of pre-filter, charcoal and HEPA filters for each.

ventilation of the radwaste trash compactor through a HEPA filter.

The solid radwaste area exhaust, compactor exhaust and exhaust from the extruder-evaporators are directed to the filter trains dedicated to this area. This train consists of two one-half capacity low ef ficiency and HEPA filters af ter which is then directed to the north plant

( vent.

The tank exhaust is directed to the exhaust filter trains for the balance of radwaste. These consist of three one-third capacity units with low efficiency and HEPA filters. This flow is directed to the south plant vent.

Page 7 of 34 Rev. 1 O

2.1 Radioactive Waste Characteristics ---

In addition to fulfilling the eight minimum requirements of 10CFR61.56(a), Class R and Class C waste must fulfill the stability requirements of 10CFR61.56(b). Stability of the waste form is ensured through a process of encapsulation.

Encapsulation of waste entails surrounding or containing the waste in a solidification agent, in this case an asphalt binder. A description of the waste solidification method used is presented in Section 2.0 of the PCP. Process parameters are identif ied in Section 4.0 of the PCP. Compliance with these operating process parameters provides boundary conditions for processing the waste and reasonable assurance that the final waste form meets stability requirements.

The asphalt encapsulating media satisfies the stability guidelines of Sections B and C of the BTP on Waste Form. Specifically, the final waste form (waste and encapsulation media) is capable of maintaining at least a 50 psi compressive strength as demonstrated through actual generic prequalification testing of waste forms.

() 2.2 Precualification Testino 2.2.1 Waste Forms to be Tested Waste Chem has performed prequalification testing on test specimens of the generic waste forms in order to demonstrate stability compliance to the criteria of Section B and C of the BTP on Waste Form.

4 Pige 8 of 34 Rev. 1

{

O k ,)

m The Waste Chem prequalification test ---

program is designed to produce and test volume Reduction System (VRS) waste forms which simulate those which are produced at commercial light water reactors. While both the chemical and radiochemical composition of liquid radioactive wastes (and waste process system by-products) varies from plant to plant and from time to time within a given plant, there is a sufficient similarity in the various process wastes produced by a given reactor t

, type, i.e., PWR or BWR, to enable these [

~

wastes to be characterized by a few

" generic" waste chemistries. This similarity was recognized by Brookhaven National Laboratory (BNL) and was used as a basis for the generic waste compositions examined in their NRC-sponsored report

" Properties of Radioactive Wastes and Waste Containers". The generic liquid waste types of interest to Waste Chem program are '.

as follows:

Bead Resins (BWR/PWR)

Precoat Filter Cake with Powdered Resin n'

(BWR)

Precoat Filter Cake with Diatomaceous Earth (BWR)

Evaporator Concentrates - Neutralization Waste (BWR)

Evaporator Concentrates - Floor Drain Waste (BWR)

Evaporator Concentrates (PWR)

Decontamination Was te (RWR/PWR)

Mixed Resin and Filter Cake Waste (BWR)

The specific waste types of interest, to Hope Creek arer Bead Resins Precoat Filter Cake with Powdered Resins Evaporator Concentrates - Neutralization Wastes Evaporator Concentrates - Floor Drain Waste Decontamination Waste  :

Page 9 of 34 Rev. 1 J

l

1

(/)

~~

These waste types are virtually identical to those examined by BNL with the following exceptions:

a) A generic waste stream not identified by BNL has been added. Th is is an evaporator concentrates waste stream for BWR's which process floor drain wastes by concentration rather than by filtration and ion exchange.

Hope Creek's floor drain radwaste is filtered and subjected to ion exchange.

However, this waste form was sponsored in the event that plant configuration changes a re implemented to include this facility.

b) A mixed resin and filter cake waste has been added for BWR's which do not segregate and solidify independently the various precoat and ion exchange materials used in liquid waste process system. This waste form contains diatamaceous earth which is not used-at Hope Creek. This waste form was therefore not sponsored.  ;

The actual composition of the foregoing waste streams are described in Appendix D.

() 2.2.2 Conduct of Testino A. Scale of Testino/ Test Facility simulated waste forms were prepared on an electrically heated 53mm extruder-evaporator. Although this extruder is a small scale version of the standa rd 120mm commercial radwaste extruder, it

.will produce waste products which are equivalent in all respects to those produced by a 120mm machine.

Testing has been performed at Werner &

Pfleiderer Corporation's pilot test facility in Ramsey, New Jersey. The test equipment was set up in accordance with Drawing No. 940201-293 and simulates the VRS process as it is installed at commercial nuclear power plants. (Figure 7).

c) page 10 oc 34 Rev. 1

m 4

k B. Simulated Waste Feeds ---

Waste feed streams simulating the five (5) Hope Creek related liquid waste types identified in Section 2.2.1 were prepared and served as feedstock for production of waste forms. The actual ompositions of these feed streams is identified in Appendix D.

The two (2) Ev'aporator Concentrates feed streams and the Decontamination i waste feed stream are fed to the system (extruder-evaporator) as liquid wastes. While the extruder-evaporator

is capable of accepting the balance of waste feeds as either slurried or dewatered material, Wastechem processed these feeds in a dewatered state. Since the volume reduced product from this process is a dehydrated waste residuo dispersed in asphalt, the state of the feed material, whether slurried or dewatered, has no .effe,ct on the

, properties of the product, i.e., the products f rom both feed types are

\~ / equivalent in all respects.

Tho Werner & Pfleiderer pilot test f acility is not licensed to handle I

radioactive materials, therefore, for

! leach test purposes, the simulated waste feed streams were " doped" with non-radioactive tracers; salts of cesium, strontium, and cobalt. These are the principal fission and activation products present in solidified process wastes produced by 1 . light water reactors. A discussion of the analytical technique to be used to detect tracers present in leachant solutions is contained in Appendix K.

Page 11 of 34 Rev. 1 l

() C. Asphalt Feed The asphalt to be used for this program is an oxidized, petroleum based asphalt conforming to ASTM D 312-71, Type III specifications. This is the same binder material used by all commercial VRS installations.

The asphalt conformance requirements are presented in Figure 6.

D. Sample Preparation The various asphalt encapsulated waste forms were encased in cylindrical, thin-wall aluminum sample molds nominally two inches in diameter by five and one half inches long. This type of mold has been used because it can be stripped f rom the waste forms without the use of lubricants or parting compounds which could interfere with leach rate testing.

Test specimens' of each waste type were produced at multiple waste solid loadings starting at 10% waste solids (and 90% asphalt) and increasing by O e 10% increments to a 40% waste solids loading. Beyond 40%, the increment was 5% to a maximum achievable loading. The maximum achievable loading is characterized by an increase in product viscosity to the point where the molten product becomes ,

grainy and is no longer fluid when discharged from the extruder. Where necessary, the cast waste forms are cut to a length compatible with the test specimen geometries (length to diameter ratio).

Page 12 of 34 Rev. 1 O

13 (s,/ In addition to the small scale waste ---

forms, a full size 55 gallon drum waste form was generated from one generic waste feed stream. This waste form has been produced from a bead resin feed and has a nominal waste loading of 50%. This waste sample is made for destructive examination as .

discussed in Item E of this section to demonstrate that the properties of a typical waste form are independent of size.

On two different occassions, engineering personnel from Hope Creek witnessed the sample preparation.

E. Analytical Test Duplicate specimens of small scale generic waste forms (2 inch diameter) produced at or near the maximum waste loading have been subjected to the following tests prescribed by the BTP:

1) Compressive Strength O 2) 3)

4)

Radiation Stability Biodegradation - Bartha-Pramer Thermal Degradation

5) Leach Resistance
6) Immersion
7) Free Liquids P

Page 13 of 34 Rev. 1 O

/m

(

A' l ~~~

Test specimens produced at lower loadings were held in reserve in the event a " highly loaded" sample does not perform satisf actorily. Samples of pure asphalt were subjected to compressive strength, radiation stability, thermal degrada tion and full range of biodegradation tests to establish waste form performance at the lower waste loading limit, i.e.,

zero percent solids. By testing samples at both the maximum and minimum waste loadings, the complete range of loadings will be characterized (bracketed), thereby eliminating the need to test products

. at intermediate loadings. A description of the RTP required testing methodology employed is presented in Appendix E. The results of the BTP required testing pertaining to the five Hope Creek related generic waste streams are presented in Appendix F. The 55 gallon product sample has been examined for the presence of free standing water. Two n# inch diameter core samples of the 55 gallon drum have been extracted and have been sub'jected to compressive strength testing to demonstrate that waste form properties are independent of scale (2 inch diameter vs 55 gallon d rum ) . The results of these tests are presented in Appendix G.

3.0 WASTES SOURCES 3.1 Equipment Drains Filter and Demineralizer This subsystem processes high purity waste from piping and equipment containing high quality water in the Reactor Recirculation System, Condensate r

System, Feedwater System, low conductivity rinse water from regenerations, etc. The waste is processed enrough a filter, coated with a powdered resin product and a deep-bed demineralizer.

Page 14 of 34 Rev. 1

O)

('# Af ter a catch of processed water is collected in ---

a sample tank, a sample is taken and analyzed. If it meets water quality requirements, the water is transferred to the condensate storage tank. If the batch does not meet water quality or radiological concentration specifications (10CFR20 limits); it is reprocessed. Water not meeting condensate storage quality will be diluted and released in a controlled and monitored manner into the station cooling tower, blowdown line.

3.2 Floor Drains Filter and Demineralizer This subsystem processes waste the same as the equipment drain subsystem, except that the waste to be processed is of lower purity. This waste is from floor drains, drains from the fuel pool cooling system and the RHR system flush.

Af ter a batch of processed water is collected in a sample tank, a sample is taken and analyzed. If it meets water quality requirements, the water is tra ns f erred to the condensate storage tank. If the batch does not meet water quality or radiological concentration specifications (10CFR20 limits), it is reprocessed.

O Water not meeting condensate storage quality will be diluted and released in a controlled and monitored manner into the station cooling tower blowdown line.

3.3 Decontamination Solution Evaporator The Decontamination Solution Evaporator receives laboratory waste, decontamination solutions and sample drain waste which is collected in the chemical waste tank. These wastes are neutralized and if required, buf fered with sodium phosphate, then processed by the Decontamination Solution Evaporator. The Decontamination Solution Evaporator is designed to concentrate to a 10% by weight solid concentration. The bot toms are then discharged to the decontamination solution concentrates waste tank. The bottoms are la te r discharged to the regenerative waste concentrates tanks f or processing thru a crystallizer evaporator.

l I

J Page 15 of 34 Rev. 1 I

_ , . ..-._ _ .-. -_.. . , , -. ,. -. _ . ,,,_r_ . , _ _ _ _ . - . , , _ _ _ _ - - . _ _ - - _ , _ _ _. __- .

s

(

k3,) 3.4 Regenerant Waste Evaporator ~~~

The Regenerant Waste Evaporator receives regeneration solutions from the condensate demineralizer and radwaste demineralizer resin regenerations as well as inputs from the high conductivity sumps in the Turbine and Auxiliary Buildings. These wastes are neutralized and then processed by the regenerant waste evaporator.

The Regenerative Waste Evaporator is designed to concentrate wastes to a 25% by weight solid concentration of sodium sulfate. The bottoms are then discharged to the regenerative waste concentrates tank, where it is processed thru a crystallizer evaporator.

3.5 Detercent Waste The Detergent Waste System receives waste from laundry drains, personnel decontamination and the chemistry laboratory. These wastes which are normally low in rad ioa c t i v ity , are processed by filtration and then discharged to the cooling tower blowdown line for dilution. If unsuitable for discharge (10CFR20 limits), the waste is (s) processed through the decontamination solution evaporator.

3.6 Crystallizer Evaporator The Crystallizer Evaporator processes the sodium sulfate waste in the waste evaporator concentrates tank. This waste is concentrated to a 50% by weight concentration and is discharged to the crystallizer bottoms tank. This tank is one of two of the final waste streams that are isolated, sampled and finally introduced for solidification into the asphalt extruder-evaporator.

Page 16 of 34 Rev. 1

i (O

sf 3.7* Spent Resin Storage Tank ---

Exhausted resin from the seven condensate deep-bed

, demineralizers and the two radwaste demineralizers are stored in this tank. Once sufficient resin is in the tank it will be transferred to the centrifuge feed tank. This is the second of the two final waste streams that is isolated, sampled, and finally introduced for solidification into asphalt extruder-evaporator "A".

t 3.8 Waste Sludge Phase Separator This separator receives exhausted powdered filter coating from the fuel pool and radwaste filters, along with crud discharged from the ultrasonic resin cleaner.

I The sludge, sepa ra ted from the water, is tra ns f e rred to the centrifuge feed tank.

3.9 Cleanup Phase Separators These separators receive exhausted and fouled powdered resin from the Reactor Water Cleanup System. The sludge separated from the water is transferred to the centrifuge feed tank.

(~'}

\-

3.10 Centrifuce Feed Tank and, Centrifuge Spent resin, fouled and exhausted powdered resin and crud from the spent resin storage tank and sludge separators are fed to this tank to be processed through the centrifuge. The feed tank recircula tes the slurry to produce a homogeneous mixture. Once in a homogeneous form, a sample is taken to de termine the pH and the solids concentration of the slurry. The concentration measurement is used to se t the metering pump flow rate for feeding to the centrifuge and on to the extruder-evaporator.

The centrifuge separates the carrier water from the resin / sludge phase separator. The remaining waste solids are discharged as a moist solid to extruder-evaporator "A" via a vertical chute. The i centrif uge can be bypassed, if inope ra ble , to feed j the extruder-evaporators directly.

1 I

I

() Page 17 of 34 Rev. 1

m

%, 3.11 Extruder Evaporators --

Extruder Evaporator A and B receive concentrates from the crystallizer bottoms tank and slurries from the centrifuge feed tank. Extruder Evaporator A is the only one to receive resin from the centrifuge.

The extruder-evaporators encapsulate a waste stream with asphalt at a temperature range of approximately 325'F to 350*F (supply). At this temperature the remaining water is evaporated resulting in a reduction in volume. The end product drips in a 55-gallon drum, where cooling and solidification occurs. The drums are then capped, swiped, labeled, and stored fer shipment offsite.

3.12 Contaminated Oils Contaminated oils will be collected and stored in 55 gallon drums. With a large enough volume on hand to economically justify, a contracted vendor may be brought in for disposal in a suitable manner.

[\

\w I Filtering of oil to return it to as received properities is an alternative.

3.13 Filter Cartridges and Miscellaneous Items Filters and miscellaneous items will be handled on a ca se by ca se bas is , and disposed of by methods acceptable to the burial site. This may include encapsulation of the articles within a 55 gallon

' drum with asphalt.

3.14 Trash Compactor Compactable low level trash will be proccased and compacted in a hydraulic-operated box compactor.

A 100 ft3 metal container with anti-springback devices is used for storing and shipping. The box compactor is equipped with an external HEPA filtration system.

Page 18 of 34 Rev. 1

(-

i U

t 4.0 PROCESS CONTROL ---

The process variables having a direct bearing on the properties of the final product which relate only to the ability to form a free standing monolith with less than 0.5% water by volume are described below. Additional process variables such as pH, must be controlled to minimize corrosion within the system; however, since these variables do not affect the ability of the waste product to form a monolithic solid upon cooling, they will not be discussed herein.

In accordance with the foregoing limitations, che following variables influence the properties and consistency of the final solid product:

Asphalt type;

- Waste chemical species being incorporated into' the asphalt matrix;

- Ratio of waste-to-asphalt; and

- Process temperature profile.

4.1 Asphalt Type Hope Creek will use an oxidized petroleum-based asphalt, conforming to ASTM-D-312-71, Type III requirements. This grade of asphalt has a low

(~) residual volatile content, and a high molecular we ig h t . At room temperature and at all normal ambient conditions, this material is a free s tanding monolith. At Hope Creek, delivery of this asphalt will be sampled for product conf o rmance .

4.2 Waste Chemical Species The type and relative quantity (waste-to-asphalt ratio) of waste chemicals being incorporated in the asphalt matrix has a direct influence on the properties of the final product. Encapsulation of inorganic salts and solids typically "stif fen" and harden the waste product; whereas organic liquids have the opposite ef fect. When the proper ratio of waste-to-asphalt is maintained ,-

final product properties relative to solidification, are independent of the waste type.

s Page 19 of 34 Rev. 1

( )

v

~

~ . . .

l

~~~

s/ . A limit of 1 percent oil and organic contaminants in the waste. feed stream is imposed for process control. Most oils found . in a power plant waste s t ream a re low viscosity. fluids, which are liquid at room temperature. Based on calculations for a typical waste stream with 20 percent solids by weight and 1 percent oil, the total concentration of oil in the end product would be approximately 2.5 percent. This would lower the end product softening point by approximately 5' F; a negligible change.

4.3 Waste-to-Asphalt Ratio in the Product The ratio of waste-to-asphalt contained in the end product has the most bearing on the viscosity and physical consistency of tha t product during processing. The maximum ratio of waste-to-asphalt for each waste feed which has been demonstrated to meet 10CFR61 stability requirements is as follows:

Maximum Evaluated Ratio of Waste-to-Asphalt Feed in the End Product (by Weight)

(g g-j

1. Bead Resin
2. Precoat Filter Cake 50/50 25/75 W/ Powdered Resin
3. Evaporator Concentrates 60/40

- Neutralization Waste

4. Evaporator Concentrates 45/55

- Floor Drain

5. Decontamination Waste 30/70 Page 20 of 34 Rev. 1 0

t'hk I

LJ ,

Optimum value depends on type and quantity of contaminants present. For resins, the presence of fibrous additives .may also influence product flow characteristics, and, therefore, waste loadings. Should the ratio of waste-to-asphalt be increased above the range specified in the foregoing table,the end product viscosity will increase and may exhibit a grainy texture. This cor.ld lead to " pyramiding" of the product in the container, thereby decreasing the container filling efficiency. In all cases, the product will cool to form a freestanding monolith. If lower than specified waste loadings are realized, the end product properties will approach that of pure asphalt.

Proper was te-to-asphalt ratios in the product are automatically maintained by a coordinated proportioning feed system to the extruder-evaporator. Operator involvement is limited to setting the extruder-evaporator and the initial proportion of waste-to-asphalt flow. To do this, he must determine, by sampling, the solids contents of the waste feed. With the sample analysis, he need only consult the nomographs

(~s shown in Appendix B for proper feed control

\ settings.

4.4 Process Temperature A proper temperature profile along the length of the extruder-evaporator is required to provide adequate evaporative (process) capacity, and to assure that free water is not discharged from the machine. Typical process temperature profiles for all Hope Creek waste types are as follows:

Page 21 of 34 Rev. 1

WASTE TYPE PROCESS TEMPERATU RE (

  • F)
  • k)ss BARREL: 1 2 3 4 5 6/7 8

~~~

BEAD RESIN **85 200 280 320 350 300 190 PRECOAT FILTER 85 200 280 320 350 300 190 CAKE W/ POWDERED RESIN EVAPORATOR 85 200 280 320 350 350 280 CONCENTRATES DECONTAMINATION 85 200 280 320 350 350 280 WASTE MIXED RESIN AND 85 200 280 320 350 300 190 FILTER AND FILTER CAKE

  • Temperatures are approximate. Field setpoint changes may be required to optimize process. These changes can be made at the temperature indicating controllers.
    • This barrel temperature is not steam heated and as such may fluctuate with subsequent ba rrel

(

\

temperature settings . 85* is shown to represent;a typical ambients condition.

Low temperature alarms are provided to alert the operator to a low temperature of f-spec. condition which could potentially lead to the discharge of free water. These alarms are based on a percent deviation from set point, typically 1/2-l%.

The percent deviation permitted can be adjusted in the field up to 10% of set point. While deviations of 10% will not result in free water in the product, this condition is the maximum deviation that should be tolerated since failure to hold this range indicates a problem with the equipment.

Page 22 of 34 Rev. 1 O

(3 (I If an of f-spec. condition persists for two (2)

~-

minutes, the extruder-evaporator and feed pumps are automatically tripped to prevent free water from being discharged into the container. Free water cannot be discharged in the interim, since the residual heat of the extruder-evaporator itself is sufficient to effect evaporation. The foregoing controls / interlocks are provided to prevent the discharge of free water to the container. The ~

temperature profiles specified above have been proven by experiment to yield residual total moisture content in the product of 1% by weight for bead resins. This margin provides assurance that free water cannot be discharge under normal circumstances. Under upset or off-spec. conditions, discharge of free water is prevented by the low temperatures process interlocks.

4.5 Minimum Functional Components In support of maintaining the four major process parameters; Process Temperature es -

Asphalt Type

\, -

Mixture Ratio Oil Content a nd to assure a stable waste form consistent with the guidance of the PCP, operators will insure the following list of equipment is available, as a minimum, prior to beginning processing.

Closed circuit television system at the asphalt loading stations.

All temperature profile monitoring instrumentation.

Th'e asphalt and slurry metering equipment (pumps, valves, etc.).

Page 2:3 of 34 Rev. 1 J

s _

l l

l

\) -

Crystallizer bottoms ano centrifuge feeo tank ---

l recirculation and agitation equipment.

All sampling capabilities.

Batches will not be processed through the affected extruder-evaporator, when any of the above equipment is tagged out of service.

5.0 S AMPLING From all the various sources of wastes, two final isolable tanks receive input. The crystallizer bottoms tank and the centrifuge feed tank are each recirculated and agitated to insure a homogeneous mixture. Once isolated nothing further is added.

A sample of each batch is obtained in accordance with operating procedures OP-SO-HC-004 and OP-SO-HC-005. The samples are analyzed and the sample data form (Figure

5) is completed. Chemistry personnel will determine the chemical and radionuclide content of each sample in accordance with the procedures listed in Appendix A.

Hope Creek is a licensed user of the " RAD MAN " computer sof tware of Waste Management Group, Inc. On a yearly J basis the waste forms at Hope Creek will be analyzed and

> characterized and included in the RNDMAN data base.

This assures the accurate assessment ot radionuclides present (chemistry does not analyze for transuranics) in the caily sampled was te streams . This sof tware may be used to classify waste for burial using the data base of Hope Creek's characterized was te streams.

The system operators, utilizing the data form (Figure 5) and the nomograph (Appendix B) select appropriate feed rates,for introduction into the extrude r-evaporators .

The system will be operated until the entire batch is processed.

5 i

Page 24 of 34 Rev. 1 V

o

(,.,) Should circumstances result in interruption of a batch, '~'

'~ the source tank will be isolated and remain so until processing can resume.

6.0 WASTE CLASSIFICATION The eight minimum waste characteristic requirements identified in 10CFR61.56(a) shall be satisfied. The Hope Creek PCP assures that wastes determined acceptable for near surface disposal are properly classified for the purpose of segregation at the disposal site. Waste classification is performed consistent with the guidance provided in the Branch Technical Position pertaining to Waste Classification and is based upon the concentration of certain radionuclides in the waste form as given in 10CFR parts 61.55 and 61.56.

The methods utilized by Hope Creek, and the frequency for determining the radionuclide concentration of the final waste form is conducted in accordance with Hope Creek Procedures RP-RW-22-004 " Shipment of Radioactive Materials" and CH.TI.22-012 " Chemistry Sampling Frequencies, Specifications, and Surveillances".

Classification will be performed in accordance with these procedures.

r-' 7.0 TEMPOP ARY RADWASTE PROCESSING (CONTRACTED VENDOR)

U) In the event Hope Creek requires the services of a contracted vendor to temporarily process and package radwaste on site, PSE&G will obtain the services of a vendor with an NRC approved topical report.

An engineering review of the subject topical repo rt will be performed to assure vendor operational requirements are compatible with Hope Creek system operations responsibility.

All dewatering or solidification processes will receive the same OA and station support coverage to assure 10CFR61 waste form requirements are wet.

In all cases, safety will not be compromised and assurance that ALARA concerns are addressed will be the primary goal for any temporary radwaste system interface.

Page 25 of 34 Rev. 1 O

\-si

r

()

Pe rmanent flanged connections are provided on the south wall of the SWMS truck bay to enable processing of

~~-

concentrates, filter media, waste sludge and/or resin j slurries by a portable dewatering / solidification j system. This provides maximum system flexibility and minimizes radiation exposure in the event that key '

portions of the SWMS become unavailable for any reason.

The following SWMS flanged connections are provided in the truck bay:

a. Concentrates feed
b. Resin / sludge feed
c. Deca,nt return
d. Condensate supply
e. Service air supply
f. Vent filter connection Space is provided outside the truck bay ( if required ) ,

( to the west) for the temporary control panel with an adjacent 480 Vac power supply connection. Check valves are supplied in all feed / supply lines.

The area for the temporary vendor's equipment is snown in Figure 8.

In addition to the service connections, shielding of the vendor liner or HIC, Station Health Physics coverage, communications and operations support are to be supplied as required. Station Procedure OP-TE-HC-001(R) governs the operation of the bypass system piping utilized to supply the waste streams and services. A steel platform is available to protect the conveyor shown in Figure 8.

The temporary vendor's dewatering / solidification equipment can be located upon this platform to ensure sufficient floor area for the liner or HIC. Due to the lifting limit of the solid radwaste bridge crane (7.5 tons), various systems are used to move loaded waste packages out of the truck bay. Hope Creek can utilize a rail and cart system which can accommodate large waste containers or a special short flat bed truck for smaller multiple containers.

73 Page 26 of 34 Rev. 1 U

p)

( _,

All vendor procedures will be reviewed by engineering ---

and approved by SORC in accordance with SA-AP.ZZ-001(O) .

A safety evaluation will be performed to analyze the effects of the vendors presence in the truck bay, postulating spills and fire scenarios.

Technical Specification 3.11.1.4 limits will be observed.

8.0 ADMINISTRATIVE CONTROLS This section of the Hope Creek PCP describes administrative controls as they relate to quality assurance, training, documentation, and record keeping programs implemented by the PCP.

Administrative controls are utilized to ensure that all processing is perf ormed in accordance with the guidelines set forth in' the Hope Creek PCP. Public Service Electric and Gas is ultimately responsible for performing this function through the Hope Creek Operational Quality Assurance program. The responsibility of the Operational Ouality Assurance prog ram include the following:

g

(

measures to assure control of activities affecting

\- the function of structures, systems and components planned monitoring and audit program to assure that specified requirements of the operational QA program are met coordinated and centralized quality assurance, direction, control and documentation as required by the applicable portions of 10CFR50 Appendix B are complied with management controls are established for the safe operation of Hope Creek Page 27 of 34 Rev. 1 0

i

/~s

( ,) 8.1 Ouality Assurance --

The administrative controls designed to prevent solidified waste forms from being released for shipment prior to test sample verification of acceptability require OA to verify that a sample record sheet has been properly executed for each waste batch prior to processing.

Figure 3 illustrates the sequence of events in flow chart form, for the Hope Creek solidification process. In addition, this figure presents the applicable Hope Creek procedures employed for each step of the solidification process.

Figure 4 is the Operational Responsibility Chart for all radwastes systems.

Implementation of the Operational OA program is assured by ongoing review, monitoring and audit functions which fall under the direction of the General Manager - Nuclear Quality Assurance, who reports to the Vice President - Nuclear.

The authority vested in the General Manager -

Nuclear QA is as follows:

s -

independence to interpret quality requirements identify quality problems and trends provide recommendations or solutions to Quality problems The General manager - Nuclear QA has the authority to stop work when significant conditions adverse to quality require action.

Page 28 of 34 Rev. 1 0

1

l O -

The Nuclear OA program assures compliance with the waste classification and characterization ,

i requirements of 10CFR61.55 and 10CFR 61.56. With respect to waste classification, this is achieved by Nuclear - OA verifying proper adherence to waste classification procedures and review and verification of waste classification data sheets.

A Nuclear - OA representative shall on a surveillance basis verify or observe waste classification procedure adherence for a minimum single batch waste processing operation.

With respect to waste characterization, the requirements of 10CFR 61.56 are intended to provide stability of the waste. Stability is intended to ensure that waste does not structurally degrade and affect overall stability of the waste disposal site. The auditing function of the Nuclear - OA program assures stability requirements are achieved in accordance with 10CFR61.

In the event a vendor is contracted to pe rf orm temporary radwaste services, the Nuclear - OA program requires management review'of the vendor topical report. The purpose of this review is to (j~'s g assure that vendor operation and requirements are compatible with responsibilities and operation of Hope Creek. The contracted vendor shall comply with all OA described in this document.

8.2 Training A training program is being implemented for personnel having respons ibilities related to waste processing operations. The results of this training program shall ensure that waste processing is performed within the specific requirements of the PCP. To accomplish this objective and to provide, the necessary control of the SWMS, the following general training programs will be implemented.

Page 29 of 34 Rev. 1 O

(s) 8.2.1 Initial Plant Staff Training Program - --

These programs are designed to provide competent, trained personnel in all disciplines and at all levels of plant organization. The programs are designed to allow personnel to be placed at various points, according to their training, experience and intended position.

- Subsequent to class room instruction, each Radwaste Operator must qualify on each piece of Radwaste Equipment by completion of a Qualification Card.

- On-the-job training will ensure that each SWMS operator maintains an acceptable level of skill and familiarity associated with SWMS, controls and operational procedures.

- The training procedures are detailed in the Nuclear Department Training Manual.

This training includes familiarity with the

,s following SWMS components:

( #

Liquid - Drains, Filters, Collection Tanks and Sub-Systems Solid - Extruder-Evaporators, Crystallizer and Sub-Systems Radiation Protection personnel receive training commensurate with their responsibilities as Supervisor, Techn-ician, Technical Assistant or Worker. This training is in the form of formal classroom lessons and on-the-job training culminating by completion of a Qualification Card.

Page 30 of 34 Rev. 1 O

(

() 8.2.2 Continuing Training Program - A continuing training program f or SWMS personnel, is developed and provides continuous training and upgrading of plant personnel.

Continuing training in specific areas is provided to the extent necessary for personnel to safely and ef ficiently carry out their assigned responsibilities in accordance with established policies and '

procedures. The continuing training program shall run on an annual basis with all program requirements completed during

! the two year training cycle. The continuing training program will consist of two areas; lectures which may consist of vendor presentations, technical training sessions, on-the-job work experience or programmed instruction, and continuing training examinations .

(1) The continuing training program will cover fundamental review and operational proficiency. Fundamental review training will be in system modifications, revision to procedures and incidents encountered during I)

(,,/

operations. Operational proficiency training will involve lectures that wi,ll focus on essential plant operational guidelines and changes or experiences in the nuclear industry.

(2) Continuing training examinations will be given to determine the SWMS operator's knowledge of the material covered, areas where additional training may be required and

, operational proficiency. These examinations should consist of written examination and/or oral examination.

Page 31 of 34 Rev. 1 l

I

~

l l

1 I

p

(,,/ -

Personnel are evaluated on an annual ---

basis where individual needs for retraining will be identified.

Personn,el demonstrating a significant deficiency in a given area of knowledge and proficiency may be placed in to a remedial training program. This program is specifically structured to upgrade knowledge and skills identified as deficiencies. Successful completion of the accelerated training program is evaluated by a written and/or oral examination.

The combination of formal training ,

on-the-job experience, and SORC approved procedures which include cautions and corrective actions should a malfunction or an out of boundary condition occur,will give assurance that control parameters within this PCP are maintained.

8.2.3 Replacement training - These programs are designed to provide qualified personnel for the station organization. The General

[s)

,\s Manager - Hope Creek Operations, or the designated representative, may waive portions of the training program for individuals based on their previous experience and/or qualifications.

The SWMS training records shall be maintained f or audit and inspection purposes. These records are considered nonpermanent records and shall meet the applicable requirements of ANSI /ASME N45.2.9-1979 " Requirements for Collection Storage, and Maintenance of Quality Assurance Records for Nuclear Power Plants".

Page 32 of 34 Rev. 1 O

v

/~'N

\_-) 8.3 Documentation Control and Record Retention ---

Nuclear - OA program audits of waste classifi-cation records are performed on a periodic basis.

Management evaluation of such audits shall be performed and as such satisfy the requirements of 10CFR20.311(d)(3).

Audits of the SWMS operating procedures shall be performed by the Nuclear - QA organization at a minimum of once per 24 months. Changes to operating procedures shall be reviewed on an as required basis by Nuclear - OA in parallel with the Hope Creek Station Operation Review Committee (SORC) in order to ensure continued compliance with the requirements and established process parameters of the PCP. These changes may be promulgated as a result of proposed plant operations and betterment initiatives, system design changes, maintenance requirements, ALARA concerns or temporary vendor interf ace.

Hope Creek shall utilize the PSE&G Radioactive Sh ipment Record Form as presented in Attachment 19 and 20 to Procedure RP-RW.22-004(O) for manif est preparation (Appendix C). The information

) contained in the form' includes the required s'

information of 10CFR 20.311.

The tracking System for manifest preparation shall be in accordance with Procedures RP-RW.22-004(O) " Shipment of Radioactive Materials" and RP-AP.ZZ-Oll(O) " Records Management and RetentionProgram". The retention period for  ;

these records is the life of the company.

9.0 REVISIONS TO THE PCP Public Service Electric & Gas Company proposed revisions to the Hope Creek PCP will receive SORC approval.

These revisions may be initiated as a result of proposed plant operations and betterment initiatives, system design changes, maintenance requirements, ALARA concerns or temporary vendor interface.

Page 33 of 34 Rev. 1 O

The PCP, if revised, shall be submitted to the NRC --

.w ith the semi annual Radioactive Effluent Release Report.

e O

l Page 34 of 34 Rev. 1 O

FIGlnt I HOPE CREEK SOLID RADWASTE BLOCK DIAGRAM SPENT RESIN FROM: CPS RESIN

~

y hE l-RA0 WASTE RESIN + I

! + o o L

WASTE SLUDCE EXTRUDER - EV4PORATOR PHASE SEPARATOR. o CENTRIFUGE A JAMPLING

~

FROM: VARICUS HIGH SOLIDS ORAINS CENTRIFUGE a +

WASTE PRECCATS FEED TANK l .

CLEAN-UP COOLING BACKWASH TANK W ER A9 HALT RWCU WASTE STO AGE  :

PRECCAT ELECTRIC BOILER  :

(STEAM)

O.. . TO VENDOR DECCNTAMINATION o

SOLUTICN EVAPORATOR _

FROM:0ETERGENT WASTE o LAB WASTE -

DECCN WASTE o o ERATE v o -* S AMPLING EVAPORATORS FROM: CPS & RA0VASTE EXTRUDER - EVAPORATCR DEMINERALIZER 3 REGENERATICNS CRYSTALLIZER BOTTOMS TANK t o

' CAPPER / SEAMER SWIPE STATION CONVEYCR 4

PC'8 TRASH CNSITE OFFSITE RADWASTE

~

COMPACTOR STORAGE S(FyT g TRASH (DAW) e

-l O O O FIGURE 2 RADWASTE SUPPLY AND EXHAUST VENTILATION DUTSIDE RADWASTE BUILDING AIR --+ DISTRIBUTION HEADER oSOUTH FOR VENTILATION PLANT RADWASTE SUPPLY VENT FILTER TRAIN i

RADWASTE BUILDING EXHAUST HEADER RADWASTE EXHAUST FILTER TRAIN j

RADWASTE TANK VENTS RADWASTE TANK VENTS - FILTER TRAIN i

EXTRUDER-EVAPj VENT HOODS EXTRUDER-EVAPORATORS VENTILATION FILTERS " NORTH PLANT 1 VENT SOLIO RADWASTE i

i OUTSIDE AREA AIR SOLID RADWAST5 SOLID RADWASTE AIR "

EXHAUST FILTER SOLID RADWASTE TRAIN SUPPLY FILTER "

, TRAIN ~

TRASH COMPACTOR e Filler l

FIGURE 3 SEQUENCE OF EVENTS FOR C) SOLID RADWASTE PROCESSING -

n START l OP-50.HC-001(R)

OP-SO.HC-004(R)

CH-RC.ZZ-007(0) OP-SO.HC-004(R)

CH-CA.ZZ-021(0) ISOLATE AND MIX. OP-SO.HC-005(R)

CH-CA.ZZ-020(0) SAMPLE WASTE FORM, METHCOS FOR OETERMINING CH-C A.ZZ-018(0) CHEMICAL ADDITION FEED SYSTEM FLOW RATES CH-CA.ZZ-002(0) (WPC-VRS)

OP-SO.HC-002(R)

OP-SO.HC-003(R)

PROCESS OP-SO.HC-004(R)

WASTE FORM OP-SO.HC-005(R)

OP-SO.HC-006(R)

OP-SO.HC-007(R)

CLASSIFY, LABEL ANO "

STORE WASTE FORM *Z - 0 4[0) gg_4p,ZZ-029(0)

PREPARE RP-RW.ZZ-004(0)

MANIFEST RP-ST.ZZ-001(0)

N0TIF T NS p p Ng RP-RW.ZZ-004(0)

SHIP RP-RW.ZZ-004(0)

WASTE FORM RP-ST.ZZ-001(0)

RP-RW.ZZ-204(0)

RP-AP.ZZ-111(0) NO WASTE FORMS YES RECEIVEO AT FILE ON ; RP-RW.ZZ-004(u-SA-AP.ZZ-006(O) [ INVESTIGATE  !

WASTE RP- AP.ZZ-011(O)

SA- AP.Z Z-035(O) OISPOSAL SITE FORM CLO RP-RW.ZZ-004(O) FILE ON )

RP-RW.ZZ-004(O)

RP-AP.ZZ-011(0) WASTE FORM

, . _ . .--._._, ____. .__ ______ _ _ _ _ . _ . _ _ . _ , , . _ _ _ _ , _ . , . . _ - - _ _ _ . _ _ _ . . ~ _ _ _

FIGURE 4 O OPERATIONS RESPONSIBILITY CHART

~

OPERATIONS MANAGER ir 1r ir RESPONSIBLE FOR:

SENIOR SHIFT SENIOR - OVERALL IMPLEMENTATION OF SUPERVISOR OPERATING LIQUIG AND SOLIO RA0 WASTE SUPPORT MANAGEMENT PROGRAM SUPERVISOR - CO-ORDINATE EFFORTS BETWEEN SUPPORTING OEPARTMENTS

- SUPERVISES SHIFT SUPP. SUPV.

(RA0 WASTE SUPV.)

(BACK SHIFTS) u O SHIFT RESPONSIBLE FOR:

- ASSURING COMPLIANCE OF OAILY SUPPORT OPERATIONS TO THE OVERALL SUPERVISOR LIQUID AND SOLIO RA0 WASTE MANAGEMENT PROGRAM

- SUPERVISING EQUIPMENT OPERATORS RA0 WASTE

- CO-ORDINATING DAY TO DAY EFFORTS BETWEEN DEPARTMENTS u

RESPONSIBLE FOR:

EQUIPMENT - ALL OUTIES DESCRIBE 0 IN JOB OPERATOR SPEC INCLUDING:

RA0 WASTE - OPERATION OF LIQUIC RA0 WASTE SYSTEM

- OPERATION OF SOLIO RA0 WASTE SYSTEM

- ORUM HANDLING

- ASPHALT SYSTEM OPERATION

- AUX. BOILER OPERATION

.i O

.M5 FORM VRS PROCESSING SHEET OATE pH DRUM NO.

I TANK TANK  % DIL TANK STOP BATCH NR.  % SOLIOS T L EL MIN. ASPHALT FEED gpm SP GRAVITY p MAX. WASTE FEED gpm START TIME /

TEMP.

TIME /DATE DATE INIT. INIT.

NOTE: TAKE READING ONCE PER HOUR, WHEN NECESSARY. .

TIME FL TE ASPH FLOW ORUM TEMPERATURE PROFILE (GPM) (GPM) LEVEL

I 2 3 4 5 6 /

i i

f i

I l

1 I

1

~

.I

FIGURE 6

~

ASTM D-312-71, TYPE bI SPECIFICATION REQUIREMENTS FOR ASPHALT MIN MAX SOFTENING POINT ( RING 'AND BALL - METHOD ). OEG. F 180 200 FLASH POINT ( CLEVELAND GPEN CUP ). OEG. F 437 ...

PENETRATING:

32 F (O C) 200g. 60s ,

77 F (25 C) 100g. 5s 15 35 115 F (46 C) 50g. 5s ... 90 OUCTILITY AT 77 F (25 C)(5cm/mtn). em 3 .

LOSS ON HEATING AT 325 F (163 C) 50g. Sh. PERCENT ... 1 PENETRATION OF RESIOUE. PERCENT OF ORIGINAL 60 ...

TOTAL BITUMEN (SOLUBLE IN CS,). PERCENT:

MINERAL STABILIZED ASPHALT 65 ...

ASPHALT WITHOUT MINERAL STABILIZER 99 ...

PORTION OF BITUMEN SOLUBLE IN CCl. PERCENT 99.5 ...

ASH. PERCENT:

MINERAL STABILIZED ASPHALT 10 35 ASPHALT WITHOUT MINERAL STABILIZER ..-

1 COARSE PARTICLES RETAINED ON 200-MESH SIEVE AS PERCENTAGE OP MATTER INSOLUBLE IN ... 12 CS,. PERCENT #

"THIS LIMIT APPLIES ONLY ON MINERAL-STABILIZER OR NATIVE ASPHALT.

O

O O O FIGURE 7 TEST EQUIPMENT ARRANGEMENT JACKETED ' '

ASPHALT TANK JACKETED LIQUID

.. WASTE TANK ssu j THERMINOXl00l A051 GEAR PUMP LEWA 6y6 PISTON j!

PUMP K-TRON JACKETED I TWIN SCREW LINES ATM ATM l LWF I o

ATM ATM a a i r l {} l 4

l 0 1 2 3 4/5 6/7 8 9 10 11 BOTTOM DISCFMRGE ,

I l T2 T3 T4 T1 T5

ZSK-53/2 1

I ,

i I i

O O O .

