ML18114A663
ML18114A663 | |
Person / Time | |
---|---|
Site: | Surry |
Issue date: | 06/08/1979 |
From: | Spencer W VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
To: | Stello V Office of Nuclear Reactor Regulation |
Shared Package | |
ML18114A664 | List: |
References | |
457, NUDOCS 7906110194 | |
Download: ML18114A663 (188) | |
Text
{{#Wiki_filter:e VtROlNLA. ELECTRIC .AND POWER COMP.ANY RICHMOND, VJHOl:N'I.A. 23261 June 8, 1979 Mr. Victor Stello, Jr., Director Serial No. 457 Division of Operating Reactors PSE&C:CMRjr/cwh U.S. Nuclear Regulatory Commission Washi~gton, D. c. 20555 Docket Nos.: -so-2so- _50:.2a1 License Nos.: DPR-32 DPR~37
Dear Mr. Stello:
. *soIL STRUCTURE "INTERACTION REPORT . "SURRY POWER STATION .;. UNITS 1 AJ.'\fo* 2
-~
- 11 The.staff has required that documentation be provided
*ad( to explain in detail the methodology used in soil structure in-teraction {SSI) *techniques* in the* pipe stress reanalysis effort for Surry Power Station Units l and 2. Accordingly, we are for- *
--_] warding to you the attached document entitled 11 Soil Structure Interaction in the Development of Amplified Response Spectra for Surry Power Station Units 1 and 2." We believe this document .-~l fully satisfies the staff's requirements for completing the docu-mentation effort.* *
- W. C Spencer Vice President - Power Station Engineering and Construction
*
- Services 3
Attachment
-~
- J
"], -~
J
. **-*------- .... .., * - w. - * .,.. ~.. -. -*.- * -
~JI SURRY POWER STATION, UNITS 1 AND 2 I I I I SOIL-STRUCTURE INTERACTION IN THE DEVELOPMENT OF AMPLIFIED RESPONSE SPECTRA FOR I SURRY POWER SIAIION,.UNIIS 1 AND 2 I VIRGINIA ELECTRIC AND POWER COMPANY I I I I June 8/ 1979 s-0 .. 1.eo 'ZS\ L.\-r -to
- S
- 1- q ri qohl\ o JtN I
I ~\.* I I I I STONE & WEBSTER ENGINEERING CORPORATION ~I II
-.1 SURRY POWER STATION, UNITS 1 AND 2 I TABLE OF CONTENTS I Section
1.0 INTRODUCTION
. 1-1 I 2.0 SOIL PROPERTIES ** 2-1 I 2.1 2.2 SUBSURFACE DATA * . SUBSURFACE PROFILE. . . . .. . . . . . 2-1 2-2 I 2.3 SOIL PARAMETERS ** 2-4 2.3.1 Static Parameters * *
- 2-5 I 2.3.1.1 Pleistocene Sands * * * * *
- 2.3.1.2 Pleistocene Clays * * . * * * *
- 2.3.1.3 Miocene Clays. . ***
2-5 2-6 2-7
-I 2.3.2 Geophysical Data **
2.4 MODULUS AND DAMPING PROFILES ** 2-8 2-10 I 2.4.1 Small Strain Shear Modulus * * * * * * * * * *
- 2.4.2 Strain-Dependent Modulus and Damping 2.4.2.1 Summary of SHAKE Analysis. * *
- 2-10 2-13 2-13 I 2.4.2.2 Earthquake Accelerograms * * *
- 2.4.2.3 Soil Profile * * * . . *
- 2.4.2.4 Strain Dependency Relationships * . * * * * * * * * * * * * *
- 2-14 2-15 2-17 2.4.2.5 Strain Compatible Shear Moduli and Damping. * ***. 2-19 I 2.4.2.6 Variation of Shear Modulus * * * * * * * * * * * * * . . * *
- 2-20 2- 23 2.5
SUMMARY
ON SOIL PROPERTIES I
2.6 REFERENCES
2-:25 3.0 GROUND RESPONSE ** 3-1 I 3.1 DESIGN BASIS EARTHQUAKE CDBE) AND OPERATING BASIS EARTHQUAKE COBE) * * * * * * **** 3-1 I 3.2 GROUND RESPONSE SPECTRA ** 3-1 3.3 ARTIFICIAL TIME HISTORY ** 3-2 I 3.4 GROUND RESPONSE SPECTRA AT BASE OF CONTAINMENT 3-3 I 3.5
4.0 REFERENCES
AMPLIFIED RESPONSE ANALYSIS ** 3-,4 4-1 I
4.1 DESCRIPTION
OF THE THREE-STEP ANALYSIS . 4-2 I i I
I SURRY POWER STAT~ON; UNITS 1 AND 2 I TABLE OF CONTENTS (Cont) I Section 4.1.1 Frequency-Dependent Soil Stiffness . 4-2 I 4.1.2 4.1.3 Embedment Correction. Kinematic Interaction. 4-7 4-8 4.1. 4 Interaction Analysis "4-10 I 4.2 STRUCTURAL MODELING * *
- 4-15 4.3 RESULTS. *
- 4-17 I
4.4 REFERENCES
- 4-18 I 5.0 5.1 COMPARISON OF RESULTS.