. FIGURE 8 GENERAL ARRANGEMENT, TEMPORARY aoar" RADWASTE PROCESSING FACILITIES

N -

'l l l

~~~

LIQUID RA0 WASTE i E/E DRIVE CONT GL i

e(r S.C.R. CABINE T S g

P.T. dg UMP u -

MATCH RADIATION E

u 6 FLANGED CONNECTIONS g y SHIELD gg --

- \ g 4 D0 ORS 1-CRYST.

CN .

g"" a

_i y ,_.

BOTTOMS _) o a --

rm

/ T TANK t

Z W 1.,

TRUCK BAY - CONTROL u

F 7" -- -

~

-1

[S F (4) PUMP i O ~~'

OVERHEAD DRUM N0ZZLE 6W uit

_____J  ; _ _ _ -._ _ - y EL.Ill'-0* m'

/W//dT'"::"::!?, ~- ) }_,

g

~

kCAPPER S SEAHER ~ ~

~~

/ CONVEYOR d D r

l

(' C3 MONORAIL DR HIC HATCH j , CONTR0'L (ABOVEl EXTR.EVAP.Jy -

PT PANEL __.,

Q DOOR -

PLATFORM i i I I

_I l

] g N2 VAPORIZER LOAD ROLL-UP DOOR i CENTER L ' ' ' ' ' ' ' ' '

V DRYWASTE -.-

s COMPACTOR

,! - d M 4

9 l

O ~

B APPENDIX A STATION OPERATING PROCEDURES O

l O

~'s (Q --

SYSTEM OPERATING PROCEDURES OP-SO.HA-001 Gaseous Radwaste Operation OP-SO.HA-002 Gaseous Radwaste Ambient Charcoal OP-SO.HB-001 Equipment Drain collection and Processing OP-SO.HB-002 Floor Drain Collection and Processing OP-SO.HB-003 Chemical Waste Collection and Processing OP-SO.HB-004 Regenerate Waste Collection and Processing OP-SO.HB-005 Liquid Radioactive Waste Release and Recycle OP-SO.HB-006 Liquid Radwaste Filter Precoat Operation OP-SO.HC-001 Solid Radwaste Collection OP-SO.HC-0d2 Asphalt Storage and Transfer f

rs OP-SO.HC-003 Solid Radwaste Auxiliary Boiler

> -I OP-SO.HC-004 Solid Radwaste Crys tallizer OP-SO.HC-005 Solid Radwaste Extruder-Evaporator OP-SO.HC-006 Solid Radwaste Drumming and Capping OP-SO.HC-007 Compactible Trash OP-TE-HC-001 Solid Radwaste Operation with Temporary Solidification / Dewatering Systems ALARM RESPONSE PROCEDURES OP-AR.HC-001 Slurry - Solid Radwaste Annunciator Panel OP-AR.HC-002 Concentrates,- Solid Radwaste Annunciator Panel j OP-AR.HC-003 Asphalt - Solid Radwaste Annunciator Panel O

I l

STATION ADMINISTRATIVE PROCEDURES __

. I C- AP . 2 2-010 ( Q ) Preventive Maint. - Calibration Frequency Determination S A- AP . Z Z-0 2 4 ( Q ) Radiation Protection Program - Training SA-AP.ZZ-029(O) Administrative Control-Radiation Materials SA-AP.ZZ-006(Q) Incident Report and Reportable Occurrences SA-AP.ZZ-035(Q) Reporting Requirements RP-AP.ZZ-lll(O) Abnormal Radiation Occurrence S A- AP . Z Z-0 01 ( O ) Preparation and Approval of Station Procedures RP- AP . Z Z-011 ( O ) Records Management and Retention Program CHEMISTRY PROCEDURES CH-TI.ZZ-012(O) Chemistry Sampling Frequencies, Specifications, and Surveillances.

(O

,,/ CH-RC.ZZ-021(0) Total Dissolved Solids By Gravimetric Analysis CH-CA.ZZ-020(O) Oil and Grease By Gravimetric Analysis CH-CA.ZZ-018(0) Suspended Solids By Gravimetric Analysis CH-CA.ZZ-002(O) pH Analysis CH-RC.Z Z-00 2(Q ) G ross Beta By Liquid Scintillation CH-RC.ZZ-001(0) Gross Beta By Proportional Count Rate CH-RC.ZZ-006(O) Gross Alpha By Proportional Count Rate CH-RC.ZZ-007 (O) Gamma Spectroscopy RADI ATION PROTECTION PROCEDU RES RP-ST.ZZ-001(O) Shipment Surveillance RP-RW.ZZ-004(O) Shipment of Radioactive Material O

l l

I l

)

I I

l APPENDIX B Q PROCESS CONTROL NOM 0 GRAPHS l

i l

O

1 ei 4 .,

ad . . ..

e 1

. _ _ . ..__.=_ g -

- p y... .. y . .

.a a

- o- ,=

o

,o e, o - - --

.g . . _- . . C*

. . .... g

.. o . .. ..w

, , , p%

s

. . . . . es g . . - . . . . . . .. . . . .

,s e,

< ,,,9' u . ..

.ag z .. c o ,.. . . . . . -


,..--.2 tg

,a ,3 .,.... .. _.. ... . . . .

rt . --..-....

.... d

_ . . . . =.

.e O

. . . .. . . _ . . 3 .J ..

.. . .. . .. .. a- .. .. . . g

. . - . . . . .. . . p. e, . . .. . . . ... -

..,y.. _ - 9

. . - .- 6, -W ..-.. _ . 4 3 . .* -

-...wO w . . .. ,c

.... . . . W3m.p. _ . p. c . . a g ..

g g.

.e e.

. . = = = . = = ' = . = ' = = ' = = = ="*

-e. . .

.. ... .. . . . . . . .- . . . .. . . . _ a.: -

.- . . . . . . . . _ _ . . . . O

_ . . i . . . . . . .

._ .. . s.

4 M.,.

.N . _ .._.

. MI- .. . .... . .l .

...e _.,.

-1..

g .... . ., .. .. ._ -

. c ,.;

g .... . . . . . .. . , . 3..:.. _. . .6 . ._ - . . -

w . .- .- .. .- .c o - . ,. ..T

. i

....=g.

.....O .

,N,, o . e.

1 1;  :.

.. . =. l .. . . ... ...... ... .- ,.

.... . .. 8 -

l.

. _.....l..

. . - . . l.. . -

,u. _....._2- .. ..

. .- ...(

g.. ad

. l. . .

......J

.. . 1 .1.. .

o

..... .~

. .-..........___7 g -..

.... . .. -m

. l...gg- . = .

l

.l .. . . ,

. I J .

l .. . . . . .. -

g- .as e f.:, ,.

i I

. y-M " _,

e l .

2 3 - ;.'

.'t 4 v, w

a .. . 4 e n ,- n o -

o...

g g. 8 .

o .- . . .

.e .

s..  ; .

~ *

...g.. . . .

s. ,

~. g c8= .

.n o o og .g. 1 .

} g- o . e . . . ,

.g p

= n ol e

d S' l < .:

7~

l -l.

. s . J ., . 04.

i ......

o. . w , . .e a -

-. a c:

a.

.se

. g. .

g, ,

e- , .

- e.

o 5e* ~

3.3

..w

@ 8 fi 3 B. -

e . .

c.3 -

2 8 a w o

- a z

o

/~-

o 8.. u]

w \

a

  • o _3z. o .

O.-

w a%

5 a

-. . o s e 9 -

.s _

o

  • g o,

,a d

=

.o

. ~ o . . ~ .

I -oooe g3 =

I p.

.-- i=.. *

.p y-

..g

, _ _ . . , . , , . .j. ,..g .

... f ....

, , _ _ , , , , , . . .. .. . - . _ e . . .

.--... -. . .. --. - . . . . _ .~-

0

.. . . . . . . - l-.- , .

.P

.: .-

  • ag,4;-*

. , e,

..'. .. L-J. =- ;

J. - - ../. - '-

1

.o

. ... . ...........1_..

........ . .. .. _ . 1_-

  • .._d== -

..'4.*_*"_'

...... 3 .g ..

- - , . / --.- -

. . . . _ . ._.a_..

. ..s.

__./-.;_.-[/.....

.._- .e

~-

c

.3 , ...

. .. . ... . - d' , . , . ,

..s....

. . g\ s . . '...

-...r..-. . ..* . _ . . . _ . ,

.n

. _ 4 4.= = .. j,**

f .

. . , . . . . . . . _. .- ., 4_ 4. _- . , e *

- . . . . - . - - .m..

..a..-.._. ,,

ae.6-

. . . . .a . , . . . .

s.

q- f .,_.{ ;_ ,n,,. . . .' .

. ._ _..a: P' ,

=.,4.

...-_.A__ .. .

..

  • I. *

'n . . . -

).. . p/ "y(' , , _~

.Wf

.. ' g._.s. .. ,..._ ., g ,._ . . . . . ...

g, , ., g ,., , g. .,q

. - . . .. ~..~. . .. . _ .= g.g,,,,.._.,.,. _ .. .. E, '

.. ~ [ ,**

. :. ... c*A

. t.*

. . . a - . ,.. : .

,s.a .. . . , . -.,.3.- .

,.. .a ,t f 4 f.,

..f...

m.,p.

9 .,

.4

. .4,

.J ...

,, .. a..

. ._ . . q. .

y*

. ' . _ ...s,

. :._ a . % _

&@ _ . . . s_ .,

4. .

. . Q* a R . . ., .n,, ,,, , ,,,,',,;,,4, w ,,g,;,,

, . . .. . . . . . . ....,'...,;. . l

. . . . . . . - . .e .. .. . .

.;ga .....,a.

..e,..,.

. ..v.. .... .,..._

. __ .. n

. _ _ . . .l . , .

5 .I .

t. .q

.....u. .n......,., .

... m  ?.

  • l . . . . ,

l . .A. .c.... ....,:.,. ,, .%. - ,:, . ... .. ,J.y. .

. . - . ....-..1... . , .. . Q e, ..[.s . - ., .e

. . . . . . . _ . . _ . . , . ....?. g ., . . .. .

. , . . ,. 4 . . . . .y .

we - .

nas n .......f...._....

.,.*.....f..6.. . . , _ _.- .. 6 r.,,,,,,

.g.,.g;,g

...i . q.. l.

. , . ,... .. s s

8. . ...

. . .. . . L .: .

_..]w n

.....,...u . ._ . ,

v)-.

. . ....I. . ... - .

t

- . . $ g. _.._ .._

.:. . ._ _ . y . ., .

,a e,

o. 1 ... .._ _ . s ,.......a .:J _a.. , . g . S , L y.,  :% . ,

._._ . ...; . _.a...

.l.... . ...

..) ...

. .. ) . . g .

. . .l".". g. ...

... . . *~

w,_

g .,. .r

, . .,.. .y ., ..f .. .,. .. .. ,.t .*.3,.,...,.

.* .a- . .. l. .

,w u4 h.q fe - .*

r

. a.,s , 3/.

e c. .g m

e.  % o ,.. e o... o .. o.... ,

4 o.J ...,e . . . . e . .

  • w m + .. .

!.5.. J* es ..a. .,.t.)

o .. " . . e

.. .. J.

o, ?..M.8 .- ,,

u.

4._ .. .34- *

4. .;.

. ,g ,,. .. . .c

.y,.

.. ...,.,. ;p gL. _o e _.. . . .

Z .

... n,,

  • .'3

......4.

.,s,. % r ,,

.. .. . .. . . . . . ...'. =

n.

g 4 ..

p.

. , . s.,p .

. . . . .~.

....,.,.?

n on .. ....0,, * * . . . .. ..

. - . . . . . -. g s. ..

j..'

n.w .

.. . 4..

A i.

4 ..

o,,

g . a. . .. . . .

..Y -

. = = . . .

a.

5'=.

a w. .

,,, O v.

p .. _ .

. O ... .. ._

4u .

a D ..

3 o

s O s . . . .

.a 2 . . o. . .ae .e 2 wg -- -.

mu se .

Q .

o sa g -

5 *$

. o. y,Q

.. o 4*0 .

E _

< -9>

3 zo o.

4 A.

w ,0

  • q

=

.O. g .

. y. _. . . . - -

i w

" $M wea

w. $.4 ..

= 2 4 * *

. s -- h...

g

3. **

_2 d .a . g g.Z .

...- c 4 g _. . _ . - . . ,a. N g, eIJ _

v .as c' o..

C.f 4 =

y e,

=

=. . . . . . . - ... - . ,. . . . , , . . . _ _ _ _

8 ACE 2.11

... . ... - .)

1 bY y - -v

.t. .. ..

  • q o .

S G o..s

  • C

. 5 -

y

.to

  • o e

.-__.s

_ J -

3 *

, . - D

... . . 0-

.o - .

._ .. p

_. ..w.,

. .. .. p .

o w,

. . . w.

. p

. *v

. . . .. . e

=

a g

= . . _ _o .

+ .

. . .. - -. ._% c.

a .

7,g

.J g .. ..... . . . *

> w

..o . .. . . ... ..

x n

.=.4 -

  • a

. &os.. , ~ " . ._....... J, _ . . . . . =

. .. - 9r

...k,

's. . .. ..

3 C,

-N o< o.,e

. .. m -

g 9

p..

o ...

m. ..

I . . . ..

i O - - ~:. ... . .

  • o .e

. l . . . s.

v.

t . . ,

go _ . . . . . ' g..

. . . a ,

. g ,. ,

o ,

1

. . .. o . . . _ . ._ .. _ .. ..

., q. .-

$ Q $ $ . ,-

. o.

e.. o, o u

\

t ..,. ~,. e  ;

.a. .

a . ..

t

. . or e.w . . . _ _ . . . .

~-

.4

. . - .. - De n e . 2. ;. *,3 ,  :: :t .

.g .

~ .a *i .

= ..e ,e

<w

.......a . .

. - - = .a. - .' _

o .

s.. .

o es cs e c.c s s '

w

_. ~

. \ . ,

. . . . . . .. a i . . .

o

.g. ..

. . . x 1

.. . . . . . .g -.

g - g 3.. _.

,x.. , . .

= ,,....._.

n

>4. %

s ,. 3

_ wq .. ._ _.

.. a .. .

o... ... .

ov_

.. e.. ..

g. . ...... . . ... .. .

._ , ~ . .

Qw w

- -- 3.*5< .

r -

8 q

.o. a t .

s .

-... . ... .o .

,, e,

=.

s

. . . . . . . i

<<=

3

=zO

=

i o 4 1

\

O _._ o s w<

- 3 .

.a

  • z.

o a

-e a . _ . . _ . . . .

<w .. . . ...

o

. 3 a< .... ._,

=

=

-g gw

-~

, PAG ( 2,9

  • m

. - = . -

. - - ed >e= . .... . .

y qs a .

ww N

  • . o4 >W S . .

$ g 40 w

..M>*** .d... .- - .-

..'.- .a g - . -

2 2.,. . 4 -

s 13*

o ., -.

wy .. g

- =

o

.=A4..*

t * * . - . - - - - - 5 e$' .-

po. . m.

g .wg..

W

. e , . ..

-- _vwg

$,zo ' t'

,- q] s ( ,

, , . .. g es . . .._=. .

. y .- . 4

. =

9 ... -. O.

g D.

2 p

9 p

.,,nasue a.0.

. , , , . . _ , , _ . . _ . .. .- . -- - T **

g . p

. . - .4 v=.

M

.9 -'

e= ... . . ..

. .. .......- .., m f i

-. - /..- . ..

... _f .- . . . ,.,

. t. ,.. , . . , .

. . . ,. j

...- -- u

._..-.......J.

_ a . - - . . . _.. . g ., . . . g.- ).

..g.. . . .

....[. ... . g i

1

..-s

,,. . i ... _ .

y l a.

.. . . . ... a. . ._ .-

3 .

, g . .. . .

l .-.._-_q

. l 3

2 I

g ..

e5 .

..~

e, 8 g. g g * .. . ' g $ a.Sl A.

o

~ ~ = e = - -- - - -- w a e i s-4 m.

t 4

... .. w.g

..{ j e

~

o

. o 3

. e. .g p .,

. . .g-q

- o

. ~ .s .t.: r.

o l a .

c .s O 9 o ..

% ~ ~ .

e, . ..

l l

.. Cw .

f . .- -*'"

8..

I

. . a. -

W 4 S

.. . .d .,.

4 *P

.  ! - . -g . _? -

O s.

' .. a .

q%g O..

o N

E W . -

, Q. .*. _

_.' s p --6 mm m .6 - --6 mm m m - m m .M

,- . .. q

\ .

.O3 h

o- . *4

.. . . . . .. . g

- 4 3 E .

g og O  %

O 4 W }C3

,e

. . ='=.

?-

g.. .

a

, mg em Sa

/

J "d in. Ik j . -.

9. - o

- 40

/'

CJ ..

8 d O TE

  • p w Q=> ww gg w=

O' m4 8 28 .

.)

O ~~

l i

l APPENDIX C O RADI0 ACTIVE MATERIAL SHIPMENT RECORDS i

O

. - - - - - - - - . , - ,.,e-------,-,-w-- - - , - - - - - , - - . - - - , - , - - - , - - , , , , , - - , . , - - - - - - - - - - - . - - ~ ~ -

p n ~

\ . s ,

APPENDIX C RP-RW.ZZ-004(Q)

, y ATTACHMENT 19 l

i BARNWELL SHIPMENT RECORD -

(TYPICAp)

I .

.o u a.'"a "'"' BARNWEtt, WASTE MANAGEMENT FACILITY Opesased by CH(M NUCLi AR SYSIf MS. SNC

, gg t Anaes a Acosass P O Bom 726. BA:n. ell. South CArosaiA 298l2

! (80h 259 I181 88'I"'0"E 58 N DA8L RAD 40ACIIVE SitePMENI MAN 4f f SI f 0RM --

ceiv _ . _ . sIAI8 _ _ __ senare4 NI IVM , __ sHIPtW0el stamf act iaM)ssant s. a foNIAcI _, Mio884 . _ . _ _ . ._ _. . _ _ sHeruiNIesO _

a Deen sd neAi 8s0

.A es a e. . - _ .

chihipasral Aa sysltus sNc .a usiIt#S88.uaseoN WonLaut AniocAlu1Pe tal PAGE ontvle sdG84Altant Dagg P O tua sn osanoese aOAo AitCoNIsosuAltoN PAG s EIO

- SAaNWiel sc NGil ___ ._ . . _ _ . . __ .

.%.. ' enoesm EMau s a.uuso ca' Ass ~~^ .. SeaPassne los As s __ in.lgtAL nhas _

eena o c.se in ieu nm. , t, igm a .a"= . .

  • a a".-- s.

pist

.*~",,

a M pp. en,e,._ . _ . .e,cgaarn _ . _ _ __ _ __ ,_ imme .,., , . ,

a.m uunis

~~a.

,,,,,, , , , ,, ,,,, u ns, a.p i M,um..d.6n up. a.nenaart :n#+ ,u M We..W . ,_ . . unni

  • a.m..= ma umc.#. 6-iene*aeo~s,.es a.,-p made.a :p.4mg. yev.,_. __ p4,28st

^' _

sem+ i , Me..d. n.aa.t e.+ tar. e e a : nsiema.,. . . . .ppy

. _ . tami

_ punig ,,,

e pseMM loIAt PAntti ape p. s.,uncos.

u s,..gs.is..g.Q s.wL ,.easa ens!, g g - Ba,gesM,Mesp.go

_be,6! ,espew . , _ _ , _ _

e, ,. . .. . tart 8I voiues an aei o==. asem m al . . _ __. . _ _ _. - .. . __ _ _.

. ansacAs sonui .. t><amcAt acau Ano .. .=Aus eowu ei Ass wistt oiscaaPg. ope _ _ _ _ . _ _ _ _ _ _ _ soitostacAIE004 AGlhI ,

0.A44 Ah0 s of f>WB Ale 64 AGitelist .._. 43 4 is a si s'

.*v a 8. u u.5=*.c 6a.D.*.aa.d d **..mm am c e v e s'n. Acc im..vt..

un rsianmisaeis conso siciussva use toAcenc Ano unaanom.c uust aa tossomooa on cowsscass os ens osssonAsso Acan: . ".m.**c u 4 d em==

a.

-. n m

-i ..s.= == =.a.a.=ma

=i.e

m. osr . .-s.4 -w i en.nen n an y c m t . .an w.. m . wm.s

. i. ,

simm.m w of a r. '1

.. maeoniA= en . s, .==s a.a.aa .. ,ca.ua a.u. e,6. 6.s w s..as .mai sea a saata s-usc .am aen .p.e.v m.. . ..

i e.aa.. ..... u.=e e..a nm =c.aaei.e. ancma. am dn.o a .e .imms. =i mee d . ga =. .a .ma.i a ..a s.

sea.m.. _ _ _ _ _ _ _ _ . _

e.a. e os .

c, om.

t.sa

/. -

a- a . I a '.' CN51 USE ONLY

.. O in .d.a ..as. . .a ea.

O in .a .. . w.s e - ma =. =, m. Ao A...a %.

O o=,.,ie . .-

e m. cas =i .. . . . . ,

(9 83) . , e in. . ..m.

e' .

'f

_A-..

O s . s . . .

e .

s u

e .

. s.s e

s.a

a. _ *.* .

. .eaw _ . e la ma .

s*

.

  • y * -*

t* **

  • A C _

em

. e

. _ * * .s._

a. .

t *

  • f* t. *. *

? !. t * .= t:r ".. -

  • .t f
  • f *
  • e wt!**

- 9

?

f d* . 2- ~* *t d* *t:

  • = Tf 2.
  • t
  • t_

t==

    • **e*

c

  • *** * =.

_* em.e. s.

a.

  • =

t s

m e

== *

  • t ?L" *t t
  • "*e t

3 e

8

  • e * .
  • t A . e.

. * ^

s s _

) a .ee ss _

Q t i

o

.ia

. m e.

ee

( vs a 4 G . s .

0 eA sP nsa sesuo _. .

e 0

u aso ss e

e nesaas s naeti

- os Z sa . .

uus a

  • _

Z W

s ss si sns e

eo 8'

_ . e- ess e- as ee ea m n.

R sc _ .-

n.shn

. m. s n - I, .,

. - ~. _

sa ea e jj{ 4_

P wn uA

  • _.

a e

s me

  • R e .

3

.m*

g gm y.a eiee sl -

g m!.

ag..m .

t.

gn .em e

.n.ma . _. _ _.

. a n

e me as _

m.s se .

Y m

u _.

. :s T

.. .eeea s-rsse I s

) LC ae I .

d CH ure.aee m m r.

' A8 FS ts t M ee n T . m es e. - _

) o NT ESY E

T sea enme-sea.s n

(

c MS E .

E es m s. e -

/

ER GA SH ean- '

  • mm-9 Af N mmes iu 1 NC AU t

O l

l - e ss- a T MN AU , masn. a N EM esm-iN_m.v cee.p E T E l e s n.ss. 8 M SH N a e.

AC O eac 0

2 H W :y C .a s is C L d b ame a.msan C a

A L e ea sa e )

N3 .

T Et a ess i

i8 T Wr nsan .

_ m ssa A Np e _ uaei

_ msc f a9(

RO A

B s

e ese assn S se L emu s A

t s

a 0 8

E G

A P

a esen e _

eesas e ea s

em s.sa s aa m. eh sJ ae s e

.ais osu _

ss e ease s

g e

e nans n=cao -

_ as s

. eeecs s e a a .

c

. e

- - n.

. se s

. nn.n oce . -

._e.rs mece iam ,

. e s a sa .

e .

e

_ / , eenm s m

, .meaa

.asas nn e sac

_ g s

.e g .a.*

A*

l l

1 0

'f)

/ O Q a

[#

.a . / a ;I 3'!I t / o E  !

a

+ 1' I g l;;e-

'

  • r l.i l $ o -

,, 1 I j / g?

n E

,, s l8:

o' ns , Ill s $ 8

fj

/ E

}i 9:

I .

I / O -i la s

ol il il I gn> . ] /

- ln,1I I 1i ll ---

. s $

5 ,

j,ik II b-$ S i toIlb o $ ,

S  : l /y ---

l

- a

/ I I 5 .

5 .Il . .j

> / .

-- e l,

g j ~

k i

i  ! S$

~

c

/

ba; fIl. -

iNfi a ,j u.

fs? i  ! ,lij n  !!! .

H 8-c5?p!  :

I- l livai11!'!! ' 8 Es nf sb l if t.ili l li tl ;i -8 cc O, sed ]; t.:I t I u

I. :ll I

<C g,. c -

j ns r!I , .I  ;.E I .

  • e Is I Illl' $A 16ll y

E t llisil

< g 2-1 l

i m

/j "

5 n l l N

I

}]}

1 j hs ;sl -

/ .!

I;l i g

1 .

3 / ,

} 1 j / i .*)

- c 8

.e

II J

);

li q.t // 1 1 3

~ J s , ,

l le fg; a i 1t :o.. '

j,* [ 8c c3 l

f ,, a. " (' '

r, a

.
' ,- 1 1 l $ f l h 'il l F h :l'llj[.$

$l

'ji lls

/ d i 1 1 I r i .p o-

=

1 s s  ; s i s u ll. //~

3 II  ? l l l l $ hh lI ,

, Bf y \

ly

  • l .L : . l. .f . -

II

,i sii j.

all" .i p

i u/ al 1

1 l, laMigg l,!.

F! i..l.,I!1 1. ,

f

- - - - - . __ _ ""-'-v _


,___p_ _ _

e k{ )m

/  !!!!!  !!' 'l  !

l f,-  !

~

i ,.

t l li- i

.:.  !  ! e r l,i.,'f 1 .

,e o;i:iis' i i I '

i  !

5 g ;o I r i rt i r'i ns t t r 's t i r i t s 8 y

, , , , , l . . I ll l Il l l ll IIIIIIIII

! $8

.n ill lili! l l l I!llilli i 6

't.

& h i

,3 I- l lIl i Ii i

f elf j '.s

.l. < i ,,

.m a fjj

_4 --

Ni hij;j il l l llllll l lllll f

(~f i W  !!l ll  ! . ui l 5I'r'j w

$g l l I

l

, !j!}!H

'ere reg

.1 l g

a l l b

,.) #

h3 <

t i l i.!!!!!!!

E i

?! i l ,N lh '

N,  !

]

, i _

,14  !

ii  ! i 11

.. I l

p +---

u- iiii i l I iii,iiiii!!i ll l _llll liii  !!

il st I

!i,Em-*}J}lI i g2 iiiiil ll l l l l ll l1IIl l1Ii Ii

  • i

' i; .-illli i llilililllll l'liliilll i OIe 18 L =--. l l l l I l l i l l l ! I l l l l sj, i

IllllilllI)e i!Il I

1.

3 l

i l l j{ hhl) I!!l!llilllillllittl I!Illllfl! N  !

-w

,"K /

A s

' y, [' "' .i ic e d G s Company

_ , , _ , , _ , _ g3 CZ,,,

(6) rm .a SmrutNT Totats s.

(3) c h- mm.e i.e. c i,,,. . ... **"'"'**8**'**'*8 s.#, . sc .o . e o,,,,,, % ,

O C &l aw e e e.c. an , , , , , _ .4r .

,a-(2)  ! - -

% ..e s , .. .

(9) (12) (13) (14) 15) (16) (17)

(.s.) ,. (10. ) ( i 318) (19) (20) (21) (221' (23) G4) (25)

==

a. co.e.c .c.11 ) ,...w.

.u c w .. .... . . . . pic ,.ca s. a e.  : ca . a se.. .

(2L)

4. .

eincaes.o u.si .i. ,i .a e.e.e. c a..

c..a s

. c. s .c . .e c. s.= .m.si.sa.mi.r = :se ca.i we ines am.. w. ..ir.a. s_ s e..

sw ..i. . co.i e ca. seu a co .c 1.wus

...ws

. .s .

c..c,e

.ca

c. u.a. i, ec. eis a i

. ..a . i. a .

w... .

Il l . . . . . .

I

  • l I ,
  • 1 l

l RP-RE ZZ-00410)

! I I

g l ATTACilMEld? 21 l' 3

, PSE&G SilIPPileG RECORD ' ,

(TYPICAL)

]1 l . ..

=:.-

I .

I I

  • l

.\.--.-

8 n.

l l . . . . .

h rAct loins im een esona uservic naag 4 naruio cuss gy) Id s .t r. .d .

tria 49 CIA ll2 00ll eurosi ANI I n. .s to c en.8,inm ue .I.e.e na.n<a mas..aan a.e propen, class.t.ed. negen=a. pao. sed. me. bee nr no mre

.es as .r o e see. aae a.e sa e ope. m.a .a son ua.impentm.an acco a.ns sothe appaicat.se e g as.u...of uw Deparhim.wof I..ai anei.on _apgggg.we Mnemial. emm v aanaggi e it.?..n e.gs ggg.gg.,edale al. hgd t n e i -Radianct.we Waag .g e w. 5e n 0 8 d***s .

IIggeggi.ygjfpa,gggga,,!g y.gggg 8.c ackwde n e -Aad.ox w M.e,g. a __ e.ti?.6 7 gear'9Mlud ldfli"at n e n -Rad ga Gre llaterial i in.? n *

' Oase 88I'OMI'II U3'.I'!Il "*8 d" ""

"se'e'm"'d' no " ' 8 ~ * " YI "

pameag. s es r>

.a.-....

a n.ggtes.jesag.c. isa. .cias

e. . .. . . . . . . . .. . . . 2g sag..a .. . .

..e.M...

1 4

f t.

l O __

)

i APPENDIX D WASTE STREAM COMPOSITION O

l l

l O

60 D1 Composition of Generic Waste Feed Streams *

( ,b ---

This section contains the chemical formulations of the five generic waste types specific to Hope Creek which-are included in this program. These generic waste types are intended to simulate the full range of liquid process waste streams produced by light water reactors.

Dl.1 Bead Resins

^

Material Weight Percent in Extruder Feed

  • Bead Resin 94.84%

Strontium Nitrate 1.47%

Cobalt Sulfate 2.92%

Preparation:

Rohm and Haas, Amberlite IRN-150 mixed bead res ins in the hydrogen and hydroxide form were batch contacted with an aqueous solution containing cesium chloride, strontium nitrate and Is '

cobalt sultate to yield the foregoing pe rcentages of ionic salts captured on the active sites of the resin (assuming 100% exchange efficiency).

The resins were then drained, rinsed with demineralized water ano dewatered for feecing to the extruder-evaporator. At the foregoing percentages, the resins are approximately 50%

expended, which reflects expected operating conditions.

The above formulation was used for production ot all small scale bead resin waste forms. Since the cost of these non-radioactive tracers can be appreciable, the 55 gallon drum of resin product was produced from Amberlite IRN-150 resins which were expended to approximately 35% with sodium chlo ride . Tracers were not required in the full scale (55 gallon) waste form since samples removed from this waste form were not tes ted for leach resistance.

m

,r %

( ) D1.2 Precoat Filter Cake with Powdered Resin --

Material Weight Percent in Extruder Feed Powdered Resin 73.80%

Tracers Cesium Chloride 1.16% .

Strontium Nitrate 2.23% -

Cobalt Sulfate 4.40%

  • Crud 18.41%

Preparation:

Graver Ecodex P-202H precoat material was batch contacted with an aqueous solution containing cesium chloride, strontium nitrate and cobalt sulf ate to yield the foregoing percentages of 4 ionic salts captured on the active resin sites (assuming 100% exchange efficiency). At these conditions, the ion exchange resin component (s) were approximately 36% expended, which reflects expected operating conditions. The material was drained, rinsed with demineralized water and f}

s/

dewatered to its equilibrium moisture content at room temperature. Ferric oxide was then added to simulate crud loading on a dewatered precoat sludge.

Note: Ecodex P-202H is a powered precoat material containing strong acid cation resin, strong base anion resin and cellulose fiber in the following respective proportions (by weight):

29.5%, 37.5%, and 33%.

O

O 7

k/ s Dl.3 Evaporator Concentrates - Neutralization Waste ---

l Weight Percei;t in

. Material Extruder Feed

  • Water 68.87%

I

Evaporator Concentrates -

Floor Drain Waste (excluding tracers) - see EC - Floor I Drain Waste, Section Dl.4 13.44%

Strontium Nitrate 0.22%

Cobalt Sulfate 0.44%

Preparation:

~

The foregoing solution / mixture was preparcd and fed to the extruder-evaporator. This solution simulates a chemical regeneration waste which has been concentrated by a conventional evaporator.

O t

i i

)

l l

l

-/ Dl.4 Evaporator Concentrates - Floor Drain Waste ~~~ l Weight Percent in Material ,

Extruder Feed

  • Water 84.88%

(tri) Sodium Phosphate 3.64%

  • Magnesium Sulfate 2.35%

!

Strontium Nitrate 0.13%

Cobalt Sulfate 0.25%

Preparation:

O.

The foregoing solution was prepared and fed to the extruder-evaporator as a liquid. This solution simulates a floor drain waste which has been concentrated by a conventional evaporator.

The principal lonic species present in this waste was obtained from an actual analysis of floor drain waste at Niagara Mohawk's Nine Mile 1 plant.

a O

, -w-,, -,,,- - - , , . - --- - - - , , , - - , - - - - - - - + - , - - - - - - ----,-v,---.--- - - - - , , , , , . , - , - - -

) Dl.5 D6 contamination Waste ___

Weight Percent in Material Extruder Feed

  • Water 72.66%
  • Rad Clean-8 25.78%
  • Hydraulic Oil (BANDO HD63) 0.42%
  • Lubricating Oil (150 OMALA) 0.42%

Strontium Nitrate 0.21%

Cobalt Sulfate 0.40%

Preparation:

The foregoing solution / mixture was prepared and f ed to the extruder-evaporator. This mixture simulates a generic decontamination solution which has been concentrated by a conventional evaporator.

Note: Rad Clean-8 is a proprietary

. decontamination agent produced by Epicor, j Inc.

I i

i

't

-v-, n v--v- -,wy-,,y -nn-,-w-- - - - - - -,,,,w , - , , , - - , - - --y,-------,-w-- ,,-ry ----m, ,--,r,, -------,----,,,n, ,,n,-, --

-w,,,,--

_w m __. _ __ --

O ~

APPENDIX E BTP TESTING METH0 LOGY O

l i

i l

1 I

i ,

l

El Compressive Strenath .

f.

Compressive strength tests were performed on duplicate samples of each waste form by United States Testing Company of Fairfield, NJ. Samples were prepared for testing and tested in accordance with the following:

El.1 Samples were chilled to reduce the adhesive bond between the specimen and the sample mold and the sample molds were stripped away.

El.2 Samples were cut to length by a high speed saw to yield a le ng th to diameter ratio of approximately 2. Sample dimensions were measured and recorded.

E1.3 Samples were to be conditioned in an environmental chamber for a period of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> at a temperature of 55*F 12.5'F prior to testing. However, due to a procedural error, all samples subjected to the initial round of compressive strength tests were conditioned at 50*F, a 2.5'F deviation. All subsequent compressive strength tests; i.e., post-irradiation, pos t-immersion and post-thermal cycle test, were performed at the specified s_ conditions (55'F + 2.5'F). The performance of samples conditioned at 50*F was projected for the temperature range 55*F 1 2.5*F by retesting in this range those samples exhibiting the highes t and lowes t compressive strength at 50*F. It was found that the 5'F temperature increment lowered the compressive strength measurements by an average of 14.3%. Both the performance at 50*F and the projected performance at 55'F 1 2.5'F are reported herein.

El.4 Samples were removed from the environmental chamber and tested at room temperature within 10 minutes after removal from the chamber. Due to the poor thermal conductivity of asphalted products, the bulk temperature of samples at the time of testing was essentially that of the environmental chamber.

El.5 Samples were placed in a testing machine con f o rming to the requirements of ASTM D1074 and loaded at a rate of 0.2 inches per minute (0.05 in/ min in).

O 1

() El.6 The compressive force applied to each sample was recorded at 10% sample deformation and the corresponding strength of each was calculated based upon the original cross-sectional area.

The acceptance criterion is a compressive strength of 50 psi at 10% deformation.

The test results are tabulated for each waste stream in Appendix F. The laboratory test results are included in Appendix H.

E2 Radiation Stability Duplicate samples of each waste form (in their sample molds) were irradiated to a nominal exposure of 10H rads by Isomedix, Inc. of Whippany, NJ, a commercial irradiator of medical goods and other commercial materials. Samples were divided into two batches. The first batch was exposed in a Cobalt-60 irradiator to a gamma field averaging 0.96 megarads per hour for a period of 104.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />. The second batch was exposed to an average field of 0.93 megarads per hour for a period of 107.9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br />. Based on the foregoing, the exposures received by samples in each batch are 100.13 and 100.35 megarads respectively. Radiation fields,were determined by dosimetry. Dosimetry was performed using Harwell Red

(

(

0434 Perspex dosimeters utilizing a Bausch and Lomb Model 710 spectrophotometer as the readout instrument.

Following irradiation, samples were prepared for compressive strength testing and tested in ccordance with the procedure described herein. The acceptance criterion is a compressive strength of 50 psi at 10%

de f o rma t ion.

The test results are tabulated for each waste stream in Appendix F. The laboratory test results are included in Appendices H and I.

O

l 1

l l

1 V')

(

'/ E3 Biodegradation -

Bartha-Pramer

-~~

Based on qualification tests performed by Brockhaven National Laboratory, it was expected that most bitumenized waste forms would support fungal and bacterial growth. The Bartha-Pramer method for determination of biodegradation was therefore selected in accordance with the options defined in the NRC's Technical Position on waste form. All testing was performed by U.S. Testing, Inc. Duplicate tests, conducted over a 26-week period were performed for each waste form for both Hanford soil and simulated Barnwell soil. These soils are representative of arid and humid soil types. Test results have been interpreted to ,

predict performance of full size waste forms af ter 300 years of burial. Both the test results and procedures are summarized by United States Testing Test Report No.

05637, dated July 14, 1986.

The test results are tabulated for each waste stream in Appendix F. The laboratory test results are included in Appendix J.

E4 Leach Resistance Non-radioactive tracers (salts of cesium, strontium and

{)/

x, cobalt) were added to the simulated waste feed materials e to produce known concentrations of these materials in the solidified waste forms.

l v

m

( ) If leach testing per the BTP yielded Cs, Sr, and Co concentrations in each leachant at the lower limit of the optimum detection range ( f or a target initial waste form concentration of 0.25% for each element in a product with a 50% waste loading) the respective leachability indices would be 10.01, 10.45, and 10.01.

Since these indices are more than four orders of magnitude less than the minimum acceptance criterion ,

specified by the RTP, flame atomized atomic absorption spectrophotometry is sufficiently sensitive for this application.

The test results are tabulated for each waste stream in Appendix F. The laboratory test results and calculations are included in Appendix K.

ES Immersion Test Duplicate samples of each generic form were immersion tested by Waste Chem Corp. Samples were removed from their molds and cut to a nominal 4 inch length using the method described for preparation of samples for compressive strength testing.' Each sample was then placed in a one quart plastic container filled with demineralized water and was left immersed and undis tu rbed for a 90 day period. Weekly observations

(}

\_-

were made to note any visible changes.

At the conclusion of the test period water was drained and the samples removed. Sample dimensions were recorded and the samples compression tested as described earlier. The acceptance criterion is a compressive strength of 50 psi at 10% deformation.

The test results are tabulated for each waste stream in Appendix F. The laboratory test results are included in Appendix H.

E6 Thermal Degradation Thermal stability tests were perf ormed on duplicate samples of each waste form by United States Testing Company of Fairfield, NJ. Waste samples, in their sample molds, were subjected to 30 thermal cycles between 60*C and -40*C in an environmental chamber conforming to the requirements of ASTM RSS3, Section 3,

" Thermal Cycling of Electroplated Plastics". The test

  • apparatus containing the waste samples was cycled in the following manner:

O

O

-/ 1) heated from ambient (20*C) to 60*C and maintained

'~~

i ( for a period of 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />

2) cooled to ambient (20*C) and maintained there for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> j 3) further cooled to -40*C and maintained for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> j 4) heated to ambient (20*C) and maintained for 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> This sequence constituted a single thermal cycle which was repeated 30 times. Following this sequence, the samples were prepared for compressive strength testing and tested in accordance with the procedure described in Section E.1. The acceptance criterion is a compressive strength of 50 psi at 10% deformation.

The test results are tabulated for each waste stream in Appendix F. The laboratory test results are included in Appendix H. .

E7 Free Liquids

A 55 gallon drum bead resin waste form was generated.

During destructive examination of this sample, the free liquids content was determined in accordance with the method prescribed by ANS 55.1 " Solid Radioactive Waste Processing System for Light Water Cooled Reactor rs i Plants". No free liquids were detected as recorded in

( ,) Appendix G. Furthermore, each small scale waste form

was visually examined f or f ree water af ter removal f rom

, the sample mold.

l i

i I

1 I

l

. _ _ . ,-.o 7 - a , a - - _.- _ _ - ..-_ .- ___

l I

i APPENDIX F C WASTE FORM PERFORMANCE l l

l l

I l

t i

l l

i

O ,

I I

l l

,_.y,---,.,-... , y._., __r-.-.. . ,

~. . - . - .- . - . - ._ .- _ . - _

I

( Index of Sample

--~

! Designations j

The following identification prefixes are used for each of the samples for which data are reported in Appendices F through K.

Prefix Description AF, Bead Resin (BWR/PWR) - 50% Solids Loading BD Precoat Filter Cake W/ Powdered Resin (BWR) -

25% Solids Loading 03 Precoat Filter Cake W/ Diatomaceous Earth (BWR) - 55%-Solid Loading DH Evaporator Concentrates - Neutralization Waste (BWR) - 60%

Solids Loading i

> EE Evaporator Concentrates - Floor Drain Waste (BWR) - 45%

4 Solids Loading

.! FF Evaporator Concentrates (PWR) - 50% Solids Loading O

j GC Decontamination Waste ( BWR/PWR) -

30% Solids Loading I HE Mixed Resin and Filter Cake Waste ( BWR) - 45% Solids Loading Z Bead Resin From 55-gallon Drum Sample (no.) Asphalt L Asphalt l

Samples marked in the following ways represent the test results from
other test programs

i P, Cation, Mixed, Sodium Sulfate, Boric Acid t

e 3 I i

l i

( ~

\s-) F1 Waste Form Performance ---

This section contains the waste form performance for each of the five Hope Creek specific waste forms and the full scale sample for all tests.

Fl.1 Bead Resins The complete spectrum of BTP waste form 4 performance tests were run on generic bead resin waste form samples produced at a 50% waste solids loading. Additionally, the same tests were performed on samples of pure asphalt to represent the lower limit of bead resin solids loading; i.e., zero % solids. The performance of waste forms produced at intermediate loadings

~

! will be within the range bracketed by these loading limits (0% and 50% solids). Test results are as follows:

Fl.1.1 Compressive Strencth Sample Dimensions Compressive Strength Waste Solids Diameter / Height at 10% Deflection (psi)

Sample No. Loadino (in.) (in.) at 50*F at 55'F

() AF5 AF24 8

50%

50%

0%

1.965 1.966 1.965 3.839 4.014 4.053 190 184 110 163(projected) 158 ( proj ected )

75.8 j 17 0% 1.942 4.033 111 97.9 F1.1.2 Radiation Stability Post-Irradiation

Sample Dimensions Compressive Strength Waste Solids Diameter / Height at 10% Deflection 9

Sample No. Loadina (in.) (in.) and 55'F (psi) l 1 AF6 50% 1.984 4.129 80.9 4.051 AF12 50% 1.973 88.3 F1.1.3 Rartha-Pramer Riodecredation Waste Solids Percent Weight Sample No. Loadino Loss Soil Type AF1 50% No Degradation Barnwell AF7 50% 0.80 Rarnwell AF18 50% 0.90 Hanford AF22 50% 0.62 Hanford O

.. . , . . _ . _- ---m_--. --

i r

[}

v Fl.l.4 Leach Resistance ___

l Leach Index Sample No. Leachant Cobalt Strontium Cesium AF3 Domineralized Water 13.76 13.07 10.36 AF8 Demineralized Water 13.70 13.07 10.36 AFIS Salt Water 11.20 11.63 9.02 AF16 Salt Water 11.26 11.52 9.06 F1.1.5 Immersion Post Immersion Post-Irradiation Sample Dimensions Compressive Strength Waste Solids Diameter / Height at~10% Deflection Sample No. Loadina (in.) (in.) and 55'F (psi)

AF4 50% 2.05 4.24 123 AF9 50% 2.05 4.185 123 4 0% 1.962 3.998 87.7 16 0% 1.962 3.974 87.7 F1.1.6 Thermal Stability Post-Irradiation

(~'s Sample Dimensions Compressive Strength Waste Solids i]

s' Sample No. Loadino Diameter / Height (in.) (in.)

at 10% Deflection and 55'F (psi)

, AF10 50% 1.959 4.010 154 I AF13 50% 1.918 4.085 157 10 0% 1.815 3.960 81.2 14 0% 1.840 4.022 84.6 Fl.l.7 Free Liquids All small scale waste forms prepared for the previous tests were visually examined for the presence of free liquids. No free liquids were detected.

Pl.l.8 Discussion of Test Results All of the above test results for the bead resins waste form demonstrate compliance with 10CFR61 and strict conformance with the guidelinec of the Technical Position on Waste Form.

]

b) v F1.2 Precoat Filter Cake with Powdered Resin ___

The complete range of BTP waste form performance tests were run on generic powdered resin waste form samples produced at a 23% waste solids loading.

Additionally, the same tests were performed on samples of pure aspha?.t to represent the lower limit of powdered resin solids loading; i.e., zero

% solids. The performance of waste forms produced at intermediate loadings will be within the range bracketed by these loading limits (0% and 25%

solids). Test results are as follows:

Fl.2.1 Compressive Strencth Sample Dimensions Compressive Strength Waste Solids Diameter / Height at 10% Deflection (psi)

Sample No. Loadino (in.) (in.) at 50'F at 55'F BD1 25% 1.947 3.924 149 128(projected)

BD16 25% 1.932 4.034 196 168(projected) 8 0% 1.965 4.053 110 75.8 17 0% 1.942 4.033 111 97.8 F1.2.1.2 Radiation Stability Post-Irradiation O' Waste Solids Sample Dimensions Diameter / Height Compressive Strength at 10% Deflection Sample No. Loadino (in.) (in.) and 55'F (psi)

BD13 25% 1.957 4.171 106 8014 25% 1.945 4.032 94.2 Pl.2.1.3 Bartha-Pramer Biodecredation Waste Solida Percent Weight Sample No. Loadino Loss Soil Type BD 40% 1.11 Barnwell BD3 40% 3.07 Barnwell BD2 40% 1.11 Hanford BDil 40% 3.07 Ha nf o rd i

1 i

.t\

\ ,

s s F1.2.1.4 Leach Resistance ,

} ,__

Leach Index Sample No. Leachant Cobalt Strontium Cesium BD7 Demineralized Water 13.26 11.95 10.24 BD10 Domineralized Water 13.26 11.95 10.24 BDS Salt Water 12.18 11.69 10.03 BD12 Salt Water 12.70 11.42 10.15 F 1. 2' . 5 Immersion. i Pos t-Imme rs ion Post-Irradiation Sample Dimensions Compressive Strength Waste Solids Diameter / Height at 10% Deflection Sample No. Loadina (in.) (in.) and 55'F (psi)

BD4 25% 1.922 4.056 133 RD18 25% 1.953 4.015 137 4 0% 1.962 3.998 87.7 16 0% 1.962 3.974 87.7 i F1.2.6 Thermal Stability Post-Irradiation Sample Dimensions Compressive Strength gg Waste Solids Diameter / Height at 10% Deflection

() Sample No. Loadino (in.) (in.) and 55'F (psi)

BD8 25% 1.925 3.370 141 BD9 25% 1.940 4.063 135 1 10 > 0% 1.815 3.960 81.2 14 '0 % 1.840 4.022 84.6 Fl.2.7 Free Liquids All small scale waste forms prepared for the previous tests were visually examined for the presence of free liquids. No free liquids were detected.

Fl.2.8 Discussion of Test Results All of the above test results for powdered resin demonstrate compliance with 10CFR61 and strict conformance with the guidelines s of the Technical Position on Waste Form.

O .

1

\

() Fl.3 Evaporator Concentrates - Neutralization Waste The complete spectrum of BTP waste form performance tests we,re run on gen,eric Evaporator Concentrates -

Neutralization Waste Form samples produced at a 60%

waste solids loading. Additionally, the same tests were perfomed on samples of pure asphalt to represent the lower limit of neutralization waste solids loading; i.e., zero % solids. The performance of waste forms produced at intermediate loadings will be within the range bracketed by these loading limits (0%

and 60% solids). Test results are as follows:

F1.3.1 Compressive Strength Sample Dimensions Compressive Strength Waste Solids Diameter / Height at 10% Deflection (psi)

Sample-No. Loadina (in.) (in.) at 50*F at 55'F 2DH 60% 1.962 3.988 265 227(projected) 3DH 60% 1.960 3.980 224 192(projected) 8 0% 1.965 4.053 110 75.8 17 0% 1.942 4.033 111 97.9 Fl.3.2 Radiation Stability Post-Irradiation Os Waste Solids Sample Dimensions Diameter / Height Compressive Strength at 10% Deflection Sample No. Loading (in.) (in.) and 55'F (psi) 7DH 60% 1.990 3.891 74 13DH 60% 1.980 3.975 101 F1.3.3 Bartha-Pramer Biodegredation Waste Solids Percent Sample No. Loading Weight Loss Soil Type SDH 60% No Degradation Barnwell .

18DH 60% No Degradation Barnwell 6DH 60% No Degradation Hanford 9DH 60% 1.00 Hanford

F1.3.4 Leach Resistance ---

Leach Index Sample No. Leachant Cobalt Strontium Cesium ,

12DH Demineralized Water 11.86 9.86 8.47 20DH Demineralized Water 11.66 10.09 9.86 1DH Salt Water 11.43 9.07 9.84 8DH Salt Water 9.98 8.52 8.66 F1.3.5 Immersion Samples loaded between 30% and 60% were subjected to the immers ion test as described earlier. Testing was te rmina ted due to product swelling and subsequent loss of compressive strength.

F1.3.6 Thermal Stability Post-Irradiation Sample Dimensions Compressive Strengtb Waste Solids Diameter / Height at 10% Deflection Sample No. Loading (in.) (in.) and 55'F (psi) 14DH 60% 1.901 3.940 204 O' 16DH 10 60%

0%

1.957 1.815 3.980 3.960 199 81.2 14 0% 1.840 4.022 84.6 F1. 3 7. -Free Liquids All small scale waste forms prepared for the previous tests were visually examined for the presence of free liquids. No free liquids were detected.

F1.3.8 Discussion of Test Results All of the above test results for neutralization waste concentrates demonstrate compliance with 10CFR61 and conformance with the BTP guidelines of the Techni. cal Position on Waste Form, except for the test results from post-immersion samples. There, swelling resulted in degradation of the physical characteristics of the samples and loss of compressive strength.

v) r

(n) Fl.4 Evaporator Concentrates - Floor Drain ~~-

The complete spectrum of BTP waste form performance tests were run on generic evaporator concentrates -

floor drain samples produced at a 45% waste solids loading. Additionally, the same test were performed on samples of pure asphalt to represent the lower limit of floor drain waste solids loading; i.e., zero

% solids. The performance of waste forms produced at intermediate loadings will be within the range bracketed by these loading limits (0% and 45%

solids). Test results are as follows:

Fl.4.1 Compressive Strength Sample Dimensions Compressive Strength Waste Solids Diameter / Height at 10% Deflection (psi)

Sample No. Loading (in.) (in.) at 50*F at 55'F

. 15EE 45% 1.967 3.548 196 168(projected) 18EE 45% 1.960 3.902 191 164(projected) 8 0% 1.965 4.053 110 75.8 17 0% 1.942 4.033 111 97.9 F1.4.2 Radiation Stability O' Sample Dimensions Post-Irradiation Compressive Strength Waste Solids Diameter / Height at 10% Deflection Sample No. Loading (in.) (in.) and 55'F (psi) 8EE 45% 1.973 3.959 73.9 20EE 45% 1.965 3.915 119 F1.4.3 Bartha-Pramer Biodegredation Waste Solids Percent Sample No. Loading Weicht Loss Soil Type IEE 45% 4.57 Barnwell 9EE 45% 1.35 Barnwell 10EE 45% No Degradation Hanford 1

13EE 45% 1.32 Hanford A

U i

l

( F1.5 Decontamination Waste ___ l The complete spectrum of BTP waste form performance tests were run on generic decontamination waste form samples produced at a 30% waste solids loading. I Additionally, the same tests were performed on samples of pure asphalt to represent the lower limit of decontamination waste solids loading; i.e., zero %

solids. The performance of waste forms produced at intermediate loadings will 6e within the range bracketed by these loading limits (0% and 30%

solids). Test results are as follows:

F1.5.1 Compressive Strength Sample Dimensions Compressive Strength Waste Solids Diameter / Height' at 10% Deflection (psi)

Sample No. Loading (in.) (in.) at 50*F at 55'F GC5 30% 1.922 3.960 145 124(projected)

GC16 30% 1.943 3.935 126 108(projected) 8 0% 1.965 4.053 110 75.8 17 0% 1.942 4.033 111 97.9 F1.5.2 Radiation Stability Post-Irradiation

[~/')

\-

% Sample Dimensions Compressive Strength Waste Solids Diameter / Height at 10% Deflection Sample No. Loading (in.) (in.) and 55'F (psi)

GC3 30% 1.932 3.940 95.5 GC17 30% 1.958 3.960 79.7 F1.5.3 Bartha-Pramer Biodegredation Was te Solids Percent Sample No'. Loading Weight Loss Soil Tvpe GC8 30% 3.50 Barnwell GC15 30% 5.49 Barnwell GC 30% 1.71 Hanford GC2 30% 5.49 Hanford O

l On F1.5.4 Leach Resistance

~~~

l Leach Index Sample No. Leachant Cobalt Strontium Cesium GC7 Demineralized Water 10.92 9.52 9.52 GC9 Demineralized Water 10.92 9.52 9.62 GC10 Salt Water 10.47 9.07 9.54 GC19 Salt Water 10.77 9.04 9.52 Fl.5.5 Immersion Post-Immersion Post-Immersion Sample Dimensions Compressive Strength Waste Solids Diameter / Height at 10% Deflection Sample No. Loading (in.) (in.) and 55'F (psi)

GC4 30% 1.937 4 . 0 G3 96.7 GC6 30% 1.939 3.915 112 4 0% 1.962 3.998 87.7 16 0% 1.962 3.974 87.7 F1.5.6 Thermal Stability Post-Thermal Test e Sample Dimensions g 'g Compressive Strength

() Sample No.

Waste Solids Loading Diameter / Height (in.) (in.)

at 10% Deflection and 55'F (psi)

GC11 30% 1.956 3.755 110 GCl3 30% 1.950 3.567 107 10 0% 1.815 3.960 81.2 14 0% 1.840 4.022 84.6 F l . 5. 7 Free Liquids All small scale waste forms prepared for the previous tests were visually examined for the presence of free liquids. No free liquids were detected.

F1.5.8 Discussion of Test Results' i

All of the above test results for floor decontamination wastes demonstrate compliance with 10CFR61 and strict conformance with the guidelines of tne Technical Position on Waste Forms.