REFUNDiFRIDAY VS PLAXLY . *
* * * * * * *. 0 5-1 5-1 I 5.2 FSAR EARTHQUAKE VS REGULATORY GUIDE 1.60 EARTHQUAKE. 5-2 5.3 VARIATION OF SOIL PROPERTIES
- 5-3 I 5.4 SAMPLE PIPE STRESS PROBLEMS. 5-4 6.0 APPLICATION OF SEISMIC INPUT TO PIPE STRESS ANALYSIS
- 6-1 I 6.1 AMPLIFIED RESPONSE SPECTRA. 6-1 I 6.2 7.0 BUILDING DISPLACEMENTS **
INVESTIGATION OF THE EFFECTS OF EARTHQUAKES SMALLER THAN THE DBE. 6-2 7-1 I 8. 0. CONCLUSIONS. .. .... . ... ..... . . . 8-1 8.1 USE OF SOIL-STRUCTURE INTRACTION ...... 8-1 I 8.2 SOIL PROPERTIES. ..... ........ ..... 8-1 8.3 GROUND RESPONSE. . ..... 8-2 I 8.4 AMPLIFIED RESPONSE ANALYSIS. . .. . 8-2 I 8.5 COMPARISON OF RESULTS. .. .- 8-3 8.6 APPLICATION OF ARS TO PIPE STRESS ANALYSIS . ..... 8-6 I 8.7 EFFECTS OF GROUND ACCELERATION ON ARS. .... 8-6 8.8 COMPUTER PROGRAM VERIFICATION. . . .. ......... 8-6 I I ii I
I SURRY POWER STATION, UNITS 1 AND 2 I TABLE OF CONTENTS (Cont) I Section Title Page 9.0 APPENDICES . . . * . 9.1-1 I 9 .1 SHAKE. . . * *
- 9,1-1 I 9.2 9,3 PLAXLY REFUND AND EMBED 9.2-1 9.3-1 I 9.4 KINACT. 9.4-1 9.5 FRIDAY . . I. . 9.5-1 I 9.6 CONSOLIDATION TEST DATA CONDENSATE POLISHING DEMINERALIZER . 9.6-1 I
I I I I I I I I I I iii I
I SURRY POWER STATION, UNITS 1 AND 2 I LIST OF TABLES I 2-1 Summary of Geophysical Data I 2-2 Poisson's Ratio - Free Field I 2-3 2-4 Shear Modulus Determinations, Hardin and Black Equations Strain Compatible Soil Properties - Free*Field I 2-5 Strain Compatible Soil Properties - Reactor Containment 2-6 Strain Compatible Soil Properties - Auxiliary Building I 2-7 Strain Compatible Component Soil Properties Turbine/Service Building E-W I 2-8 Strain Compatible Component Soil Properties Main Steam Valve House N-S I 2-9 2-10 Strain Compatible Soil Properties - Containment Spray Pumphouse Strain Compatible Soil p'roperties - Safeguards Building N-S Component I 2-11 Strain Compatible Soil Properties - Fuel Building E-W Component 2-12 Strain Compatible Soil Properties Reactor Containment, First I 2-13 Iteration Values Strain Compatible Soil Properties - Free Field, Gmax .+/-SOY. I 2-14 Strain Compatible Soil properties - Reactor*containment, Gmax .+/-SOY. 5-1 Sample Probelm 706 - Pipe Stress Summary, Psi I 5-2 Sample Problem 1020 - Pipe Stress Summary, Psi 5-3 Sample Problem 1555 - Pipe Stress Summary, Psi I I I I I iv-= I
I SURRY POWER STATION, UNITS 1 AND 2 I LIST or FIGURES I Figure Title 2-1 Plan Location of Borings and Piezometers I 2-2 Site Plot Plan I 2-3 Subsu}face Profiles, Section A-A' 2-4 Subsurface Profiles, Section B-B' I 2-5 Subsurface Profiles, Section C-C 1 I 2-6 Density vs. Elevation for Pleistocene.sands I 2-7 2-8 Water Contents and Atterberg Limits vs. Preconsolidation Stresses in Clays Elevation I 2-9 2-10 Summary of Consolidation Test Data in Miocene Clays Total Unit Weight vs. Elevation for Miocene Clays I .2-11 Summary of Gmax vs. Elevation I 2-12 2~13 Shear Modulus Factor for Sands Shear Modulus Factor for Clays I 2-14 Damping Ratio for Sands 2-15 Damping Ratio for Clays I 2-16 Comparison of Field and Laboratory Modulus Determination I 3-1 Response Spectra-Operational Basis Earthquake 3-2 Response Spectra-Design Basis Earthquake. I 3-3 Spectrum of Artificial Time History at 2 Percent Damping I 3-4 Ground Response Spectra Gmax 3-5 Ground Response Spectra Gmax +50~ I I V I
I SURRY POWER STATION, UNITS 1 AND 2 I LIST OF FIGURES (Cont) I Figure Title .. 3-6 Ground Response Spectra Gmax -50Y. I 4-1 The Three-Step Solution I 4-2 The Boussindsq and Cerruti