O

--w- , ,

- -- - am Oh APPENDIX G 55 GALLON PRODUCT TEST l

l O

o r w-) Index of Sample

~~~

Designations The following identification prefixes are used for each of the samples for which data are reported in Appendices F through K.

Prefix Description AF Bead Resin (BWR/PWR) -

50% Solids Loading BD Precoat Filter Cake W/ Powdered Resin (BWR) -

25% Solids Loading OG Precoat Filter Cake W/ Diatomaceous Earth ( BWR) - 55% Solic Loading DH Evaporator Concentrates - Neutralization Waste ( BWR) -

60%

Solids Loading EE Evaporator Concentrates - Floor Drain Waste (BWR) -

45%

Solids Loading f-%g FF Evaporator Concentrates (PWR) - 50% Solids Loading GC Decontamination Waste ( BWR/PWR) - 30% Solids Loading HE Mixed Resin and Filter Cake Waste ( BWR) - 45% Solids Loading Z Bead Resin From 55-gallon Drum Sample (no.) Asphalt L Asphalt Samples marked in the following ways represent the test results trom other test programs:

P, Cation, Mixed, Sodium Sulfate, Boric Acid O

C

()) G1 Full Size Bead Resin Sample

~~

Core drillings from a full-size, 55-gallon sample were submitted to compression and immersion / compression performance tests and examined for the presence of free liquids. Test results are as follows:

G l .1 Compressive Strength Sample Dimensions Compressive Strength Was te Solids Diameter / Height at 10% Deflection (psi)

Sample No. Loading (in.) (in.) at 52.5'F 21 50% 1.968 3.920 191 22 50% 1.937 4.134 192 Gl.2 Immersion Post-Immersion Post-Immersion Sample Dimensions Compressive Strength Waste Solids Diameter / Height at 10% Deflection Sample No. Loading (in.) (in.) and 55'F 23 50% 1.978 4.067 173

~x 24 50% 2.035 4.073 182

\-- Gl.3 Free Liquids The 55-gallon drum bead resin waste was examined for the presence of free liquids in accordance with ANS 55.1. No free liquids were detectec.

G l .4 Discussion of Test Results All of the above test results demonstrate compliance with 10CFR61 and strict conformance with the guidelines of the Technical Position on the Waste Fo rms . In addition, this testing from a full-scale, 55-gallon drum sample confirms the independence of these test results to the ef fects of sample size.

O

O th 9

e APPENDIX H COMPRESSIVE STRENGTH TEST DA.TA O

I m

O

l I

l f~'N )

d- Index of Sample l

j l

Designations  ;

1 The f ollowing identification prefixes are used for each of the samples for which data are reported in Appendices F through K.

Prefix Description AF Bead Resin ( BWR/PWR) - 50% Solids Loading BD P recoat Filter Cake W/ Powdered Resin (BWR) - 25% Solids Loading OG Precoat Filter Cake W/ Diatomaceous Earth ( BWR) - 55% Solid Loading DH Evaporator Concentrates - Neutralization Waste (BWR) - 60%

Solids Loading EE Evaporator Concentrates - Floor Drain Waste (BWR) - 45%

Solids Loading FF Evaporator Concentrates (PWR) - 50% Solids Loading

(

GC Decontamination Waste ( BWR/P WR) - 30% Solids Loading HE Mixed Resin and Filter Cake Waste ( BWR) -

45% Solids Loading Z Bead Rosin From 55-gallon Drum Sample (no.) Asphalt L Asphalt samples marked in the following ways represent the test results from other test programs:

P, Cation, Mixed, Sodium Sulfate, Boric Acid

)

l 1

-rN- r- e t-v--'p -We e m+ - - - - - - y- ,----w--w m- --

T- - ' - - - - - - - - - - - .,,-i---

. . k. .

United States Testing Company, Inc.

(j- '

3 Engineering Services Division .

! 291 FAIAFIELD NENUE . FAIRFIELD. NEW JERSEY 07006 201575-5252 REPORT OF TEST 91066-1 COMPRESSIVE STRENGTH TEST DATA NUMBER CLIENT: 'Wastechem Corporation One Kalisa Way December 26, 1985 Paramus, NJ 07652

SUBJECT:

Physical Properties

REFERENCE:

Wastechem Corporation, Purchase Order No. 84-3010.15.

SAMPLE IDENTIFICATION:

Thrity-two (32) asphalt samples were submitted and identified by the Client as:

pi 1) P9 9) GC16 17) 2DH gd 2) P16

10) GC5 ' 18) 3DH

, 3) BD1 ,11)- FF11 19) 3

4) BD16 12) FF18 20) 9
5) CG1 ,13) AF24 21-23) Cation
6) CG6 14) AFS 24-26) Mixed
7) HE5 15) 15EE 27-29) Sodium Sulfate
8) HE10 16) 18EE 30-32) Boric Acid TEST PERFORMED:

The submitted samples were tested for Compressive Strength using the equipment described in ASTM Test Method D-1074.

Testing Supervised by:

~ SIGNED FOR THE COMPANY 3 w A ]

2 b '-- "

kagotof Frank Savino, Supervisor Frank Pepe y np (ories in: New York Materials Eng. Section

. Chicago + Los Angeles

  • Richland +

Assistant Vice President Tulsa

  • Mocesto
  • Orlanco

.. ..c . cus., ,. .... .. . ... ......... ... .. ... v. .....,v.

..,.i,.es.....c.....

..ve...........c..,. ....,...,....s.i............,ic.u.,.......,,.

s. .... . .c

, . . . ....e ....

. . . . ... c..c .....cii. . .....,..... ,. ... ...... ...u.c.n.. .. .. c.o..

. . . .,...,.... .. .., ..... c .. . .. ...... ..

c....c.i ....e,.... .s . . . v i i r .. , .,..... . .. ...,... . ... , ....... 6. ..................,...,.e....i

... ...,si .

. v. . .. ... c . . . . . . . . . . . . es

..ini...................-.....

o.c i

... e...... . . . . . . . . . . . ......,i...

...c........,............u..,..........,........,,....................,............c,...

eeu.,.,........,....e..........................u....,...i.,,,..,...........s...........,.......s.,......c6........u r, e . . 6 . ... . . . . .

e.. c ., a * .a.e., e. . . ses o, eve is-e,,,, ogog,* c Su,veillancei

i l

l

, ,J. .

91066-1

~ '

United States Testing Company, Inc.

'-~

Numoer CUENT: Wastechem Corporation .

TEST RESULTS Conditioning: Samples were exposed for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> @ 50'F, except as

_ noted below.

Crosshead Se'eed: 0.2 IN/ MIN Dimensions, IN Compressive Strencth, PSI

@ 20% @ 25%

Samole Diameter Height @ 10% Deflection Deflection Deflection P9 1.963 3.879 99.1 121 129 P16 1.965 3.904 95.6 117 122 BD1 1.947 3.924 149 161 168 BD16 1.932 4.034 196 215 225 CG1 1.963 3.910 312 286 241 CG6 1.946 3.941 301 279 229 HES 1.925 3.956 218 232 239 HE10 1.925 3.917 191 203 210

-GC16 1.943 3.935 126 147 150 3 GC5 1.922 3.960 145 165 167 FF11 1.965 3.910 223 241 254 FF18 1.956 3.980 278 275 248 1.966 184 180 180 O AF24 AFS 15EE 1.965 1.967 4.014 3.839 3.548 190 196 185 216 186 222 18EE 1.960 3.902 191 214 222 2DH 1.962 3.988 265 324 351 3DH 1.960 3.980 224 262 282 3 1.957 3.915 110 133 140 9 1.963 3.8i2 111 134 142 Cation-1 1.965 3.968 228 221 220

-2* 1.976 3.551 166 165 165

-3* 1.974 3.955 167 162 160 Mixed -1 1.970 3.817 187 184 185

-2 1.965 4.072 195 191 193

-3 1.969 4.025 197 197 199 Sodium Sulfate -1 1.977 3.516 161 163 164

-2* 1.983 3.454 130 133 136

-3* 1.966 3.956 130 133 135 Boric Acid -1 1.947 3.667 279 291 287

-2 1.957 3.861 296 306 298

-3* 1.951 3.916 226 239 236 1

  • This sample was exposed for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> @ 57'F.

O V

Page 2 1

]

  • United States Testing Company, Inc.

( ..

Engineering Services Division -

291 FAIRFIELD NENUE . FAIRFIELD. NEW lERSEY 0?006 201575-5252 REPORT OF TEST 91066-2 IMMERSION TEST RESULTS NUMBER CUENT: Wastechem Corporation

. December 26, 1985 One Kalisa Way Paramus, NJ 07652 SUBJECh Physical Properties

REFERENCE:

Wastechem Corporation, Purchase Order No. 84-3010.15.

SAMPLE IDENTIFICATION:

Eighteen (18) asphalt samples were submitted and identified by the Client as:

f_%.

( 1) P3 . 7) HE6 . 13) AF9

2) P4 8) HE12 14) AF4
3) BD4 . 9) GC4 15) 3EE
4) BD18 10) GC6 16) llEE
5) CGil *
11) FF3 ~ 17) 16
6) CG23 12) FF6 18) 4 TEST PERFORMED:

The submitted samples were tested for Compressive Strength using the equipment described in ASTM Test Method D-1074.

I i

l l

i Testing Supervised by:

)

- SIGNED FOR THE OOMPANY gad ,e tv '- 'I . / .

Page1of 2 np Frank Savino, Supervisor Frank Pepe

('[

Materials Eng. Section Assistant Vice President J ories in: New York . Chicago . Los Angeles . Richland . Tulsa . Mocesto . Orlanco

.....,..,n

... n on.... ....... ..

...n on.... n ...., .. ..........u..,n.........,.u.s..n.....,...,,..,................n.n..........,.....,...

....u...

... ............,,. .n....,................n.............,.....

. n..... ... .. ... ....,. ....

n ...

...,...................n,.,...,n.,........,n.,....n..u...,n....,.,n.......,,......n.a.n,...,...........,..,...,.. , . .

....n......,n..n.,.........

. ...s,

.....u. . . . . . . . . . . . ,.

..... ..........n,.... .. n .

...es...,.,.n...n....

....n..................

....u...

.n......

.............,...,n.n,..n..,.,n..........,n.,....................

.n.u...

...n. .......,...,........,....,......n......n......

......nn...,... . . , . .

'a- W A Me* ** c' te SG9 Group iSoc+e Gehe'rai ce Surve. Hance >

s.-

United States Testing Company, Inc. 91066-2 CLIENT: Wastechem Corporation Number --

- TEST RESULTS Conditioning: Samples were exposed for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> @ 55*F, except as noted below.

Crosshead Soeed: 0.2 IN/ MIN Dimensions, IN Comoressive Strength, PSI

@ 20% @ 25%

Samole Diameter Height @ 10% Deflection Deflection Deflection P3 1.950 3.944 72.0 89.4 95.4 P4 1.941 3.986 74.3 94.6 99.7 BD4 1.922 4.056 133 150 159 B318 1.953 4.015 137 _

152 160 CGil 1.954 4.086 249 217 162

~,

CG23 1.961 4.026 250 212 154 EE6 1.953 4.121 164 181 187 3EE12 1.948 4.075 169 184 190 j 1.937 1.939 4.003 3.915 96.7 112 109 127 109 127

.s 1.970 4.128 114 136 141 FF6 1.978 3.996 131 151 155 AF9* 2.050 4.240 123 126 126 AF4* 2.050 4.185 123 129 127 3EE 2.048 3.962 109 123 124 11EE 2.054 3.960 112 121 125 16* 1.962 3.998 87.7 109 117 4* 1.962 3.974 87.7 109 117

  • This sample was exposed for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> @ 57'F.

O Page 2

. cJ United States Testing Company, Inc.

Engineering Services Division b }e ,

291 FAIRFIELO NENUE . FAIRFIELD, NEW JERSEY 07006 201-575-5252

~

REPORT OF TEST 91066-3 RADIATION STABLILITY COMPRESSIVE STRENGTH RESULTS NUMBER CLIENT: Waste'c hem Corporation January 6, 1986 One Kalisa Way Paramus, NJ 07652

SUBJECT:

Physical Properties

REFERENCE:

Wastechem Corporation, Purchase Order Number 84-3010.15.

SAMPLE IDENTIFICATION:

Nineteen (19) asphalt samples were submitted and identified by th e Client as:

,b 1) P12 - 6) CG15 '

11) FF4 -
16) 20EE
2) P19 7) HEl 12) FF S. 17) 5

, 3) BD13 8) HE18 ,13) AF6 18) 6

4) BD14 . 9) GC3 14) AF12 19) 12
5) CG2 10) GC17 .
15) 8EE TEST PERFORMED:

The submitted samples were tested for Compressive Strength using the equipment described in ASTM Test Method D-1074.

Testing Supervised by:

<- SIGNED FOR THE COMPANY L. W BY - ' -

Page 1 of 2 Frank Savino, Supervisor Frank Pepe p\ np Materials Eng. Section Assistant Vice President ines in: New York . ChlCago . Los Angeles . Richland . Tulsa . Modesto

  • Ortanco N,)

....... c. ....... .c ....,........................,,,.........,e......,.................,...............

.... ..... . . . . ,e

....c.. ,...... . .. .,........ ..,. ..,,i.,. .. .. . ..... .. ....

c,.c...,..c

.....,.... ,. ... ... . 6, ...ue. ..

. , , c

. 6

.i.v........

in c ,.... 2

. ..c ... . . . . . . . . .....

..... ... ..,....c.,,.. .. ..... ....... .. ...

. . . . . . . . .e.....i . . s ,.,,. .. c..........s...,,i.c,..,..c.a....,.

....e...........,i........,......................c....

. .s. e s i, . . ., ..

...u,. .. ., ,. 6.,,.... ...c ... .,...se .. ..... ..

.,.......,t.,. ..,.,,c ,.. . ..s . .....

.cn.

.. s....,.

e.. .............,.............,.,.,.....,si,..........,............,..c....,

.........-..........s...

e s i ... . . . . .............e..

. .. n

............. u,c.,..s......,..

asem so. A Memeer of tne SGS Group (Societe'Gehe'ral ce Surve.Hancet

' ~

United States Testing Company, Inc.

CUENT: Wastechem Corporation Number TEST RESULTS Conditioning: Samples were exposed for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 9 57'F.

~

Crosshead Soeed: 0.2 IN/ MIN Dimensions , IN Comoressive Strength, PSI 6 10% @ 20% 9 25%

Samole Diameter Height Deflection Deflection Deflection P12 1.965 3.994 31.3 44.5- 52.8 P19 1.973 4.169 31.1 42.5 49.1 BD13 1.957 4.171 106 126 133 BD14 1.945 4.032 94.2 121 128 CG2 1.970 4.060 195 228 198 CG15 1.977 4.130 163 204 184 RE1 1.965 4.137 124 143 147 REIS 1.965 4.077 117 138 141

) GC3 1.932 3.940 95.5 107 97.2 GC17 1.958 3.960 79.7 91.3 83.0 FF4 1.968 4.052 55.9 107 123 FF5 1.974 4.039 55.6 123 134 AFG 1.984 4.129 80.9 88.9 95.4 AF12 1.973 4.051 88.3 103 106 8EE 1.973 3.959 73.6 141 152 20EE 1.965 3.915 119 168 178 5 1.966 3.036 32.9 49.4 59.3 6 1.963 3.026 34.7 64.4 81.0 12 1.965 3.370 80.8 102 112 O

Page 2

'y United States Testing Company, Inc.

p d (Ti Engineering Services Division 291 FAIAFIELD AENUE . FAIRFIELD, NEW JERSEY 07006 201-575 5252 REPORT OF TEST 91066-5 NUMBER CLIENT: Waste'c hem Corporation One Kalisa Way January 6, 1986 Paramus, NJ 07652

SUBJECT:

Physical Properties

REFERENCE:

Wastechem Corporation, Purchase Order Number 84-3010.15.

SAMPLE IDENTIFICATION:

Fourteen (14) asphalt samples were submitted and identified by the Client as:

1) AD4 6) 14DH 11) P15 d 2) 16DH 7) ADIS 12) P13
3) 7DH 8) AD23 -
13) CG17
4) AD12 9) 8 .
14) 17
5) 13DH 10) CG13 TEST PERFORMED:

The submitted samples were tested for Compressive Strength using the equipment described in ASTM Test Method D-1074.

Immersion Test: AD4, AD12 Thermal Test: 16DH, 14DH Irradiation Test: 70H, 13DH, ADIS, AD23 Compression Test: 8, CG13, PIS, P13, CG17, 17 Testing Supervised by:

SIGNED FOR THE MPAN Y C B agelot 2 -

np Frank Savino, Supervisor Fr nx Pece ortes in: New York Materials Eng. Section Assistan't Vice President

. CNc3go . Los Angeles . Ricntand . Tulsa . Modesto . Orlando V....3.,...............

..,s.................,.........................o..........................................

...... .............. .. ... n .

s.e..u,.n... ..e 3 e. ,u n a . .... se.,si,,s.ic .. c ..... ..e .

. , . s c.s .. . ....... ...ne........t ... .n.....t,..s,...

... e.:

wn. . n.. ,. ..

. . .. .. . . .c.u.... . u ev.s.ae..s.,....

. . ,. e n. .n ... .. ... .. e. er

.....,.e..

.. : ..e c t .

.ne a men i . .. ., n n..n

...u

.c..

....c,.s.,.e ..ee.

.. . s e ......u e .. . .. u . n.,..i s e . e.u.s. .. s.i = .i . .e ....u. n

v. ...c. .. . . . 3.u. ..u.io. . ....e.. .. :...n.a u.s,e .. . .s.,.n.

2 u . .u i . e s i . ..n n r. . .. .u.

e . i .n ... . . . n.. .n . c. . n .. n e ...

=c.a...cn... 6.n u .6 ..

r. . s o. A Memoer of tr.e SGS Group (Soc:ete'Gehe'ral ce Surwdancet

i

,. t.

United States Testing Company, Inc. 91066-5 O CUENT: Wastechem Corporation Numcer

_ TEST RESULTS Conditioning: Samples were exposed for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> at 57'F.

Crosshead Sceed: 0.2 IN/ MIN Dimensions, IN Comoressive Strength, PSI 9 10% 9 20% 9 25%

Samele Diameter Heicht Deflection Deflection Deflection AD4 1.976 4.078 129 130 132 16DH 1.957 3.980 199 251 266 7DH 1.990 3.891 74.0 140 174 AD12 1.990 4.032 129 129 130

()

13DH 1.980 3.975 101 198 229 I

14DH 1.901 3.940 204 241 257 ADIS 1.967 4.130 83.9 98.7 100 AD13 1.991 4.118 70.7 70.7 72.3 8 1.965 4.053 75.8 101 104 CG13 1.963 3.941 259 228 182 P15 1.964 4.023 79.2 99.0 106 P13 1.955 4.103 76.6 96.6 103 CG17 1.958 3.967 262 229 176 17 1.942 4.033 97.9 116 120 l

Page 2 l

United States Testing Company, Inc.  ;

p Engineering Services Division .

G1 291 FAIAFIELD A/ENUE

  • FAIAFIELQ NEW JERSEY 07006 + 201575-5252 REPORT OF TEST THERMAL STABILITY COMPRESSIVE STRENGTH RESULTS NUMBER CLIENT: Wastechem Corporation December 26, 1985 One Kalisa Way Paramus, NJ 07652

SUBJECT:

Physical Properties l

REFERENCE:

Wastechem Corporation, Purchase Order Number 84-3010.15.

SAMPLE IDENTIFICATION:

Eighteen (18) asphalt samples were submitted and identified by the Client as:

) 1) P6 . 7) HE3 , 13) AF10 v 2) Pil 8) HE13 14) AF13

3) BD8 . 9) GC11 15) 4EE
4) BD9 10) GC13 . 16) 6EE
5) CG5
11) FF12 *
17) 10
6) CG18 12) FF16 18) 14 TEST PERFORMED:

The submitted samples were tested for Compressive Strength using the equipment described in ASTM Test Method D-1074. ,

Testing Supe" vised by:

SIGNED FOR THE COMPANY Page l of 2 BY Frank Savino, Supervisor Frank Pepe //

p) i V....

np New York Materials Eng. Section

  • ChlCago
  • Los Angeles a Richfand a Assistant Vice President Tulsa + Modesto
  • Orlanco

. ....en ories en...

e

.. in:....... . . . ,,.. ,... cu.., ,. .... ...,..

.... ... ... ... ,n.eu.... .n. .......u.....u............. ... .... ... ,.. .... .,...

....,n. u. . u .... ... .. ... .. .. ....

.... .n. ..n. .. .......

. .. .. ... ... ..... ... u..

... . . . . u .a

. . . . . . . . . . , , ,. . u o n . .

.... .,...n. ...,n.. n... .. .......

,.,. .n ..., ....,r.a......

...,n.a . ....

u.a.. .n u.

.u u..

u,o...,.........u........

n ....

..n.. n..,u.....n.... .....n.u.n.....,.. .....

...,........n...,uu.u,.........,n.......,....a...,n...,.

1

........n.,..u.,,.n........ ..

.. u...

...n

..n....

u.. ... .. . .. n

.6,.. .n.....i

. ,u.. .,.n.

u. ...o.u

.. .. .... ., n

.....s....

t..n

o. .

.. i

.... . .. .n... . n........ . . . . . . . . . . . .... ., ..... ....  ;

e .- c u e " -e- ** SGS Geue (see - p Gea bi e, su,veasaace>

j

. l United States Testing Company, Inc. . 91066-4 -~

) CLIENT. Wastechem Corporation

. Numeer TEST RESULTS Conditionine:~ Samples were exposed for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> at 57'F.

Crosshead Soeed: 0.2 IN/ MIN Dimensions, IN Comoressive Strencth, PSI

@ 10% @ 20% @ 25%

Samole Diameter Heicht Deflection Deflection Deflection P6 1.847 4.040 72.8 87.7 93.3 P11 1.846 4.128 74.7 91.6 97.2 BD8 1.925 3.370 141 160 168 BD9 1.940 4.063 135 149 157

' CGS 1.910 3.970 276 241 182 CG18 1.960 3.985 254 234 192 HE3 1.902 4.008 172 183 190 O HE13 1.929 3.954 176 192 198 GC11 1.956 3.755 110 123 123 GC13 1.950 3.567 107 121 121 FF12 1.915 4.004 161 179 184 FF16 1.961 4.025 262 288 301 AF10 1.959 4.010 154 153 148 AF13 1.918 4.085 157 157 159 4EE 1.958 3.967 141 158 164 6EE 1.905 4.006 137 153 156 10 1.815 3.960 81.2 98.6 104 14 1.840 4.022 84.6 99.7 103 O

Page 2

l i

1 l

l l

United States Testing Company, Inc.

o

() Engineering Services Division 291 FAIRFIELD NENUE . FAIRFIELD. NEW JERSEY 07006 e 201 575-5252 l

l J

REPORT OF TEST l 93179

. NUMBER CUENT: Wastechem Corporation One Kalisa Way May 16, 1986 Paramus, NJ 076s2

SUBJECT:

Physical Properties

REFERENCE:

Wastechem Corporation, Purchase Order Number 01214.

SAMPLE IDENTIFICATION:

O Ten (10) asphalt samples were submitted and identified h by the Client as:

1) Z1 6) L7
2) Z2 7) L10
3) Z3 8) Lil
4) Z4 9) L12
5) L2 10) L13 TEST PERFORMED:

The submitted samples were tested for Compressive Strength using the equipment described in ASTM Test Methed D-1074.

Testing Supervised by:

R ~ SIGNED FC THE C PANY ch - 64 -

~

.Page1of 2 Frank Savino, Supervisor Frans Pepe l

np Materials Eng. Section Assistant Vice Presiden

.tatories in: New York . Chicago . LOS Angeles . Richland . T'ulsa . Modesto . Orlance

.e. s i n e e n n i .. .. c . . .. .,

... . e.

. it..

i .c

. . . n . .. e.r e s .. . .e .,e.,e . e. u. c.6 ... e ..u .. .e e c e.

.n. . .u...... .:n .... ..

..e

. . .. u e .,.. en ..u . ., .. . . .. . c u. . ... . . . .. m.e . , v. ... . e..ee, .e.. .a ...

.e . . ,c .ec a..i t . .c n. . . . .. ,r,i s. ....

s.u* e c., . . . ,...ce .,. . . . ,. e. .

.. nn,. .i r. n. ., e .u. s.,s...

r... .. ..

. nnn e.n .n..

in . . . . .

. e .. n..e

.......v

. . n. ,u. ..n

.e... ...s..e ...c

. e n n. ..c . . . .. . . c .,. .c

.n . .,. en.

.. .. .n

...i.c.......,.......

. v e u. .

.... ..u u ..

..... e . .

s a,m.. s.,.tsu.tei

.,u seuie.

i

,..t,..s

. . .i ..e

. u. ...u n, ns.e.. .e.... .,. . e.

. .e.. .. .u n.

. . .e.

,.....u. ..n

.e .u .n ue u.. u, ...,e i

.,. , n.

.n.,

. .nu, i

. . .u... .

. . u ., .e .. . e,n n. .... i.,,..un

, ... .. .. ...s. ....

.n.

... u.e .. .c... . . ....e

. . s.n. s., .enunu u . ,i c a. v.6.u.....

. .. . . u . . . . .

reem eo. A Memeer et tne SGS Gmuo (Soc:ete'Gebe'ral ce Survedlance)

  • i 93179 O- United States Testing Company, Inc. '-

CUENT: Wastechem Corporation Number TEST RESULTS Conditioninc: Samples were exposed for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> at 53*F.

Crosshead Soeed. 0.2 IN/ MIN Dimensions, IN Compressive Strength, PSI 9 10% 9 20% 6 25%

Sample Diameter Height Deflection Deflection Deflection Z1 1.968 3.920 191 182 181 Z2 1.937 4.134 192 187 187 m Z3 1.978 4.067 173 169 169 Z4 2.035 4.073 182 176 173 L2 1.955 3.980 101 121 126 L7 1.963 3.996 112 134 139 L10 1.960 4.093 111 133 138 Lil 1.957 4.108 87.1 113 120 L12 1.965 3.895 82.4 116 123 L13 1.935 4.020 107 126 130 O l i

Page 2 l

.a x O _

i 9

l i

l 1

1

)

O APPENDIX I IRRADIATION TEST DATA O

\_s/ Index of Sample

~~-

Designations The following identification prefixes are used for each of the samples for which cata are reported in Appendices F through K.

Prefix Descripr. ion AF Bead Resin ( BWR/PWR) - 50% Solids Loading BD Precoat Filter Cake W/ Powdered Resin (BWR) - 25% Solids Loading OG Precoat Filter Cake W/ Diatomaceous Earth ( BWR) - 55% Solid Loading DH Evaporator Concentrates - Neutralization Waste (BWR) - 60%

Solids Loading EE Evaporator Concentrates - Floor Drain Waste (BWR) - 45%

Solids Loading s FF ,

Evaporator Concentrates (PWR) -

50% Solids Loading

\' # GC -

Decontamination Waste ( BWR/PWR) - 30% Solids Loading HE Mixed Resin and Filter Cake Waste (BWR) - 45% Solids Loading Z Bead Resin From 55-gallon Drum Sample (no.) Asphalt L Asphalt Samples marked in the following ways represent the tes t results from other test programs:

P, Cation, Mixed, Sodium Sulf ate, Boric Acid V

(O & ~

usoMaoix Sept. 15, 1985 Miss Diana M. Desrosiers, P.E.

Wastechem Corp. ~

One Kalisa Way

  • Paramus, N.J. 07652

Dear Miss Desrosiers:

This will summarize parameters pertinent to the irradiation of Twenty (20) asphalt samples as per your Purchase order No.

84-3010.16 dated August 8, 1985. .

The samples were split up into two groups for a better dose distribution. Group A was exposed to a Cobalt-60 gamma field for a period of 104.3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> at an average dose rate of 0.96 megarads per hour. The calculated dose based of dosimetry was 100,13 mega-rads. Group B was exposed for a period of 107.9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br /> at an aver-rw age dose rate of 0.93 megarads per hour. The calculated dose bas- ~

(s- ) ed on dosimetry was 100.35 megarads.

Halfway through the exposure the samples were rotated 180*

for a better dose distribution.

Dosimetry was performed using Harwell Red 4034 Perspex dos-imeters (Batch AA) utilizing a Bausch and Lomb model 710 spectro-photometer as the readout instrument. The dosimetry system was calibrated tracable to a recognized s.tandards laboratory. The calibration date of the Batch AA dosimeters was April 12, 1985.

The spectrophotometer was calibrated by Bausch and Lomb person-nel using standards tracable to NBS. The calibration date of the B&L 710 was June 12, 1985.

Irradiation was initiated on August 22, 1985 and was com- ,

pleted on August 28, 1985.

Eric B. Haft Production Manager ISOMEDIX, INC.

l'hi r

V isomedix Inc.

  • 25 Eastmans Road, Parsippany, New Jersey 07054 . (201) 887-2666

s . : T./. 3 'J. ':. : A 5?O~ 0; WA 'i_7 d .Ctt G.M C C Lt P -

jgl'd .

S'p:3 ?T-  : D CKE: _'_

ctrcu weh h IRDL to.: 7036 m ' II G ICN B ._

l l

m g 7- --j:)g AVG. El El i P WiJIFID FM. -w D')SE D?DSI.E ECSE D: 5'"?2 TION DOE ICSE FA2 FATE HDL75 P,/':AD

    • A.5PHALT u a <. , 10 mn <. S "L . '! '

' ^. /C/

2- , e. t. a io.o l [ . 43 239 /o.oS 3= u Il t r t. / BOO ' 4*r I' 5 /0C./

4. .

O,esure: 1 ,.4 tet?1 rg. dred dese - Tota.1 Wcure 5 burs Dese Rapt M:/hr.

EOSDTIRf EGOSGE DOSE DM7E ICSE D80Si.7I EC.cE ITri R2.'"E H'URS . M GAD I'IE4 FATE HCL 75 --M/E2D I"24 R2.TE HOL?S M/:AD' '~

I ., % 1. 0 / O ,sg / O. cG I 32 7,$ /007 sl.2 23. sf , 99

( i I C1fG CA*T S/SIG CIfCK CATE S/SIG a C.DCh. DLr S/SIG.

J c44UYJ 'f- t* % "M S~M 19 WJ 4 t-#r, 1 c, cus-

- - -->s.2 n 1 9-z Sc___

rc_

Fet. 2 Mt. 2 Tet. 2 s

ic t. 3 .2 s u s.9 m rc Fot 3 asrc.o //-r k. v 1-l Pct.3 J S3wo 9 S'6 /

V

%d Fot. 4 Fot.4 Fot.4 End ,pS: y,,q 4 ;-v. Tc End c1g2v.c s'- r~'& f/- End a s1<.,a, t/-M -5*4- 4/

Amual Actual Actual End a S;y q s. g. ep, 7c Dd 2 D >~7. 7 Y-3 %v $$ End .?s vs./ y ? g.. % W v

DG3St.!KE DOSE EG35L7E DDSE ITD4 PA'I Hr:S P/ FAD I'IT4 FATE H1?S PAAD I'Iri FA'!E H17S PA.'O

s. .

CfG EA~E S/SIG CfCK r>.'IE S/SIG C.fCX CATE S/SIG S *m Str Start

()

m v

Bot.3 Fot.2 Fot.3

.%t . 2 Fot. 3 Fot. 4 Fot.4 ,,

Fct.4 End End End F . W. __

Ac.Eh3 _

Ac.E-4

l

~~

O APPENDIX J BARTHA-PRAMER TEST DATA i

I O ,

,s

&j- ~

'i

~

f\--'/N, . '~~

Index of Sample

~

. Designations The f ollowing identification prefixes are used for each of the samples for which data are reported in Appendices F through K.

Prefix Description AF Bead Resin (BWR/PWR) -

50% Solids Loading BD Precoat Filter Cake W/ Powdered Resin (BWR) -

25% Solids Loading CG Precoat Filter Cake W/ Diatomaceous Earth (BWR) - 55% Solid Loading DH Evaporator Concentrates - Neutralization Waste (BWR) - 60%

Solids Loading EE Evaporator Concentrates - Floor Drain Waste (BWR) - 45%

Solids Loading FF Evaporator Concentrates (PWR) -

50% Solids Loading

( GC Decontamination Waste ( BWR/PWR) - 30% Solids Loading HE . Mixed Resin and Filter Cake Waste ( BWR) - 45% Solids Loading 2 Bead Resin From 55-gallon Drum Sample (no.) Asphalt L Asphalt Samples marked in the following ways represent the test results from other test programs:

P, Cation,. Mixed, Sodiun Sulfate, Boric Acic O

i l

Results of Biodegradation Test --

4 Test results for both Barnwell and Hanford soils are sunenarized by j Tables 1 and 2.

I Attachment 1 shows the calculation method u ' tilized to predict the '

biodegradation expected in 300 years. The equation dW = K log t W

was chosen as the best method to predict the 300 year biodegradation from 26 weeks of sample testing. It was assumed the soil / sample environment had equilibrated to a steady-state degradation beginning the 18th week of testing. Attachment 2 is a copy of a report titled

" Biodegradation of Synthetic Polymers" which explains the detailed rationale for using the logarithinic correlation. Attachment 3 is the laboratory test report from U.S. Te's' ting Company.

O l

O

Attachment 1 _

Biodeoradation Sample Calculation

1. Select sample CG8 containing 55 weight percent Precoat Filter Cake plus Powdered Resin (BWR). This sample was tested in Barnwell type soil .
2. From Appendix A of U.S. Testing Report No. 05637 dated 7/14/86, the data of interest includes carbon dioxide generation for both soil and sample as listed below:

Tl tration Week of Titration-Soil plus Sample Date Test in moles CO2 per gram sample 2/7/86 20th 13.2 2/21/86 22nd '

16.46 3/7/86 24th 6.19 3/20/86 26th -

9.35 Subtotal 45.2 u moles CO2 O

V CO2 Generation = 45.2 x 81.3 = 3,756.12 micremoles of carbon dioxide (soil plus sample)

NetCO2 Generation = 3756.12 - Soil Generation = 343.75 micromoles (waste sample alone)

3. The data shown above is then used to establish the value of K for the following equation: l A w/w = K log t = Percent 'deight Loss iuv where:

A w = change in sample weight in grams w = original sample welght in grams K = curve constant t = time in days

  • To determine K, the following equation is applied:

Aw/w / -

aw/w /

K= /t=182 /t=140 = 8.306 (10-4) i log 182 - log 140 w= 81. 3 b

4 Percent Weight Loss in 300 years = (100) (8.306) (10-4) log [(300)(365)] = 0.42% l

1 1

-:e .~ -

W '* s - - ' w.s e WW.e .

G J. ;&;;:.$ik*. 557:EMT5$

.;%;}

'~

..GT., Wn I:h2-:.=-:i M;' W5NWWW.%~;WV-:.

.,J~;;:*&r-J;.<Qs%AQy's.%%.4-~.:'.d: t isyb;G=^??EC35R;"i NE*%'s.w.-

Q I

ATTACHMENT 2

. I c-^ 9

, -- Nc -

  • BIODEGRADATION OF SYNTHETIC POLTMERS: .Tbg-4 N...

THE C-14 METHOD APPLIED TO POLYETHYLENES ANN-CHRISTINE ALBERTSSON and BENOT RANBY IM g.3f

. Department of Polymer Technology, The RoyalInstitute of Technology, ,-E-h))

~ 5:ockholm, Sweden Ag.;

$.gH-2.

Summary

%.. Lm 4

p-c.

The C-14 method 'for studies of enzymatic degradadon rate oflinear and #

h 1 branched polyethylenes has been applied to a series of microorganisms, .j q.h

fungi, and bacteria. The organisms are grown in a culture containing the yg;st-#=

g synthetic polymer dispersed to different exposed ssrface areas per unit weight.

The COs evolved is absorbed in aqueous KOH and the amount of C-14 is 3 f,M

{;.) analysed by liquid scintillation counting.The sensitivity is better than 0 001 % f-d

, degraded polymer. The data obtained so far indicate that both linear and - ;8$:%'f':N branched polyethylenes 'without additives or u.v.-light exposure degrade at QPfyB an initial rate between 0 005 and 010 % per month, dependent on conditions. f.9 kGs:

In addition, a very slow release of COs from polyethylene without micro-organisms has been found as a zero reading in the degradation experiments. 3;6p.4

%~wd mavy .

p> ' INTRODUCTION '

r9-js'e,,

e

. . ~ , .

k',

A simple way to investigate biodegradation is to bury the material in soil.

Natural soil burial tests have been carried out since 1967 by our department.

$.m. n'T M.i-c

. This kind of experiment takes a very long time and condidens such as .i/;'n temperature and humidity are not controlled. Another way to investigate bio'degradstion is the use of laboratory tests. Since 1971, we have tested .I/g$'ff

.*:p.-

6

~.d+J.C polymers with the agar plate method and in liquid cultures with oxygen.

igQ When the rate of degradation of the polymers is low, it is necessary to use special techniques for the mensurements. During the conference 'Degradability e- W of polymers and plastics'in 1973, Dr Nykvist read a paper 'Biodegradstion '5"'M_ T.E l cflow density Pof Y ethviene'.

- He cave the first resvit from the C 14 method ..E. 0.4.,.c-..

l (%M- for studies of the degradstion of polymers. Polyethylene is mixed with  ; m;.w g4 I

organic substances that decompose more rendily. To distinguish between the p-GO'-C CO2forrned by decomposition of the polymer and that formed from the readily decomposable substsaces, polyethylene centsininf, the radioactive Q'E:0 s'4 isotope "C is prepared and used. We have continued the studies reported by  ;

Nykvist (Nykvist,1974). The experiments started in 1972 in the College of g@g(-]--

l Forestry have been continued in our Isborstories since January 1974,i.e. for 'a .N about three years. The C-14 method used now is modined and improved.  %@X.MC It hss been applied to series of experiments with both low density and high } M d.*

I density polyethylene. $g 750'O.7

l M22 -

MATERIAL AND METHOD p,:,$.M.

w-w p Matcrial M The C 14 metf$- needs a specially prepared polymer containing the 743

[Si-V.2 . h..

p ., ;@_ :

? .w .- . ~

l f~'\ .

dD. M.;'.+

1

\v)

  • Ni g,.g EI:'A.

yS. it pi g-s.ntW ..

w-m . - - - _ _ - .-

M.l+m%'? .

-f84

'-3. 4: vh.x.:,.n,g.:-.4-Sex:'-J.%.

.x = m. s : Qt . .. -: :V.*G ~se r-:%' c.$.'W.

. -Ar"*-s ,3q:i'J' MJ,T#'t%-

a. t-E. . W:49-~q%' .

l 1

c .

- r --'%-g.;..-w:.'j.!

. . . . . . - ..o-

.:::x 2-%W%-p%-;&?fs

~;
.g;q.

. . , . a .yir a..s,.,;~.<_,,,.*. g .. n..,

.:,- --y

<?_m*wa:

c.e.

,-g ,c, :::,a. - - -

. ;;_.a.W:- ;:v

.- m. ,.a ~...': dv ;.. ~.,.,, L- w s-f:

, m% . .,..;.r . , r.....

.r , . :.. w.;o. d =;

i < r: ~.,:. .ww rpor:e - . ~ :.-: pq .q . :q.gg

.r .%~ Kx:;- q;w::. . s.y.; ~.a.~.~'.. d ..'.p"*t:.2-.

.p;<.e.n bhb.3:s;..:.~. . y u.-w : -

r::>.-';b ;h hh -

7- .h  :- . . N.i..:.. g- [ ':

f ,

g ss w _.

4*14.y

~;C.; 144 Ann Christine Albertsson and Benrt Ranby

.g * .

radioactive isotope 8 'C. It is possib!c to synthesize this polymer in diferent P!2

.1f$g,

?gr. $ #.S ways. The C-14. labelled low density polyethylene (LDPE) is prepared by Imperial Chemical Industries. First, a polymer is made from ethylene with a stat

/

?p;:GW rather high concentration of 8'C, using the high pressure free radical process. acc:

y4g

  • Second, this polymer is b!caded with another batch of a similar commercial sig-

-g_- polymer to get a polymer with a rather low concentration of 8'C. arr:

- -gd.:+1s The C 14-labelled high density polyethylene (HDPE) is prepared in bec

$%R T.2 .rM.4 cooperation with Unifos Kemi AB, Sweden. In this case already the C labelled monomer is blended with the usual monomer. The resulting ethylene

. di5 radi NMUI gas mixture with a low concentration of 8'C is polymerized.

~

MQ

.qi-fdg.g The two methods give diferent kinds of dis:ribution of the 'C atoms. In LDPE all. 8'C is located in a few molecules, whileinifDP 8

8

~ ,

App T

~.u- -

occurs in all polymer molecules. A polymer containing C is expected,E-the to be 'C rand:=ly nes:

U.%M.g.  :;d : less stable thr.n a usual polymer due to the radiation frbm 8 'C. The degrada-

f. ':. fj tion caused by the, radioactive isotope 8'C can be measured, using polymers  ;

7.2 (g- containing diferent amounts of 8'C atoms.- '

5,g'

f. g

-yg y.

'?j 8 The amount of 'C atoms is determined by combustion of the polymer with oxygen in an elementary analysis apparatus. AI! COs evolved is absorbed

$rr ~

wh,@ in aqueous potassium hydroxide and the isotope 'C is analysed in a liquid 8 8

. scintillation spectrometer. General information about the 8'C isotope is G12:h given by Catch (1961). 8 Gd.:*8We

..was.y . .

e s A Aquipment .

[".s .".4 The apparatus is showrt schematically in Fig.1. It comprises ive connected l lV@h vessels with diferent functions. In the middle vessel (No. 2) the polymer is '

] -

charged under the conditions to be studied, e.g. together with soil, nutrient solution, or in a sterile system. Vessels No. I and 5 contain aqueous potassium sj ,. ,,0 hydroxide. Vessels No. 2 and 4 are emptyjust to stop back-flow. Airis pumped r.d through the system. In vessel No. I all CO2 is absorbed. In No. 3 the CO2 is 8

}W.(-Q2 G formed by the processes and is carried by the air strean through vessel 4 and absorbed in vessel 5. The CO2 is measured by titration with hydrochloric r d:.- ] $ acid and the amount of isotope 8'C is analysed in a liquid scintillation -

?P*"b

,d? w spectrometer (Packard Tri Carb, Model 3375). ,

.:.y s.: A.--

, :: . 5:7.m ycsM Air . FI. ,

l Md@.

4X.ht +

l

-. of a :

It 2 The :

?. N n ,'M.

.. p.f., ,r. s

i presst

.d'D,1 . Vitalt 1.D PI Q/

?. Q 3.{ //

/,/ with :

-w / / / / -

sa,ted f*M

..:.~; :::: -: //

,/

/

/// with

.: >:: .q - /

/l lNate,/ / h/ afiet -

-= f.} /xou sc Now 1 m , s.: -

1

-.T 'BTJ r a y, .7 4 5 , Fig.1 jg s]  % com p<

,&.*h'.'
;l. Rt.1. Apparatus. experi
p
n. . . ..;.

[

1 )

4

k. . . . ,. . a
m. 83 .

w,c .s:-r . 3-i '"

N.Y." ,W:.Q, .

.9'.2.'*h

  • ' L-7,r.,s.c q.:L- M G .

. .g . ~ T - t c'~ -~ .9--W; L'y;, r[V.C.

.._d 45 Y D,:,,'h 'f ;<O. A 8 W Ul' d.

9'd'._,  ; .p v.s.M- , .k.WtlW;.-

/'WMkl{-EDN 1'E- Yb-$kN*i.,G- f.?_v'~ .MElhDT- C*-?

  • M Y.:E; -

W-

~

l l

l l

. . x: ~ i . J:Im d Q:::5QM,iCM.?CV&* -% QY*2- ~

l

  • k. D h i &.p-- :.r.-? -:.D:h.b Wik'WAWYS Nk'?'Y!iSh$.Y -D'Mik?-Q*^1&*-Q'eW.MW&i$ i ~ O ?~'S

$_ shy

( O ),e . h. .

j .

g

, Q Biod.*: eder!en sfSyntheric Polymr.-s Te$ y rent Planning of experimental programme

'p prepoed by g

As in most biological experiments, it is necessary-in-this case to use ylene with a statistical techniques even if the C 14 method itself is very sensitive and iest process. accurste. At least five replications are used to give a desired statistical D

g(Q 1 commercial significance. These five experiments, although identical, should be randomly

' P;+i  !

2. arranged in relation to the references. The efect of microorganisms should

!JO

repared in be compared with sterile systems to account for ' aging' efects. Polymers with ,fd iy the C 8 diEerent concentrations of the isotope 'C should also be compared to study ing ethylene

'E radiation-induced reactions. .

~s t

,.n C stoms. In Applicstion of the method w C randomly The first experiment with C-14-labelled LDPE has now continued for w

neted to be nestly three years. These studies include LDPE and demonstrate the efect i%

he degrada-d.g.

1g polymers

  • 8 Der *** ae c=$r # ' *9* .+.:
he iymer y * -

is absorbed 3.h:.

.' M

.ii.n a liquid .

, isstope is  :.s

' ur-u $=5 mi e

to a e connected t::M j , ,

, y t.-

vmer is ,

{w.,,5utrient m

t um g,5 '

y,

[Q Mrj.

r ied

the LO, is i n@R vessel 4 and e,.=-

u ydrochloric i-f j G Q

scintillation g g 200 t.oo a a G re renefacys)

'5Ty Rg. 2. 4 17se degradation of 0 PZ esposed so u.a. light for 0, 7, H, 6, and C days. g NW -

=..

of a specist commercial additive (from Akerlund & Rsusing AB, Sweden). F~w,.i.?

! The additive accelerates photochemical oxidation. The LDPE samples were 770:.

pressed in thin sheets (016 mm) and exposed to u.v. light (Osram Ultra G Vitalux,300 W). The distance between the lowest part of the lamp and the SQ LDPE sheets was 0 3 m. After exposure, the LDPE was cut into sms!! pieces with scissors or ground in a mortar to fine powder. When the u.v. exposure M

f.ST.

lasted not more than 14 days, both the LDPE without additive (0-PE) and Id*

with additive (NDPE) retained.the sheet structure and had to be cut up; after 26 days the 0 PE still had to be cut up, but the NDPE was brittle and

  • g$,j could b.e ground, after 42 days they both could be ground. rs.+

The LDPE samples were transferred to vessel No. 3 together with soil (see s:-,W

, Fig.1). The soil consisted of household garbsge which had been ground and composted fgabout six months. Between 4 and 11 replications of each t-7-:i1 experimental wndition were randomly arranged. The purpose was to com-G$5 3 sp.~-.>

i hh,N

~ . -

NJ)  ;.KP

, c-.: k

,,.d.

a".

=MM'

. ..a. . u .. w -. ,-. - <= -- , ,v.-. . . . . - --.....,--c r' . 2 we =. . 4 C ** * * * * *=

W .7P.9 ..

. . -_ 2 M. N 5 E*EE_f51'@ d d! N S -t M.M 7 5 5 & :-E M '#i EY i C M. M 2 @

l 1

l r.

.s G . . : .4. ~ .-s.n. .. . . . rs - -- s -3.:,. /' . 3 - -w. '." t J:* a. r. : r .

  • - c * =.",;;, ** 'e
% " * ' * :n*a ;. *:,.:y :. . *%' . , .>* ., - . .

.. ly :hh. <?Ci.*.-W.* CWM,.. .M: sm2.C . -w%a. Wq-t-;;, % :M5+'MQ9M. a. .c.

t... .-

h .w q&. - m@.%-MMW:>~'*-2 +:'e,.rn  %

    • %., c e.e --

4%~c.e- . '. *or.M

?*J* T-s .- r-

', *e,;[g'_.dJ a.,.J.%"

': es . . .'c , i*

P s

M. ~'W. 146 Ann.Gristbee A5ertsson and Bengt )tanby ,

t

, ,, pg --- pare the eseet of u.v.-irradiation of 0-PE and NDPE. The absolute values

.9.p- J:R.

$-M.q were not so important. As references, systems were used whh only soil to give

[.-A. M;'

  • background radiation' (naturally occurring C-14) and wuh only LDPE without soil to give the efect of oxygen and the isotope 'C. 8 e,.ar.o WC.

,.w.

3 : 4<:$$$o: - -

@..,. * -V ,, ;.- . .:,,g, 4_M .

.W* - ;N 0N5M,;.3

~-a ?. n..c-RESULTS

-$=fE5 M. Using the C214 method, it is possible to measure the degradation of LDPE during very long times. The degradation of O-PE (Fig. 2)is slow and decreases y ,.g$MIM'.e,Q 'M"!i$with time. The decomposition increases with longer u.v. exposure times. The ,

. .A.- r.-.a'.v---

. r,45a degradation of NDPE is also slow (Fig. 3) and decreases with time.

.i'.A g.i. W. '

For comparison of samples and u.v. efects, the degradation at 600 days is Qi.gs'%rf

.,. ,,.p.

e considered (Fig. 4). For O-PE samples, the eEect of u.v. irradiation is

<.Y m 4.:i.*.*'. . -- -

.n 9 i-

.fe.g.'7%s.$.a

?~._,

.u.d&

=M rf. 4

- 2.0-

  • Cepucatan par cent by empt 5.L r.< . .:.: #gry;;;, 4 S,.f, y .e' - '.
m. ar . 2 -

.pltism.e . Asrm L2

  • ,~e,.r4* %'Cr;"a 1 h -w

,"'-Mg.

r'

.:. :'.sE.%. ,yi.2 .g:,./.e-t' gg 1*. : a---c.d.e--

-.,u. n- .;; .

N. ~N I. ,I

?-

i w;?gG:' ,

W

\ / ~~ - ='.n-s.z y ' e'"~ u '

1::.4.1 w- 2.0

  • '.M *~a~: *-

M

  • O 6,*}*- e= M 2g

.-45

' ea;.: %,. .*:"lh <,, Q

. M=..?-

M'

  • e.

7.L'.%*='

t".C-% 9

  • li f.3 i='**MeO*.N.4 '. &% -H $ I

-@W..d2.*,:e

-b  ; i

x. y' W. . -L* Y 1,., .,,.%- . .- .e . . . *v.;

==

. ,;4 .g-,s#f <.w :4,.

8 ,

2..s "t'2,4 e,

.e M

.'.w

.2I.h=MsY

-ws. - , . = . :
  • .b.N

- ni r,o. *3 o -

s

...,d8 fem,4h; yg

  • M*

4

  • T=14 = ig 'Ob"" 8'd.'f'- i .E -

.=

T.'4 G ' I"t s*,.*3

%EC'.'s;

  • ,,. ig . T I

. y : e . e-*.q" ' s

:- A. r.r .* 3 5.* i

'vf".r.~y '.s4 -e . : 05 .

=f.  ;.:~4.. ?sct:: -~ ..

>.' ',isr:.bT~

C-<l s-M -

-.ga _-~ h w

.. . N..,.m.::".

..m ', ' -

C'

-.:.p'C~i . 1 Tii..y'*: 0 j! .

. :-b I

. . ' ' -.M -

  • I .

200 wo saa soo

- S..i'.t'A'Y]  : :----

--f- Two(daysl a-

-lk,. m. q,s3',,=%~Y Q Mr. 3. TI,e degrauaan of NDPE esposed to u.a. lit hrfor 0, 7,14, 26. and 42 days.

~C.r.:r'.T'i=s'bl

. .e U.4sCX,.,'

. .!,.~.%. ,_.s' .g :t'.. . , . .

sk f)}e

.,9""9j f4J 9= ~*w *_.... .N:..w:

@a :, .:v.-.- e *9 a',.5.-1

  • /-

-M. f,. 'b:.y -t.- . .

,..I."*-

  • ^

41

v. - r = * ' * *

.n-

  1. -- r====.
      • .f.c,*.

A e'. .,$;.o'm%  %. rw

' '.;;*~

,m* ' ^r . .r~ .. ' Y-

  • .. .= .v. ,=, - ..

. ' ~ ' '-- f. s-? M J*

~f.E Y' ~P'ifds%.'.v. .- -> A. :--Y 4'.:'%' r."._Y's'

.e 3 :".**'*.'n?-h.

e . t ??.,. *".s?R";. .'d"". W * *.

  • w*='.j'E'r"".*'.W

- .N :-iL " T'M_.f. "y%'-2.%.n 'e*,~f*:'k.w':: m' .; , CC: ;! .t. e; p;?J

, e

-@,d'7c i'r'n8MM',',fC:"',"s";.E-W"t t-f.'N.i'.',

v , -

LD%_ %,-;i.:.':

s_ $Q:

__.1 .t.:ry.__:"G.'-U.:.e..

-; *%:;;2..o

..g..-:

.y:.: .e .g._...;.n.%*vJ%$h.?.'

,i_?.;

m,... A. .p.e.x.:t'

.-;.v_.e. . %_ . .:%_ . rwi-9a%.cG.'a .._ e

-wh.,:$.~.'.-5

,c . - e. Y ._ ~~,'.]U1O;*h.~-l2

.x .. .

.a

=r.

ss

(~,) '. r

\ .

m. w

>).

147 stodotradation of.synonette Polymers onewsom an cet er e e uw teil ta give es ,

g sly L D P S 2 s.

Q w.

- . &,wer;

- $?.'

1c-  :?

?.<-2, e W d LDPE

! decreases .

'.E.N,. .

times. The .: t?s L3-

~.h.g

. C.

I

.vW

,,: .,e 500 days is

..i.. a.,.-

. . .  : . s,J n

diation is .,

~

-r -

tO

$$8 C.Q. .

-y?.&.

~.-:e m

'4* GE.

.s -

- g ga n

-ty d 0.5 L- Ea :".

Ei.M.u -

r-

%=-

'49 FM hi=#C

~

. 3

\ .

u n at i,

  • s 7 1) s n=e er nessurekwys/ .

t fi .tL 17ee degradation of NDPE and $PE at 600 days as a funcnon of exposure times. ^&

WG,. 5 26

. . . asa ..

r%-* .'v.A

' D*vecchen ** een* *r =e.pd .m

, U +.a N

~.. 4 i:d :

as sto M h wwf'h

, 26 are

. ..: .~2 ::

b.'M3.I

' s ..pt

,e 4

.e-=

.l gg i.h c l ,:me' c.

. > r~.

fl - 8

, ; n' s.

e:'

7 e

,., :L%@

W?:

Weg

.i . , - >

e3 e-M Mf.E as are 24';

c. ;.w :s > <

o 3--

  • i.

ao.ar7J e.,q *  %,:s '

  • ,~'. ..R. p a-a m t ,,s m saa 9 '2 p

t 42 days. fi t. 3. Wison hetmern 0-PE and NDPE mishout u.v. irradiation (:S davs). -

WI.

.- y... $.'.

A w.r e* g

. S:t y O M!.E V .

6 M.4.c ri

-c..

t:(

i l

2 n":'.

  • i M,y.

e t #

,y. ,., .

  • ~ **
  • " ~

' ' ~ ,.z.:

. .r,'

. . -. -.n p~r.-. +'t ,.y;

_y m...s_

..; t py. t -h.. .._,,;; . y.,.: -- .r.3 ;,q~h,t.y. g.,,;~rC,".'

a v.- M. :m . ,.,-< _*'T9 .;_ , ._ ; . ,

y.~._,a.-.

.-. .w .. . '.~ u .mm

...pc4 :l;o  :

.- ~

~_ 3

1 1

-N$

-: e.m,au :h

. .. .,$.k.. . a ~$b>N.,h. .. ,.w 5 NE[NkbbY --. ?.w-w .o.:v.=N:-y kb I N~ =W;.Y-:s .'Q.'<:&M':: ~?Y.:.W:9;*bh.

NbN N eg.g

e. =W--

.,.3-S %? G.4 -

E2 4 -%.x s 148 Ann Gristine Albertsson andBengt }tanby N.I h , , ,,..f) accelersted. For NDPE samples, the u.v. efect increases more linearly with i-Q,,.-M.7- time of exposure. The O.PE and NDPE not exposed to u.v. !ight display only FR$@d%g@ .g f,' a slight tendency to decompose. There is only a very small diference between them (Fig. 5). The samples of O-PE and NDPE exposed for 26 days to u.v.

i g% - M <:.*!ig

, light and combined with soil display a great diference in degradation. ~

9.*-@ p g Figures 6 and 7 show the degradation of O-PE and NDPE, respectively.

irs.g.QSS.; If the kinetics is assumed to follow the equation:

$YMh 4%M - = Klog . (1)

Y@h.$'::

t n

di*

-:*.. : mr #:'AT,;

z where w = weight and i = time of degradation,it is possible to calculate the rate constants (K)

.c.-w:'s.:.y.y .:8.J%..=24:e

-t'*s, m. .y Ce; w ;E s* , oesroaaras pe.ced by we.tt

'f.5~

.x-- - q< 4~M~-A

-- u--

W ,X . ,., v. a . .

13 '

  • $W., :'m

-= 2.g :r=N?.:,., aa$. -

% s. m v s - a

.,r, A,,c.mm

.e I0

.-*:03

' b.c . -'% .

b.wSh@

~

h ,.?.. <

m m s f

t

(,/

M. s-e -

--e&c.::

wm g

QS 26

. p~ ~. *s .

.'G;M. r<.

w - :.c --c::.-mig .

r

-J.r ;; T=P G

  • ,??

. 84 7

er-:'C

  • m:cE3*-T ^

0  ?

T$25Q

,.s

. .,p>~..,.y.-#.J " .5 1 g,o 2.5 ap

  • x .

.:-- . Lo.- Hase krays)

W + >- &, a fig. 6. The degradation of 0.PE exposed to u.a. light 0, 7,14. 26. and 42 days as a function f.F8 s ::>4-WM s

~

(*g;,;' eq7 .9 of togarithmic time.

% < 4..=

5.p , ,a M J *9.

  • M

. . .~d '-S 2 Figures 8 and 9 show the rate constants (K) for 0-PE and NDPE as a U.q ,g --

%i..

c ... function of u.v. exposure time. The rate constants increase with increased u.v. exposure time.

J.

..-;r.:.w-,y.-

s .

e-~

-;h WE'h ..

!}f2Ey$M DISCUSSION M ::. c.-).&.

s.,.,n.

gpg

.:d-2 - pgg y.w The C-14 method presents the possibility of comparing the rates of biological degradstion of O.PE and NDPE in spite of the small differences. The Z d gd ' photosensitizing additive secclerstes the degradstion of LDPE only after

%g@.Q g g u.v. irradiation (Fig. 5). A strict correlation of the effects of u.v. Irradiation and outdoor exposu'ps not known. Empericsily, the 26 days of u.v. irradia.

y -

Ice:p.

.n Tg

. . d. tion are reported to correspond to more thsn 2 years outdoor exposure for

$Y'f i

.5.0 K1 W (8w) .r M

-S .a.-i+j.:.

,y g ,- .

.. ~. .

Qg#.n.j

. ,. R.4.u. i

. .. . ;C dh =- R5 - _ _

y(-4.$ec;*,%@%m.ET-y mwa~15 DATN@ew6_'dYM'-d$$3 emm MMIN~##h'UM~N=b.N.YM - 1 m-

0. . ' q4J,' **'<@ ?: i * ~,h*. *I@*.5$,'OjM5 _0.3_$.**.; M* 'M? *:95 $-h'i.f.*f$#NM.6.*-Tike'.ID'd'.Y2[QY

=,

'd^k ~

/a . 4 NJ.

Blodegradation of Synthetic Polyn' sert 149 ra..

{g asygaghet pse cett by og e

nn.a iIY .t.o. w ce b sween 4 lays 13 U.Y.

12 y

triin. .

-h

spectively. . -

. [w.e';

23' SM.

m (1) . ,

f.,er2-

.w

  • m '*

p, ~*E

Iculite the 2, M

?$-

?f s

/

M

,. . 6 y

/ . ~

f.3"

/ X'L- e-3

".1

' , /.

  • sA s *  ; <,:2 s .w s #

=

s

  • S- e s

s s

?M w-w

. g 0, s' -

  • WC W--

. ssA Q

1 m-G.. CT9 02, O.

\.~ )

- M.J

~m it %s m

0 l .'-c*' a

--e l

  • 'TW L3 20 23- 3D #. - -

o .

s. ,t w ear.1

~

fig. 7 The degradation ofNDPE esposedto a.m. fight 0,7,14,26, and42 days as afunction oflogarithmic time.

%[Q

-_-x g

War.v 2 0fuselson

, ^*** * * *** " l**F***!**' **f ** *Y **W W *E

.t n.t.g

?.

r -

f.0

-e

, p.TS.

s.

.N. .-

r"2--

JPE as s >

, '.n'x~

incretsed

.-yz r

m 3.5M na = -e.t

.,* =

T- s' r 0,$

ETh%

r.%,,:yQ iOIO! ICal ....***

ge

^~

es. The m i M

Sly after . -C.-5

.r;. :=

1

'adiation * ' '

L l

  1. 8 '

$.'.h

. irradis- Tnese .I esponsre ders) e

'Sure [CT fig. 8. 17w rat stants for 0-PE esposed to u.c. fight as a function of time for esposure, f

N% h.- i f .D.. ,r- l

. W*

dd, R:

g, re$.

a

. .}.

/ &W

' , ' #}~~

.nN =-s

?59 u2 if em=-

L 1 % ip r :s c : f.-.+n +8 % .

&#m.WUgG2nG=W?N;iiu,4.

W~M.% %W - staaM@M_ ~. m ',%.p*

t m 4Mw%

4 M W Y &s'w@=w= E.W M ' %-;W - +^lwWens&a.'52 WW~~2^'MiW$0%

_ , . .* * * ' * * *.. " - *9@ ^* @ .

.:'.:-,:,; .?

.:..-- w .;4: 5:*.W:- ~,:. g W. M.s. i,N..MV, C.+:-pa%., .f.y.t:?4%.a

. .pt,: -

j W w 130 Ann. Christine Abertsson and Bengt Jtanby h,,. Jd , packaging materir.!s (Hocking,1973). But even with this exposure the total l

ex;

-'y,h: -

degradadon after 2t years for NDPE is less than 2 % (Fig. 4). rr ei.. a,m A.

tion centinu . arrwing.to the assumed logarithmic. rate equadon (egn.1),.

_ m-mc

? .<~k:- i

  • Iit Is~possible to costuinte the degradation for-longer. times. From extra- to

%f polation_oflat 6 nn_d 7. it follows that 0-PE and NDP_Eyith.26_ days of de;

.@Q (Wy' g pdiMien after 100. years _is. expected to degrade 1 % and 3 5 %, respec '

po tively. Withouty._ exposure, the degradation of LDPE would be less than the fM *

  • J:, 6 3_.V%'

O'57.. -" l tic

~ r - -.c'm to f , Pete constant k(desroostian per cant by eversrst/kg imel l 10 M}d;d' Ye . - .

r.s -

~

~

ob mi i:W.W@ -

ca W.-i=~5

  • ' W-$ -G I chu n .- -M .

l dc.

' - # sors- . ,,  :

-+m .

- , ' . .'nW :'r..".a? .

.u=- w.m+ -. Iah I #'

}'d':s.c&--

.*.y-- . s- - . ,

)

be F- E:"- e l

N, N@;f. T-: / I r

' m;u m: >H,-c s o

d d 'N r- 8

/ ' . C.a

- i i Ho

_?E.b t.0' j s

% .c 1 W

  • sa ....- Nr

_r.cc_- _ ,--- - -

, u a

^;% ~~4 l 2

.&;..N?:.g9

~ ,

". 2%"'0.e gs. ,

ef.m'.Y.s .: s,'.d. H

, l sw ,

&s'rt' crt A- l

's-4'V[*n .

.-*c. . - .w. t'.n. g

. o,so*-

C- '$ '

T '

W:%

.:. 4 &

.'*W2}5T C 7 14 26 L2

,Y=?$.y Dme of escasure idaysl l enf')

-T,- .

Fir. 9. The rate constantsfor NDPEexposed to u.e. Nght as a function of time for exposure.

~

Swig The straight lines in Figs. 5 and 7'seem to justify the use of the assumed

7*r'Di kinetics. In three cases the degradstion lines'are broken (O.PE u.v. irradiated

'Y 42 dsys and for NDPE irradiated 26 days and 42 days). The resson may be

3.'3

' -7

.- -; .: .. Cit.3 trivial. At the time when the lines change direction, the equipment was moved to our laboratories and the scintillation spectrometer changed from an old

.%< ' r .-r Beckman LS 100 to a new Pscksrd Tri Carb, Model 3375. Before the move.

~~~ - p p

-jga;y _; the temperature was alla d to fluctuate, but after the move it was constant g w;r/p-;W aa x.

0- According to Figs. 8 and 9, the rate constants increase with increased u.v.

4 (e -g%1 j t s N

'J

. T e N Y.

.n. t..:ka.'

3,: m ,.

~

$q:$s[O.92M#hNgM'NS-69NFN#J'7 6'.D!O'N:ONYN

$h -

%ED' W7sb.'.="S2 ~~*5WW:%Q j~~ . i-MM fR V@&[b.Y.*?5.'lhfM.Wij?S@.VN*&*.W}h5.

rg-g Bioderradation ofSynthetic Polymers 131 2;-j*

l  %

Lh3 w'2I degrada-exposure time but presumably not linearly. U.V. Irradiation changes the  %

W material and gives higher carbonyl content, higher polarity, and decreased

.(egn.1), molecular weight (Paby and Rabek,1975). All these changes are expected

'm extra- to increase the rate of biological degradation. Important for the biological N

5 d;ys of

.. respec*

degradation is also the change in the physical state of the samples from 51m to - ,h powder. Powder means a larger contact area between polymer substrate and W -2 less than the enzymers,i.e. higher accessibility of the polymer. The biclegical degrada.

tion rates in these experiments are very low. We have found that it is possible Qt r.qg:,-

i to accelerate the degradation. In the experiments reported here, as much as 9.

!$N;Q i

10 g plastics per 40 g soil were used. Higher degradation rates have been observed when 1-2 g plastics are used under similar conditions. Special microorganisms in selected nutrient solution and at an optimal temperature h" tw can also increase the degradation. The conditions in these experiments were hJ chosen to be similar to outdoor conditions and not to give as high a degradation rate as possible.

  • Q4 h). The C.14 method is suitable for studies of' enzymatic degradation of any labelled polymer. The problem is to have a good biological system which can g h'*

be operated under controlled conditions for very long ti=es.

. s- . p P ;:

I -

REFERENCES -

W.rc Nw Catch, J. R. (1961). Carbon.14 compounds. Butterworths. London.

Hocking, C. S. (1973). The relative rates of degradation of paper based and M:

'Ql

\

V synthetic packaging materials. Detrodability ofpolymers esdplasticr. Preprints.

Plastics Institute, London,27 Nov.

Ss.Qt

~M Ny kvist, N. B. (1974). Biodegradation oflow density polyethylene.IlasticsPolymers,  ;

~Siff4 42,195-199. W p

RSnby, B., and Rabek, J. F. (1975). Photodegradation, Photo-oxidation and Photo-

, stabilisation ofPolymers. John Wiley Jc Sons, London, p.1 1 ff. $(g.'.9 e.

=3

~

'. S'CC4

}

DI e

,.n

($ A'.s a.::.ae ns.

I IM

,e 92902or1. T*k .i l .

p^:

r, I %"a

ssumed $'.g radisted 3W ch.e may be .

, g3 5 mosed _-----h-

. sn old e move, 3 >'.

w

,g. g onstant y-r.3 8 sed u.v. $5U'3 J

(V 4

. p'(

. ,qQ gp.cE

- $n-:

s.%u

~~~ ~ ~-: .s@.n m;awm. www.g.v.; 3~.m-gs.m g7%ggg.

ssmmitsemmewwswessspe .,

I I

I ATTACHMENT 3 n

vi. ~

i United States Testing Company, Inc.

Biological Services Division I

, 1415 PARK AVENUE

  • HOBOKEN. NEW JERSEY 07030 + 201-792 2400 Esf.1000 REPORT OF TEST Bartha-Pramer Biodegradation ,

of Submitted Samples Conducted for:

Waste Chem Corporation 1 Kalisa Way Paramus, New Jersey 07652 r

\

w TEST REFORT NO. 05637 7/14/86 SIGNED FOR THE COMPANY Prepared by: BY .

Oliver Shapiro Daniel Droz owski Microbiologist V.P., Mgr, Biological Services Div.

ibo,atories in: New York + Chicago

  • Los Angeles
  • Houston
  • Tulsa a Memphis
  • Reading
  • Richland 8 etP0ef APPtatt omLT to Test traneaeDS Ge PeoCt0uett IDENTIfits ANO f0 TNS SauPLitS3 tilf tD TNG1857 etSULYS Amt hof utCf tlaalLT tm0tCaf tvt 02 Strettistattet OF f ut GuaLifles 07 Fat LOf F80m WeseCM Tiet samett was Fastu os GF arrastuf tf 10tmitCat ce toutLas PecauCTS m0INimG C0seraimED ta f osas etPoet guaLL utan f eat untf tp Stattl 785714 6 Comfam? ImC.. Com0gCf 8 asef Qualif f Conte 0L pe06aan 80s f ut CLatut to wuou f uls Tilt at.

P0ef33Insulp usttBS SPEC;FICALLS SPECIFile Oua stroofs ame LitTtes aat 70s f ut itCLulevt ust OF Tut CLaget f0 enom fut? act A00atS580 t ta oi ma f ut u tas N T u CleC u a

,A1 m o. m.u t,0 ,n,ett .n t. t Le.s u t,ce.LIC 4.n 0 aa t.tme e.s ta t,t s.4 W.TI.*

E 4..C0 a f4e.re n,t

t. 18eC a tC.e.a t.t S taOW Wlimou LS 0,4 In 586,m.a.a 0 W .a a t.6,O,4.TO.,8,8.0 am a it s t e u.n e.t,e a.n T.07 e0 04.s,tf 40 a,m C ES..t e, t.0.v t.A tot ef f atatt a masamum OF f ul Af f Datl A Member of the SGS Group (Sociese Generale de Sunsestance) -

_ _ _ . _ = -

- . = = . - - ~ n- -- Q

1

.. Onited States Testing Company, Inc.

%_/

waste Chem Corporation - 05637 1 Kalisa Way 4/23/86 Paramus, N.J. 07652 Samples submitted and identified by the client as:

for Barnwell testing for Hanford testing P7 FF8 P1 FF21 P18 FF20 P10 FF22 BD3 ~

AP1 BD2 AF18 BD AF7 BD11 AF22 CG8 1EE CG4 10EE CG16 9EE CG19 13EE HE2 1 HE9 7 ,

HE15 2 BE16 13 GC15 5DB GC2 6DH GC8 18DH GC 19DH

~

Project: Bartha-Pramer Soil Biodegradation Test Test Dates: 9/20/85 - 3/20/86 -

Introduction:

O k-)- Products manufactured from materials of the same type as those tested in this study are subject to long-term burial, and concomitant pos-sible degradation by naturally occurring soil microorganisms. The purpose of this study was to expose the samples to burial conditions in which an indicator of metabolic activity, carbon dioxide, was trapped and periodically measured. In this manner it is possible to estimate the approximate span of time in which the sample would be fully degraded, and comparative statements about each sample 's per-formance can be made; The principle is:- 1. Carbon from the sample or soil is digested by microbes. 2. Resultant carbon dioxide is evolved by the microbes. 3. The carbon dioxide is quantified analytically. 4. The amount of carbon dioxide is related to the amount of mass digested by the microbes.

Procedure: .

Set-up Each specimen was prepared by the following: it was refrig-erated for at least 30 minutes, removed from the container, and cut to a length of one inch. This length was then subdivided (quartered, in most cases) to accommodate the relatively narrow dimensions of the test flask.

O e J

~-

__~m=._

. . . .. . ... . . , . . . -. . . . . ~ . . _ . . . - _'_.-

I Onited States Testing Company, Inc.

O k ,)

m

  • Waste Chem Corporation 05637 ___

4/23/86 Procedure (continued)

Two types of soil were used for testing: Hanford soil, from Richland, Washington, and scil compos.ited from commercial topsoil, manure of leaf mold and course sand. Attempts were made to adjust the compos-ite to conform to the provided descriptions of soil f rom Barnwell, S.C. However, because different samples of soil at this location have a very wide range of parameter values, depending on the depth from which the soil was taken, this soil must be assumed to be only approximately similar to Barnwell soil, rather than identical. Each soil was dried, and then wetted to 70%. capacity. Each sample's mass was measured and then each sample was placed in a test flask, fol ,

lowed by 50 grams of the test soil. Each sampl'e was situated so as to maximize the amount of surface area exposed to soil.

Finally, each test set-up was completed as follows (see Fig.1). The flask portion was sealed with a rubber stopper, through which was inserted a filter tube fitted with'a stopcock. The filter tube was filled with glass wool, a carbon dioxide-absorbant (Ascarite, Thomas Scientific Company), and more glass wool, and stoppered. The round tube was stoppered with a rubber stopper through which was inserted a Luer-lock needle, the end of which had a small length of polyethyl-ene tubing attached.

{}

In addition to the submitted samples, flasks were also set up to test the soil itself (soil control) and sodium azide-supplemented soil (negative control). These controls were performed on both soil types.

~

To commence the testing, each set-up was initiated by removing the filter tube stopper, opening the stopcock and injecting via the Luer-lock needle 10 ml of 0.1N potassium hydroxide.

Sampling and Recharging At one-week intervals (after 14 weeks, at two-week intervals), each set-up was sampled and recharged using the following procedure. The needle was unstoppered and replaced with an empty, clean syringe. The filter tube was unstoppered and the stopcock was opened. The alkali was then removed with the syringe.

The stopcock was closed again, and the alkali was replaced with 5 ml of carbon-dioxide-f ree distilled water. The stopcock was then opened and the alkali tube was rinsed. The rinse solution was removed and added to the removed alkali for analysis. Recharging was accom- m plished by adding 10 ml of fresh 0. IN potassium hydroxide in a ~

similar manner.

s.) -

~ ~

_ _--__=- - = -?-

= = - - - - - - - - - . - - - .n

1

  • Onited States Testing Company,Inc.

("')

V .' -

\

I Waste Chem Corporation 05637 4/23/86  !

l Sample Analysis Each mixture of exposed alkali rinse solution was analyzed for carbon dioxide in the following manner. The mixture I was combined in a 50-ml Erlenmeyer flask with 1 ml of indicator solution (2N barium chloride with phenolphthalein as indicator; approximately 0.0026%). Against this was titrated 0.05N hydrochloric acid in a dropwise fashion until the color reaction indicated that the test solution had been neutralized.

Conversion of the raw data to the' number of micromoles carbon dioxide present was carried out by computer. Briefly, the following analysis was used.

An initial value was determined for carbon-dioxide-free sample. This was accomplished by the use of fresh 0.1N KOH (10 ml) plus fresh distilled water (5 ml). Repeated assay yielded an average value of 24.37 ml of 0.05N hcl required to neutralize a CO 2-free sample.

This indicates that if x ml of 0.05N HC1'are used to neutralize a sample, then x/24.37 of the KOH was neutralized by the hcl and (1-x/24.37) was neutralized by absorbed CO2 If each fresh alkali charge contains 1x10-3 moles of hydroxide ion and 2 moles of s, carbon dioxide are required to neutralize one mole of hydroxide ion (personal communication with Dr. Richard Bartha, Rutgers Univ.),

then the following formula may be used . to calculate the number of moles of absorbed carbon dioxide.

Moles absorbed = 2*(1-x/24.37)+10-3 above To convert equation by data to micromoles,6, one million, or 10 multiply the right side of the O

e d Sge

' " ~

.~.._ -

- - - .- . . ~ ,

., _._______a,_

r. _

' I Oritted States Testing Company,Inc.

O~ Waste Chem Corporation 05637 4/23/86 Results visual Microbial Growth Table 1. Data obtained from samples buried in Barnwell-type soil Sample Visible Growth

~

P7 none P18 none BD3 extensive white / yellow mold BD some white mold CG8 none CG16 none HE2 some off-white mold HE15 none GC15 none GC8 none FF8 none O'

FF20 AFI none none AF7 none IEE none 9EE none 1 none 2 none SDH none 18DH none Soil none O

' ' *~ *

,t 5'f 7 _

~

= ** - = * * ***e #==**

-w

-4 .,.

. 3.w. 3 a ....,%d m

4 United States Testing Company, Inc.

'

  • Waste Chem Corporation 05637 ---

4/23/86 Results: (continued) visual Microbial Growth Table 2. Data obtained from samples buried in Banford-type soil Sample visible Growth P1 none ,

P10 none BD2 none

. BD11 none CG4 none CG19 '

none HE9 none HE16 -

none GC2 none GC none FF21 none O FF22 AF18 AF22 none none none 10EE none 13EE none 7 none 13 none 6DH light growth, off-white 1908 light growth, off-white Soil none 6

k

O

. e;.

. - ~

~~

. i El?' _ i_ - . . - _ Ei-- " ' N " d----- r " - - -- a-

' I Oillied States Testing Company,Inc.

('\

Waste Chem Corporation 05637 -

4/23/86 Table 3. Comparative Rates of CO2 Evolution in Hanford Soil Total a b Total c Corrected d Samole C09(umoles) Minus Soil Control Carbon Mass (g) Carbon Mass (g)

P10 47,829 28,365 .574 .341 GC2 39,307 19,852 .472 .238 GC 26,485 7,030 .

.318 .084 BD11 25,691 6,236 .309 .07 9 HE16 22,379 2,924 .269 .035 HE9 22,163 2,708 .266 .033 BD2 22,015 2,560 .264 .031 7 21,772 2,317 '

.262 .028 P1 21,620 2,165 - .260 .026 13 21,449 1,994 .258 .024 13EE 21,200 1,745 .255 .021 CG4 21,014 1,559 .252 .019 AF22 20,592 1,137 .247 .014 p AF18 20,270 815 .243 .010 Q-19DH CG19 20,070 19,766 615 311

.241

.237

.007

.004 Soil 19,455 -

.231 -

10EE* 19,433 -

.233 -

6DH* 19,177 -

.230 -

FF21* 18,848 -

.226 -

Negative

  • 18,076 -

.217 -

FF22* 18,029 -

.217 -

. 1

  • Demonstrated activity similar to that of the soil control aTotal number of micromoles evolved by the sample over the 26-week j period  ;

i bS ame as above, subtracting the amount evolved by the soll alone cTotal mass of carbon (as carbon dioxide) evolved by the sample over l the 26-week period l dSame as above, subtracting the mass evolved by soil alone O

l

~.- :_ __

'~t"

_ ~ ' ' -- - - .

_: -u'-- - ~: >- - - ~mm 1

I Urtited States Testing Company, Inc.

Waste Chem Corporation 05637 4/23/86 Table 4. Comparative Rates of CO2 Evolution in Barnwell Soil Total a b Total c Corrected d Sample C09(umoles) Minus Soil Control Carbon Mass (g) Carbon Mass (g)

GC8 39,785 14,588 .478 .175 BD3 39,771 14,574

.478 .175 BD 39,740 14,553 .477 .175 ~

.2 39,740 14,543 .477 .175 HE2 38,200 13,003 .459 .156 1EE 34,175 8,978 .410 .108 GC15 34,004 8,807 .408 .106 9EE 30,200 5,003 .362 .060

.362 CG8 30,144 4,947 .059 AF1 27,869 2,672 .334 .031 HEIS 27,102 1,923 .326 .023 AF7 26,914 1,717 .323 .021 P7 26,533 1,336 .318 .016 P18 26,160 981 .314 .012

[~')\

\ss Soil 25,197 -

.302 -

1 24,132 -

.290 -

CG16 23,976 -

.288 -

SDH 23,583 -

.283 -

FF8 22,874 -

.275 -

FF20 22,565 -

.271 -

18DH 21,797 -

.262 -

Negative 21,590. -

.250 -

  • Demonstrated activity similar to that of the soil control, aTotal number of micromoles evolved by the sample over the 26-week period ,

bSame as above, subtracting the amount evolved by the soil alone CTotal mass of carbon (as carbon dioxide) evolved by the sample over the 26-week period dSame as above, subtracting the mass evolved by soil alone .

O .

wM '

h E *

"'t'

. . . * * .*- . ~ . .. . . . . . . . . . . ._.: . . . -

+s

" ". U'n'ited States Testing Company, Inc.

Waste Chem Corporation 05637 --

4/23/86 Table 5. Carbon Mass Evolved by Each Sample Buried in Banford Soil Carbon Lost: Mass of Sample Mass (g) sample (g)

P10 .341 63.9 GC2 .238 76.8 GC .084 ,

81.8 .

BD11 .075 72.8 ,

HE16 .035 70.4 HE9

.033 80.2 BD2 .031 61.2 7 .028 64.7 P1 .026 '

71.5' 13 .024 87.5 13EE .021 . 85.2 CG4 .019 95.9 AF22 .014 55.4 AF18 .010 60.8 O 190H CG19 10EE

.007

.004 91.6 103.4 30.5

'6DH -

90.2 FF21 -

68.9 FF22 -

74.0 b

O O D,'

l l

g:- -

. l__ ' ' _ _. J " * ' ' '

- __C_'.2: ._i_ 1 _ __ _ _ _ - - - -

_:- m2&_ -- - r - - -

  • k-- A_ __ . '

J'

' ". (fn'lted States Testing Company, Inc.

O . Waste Chem Corporation 05637 4/23/86 Table 6. Carbon Mass Evolved by Each Sample Buried in Barnwell Soil Carbon Lost: Mass of Sample Mass (g) sample (g)

~

GC8 .175 73.5 BD3 .175 75.8 BD .175 113.8 .

2 .175 83.2 ,

HE2 .156 75.3

-1EE .108 78.7 GC15 .106 81.3 CG8 .056 83.1 9EE .039 '

73.3

! HE15 .023 70.7 AF7 .020 76.1 P7 .016 71.0 P18 .012 72.3 1 -

76.2 AF1 O

70.0 CG16 -

82.7 FF8 -

119.1 SDH -

77.3 FF20 -

87.3 1808 -

71.4 i

J ....

e.n I

. ,, .,.-. . . , ....t..-

  • e .

- . s. . . .% .,, _ . . w ,_ . _ _ _ . _. _

- - - _ . - - - - _ . - - . -- - _.,..- - - .-. --.--_-...-..2._.

APPENDIX A A U.S. Testing Report No. 05637-7/14/86 - Biodegradation j Titration Results*

!!*is [1.!!!!! 3.'7/96 3/20!!6 fc air;ris 123.ia  !*3.:s 473.!! ;20*t.!a 3 :.a; 12:.54 1 !sti 2:2.:3 !a!.~a IE?.44 6:4.02 th!a.**

a 3:.11 le.!!  !!.*! 16.7h . 15..!  ?!!.*

.1 5;2 !A.:. 31.04 26.06 8 it.)e  !!!.3!'t 10.!! .22 1.03 6.21 215. 3 P 13 RME!! 8.WW 14.!! 3.51 10.i! 317.35 a og ;3,g 3.:1 g,w 10.?! - 303.33 o c*!! 2 ?.  ::.2" 3.i1 10.?! 273.fi R7 16.13 15.a3 7.31  :).3* 335.5 R.;e;3 13.,! i.67 9.32 2.!i 333.35 R(31 5.13 1.3 10.37 r81.le 3 !!2 la.*' 16.M  !.13 10.:!  !!?.72

8. :34 9.. ! -
12. 2 6.!! 7.76 21?.12

? KE!  !!.*: 18.!! 1.60A'  !!.7 a37.14 R P1) 27.!! 17.;1 20.26 2909 7a3.27'l 7.l?  ?.10000 6.71 3.12 248.33 F.125I

l. 76  :.47 ,5.14 10.32 371.31 3 # 23 , '

7 WE8 8.** 3.1: i7.23 **

11.!! 27).25 P 17!1 .~5 a.4 3.01 10.31 22:.!2 R GC 13.3! 8.!? 3.3Wa ' 12.51 333.~101 RFFil  ; 4.34 2".37 i.6! ' 3.34 243.44 g e. t!H ,5.i' .71 2.!2 , 1.!! ,

212.:

3.a 6.!3
  • 46 365.22 Q 5 41 81 13.05

. '. ? .12 ;4.71 9.!! 6.32 115.i?

.IHE!

16.!$ . 26. 5 19.3? 23.! S7.J! -

!8 ioll  : 942.33 10%.17 **17.34 1973.13  !!! *.i!

!CG3 13.2 .16.,6 a.;? 1.250091 352.74 i

i :ieg I' 681.7*  !!!.05 263.35 li1.H  !!!37.i .' '

a !EE 15. 3  !!.71 . 10.32 14.1: 412 J P U16 . 7.7? 14.11 6.22 12.47 235.91 2 LEE 16.iG  !!.+1 22.;*  !!. ! 43 *.2!.'l

, f !D l.17.57 17.:7 17.5* 17. 7 !63.3MI E 3Cl!

~

!$.11 17.73 12.!! 15.o1 412.2:

8 ;F7 13.01 1133 1.34  !!.!! 3:3.57 i f13  !!.i  !*.33  ? .2*N * . i? . 3- 161.!!

c, . .: . .

c,. ..e!  :. 41 e.,41.4s

i. .C3 , n.. .s.i. .

" ,,37 g3,sg l 3;3,7g ;

i a; ,3,;3 gg,3g

! !i Zi.03 14.03 24.03 . 14.53 .477.45 i t !!!9 10.58 8.9e '*3 L10.2 ;3)$.23 ';

[ 7:

) 9.67 ..j i !N 6.23 ,!!.!2 4

,205.07 ,j

i 103 21.3i 13.*! , ii.33 l 25.33 'i 524.a 801 3Atl5  !?.42 - I).M 1 F 133.3, C, li.tl 13.!3 J ..

3 FF3 7.&!

7.11 I a.'ll . 9 %.i "1 r ?i.16 "'

2 F:20 3.31*** i.h ' 4.17 r  ? i 3.4EN

%!2#s 'd l . t  ;. .*i?l Titration results are $iven in micromoles of carbondioxide per gram of waste-sample. Only the titration results utilized l (G) .to determine K values as per the o w/w = K log t correlation are shown.

-.-,,-,,-,+,--,_,,.,,,-_-,.--,,__,,-,%. . . , . _ y ,s,m.., .,y,,,,_.m _ _ - _ . mm_,--_._.____m -- .,,..-s,_ _.____, .,_-

. Appendi:c B --

v BICCEGRACATICN-5 ARTHA cA!G TEST PRCCECURE 1.0 HARCWARE 1.1. The flask setuo shall be as described in Figure 1.

1.2 Scil recm Hanford and Sarnwell Sites.

L.3 50cc Erlenmeyer flask.

_ . - . - u .- .

2.0 TEST ERP -

2.1 Precare the et;uipment as folicws:

~

2.1.1 Remcve test scecimen frcm ccncainer (refrigerate specimen fcr 30 minutes to aid in centainer remcval) 2.1.2 Cut scecimen to a one (1) inen length. .

2.1.3 Add 50 grams of soil to erlenmeyer fi.ask (H).

2.1.4 Maisten soil to 70 percent capacity.

(

2.1.5 Place specimen in flask (H) cover 'with soil.

2.1.6 Cicse flask (H) with rubber stcccer (J).,

2.1.7 Polyethylene tubing (E) is sucn that it centacts the very bot:cm of the rcund base of tuce (C).

2.1.8 Charge the equi:: ment with alkall by injecticn:

2.1.8.1 Reciace police. man (A) with a calibrated syringe centaining o.1N XCH.

2.1.8.2 Remove filter stcpper (J). -

2.l.S.3 Ocen Stecccck (G).

2.1.8.4 Inject 10 ml of ALXALi thecugh neecle (a) i 2.1.8.5 Cicse st:cccck.

2. t. o . c. A.~u g/g .

2.1.8.57 Rectace coliceman (A) and steccer (J). '

A U -

~

1s:

  • ..'l
n. .i

. . . . . %..b . w . s

. . :w..':e%n

O Q .

2.2 The Alkali snail te reevec pericclestly for analysis, i.e. weekly initially, Iceger interval wnen Q2 generati:n decreases. The alkali is rechargec as fcilows: .

2.2.1 Reclace policeman (A) witn an evacuated syringe.

2.2. 2' Remcve filter stcccer (J) r 2.2.J Open stecere'< (G) .

2.2.4 Rencve klkall thr ugn neecie (8). ... ...-

2.2.5 Close st:::::k (G).

  • 2.2.6 Reclace Alkali filled syringe with syrings of car: n-

,. dicxide-free water.

2.2.7 Open ste:::::k (G) and rinse tuce (C).

2.2.8 Remove rinse soluticn. .

2.2.9 Close'ste:::ck (G). '-

2.2.10 Re:: eat stees 2.1.8.1 - 2.1.8.7 to recharge with Alf<lai 2.2.11 Save Alkall and rinse water (Steps 2.2.4 and 2.2.8) 3.0 ANALYSI.S ,

3.1 In a 50c= Erlenmeyer flask c=meine the follcwing:

3.1.1 1.0 ml of 2 N 03Cl2 , titrated with 0.05 N hcl usi. g ;: Men:1 ht . lein ss incicat:r.

3.1.2 Alkall and rinse water - step 2.2.11.

NOTE: To avoid centsmination with carten dicxide, stock alkali and the asn water sncuta oestorec in targe cattles rit:ec cermanently wttn ascarite filters arc syringe needles.

3.2 Analyse the Lic;uid for CO2 . ." :

U .

~. **ta_

,a

.- ....s.. . . . - - . .. ....w... .......%. 'w- _ _ M %,A J

,<.s-a.- .-=p - -~. -x ,. =~. t -=.:=-%. e.-.=.-:n . w = n ==- ; w m x.~~r

-+- v:.-M. ..t=, 2  :. w.  ;~.t;dC -6c=

.r.,.x, _.n.:.W. #..s, =9  :=

s.w. b..c:c= , . .,< sEE:=:~_.a =r-~-~~.,

......s.

37.:=., e r. .p.=-r-.mm -ta x< v . . .. _- , , .~.*_.

5,,,.3.,., . c.

v_a.aa.,, -.=.s...

~. ...- <,. .t.

_, .,, = .n. . . m. .

.~.~.s

-@..;+.-,
2 :c-- - e,:~q ~.- p;; - .

m -- .= -

..q~e.ew::r:::. -,~c 3 3 .,.j;;3,r-:-

. o. .

- w , .- ., .

j_~ .*a-:j.L- s %.c,s;

,. : M. . 7. 0 . .., _W- s.q_.'*::;-:'.l.,@_././~~w;3..

&  ::a..e . ._7r*:

. --  ::: y:'E..r.s.--ee q -- ,f<f '. e ff .

95.W,_.o $. #w:. b_.8H::;:~. M- -.-., :..,-.- ,..  ;; ,a _ T i,E;3

.s .hS$. . _ _Mm
.,
~ $ E 4._. 6. _5l.iA w

.b.'.

y%s:&

2 r.-:t,K .u-

..R e

. i .

l .c.

.c. ..m.

. . . m . . h . .

s_,.v. .

= -. a - v.-

s - ,.,.

- ==. y $ :.e,:. n.v..:-z. . i . . . c..-...c ,r m e.; c r.:a.,c vs.

HS ucte: e -=. ; . . r ~ - .

N"*".

. * ,. .w.Jg-- g- . . a. * .

I

. . N..

~

"'*.:;:=y:-5.r No7-

%<^=h *n,'.. : g,;. %. ~1 w4.,- l e t . .

1. .-r g ] M ir,,, T.", .:b ..

M s ' .[ t,

  • src.c "*Tec. nares of a FTo:k end yet.'.ed fu #ee.t. - work---d nW..Ldf...+.._ed,.a.[~,[*

e .

ge6M j,-

Pesne e"g*us7**".ne and 3s.ocogsc:t Eleen of the ga.sg ;g;:,::::,g 5,z a ,,,, L ~,.. . .

.-T h 2$g[h;g =sii y:i:i;j ? 2d u**uyiacti:g sou.* A tg ,ated chem;e ! i:- soil (I) b added to a 0.:ia, :. 2.2 throu;: ag: e.dtur-J,, =edied, d.uk (E) (med to 2 me mh! ('c#

~~

i

_ , 2.

.;r7IY.py

w.r , -- t

! * - 8:32tary scientists has enabled man to rou:d bott:m. ne soil is = ts. eg .p m2=ipuiste his enyt===es: r.=d bec=ce a ecs. cent o( cap *eity' and de M :~. -

, 9..::.E. Y, TM. . .9 '.!

tr d!:; fac:st h de baucce al mature. C:s. rubber sto ,,tr on w3' .:. *.-is . u .'eq ..

sequen y, food as Sher of good gudity are he dhar (T) mdd e a qp 5=

'sgg.,Qj,7;yjlg lj

'pg f- t: e .r r.9-Q*fEi;. H .- .! p educea ecocem:cady, there are adequate cock (G). Le side tube (Q h sg ,

r_=. suppues of rater, and puhE: he ! h is =2is. -

4.*g~.... r, . . . . . tubcer stewre ., tere..d 6.y a 13_*,:n". :

.;. .:. i t uiec 24 r.n e!av:ted !evel.

(g) :s er. e.ce,3. m.e

  • a- .e.,o.e

-.ve gt m:s.s agtuty to alter hu. any: rec =ect a rubber *policem.s (.3,) ;s e=='=g 2

... u - . .

J.,.Mqf. (d) and ita .-- es,

py.
:.l.nz- . ;.g- ;v.

as ne;:tzve as wed :s po.ct2ve aspects was mth a shor: facci of polye'~.y(eee o -

'j t

given lay reect:stion by R:chel Canos. and (E) th:1 centsets the very hotta= d M .g' ,j. , - .l,  ;

.i -- -
  • the note of caution she sounded in SiZene rou:d base of the Jde tute (c)

Sprinf (2) h:s been cmplided with sad mthout chst;ed mth an:di tw isierden '

7,

[.Q , distort:en, untd, tedsy, the ==:.= of perdeides m:n (A) b repbced "by a d nM n cer.:utute 2 subjees of controverry (3). Dere centrdmag 0.1 N KCE; th.e dher ste b

., :;-. , . . , a public interect m the fate of pesticides in removed and the scopeeck (C) y op.(j!

!.;,.;;: r te - v . nature ,but the imue cannot he rezclved with. *

-- -- .. .........s.... , .

- mL of sjk.di !:. tut'.a.. dace.J t.* ....,k. .. . ..I.e ne'.

P- ' ~ ~E !.".' .

~

. .c .'*.7: .. .! *

. . . qu t, ,m,.,,,a u.equm, supply; or :v:ikh!e.j.,! :=:2.; .'.(S) . to

  • the sida 'tade ~(C) * ~ tie t4e'e. . .

e

_~:=E :M _.~. _i=.:::l~T.al , -:. a

". Il*. n pe am? O the remi:te:. . d eie:ts of - b Jio.<ed; the syn'n-. :s "re vid - -- '"

-gj 3,. .

vtheee cotapounds ia snia:!s t.:d pianu, :==~in psiiceman (A) ' sed d'lte#" ~~'

air, sod, and rater <.*). '"-A~.~# "

N [**

3 P.,;;

turned to their isucid pomic:s. C. h: .

This tror= eoncerns the fate of pesticides in onde produced by the od is absorbed W*

.y soil Many fun;teides, herbie d :, sed in:ects. alkdi and deter =ined velu=ecned!y.

.f . : . ,

etdes are appled d4rectly to rod and others To reenver the alkdi for :@.4 the p 3.-

evectusuy re:ch sad as run<f from :pr:yed cedure for ch.:r;:u:; the u=it is peri:mted g.'.:i leaves or as a constituent of tre:ted antt:al rever:e. Le side tube (C) is n::2cl m acd pbn'. ti=ue. P :ticide: is rod insy be . estbon. dioxide. free water a:d then ree:.u-t y ,

mthout edect and m:y have litt!e or o reie. mth sikali, us:n; the synnge, ne ,y::h w :.

. r;

. 1.:. .

. vance. They may be modife1 chemie:dy or and KCII are ecmbined is 2 he. I:ft:=e7-g  ;;, p/  ; degr:ded. ecmpletely by the cynad of micro. f!nk cont: min; !.0 =1. of : y E ,, se g f', - ,

/, t, ,

or:2nisms that hab46 sad, or they may per. tier:ted mth 0.03 N EC:, uE:; ;he:clrnt.: -

sist and exert la unisvorsble induence, th:t is ein se indiester. To svoid ec=tami :tica Wt.

.; . . , mhicit or kill member: of the cuerobisi popula. estbon dioxide, stock sikafi sad the ww.

tion of sod that tr:nsform and eyele us nsture water are stored in lar;: bott!ss 5tted per Q. ., element.s vitsj to our wed-bem; icd exutCOce. roanently mth Ase:nte d!! cts and syr.:.:r

    • To determice which of the fore;;m; possi. neea!.:s.

g-

j. ,

bdines are, in fact, orcrative, red is studied as a tv.:ue. Or;:cums are not es==ur:ed in. analy:is eur.hfe carbon dicrde pr: duct::a *:

Men d!!cd, the sp;st:ta and =etbf o'

[q dmdually but the total micronbl popul:ttart be cio:4 cored at frequent !ut:rvab for arm

( of sod ts cont:dcred 13 a ucit ruperor;::m.. lon;-d periode, and au = essure =ects are c :*fe

[

For this purpose, we mes
ure the product:ca oa the same sad ::mpie withent ri;-if= t by sad of csrcoa diouds, scd, to fseditate our exrosure to at= spher:e e:rbes d orde. Ter'.4

' Paper of the lour at Ceries. .b ler er .uri. l!. type were not ; css 4ule presicc!y um.*.r8 cuhural Enenment Station m,,cae ins.estntauotu

    • fe ruf'Derte j in $4rt by (J 3 s

6 g"g *canao c u , c,,* 7A.. nn' ng s* , semy Serwee llencatch Ceast T ,.X,3[h p"[^ * ##

  • - '#" # 8 Y 'c *We :J h d. I. M E"

~

.s . . , .hclof al a g , .j,,,;,,,,.g og :Le ,eg_ah 4.,,,,,,,,

T.C=.;~.>.a W i** 5 .?:- m % --:Z~~I??5~$?YS'"'? DE"~R~'.1 '-5.b *=Wv .n.~r3 -YI~ -

5.L.- 5-w r5.$'.Y,.

SMNN.;.:.,;5:k.::,, . . ..; ::. 5Y;h'-'k;::: . Y.$SY-=

,y. :%.~.. Y+,::

w"--,--c ?- ..Y%' __-. c 1cY-W L.ac _h,. EN

~~~~ w < - ~ ,.-- .

s.. -3 . m .a. .

- - .a< ~e. - - - ~ ~ = _

@ N' T.ME.3N~'DI5.~~.g.e.e 2) =- ._ - ~is? Y--- [Ja M.,,'.n'65'.:':'r g -~

?s W C'Y_$~.s -~.' d@  ;

,.-cm

- " m"b"'-*~C E M,.5

e. : __

E:2'3': ~

3- R M,-a .%::

i No= 69 '

fo--'M tion precceded rapidly and the ;r:duerien of

) carbcu dioxide by soil supplemented with fX- J

'ec5'4' :.-

i 2,4-D dr ;! tic:ee tras increared. A:ide sed " ify= ,n:::L j '

phenol depr ared carbon dio=de production,

. .-2 ~ 4:'

but only the for=er w s a per:. stent torie:st. ' M'N Follewmt arr t: sf !::, there r:s-develop =es: "

b%'-- ---F 4'"=

e9M:g#

=E of seice:cd org ; + in phescl. treated sod.

They grete and ==!:ipIIed at the expense of *

. h h Ny

%. phenci, and their deto:ciy=g se::nty tras @ M-N '% Is P, ms: started by an eventusi !=e : .te in e:rbon . - ~ 2 A 'I T diox:de predtscries. '.' 3 -

P gMJ k S- ~

Um = g:: uda of the difere ce in az= cunt of carben diot:da produced by t:e:ted and

'ME"T:

hM1

%y. . i D unt e::ed toil is a me:.:ure of the este:: to *F?:26 -'

1r'd sI I tehich the pert: cide.1 molecule is addi::d com. -

.F- .m==cM

/ l pletely. In the present esse,15, 4.,

- as:N::s= m:

.,. ::d $1 per i la \ , r w.~ -.r a .

cent of the cartos added to / rod as 2,4-D, lI ', VIf 3 .

A 9:;,.;:i .2 1 1 gluec:e, and ;he:cl, respectively, tr:s oxidi::d 'ErJ N *-'

M

~4 t . .\ I b .l E... ':d

.p.

comp!ctely and recovered as carbon dio.v.'de. M:ir'~M' i

/

t,v/ lf3 JJ

.r;.t.. .n.-

s h y.. ::; I We are . convinced.th:t.the. d::k and m.ethod used here to o;na:=

fa.te. Tf.'.b.edictces . . _ . .

. ihtor,=.:stion'

.r 3. -:. .:/

concer.=..i=.. ;...the.

i . u . .. .

---.'=='Mb"~-&~

,ast W..'5-$:5

.:sdUesn,. .. .trica ru?:.:. =. c. c. :.- . .t- : e.._ . _. . uw;- _

q/.1. ...y'ig .;. c;,9,4.y,. " a.

' ',:,; J.J. .~.- -

,g. f. .,: . : _: -.- -"..-,, . 2 .*_w__7.

- ' -- /-,-- .? '

T,,ey c
s he em,,_,syed. to =casure on di-carc.dediton,3erve v.nety as sedit

. ..- - - "' , : t-'

, = s+---

s-,. .:4 for =onicons,- tia nroduction bY o cce 8'reductica by in:ects, scede' sad :eed.

. a . -n s,nu----

arooa dioxade.

s

< .,",.n = -

3.,CC - . .-b.,.~a-5:.^.J - +..;,ce ^ - 4:Q ns =22dc to gs3 tr:ics (*) or to a  :

,* . .y @eiRMi@q r

_;c

" l

=m:"n**-.*- r<,> 5 .

eter (4). CA: tr: ins conrist of ===y ECO I ~~~

/

ud funct:on u= der prerture. ncy are - '

' W.C~.7":w'f[S',"e'?

to ec::t.act :d m:utta:: ::d rettuire

sut terd.a
::. Rerpiroc::ters of the

.- #J .4D ',.".W- ~. . -

t. CC - *
ty;e are espec.nve and scecmmed
:s ~

i U "S=yJ:E'J~edE .$:lG'.C. - .. a.

u=l
er of s.umples. Day are de- g * *1.-- . ~ sc: -e.- r't le! *

-2 . i , , v& - ~ '%l:y.'75 %,

ned cocstructed for pree::e measure. C[ ~CCC ,". '

s =.:cred:ct !cvel, and u.sie s modifed U -

~

. ' lI* DJ$M*,T-M/MP'.J.:f;" *

, mec for u:e with I t;t rail :::=;fes 3 -

.,.h@ 'N
ce's per:od:.  % MCC

,, / ., g y,,;g.;g

ar':co of the rate sed exte r of
  • I ' P.'-(W - Z '@'~6"K Lon:e pr: duction by tre:ted and un. h. f/

ICCC oil e.:n be ha. c .f y u. n for- :tive. ':".e re.

e- ' */ 2:t ~ .Mw.*:t .

~

' *O x.N.T J

1.'2g *.;.

' r

=2n::d in figure 2 incicate hot, it i.: -

e I - S n-:';d,3,g < :-Wr.$ ,o.

to d.5erentiate it:cle from uc:tsble

    • . touc from noo.#ouc ceci;ouncs, 30C I c

l bb. N Mi fe# t us by the ;te ect =cthed for c:rcom

cu, & quantit.ativa ertun:tc of the ' h. M

' ~'

~f E57M(

Q %olot'esi ettects of pe tseides

.,n..., ..enomyseetic acid (,.,4.u,) v::

Tsc. *. Product:oc of eethea dioude by OMS A 0

  • b.P[dk"b*

't

.k.t,.,.c~5

.% s-. :c': .s_v:.-L72 D*2N f.,M-. 4f'.7 ,.

trested and untreated s. oil. ,u! compounds **re 3: s ,ar.gg- -

., r,.,,~.-. -

sturce of e.st:43 and energy by wd w

. (!). f , em glucere, .ti 'v s oxidized added to fikoo anov foam at a ,cid of 20 . . . ..r... .t.#'h'~.ur.'p;*ss+'

d .

-. t.m4 a ureon diersce. Bio!a;.esi degne2 ppm; (.O phenol, (S) cluco,v, (C) -4 0, (D ) , [ *- MN untreated control, and (f) ause.

f k,* :Q'I'~'3:

C*;-h g d

r.=% ~~

. . . . . . . . . .. . s .f. .J., a,,.;:- ,s am ::Q'h.~"%

. . . .s :c:

- - . - - - - _ -- . - - _ - _ -. - - - - _ _ _ _ . - _ . -- .% /s _.:.- . - .

1 l

l l

l l

_a. r. . . : - . -- .,. - = -=-  ::.r.eec ...<.-:. -: ~ - -s ':: -. ~e . _

. - . , l

. . - a -

- 1

= ,.

m u

.=C.y . e
x.-= e .,_. :.

-.. -,. xx ? ,. .--

s ._- u.m. ws . . .

~;Q.-

=.e' .

=;$=Rd;..-v.;%;.:;4 W -E:7 .,,

%. M :al:= ;  ;.f j-..p.

x--~~ '- .i  : .r s.rpx.,M

s.  :..

c,.: .-...

a t.a._ r..

_ . ,+ w

-a ..

E..:,

- A.&. ,;. MW.;;-%;::"_

--p: .t. ~ ;;'L*;"~~-5. ~ w1 ===--?<.' -U.F.-

W. .lp.

~~ %: 7=

A:.-*~~A--*e.:

-s.G,T,,

m-~,he, .&&.-~'  :--~. *%.:?M.~2.  :: <;' :,.C_ %..M'c GW-M*'T W.#.9, .<. c.%v::.w.<.'

r -

~xr;: .

. .- s-s:::;S?-:w.3?.

.~; gr g%,.>+-, --

.:.r .p=:;:- *g., .

--uq..m. 7;m.:.

T:5Ei".5* Y

-e l

w. m s-m '

v .;. t-

.cs.ye:n-A-

,. >':r-..

. . .v.s. .g . . !

.f. i e ,i

~. . -...w;,;,.....a . . 0 3c:7.

qa.::.hn M_.,ew :r m, p: -

'g#-ysg-E,{.$~~ 5:

. .i ej: lic , sad have obvious :pplies:ics in :qu :!c, Assucstion of the ".*artur recir-

- . . - - 23"! Industt:-1, r.d ::il cic::bicic;7

- m#:M:c--t -  :%.,

3.,.--- ...t.%.e,

,i scucmg res=iratory ac
i.my :: :

'-~ pt :fi ;.7,. '

J. ., c.. cooso .L : , -.

.,. 2.

i* R.'"7EREh*CE3 (5) Udaal. S. I,. 19M A =er. age .'er t

=; -.2*D % ~ W

~

e a~

m.  % e_t t, T ,,..% ,.*).' ' l ,

. (D Alexander. M. 1954

. L.creciolosl7 or ;esci. Bio 5e:e:ee it 17 2-fdA=%.

  • .N-'. -'

i ciaes and reisted ' hreircesrocas.* (Is: W se d Pe.-Mas E *A P.e:or-P. .:::cles and AspUestions in Acutic ent's Sc:::ce Adv .sory C.s e M(%%_Ofp':%  ;;;f

.Y.:.N f f' 4 "1. M. 6 *.:;:;:#:*

' N~ N i Mic:cciclogy. E. Eeukeieu.u. and :f. C. b 3' O* * '*" hM D*

mg::s. D. C.

Doncero, eda, pp. 13.-4:, Joan Wi:ey &

1:e -.W~ M.,.E c ~.*

-A- % 7 us:.

0 sacs.Ise .% hu * -

't.y.; r .m a. R:' m % ._,t m .an C'~ ^f gy::M/:~ 'c:g%~~

' .<f (:) Carson. P IM2 ::itect Son:g." Eaus :ca -

r, t- .

W"' C.a, Bostoa. E*E2:~ 881 Of Es:::*;' ::, ,",.-:#-

f L c ..u # ~ 7*# ~~a.':' E j (*) Chances. P and Sodes. 7. 3. IMI Efects bc:--~9.S3M.N  ;

oce. s=d Eur::a of C x.-r:.::::

MMAG.

M.u c c, ~r G. .,.v...Q. c l-j Y,: .

of sacact ud mrtcan on nitr:!.c: ca. sod respirstros, sad mic: oial cu=cers in four Oretoa :ods. Soil Sez. ::: *.57.;33.

E *. :::=en'..1 Scie:ce Ru* .s-De State I' ive

%.r.w .,= s- . _ : 1 New E: : .: r ek. Ney J.

.;,s'.:,

y,::,,. < t*".2 M*.

'*4: . . -. .

(4) Chue. F. E aad C:1r P. E. E. L:.C Receive:i for 7:dlice.::an .L;.-i

n c--, m *4_,,,,.,.,

.v.

Y,#e .,. e ._ . . .

. ~ ..

x .5.h'.~

.~r4 u. ,::... ..

- in-

.*. ,r e .r eJ .--..'.v P.

2 .-%.,,..

' .-; -:% , . .n~

..,o .

'.W t~~=:-~ :.:.--=-==~:.....:.2 - + ~ - -

&.v. .:.I . a. .*.- .

z-.

. - =.o 4.% .. . ~ . . ,

..----:--*-------z. -

.~.--

  • . ..- . . . . .- ' , - .....;,.=, *
  • . . . ., .= ..

=- . . .-". .

..-..r-."...

'? *

. ~ ~ - -

g ..-i-.. . . . . . . . . .

om. a. . s c . .=.

. ,.g. . I . . *

...-.h .. -

.v:*

,.,-~.,. ,.... .

":;- ,. y.. . , .

.c.:.

m  : ;T ". ..l .

. .**:-"-.* * ~* *=.*+ - ~ _~ . .,,.,

C:1-

.'."x 29.*.wJ'..'m .

w .

~:.r> '..P .

-. s s.w ;. . ....y .

  • _5
  • %Y .

s-'er.h s c.:,a A* .

.r :.s er C -- sce ..-

,, g: =e - . = - = = . .

' Y.z:

M.M.

. ~ ~ . .e c - M. . . * -

="T.T.")s * .* * * .

.T;.3:-- ,..-

,n,. .a: w w . .

%s iWw'". W.-

=. A.V.r. .. a. . ,a..c** . i.

C

  • r:: ~', . , .,.

,.a.,,..

d"%

a..=

+g.,.

w:.*e ,w =....r. . . .

,.-..r.*-d . ,,

E . . . .

.r

\

j =

f

\. - *s' ..

o*w.

=0 wv.

Nf*

me -m.r* * $.

@q , . , , . .

W'. 91 *..s..= ,.

.~, ,ers . '.1, . .m.

-. . . I I .

m .

+> .

  • . e, e e

.F. =W. 4 .'s e a .,. .% . . .

. .. .....-4 e ' a Nw i- .N

o -

l O AeeeNaix x S-R ANALYTICAL LABORATORY LEACHANT ANALYSIS O

Index of Sample Designations The following identification prefixes are used for each of the samples for which data are reported in Appendices F through K.

Prefix Description AF Bead Resin ( BWR/PWR) - 50% Solids Loading BD Precoat Filter Cake W/ Powdered Resin (BWR) - 25% Solids Loading CG Precoat Filter Cake W/ Diatomaceous Earth (BWR) - 55% Solid Loading DH Evaporator Concentrates - Neutralization Waste (BWR) - 60%

Solids Loading EE Evaporator Concentrates - Floor Drain Waste (BWR) - 45%

Solids Loading

()

FF GC Evaporator Concentrates (PWR) - 50% Solids Loading Decontamination Waste ( BWR/PWR) - 30% Solids Loading HE Mixed Resin and Filter Cake Waste ( BWR) - 45% Solids Loading 2 Bead Resin From 55-gallon Drum Sample (no.) Asphalt L Asphalt Samples marked in the following ways represent the test results trom other test programs:

P, Cation, Mixed, Socium Sulfate, Boric Acic V

t %,

O -~

A This appendix contains the raw data for determining the leach index.

computer spreadsheet was used to calculate the leach indices of the waste sampl es.

The calculational method which follows, describes the various The tracer salt concentrations formulas used in deternining the leach index.

The tracer salt must be inputed to the spreadsheet for each waste' stream.

concentrations are calculated as shown in the following pages.

The original test data S-R Analytical, Inc. performed the leachant analysis.

is included in this appendix, but has been recorded on Tables 1 through 3 for ease of input to the spreadsheet. Where the leachant concentration was not detected (i.e., at the minimum detection limit), the minirmJm detection limit of the system was used.

Finally, the spreadsheet for each waste sample is included in this-appendix.

6

~

O

>c-

('\ LEACl4 TEST Calculational Method

- The following is inpJted:

Sample Designation Diameter (cm)

Length (cm)

Weight (cm)

Leachant Volume (1)

Initial Concentration (mg) see attached sheets for each wasta streams Rinse Concentration (mg/1)

Extracted Concentrations for each teach interval

- From these inputs, the Leach Index is-calculated as follows:

Volume: (D/2)2L Surface Area: 2 (0/2)(0/2 + L)

A. (Initial amount salt in sp!cimen after 30 second rinse) Ini ti al concentration - (Rinse concentration x Leachant volu,3) uni ts mg.

In Column 1 of tha data sheet is the teach intervals Column 2: Delta bet.nen Leachant changeouts (sec)

Column 3: Time since start of teach test in-1+Tn 3 Column 4: Inputad extracted concentration - see the following pages.

e V (Lab reports attached)

Column 5: An-Amount of salt leached during this interval:

An= Extracted concentration (column 4) x Leachant volume uni ts mg.

Column 6: An/Ao = Column 4 initial sait weight, Unitiess number Column 7: ( An/Ao)(1/ tn) pr column 6 lumn 2 Column Column 9: 0=

3: T(sec)

An/Ao= [1/2(2tni v/s 2 /2 7 + tn-1 1/2 z

( tn)

An/Ao - Column 7 tn V = Volume S = Surface Area T = Column 8 Column 10: LogB/Dj B = Icm /sec - constant Di = Column 9 L?ach Ind2x: 1/10 Log 9/Di Surnation of Column 10 x 1/10 The actual calculations for tach sampl? are shovn follwing the sanp12 i cal cul ati on.

O V

Tracer Salt Concentrations _

) -~

fracer Salts (CsC1, Sr(NO3 )2 and CoSO 4 .7H 2 O) were added to waste The following are calculations for the amount of tracer salts in mixtures.

the samples: .

Bead Resin - AE SR Analytical Inc. performed analysis on this sample and determined the following tracer salt emnposition: ,

Cobal t 3. 3%

Strontium 7.5%

Cesium 0.33%

(Sample weight - 217.17 gr)

Total salt weight is:

O Cobal t 217.17 gr x .033 = 7.157gr Strontium 217.17 gr x .075 = 16.238 gr ~

Cesium 217.17 gr x .0033 = 0.7167' gr 9

i O

' Powdered Resin - BD SR Analytical Inc. performed analysis on this sample and determined the following tracer ' salt composition: '

Cobalt 2.0%

Strontium 2.2%

Cesium 0. 31 %

I (Sample lleight - 203.0 gr) .

i' Total salt weight is:

Cobal t 203.0 gr x .020 = 4.060 gr Strontium 203.0 gr x .022 = 4.466 gr ,

Cesium 203.0 gr x .0031 = 0.6293 gr t

e h

e O

Diatomaceous Earth - CG The following materials (neglecting water) were mixed together yielding a tracer salt ". as follows:

Dry Mix 281.28#

1.795# Cs = [(132.9/168.35)(1.795)]/294.483 = 0.481%

CsC1 4.66# Sr = [(87.62/211.64)(4.66)]/294.483 = .6551%

Sr(NO3)2 6.748# Co = [( 58.93/280.99)(6.748)]/294.483 = .4805 CoSO4 7H2O TOTAL 294.483# .

Mix tested was 55". DE mixture; 45% Asphalt by weight Weight of tracer salts (sample weight - 273 gr)

% Loading Cs ( .00481) x (.55) x (273 gr) = .7222 gr Sr (.006551) x (.55) x (273 gr) = .9836 gr Co ( .00480) x (.55) x (273 gr) = .7202 gr G

O

Evaporator Concentrates - Neutralization Waste-OH The following materials (neglecting water) were mixed together, yielding a .

tracer salt % as follows:

Weight Percent of Solids Dry Sollds 73.227# = 0.465%

450# Cs =[(132.9/168. 35) ( . 45)]/76. 325 = 0.4 83%

CsC1 S r = [( 87. 62/ 211. 64) ( .892 ) ]/ 76. 325 892#

Sr( NO3)2 1.756# Co =[(58.93/280.99)(1.756)]/76.325 = 0.482%

Co(SO4) 7H2O .

TOTAL 76.325#

Mix tested was 60% Sodium Sul fate; 40% Asphalt by weight Weight of tracer salts (sample weight - 289gr)

% Loading Cs (.00465) x (.60) x 289gr = .8063gr -

Sr (.00483) x (.60) x 289gr = .8375gr Co (.00482) x (.60) x 289ge = .8358gr 8

i m

O

Evaporator Concentrates - Floor Drain-EE i lding a The following materials (neglecting water) were mixed together, y e tracer salt % as follows:

73.749#

Dry Soltds 455# Cs =[(132.9/168.35)(.455)]/76.869 = 0.46675 CsC1

.897# Sr =[(87.62/211.64)(.897)]/76.869 = 0.4831%

Sr(NO3)2 1.771# Co =[(58.93/280.99)(1.771)]/76.869 = 0.48315 Co(SO4)7H2O TOTAL 76.869# ,

Mix tested was 45% solids; 55% Asphalt by weight Weight of tracer salts (sample weight - 245gr)

% Loading Cs (.004667) x (.45) x 245gr = .5145gr Sr (.004831) x (.45) x 245gr = .5326gr Co (.004831) x (.45) x 245gr = .5326ge O

)

O

Decontamination Waste - GC O)

%. -~

l The following materials (neglecting water) were mixed together, yielding a I tracer salt % as follows:

Solids and Oils 3.727#

.370# Cs = [(132.9/168.35)(.370)]/6.197 = 4.71%

CsC1

.710# Sr = [(87.62/211.64)(.710)]/6.197 = 4.74%

Sr(No3I 2 1.39 # Co = [(58.93/280.99)(1.39)]/6.197 = 4.71%

CoSo4 7H 2O TOTAL 6.197# .

~

Mix tested was 3% solids (Decon) x 97% Asphalt by weight (30% Decon solution)

% by weight of tracer salts ( :imple weight - 193ge)

% Loading Cs' ( .0471) x (.03) x (193 gr) = .2727 gr Sr ( .0474) x (.03) x (193 gr) = .2744 gr .

Co ( .0471) x (.03) x (193 gr) = .2727 gr.

O

l Q Mixed Bed Resin - HE 1 Q'

d ~

This waste stream is a mixture of wastes A, B, and C in the as delivere state of 45%, 50% and 5% respectively.

Stream A 108.585gr bead 2*7.17gr sample, 50% Bead Resin or 7.167ge is Cobalt SEE BEAD RESIN - AF of 108.585gr bead -- 16.288gr is Strontium

- 71679r is Cesium i Salt Percentage, Based on Dry Resin (Bead)

Co 7.167gr/108.585gr = 6.60%

Sr 16.288gr/108.585gr = 15.00%

Cs

.71679r/108.585gr = .660%

Strean B 203.0gr sample, 25% Bead Resin or 50.75gr dry powder of 50.75gr powder - 4.060gr is Cobalt SEE POWDERED RESIN - 80

. 4.466ge is Strontium

- .6293ge is Cesium Salt percentage, based on dry powdered resin .

Co 4.060gr/50.75gr = 8.0%

4.466gr/50.75gr = 8.8%

O Sr Cs 6293gr/50.75gr = 1.24%

Stream C Co 481%

Sr .6551% SEE DIATOMACEOUS EARTH - CG Cs 480%

CESIUM Waste Stream H Consisted of: DRY COBALT STRONTIUM WET 4.665 205 31 .1 # 2.05 .348 67.5# Stream A (.46 Solid) 28.1# 2.248 2.473 Stream B (37.5 Solid) .049 .036 75# 7.5# _ .036 _

7.54 _ Stream C _

.5894 66.7# Dry 4.334# 7.187#

150# Wet Percentage Based on Dry Solids Co 4.334/66.7 = 6.498%

Sr 7.187/66.7 = 10.775%

Cs .589/66.7 = 0.883%

Sanple Size - 213gr. <

213gr x .45 solids = 95.85gr solids Total Weight of Tracer Sal ts Co 95.85 x .06498 = 6.228gr Sr 95.85 x .10775 = 10. 328gr Cs 95.85 x .00883 = .8463gr l

TABLE 1

['#)

i

LEACHANT - STRONTIlN ~~

AF ' S BD7 BD10 805 AF3 AF8 AF15 Samole ( ND ND ND HD ND ND* ND Rinse ND ND ND ND 1st EXT DI 1.2 3.1, 3. 3 3. 2 SW ND ND ND ND 2nd EXT DI - ND ND ND SW ND ND ND ND 3rd EXT DI ND 1.8, 1. 7 2. 3 SW ND ND ND ND 4th EXT DI 1.2 1.7, 1. 5 2.7 SW ND ND ND ND th EXT DI .51

'~

. l.2, ND 4. 0 SW .

- ND ND ND ND 6th EXT DI 2. 3 3.5, 3. 4 5.1 SW ND ND ND ND 7 th E XT. DI ND ND ND SW ND ND ND ND 8th EXT DI 1.2 14, 15 12 SW ND ND ND ND 9th EXT DI 1.5 9.3, 3.5 9.9 SW ND ND ND ND 10 th EXT D I UD 6.8, 7.4 4.8 SW l'\ *ND - Non Detectable - tiinimum detection limi t of .50 ug/mi V

TABLE I

, [ LEACHANT - STRONTIIN (continued) -~

CG20 12DH 20DH l CG3 CG21 Cd9 Sample t 8012 ND  ;

ND ND ND 2* 2 2 l Rinse ND ND 1.3 1.D  :

1st EXT DI 2. 2 2. 0 SW 1.2  !

- ND ND ND ND 2nd EXT DI E .

2 ,

SV E

f 1.1,1.3 ND ND ND 3rd EXT DI 2 ND SW ND

.72, .78 ND ND ND 4th EXT DI E ND j SU ND i '

1.0 ND ND ND IXT DI '

ND

' 1.1 '1. 6 SW

1. 0, 1.1 ND ND ND 6th EXT DI 2.4 2.7 2.0 S'i E 2.1 W ND 7th EXT DI ND ND SW ND
1. 3, 1. 5 ND 2.7 2.3 8th EXT DI 3.1 3.6 T.1 1.6 ND 3. 4

.62 .57 9th EXT DI 7.6 7.2 SW 5.3 5.1, 5.3 7.8 4.1 3.7 1 10th EXT DI 2. 2 HD 2.0 S.i

  • ND - Non Detectable - Minimum detection limit of .50 ug/mi

, - - , . , , - , , - . , . , - , - , , ,n. .,.w , - - , . _ , - - . = , , _ , , - - , _ .nn-_., -.

l l

l TABLE 1_ '

O' ~

LEACHANT - STRONTIUti (continued) 19EE FF7 12EE 17EE EH 7EE Sample { 1DH ND ND ND 10 ND 2* 2 Rinse ND HD 10 ist EXT DI ND ND 3.8, 3. 0 2.5 SW ND ND ND 2nd EXT DI ND ND

2. 5, 1.6 2.1 SW ND ND 2 3rd EXT DI ND ND SW 2.5, 2.9 3. 4 ND ND ND 4th EXT DI E ND 1.0, .63 3.1 SW O EXT DI ND ND

'3. 5 3.9 ND 4.4, 5.1 7.5  ;

SW ND ND Nd 6th EXT DI ND ND 2.4, 2.6 4.0 SW ND ND !O 7th EXT DI ND .97 SW 2.6, 2.9 6.0 ND ND ND 8th EXT DI 2.5 2.9 I 3. 7, 4. 4 9.3 SU ND ND ND 9th EXT DI 3. 2 3.9 SW 1. 2, 1. 3 7.9

.61 ND HD 10th EXT DI ND ND 4.5, 4.7 9.7 SW

  • ND - Non Detectable - Minimum detection limit of .50 ug/mi

TABLE 1_

LEACHANT - STRONTIUM _

(continued) -~

GC10 GC19 GC7 GC9 FF14 FF29 Sampl e #_ FF24 ND ND ND 10

  • 2 E 10 Rinse 2 ND ND 1st EXT DI 1.2 ND ND SW l.0, 1.4 ND ND ND 2nd EXT DI ND ND 2 ND SW 10 2 ND 3rd EXT DI ND ND

.13, .16 .37 SW ND ND ND 4th EXT DI 40 ND 12, .14 .15 SW 10 ND ND EXT DI -

~

2.1 3.-0 SW 2.0, 3.9 ND ND ND ND 6th EXT DI ND ND 1.2, .75 1.5 SW ND E ND 7th EXT DI ND ND SW ND, .73 ND i

ND ND 8th EXT DI .73, .79 3. 3 3. 5 7.0. 7.8 8.6 SW f0 ND ND 9th EXT DI 4.1 3. 2 7.1, 7.5 6.7 SW l~ ND ND ND 10th EXT DI ND ND 7.5, 7.6 6.4 SW

  • ND - Non Detectable - Minimum detection limit of .50 ug/mi

- . - - - - - ,._. . --_ - - - -.- - -- - - -- - --__~. - - _ - -

TABLE 1_

l LEACHANT - STRONTIUti (continued) 4

/ l P5 P14 -

P17 P2 E4 Hell E7 HE17 Sample ( ND ND ND ND ND 2 10 nse 2*

ND ND ND

t EXT DI ND

.94 .86 1.1 1.2 SW --

ND ND ND ND ND nd EXT DI ND ND ND SW ND ND ND ND rd EXT DI 26 ND ND

.29 SW ND ND ND ND n EXT DI ND ND

.31 .33 SW ND ND ND ND 51 DI '

1.2 1.2

2. 3 1.5 SW ND ND ND ND 6th EXT DI 2.1 2.1
2. 6 ND SW ND ND ND ND i 7th EXT DI ND ND ND ND SW ND ND ND ND 3th EXT DI 1.6 1.7 2.7 3.5 SW to ND ND 9th EXT DI ND 6.1 6.7 7.3 6.2 SW ND ND ND ND 10th EXT DI ND ND ND ND SW
  • !O - Non Detectable - Minimum detection limit of .50 ug/mi

TABLE 2 --

' LEACHANT - CESItN_

AF16 807 8D10 805 Sample # AF3 AF8 AFIS ND ND ND ND ND ND ND*

Rinse _

ND ND ND ND 1st EXT DI 74

4. 5, 4. 4 4.4 SW ND ND ND 2 2nd EXT DI ND l.7 1.6 SW ND ND ND ND 3rd EXT DI ND

. 1.7 1.9 SW ND ND ND ND 4th EXT DI ND 1.8 2.5

  • SW ND ND ND ND ch EXT DI ND 2.0 1.5 SW ND ND ND ND 6th EXT DI ND 1.0 1.0 SW ND ND ND ND 7th EXT DI ND ND 64 SW ND ND ND ND 8th EXT DI 1.0 9.1 5.5 SW ND ND ND ND 9th EXT DI ND 3.8 3.3 SW ND ND ND ND 10th EXT D1 2. 0 5.7, 6.4 5. 0 SW
  • ND - Non Detectable

'linimum detection limit of .50 ug/mi

.--.w , , ,e . . - - - - . - - - , . - - - - - - - - - - . . ,-..,~,.-.7- --...,,..r,.,._w.. _ - , - . - - - - - , . _ . - . - - . _ .--,-n-.. -,-.---.-4

TABLE 2 LEACHANT - CESIUM (continued) __

CG20 12DH 203H CG3 CG21 CG9 Sample ( B012 ND ND  ;

2* ND E ND ND Rin se

1. 5 , 1.7 1. 3, 1. 4 79 70 1st EXT DI 64 57 .53 SW ND

~

4.5, 4.3 .81, .86 ND 2nd EXT DI ND . ND SW ND 2.1, 2. 4 .69, .62 ND ND 3rd EXT DI ND ND SW ND l

ND ND 9.2, 9.3 ND 4th EXT DI ND ND SW ND

. 0 i EXT DI ND ND 7.5, 6.9 ND ND "D N

SW ND ND ND 5.5, 5.7 ND 6th EXT DI ND ND SW ND ND 11, 14 ND ND 7th EXT DI ND ND S'.I ND 1.4, .74 .75, .41 1.7 1.8 8th EXT DI 1.3 1.6 i SW .85 6.1 1.2

.62 .62 9th EX,T DI ND ND SW ND

.62 IS, 17 23 10th EXT DI .78

.19 .22 SW .63

  • ND - Non Detectable - Minimum detection limit of .50 ug/ml i

l 1

i l

j TABLE 2 i

LEACHANT - CESIU!!

(continued.) -~

19EE FF7 12EE 17EE EN 7EE Sampl e { IDH ND ND ND ND ND 70

  • ND Rinse
3. 3 99 .82 ist EXT DI 1.3 1.4 SW 1.1, .97 .94, 1.0
4. 4 37 - .26 2nd EXT DI ND ND SW ND, .62 3.4, 2.6 .
4. 8  ;

ND ND 3rd EXT DI ND ND

.50, ND 22 SW ND .51 20 t 'l ND 2.4 ND ND EXT DI -

ND ND

'SW ND 8.5 1.8 ND ND 6th EXT DI 3.8 .51 SW ND 3.5 2.1 ND ND 7th EXT DI ND ND ND 15 SW 13 51 67 ,

Oth EXT DI ND 1.2 ND 6 SW 5.6 ND ND 9th EXT DI .87 1.0

' SW 79, .78 .88 ND ND ND 10th EXT DI ND ND SW 180, 190 3 l

O *ND - Non Detectable - flininum detection limit of .50 ug/mi

TABLE 2_

LEACHANT - CESIUM (continued) --

/

f i

GC9 GC10 GC19 FF14 FF29 GC7 Samole #_ FF24 N9 2* 2 ND E ND ND Rinse _

ND ND 1.7 ist EXT DI ND ND 5.5 4.7 SW ND ND 2nd EXT DI 2.9 ND ND 2.2, 2.6 4.6 SW ND ND

3. 3 3rd EXT DI ND ND
4. 2 3.6 SW ND ND 4th EXT DI 2,3 ND ND SW
6. 3, 6.1 4. 3 U 1.5,1.6 ND ND i EXT 01 -

ND ND 5.1, 5 5.4 SW ND ND 6th EXT OI .98 ND ND 5.2, 5.1 5.4 SW .

ND ND 7th EXT DI 1. 4, 1. 3 ND ND

3. 2, 3.1 5. 0 SW ND ND 8th EXT DI 9.7, 9.5 UD ND SW 23, 22 21 ND .

9th EXT DI 2.9 ND l ND SW 17, 19 16 ND ND ND 10th EXT DI .38 ND j 1.6,1.4 1.7 SW l *ND - Non Detectable - Mininum detection limit of .50 ug/mi

D TABLE 2 Q LEACHANT - CESIUM _ (continued)

~~

P5 P14 Pl7 HE17 P2 HE7 Sample t E4 HE11 ND 2 ND ND W ND ND 2*

_s.e ND ND ND ND ND

. EXT DI 1.5 ND l.5 SW ND ND ND ND ND ND 1 EXT DI ND ND .

SW _

ND ND ND ND ND d EXT DI ND ND ND SW ND ND ND ND

.h EXT DI ND ND 2 IO S1 ND ND ND ND t$ DI '

ND ND ND ND' SW ND ND ND ND ND th EXT DI ND ND ND Su ND ND ND ND ND

'th EXT DI ND ND ND SW ND ND ND ND i 3th EXT DI 1.3 ND ND 1.4 SW ND ND ND ND 9th EXT DI ND ND ND

  • .6 SW ND ND ND ND ND 10th EXT DI .10 2.5 .91

- S'!

i *ND - Non Detectable - Mininun detection linit of .50 ug7nt I

i

TABLE 3

}

1.EACHANT - C00 ALT -~

807 8010 805 AFIS AF16 AF3 AF8 Samole 4 ND to ND ND ND ND* ND Rinse _

ND ND ND ND 1st EXT DI .38

2. 5 , 2. 7 2.5 SJ

- ND ND ND 19 2nd EXT DI ND

.15, .18 .14 .

SW ND ND ND ND 3rd EXT DI 2.3 ND 1.8,1.7 SW ND ND ND ND 4th EXT DI 2.7

.12 1.1, 1. 5 SW ND ND ND ND IXT DI -

1.1

~

.25 1.5 SW ND ND ND ND 6th EXT DI .23

.88, .82 .91 SW ND ND ND ND 7th EXT DI 72 17 1.5 i SW ND ND ND ND 8th EXT DI 13 41 16 ,

SW l 1

ND ND ND ND 9th EXT DI 4. 4 3.5, 3.2 3. 2 - l S4 ,

ND ND ND ND 10th EXT DI 3. 4 4.9 4.9 SJ J *to - Non Detectacle - !!!nimum detection limit of .10 ug/mi i

1

,_ , --,,,v -- - - - , - - , - , , _ , - - , . , _ , , - - , _ , , , , , . _ , _ , . _ , . - , , , , , - _ . , , , , , , , , _ , , , , , - - - , , , . _ , , , , , ,

t

)

TABLE 3 LEACHANT - CDB ALT _

(continued) 12DH 203H CG9 CG20 CG3 CG21 Sanple t 8012 ND ND ND ND 2 ND E* ,

, Rin se_

ND ND

.19 .16 1st EXT DI .19 .20 33 Si

  • ND ND ND ND 2nd EXT DI E .

ND ND SW ND ND

ND E 3rd EXT DI ND ND ND St ND ND ND ND l 4th EXT DI ND ND ND SW ND ND ND ND EXT DI '

E 'ND l

St ND ND ND ND ND

6th EXT DI ND ND SW .14 l ND ND ND ND 7th EXT DI ND ND S'.i .13 ND ND 14 .13 8th EXT DI .27 .28 /

SI . 31

.14 ND i ND ND l 9th EXT DI *

.12 ND SW 20 ND 1.4 2.5 2. 3 10th EXT DI 1.5 2.2 SW 1.8

  • HD - Non Detectable - Minimum detection limit of .10 ug/mi i

k

. _ , . , , , , _ , - - _ . . . - - - - - . _ . . , _ _ . . , , - _ _c, . , - - - - _ _ , . . - , - . - . . . . , , ,_-__,,_,n.-,.... , ,, , ._-. , ~ - - _ - . -

TABLE 3_

LEACHANT - CD8 ALT (continued) -~

19EE FF7 12EE 17EE WH 7EE Samole i 10H ND ND E ND* 2 ND E

Rinse ND ND E 1st EXT DI ND ND

.18, .21 .16 SW ND ND ND 2nd EXT DI ND ND .

.11, .10 .10 SW ND ND 2 3rd EXT DI ND ND

.15, .19 48 SW l ND ND ND 4th EXT DI ND ND ND 77 SW ND ND ND EXT DI '

'ND ND

.13, .12 .77 SW ND ND ND 6th EXT DI ND ND ND .57 S'i ND ND E 7th EXT DI ND ND ND .98 SW 13 i ND ND Oth EXT DI ND .68

.15, .14 2.7 SW ND ND ND 9th EXT DI .1D ND

.20, .21 5.5

' SW 28 1.5 1.9 IDth EXT DI ND ND f 1.7,1.9 9.2 SW

,O .

  • ND - Non Detectable - Minimum detection limit of .10 ug/mi

TABLE 3 LEACHANT - COBALT (continued)

GC10 GC19 GC7 GC9 FF14 FF29 Samole _#

FF24 ND ND ND 10 ND E ND Rinse _

NO ND ND NO 1st EXT DI .19, .20 20 ND SW NO ND ND ND 2nd EXT DI ND.

W to SW __

ND ND ND NO 3rd EXT DI .37 ND .13, .16 SW

, ND NO 4 ND 4th EXT DI .15 ND .12, .14 S'l ND ND

.13 ND EXT O! ~

NO, .12 .17 SW ND ND ND

.51 ND 6th EXT DI .15 NO .12, .13

' SW ND ND

.24 44 7tn EXT DI .24 HD .13, .18 S'l ._

! ND NO 8th EXT DI . 20 .13

! 79, .86 1.3 ND SW HD ND 13 NO 9th EXT 01 .92 ND .66, .74 SW ND HD NO ND i 10th EXT DI 56 42 SW ND i

  • ND - Non Detectable - liinimum detection limit of .10 ug/mi

,,-v ,, --,,,--,--,---r---,-.,--,,--,----,---,-----,-,-,,,,--n.-e,-,,,,_, ---am, -----,-,--n+ - , , - , - , - -- -------.--,----.,w-,-e- -,

TABLE _3 LEACHANT - CDBALT (continued)

)

P14 P17 P2 PS ,

HE17 Sample ( E4 Hell' HE7 ND ND ND ND ND ND ND ND nse ND ND ND ND ND t EXT DI ND ND 1.0 SW

- ND ND id EXT DI ND ND W W W W T4 -

E ND ND ND ND rd EXT DI 26 ND

.29 SW 2 ND ND ND ND

.th EXT DI .33 ND

. 31 ,

SW E E ND ND ND 5e DI

  • ND

.14 .12 SW ND ND ND ND ND 6th EXT DI .14 ND

.24 Si ND ND ND ND ND 7th EXT DI .10 ND

.11 SW ND HD ND ND .10 8th EXT DI 1.4 HD 1.3 SW ND ND ND ND .12 9th EXT DI .29 HD 41 SW ND ND ND ND ND 10th EXT DI ND r 3.1 1.4 ,

SW l

  • t0 - Non Detectable - Mininun detection linit of .!0 ug/mi

- - , , - - . - - - - - - . . - ,,w--, - - , . , , - - , - , - - . - - - - - -----.--------.---,----.-_------v.. - -- + - , - , . , - - - - - - - - ~ . - - - . - - - - - , -

. .. o

-/ o,

] -~

a e

tr4 re .4 O=

O er ey wa3 O O on P= >= == 0 4 e 44 r1 a.re s1 ptr.a tr'a em s.ee co r*e t** N e= u. er em r tw eJa e eJe*(33 Is4 fa t(1e ts 3oad3e e.O eyn a tr1e O O == ** O*e EEDe Mae me == ===

W" G* ==* == **

C3 W* S'*

~ se em O O @ N P4 O. O

. me em see -e en ee a- N= em 9 0 0 #

$ 9 0 e $

$ es es to es e

eO es et es es as end es P9 e

e e p* e

  • O ePo @e

@@ M M e

M M art ar e

M f0 gr3 P=a h4 4 e

Pat er ser tr1 trt tr1 art tri =Ce =4 en es es tas es esCEB ensD3e se =e3 es C sa O Ce en" (33 #4- IFJ P4 P4 f** e- O mee es O Gb er O O.O Pm tem O a M eCE3 gg3 er g me o e e eneft o e o e me e W Os eum o's me eO @4 Wo P= WW CD W W G3 P O Oe s e e e e

.nm e o e eo

  1. m#

C a.m o kes men ta ed as 44 !4 es re es fu die re ao sa ens ep

%d S'B er P= Pd Pe P4 td === CE) GB Ps P e CEB Q;s G3 O'*J C O O*

eC ep 4p"3=a M'3 -e M P= tai O iP MM ee .J == D =O O Mm3 saa ==e CB3 e e P'e e e o M b bM M eM em M Ne GB O=e @3 o B

=mm .ee en duS

  • Ie af u

o== 83 h

2h= een WED

'4 4,ne M

M. M. M. M, M, M, M, e M. M.

W er er es es es to es es es

- O W1 Ee 6 ta.i e.ri. e to == t.o eri atr.ea U.1 ts)em. tA e ey my gy ear espo aup eeso er my er e

>= :'D med e.J == sne e e e e e e e e

&#5 ese 4 e se one == === we amo meo see me ==

had e.)

4d6M g E WE 4 -

- e=s e-o e@ emme em ene ene we amo ese G e e ee-. O e O O OOe O O me O O e e o e e e e o u (D ses es 3 e == sie ese se em es .o ea se me 6.3 t.a.a aos J &#9

  • o* es O

a== *ede 3C aiO tems t'am m4 M

nE e*Z M S sia ==.

ha. 6 et had >=

qO OO OO qO O O sp 2 e.* e e# 5 to a tr3 to tA ti 4 40 to a IA tr3 tr3e e em O sp e 4 o e o e e e

== 6 6 e- e e e 88 had O E E mud em te

%AJ 4J 2 S.

c N c S E. S3 S.,.:e S 4*E-4Se=a3S.G3S- er pain erb O= >= N P4 P= fum Um N P'1 6 N Pm erme ans s'a.

> een ese ese N =d3 se * 9#1 *O

.J %d time ep s:l2 edt

. =mme E

u3 as I

ene e O OOO $ O O O O O OO es, P4 W M O O W M M YO O me e O Ep* e -m e Oo em e tr1e em e,=e e-m O

o OO e QO e oO o e O o e.3 Oe o Oe O o

e,.m. ee=Oo o Om!;p o <@ e o,O t.a. o 4

  • w = O -

o en N N -O 4Ae e.

en e.e e P.=

e re N N oO -

P=

e Pan

e. wen ee ,J c4 O ee es>

Pm W =O an) ear *O er %d3er CPna G*N N IM e's een m.g3 gEp e3 4lD (33 O ==

4mp ed er >=

e

==

ese N P1 es. Gum o @ mus S *==

== 4:p8 e

e E-g so oilt one exub b W I 8"E e=

=== E E

- 4 a %ab e== *C a's E E ed I 4 had e- 6 **

2 eum 4 J t- I E N W g

e.0 e== ea 5 264 eas e-- .Ea -= een 4#1 == E to 4.J B 3e Qtes 4 .J tad == Pam GB O* ** O "E t.ad ea

= a.s 6a e > O 2 E C =* em N P8't er en =4 ""*

g ;3 g ee . had 2 J ha e= e-. g had o== T >= W4e a 4 bad CP o- llE: K. 4 2 == S X M ea n.aA e ro =g as.e s o L_, .E: W -

ha s==

'e *=" W 4AJ *'8 eT e=e had O =l8 had E ** O ed 44 3 O t.sJ a 3 Jo W1 ese we EE 4 L e k

4

~ - ~ - n... .,.., - - - - - - - - - . . , _ . _.__ ___ ___

W"wwwm-w --_ y_ 4_

__a a er eur -e i )

v -~

W Plb N O, e, w@@ O,.,

=== M

' ele as e tr) esp og s se em a- Om q, y dh

"% sur P4 9% me tr9 P4 f*4 F% Ge er eM Ce O*

e ero espe NN o eP e. tiP. EF* e Oe Y $* 4 We Y WO Y W% W-eWwe amme amo men ame one use aus em w W9 e w w w w y9 =O me e. ase ese em em en en om ese

.-e 0 6 0 9 8 e G $ $

2 es te es Es O

es =O & es as W ** es O b eGm.e F4 ear. e Oo Ge e a Oe

@ M $8% PI e N 4 4 W W b WP gg5 afS tf4 gf) tr% e4 eG es53def53es as es F **4 ed*

s% ee p'= tas es se es W u .=- or 33 C- =4==

>= es W sur O Oe N Pe c psae W O.43 y==

-gas gpe supe go eme e p%e e e e M M we M M M M M bee amo em N a-.

llp Om s e O. ==

e- O OOeoO.e as e-o eo e

G es as e e e e e e ans am ss === es es et es es es as as P4 era P4 O* O* O= O* ** trl ==

hp c=

-e == -m e% a 4 es =s3 O tem f== .= e== em e== t*% C.e.sC

>= eft P4 rw 8 ** =E3

- e **n N N N W N.

===O. e e P'e . e gE eiP e apie P) emD

$D) V3 e

$d') Vg N m Phm

-ee

%E M 8't hf

  • 'n su 8e O t.

6 **=

% ===

W e.ad

>=

4 esi tv4 tre art ert art art trl tr1 trl e o e e e 3 e e e e e s#t.

m O esP== es7%esP== e es e as es es e P% r= s r% s== r% e=

E#3 9..g==gas e r%

f4 F8 N N N E33 N f4 H N N

> e'm m eme . W. W e G3 3e W a==s 4 S

S. WW . . .W G.3 o c.3 6

P4 N NN N N N N $*4 N

) 'E .s w

/ S _68 O ONNNN O O O E,J (,@ tad 4 as e E 6 S *'a NN e e e e NNeOr4 e O O e

N eO O e e 4

  • e e.04e 4"#"9 W 3mm 0 es use

==

  • == E

=O Den N O eas O **

4 had >=

S.a O O O-= O == O Oe @ Oe te,m4, 3 n

> eT O O 43 *=e O== .= eo em 6, eas ==,= e e ese em og >= e e e e a e se saa M E M O s== tse se beid b.3 e

S SgsP h O h

== O O O O O O O O O O c4 P4 N adt M3 G3 m@ ST "E*

esse d of,e N =d3 G3 eEP r% tai O= P=

. er 6 F4 Pan er s'am P f*= Pam EP= N P"B d p== suas ao use emo ese N =O ==e M Gud

='8 Y *O e tea es ms adh a-e

-E u,

se ens

-43 P9 m O *'9 mY O O O .S O

O O O O O O OO O O OO. em, he. =O===

=e. O. O. eO O. O. O. e O. O. P9 O. O. ==e 433e en O O O O O O O & OO*

.,e 4

tr3 O P=

O=.

trl N N >= d3 es.a oOe O O C O O O O Oe ==

s-s == cO =a .na e se en N O N ese ese ese ey OC, c4 N N 04 N === m =O O* Gr5

=

r= # = f*m W a== *t3 =O =O O*== =*

Pun med === =43 G3 CD G3 W P4 O auP P'=

g3 a=e N P9 w

e e mes e E WlllE

=S *== We O

-_a E-E 3

G m's N

E

eo >= 4 ss M >

  • =e W bJ Lan$ B== d

- E E E M 4

2 .== E'3 e.ma e==

4 M %=J E eg 3D **

LO E e== tad O 2 a.ed ad N

== 6.J == === E2

$8$ E  %. SI.S S h O,J M bed E

and # 63 4J3 E.d 4 emo 4 X O

>= ===

Z eg ame N fu'4 er tr5 =O f*= W EP* == O ='=

C:3 g n.a.s us*

asp w ted 2 J kJ a U"

=

E ned == e'- Z m'*

Z E LaJ LJ e3 4 Z G LJ d taJ E.>

e. a.J m=

n.3 == haJ =

E.s ? 4 4 h 4 X == DJ eK h E t.D t.s3 4 == tee sa,e Q  ; mg T

E m ~ O 4 a1 6ad 6ae ed E#3 en w E => t,3 t.,a.a 3 a == eaE d 1

) 9 I .) )

)-- ----. -

) )

)

) , )

)

) ~

)

d e=

e- e*

h\

\ =%

O 1

  • *me @@@ 88 @ 8$*f'==Os9@eNC f0 s2 C.- es= O p= O. p= r'==.p** gg Q ag

"'= .Og ey gg PS M Ve N f==

e P'me tel e F3 tal. ( 4 We Oe E

C3 f4 e N fO b Od N f4 Ye Fe M e

eso em ame =e ame aus ese em me aus 989 P9 P5 8 e.n.e @ af.4 989 Ft P.4 8'.'.' e -

$ # 9= e$

eG $ 9 e

e$

es es e% 9 ep 848 es es es P4 esQes es er >= =O EP*e e=. ElP.= Om. e . eum e e

- n - - c4 e4 c4 .n n e

(

e n .n e .n .#, -O mes-ses es ese see ea can tes se es s==

u O t- s ear 93 O tr* sae ca.s ==o eOo em en O at' an" e'= O O c e r e en F*'s en G2e ere CD =O (

M Poe Pme O e o

=

eBS M @ eM e e WM GO CD4e T M O O ES m'8 end

  1. e-.

@ # @s O ===Om -e =e e'm e-o e

9 6 oen 6

9 9 9 9 S 48 mA te es es es es G4 es es l es enn o CD er P*'D p=, r'am r= P= P% O= c == I u 03 fra e3 e-m == ap 4 G8 CD w"b r.n;s m Q* rm w I

en= Eft Pm art == O* e.- O.= =@ e.e ed' == v1 t.a I

i e a ==

C .o ee e==

e o e Pa=

o ee p= r==

o y==

e trl N e o

==s e I s,s.d 6l ;e G3 984

% .O ee H d H b8 am se O w 4 amm

== ==P and W

W . W . W . , W ,W.W.Wes W.es WW W

6 O es to O O wyO es Oes Ce to es O O O O 4#3 s==

Je= M tied 4

== N F4 N N ea e4 c4 r4 N es e 4 Ne a=m C e 09 P4e P4o Pd P4 4F44 P4 4N e e o e CE =mu q eg o

=O p- 4 =4 4 4 =O 4 6 t#3 2

.N W 123 gag E

C We 4 S===

a== ** == === ame ==* ** ===

Oo Oe Oe Oe Oe OOO gue GES gem WHD m me eng M m eue=

e o e e==

O.

O 6 Re

  • eJ

,e,J Ed5 Go

>* 9 oss amie

=

E

O h=

N O en M e an ne. ee 2 ed see e= O O 4 3P nO- O QO ea- O

  • = *E W ese sJ m tn=47 =*3e.1 is7 ee)
  • * * = en w*a* erbe M M ** 4 == = W1e e,ad B MM

=J k ned as beid

%3 e

  • D O

$ O O O Oh O*D5;;*9.m h O oooO r4 P4 e4 =O G3 CD G3=O O CD er e=.

ens Pan tr1 Oma *== re fen CD ud>

48 04 f'm E r% P% f'um (P* N P9 ==e gene enum "me"one eue em f*4 =* P4

=O

=G 4 4J Lad GS eh ==te E

.a 34 em8

%m.s b

h O QO O

=oe o Oe 40 ***

=

e e O. e Oe Oe Oe O* O* Oe Pse tm.

6 O. ==. e O=e s-. in N_, N e av a

ese ese. O OooO 9O 9 e OO.ll:. O O O -> O =a N eeO v3 O O - ed s a a. .

- -e eNo (w p- age ee O N er =dsur -e3esa

43 a.w. a1 O* tlP* eft N N N TD ,,J emp >== S3 ==

-r =G GA G3 GB ED C *= =

.*P e . had re er r%

glllb e

ese c e **s M

embEM S um

== "et G

E =

.== C3

.- X X == o== C3 O N g

d

g >

uo pm 6 y

s'as 4 == K E e,ma w a

)

3 *em E2 J W X 3D m.

LEB E e au a 2 4.nJ E t.as

, wa ama Ellllt g

g~ -t.t3 == E e. a.s az :lup69E32W *=====

=s N P8 er W'3 =O P== ED O* *=* O E had E c *

Cl3 E e =J=*LG *-- 6A- 43 =

had 2EE C3 J 4=2 *== == "

had C3* 2 LeJ s== E *=E km.aE asnJMrE ==eE LeJ G 2 4.J d ties e- 4A e2 Qe K EJ3 4J3 W *== &#1 ===

a== 2J ein. 4 a-o X e2 t.ed K 4 2 eine X he ed 6 == bed ngJ Cl3 n.al'a t#3 E2 =J Jus De ll 4#';3 .md *"= t'u* O4 and 1 ) *) ) 0 -) 1

) ) ) ) e) .

) - - _ - - - - -

-)

') ')

V e eo s ..

vg *.

s k N i

s.

.e efi P# =d5 CP. O ay ep .c O O s% e% == s3 e s3 es s e3 w1 o a0 ** == 49 P4 P4 P= O.

CP ay

  • == =O eEs er

Cs N O Oe e es1 m Pe EF3Pe m ti"A h1e e4 e m o trie O 2n em We spoe em ==o a-s =====

S= @= == =e

.C.3 == OO.=O ==P4== P4 N==

O., O= ==-e== o e e e e e

e e

es es to e o es es es e es es s Ce ape .er a e ogo pase

  1. 'e b

eOe eyM My3N gryo e e f4 P4em.s b Pm er sum eg1 grg grg es es erges gr3se .e3es .o amm as es ets es its bJ P" ' er GB C CES4 CBS G3 =43 C e- es O. G3 === O as c f*= rg e-1 === s gy3 O

c"1 er $3B == =O O' e f%e OePs'e e

=en e e e ene M W e ano e M g eO P4 W P'= G3 e

CF3 mW W G3 O* O.

s 4 e e e s e- O a+ es es es e e C ep as es W =O e

Ge es me suun 5% =d (12 P4 P4 f4 Pa Q3 S3 eIP'BN f*4 to a PN r==.e tre (* (34aP4 P4G3 ===OCL.s Ed C33 . ' . O=

4 es e- a to **'* F 'e rw w3 O pie eft .e3 -49 ea) p* 03 P's =O d == e en3e . =d3 aum e G3e G3 g M e

e b NM WEG M M e

E'S Me mm. -ee eB'. M w 4A

.= 8e O he

& men

== w E

taa e==

M, P,I O's,% P,9 M, Pa,% Ps,9 P.D P.83 P.'9 Gift.

e- Q 48 48 es es et es es es es W1 es er1 W1 Ee e art ==

= era W1 ef1 == =t.ra a.r.t e.ra == tr) -

age amp -.ey esa er eso er er er ser

>. :l3 tad  %

J === ene

  • E are ein es emme a one

\ .W .-

E es ene ame game op mue ause sue C -@ WW 8'S

.2a e*f@~E tad 9sh 6 Sme O e O aOO e O eOeeM GHB O O OO e gg e D .ED e

ama tegl EMS GHe aEO gge aHe eMe M w 46 48 p= 0 es em J en E

- *mm O uO - >= X f*4 CD ===

e.a. S Lad >= O OO na E

ha W 6 OO O, Oe era OO era art in)e O (J eum eA EIr. is1 ed1

  • is- e tel e w1 e e, e e e

== 6 6 e== e tad er eB eE E uma >= La.d

  • me La

"* E3 .

em S OO OO O Co OO OO O mOOOOOG3OO Oty's O er O em P4 N P4 an3 G3 =m3 G3 aW' Pan tel Om r% N N #== N ps9 P4 Pa. em ermeN ame em em EP= N N.c em C.

p sum == PS aO

.=8 %A LaJ es aft dl.l-lb -

5 us

  • an es8 e

O O *O O M O O@ .$

OOO O OO OOO O O O. O.

O O PD e

M.,. .=e Oe eme m.eae r=

e. .==e- Oe O. O. e Oe e O

a a3 e

e tel. Ooart be OO O O O Oe Oe O O O O ==

4rs-eO P% Oeri N N =O

-e 4 ea O O O O O O O O O O N O rw usP-43amo eCe es= uma ws cw N O ==

==

N N N r== P=.

=.=.a *enp =43 =43 CP= Ep= **

a tad 9'%ama G3ma3ame C2 m 4E3 tw mO our= tra F=

s2*

=

ame N PS aim dithO 8'O W *==

=e- ese I

m .S.e C::3

> e m O

] -

N

=

C:2 _ - e-E >===

r=4

=== E 4 e== wa s-4 w LaJM E M .,4 a

~;p t.na w

[ 2 .sm J U E me

$4mI N ex ggg

= we e== a-m m. na C3 2 said {,,,) ggg O Q d g M

lgf.h 4EP wa e.0 ta 4 8-* ha C3 2 m .==

a== N **9 au" tra -O Pan m O= O ===

m.m s 5l2sed M w ==* w nad 2 A be ==CF' 2 wC

==

==s E

d = Z e== W b' a.E eT Z LJ tie.J had >= Z m e2 Z w tad S 6B 4 23 6a b.* >= U1 w fl E 4f9 L.D .J 64: 4 *=*

L of 2 ===

4 t.ad a

4 =e taJ G :'::e E 2-- O Lad s

e e-= m4 Isr8 esa n.ad a 3 am 643 h.ad i

fh

/ \

%j ~

CE'D FJ h

  • er (P= f> CEB = = * = = .

-e ** O @* erl d=3 es ' fD er ge 3 b 's at Ce s== == tr4 F4 == re em (33 aup o*

  • ==.

.1r

e. e<+ se.p ama

. N. e4 r4 EP. . O.

aun se ce. s=-e. se a-e a.=m.

3 een am e-o m er ====a.r -- ergme

== -e

.CD.

w r tem tr1 ads ama ame sum em ese aup - er e-e === e.m em e e-o e e e e o e a e we e sa me e es es es es es es se es

. * * = =r. EE.3 =sa . c G. =. O. O.

t> ear. pas em tre esa =e == == CP=

s*'s er sea trW tr9 tri tr5 tri =#5 e a es one as esa es es ese es sie P*o my GB C Cr3 CKa 43 3 -83 ensF=

4.A *"'.;,. u- O o c4 re M = .5 P. ee at are e-

=,st u3 er. ss3 ==. -o. r==. P=. O. em. CD.

=== aum == -= a== .e ce sur EP U= O. O O

== == == == .Ne a

e als en e e .

e -- O= O e e e e e e e

a-s === e23 na es es O= es ans EP CP == es es es hrs -.s u r4 o= re EP == P* Cs3 O*

4 es m:e P4 g> == == ===

P= eft N Cp e= r=. P= c= ed"* =cs O

-d *== s> e,e=. .m.

r 4 N. N. sw.rae.==..e.

see G .

paa N w P) P, eo Ps N ===p==

s:a O e

=%eB ef e* u

- ee O b 4 ===

%w a_k es bei.d e-es en tr1 tr3 trt tre en art tra tr1 e e e e ett a en 2 e e e e e me se es es es es es er es

O es == rw em >= P= P= P% P== r

P= Ch 4 e=

en.

D a hnJ == N em P9 re v4 G3 N N N ce v4 N a as =*==e C G.3 CBS. G.3 . G3. G3. G3 EI3 EIS.

f_% 4 1

  • E z Oa 4 En

-a 4

=J 4

N tr1 P4 P4 N P4 N NNN p

eas

^

)

% r] p. q3* gag

%# E OX ==

  • g te. -. C Go Z E". 4 S= O G3 P4O O O O NO N. O gN. O N. O Was fJ3 Z n4"J s a e4 et. N. N. Ne e w = == g .

Le ame $n ee 6

==.3,=J efs 2

eO 4 >= **= O 3M N e!b ==

eaL. 44 ta S F'*

O O W 2 u see.4 EP O O O O. Oe O

==

W 4

-e ee a=

W i;E 4 s-*

O.

. -. = . ==. . = . .. ==.O. . .

te.# O M N M p= bad as b3 Led 2 O'

W

==

gia cO N c4 O N .cB O OGo OCE3O(I3 O OOG3Oesp as Pam W Om F== N P=

NP==eNf==4 9"(Eae *r9 4 F4 P'un er P'm.

, > mn a ame ao em eo == (4 rO e=G P'1 J kJG8 be.s Q efe aus

.E n

as ele O

EE3 =O O P8's a3 P9 O O O g C O O O OO O O O O O. O. O. O. O. O. O. O. O. O.

OS a== t==.

G.B O nie 4 O. ==. = EP. =sa O. O. -e. edB. eo O O O P's tr1 O Pa===en N . N P==

O O 4 =dB 4 es u

O "b O CO OO OO OOO OO OO O er ur eum es* =n;s N N

==

=== *N 4">

N NN == ==

P==

s-J esp ese

. CE3 N.

e =O =a3 =O =a3 O* O'== **

tr1 P'=

naJ === *dB G3 G3 G3 433P40 es* r==

c;3 w

one P4 P%

man mO E=e

  • '=

==e5 e3m e

X *

.= O.== X M em m em O a N we et ==

nE >=

j

,.em 1 g

e-.

or 3 =

- w-

.E

- E==

D 6ee -

Cs as e

se

(.(,- 4.43

==

E*.

4.,.a a= == 6a4,a JC 4J2 naJE M"> s'AIS O

N ==.=

% Wd O 4# 2 I'O'$

>= == Pm CD O* O Z tsa air.I " u 4.E3 == ==*

43 at a=. O E = C ese N 98'e er en ,G

"" ==

Ea K == tais X J ha === ==

end a== tad 6I eZ 4 C3* X nas s== 2 T ei. 7 w had >= Z 3; ag Z 6d 4 Q. E (D em ta. W >===u3 bad e

  • '==

E" 4 2 DA

. eg g e-o = q see Lao ed E ==* O 4

en== G s.,m.e a *3 s.,mam 3e 4s3O Ds.ee

  1. m'* 4;E 4 d

-h4. $

e to- un' @m e

e O

=%

I

  • .m PW<* Wp- == O O tti9% O >= C e= gr1 Pd er o P4 sm p-9 ** G3 O e3
  • .= Oe3 er up was P=

s N P=

ens P'e e o P=e tsie G#9o Wf4 e #8'1e P4e

@ P4 h4 h4 N OO f4 $"40 We W W ene ano me aus eum =se em === ==e me g;p 4 p'9 ed'* M tr5 tri tr1 98m*

am P1 ene FA me P"e on ese amma emus em a-o em 9 9 9 9 9 9 9 9 9 9 e e es es w3esp=e es & Ga e .;Gae l; ene e P==asp=e Cr* rwo P=

sure e e W h4 b @4 OOWe e

WN e's Pet er er ef1 tf't tf5 ef5 ar9 =43 ad3 a== es es an es es es ser ce esa es us* W O CBS &#3 G3 =ra u = *

  • t -e "d pe et d e'9 ear O c #4 e-r== r e eq et

=== m.er e Go eBS We We em us e- ea e e e.ea. os.*ES M eQ 74 W Ep8 e=e O O m

@PPO

, e e me C. u == em me 3 $

a=8 I

e=

f

==

9 G $$ % % 0 8 e Gd as Gd es e-s es

=d3 43J 47= 4 de d'=>

u es= p9 e4 r== e=.se= t% cr.

ar 4 Ge 03 peu ert tri =sa ed>CDms= G3cmE23 cp === osa p% O r

ee a== une ese em e

s. # **=

e==O. em. e e e tO =Ese 5 e4 ere hN e

W N Ne b b NbW

== .e.

ane &

qur be

.s== 89 O b 4 9e=

= w e

ned e= 4f1 GO. .',S O, W% tr,3 GO, tf,D

, e GO. GO.

489 e e.o Op es 48 es p G8 oOOp O es O Ga O G8 4#3 >= S C O O O

= Z t.a .I.m m N NN N to tw t4 N N N P4 Pd P4 P4 t'*8 P4 F4 f*4 P4 P4 J O ene C e e e e e o e e e e 4 E a=* 4 =O =O =da adB X wJ =G edB =O =a3 =S =43 f 4 Ett eas 6

    • y

~ e-.

d w .- C@ me aume ese amo se one ene ene ese em

$ E D tao

  • 4 Gw Oe Oe que O e Oe O a Oe eO eOOe Oe SIdo gin eMW ggue se agg Ge AJ (E e 4

ned e8 egg 4-o ad G99 Se

> 9 eft e== emi E e4 4 ti== *===

N O

e4 E S e =-e ta. 4 %s bed >*

@ O OO O O O Oe O Oe e-m 4 s-ter. LJ euk ene um 4 >= Gn"a e eera telee tel etO tri e ts) e w"a tra e tr3

== e a.no eM eK E me == bad me bed G=J e

==

a eOO OO O O OO OOO OO OO O OO *W" O eis N P4 N ad3 as CD Ch3 O G3 *W*

ef1 On 8% p== P4 p=N pm 4 Ch3 f==

N Pa, er N. (p c4 y=1 3

seen me ew amo em ** N =s3 96 ene*S te ,& t.A tad eft &

G.

=

E,,

se ens 9'm M O e= Oe Qe e

O GPe Y M Y O O & Q OO O O O O O OO. Oe O Oe O O me.

q O. =a)e Oe O try 4>e e e em,p e een t.a O

O e OOO e O o OO e O. O. O.

g. O OO OO p1 em e

O p==

art e== tr3 N ed sE3 e =O m o et O O O O v O O er sa gar m'a N N O == O

-e O O N ed O -= N .er43 ee3 4 CP= CP= trS N e4 e4 c4 r== G3 .43

=O =c ma e = =* eft sue ad3 3 MM CE3 re O es> e=*

  • me me P"'a=

ene f*4 P9

=

one ,

mmE elEe S ==

=== Cum E j e E_

e e- c E~

i I

e um -e e4 - 4 l C5 E eg >=

ene h 4 e-m W

  • =* E GE J I

4 ma.e a== 4 ** i Jg e== =>

a.D E d J G.J E sis  %&8 eo ea .o= em a== ba.a Q Z t 4. ndI O tame h End E ED 6A G E >= === 33 Om ** O E G#3 saJ ** Ea eJ3 6.J 4 E C ema N P's ap try .g Pi. '=*

6

=se ==p a=* Q a:3 E w t.aJ Z , J EJ ee w 2 ned ===C38 had >= E W e ta.a s=e Z 14J E 4me- E#

E b)4 *:&==e haJ e E ta C

t== tfl '=* 4J had E U3 4D eg 3.J E 4 ese a== E h.

4 4 m

==e2teaem t.aJC3 =s med E q#3 a:3 geB am 4## ==d ** eK O

eE had

==e e'd

, -3 e 1

. s -- -- _*_ .u_ _._ _, _t _ _ --t . - _ , _ ,

-g M " wr - . , _ _ _ , _

1  ! ,!

I V

9 2 1 6 6 8 25 7 0 8 i2 0 9 0 1 3 5 E 0 7 6 1 7 2 0 8 0 C 6

/

5 1 1 1 02 5 4 8

g 7

7 59 6 9 2 M. 84 9 6 8 8 8 8 9 9 9 9 9 o

l 8- 9 9 9 9 0 01 010 1 0 1

e -e -e- e- e - - - - -

1 D

70 5 5 21 t452e0e5e2el.e!.

1 2 1 3 1 2 1 6 2 3 3 4 4 555 55 6 6e e e e t e e e e e 0 3 4 8 0 2 B 8 6 0 c

i e 0 8 488 4 1 607 07 2 2 03 3 1 08 (s 1 1 4 1 f 1 1 6 2 4 6- 7-8 8 - 8 8 8 9 9 l

a t i e e e e e -e -e -e -e- e 6 1 B l 6 4 2 7 ? ?

c 9 3 5 t 6 4 9 1 5 8 9 6 8 1 4 6 6 7 1 9 A e 8 9 1 7 9 8 6 9 i s l i 27 51 7 1 9 2 0 2 8 8 Kno

/ i 1 28 8 4 3 2 1 3 3 l tca l

I o r A f

/ i n

A

(

S R

E 2 - 33 3 2- - -

I S M A 1

A o e e e e e e e 7e2 e5 e Y U N L I I A S L

/

A n 6 9 9 7 6 1 21 53 4 4 2 7 7 4 3 2 5 3 02 8 8 5 4 1 N E A AE S 1 4 57 4 2 1 1 9 1 l U T R NO A F H

EN E A n tg l

a 1 4 57 4 3 0 92 800 03 4

1 1

9 6

3 1

0 E I

. 833 532 1 1 6 1 L S c Y - e 1 L s l

/ l 6 A I 2 0 E N N e 8 1 F A A E 1 00 00 0 0 0 0 0 C H c 4 6 95 50 4 53 0 T A 0

1 K E

I

=

C R A T 4 1 1 2 1 1 6 53 5 L 8 R N I E I C E N 0

t l

a 0 0 0 0 0000 00 00 00 00 00 00 t 2 2 2 6 8 8 8 0 8 4

_ N A I t 7 5 9 7 2 2 2 6 6 4 27 4 7 7 7 1 1 1 1 21963 126 3 L c E e DI sI M

U S

=

t 0 0 0 0 0 0 0 0 0 0 6 6 8 6 0 3 8 30 09 n 0 0 0 0 0 0 0 0 0 0 0 F1 0 1 0 9 6 07 5 6 5

i t i c 00 00 0 0 0 0 0 0 9 A 5 101 7 0 0 5 2261 1 A e s

0 0 0 0 0 0 0 0 0 0 2 0 2 14 64 646 46 69 29 2 2 2 2 7 7 T I 5 L

E D

I 7 81 6 E 8 2 8 102 13 7 2 4 1

lgl) te/eg N

I 0

1 N l

N 1 I 0

1 l

M I AR11T 0 2

E EI A A ( MN R L N ) U[ I A 6 M A tr N V I l C I l ) E 0u E R E S ( M t C R Va L E D E E 6( E ( A f N T i 1 23 4 5 & 7 8 9 0 N D R ( I O N n 1 I E E NL C l I i E T H T E C AA g H e H L E I H M A Hl E l C

,F A

M S G M A N I I E E D I E N I S S L N V S LI R A UMCl L Ai N S

o C

A E

L A

E L

U V v v s

v [ d .

,' l

I I

1 f

e e ene,

  • ese e-ee l

l

=%

f 9

=D age @ @ 989 M I'% 8** @ I"4 O4 @ N CEB I'WPe P*

O= ed == N 04 C 4P P= =CD sh. =EP 984 t#"e V4 Pa= == P4 O W'*= 8 a=se N ess P* =O=

e e o gage epeg Do EPe ein me y ge ghg g e#3e g aese

m e.= == == -e g3 ==o ese me we me SM one Pd == Pd P4 me == P4 == P4 =

== e.m.we ee t 9 9 9 9 9

m 9

es 9

48 et et es A8==eSp Geese 0

G8F4

.es e3 pn (Ea U3 e e f==

e Oe e CDe o e e e Wb M NO NO 988 M =O =O b

Pa9 er es* W'i eri tra e 4f9

==.

gd es as es es es es as as .essr3 -es 7,,-

to es* us"GB O C E33 t4 c4 en == me gun es O S3 (33 om O.O em Pg3 o O Es e es9o e

e f.t mer. gE.p e e e eng eu. @ emuB ese e6 ene eO P4 @

SP= O= pm CP O O W EP Wa W* e # # # e -e ===

==

S GA eG8 Se 40 G8 G8 Sp e

em.GB O es e da 9 ese an. == N ee es* sr= p'p. es 9== re M emP 4,# Pe> Pm t Eb t4 es*

es* == O

&= r= ts*'s CB;e CP* CEP EF* =4 ra O* em sp7 P%f== ed 8'm N ale es es"e

>= eft

-mJ **= W. e== O M e W eEP=e P*a e Oe e e gg a==, .se e e M O N N f4 NN

    • eh8
  • == bd amm 09 O h 6 ===

=== *mur A

=

, . , , , O.

g Gf GA GS 49 Of 68 Of G8 G8

_ O =O Of tri ae yg game er 6 r== 6 P4 M Oe=*P9Fem WP"atfl f== esa M g ===. =aB tfB OM =O O e8*Do g p,e C O 9= ef"3 *O ese ed1 e

@e g e e e e e o @ "'*

S3 a

Pm N O b N b I4 Q@

x _. - - -a -+

3 O -- .=. P-e e e.- .-

5'*m e e

e .= .

O W'3 ec4=e mEP . EIf3e4 e o P4 e =>e e .a

==e me F4

=G O*

e E

had == %0 und (!E 9 P O

==

em

  • ==

3

=O t== GB O N G a="

ed tis-S e.e taa e= O er1 er >9 P=

O O O we = e4 OereO EP= O e== 4

  • EP* 7== P3 e
  • e NN*
  • ese 4*t === h3 E
  • a==

O EJ o e em PD ed' ese aK C e= E4 tied &

89 MM ed e-=

98 had e

2.,

e S ce S. r edS E S. S. S S Pmm e/1 O= Po eN 04 04 O.e3 Sme g33E.- esp d** #4m er Pum f== Pm O* P4 P'9 ese 4

==

ene one == a=s "e N =O 98'1 *O s=,= b8

. e Go t.a.A GM eten E.

u as em#

=a a C O O O O O O O O ~

a Om- - O m. e M O O O

O .O e a.*

ess ==

O O O

  • O* EC O OO OO O O
  • e O Oe Oe O e e *

=

e Oe dtg h* N*

e O = O cn* ==

  • e e a

-D CC CO O O,n3 O O e,a. e

== ee ss 4 WO a.e 6 es c N e4

- == P==e= cC N f'4 0e P.d3==me >= e4

==>

N O ed er es* uu*

y== ED === =G g =Ges* *G CF* S* l#9 P=n Pm ,,J ema .e 33 g G3 (p ceN esp a-e ===

esaJ P=>

d2 ene P4 P'S M

dBAD@ e=B G ===

== e e

K <=m *e w Q Q N w eg one E CE >=

===e'* u >= 4

  • E M .mm8 4

ew s,ma >= De 3 @

4

@ nN 4 J LJ E eM bed e3 E % WenQ: t.e4=>O Q 2 ne.d

= es n== a=m e tA had E sm SAS haJ - he EJl3 64 4 ha 2 e X C u

e N P9 ump gr3 eg Pen g3 Om === O

e== Q ==== =

eE w ==h====4.aJ eind 6ad L# c1 2 J hp a==CP E

bad e= T *E===baJ e E amil ed bad o=

E LS ZE 1 y"C e.a e- gn w u 4

%,ae -

e M E a.a e=m a_J 6,s; eK a=e E e=#

En.

ex Gem se,e e,sn (3 p saa m one == ag O4 tad s

G#1 53 ed 3 2 4/s es

) )

' '$ ) I '

e

, _ . . - . , _ _ . - , . . - . _______m_ _ _._ - _ - _ _ _ _, , - - . _ _ _ _ _

_ . - _ , c- . .- - - - - - --

e

. e e.,

e

, {

\

e 9 *WP EE3 O trl Gm P.

-== W1 O.4 St O P.y 34 e,r er as= P= ea t G G 9** P4

  • % er eW ed'4 =f9 -O e-s p== gg er re p=.

g) gr3 g) pmems (Pm M try e3 fue mie N ame me ame a=

N f e ==. P4 eens we ene em ano ==

~ me p*'o t Pd P4 ee me M Pe ed M sua en ese -= == ansa ame es ese am e e e o e o e o e e

e to es es es es es the es e te 13 3 e f==o ere er Pm e @

e CWmo e Ce EP e @

== W1 94 trD == M N P4 === ere pm aan my tre gs gas gg grg egs .o et e== Ga ens es tes Se as ses m ela

.es e4 e" 64 C 9 a sup O C ft:a c3eq #** amm Samp as C 03 er @'s Og Pd. p e pge g pe'e s g

===ese ggs ere g3e mee e er ene wee me == .c eg er e

=

amo ==e S3 W* Om ff= O* O= O p* O O e e e e e e e-o e == ==

.m.

en en er 80 e en e en e e E

me eso === frs e's == P.s =O OmPm asCr% er es Idi Pd EJ *C P3 Om FM Om Q) tai eum P== e;s) De GJ er G Pa=

4 Eas *W" O= t*1 EP= O e- eA re era =O t=* G3 ed7 Pa= == P4 O ed *'m epi er e P'o* o o e We tr3 Pm == tr3e =O e

W em G W e e as"a P1 er fri r== ese

=== -se

== en*

  • =* 4J mm de J O ==

4 =e=

'm> me e.

E mE5 ., n, ., .. .. .. n. . .

er === af ==

! --- G & ef &

.ef O == Om erep wy PM

%#3 W" 4 esa ed EP" M P

>= M (J.s === GB N -dp est f==

N P'=

C3 a==

S 4 S W*

e f*4 e We f*'et W*e $*1 e Ne o

=m* ==s 17 1 e o

>= P9 -e Pe PS er ee =O EJB 9= g suo M e's ed 8'm O WD

>9 ee 4 emmee P9 eOPmN tee S O er @ .g sy .mo P 6 5==e o e e e o O e Oe er O e 4.J ES me - er trB m == me N re W=

6 E .

bad -* %D e ed GJE

> E &

=== en W

> ===.

=4 P4 G @

4 can O eO O S O OP= Q, === O La

%d nJ S,ad we n

6 O

ree as1 O e9e O e= me O == o ,3 g, M e e e WS N e

= e== ps's e ce ce er er3 e me @m er et 4 had and S eE E em

smE led imm8 e

.'E 6

S.

cN r NNS rua Is1 epm P=

serS.

-C Pan Pan S. PaS.

N N

. e me amm ene ese P4 =O me S S.N. S S. S

=ad G.'s *8*

W* e4 PT d emms en - P1 ee J

W .ee e.m f

J e

Wue 9

N "O E *O @ MO=W ama P** O O @*

d>= ==

S OOO OO O O OO OOOOO OO OO O es'S

= O ** 4.e e O W1 O*

trl $- Pa* ts5 N, N N. $ -

6

- O N N e.

. N ee c.

e 64 SN.

e,e eA 3.$$$$SeeeS$o$o.

em e === @ -a3 N . e

-O e

-O N P EP* nP= ef4==

.S8

=== == tad ==* =e3 W S S M Cf4=== en" em m

ene em N P"9 L

-G

.sm mm

@ eue S ***

F N

- 55 eGD eme 8E8 Sullh C ene M name F

me M - 4

\

I 8 4J J I

4 - K K M l tad e-- me X ==

t=3 6 -I mM > the

- MJ === mm ===

6 Ce X tad a 4s.d mEm l GA *= E ti. end. 2 (*3

=F a

>=- a =

had

  • b.id 4 ha bia

= . es* = - ce P, er v, ca. . .- == O == )

m est

- LG- -

e

.s - ha.f ** ===

E 4

I an

= - wmX 4 *Z W==*4ALaJ c:

e E W d 6.ad ik =- W a-g 3: 3W W -

j

.n a d

-o w ::,'i e .=a 3 uma - == W

-2 , ~ a i k

D .

t 4 7 62 0 B 84 1 5 6 ! 1 6 7 53 031 9 0

/ 83 3 6 21 !0 25 02 ?? 15 8 2 2 3 f

7 4 09 6 28085 g

o 7 O 9 8 8 9 9 9 9 9 l

8T 0 T- -90 o0 0- 0 1 1 1 e e e! - e3 ee - le e-1

- - 1 -

? 4 e e 8 8 4 7 059 59

?. 2 1 8 1 2 1 1 9 1 26

)

3e 4e 4 5 e e 8e 5 e55e 5e 6 e6 e60 c 0 0 3 4 0 8 2 E i es 84 81 6 7 7 0 31 8 8 4 0 0 2 2  ! 0 I

1 1 4 l 1 l 1 6 2 4 67 -8B -B e

-BS B 9 -

)

n e 8

- e 8 e

- e 6 0 9 e 4 e 2 e9 e0 e9 I )

c 2 9 5 3 4 3 67 8 2 4 6 2 8 6 9 6 6 1 3 A e T s 6 7 6 95 7 6 9 9 5726 31 24 43 4 L i E no D i 1 27 56 3 1 2 4 4

/

l t l c i a o r A i

/ t n

AI 23333

- - - 32 22 5

R E

o 4e e e e e -e -e -e -e -e 2

1 2 1 6 9 2 1 3 5 150 6 76 67 4 l I S MA A 7 6 84 1 l /

Y Ul L I i n 280 0 4 A Sl A 1 4 4 5 52 1 2 1 1 O

NEA ACS T R 4 5 4 0 5 N O n lg 24 4 5 5 3 1 MF I

A el 1 4 4 6000.8 7 1 C 6 A ll

  • 9133 4 2 1 1 7 1

'E i c L SY - e 1 L s 1 1

1 0 6 Ai 2 D l 0 0 0 R Nll F AA s E l 0 0 0 0 0 0 0 87 C

0 1

il C

A I

t T

E A

A k

i 57 4 1 171 8 02 0.5.91 1 3 5 E B R N L i E l C E NO C

n 0000 00 00 00 0 0 00 00 000 0 i

t 27 25 2 9 6 7 82 8 2 8 2 0 6 8 8 4 4

, A T t 2 1 41171 71 72 1693126 3 L c E e D sI l -

i f

u S

=

t 2

n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

s 580 16 03 09 6 8 307 0 0 5 69 i ) 9 l

f t

c 00 0 0 0 0 0 0 000 0 00 00 00 0 0 A 501 71 05 0 22 6 51 A e 2 0 2 4 6 B4 6 84 4 1 2 2 1

T s 7 8 1 6 86 029 4197 35 2 22 7 7 L I E 1 6 B D 1 2 3 I

) I gI In/ge N l 0 l

) 1 i N 1 1 1 D A l 0 2M 1 R l l

C ETM N AR L O

l I A A I M l UE I V 6 n A L C N R E

D 1 [ ) l ) E O VHl0 C i E N S ( M t 0 l

[ N T l l 2 3 4 5 6 7 8 9 0 I E C 6 0 A I O N a 1 D R I E 1 1 E AN A L C tg I l C

N ET H I L E 1 H TCA H l E a l C H A E

F nA N M G6 UL F R AC il NS o A E

L A I E 1 O U E N E

S D L N VS L I R A I

L

s,

, m

. ,. . j 2 s v,v *w ~

<a.4 e.

il,!lil

-. - - gn s .ena- - - -

.e W

  • l l

o'

(,  %

gf9 O f==

4

== O= eaf't N P4 *^ Om P'= r4

's sua er P** N em == ar Q O= +43 grp C r** =e3 art - - =O

    • = er P= M9 @ =O 3

tXe g-4 to e) Ome O*e O*o Ob O N O M Oo GO O""mo e e e

OM s"Ee O ein om mee me mis e-n == == ==

e 4ma IO M emB W. U"4 Eue We P4 P4 ene me 4 Se e

em ele 9 9 Gne eme M 0 f em a ele f S

9 G Ge & Go to esP=to to sere&

d3 p=.B ==s == ce erJ o 98'te e e e

.epo e N eesie e enge em W em f( em N

-O ~O e*% ev ** tr9 eten sau"9 Go er1 ao en es te

=

n.e @Se pa er 458 se Sb Q re433 r4 pe mW .one g e.3* o Q

>= es c St g et er 43elll>ese eO.Oe p== Pm O pet g o

e e e e

== eft e e o ese em W eue suo eue ese e4 7e W O

W O* O* O" a O* O* Cr* Om e e a e O.e ==

e e e

.e E esP=W cm

==

Gaerse=mte*toSaes -c&N es ep I

es a== P. *P P4 W e4 G3 edt O* er tid P= E3'* f== ff= (s= M d W O tre auP N t==

t#1 ==m +4le o P= O W gg;s P4 em GA ==Ep **)

Pm o

J ** e

$ #4@ tr'3e b@ O=e h4 We Y N&a= W P'ee Oe N e e e

==. .

5 @

Sie M W 4mf amm. 8e O he me.

de *

  • m e tr3 es, er es, es* 9 0 8 es.5 M wM 9 8 9 9

un ed et er =O af es OW es O to to en me,s e 0 n-e e** O M e U3 pum 6 4 P% O GD M

n. 3  % e er ess C er Se ear N O*

e- E ONe e

@ oEp erw eer ce e tr5e e GBe P9*

d S

g,,)

Pl= T OT T N@ T @ m'E N

5. g y P=, s/5 er ess M er es* Om M

=O er o P'* C

  • O O* o 2 ES 6 w a== O. >t O e e e e e N e 3 Gr5
  • P9 P9 F'1 ** P'I 8'I P* 9" maie * .  %,6 ema U"*9 er

> 0

=

43 >=

4A

    • ==

N g O na gee S M **

6a4 > O O OO O O eO toO O*e tr1e tr1 M> P=

u 64

== e== eS ua we e e trle BW tAe me O s3 es a 4-= re e ese ame uma e em == PTe es*

ao to tad e MM end e==

We had 68 e

e 7

l 2 33333333$S r4 P4 Pte 4/4cgm es% N N gg anB e3 er

. - e e-6 f4 d'un em er P% ene7% eau>= eseEP= N me N em P9 een me M =O s ,J W e E

u, se ed e

O O O O O s O O O N W . m O O

== me == O e COe O Oe Oe Oe Oe eft. O.

e O

e

==

e em ee ==oOe O= =e3o Oe Oe te, 6 W O Pam trl N e

N P.O an e

=O

-O ano asso ga ao sa gO

.-- O ee O. .= eup OOup O O eeOes ,. gC Oa c3 N N

- -* cO > en G=

N NN == -e N.

Pa M == -e3 =O =O =O ElP" art P% Pao e,J w has == eaa M S ED GBP4Ce =* Pa= **

m

=

== N w9 sem sum

@W G *%

E e

E-

-g WAlm muW pHB f*4 ** 4 8"m e-. E E 8-=

8"" 4 om 4mmJ

=== E E p-= *J a and 6 sie 2 es= N

==0 M eag W 40

-y E en om. .== ta 4.s O 6@

mas W bed O

2".

&#3 E ee

  • ee 4D Le.J 4.J 4 ** t==4 m * *""

E E e* N 8"'T *F GM *O P' 53 On **O """

ha.s gh dE a=- ==* *=* O == =

63 ma= 2 4

eos had E CP o== T >e W ha rE - saa e E $

taJ s w" x m: es

  • 3 to- 4z.J =e
  • ED ""* EJ **8
e. 2 D sc m 4 E e a.4 gg 4 **

4 ed

(E.a O .-ll: a** E

wo 0 mad and tel e te,a6e m 2e 4#3 em8 "" *E 4

  • I*

l

.. , e

. e . +e. I e*

-o ,

T N I I

i

  • ? ad3 P e P4

.e me M F4 P=

te me O QS V' P'* ** ts Pi ae;p O ay pe'= tw 4 pm or # . Nc me glh

% P== 8 D O

& F== ( e *@ en.3 e tid e We 4f'e 8d'o P"e* e e N o

m C c-4 == == N g.

e Oe ame e=.=eem e == ewe == === == == ==

~

989 P4 P4 P4 we D P4 P4 ***

t 'm uso e-es,e me me ese uno wee e e es e e e e o en es >= eseeasP4etggas es er er CP* ese Go ='* W ef *="e o

== P*e m art re F4 e me e4 ero P==e e e o e me

-O em seP er trl tf4

@ tr9 er tri ep e#9as me *S.e e

eum es p*~aas es esaes G3 O S3 OJ Elb3

-n3 O ene es e,A

  • 6" - 09 er -- O eS Id Pe Fe ** O oe P'=e r==e ce r* e me

.e.s.e a3 e. a3 e me 43 see er a-o me er === == em

e. p* Ira W* CP* @=

e O EF" e == OO ==

e e

  • g e

,s=

w w wr =s9 e

an> eZ3 e a w CP= w w4.s.eefa==

a **

G e Po .*D As G3 G8 e

u gys pas e.438'= trl =#3 P== rp elKa o= f a8'** 4 g es t,"a es"1 t Os g(1 er f*4 PM CW Pas""

  • dl33 eft gr't gr Pa= f*4 gue er O ==* * * *

,,,,J  %

g Me e -sae e e #==. = o

== ar c4 Y,

e O

.se 40 PS M N == to r%

e== .i s sJ

=='m m 85 O to 4 **= =e psg e es,, ar,t w er. e.r e.r e,ay . P9 s . e e

&#3e m.m - mO 4eOese3~ & se 49 e1es Yues gy. an" en enP4 Oes v4 es aan NgiOm es en ts"a N >3 trea- 4

>= m8 4D s=

as a e c4 c4 e e e -e rra c4 e-e . ==.

e

.ee er as ame me W e

- 989 ee N c4 p w tts =e er en

  • = g S T

==

O 43 er cui @= me P*se Ch3 F"==e er er C e Oe emM

/ gae it W== m re. eem 4./9e e e N P'* ** P4 === **

=O s's 989 P"'

e.3 t,3 a 3 ba.JmDed t/9

  • uW e eft E O

==e G

=O >= N"ma. me O O O O O O O ea.

he 4 S t.s S.nJ e

>- 4 e-= O

===e tO C m Pe o re e tr9 e qs O 3 esa e

= toe M e

= go ee W *e 62 nX ess e esee me ese M O kJ s *Z >

=se 6ad m

  • t eh a== hs4 3

J se J end 4.4 e

O O O O O O e

m ene O O O O Q>

=.*b,> C are CE3 GB G3 O G3 er OQCO r4 W r4 ==O d3 e13 ar es Pt trB dp= *= rw (4 r4m N O" c4 P9 eg r4 fu.m em er P.an eo e=e de s 94 =r3 e's me P's og

' f g esa, g g gwe La.f ES aft -

w5

.,3 40 ed GB O OOO TC OOO asa Oe o W O v e tfl G3 -G O P"9 O=

G3 sn'9 O O cr= @= e==

ao m OO O o O eO, Ce OOe O- o OO Oe Oe

=

man

== Qe

=

o =d3e Oe Oo ine e ed O O OO O O cO

^6 ONOes*

=O ."r> c.d3 N N o Oe tf1 P4 P4G3 m n

In O G3 4 esare O C.

.s er e iP* ef1

=* Pa.

== OO c4 gw m- N Fue G3 === =Ce =O ar'9 =CD O* ==s =*

N r4 N =d3 43 bad J *** ** =d3 ED 433 GB CDP4 o er 8'am

** e= sue f*4 W%

i em up em a==

WH G **=

E 5._

s== c

~=

3 P4 == at *=e C3 E E 8'"

a=* W %AJ EMCEI D" ==

mJ eg $ e.aJ

=i *- 6

D 8'"8 X .J WE M 'A' j 1.E3 e==C e s a ** eum a t Ca O 2 hsJ ned G3 5* O E

J t

\ S". g. LaE e .a 4 Dr kJQ e- W >= ===

E C me N P9 er tM 4 F"* ** ""*

i t.i.l ea s == W an, sd.e =w e- O ==* == E e gg e med haJ X e== 6dJ W 4Z 4 A t=J *=

O' j ha.,J gasT we Z E e1 3 =* had n.a. O LA 3 G ** Xl L

G t*d e.h.4 3; 43 4.D Lee e.Er sik m'e* M "'d m had C ==

4 ez be,e P === tes Q 23 had M "* O -J 4#3 Go end 3 > Lal ese *"* M 4

/

h

.w

'o V - =_

tri N (El O =IP eer tr9 O* (p.

..e a.3 era sua ser 8"s>a e tw *o -da t&e ao r.e

(> t> ta

  • P= p*9

% ed"* P** f** N ***

er Q O er air gr5 m 98't eso Nf3 d*.P P'= t'=n P% e o e tr4e ere O*e EPe e o e m e-o ese Gun O W* W* O= 9" 9" W" W* =* === ==

OO O O O t' e 9'e ese==N

=== es= O.= O. e-n ==

e e e ae e e e o e e m et es === es es es te es to to es 0+

EPe O=e o >"e*WD o Ge Oe tr1e P 'se e N $8'% eB e-o eEm N h h8) $=b N M er aga tri erg eri erg tri .a .e es es to es es es as es es es p=*

==.=9 4

Go

@ PM et G3 O GD ELs Ga O G1 se* ==8 C# O 54 f's F* =

ar.=eO O 4R W elP EEt =O F% P= O f** GB

=== e e e e e e e e e W S'. W eBM .EW WG W eO NW P"*

v MWW W W W EP OO 4 e a e e a e == em an=

es G8 e e E GO 40 GO 49 .es .es -m e-o ese es G.

e.e en eo f9" S'.um W n

4.8 >** 98"4 P8't * ==trTe=ee e e d te & P= se o mc umc .o d'= a e P= om

>= en *** eri e , =-o -o -o %s e*1 4

-J N e= =dB e e GBe eMe <de e p*4e e

"g'== e e NM N e-o W em em M eg W e e o 44mm aem M d.8

== 4#

a= 8e e

.J_

een P8's 989 M PD >8'h 889 PD 'PS M89 D89 4M > e t #

  • e e e e # e

=== g O ef G8 ep 48 ef 48 GD ed GA ef 4#T Em N N r4 NN N NN

== F4 a== Ne === e-o eo ese === eo ese 4

am* :ll3 ===

=S *O me =e =O =G me oed a== m E e e eg =Oe edBe =Oe e e e e amo eo amo e-. ese een amo == ese em.e GM nde s led one ge3 mio

>=

5-k e en e.

s e-= .-. == === == == .-e === ==

\e L9 W ==

mE 4 W == G G a eO e O e O @ e e O e O e O Oe e

-e -. ==e . we em e= ==

et E E ==

w 4J Jd=r=B nes e G w e em uo *% M

=O N O na S **

te. u n S.a.a >=

g '"

02- S. S. Se S. S. S e S. E. S. S.

m e M X eo

  • Lad me had Ga

- fame 3S33383$S8 N erSN g>N P==

. m.

N.

N N -da e as" n Pm P1 eg N Pun er == r=. P.a.e== Ntr=

. N.e em p.= .s ans #d'9 =S

.J

  • .n a.

Eto e.#

W 8 e6 O P* 8 >** OO Om M O O O O OO OO O Q O N O. O Oo Q o O. e Oe O O Oe F'* e== e em =e O PD e trTe twe e e

e O. ==.O. e e a

em ame w

e qO OO O O 9O eo8 e e O

w> -e OMooers N c.o w- r4 c4 == em = - OON oeoO N er er ee* -er -O N N N 04 N =e me =

  • Pue a-GB == =e3 ac =G -O EP* (P tr1 4

e.=J adB St G3 GB EDN Cer== ='*

I had F==

l e

=

em N P9 a== m m

M =

- 5=

== a:3 N ===g 4s =

45.m m g ie W b.8 Da* 4

$ == M E 6 d

m e== t a.s **

N me Y Y Y d Y S

== t.a a enn aFhad E 2DO Z hed saK tad Gr9 ame E b 6ed bJ e.D 4L.J w 4 >== GheEmD a O

e-*

E C em me N pa's gar erg .g pin GB gm == O 3

=

dB E ==* w hae 3 J 4.J e.= == ==

haJ e= 2 >= 4* 4 4 Cf8 2

4 hk >* Z ba.d 464 e E L,7 E s.D as 2# En., e$ ZLJ===

> E.n w LJ e

G 4.

s e5. 2 == sar es ===

W ==* O X se.d e

e 4A e .add mW C3

  • E === t 3 t n.e.d e 3= en .es d == M 4 d
  • )

e

, -. - - . , . . . . - - -_ - . ._. . -__,. _ _--.y_-_._, , , , - , , , , . . . , . . . _ . . . mm,,.,e.., , . e-.,,. . , . . .._.__%_-7, , - ,v. . . - -- -----.----g-

f i

D 21 2 2 11 4 1 l816 1 9 12 555 1

/ 51 5 4 89 29 t7 27 27 74 94 5 5 B

g o

2222 1 1 1 22 1 1 24 1 1 41 41 1 -

l 33 1 l1l 11- li li 1555 1 - 1 5 eee e e -e -9.!.e -e2.-e B. e B.

2117 n. 1 21 719 1 3 1 2 le e t e4 e55555 eeee 6 e6 e

) i 4 4 80 0 0 S 2 9 2 8 6 0 i e c

s

%B 94 81 6 7 7 03 1 8 0 I

1 1 4 1 1 1 1 6 24 9- -9 1000 1 1 01 0 1 ll Il I l l

a le 4 e e- - e 9-e 9-e 9-e -e -e -e t ) t 1 4 29 7 8 2 2 7 1577 77 77 7755 2 4 5 5 5 3 c

A es I 1 9 7 2 1 6 03 4 L /

Mno l i 6 2 855554 21 l t

( c l a Ai o r

/ t A

n I

R 5555555555 S

E I

e e e 0ee0 e0 e e -e I

SI M Y L A

A

/

o n

0 99 9

0W9 99 9 0 1 9 9 909 09 0 999999 L A l A A BE N0 l 4 4 4 4 4 4 4 4 4 4 A [ l l

l MRA i l l

i F H

i E

s g A l e 00 2222222 0 0 04 00 222 00 G I EN E I E R c .

L SY -B

  • e I L 5 N 1 O MA N N F A A T

2 e

c 6 I E T 0 0 1 0 10 10 30 1001 01 01 H T A 1 1 K

I K I

  • ET R E l R N L 1 E 1 C E NO C

n 0 0 200 200000 06 00 080000 00 06 0

)

t 2 7 2159 4 76 72 7 28 72 9 6 8 1 4 4

s A T t 1 1 1 1 21 6121 6

~ L c E e B sI t

n S

u

=

t 6

n 0 0 0 2 0 0 7

0 0 1 86 03 09 6 8 01 00 100 0 i )

t 0. H. 000 0 0 0M.04 00 00 00 M.

00 0 3

1 B 9 c 6 0 0 0 0 0 0 50352 1 0 G0 2 0 6 5 A e I s( MO2M2 4 4 4 4 6 2 2 222 0 4

0 4 L 7 B I 1 6 6 9 86 8 6 8 6 209 41 97 15 M

(

1 23 l l gl ei

( g i le l

0 l 1 N N 1 l 1 0 2 I A l 0 M R l l

l [ EI A L A

( M N R A I N l UE T V S a I C )M lr l A L t N E O h E R E

K N

S (

E [

(

6 LC (

AR VI 0[ NCO T l N t a I 23 4 5& 7 8 9 0 1 I C R 1 E N L C l g I H E

E T HI EM CA AH A1 E o L E T H N E M G6 l l

F C 1 S t E E TA A l E EN l 0l UE S i L N V SL 1 E E A 1 4N I o A

E L

L

.N

. V

)

q .U ' ' ' L

' ' ' S' s

f'\

t

\ - U

! v l v 1 v V ,

IKFMI LEEllANT ANALYSl$

ANAL 1 Sill 6 FOR STRGililUM LEKHANT*-KRINERAlllEDliATER

( 907 SAMFLE DESIGNATIDel

DIAMETER ICnl 5.08 LENGTH ICMI 10.16 NEl6Hi 16rl 203.00 205.93 8= Ice 2/sec V0ttmE ICC)

SURFACE AGEA ([M21 202.68 .

y LE K HANI VOLUME Ill 2.01 INillAL CONCENIRAll0li lagt 4466.00 RINSE CQ KENTRATION leg /II .50 j y Ao legl 4464.99 AnlAo IAn/noill/MLIAtal i D log 810:

IBELI A tin t=SultlHLIA tin EliliKTED An l g LEACH INTERVAL Isect Isect C0llCENTRAllDit legl Hraction/seci Isect i ini

.50 1.01 2.269e-4 3.15106e-8 1.800el 5.8e-12 11.2369 I 72M.00 .7200

.50 1.01 2.269e-4 1.26042e-O l.481e4 7.6e-12 11.1167 2 10000.00 25200 -

1 3.70713e-1 4.849e4 2.2e-12 11.6658 19200 .50 1.01 2.269e-4 l 3 61200.00 147600 .50 1.01 2.269e-4 2.62568e-9 1.10Be5 2.5e-12 11.6461 4 86400.00 l q 172000 .50 1.01 2.269e-4 2.62580e-9 l.600e5 3.6e-12 11.4465 5 86400.00 172900 .50 1.01 2.269e-4 2.62566e-9 f.728e5 1.9e-12 11.4130 6 86400.00 l

172800 .50 1.01 2.269e-4 2.62580e-1 1.729e5 1.9e-12 11.4130 I -

7 86400.00 g,

1296000 .50 1.01 2.269e-4 1.6756e-10 6.038e5 6.9e-14 13.1619 1 8 1209600.00 1628800 .50 1.01 2.269e-4 9.3762e-ll 2.316e6 6.6e-1413.1%2 j 9 2419200.00 6134400 .50 1.01 2.269e-4 6.1067e-Il 4.80de6 5.Be-14 13.2362 j 10 3715200.00 4

S LE K H INDEI 11.95 .!

l j .

_. _ _ __ _ __ _m _ . . _ . . _ _ _ _ . _ _. ,

C O o d

i s

6 .

s l

100FR61 LE K HANI ANALYSIS

~ ANALYSING FOR CESitNI LEENANT -KulNERAlllE8 NATER BDIO SAMPLE DESIGNATION ,

5.08 tlAMETER ICM) 10.16

  • i LENGTH (CM)

WEIGHT (6fl 203.00 *

! _ B= Ice 21sec 205.93

V0ttmE .(CCI SukFACE AREA (CR21 202.68 l ,

2.03 .

i .

LEACHANI VOLUME til INITIAL CONCENTRATION (egl 629.30 plNSE CONCENTRA110N tagill .5A J

Ao Ing) 628.29 IAn/Ael(1/KLIA Inl i D log B/Di

i. EXTRACIES An AntAo INLTA tin t=SURIMLIA tin (sect j LEACH INTERVAL

[0NCENTRAll0N tegl tiraction/sec)

Isec) Isec) s (n) i . ',0 1.01 1.612e-3 2.23933e-7 1.000e3 2.9e-10 9.53355 7200.00 7200 i I .50 1.41 ' l.612e-3 8.95738e-8 1.481e4 3.9e-10 9.41342 18M0.00 25200

' 2

.50 1.01 1.612e-3 2.6345te-8 4.849e4 1.le-10 9.95248 612 % .00 797H 3

1.01 1.612e-3 1.86611e-8 1.108e5 1.!e-10 9.90280 147600 .50 4 86400.00 1.866tle-8 1.6%e5 1.Be-10 9.74320 r

172800~ .50 1.01 1.612e-3 5 86400.00 1.066tle-8 1.728e5 2.re-14 9.7(e964 l 172800 .50 1.01 1.612e-3 6 86400.00 1.856tle-8 1.725e5 2.0e-10 9.74964 172800 .50 1.01 1.612e-3 7

864 % .04 1.33294e-9 6.038e5 1.5e-12 11.4565 4

1296000 .50 1.01 1.612e-3 8 1209600.00 6.6647e-lh 2.316e6 3.3e-12 11.4769 3628800 .50 1.01 1.612e-3 9 2419200.00 4.3398e-10 4.800e6 2.9e-12 11.5329 6134400 .50 1.01 1.612e-3 10 3715200.00

.?

10.24

. LE ACH INDEI 4

s O o O I

1 l

s i

l "

i, l

10CFR61 EE E NANT ANALYSIS ANALYSING FOR COPALI

' LEEllANT -MN!ERALIZE8 HATER ED10 SAMPLE DES 16NA110N 5.08 .

IIAMETER (Enl 10.16 LENGTH (CR)

NEIGHT 16rl 203.00 Os ice 2/sec VOLUME IEC) 205.9) l SUFFAEE AREA (EM21 202.68 LE E HANI VOLURE Ill 2.01 .

  • IN111AL CONCENTRA110N (egl 4060.00 RINSE EONCENTRATION legill .10

! Ao tegl 4059.00 lAn/Aollll0 ELTA tal 1 O log BlDi EIIRACTED An An/Ao (NLTA tin t=SunfDELTA tin Isect LEEN INTERVAL CONCENTRAll0N legl liractionisec)

Isec) Isect (ni f

.10 .20 4.990e-5 6.911tle-9 l.800e3 2.Be-11 12.5522 1200.00 7200

! l .10 .20 4.990e-5 2.77244e-9 1.46!et 3.7e-13 12.4121 18000.00 25200 2

.20 4.990e-5 8.1542e-10 4.844e4 1.0e-13 !?.9811 79700 .10 3 612 % .00 5.7759e-10 f le8e5 1.2e-13 12.9214 147600 .10 .20 4.990e-5 4 86400.60 5.7759e-10 1.600e5 1.7e-13 12.7618 172800 .10 320 4.990e-5 5 86400.00 5.7759e-10 1.720e5 l.9e-13 12.7203 172800 .10 .20 4.990e-5 6 86400.00 5.7759e-10 1.128e5 1.9e-11 12.7293

) .20 4.990e-5 86400.00 172804 .10 7

.20 4.990e-5 4.1257e-Il 6.0?8e5 3.3e-15 14.4772 1296000 .10 8 1209600.00 2.0626e-Il 2.316e6 1.2e 15 14.4955 3628800 .I0 .20 4.990e-5 9 2419260.00 1.3432e-Il 4.80n e6 2.Be-15 14.5515 6134400 .10 .20 4.990e-5 10 3715200.00 l

i

.s j

13.26 LE KH INDEI j .!

t

r ,O k -

i 4

v 1

i L-V l

10CFS61 LEKilANT ANAlfSIS ANALYSING FOR STRONilun

{ LEEllANT -KNINERAlllEl NAIER l L B010 SATLE DE516 NATION '

BIAMElER (Cn) 5.06

' ' LEN6TH ICal 10.16 NE15,il 16rl 203.00 -

j 8= tcs21sec

! 90tuME (CC) 205.93 k SURFACE AREA ICR2l 202.68 LE EHANI VOLUME Ill 2.03 INillAL CONCENTRA110N legl 4466.00 .

' RINSE CONCENTRAi!DN leg /II .50 Ao lagt 4464.99 An An/Ao (An/nolillELTA tal i 8 log 8/8 IKLIA tin t=5UNIELTA tis EIIRACTED L LEEN INTERVAL Iseci CONCENTRAll0li legl tiractica/ sect tal (sect Isect 7200 .50 1.01 2.269e-4 3.15106e-8 1.800el 5.Be-12 it.21t1

' I 7200.00

.50 1.01 2.269e-4 1.26042e-8 1.481e4 7.6e-12 11.1167 18000.00 25200 i 2 3.707tle-9 4.844e4 2.2e-12 11.6658 79200 .50 1.01 2.269e-4 i 3 61200.00

.50 1.01 2.269e-4 2.625Bn -V l.108e5 2.5e-12 11.6061

' ', 4 86400.00 147600 -

.50 1.01 2.269e-4 2.62590e-i 1.600e5 1.6e-12 11.4465 86400.00 172800 5 2.62% 8e-9 1.728e5 3.9e-12 11.4130 172800 .50 1.01 2.269e-4 6 86490.00

.50 1.01 2.269e-4 2.62583e-9 l.720e5 1.9e-12 11.4130

86460.00 172800 7

.50 1.01 2.269e-4 1.8756e-10 6.0!Ge5 6.9e-14 13.1619 1209600.00 1296000

- 8 9.3722e-Il 2.316e6 6.6e-14 !!.1202 3628800 .50 1.01 2.269e-4 9 2419200.00

! 6134400 .50 1.01 2.269e-4 6.1067e-Il 4.800e6 5.8e-14 13.2162 i '- 10 3715200.00 4

5 j t.

LEEN INDEI 11.95 I

u ~i f

I '

4 f

l

. - ~ _ . ~_. ._ - - - - .. .. .

O o o

l V

1 v

s-s U IKIE61 LEKIENT ANALYSl5 ANALISING FOR CESillR LE KhANI -5ALINATE8 L 8812

. SAMPLE M516NA1104t plAnEIE8 Ital 5.08 ,

10.16

! y LEN61H (CM)

WE16HI (6tl 201.00

) 205.91 8= Ice 21sec V0LupE t[Cl i

SUEFACE AREA (CR21 202.68 l t 2.01 j LEACHANI VOLIDE lil INillAL EONCENTRA110N legl 629.30 -

RINSE [0NCENinA110N legill .50

, ( 628.29 I Ao (agl An/Ao ItainoilllELTA tal i 8 log 81Di i EIIRACTED An (KLIA tin t=SimlMLTA tia (sect y, LE KH INTERVAL CONCENTRAllBil legl tiraction/ sect (sec) Isect tal i 1.16 2.161e-3 3.M071e-71.8Mel 5.le-10 9.279?4 72%.00 7200 .67 y I .50 1.01 1.612e-3 8.95714e-8 1.4Elet 1.9e-10 9.41:42 18000.00 25204 ,

2 1.612e-3 2.61451e-8 4.844e4 1.le-10 9.96248 l 61200.00 79200 .50 1.01 1

1.01 1.612e-3 1.866tle-8 1.109e5 1.le-10 9.90280 141600 .50 86400.00 O 4 5 86400.00 172800 .50 1.01 1.612e-3 1.86611e-8 1.600e5 1.Be-10 9.74320 1.866tle-8 1.728e5 2.0e-10 9.709t4 172800 .50 1.01 1.al2e-3 6 86400.00 1.866tle-8 1.720e5 2.0e 10 9.70964 J 172800 .54 1.01 1.612e-3 86400.M i O 7 8 1209600.00 1296000 .85 1.72 2.24te-3 2.26599e-9 6.038e5 1.0e-Il 10.9976 6.6647e-10 2.116e6 1.3e-12 11.4769 3628800 .50 1.01 1.612e-3 9 2419200.00 5.4681e-10 4.800e6 4.7e-12 11.3122 6134400 .63 1.20 2.032e-3 3715200.00 O 18 O 10.15 LEEH INSE1 i

l O  :

l O l

O C~

l 5)

!, V V

V .

1 L 10CFR61 LEKHAlli ANALYSIS ANALYSING FDil E00ALI LEEi4Alli -SALINATER SanFLE DES 16NA110N 9612 SIAMETER (Cut 5.68 j! LEN61H ttal 10.16 1 NEIGHI (6tl 201.00 j 205.91 I= icn21sec V0ttiME (Ett

! EUEFACE ASEA ([n2) 202.68 q:

LEACliANI VOLUME til 2.01 3

InlilAL [0NCENTRATION (egl 4060.00 i

I EINSE [0NCENTRAllDN fegill .10 l

( 4059.90 Ao legl An An/Ao (As/Acl(110 ELTA tal i D log liDi LEACH INTERVAL (BELTA tin t=SUHtKLIA tin EIIRACTEB EDNCEulAAll0N legl tiractionisect (sec) tal (sect (sect '

l I

I 7200 .31 .67 1.647e-4 2.29727e-8 1.50 del 1.le-12 11.5152 I 72M.M 25200 .10 .20 4.990e-5 2.77244e-1 1.483e4 1.7e-11 12.4121 2 18000.00

.20 4.190e-5 B.1542e-10 4.844e4 1.0e-ll 12.9 egg 1 612M.M 79200 .10 1476M .10 .20 4.990e-5 5.7759e-10 1.le8e5 1.2e-Il 12.9214 4 86460.M 1728M .10 .20 4.190e-5 5.1759e-10 1.606e5 1.7e-ll 12.7618 5 06460.00 172800 .14 .29 6.997e-5 B.096!e-10 1.720e5 !.7e-11 12.4360 j 6 86400.00 172800 .11 .26 6.4E9e-5 7.5667e-10 1.72fe5 1.2e-ll 12.5004 i

7 864%.00 12960M .31 .61 1.547e-4 1.2790e-10 6.03Be5 1.2e-14 15.4944 l 8 1209600.00 3629000 .20 .41 9.99te-5 4.1257e-Il 2.116e6 1.le-14 13.8934 l 9 24192M.60 6134400 1.50 3.65 0.981e-4 2.4t?8e-10 4.9 Me4 9.le-11 12.0410

? 10 3715200.00 12.70 LEACH INGEI l'

sg v

V V .

s ,

L lEFF61LEENANTANALYSIS ANALYSING FDR STRONiluN Y~

LE EHAhi -5ALINA1ER SAMPLE K S16NAllDN 5012 v IIPMEllR ltal 5.08 LENSIN ([R) 10.16 E l6HI 16tl 203.00 s' VOLUME ICCI 205.91 B= Ice 21sec' SURFACE AREA ([n21 202.68 LEACHANI VOLUME III 2.01 O INiilAL [0NCENTRA110N legl 4466.00 kINSE [0NCENiRAllBN legill .50 Ao legl 4464.99 s

t=SUNIELTA tle EIIRACTES An An/Ao (As/AoHl/KLIA tal 1 5 log IIDi LEACH INI[kVAL IM LIA tin Isect (sect CONCENTRAl!0N legl tiractionisect (sec) ist 7200.00 7200 1.20 2.43 5.445e-4 7.56255c81.BMe31.le-Il 10.47L5 I

18000.00 25200 .50 1.01 2.269e-4 1.26042e-8 l.481e4 7.6e-12 11.1167 2

3 61200.00 792 % .M l.01 2.269e4 3.70713e9 4 8 W 2. M E M 864%.00 147600 .50 1.01 2.269e-4 2.62580e-9 1.100e5 2.5e-12 11.6061 4

B64n0.M 172900 .M l.01 2.269e-4 2.62580e91.6Me5 3.6e-1211.4465 5

v 864M.M 172800 2.70 5.47 1.225e3 1.417He-O l.728e51.lete 9.9018 6

y e64t.0.00 172800 .9 1.01 2.269e-4 2.62iEfe-1 1.728e 5 1.9 el2 II.41 M 1209660.00 1296MO 1.$0 3.24 7.260e-4 6.0020e-10 6.e35e5 7.le-11 12.1516 8

24192h0.00 3628900 5.30 10.74 2.405e-3 9.9400e-10 2.316e6 7.4e l2 11.1216 v 9 3715200.00 6134400 .50 1.01 2.269e-4 6.1067e-Il 4.800e6 5.Be-14 13.2362 10 v

LEACH INEI 11.42 s>

. ,, I I

%)

i .

U l

1 ,.

i v i IMF561 LE E HANT ANALYSIS '

I ANALYSING FOR CESlus

, LEENANT -SALillATER d

SARPLE DESIGNATION B05 y

ll METER (CR) 5.00 LENGTH (ER) 10.16 i -

NEISHI (6tl 203.00 205.93 p= tce2/sec i volunE (((I *

! SCEFACE AREA (CM21 202.68 LEACHANT VOLUME (Il 2.A3 .

f.

INITIAL [0NCENTRA110ll legi 629.30 R!h5E CDEENTRAll0N legill .50

]

Ao legl 628.29

]

i An An/Ao (An/Aelll/K LIA tal i B log 8/Di LE EH INTEkVAL IKLIA tin t=SURlKLIA tle EllRACTES

(sect (seci Isect CONCENTRAll0N legl tiraction/ sect (n) 7200 .74 1.50 2.386e-3 3.31421e-7 1.90de3 6.4e-10 9.19301 i 7200.00

.50 1.01 1.612e-3 8.55734e-B 1.4Ble4 1.9e-10 9.41142 2 IB000.M 25204

' 3 11200.00 79200 .50 1.01 1.612e-3 2.61451e-B 4.B44 1.le-10 9.96248 96400.00 1476% .50 1.01 1.612e-3 1.86611e-8 1.108e5 1.'e-10 9.90290 i 4 B64h0.00 172800 .50 1.01 1.612e-3 1.86611e-8 l.600e5 1.Be-10 9.74 H 4 i -

5 96490.00 172800 .50 1.01 1.612e-3 1.E66tle-B 1.722e5 2.('e-10 9.70964 f 6 1.612e-3 1.96611e-B l.720e5 2.0e-10 9.70?64

! 7 86400.00 172800 .50 1.01 12960M l.00 2.43 3.225e-3 2.66587e-9 6.039e5 1.4e-Il 10.0565 I 8 1209600.00 1629000 .50 1.01 l.612e-3 6.6647e-10 2.316e6 3.le-12 11.4769 l 9 2419260.00 3715200.00 6134400 2.00 4.05 6.449e-3 1.71592e-9 4.940e6 4.7e-Il 10.3288 le i .

l ('/

LEEH INKl 10.03 I

t

. . ~. -

~

j l

IJ l

V v

1 IMFR61 (( EHANT ANALYSIS ANALYSING FOR COOKI LEEllANT -SEINATER f B05 sancLE K SIGNAll0N

  • 5.00 l C IIAMETER (CN) 10.16 LEN!IH (CN)

WEIGHT (Erl 203.00-i t= tce21sec 205.93 y VDLUME (Ctl f SURF E E AREA 10R2) 262.68 j

2.01 j LEACHANI V0 Lune til .

INIIIAL CDNCENTRAll0N (ogl 4060.00 i C. RINSE EONCENTRATION tagill .10 Ao togl 4059.00 As AntAo inn /AcHl/KLIA tal I I leg f/0i C. IKLIA tin t=SIM(KLIA tis EllAACTED (sect j LEEli INTERVE LONCENTRAll0E legl tirectionisect (seti Isect (al l

.77 1.896e-4  ?.61!B2e-B 1.800e1 4.0s-12 11.3926 7200 .38 1 i 1200.00 2.77244e-9 l.4Blet 1.7e-Il 12.4121

.10 .20 4.990e-5 25200 1 9# 2 18000.00

.19200 .10 .20 4.990e-5 8.1542e-10 4.944e4 1.0e-13 12.9611 3 612 % .00 6.9111e-10 1.108e5 l.7e-13 12.7611

.!2 .24 5.998e-5 36400.00 147600 1.44398e-9 1.600e5 1.le-12 11.9660 4 1.248e-4 172800 .25 .51 5 864%.00 1.32B46e-9 l.728e5 9.9e-11 12.0048

.21 .47 1.148e-4 E6400.H 172800 6 8.484e-5 9.819te-10 1.7?Se5 5.4e-Il 12.2674

' 86400,H 172800 .I7 .34 7 .53 2.046e-4 1.6915e-10 6.0?Be5 5.6e-14 13.2516 1296000 41 g 1209600.00 9.0764e-10 .316e6 6.2e-12 11.2006 3620800 4.40 8.91 2.196e-3 1 2419200.00 4.5670e-10 4.000e6 3.2e-12 11.4886 3.40 6.99 1.697e-3 3715200.00 6134400 le I .

U 12.18 LEEN INK!

! O  !

i s e N

l

Q G y w b b Ifi' N

d N

E

y I

f.

q v .:

- 1 100FE61 LEACHANT ANALYSIS l ANALYSING FDR STRONillNI (

' LEACHANT -SAL 1 WATER 1

SAMPLE DES!ENAll0N BD5 IIAMETER ICnl 5.08

  • 10.16 LIN51H ([RI .

NE16Mi (6rl 203.00 VOLUME (CCI 201.93 B= tce2/sec

' SUFFACE AREA (CM21 202.68 LEA [hANI VOLunE Ill 2.01 lulilAL [0TENIRAllDN isg) 4466.00

' ElkSE CCNCENTRAllCN Ingill .50 As tag) 4464.99 ,

'~ IDELTA tia t=SunlLELTA tia EllRACTED An An/Aa IAn/AalillDELTA tal i B log B/Di LEACH INTERVAL tal Isect Isect CONCENTRATION lagt ifractiontsec) Isec)

I 7200.00 '7200 1.20 2.43 5.445e-4 7.56255e-B l.8%el 1.le-Il 10.4765 18000.00 25200 .50 1.01 2.269e-4 1.26042e-8 1.491e4 7.6e-12 11.1167 2

. 3 612f'0.00 19200 .54 1.01 2.269e-4 3.70713e-9 4.244e4 2.2e-12 II.16'a

' 4 B6400.00 147600 .12 .24 5.445e-5 6. 3021e-10 1. lMe5 1.4 e-13 12.E157 5 86400.00 1728% .51 1.03 2.llte-4 2.67E40e-9 1.6&:e5 1.7e-12 11.4293

& B6400.00 172800 2.10 4.66 1.044e-3 1.20791e-B 1.728e5 8.:e-Il 10.f975

)

' 7 864f4.00 172800 .50 1.01 2.269e-4 2.62*80e-9 1.729e5 1.9e-12 11.4134 1296000 1.20 2.43 5.445e-4 4.5dlie-10 6.03?e5 a,o,-13 12.sc.ta 8 1209600.00

- 9 2419200.00 362B8% l.50 3.04 6.806e-4 2.9134e-10 2.31te! 5.c e -l3 1: :25:

10 3715200.00 6134400 .50 1.01 2.269e-4 6.1067e-Il 4. W e6 5.fe-18 !! ~' :

E - . ..

LEACN INDEI 11.69

~ * *

' W . . - . . ._ . _

i os l

.__ _____ _ _ _________________1

v -

l

)

I j . .

' IEFB61 LE E NANT ANALYSIS ANALYSING FOR E00ALI LE KHANT - KRINERALIZEB HAIER SAMPLE BESIGNAll0N CE3

(

  • i IIAMETER lCN) 5.00 LENGTH lCR) 10.16 NEIGHT 16tl 273.H i VOLunf ([Cl 205.93 B= lce2/sec j St$F E E AREA ICN21 202.68 LE E HANI VDLunE lil 2.03 i intilAL [0NCENIRA110N lagl -

720.70 .

EINSE [0NCENTRA110N legill .10 I Ao legl 720.50 LE KH INTERVE lELIA tin t=SUNIBELIA tia EllRACIES An An/Ao IAn/Aelll/DELIA tal i 9 log BlBi lirection/sec) l] lal (sect Isect CONCENTRAllDit legl 15ec)

I 7200.00 7204 .19 .38 5.343e-4 7.4204te-8 1.060e3 3.2e-Il 10.4929 j 2 18000.00 25200 .10 .20 2.Il2e-4 1.56219e-8 l.483e4 1.2e-Il 10.9303

3 61200.00 79200 .10 .20 2.812e-4 4.59468e-9 4.844e4 3.3e-12 11.4794 j 4 84400.00 147600 .10 .20 2.812e-4 3.25457e-9 1.109e5 3.8e-12 11.4197 5 86400.00 172800 .10 .20 2.812e-4 3.25457e-9 l.6%e5 5.5e-12 11.2601 i

! & 86400.00 172800 .30 .20 2.812e-4 3.25457e-9 1.722e5 5.Se-12 11.2265 l 7 B6400.00 172800 .10 .20 2.812e-4 3.25457e-9 1.720e5 5.9e-12 11.2265 l I 1209600.00 1296000 .14 .28 3.937e-4 3.2546e-10 6.03Oe5 2.le-13 12.6832

9 2419200.00 3628000 .10 .20 2.812e-4 1.1623e-10 2.316e6 1.0e-13 12.1937
10 3715200.00 6134400 2.50 5.07 7.030e-3 1.09219e-9 4.500e6 5.6e-Il 10.2539
LEEN INKI . 11.40 f

f 4

i

o c O j 10C H 6l LEACHANT ANALISl$

ANALISING FOR CESIDil S W LE DESIGNATION C63 j IIAMETER (CR) 5.00 LE:":iH ICMI 10.I6 NEIGNI 16rl 273.00 V0tuME (CCI 205.13 B=tra2/sec SURFACE AAEA (CH21 202.60 ifACHANI V0ttmE Ill 2.03 .

l ItllIAL CONCENTRATION lagt 722.20

, rih 5E [0NCENIRAll0N leg /II .50 i Ao ing) 121.19

LEACN INTERVAL IKLIA tin t=SulilMLIA tin EIIRACTEB As An/Ao len/AoIll/ DELTA int i B log t/li tal Isec) (secl legl CONCENIRAll0N tiractionisect Isect i 7200.00 7200 ' .79 1.60 2.219e-3 3.08239e-71.800e3 5.5e-10 9.25602 2 10000.00 25200 .50 1.01 1.405e-3 7.00349e-O 1.4d?e4 2.9e-10 9.53320 l 3 61200.00 79200 .50 I.01 1.405e-3 2.29515e-I 4.644e4 8.le-Il 10.0923

} 4 86400.00 147600 .50 1.01 1.405e-3 1.62573e-O 1.106e5 9.5e-ll 10.0226

5 86400.00 172900 .50 1.01 1.405e-3 1.62573e-I 1.60ae5 1.4e-10 9.86258 1 6 Bo400.04 172800 .50 1.01 1.405e-3 I.6257!e-B 1.728e5 1.5e-10 9.82i12

! 7 86400.00 172800 .50 1.01 1.405e-3 1.62573e-8 1.728e5 1.5e-lo 9.92942 j B 1269600.00 1296000 1.70 3.44 4.776e-3 3.94820e-9 6.038e5 3.le-Il 10.5158 9 2419200.00 362B800 - .62 1.26 1.742e-3 7.1997e-10 2.316e6 3.9e-12 II.4M8 j 10 3715200.00 6134400 .70 1.58 2.191e-3 5.8900e-10 4.800e6 5.4e-12 11.2664 l

l LE ACH INKI 10.16 1

w l

t

O O -

O 10CFE61 LE K HANI ANALVSIS ANALYSING FOR Sih0NI!UN LEENANI - BEntlERAlllEl NAIER SANFLE DESI5NAl!0N CSI p!AMETER t[MI 5.06 LEN6IN IEMI 10.16 515HI (Erl 273.60 Uturt ICC) 205.93 9= Ice 2/sec .

SL'RFACE HEA (ER21 202.69 LEACHANI VOLUME III 2.03 '

lulilAL [CNCENTRA110N legl 993.60 EINSE CDNCENTRATION ingfil .50 Ao lag) 902.59 LEACH INTERVAL IKLIA tin t= SUN (MLIA tis EllRACTEI An* An/Ao Inn /holll/ DELTA tal i I log 9/Bi in) Isect Isect legl CONCENIRAIION tiraction/sec) Isect t 7200.00 7200 1.30 2.43 2.680e-3 3.722B?e-7 1.800e3 8.le-10 9.09203 2 18000.00 25200 .50 1.01 1.03le-3 5.7275le-O l.483e4 1.6e-10 9.60184 3 61200.00 79200 .50 1.01 1.03te-3 1.6845fe-B 4.944e4 4.5e-Il 10.3509 4 86400.00 147600 .50 1.01 1.031e-3 I.19323e-B 1.166e5 5.le-Il 10.:912 5 B6400.00 172600 .50 1.01 1.031e-3 1.19323e-8 1.606e5 7.4e-Il 10.1316 6 86400.00 172800 .50 1.01 1.031e-3 1.19321e-B 1.728e5 B.0s-ll 10.0931 7 86400.00 172900' .50 1.01 1.031e-3 1.19323e-B 1.728e5 E.0e-Il 10.6901 8 1209600.00 1296000 2.70 5.47 5.567e-3 4.60246e-9 6.039e5 4.1 -11 10.3822 9 24192 % .00 362B900 .62 1.26 1.27Be-3 5.2843e-10 2.316ei 2.le-12 11.6764 10 3715200.00 6134400 4.10 8.31 8.454e-3 2.27546e-* 4.800e6 8.le-Il 10.0937 LEACH IN8EI 10.20

" . . 1:

m)' ,

i 8 n3 6 8 2 27 8 9 D f 2 2 2 5 4 4 5 9 5 I

S 61 338 020 2 3 5 9 9 6 6 6 6 2 2 8 2 4 4 4 g 0 0 E. 0 1 1 o 9 9 1 1 9 9 9 1 1 1 t

0 0 l l 0 0 0 l 22 1 1 I I 1 1 1 I 1 1 8 e e e e e e e e e e 4 9 3 5 4 55 4 9 4 4 28 9 1 1 1 33 3 l 4 4 5 5555 6 6

) e e e : e e e e e I e c

Is 0 3 4 9 0 6 4 0 8 4 8 1 67 7 038 W28 t 2 3 0 61 0 0 1 1 4 1 1 1 1 62 4 7 8O 8 B 8 89 00 l - - - - - - - - 1 1 a e e e e e e e e - -

t t c

2 9 5 3 3 3 3 4 2 4 1 7 7 7 7 4 7 1 e e A e 3 5 5 55 5 0 9 8 I s L /

3182 1

0 9 6 26 626 2 2 B 196 8 Mon

/ i 27 21 1 1 1 4 7 4 l.

l t l c a

le r A i

/ t

- n A

8 I E

T A

S H 3 3 33 3 3 3 333 I I ES - - - - - - - - - -

S Y N 1 A o e e e e e e ee e e 65 5 5 5 5 5 7 ? 2 L l / 6 0 0 04 005 4 4 A 51 l n J NE l AC A T R E NO N R

A 9 4 4 4 4 4 4 07 7 1 1 1 I 1 1 1 51 1 A )

i F MI l

CG n g 21 1 1 1 1 1 5 6 6 A N M A al 4 00 0000622

. E I 1 1 1 1 1 1 I 3 1 1 L S c 1 L Y - e s

6 A I / N 6 N N 2 D F A A H

e 8l

- K I K t c E l T A C B 0 00 0 0 00 822 0

7 55555

- E L 8 5 A I R N

5. 1 6 6 i E l C E N O

C n 0 0 0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0 0 0 0 t 2 2 2 6 8 8 8 0 8 4 7 5 9 7 2 2 2 6 8 4 A 27 4 7 7 7 9 2 3 I t 1 1 1 1 2 6 1 L c 1 3 6 e

Es I I N

U 5

1 1 80 6 10 039 8 3 0 0 9 n 00 0 0 0 0 0 0 9 2

6 C5 0 31 52 22 f.

0 2 5 1 1

i t t c

0 0 0 M. 0 0 0 00 0 0 00 00 0 0 00 M.

0 1

7 0 0 2 2 A e 0 0 0 0 0 0 0 0 0 0 1 222 7 7 T s 2 02 4 4 4 4 6 22 L I 7 8 1 6 6 6 6 9 9 5 M 1 6 88 8 80 1 1 2 4 1 I

1 2 3 t )

gl le/ge N l O

l I N N ) l T O O 2 I A I I

T N l l I

[ E i A A l M N A L N ) UE I A

' G N I [ ) l )

A L C N E O N E V

R S l R r C R V 0 C E I

E E 6 C (A E B R [ N T i .

D I 1 T O E

ET NT EC A A E N 'L C) g N n I i 1 23 4 56 7 8 90 1 N

I t E I H M A H I E le N H WI AM NS l6 t0 EF AC I S I N C

A C A

S I LE EN0 VU ES N L I EI Ao E L E L

, 'j!) jjj 1, ili41 1 ii ,

1 1

i 10CFR61 LEKilANT AELIS15 l ANALISINE FOR COBE T l LEKENT -ENINEREllEl MIER SAMPLE K 516 M110N [621 IIAMETER ltal 5.00 ,

LEh61H 1[nl 10.16

KISHT (Eri 273.00 VOLunE (CCI 205.93 > Ice 2/sec SINKE AREA (CH2) 202.68

) LEACMui V0 Lune Ill 2.03 INITI E CDNCENINAi!DN legl 720.70 l * '

i IINSE CONCINTRATION legill .10 ,

no legt 720.50 LE KH INTERVE IKLIA t!n t=SINilE LTA tia EliRACTEI An An/Ao (An/Rolill ELTA tal i B leg BlDi

inn isici Isect CONCENIRAll0N legl lirection/ sect Isect i

j i 7200.00 7200 .16 .32 4.499e-4 6.24877e-8 1.800e3 2.3e-Il 10.6422 2 180%.M 25200 .10 .20 2.912a-4 1.56219e-8 1.493e4 1.2e-Il 10.9303 -

l 3 61200.00 79200 .10 .20 2.812e-4 4.59469e-9 4.944e4 1.3e-12 11.4794 3

4 56400.00 147600 .10 .20 2.812e-4 3.25457e-9 1.100e5 3.Se-12 11.4197 5 B6400.00 172800 .10 .20 2.812e-4 3.25457e-9 1.600e5 5.5e-12 11.2601 6 86400.H 172900 .10 .20 2.812e-4 3.25457e-1 l.720e5 5.fe-12 11.2265 7 B6400.00 1728M .10 .20 2.812e-4 3.25457e-9 1.720e5 5.9e-12 11.2265 8 1209600.00 1296000 .11 .26 3.654e-4 3.0221e-10 5.039e5 1.8e-13 12.7475 l 9 2419200.00 362B900 .ie .20 2.Il2e-4 1.1621e-10 2.116e6 1.0e-13 12.9937 10 3715200.00 6134400 2.30 4.66 6.467e-3 1.74082e-9 4.800e6 4.7e-Il 10.3263 I

.tEKilINKI 11.43 b

./

I 1

9 I

m h

u

, ef 2 4 9 2 6 81 t i0 $ 5 9

/

8 5 2 0 1 11 09 03 9

1 10 5 39 23 c 5751 1 9

2 6

B g 3 8 0 0 0 0 0 0 1 0 o 9 9 1 1 1 1 1 1 1 1 l

00 1 1 lI I l ll Ill lI l1 I2 l

- e e - - e -e -e -e -e -e -e -e l 6 B.

4 1 6 5.4 l.574 4. b. 5 B.

9 B4 l 6 t

l4 e e4 e55555 e : e 6e 6e e e i e c

s 0

a 8 4 38 44 80 0082B23 8 1 6 7 7 0 1 B 1 0 3.I.

Q

(

1 1 4 1 1 1 l 62 4

_ 7BBB

- e - - B B B9 -e -e0-e9 - e-e e -!e -e 1

l a 6 1 6 3 3 32 34 e7 t i c 73 552 7 4 2 3 23 293 973 25 85 3 A e 6 2 B 9 9 9

_ I s 8 7 1 1 1 1 750 L /

Ko n

/ i 251 l.1 1 1 1 4 4 2

- l t l c i a e r h i

- t t n

A

(

. R

- E T

A !3- e 3 3 3333

$l lINl l

o e e - e e e - e -e -e -e t 3 59

/ i S i B n 2 ! t 1 t 3 3 3 3 1 3 7 7 2 M.0000 !1 1 007 1 6 Y N E /

L OZ

  • n A

A R I 21 1 1 1 51 7 ASRE N T .

T RE N O N nF I n g l

3 001 01 01 01 01 01 67 1505 i R A el

- EG h K 21 1 1 1 1 1 51 7 E t c

. L 5 Y - e s t 1 L i 6 A I 1 2 o E N N s S l 0 0 f A A E l 0 7 H t I A 0.5555 000 0 0508 7

. C 0

1 C

A l

=

C B A I 1 5. 2 5. 3 E B h N L l E l C E no C

n 0 0 0 0 200 0 600800800f00 0 0 0 0 0

i t 27 2 5 9 7 2 2 2 t* 0 8 4 4 A 27 4 7 7 7 9 2 3 1 1 1 1 2 41 13 6 I t L c

, E e C s I

M I U

- 'S s t

4 1 80 61 03 e 0 0 00000 0 0 6 00 0 00 0 0 2 0 9B 63 00 60955 l 0 00 2 0

- 6 C 50 1 37 052 2 t t c 0000 0 0 0 00 a 00 000 00 00 0 1

- 0 23 8 8 9

A e I s 2 0 2 4 4 4 4 6 2 25 9

222 M

L (

7 21 61 85 86869 60 91 91 2 4 2 3 11 I

t I

~ gI a/

l g t l e

i D

. l ! m n ) l i o a 2 l A l l N R l i C E I A Ml

( M R R UE T R V I 6 n A L C N A E S (

E la lr lC Ea OV NO EC I D h

EA C

(

E [ A

( (  !

C m a

I i N n I i I 23 4 5&7 B9 0 1 l

. E EI NI E C E El N Et E e i

g M

H C

L E I N nA C A P

nAnSE N Iuf C l 5 l L R A i m A E L

A I E E O U E si s I SB L h V S L I B A I

' jiljl2 ij ;1! ' k}1 jj)) l)l . iiti ! :l!Ij! 1

O O U G 1

100Ful LEEHANI ANALYSIS ANAlfSING FOR CESluN s LEEHANI - SEINATER SAMPLE K Sl6 Mall 0N C620 tiAMEIER ICN) 5.08

., LENGIN IEnl 10.16

. HEIGHT 16rl 273.00 l VOLUME (CCI 205.93 B: Ice 2/sec

! ' ,, SURFACE AAEA (EM21 202.68

IEACHANI VDLUnE III 2.03 .

l INillAL CONCENIRAll0N lagt 722.20 ,

. RIN5E CONCENIRATION legill .50 Ao legl 721.19 LEEK INIERVE IDELTA lin t=SUMIKLIA tis EIIRACIED An An/Aa IAa/Aelll/K LIA tal 'I I log 310: '

tal (sect ,

Isect CONCENIRAll0N legl firection/ sect Isec)

, 1 7200.00 7200 .64 1.30 1.79Be-3 2.49712e-7 1.800e3 3.6e-10 9.4?Eit 2 IBM 0.00 25200 .50 1.01 1.405e-3 7.80349e-4 1.483e4 2.9e-10 9.53?20 3 61200.00 79200 .50 1.61 1.445e-3 2.29515e-6 4.8:ae ; 3.2e-Il 10.c n 3

, 4 86400.00 147600 50 1.01 1.405e-3 1.62573e-S l.1. c5 9.5e-Il 10.0226 5 86400.00 172900 .50 1.01 1.405e-3 1.62573e-8 1.600e5 1.4e-10 9.2t.258 6 E6400.00 172800 .50 1.01 1.405e-3 1.62573e-8 1.725e5 1.5e-10 9.22942

. , 7 B6400.00 172200 .50 1.01 1.405e-3 1.62573e-8 1.728e5 1.5e-10 9.82942 I 8 1209600.00 1296000 1.60 3.24 4.495e-3 3.71595e-9 6.039e5 2.7e-II 10.562)

I 9 2419200.00 362EB00 .50 1.01 1.405e-3 5.6062e-10 2.316e6 2.5e-12 11.5916 j 10 3715200.00 6134400 .22 .45 6.100e-4 1.6635e-10 4.800e6 4.3e-13 12.3658 EEEN INDEI 10.31

.z

F O O V

V I .

e O I EFR61 (E E HANT ANALYSIS ANALYSIMB F0ll COSALI l .*;* LE KHAll! - SALINAIER

'. U SAMPLE DES 16MA110N C620 BIAnETER ICR) 5.08 ' ~

10.16 c LENGIH (Enl KI6HI (6rl 273.00 205.93- Os Ice 2/sec

. V0 Lune (Ctl 202.68 g SUEFACE 6REA (Cr21 LEACHANI VOLUME Ill 2.03 INillAL EONCENTRAll0N (egl 720.70 RINSE [0NCENTRAllDN legill .10 g

Ao (egl 720.50 .

EliRACTE8 An An/Ao IAa/Aoill/ DELTA tal i 8 log 810:

LEACH INTERVAL IKLIA tle t=SUNIDELTA tia y (egl firection/ sect (seci Inl (sec) Isect CONCENTRAll0N l

72H .20 .41 5.624e-4 7.81096e-81.8%el 3.6e-Il 10.4424 l 7260.00

( 2 16000.00 25200 .10 .20 2.812e-4 1.56219e-B 1.483e4 1.2e-Il 10.9303 79200 .l0 .20 2.8t?e-4 4.59469e-9 4.844e4 1.3e-12 11.4794 l 61200.00

'[' 3 147600 .10 .20 2.812e-4 3.25457e-9 1.108e5 3.Be-12 11.4197 J' 86400.00 e 4 5 86460.M 172800 .10 .20 2.812e-4 3.25457a-9 1.600e5 5.5e-12 11.2601

3.25457e-9 1.728e5 5.9e-12 11.2265 86400.00 172800 .10 .20 2.8t?e-4 6

172800 .10 .20 2.812e-4 3.25457e-9 l.728e5 5.9e-12 11.22t5 7 86400.00 g .28 .57 7.873e-4 6.509te-10 6.0?Se5 8.3e-1312.(811 8 1209600.00 1296000 3628800 .10 .20 2.812e-4 1.1623e-10 2.116e6 l.0e-13 12.9137 9 2419200.00 6134400 2.20 4.46 6.186e-3 1.66513e-9 4.800e6 4.3e-Il 10.3649 10 3715200.00 t.

l L';

'. LE EH INDEI 11.34 O ..

I 1

J- j

~

O _

O O -

l l

4 10CfR61 (EENhill ANALVEIS ANALYSING FOR 51RONilun LE E HANI - SALINATER C620 SAMPLE DES 16MA110N 5.08 DIAnEIER (CR) 10.16 LENGTH IEnl NEIGHT 16rl 273.00 82 tce2/sec ,

VOLUME (CC) 205.91 '

202.68 SUM Ali siis (Chii 2.03 LEKHANI V0 Lime III INillAL CONCENIRAT10W (egl 983.60 RINSE CONCOilRAllDit legill .50 Aa (egl 982.59 8 log 8/Gi ElikACIES A6 AntAo IAalnolil/KLI A in) 1 LEEN INTERVAL (KliA tin tsSuniDELIA t)n fagi (fractioelseci Isect (seci CONCENTRATI0ll (seti (a) j 4.05 4.124e-3 5.72751e-7 1.3H e3 1.91e-9 8.717E6 1200.00 7200 2.00 i .50 1.01 1.031e-3 5.7275te-8 1.483e4 1.6e-10 9.80184 18000.00 25200 2

.50 1.01 1.031e-3 1.68456e-8 4.844e4 4.5e-ll 10.3509 6 200.M 79200 3

.50 1.01 1.031e-3 1.19323e-8 1.106e5 5.le-ll 10.1912 86400.00 147600

. 4 1.60 3.24 3.299e-3 3.81834e-8 f.600e5 7.6e-10 9.12132 86400.00 17;800 5

2.40 4.86 4.949e-3 5.72751e-8 1.728e5 1.8te-9 8.73559 86400.M 172800 6

.50 1.01 1.031e-3 1.19323e-8 1.728e5 8.0e-Il 10.09El 86400.M 172800

, 7 3.10 6.28 6.392e-3 5.28411e-9 6.0!8e5 5.5e-ll 10.2622 12096 % .00 1296000 8

7.L0 15.40 1.567e-2 6.47754e-9 2.116e61.2e-10 9.50160 2419h4.M 3628800 9

2.20 4.46 4.536e-3 1.22098e-9 4.800e6 2.3e-ll 10.6344 3715200.00 6134400

, 10 i -

LEEH INKI 9.75 i

.4 I

l ,

j 10CfE61 LEACHANI AGLVSIS ANALYS!NE Fdk CESitNt LE KHANT - SEINAIER C69 SAMPLE DESIGNAllDN "

BIAMETER (CR) 5.08 10.16 LENGTH (ER) bEIGHT (Grl 273.00 205.93 la Ice 21sec VOLUME (CC)

SUkFACE AREA ([N2l 262.60 2.03 LE EHAbi V0 Lune Ill litillAL CONCENTRA110N lagt 722.20 BINSE CONCENIRAllDN legill .50 Ao leg) 721.19 , ,

(An/Acl(IIDELTA tal 7 8 Ing 9th EllkACTE8 An An/Ao (DELIA tin t=SUNIDELTA tis (sec)

LEACH INIERVAL CONCENikA110N tegl tiractionisect (sect (sect fal

.53 1.07 1.489e-3 2.06793e-71.8Me3 2.5e-10 9.M272 7200.00 7200 I 1.01 1.405e-3 7.90349e-8 1.4Blet 2.9e-10 9.53 20 18000.00 , 25200 .50 2

.50 1.01 1.405e-3 2.29515e-B 4.944e4 8.!e-Il 10.08:3

' 6l200.M 79200 3

50 1.01 1.405e-3 1.62573e-O l.10h5 9.5e-ll 10.M26 86400.00 147600 j 4

.50 1.01 1.405e-3 l.62573e-8 1.600e5 1.4e-10 9.962iB 86400.00 172800

5 1.62513e-8 1.72Ee5 1.5e-10 9.82942 172500 .50 1.01 1.405e-3 6 B6400.00 1.62573e-8 l.726e5 1.5e-10 9.82942 174800 .50 1.01 1.405e-3 7 86400.00 3.01921e-9 6.03Be5 1.Be-Il 10.7464 1296i)00 1.10 2.63 3.652e-3 8 1209600.00 5.8062e-10 2.11Le6 2."e-12 II.59is 3628800 .50 1.01 1.40$e-3 9 2419260.00 1.4367e-10 4.800,6 3.2e-13 12.4931 6134400 .19 .38 5.338e-4 16 3715200.00 a LEACH INDEI 10.36 s'

i 100FF61 LEACHANI AMLYSIS ANALYSING FOR C09ALI LE KHANI - SALINA1ER SAMPLE DESl6NA110N 069 blAMEIER (CR) 5.08 LEN6TH (CRI 10.16 NEl6HI (Eri 273.M VOLUME (CCI 205.91 8: Ice 2/sec SURFACE AREA (CR2B 202.68

  • LE K HANI VOLUME lin 2.01 .

INiilAL CONCENTRAll0N legl 720.70 RINSE CDEENIRAll0N legill .10 Ao legl 720.50 EliRACIE8 As An/Ao (An/AoHl/MLIA tal I 8 log 8/Li LE K H INTEkVAL IDELIA tin t=SunlELIA tin CDEENIRAllDit legl IIractionisect Iseci i in) Isect (sect .

72M.00 7200 .19 .38 5.14!e-4 7.4204te-8 1.8M el 1.2e-Il 10.4921 I

25200 .10 .20 2.812e-4 1.56219e-8 1.4Ble4 1.2e-Il 10.9103 2 IBMO.00 79200 .10 .20 2.812e-4 4.59468e-9 4.844e4 1.le-12 11.4794 3 61260.00 147600 .10 .20 2.812e-4 3.25457e-9 1.109e5 3.Fe-12 11.4157

  • 4 86400.00 172800 .10 .20 2.812e-4 3.25457e-91.60(e5 5.5e-1211.2601 5 86460.00

! 3.25457e-9 1.72Se5 5.9e-12 11.2265 86400.00 172800 .10 .20 2.812e-4 6 -

172800 .10 .20 2.812e-4 3.25457e-9 l.720e5 5.9e-12 11.2265 7 864M.00 1296600 .27 .55 7.592e-4 6.2767e-10 6.030e5 7.7e-11 12.1127 8 12G9600.00 1628800 .12 .24 3.174e-4 1.1946e-10 2.116e6 1.5e-11 12.8154 9 2419200.00 6134400, 1.60 3.24 4.499e-3 1.2tt00e-9 4.800e6 2.3e-Il 10.6415 10 3715200.00

.LE K H INDEI 11.36 l .!

8 1

D '

(

G '%

,s IMFE61 LEACHANI ANALVSIS ANAL 15!E FOR $1RON11UR LEACHANI - SAL 1MAIER

,y CG9 SAMFLE DES 16NAll0N .

5.08 i BIAMEliR (CM) 10.16 v LEN6TH ILM) 273.00 NE!6Hi 16fl 8= lte2/sec 205.93 VOLUME ILCl 202.tB s SURFACE AREA lin21 2.03 LEACHANI VOLUME Ill .

IN111AL [0NCENIRA110N lagt 983.60, *

}

RINSE CONCEN18All[m legill .50 Ao ing) 982.59 An An/Ao IAn/RolillDELTA tal i 8 lit 8/6 tsSuntDElle tin EIIRACTED IDELTA tle lirectioniseci (sec)

- v LEACN INTERVAL (sect CONCEN1RAll011 legl ici Iset) 4.46 4.536e-3 6.30026e-7 l.E40e3 2.32e-9 8.635's7 7200 2.20 i 12M.00 5.72751e-8 1.463e4 1.6e-10 9.80184 i 'u 252 % .50 1.01 1.03te-3

! 2 18000.M 1.68456e-8 4.841e4 4.te-Il 10.3509 79200 .50 1.01 1.031e-3 61200.00 1.19323e-a 1.108e5 5.le-Il 10.291~

! 3 141600 .50 1.01 1.031e-3 1 .' _~ . 4 86400.00 2.625tle-8 l.600e'; 3.6e-10 9.44578 172800 1.10 2.23 2.268e-3 5 B6400.% 4.77293e-8 1.72Ee'i 1.2Ee-9 8.89355 172300 2.00 4.05 4.124e-3 I &

86400.00 1.19323e-8 1.728e5 8.0e-ll 10.09B1

.50 1.01 1.031e-3 86400.00 172800 v 7 7.29 7.423e-3 6.13662e-9 6.038e5 7.4e-ll 10.lK 3

~

129L600 3.60 8 1209600.00 6.13662e-9 2.!!ae6 2.Ee-14 9.545%

362E800 7.20 14.59 1.485e-2 9 2419200.00 1.10998e-9 4.800e6 1.9e-Il 10.7112 2.00 4.05 4.124e-3

)g 10 3715200.00 6134400 L~

9.79 LEACN INDEI 9

i c l

~) .

i 10CFF61 LEKHANT ANALYSIS ANALYSING FOR CESIUM LE KHANT -DEMINERALIIE8 NATES 120H SAMPLE DES 16NA110N 5.08 DIAMEl[R ICMI 10.16

- LEN61H IEMI -

NE16HI (Gri 289.00 ,

8= tce21sec VOLUME ICC) 265.93 SUFF RE AREA ICM2) 202.68 LE KHANI VOLUME (1) 2.03 INiilAL CONCEN1RA110N legl 806.30 EINSE CONCEN1RAll0N legit) .50 no legl 805.29 Anino (An/Ao)ll/IfLTA tal I 8 log 8/Di EIIRAt1ED An IDEllA tin t=SUMIDEL1A tla Isect

' LE EH INTERVAL CONCENTRAI10N legl tiractionisec)

Iseci Isect In) -

l I- 3.04 3.'774e-3 5.24140e-7 l.904e3 1.60e-9 8.79499 7200 1.50 l 7200.04 6.26965e-7 1.4Ble4 1.90e-8 7.71652 25200 4.50 9.12 1.132e-2 2 18000.00 8.63190e-B 4.844e4 l.l7e-9 8.9?tS7 79200 2.10 4.25 5.283e-3 3 61200.00 2.67894e-7 1.108e5 2.50e-8 7.56875 147600 9.20 18.44 2.315e-2 4

66400.00 2.18392e-7 1.60ne5 2.47e-8 7.6MtA 172800 7.50 15.20 1.887e-2 5 86460.00 1.60154e-7 1.720e5 1.44e-8 7.84244 172800 5.50 11.14 1.384e-2 6 86400.00 3.20?oBe-7 l.7:8e5 5.75e-8 7.244:8 172800 11.00 22.29 2.767e-2

.7 864'80.00 2.91189e-9 6.038e5 l.7e-Il 10.7798 1296000 1.40 2.84 3.522e-3 8 1209600.00 6.34376e-9 2.116e6 3.0e-10 9.51972 362is900 a.13 12.36 1.535e-2 9 2419200.00 1.21893e-8 4.800e6 2.3te-9 8.63568 6134400 18.00 36.47 4.529e-2 10 3715200.00 l .f l

8.47 j , , LE K H INDEl

'/-  %

.'. r o

'A s,:.i . - - ~

I 10CFR61 LE K HANT AIL 4tVSIS ANALYSING FDR CD8 ALT LEACHANT - KRINEAAtllED NATER 12til S W LE DESIGNAll0N DIARETER (Cnl 5.08 10.16 LENGTH (Cul 289.00 NE16HI 16r1 B= Ice 21sec V0 Lune ICCI 205.93 SURFACE AREA (Cn21 202.68 2.03 LE EHANI VOLUME Ill INiilAL CONCENTRAllDN tegl 835.80 RINSE CONCENTRAI10N legill .10 Ao lagt 835.60 lAn/Aollli[' ELTA tal i B log B/Di EllRACTED An An/Ao IDELTA tin t=SUMIDELTA t)n Iseci LE EH INIEkVAL legl tiraction/sec) l Inl tsect Isect CONCENTRA11011 l- 3.3675?e-81.8M'el 6.te-1211.11i2 7200 .10 .20 2.425e-4 g 72M.M 1.3470le-8 1.48.e4 8.7e-12 11.6590 25200 .10 .20 2.425e-4 18000,W j 2

.10 .20 2.425e-4 3.96 m e d 4. W 2. M R M 1 61200.p 792 %

3

.20 2.425e-4 2.00626e-9 1.108e5 2.6e-12 11.5824 86400.6 147600 .10 4

.10 .20 2.425e-4 2.86626e-9 1.60ce 5 4.le-12 11.3258 86460.00 172800 5 .20 2.425e-4 2.56626e-1 1.7?Ee5 4.4e 12 11.!553 172800 .10 6 864 % .00 2.86626e-9 1.728e5 4.4e-12 11.355) 1728 % .10 .20 2.425e-4 7 86400.00 2.0045e-10 6.038e5 7.9e-14 13.1042 1296 % 0 .10 .20 2.425e-4 8 1209600.00 1.403te-10 2.116e6 1.5e-13 12.8!02 1628800 .14 .28 3.394e-4

, g 2419200.00 6.5262e-Il 4.800e6 6.6e-14 13.1785 6134400 .10 .20 2.425e-4 10 3715200.00 o I ", t

.I 7".

N. O, ...

lE u H iNoEi 11.86 1!I C l

. l'

&l }

-' p p

\

6 d N..... -

10CFir61 LEACilANT ANALYSIS ANALYSING FOR SIRONilull LEntilANT -KNINERALIIE811ATER 12[rH SAffLE DES 16NAll001 5.08 51AREIER (CM) 10.16 LENGTH (Cnl 289.00 WEIGHT (6rl 8= ice 2/sec 205.93 VOLUME ([Cl .

202.68

SukFACE AREA ICn21 '

2.03 LEA [HANI VDLUME II) .

IN111AL EONCEMIRA110N lagt 837.50 RINSE CONCENTRAllDit leg /ll .50 ,

l 8 % .49 Aa (eg)

(An/Ael(IIDELIA tal T 3 log 8/Si EllRACTED An AnlAo (DELTA tin t=SulllDELTA t)s (sect LEACH IMIERVAL (egl tiractica/ sect Isecl (sect CollCEllIRAll0li in) j

.50 1.01 1.2lle-3 1.68197e-7 1.8% el I.7e-10 9.78215 7200.00 7200 t 1.01 1.211e-3 6.72707e-8 1.483e4 2.2e-10 9.66202 25200 .50 2 10000.00 4.1533!e-8 4.844e4 3.0e-10 9.52624

.I 79700 1.10 2.25 2.664e-3 1 61200.00 2.01E%e-81.10Be51.5e-10 9.814!8 j .72 1,44 1.744e-3 86400.00 147600 4

2.03 2.422e-3 2.60128e-B 1.600e5 4.le-10 9. Mi74 172800 1.00 3

5 86400.00 2.80320e-8 1.72Se5 4.4e-10 9.3*619 172800 1.00 2.03 2.422e-3 6 86400.00 5.88689e-8 1.728e5 l.94e-9 8.71175 l 172800 2.10 4.25 5.086e-3 7 86400.00 2.60305e-9 6.0!0e5 1.3e-ll 10.8772 1296000 1.30 2.63 3.149e-3 8 1209600.04 5.0059e-10 2.316es 1.9e-12 11.7255 3628800 .50 1.01 1.211e-3 9 2419200.00 3.32482e-9 4.800e6 1.7e-10 9.76430 i

6134400 5.10 10.33 1.235e-2 10 3715200.00 i .

i LEAEH INDEI 9.86 .

' ". . I

. e u'- . f

U O

O U O V

10CFR61 LEACENT ANALVS15 ANALYSING F0k CESlun LEACHAHi -9EMINERAlllE8 UATER 20DH 5?.MFLE DE516NAi!DN 5.08 n!AMETER (Cnl 10.16 LEN61H (CR)

  • 289.00 L'Il6Hi (6ri 8= tce21sec 205.91

~

VOLUME (CC) 202.68 SURFACE AREA (CM21 2.03 LEACHANT 90 Lune til '

INiilAL CONCENTRA110M legl 806.30*

BINSE CONCENTRAi!0N (egIll .50 805.29 Ao (egl IAn/Aal(1/DELTAtal i 9 log 8/Di

' EXIPAC7ED An An/Ao IDELIA tin t= SUM (DELTA tia Isect LEACH IN1ERVAL CONCENTRAi!0N legl tiractientsect (sect Isec) '

tal 2.63 3.271e-3 4.54255e-71.8Me31.20e-9 8.91919

- 7200 1.30 l 7200.00 1.13214e-7 1.483e4 6.2e-10 9.20997 25200 .81 1.64 2.038e-1 2 10000.00 2.83652e-8 4.844e4 1.3e-10 9.99911

.69 1.40 1.736e-3 61200.00 79200 3 1.01 1.258e-3 1.45595e-8 1.100e5 7.6e-Il 10.1194 1476M .50 4

86400.00 1.45595e-8 1.600e5 1.le-10 9.95978 172800 .50 1.01 1.259e-3 5 864M.00 1.45595e-B 1.728e5 1.2e-10 9.92521

.50 1.01 1.258e-3 86400.00 172500 6

1.01 1.250e-3 1.45595e-B l.728e5 1.2e-10 9.92523 172800 .50 7 86460.00 1.55994e-9 6.039e5 4.8e-12 11.3219 1296600 75 1.52 1.887e-3 8 1209600.00 1.24795e-9 2.116e6 1.2e-ll 10.9120 3628800 1.20 2.43 3.019e-3 9 2419200.00 1.55757e-B 4.800e6 3.70e-9 8.42297 6134400 23.00 46.60 5.787e-2 10 3715200.00 a

9.06 LEACH INDEI a .!

U v

J h

) (~ .

v s

4 10CFF61 LEACHANT ANALYSIS ANALYSING FOR C004Li

' LE KHANT -DEMINERAltlE8 HATER 200H SAMPLE DES 16N4I104 DIAP.E1ER ICR) 5.08 LEh61H l[M) 10.16 i

i WEl6Hi 16r) 289.fie 8= tcs2/sec .

! ' 205.91-V0 Lune (CCI '

SUFFACE AREA ILR21 202.68 LEEHANI VDLUME III 2.03 INiilAL CONCENTRAI10N legl 835.84

' .10 RINSE CONCENIRA110N legill Ao leg) 815.60 An/Ao (An/AalillDELTA tal i D log flh IDELTA lla t=SUMll' ELTA tin EllkAtlE0 An LEEH INTERVAL legl tiraction/seti Isec)

(sect (sect CONCENTRAll0N Inn

.10 .20 2.425e-4 3.36752e-8 1.80fiel 6.6e-12 11.1792 1200.00 7200 i .20 2.425e-4 1.3470le-8 1.4Ble4 8.7e-12 11.(590 IBfXi0.00 25200 .10 2 3.96119e-9 4.844e4 2.5e-12 11.60E1 19200 .10 .20 2.425e-4 f 3 61200.00

.30 .20 2.425e-4 2.8062Ee-91.l(Be5 2.8e-1211.5454 86400.00 147600 4

.10 .20 2.425e-4 2.80626e-9 1.600e5 4.le-12 II.18E8 86400.00 172800 5 2.80626e-9 1.728e5 4.4e-12 11.3553 172800 .10 .20 2.425e-4 6 86400.00

.10 .20 2.425e-4 2.80626e-9 1.722e5 4.4e-12 11.3553 86400.00 172800 7

.10 .20 2.425e-4 2.0045e-10 6.03Be5 7.9e 14 13.1042 1209600.00  !?96000 4-8 1.0022e-10 2.116e6 1.5e-14 13.1215 3628800 .10 .20 2.425e-4 9 2419260.00

( 1.40 2.84 3.394e-3 9.1367e-10 4.800e6 1.3e-Il 10.8861 3715200.00 6134400 10 LEKH INDEI 11.66 L

C

G -

tr9 E*4 ene trl eft a== er O e.

== C a == er em O.sCh r-# M Pam t> F-8 a3 P4 N ee grt use CD St P== O O =O af't (P* W"a W1 O

am Ga da (= a *M e ==o EP=

  • F== =ad e me e o Go O CF=e CP*o e=* Ep*e == em EP*O e p* iP* == =e G* W*
  • me O OO

== == ee .

e emm em o@ O. == N . ==

e e e o e e .e e e s e e es e ese==es es es es es P=s es re P= es O e e e a @e ==e ese p== === === == N e Oe e es au*

e e-o N e pee er agr erg erg WS gry W9 .c =d3 ase es *es e- *

  • as eur CE3 es es O CEa se es as CD 48 ess Se es e,s e1 ED aum O O e4 t =4 9 === b^

>= O"*

r=.= . e me ae de. e=

v ese me = a.3 . -O.

=== me ogp es eep ame em es a

P=m WD GB eCD W a ED e GB e EP* e EP*e IP" e

e e o to es of e# 48 G8 48 48 48 48 P== gy= es= er ear aum t=. (Es N

.Ce .mm.

p=.

Cpm GB P== =43 =O *O ame CP* O u -o P m e-= =.O. e-o me >*s e/4 ag gp O O Oe-o eb Q 6 eft SB N P==

spo eW* ar *Er er* O e "sp*

e.3 a === -e f==

e e * * *

  • e O*

C = e.gb e= me == == === a=e M If3 O ese

==. -se

== ee

=== u ano de

-=.

ak.

M E s ee 3 >=

M M M P1# M P89 P't Pi P9 N # # # # # #

es es ed es es es es e, e e t es E#9 a== e-a q O e-o 4/1 sp.

sts == is eg .e.s. == == -e e-a ==

>. m == =====ene amo me === -eem em Paa GD M l'** f*8 N (=4 N s g3. m 4 G LeJ C

og N e N l'4 e e e e e e N. -ee

.e sie === e-o aos ==. es g3 g e-an eg as=.e

-e w K @

=

k E 4 te O. E m go .e me == e== ee me === e-o gne eme f

3 t-.3 ED ==

  • E =* G O* O
  • O O OOe e e Oe Oe e es3e tf5 e === === = = = * = ===e T M === *e a=e e'*

% et.e =X=W h,a,e e#9 e u

> 0 &

  • un e

We  % 3 G

mcB N sd. 3 S S ==* O O 4.am 4 4 he bea e =

  • O O C= O O O O esa ee des Z >= 4 e O LJ eE

=

uM esa ef3 e tele tf3oW1e t#'3 e tr)e W1 e P9 f==

= se mz o

has M 2 eA W o== bad me tea O.3 4

i S O OOO c, O O O O y> O O o

e. O

=4 (D O OG3cea G3 O OG3O eE' ene N es e4p= Pa= N sN rw =0 CD er P== tel ref Pun er Pu= Pan P== CP* e F89 88 a= ee aim a=n N t=O ame s= een me M ee he e-a es te.a Ga n0

=s,9 5

m

\

es I ese mmeae-m-C ===

O =(a

.- o esl arp ere -

a C OO O OO eeeeOOO. O O.

O. e O. e O O. eO C3 O

O G

e4 telOe == CeO*

  • G"*

Q trl e4 N e

r==

pas e e

=O so

.e om.

4 es u O

.O O OO -

O OOe O O =De O OO O O O O O ==

l j

G3 O O r4 - N er er es* =P -d N es N N N e sus 6e we ==s e.43 -4 -O -O CP= (Pm trB '

oJ ** Pam LD en gC3 GB CD GB CD O ** **

LaJ N er Pa=

O a=e N P81 4 4

l 1

sue - e

% OM

  • =m

==e ene e

a ee E

w- c3

'='

3 N - er ==

O e'*

WW E E pm* 4 Dup W LaJ 4 === E E sz J

K num s,ma w J M pm me 423 E g

=== e a a=. em. - 4a s d'5 mmJ hae o

M Dn C3 se,n .-.

(11 ==

4.eJ E se E-.A 4J3 Ua a og w2 sa e-.

C ==* N fu9 er eft =O f==

EB O* O-e JK me Gb M ** ** >=

2 aa4e Q

en E ==

=

  • \ ia.a tad
    • x.-lE, Ehadv J n .aJ u== ag Z ez esa== h e

-e T

"g w

g E LJ3" Er s e e.J 4m eS m ~ll3 ge. s ,) a=ee=*

.J en eE 4 gaa Xa O

  • E =-= had WQ ::::p nea 3 d

4M S J de 3D 443 md e'= ="IE E *E ne.d ed 9

) ) -) -) .) ) ) -) D ') ) -) n 9 .i Q .)

.e . . , .

.. ...e e

..e . -.. . . =

U's > pa v

l 1

i V e V V

100F561 LEACHANT ANALYSIS y ANAL 1 SING FOR CESIUR LI E HANT - SALINAIES T

SC41 L SAffLE DESIGNAll0N 5.08 IIAMEftR ICnl 10.16 LENG1H l[R) 289.00 y: NEl6HI 16tl 8= lts2/sec 205.93 -

VOLUnE ICC) 202.'68 SuhFEE AREA 1[M21

  • 2.03 g LEEHANT V0 Lune lil l 806.30 INIIIAL EDEENIRAll0N tegl BINSE COE ENIAnil0N lagfil .50 805.29 v Ao legl D tog 8/Bi An An/Ao lAnI8d ilII(LIA tal i t=SURILELTA tla EliRACIED Isect IDELTA tin legl liraction/sec)

LEEH INTEkVAL Isect CONCENIRAll0N (sec) d in) 2.365e-3 3.2846te-71.8Mel 6.le-10 9.20682 7204 94 1.90 12h0.00 8.554e-3 4.75220e-7 1.481e4 1.09e-8 7.94399 i 1 3.40 6.89 25200 9.04399e-7 4.844e4 1.28e-7 6.89116

' 18000.00 44.57 5.535e-2 2 22.00

s. 79200 5.82378e-7 1.108e5 1.22e-7 6.91427 61260.00 40.52 5.032e-2 3

147600 20.00

' 86400.00 17.22 2.138e-2 2.475tle-7 1.600e5 1.18e-8 7.49789 4

172800 8.50 86460.00 7.09 8.806e-3 1.01916e-7 1.728e5 5.82e-9 8.23503 C 5 86400.00 172800 3.50 4.36784e-7 1.728e5 1.07e-7 6.970i9 6

172800 15.00 30.39 3.774e-2

' 86400.00 1.510e-3 1.24795e-9 6.036e5 3.0e-12 11.5158 7 .60 1.22 1296000 9.1517e-10 2.316e6 6.!e-12 11.2414 12fe9660.00 2.214e-3

O 8 2419260.00 1626000 .88 1.78 7.548e-3 2.03155e 1 4.800e6 6.4e-Il 10.1922 i 9 3.00 6.08 6134400 3715200.00 to a C 8.66 l

G. LE EH INDEI f

' I 4

e - ,

e me e

\ -

Cp= c .O ar ea't ae == ar o men o sP- Cs er Go en sZs = == rPa grg ep gr3 eri pa e ce se -em o om..

==

e .'m P e r8 ed e Oo P4e Pm rum === <G er Pam 4' e =O en O aus O e e Me Ep. Me O=* GP=e e CP* N O == ==o e=e GFm S= G=

ame N === O OO-- 4*,- =*

. == - == == O. - @e o e

e e .e e e 8 e e e S e 48 es as es as es es e8 es P=.de Pam e Pa= e Pun e ere er r e Pam o e e ere =Ge uma. W trl =* l'*e ** eur tM N tr3 Pat er er er's tr1 tr9 tr9 trl -O -O een er es sur es es as es es es es es M C Er# CD CI3 *O "b *

& O **'t N e>*

gem es C= CD eEP Ce one Pan P t'am oe P""= at M eumaame Or3 eft e e e e

== 63 ese amo er e geer e as= == =O N er MW M M W W G3 O= Om @ e e o e e a e m

C e

es ===

o es e

.es es es P== W es ar cp es es p'= W O me ame ds es Pe was O O =O tr1 e= C* tri =*

G3 Pm a=* ED, C G3, tJ er 4:. @= O f*4 C es g= gn N-. O ei== ele G3 er O .e en =r=

e MM e me o oe

@= -e s === e e === e tr3 e P=e g

tr'8e **e == N N == N tr1 40 *e

==.G

== nmd

.e W

4.

em 8e e eum

=_

er edP s*t M 98% M P89 e t e #

P9# N N #

da

=

e e e es es as es as es e

es es es an 4 0 Ep* trD er P== %N .see =O EED e-o

  • =.J M P== N =e =O Pdb ED P=. er es) M

>= e ===

Me W ePd9e P'9e tr3o e89 e N 3 er ==e s4 and C e e e e C M >= 6 Q 6 set N === a=e e=e == N =e e-o N 63 t==S ese In @

a=*

44. S We =4 -O tM O. Pam P9 =e e tr1 tr3 e-o gy. ere =

o S S == N O e e a G3 W (S Pat N G P==

  • gn .=.=e e-o eE E e e e ese ame me we amme t.a.Jd en LJ D= 9 es
  • gm

=e

>= === X

-O N O K e ===

O OO M.e. 4 4 u m.aJ n s= =sa N tB 4 X == s== 6 -O O Ep Pa= Pm Pm G3

=e es* Pam Pem erg sp

P==

  • e e O 4.J 63 m e-o e e e e g%e gr3 gym

== 6 4 = . e e knJ se a g E and o- ha.s se tad L.3

.e O

O N N N 6 oOd6"*O d"*

O O OOOO OO OOO

=G St G3 G3 O G3 er end =G G.s eW*

Pan th O= P'm N N N CF* N 881 4 N Pus er Pm Pam e N -43 =e a== ===. ==e ano e's P'm=ma

=== P4 =G a u haJ W s3 efe

==s E

.a se ens o 4"* OO O O O OOO e

3 m OM G3 pa OO c O @=e

43=

e Oe EF=e -e O'* e=

On. m. eO o e e ED s=n C Oe OG3 e o EER D

e e D

s e sJ OOe O OGe ON Oe O O eO O O*W*O er OOe oO OOe OOO QO  %,Go O Oe O 9 a== &,O O pi est 4 es esa er =da N N e (E3 >= est N 04 N a == N. G3 Pan a= =ce -e3 =c as a.P- CP= t#1 had == =d3 GB G3 m G3NOer=== N =

O amp

=m (und P'1 m ,e dEm

@ ane G **=

== ese G

e =

E a=. e== w Q N s ==

Omme g == gg g-=

>= 6.s taJ >= 4 .,J 4 w E E E 6 E e= "'l3 had e-4 -si O E } me

= 4J mi= t.a.s Q X i.e.s m t.a4 WE En w ==C t===. L E h.a em s 3J eS *== eaE

~3p C:3 W had w ===

e=e N Pg er in egg pe, gy gye ==O s:D 3

haJ s E CE ==

83 Q == *=*

E.s ** ** ==* had E 4 J h.D .m=

ha cp Z a e==

l.a.J seJ e== T >=2 Ct.4J eg Z L.J 4 om LaJ G 2 t3 ag 4 C LD 40 3,,J w 4.J >= us w og a=e E C.J q

e e,g had

~

E == O nsJ ed E as E - Q Gn"3 aC == ted t.J in GB ad E 3> e

=Je4 on M eG mi

, .e, .e ,. .

- . e.

. . . e .

ee . . ..

. - - . -. - --- .- - - -- - . , . - - _ _ - . - - - . - - - - _-o .- L .-- - . - . . _ _ . -

Y m V

- u V

! V ', '

10CFF61 LEACHANI ANALYSIS 4NALYSING FOR STRONTIUM y

LEACHANI - SALINAIER I 80H -

l y SAMPLE DES 16NA110N 5.08 *

! SIAMETER (CR) 10.16 LIN61R (CM) 7 289.00 j NEl6Hi (Brl 8= tce21sec 205.91 VOLUME (CCI 202.68 SURFACE AREA (CM2) 2.01

(; LEACHANi VOLUME fil ,

IN111AL CONCENTRAll0N legl 837.50 RINSE CONCENTRAll0N (agfil .50 836.49 g Aa leg) i D log B/Di An AnIAo (An/Acltl/KLIAin)

EIIAACTED Isec)

IDELTA tin t=SUMIK LIA tia (fraction /sec)

' LEACH IN1EEVAL CONCENIRA110N (egl '

(sect (sec) tal

y 8.40984e-11.8%el 4.lle-9 8.lE421 2.50 5.07 6.055e-3 7200 7290.

4.25 5.086e-3 2.82571e-7 1.463e4 3.84e-9 8.41552 1

25200 2.10 2

18000.00 6.89 8.235e-3 1.34557e-7 4.844e4 2.84e-9 8.54607 3.40 a 61260.00 19200 6.28 7.508e-3 8.69017e-B l.108e5 2.7te-9 8.5c662 1

3 147600 1.10 86400.00 15.20 1.817e-2 2.10246e-7 1.600e5 2.29e-B 7.61962 1

4 1720 % 7.50 5

96600.00 0.10 9.688e-3 1.12111e-7 1.122e5 7.05e-9 8.15207

q. 1728M 4.00 l 864%.00 12.16 1.453e-2 1.68117e-7 1.72?e5 1.59e-8 7.79?EB 6

172800 6.60 06400.00 19.84 2.252e-2 1.86218e-8 6.018e5 6.Be-10 9.16812 7

1296000 9.30 8 1209600.00 16.01 1.913e-2 7.90925e-9 2.316th 4.7e-10 9.12814 1628800 7.90 1

t' 9 2419200.00 19.65 2.349e-2 6.32368e-9 4.600e6 6.2e-10 9.20590 I

6134400 9.70

' 3715200.00 10 3

.I C i 4 8.52 d LEACH INDEI 5

d' ,

j -

l

o o D -

10CFR61 LEACHANI ANALYSIS ANALYSING FOR CESIUtt LEACHANI - SALINAIER ,

' IDH SAMPLE DESl6NAll0N 5.08 I,lAMETER ICR) 10.16 LEN61H ICMI 289.00

' NEl6HI 16rl 8= tce215ec 205.93 VOLUME (CC) 202.68 SURFACE AREA ICM23 2.03 LEACHANT VDLUME ll)

INillAL CONCENIRA110N legl 806.30 RINSE CONCENIRATION legIll

.50 805.29 Aa Ing) i D tog 6/Di An AnIAo IAn/Ao Hl/ DELTA in) t= SUM (DELTA tir. EXIRACIED Isett IDELTA tin legl tirection/ sect LEACH INIEEVAL Isect CONCENIRAll0N (sec) tal 2.23 2.767e-3 3.84370e-7 1.860e3 8.6e-10 9.06429 7200 1.10 i 7200.00 1.258e-3 6.9BE34e-8 1.481e4 2.!e-10 9.62900

.50 1.01 16000.00 25204 2.0554!e-8 4.844e4 6.6e-ll 10.1721 2 .50 1.01 1.258e-3 79200 1.45595e-8 1.108e5 7.6e-Il 10.1164 61200.00 1.256e-3 3 .50 1.01 86400.04 147600 1.45595e-8 1.60ne 5 1.le-10 9.95878 4 .50 1.01 1.250e-3 86400.M 1728M 1.45595e-8 1.728e5 1.2e-10 9.92523 5 .50 1.01 1.258e-3 66400.M 112800 1.45595e-8 1.728e5 1.~2e-10 9.92523 6 .50 1.01 1.258e-3 86400.00 172800 1.03996e-1 6.038e5 2.le-12 11.6741 7 .50 1.01 1.258e-3 1296000 8.2157e-10 2.316e6 5.le-12 II.2951 1209600.00 1.9E8e-3 8

3628800 .79 1.60 9 2419200.00 364.68 4.529e-1 1.21893e-7 4.800e6 2.31e-7 6.63588 6134400 180.00 3715200.00 10 1.84 LEACH lNDEI I

f

O o i

a J

10CFE61 LEACHANT ANALYSIS

  • ANALYSIN8 FOR COBAli LE,ACMNT - SALINATER IDH SAMFLE DESIGNATION 5.08 BIAMETER 10M1 10.16 1

LENSIN (CRI NEl6HI 16rl 289.00 i B* Ice 21sec VOLUME 1C01 205.93

} 202.68 SURFACE AREA ICM21 '

2.03 l LEACHANT VOLUME II)

INillAL [0NCENTRAi!0N legl 835.80 RINSE CONCENTRAllDN leg /11 .10 Ao legl 835.60 AntAo IAn/Acl(1/K LIA tal i B log B/li EXTRACTED An IDELTA tin t=SUfflDEll4 lla (sec)

LEACH INTEkVAL tegl lirection/ sect Isect Isect CONCENTRA110K tal

.18 .34 4.364e-4 6.06153e-B l.800e3 2.le-Il t0.6626 7200.00 7200

' l .11 .22 2.667e-4 1.4817te-B l.481e4 1.le-Il 10.9761 10000.00 25200 2

.30 3.637e-4 5.94268e-9 4.844e4 5.5e-12 11.25!?

61200.00 79200 .15 3

.20 2.425e-4 2.80626e-9 1.10Ee5 2.8e-12 11.5'84 147600 .10 4

26400.00 3.64814e-9 1.60ne 5 6.9e-12 11.1609 1T2800 .11 .26 3.152e-4 5 26400.04 2.8062te-9 1.720e5 4.4e-12 11.3553 172800 .10 .20 2.425e-4

' 6 86400.00 2.80626e-9 l.720e5 4.4e-12 11.3553 172800 .10 .20 2.425e-4 7

E6400.00 3.0067e-10 6.032e5 1.6e il 12.7520 J

.15 .30 3.637e-4 120i600.00 1296000

> 8

.20 .41 4.849e-4 2.0045e-10 2.ll6e6 3.0e-11 12.5204 2419200.00 3628800 9

3.44 4.122e-3 1.10945e-9 4.8%e61.9e-Il 10.7176 6134400 1.70 I .10 3715200.60 LEACijINKl 11.43 i .

l e

u O O' 10CfR61 LEACHANI ANALYSIS ANALYSIN6 FOR STRON111M LEENANI - SALINAIER IDH

< SAMPLE DESIGNATION 5.08 8tAMETER (Cal 10.16 LENGIN (CRI 289.00 NE16Hi 16r) 8= lis2/sec 205.91 V0 Lune ICC) 202.68 EUFFACE AREA IEM2) 2.03 LEACHANI V0 Lune 11)

INiilAL CONCENTRA110N Ing) 837.50 LINSE CONCENTRATION legill

.50 836.49 Ao lagt I 3 log 8/Di ,

As An/Ao (An/Aoill/DEllA tal 155URl0 ELTA tin EliRACIED Isect lbELTA lin lagt tiractionisect LEACH INTERVAL (sect CGNCENIRATION

(*! (sect 7.70 9.204e-3 1.27810e-6 1.800e1 9.54e-9 8.02051 72 % 3.80 7200.00 6.055e-3 3.36194e-7 1.483e4 5.44e-9 8.26406 1 2.50 5.07 18000.00 25200 9.89393e-8 4.844e4 1.54e-9 8.81314 2 2.50 5.07 6.055e-3 61200.00 79200 2.80328e-B 1.100e5 2.8e-10 9.54935 3 1.00 2.03 2.422e-3 147400 1.23344e-7 1.600e5 7.Gie-9 8.10 84 66400.00 1.066e-2 4

172800 4.40 8.91 5

86400.00 4.86 5.8tle-3 6.72787e-8 1.728e5 2.54e-9 8.51576 172800 2.40 6

86400.00 5.27 6.297e-3 7.28853e-8 1.728e5 2.98e-9 8.52624 172800 2.60

' 864%.00 7.50 8.962e-3 7.40667e-9 6.038e5 1.le-10 9.96868

- 7 1296000 3.70 8 1209600.00 2.43 2.906e-3 1.20141e-9 2.ll6e6 1.le-ll 10.9650 3628800 1.20 9 2419200.00 9.12 1.090e-2 2.93367e-9 4.800e6 1.3e-10 9.87301 6134400 4.50 3715200.00 10 9.07 i LEACH INGEI

./

l f

. . j i

V

,t V

s. '

V ~

.1 4 10CFh61 LEACHANI ANALYSIS V ANALYSING FOR CESlun LEACHANI -EnlNERALIZEl NATER

. SAMPLE DES 16MA110N 7EE V CIAMETER ICR) 5.08

. LENGIN (Cnl 10.16-NEl6Hi 16rl 245.00 v V0 Lune (CCI 205.93 8= Ice 2/sec SURFACE AREA (CH21 202.68 LEACHANI VOLUME Ill 2.03 .

i C INiilAL LONCENIR4110N legl 514.50

RINSE CONCENTRA110N leg /II .50 Ao lagt 513.49 LEACH INTERVAL IDELTA tia t=SunIDELIA tin EliRACTED An An/Ao (An/AoIll/ DELTA tal i D log B/Di Inn (sect Isect CONCEkikAll0li legl tiraction/ sect Isec) g
'It,

! 7200.00 7200 .99 2.01 3.906e-3 5.42516e-7 1.800e3 1.72e-9 8.76456 t* 2 18000.00 25200 .37 .75 1.460e-3 8.11034e-8 1.483e4 1.2e-10 9.49970

' v 3 61200.00 79200 .50 1.01 l.973e-3 3.22351e-8 4.844e4 1.6e-10 9.78722 4 86400.C0 147600 .50 1.01 1.973e-3 2.28332e-8 1.108e5 1.9e-10 9.72755 5 86400.C0 172800 .50 1.01 1.973e-3 2.28332e-8 1.60de5 2.7e-10 9.56794 v 6 86400.C0 172800 .50 1.01 1.973e-3 2.28332e-B l.728e5 2.9e-10 9.534!9 I

7 86400.00 172800 .50 1.01 1.973e-3 2.28332e-8 1.72?e5 2.9e-10 9.53439

. 8 1209600.00 1296000 .51 1.03 2.012e-3 1.66356e-9 6.039e5 5.4e-12 11.0661 v 9 2419200.00 3628800 .50 1.01 1.973e-3 8.1547e-10 2.316e6 5.0e-12 11.3016

,- 10 3715200.00 6134400 .50 1.01 1.973e-3 5.3100e-10 4.800e6 4.4e-12 11.3576

'T ,

D

. LEACH INDEI 10.03 9

.h '

i-l i _ _ _ - - . _ _ - - _ - _ -

O O O V

V C

5

.< L.

  • G 10LiR61 LEACHANI ANALYS!$

i ANALYSING FOR COSALT U LE K HANI -9EMINERALilEl NATER SAMPLE DES 16 Mall 0N 7EE

, d- 8tAMETER (Cnl ' 5.08 LENGIH ICMI 10.16 NElGHI 16r) 245.00 205.93 8= ice 2/sec

(, VOLllnE (CCI

> SURFACE AREA ([M21 202.68 LEACHANI V0 Lime lil 2.03 G IN!ilAL CONCENIRAllDN legl 532.60 BINSE CONCENIRATION legill .10 Ao legl 532.40

'J)

, t' EIIRACIED As An/Ao (An/AalilIDELTA tal 1 9 tog BIDi LEACH IN11RVAL IDELIA tin t=SUNIDELTA tin lagt tiraction/seci (sec)

In) (sect Isec) CONCENTRA110N g 5.I8532e-81.E#e31.6e-Il 10.7876 7200 .10 .20 3.805e-4 I 7200.00 25700 .10 .20 3.805e-4 2.ll413e-8 1.421e4 2.2e-Il 10.1675 2 16000.00 79200 .10 .20 3.805e-4 6.21602e-9 4.844e4 6.le-12 11.2116 c' 3 61200.00 197600 .10 .20 3.805e-4 4.40443e-9 1.100e5 7.0e-12 11.1569

- 4 86400.00 172800 .10 .20 3.805e-4 4.40443e-9 1.600e5 1.0e-Il 10.9973

  • 5 B6400.00
, 3.005e-4 4.40443e-9 1.728e5 1.le-Il 10.9637

' 86400.00 172800 .30 .20 C- 6

.20 3.805e-4 4.40443e-9 l.728e5 1.le-Il 10.9637 86400.00 172800 .10 7

1296000 .10 .20 3.805e-4 3.1460e-10 6.030e5 1.9e-13 12.7126 8 1209600.00 1628800 .10 .20 3.805e-4 1.5730e-10 2.116e6 1.9e-ll 12.7310

' G 9 2419200.00 6134400 1.60 3.24 6.089e-3 1.63886e-9 4.600e6 4.2e-Il 10.3768 .!

. 10 3715200.00

. V, W

LE ACH INDEI 11.26 9 I

)

[U I

10CFE61 LEACHANI ANALYSIS ANALYSING FDR SIRON!!UN LEACHANI - K RIERAlllEl NAIER 7EE SAMFLE DES 16NAll0N 5.0B DIAMETER ICn)

LENGTH ICn) 10.16 WEIGHI 16tl 145.00 '

a 205.93 b ice 2/sec VOLUME ICC)

$UliFACE AREA ICM21 202.68 LEACHANI VOLUnE III

' 03 IN111AL CONCENTRA110N legl ut.60 -

RINSE CONCENIRAll0N legIll .50 Ao lagt 531.59 An/Ao IAntAalll/ DELTA tal i O log BIDi E11RACTED An (DELIA tin t:SUNIDELTA tin Isect LEACH IN1EkVAL Isect COEENIRAT10N lagt ifrutionisec)

Int Isect

.50 1.01 1.106e-3 2.64E69e-7 1.800e1 4.le-10 9.iE939 7260.00 7200 i .50 1.01 1.906e-3 1.05B67e-7 1.4Ble4 5.4e-10 9.26825

. 18000.00 25200 2

.50 1.01 1.906e-3 3.ll375e-B 4.844e4 1.5e-10 9.81731 61200.00 79200 3 2.20557e-B l.100e5 1.7e-10 9.75764 147600 .50 1.01 1.906e-3 4 86400.00

.50 1.01 1.906e-3 2.20557e-B l.600e5 2.5e-10 9.51801 B6400.00 172800 5 1.906e-3 2.20557e-B l.120e5 2.7e-10 9.56448 172800 .50 1.01 6 B6400.00 '

.50 1.01 1.906e-3 2.20557e-B 1.729e5 2.7e-10 9.56449 B6400.00 172000 7 1.5754te-9 6.638e5 4.9e-12 11.3134 1296000 .50 1.01 1.906e-3 8 1209600.00 7.9770e-10 2.316e6 4.7e-12 11.3117 9

3628800 .50 1.01 1.906e-3 9 2419200.00 5.1292e-10 4.BN e6 4.le-12 II.!B77 l 6134400 .50 1.01 1.904e-3 10 3715200.v0 l

.n :w  :: ::

t

- . l

- - . . _ . = . ,

V .

V t

10CFF61 LEACliANI ANALYSIS ANALYSING FOR [ESlull g LEACilANI -KMINERALilEl NAIER SAMPLE DES 16NAll0N 12EE BIAMEIER (CM) 5.08 ,

10.16 c LENSIN (EMI 245.00 NEIGHT 16rl VOLUME (CC) 205.93 i= Ice 2/sec y SukFACE AREA (EM2) 202.68 LEACHANT V0 Lime III 2.03 INiilAL [0NCENIRAll0N Ing) 514.50 g RINSE CONCENTRATION leg /ll .50 -

Ao legl 513.49 LEACH IN1ERVAL IDELTA tin t=SUMIDELTA tin ElihA[iEB As An/Ao (An/Aoill/KLIA tal i 0 log SIli y

ini Iseci Isec) CONCENIRAllDit legl tiraction/ sect Isect i 7200.00 7200 .B2 1.66 3.235e-3 4.49357e-7 1.800e3 1.18e-9 8.92861 v

2 18000.00 25200 .26 .53 1.026e-3 5.69916e-G l.493e4 1.6e-10 9.90615 j 3 61260.00 79200 .50 1.01 1.973e-3 3.22351e-B 4.844e4 1.6e-10 9.76722

4 86400.00 147600 .50 1.01 1.973e-3 2.29332e-8 1.10Se5 1.9e-10 9.72755 5 B6400.00 172800 .50 1.01 1.973e-3 2.28332e-B 1.600e5 2.7e-10 9.56794 6 86400.00 172900 .50 1.01 1.973e-3 2.28332e-8 1.726e5 2.9e-10 9.5?439 7 06400.00 172800 .50 1.01 1.973e-3 2.28332e-B 1.72ee5 2.9e-10 9.53439

! 8 1209600.00 1296000 .67 1.36 2.644e-3 2.lB54Le-9 6.030e5 9.4e-12 11.0291 9 2419200.00 3626800 .50 'l.01 1.973e-3 B.1547e-10 2.316e6 5.0e-12 11.3016 l 10 3715200.00 6134400 .50 1.01 1.973e-3 5.3100e-10 4.B W 6 4.4e-12 11.3576 1

l 6 10.06 LEACHINLEt v

,a l

b '

o l

> \ )

J >  ;

s 100FF61 LEACHANI ANALYSl$

ANALYSING FOR C06ALI LEACHANI -DENINERALl7ED NATES .

~'

SAMPLE DES 16NAll0N 12EE '

DIAMETER Ital 5.08 LEN61H IEMI 10.16 NEl6HI (Grl 245.00 .

VOLUME (CCI 205.91 8= lts2/sec

$URfACE AREA (CM2l 202.68 LEACHANT VOLUME lil 2.03 INiil4L CDHCENTRAll0N lagt 532.60 RINSE CONCENTRAll0N leg /II .10

~

l Aa (ag) 532.40 LEACH INTERVAL IDELIA tin ' t=SUMIDELTA tin EliRACIED in An/Ao (An/Ao)ll/LELTA tal i B log B/Di

~

lal (sect (sect CONCENTRAi!0N legl tiraction/sec) (sec)

I 7200.00 7200 .10 .20 3.865e-4 5.28532e-8 1.800e3 l.6e-Il 10.7876 2 18000.00 25200 .10 .20 3.805e-4 2.ll413e-8 1.463e4 2.2e-Il 10.6675 3 61200.00 79200 .10 .20 3.805e-4 6.21802e-9 4.844e4 6.le-12 11.2166 4 - 86400.00 147600 .10 .20 3.805e-4 4.40443e-9 1.108e5 7.0e-12 11.1569 5 86400.00 172800 .10 .20 3.805e-4 - 4.40441e-9 1.600e5 1.0e-Il 10.9973 6 86400.00 172800 .!0 .20 3.805e-4 4.40443e-9 1.728e5 1.le-Il 10.9637 7 86400.00 172800 .l0 .20 3.805e-4 4.40443e-9 1.728e5 1.le-Il 10.9637 8 1209600.00 1296000 .10 .20 3.805e-4 3.1460e-10 6.030e5 l.9e-11 12.7126 9 2419260.00 3628800 .10 .24 3.805e-4 1.5730e-10 2.116e6 1.9e-13 12.7310 10 3715200.00 6134400 1.90 3.85 7.230e-3 1.94614e-9 4.800e6 5.9e-Il 10.2295

~

LEACN INDEI II.24 e

U Wh.e

R f~%

U . b V

V 10CFP61 LEAC@NT AELVSIS U ANALYSING FOR STRONilVM LEACHANT -KMINERAlllft MIER

C SAMPLE DESIGNAllDN 12EE 5.00

'- IIAMETER (CR)

LENGTH (CR) 10.16 .

G WEISHI (Srl 245.00 205.93 b ice 2/sec t

VOLUME ICC)

SUEFACE (cEA (CH2) 202.68 LEACHANI VOLUME III 2.01 v

IN!!IAL CONCENTRAllDN tag) 532.60 RINSE CONCENTRAi!JN (eg/l) .50 '

y no (ng) 531.59 .

An An/Ao (An/Ael(1/ DELTA tal i i log B/0 IDELIA tin t=SuntDELTA tis ElinACIEB LEACH INTERVAL (sect (sect CONCENTRAll0N legl (fraction / sect y in) (sect 7200 .50 1.01 1.906e-3 2.64669e-7 1.800e3 4.le-10 9.35939 I 7200.00 25200 .50 1.01 1.906e-3 1.05857e-7 1.4Blet 5.4e-10 9.26625 2 18000.00

{ v .50 1.01 1.906e-3 3.ll375e-B 4.844e4 1.5e-10 9.E1731 61290.00 79200 3

147600 .50 1.01 1.906e-3 2.20557e-8 1.108e5 l.7e-10 9.757t4 4 86400.00 172800 .50 1.01 1.906e-3 2.20557e-B 1.600e5 2.5e-10 9.599(e3 y 5 86400.00 172000 .50 1.01 1.906e-3 2.20557e-B 1.720e5 2.7e-10 9.56448 6 86400.00

.50 1.01 1.906e-3 2.20557e-B 1.72Ee5 2.7e-10 9.53449 7 86400.00 172804 1296000 .50 1.01 1.906e-3 1.57541e-9 6.6!!e5 4.fe-12 !!.3134 1209660.00 1 d' 8

.50 1.01 1.906e-3 7.8770e-10 2.ll6e6 4.le-12 11.3317 9 2419200.00 3628900

.50 1.01 1.906e-3 5.1292e-10 4.800e6 4.le-12 11.3817 10 3715200.00 6134400 O LEACH INSEI 10.10 l .

g l

C ,

e b .

l O C '

(.))

)

V V

'I s I

I 10CfR61 LEACHAlli ANALYSIS O ANALYSING FOR CESibn I

LEACHANI - SALINATER 19EE l v SAMPLE DES'16 NATION BIAMEIER ICM) 5.08 i

10.16 LEN6IN ICR) g NE16Hi 16tl 245.M .

v b ten 2/sec '

VOLUPE IECl 205.93 SukfACE AREA ICM21 202.68

  • LEACHANI VOLUME III 2.'03 INiilAL CONCENTRA110N legl 514.50 RINSE CONCENTRA110N leg /II .50 C Ao lagt 513.49 An/Ao IAn/Aaltl/ DELTA tal i B log till t SUNIDELIA tin EliRACIES An L[ACH INiiRVAL IDELTA tin Isect Isect CONCENikATION legl tiraction/seci in) (setl v

4 1.40 2.84 5.524e-3 7.67195e-71.8Mel 3.44e-9 8.45399 72'io. 00 . 7200 1

.50 1.01 1.973e-3 1.09599e-7 l.403e4 5.8e-10 9.2?il6 10000.00 25200

.s 2

.50 1.01 l.973e-3 3.22351e-8 4.844e4 1.6e-10 9.78722

- 61200.00 79700 3

.51 1.03 2.012e-3 2.32890e-B 1.106e5 1.9e-10 9.71635 86400.00 147600 4

.50 1.01 1.973e-3 2.28332e-8 l.60fre5 2.7e-10 9.55794 172800 O 5 86400.00 172800 .51 1.03 2.012e-3 2.3289Be-8 1.728e5 3.f.e-10 9.51719 6 86490.00 172800 .50 1.01 1.973e-3 2.28332e-B l.728e5 2.9e-10 9.53839 7 86400.00 12?6#0 1.20 2.43 4.733e-3 3.91426e-9 6.0!9e5 3.0e-ll 10.5229 1209600.00

V B 3626800 1.00 2.03 3.94be-3 1.63094e-9 2.116e6 2.0e-Il 10.6995 9 2419200.00

) .50 1.01 1.973e-3 5.3100e-10 4.800e6 4.4e-12 11.3576 3715200.00 6134400 10 A

fe LEACH INDEI 9.94 v .?

U

. . I

O > 0 0-V .

r C 10CFE61 LEACHAN1 ANALYSIS ANALVSING FOR COBALI LEACHANT - SALINATER U SAMPLE DESl5NAll0N 19EE DIAMETER (CR) 5.08 LEN6fH (CMI . 10.16 L NEIGHT 16tl 245.00 205.93 8= Ice 2/sec VOLUPE (EC)

SUFFACE AREA (CM21 202.68 .

' O LEACHANI VDLUME lil 2.03

! INiilAL CONCENTRAll0N legl 532.60 j RINSE CONCCNIRAll0N legIll .10 C Ao tegl 532.40 (DELTA lin t=SURIBELTA tin . EliRACTED An AnlAo (An/Aolilitflin tal i 8 tog BlBi LEACH INIERVAL

  • U (se'cl Isect CONCENIRAi!0N lagl ifraction/ sect (sec) ini 7200.00 7200 .10 .20 3.805e-4 5.IB532e-B l.800e3 1.6e-Il 10.7676 1

U 18000.00 25200 .10 .20 3.805e-4 2.ll413e-8 1.48?e4 2.2e-ll 10.6675 2

61200.00 79200 .10 .20 3.805e-4 6.21802e-9 4.844e4 6.le-12 11.2116 3

86400.00 147600 .10 .20 3.805e-4 4.40443e-9 1.108e5 7.0e-12 11.1569 4

3 ,U 86400.00 172800 .10 .20 3.805e-4 4.40443e-9 I.600e5 1.0e-11 10.9973 5

6 86400.00 172800 .10 .20 3.805e-4 4.40443e-9 1.7I8e5 1.le-Il 10.9637 86440.00 172800 .10 .20 3.805e-4 4.40443e-9 1.728e5 1.le-Il 10.i6??

7 G 1209600.00 1296000 .68 1.38 2.588e-3 2.13929e-9 6.03Be5 9.6e-12 11.0476 8

2419200.00 3628800 .10 .20 3.805e-4 1.5730e-10 2.316e6 1.9e-13 12.7310 9

3715200.00 1134400 .10 .20 3.80$e-4 1.0243e-10 4.800e6 1.6e-13 12.7870 10 e

O LEACH INDEI 11.33 I C V .f U

\

1

3 -

J .

e q= 4 = N

. se d> #9 a.e up een go p=.

tre b Pa=

Fe t-e p#o E3 G4 at Ca's g3

- ere se em P- v e su e e-

-d.* == V3 == ec ta.e Ep me" #4