.?I Problems 4-3 Idealization of the Basic REFUND Solution for Concentrated Loads I 4-4 REFUND Coordinate System I 4-5 4-6 Kinematic Interaction Generalized Dynamic Model of a Category I Structure I 4-_7 Typical.Displacement Profiles 4-8 Typical Acceleration Profiles I 5-1 Comparison of REFUND/FRIDAY and PLAXLY Res*ults - ARS at Mat I 5-2 .Comparison of REFUND/FRIDAY and PLAXLY - ARS at Operating Floor 5-3 Comparison of REFUND/FRIDAY and PLAXLY - ARS at Springline I 5-4 Comparison of the FSAR and Regulatory Guide 1.60 Earthquakes -
I 5-5 ARS at Mat Comparison of the FSAR and Regulatory Guide 1.60 Earthquakes - ARS at Operating Floor I 5-6 Comparison of the FSAR and Regulatory Guide 1.60 Earthquakes - ARS at Springline I 5-7 Comparison of ARS for Soil Parameter Variations - Horizontal Response Spectrum at Mat - Damp = 0.5Y. I 5-8 Comparison of* ARS for *soil Parameter Variations - Horizontal Response Spectrum at Mat - Damp = 1. OY. I 5-9 Comparison of ARS for Soil Parameter Variations .- Horizontal Response Spectrum at Mat - Damp = 3.0Y. 5-10 Comparison of ARS for Soil Parameter Variations - Horizontal I Response Spectrum at Operating Floor - Damp= 0.5Y. I vi I
I SURRY POWER STATION, UNITS 1 AND 2 I LIST OF FIGURES (Cont) I Figure 5-11 Comparison of ARS for Soil Parameter Variations - Horizontal I Response Spectrum at Operating Floor - Damp= 1.0% 5-12 Comparison of ARS for Soil Parameter Variations - Horizontal I 5-13 Response Spectrum at Operating Floor - Damp= 3.0% Comparison of ARS for Soil Parameter Variations - Horizontal Response Spectrum at Springline - Damp= 0.5% I 5-14 Comparison of ARS for Soil Parameter Variations - Horizontal Response Spectrum at Springline - Damp= 1.0% I 5-15 Comparison of ARS for Soil Parameter Variations - Horizontal Response Spectrum at Springline - Damp= 3.0% I 5-16 Comparison of ARS for Soil Parameter Variations - Horizontal Response Spectrum at Mat I 5-17 Comparison of ARS for Soil Parameter Variations - Horizontal Response Spectrum at Mat I 5-18 Comparison of ARS for Soil Parameter Variations - Horizontal Response Spectrum at Mat 5-19 Comparison of ARS for Soil Parameter Variations - Horizontal I 5-20 Response Spectrum at Operating Floor Comparison of ARS for Soil Parameter Variations - Horizontal I 5-21 Response Spectr~m at Operating Floor Comparison of ARS for Soil Parameter Variations - Horizontal Response Spectrum at Operating Floor I 5-22 Comparison of ARS for Soil Parameter Variations - Horizontal Response Spectrum at Springline I 5-23 Comparison of ARS for Soil Parameter Variations - Horizontal Response Spectrum at Springline I 5-24 Comparison of ARS for Soil Parameter Variations - Horizontal Response Spectrum at Springline I 9.1-1 Amplification Function of Soil 9.1-2 Soils Profile I I vii I
I SURRY POWER STATION, UNITS 1 AND 2 I LIST OF FIGURES (Cont) I I 9.2-1 9.2-2 Comparison of ARS by PLAXLY and FLUSH at Operating Floor PLAXLY Flow Diagram (3 sheets) I 9.3-1 Luce's Two-Layer Problem 9.3-2 Rocking Stiffness Comparison - Real Part I 9.3-3 Rocking Stiffness Comparison - Imaginary Part I 9.3-4 9.3-5 Horizontal Stiffness Comparison - Real Part Horizontal Stiffness Comparison - Imaginary Part I 9.3-6 Vertical Stiffness Comparison - Real Part 9.3-7 Vertical Stiffness Comparison - Imaginary Part I 9.3-8 REFUND and EMBED Flow Diagrams C2 sheets) I 9.4-1 Translational Response Spectra at Base of Rigid, Massless Foundation I 9.4-2 Rotational Response Spectrum at Base of Rigid, Massless Foundation I 9.4-3 KINACT Flow Diagram 9.5-1 Comparison of FRIDAY and STARDYNE ARS at the Roof I 9.5-2 STARDYNE Model I 9.5-3 FRIDAY Flow Diagram C2 sheets) I I I I Viii I
.1 SURRY POWER STATION, UNITS 1 AND 2 I I
1.0 INTRODUCTION
I On March 13, 1979 the Nuclear Regulatory Commission CNRC> issued an Order to I Show Cause to the Virginia Electric and required shutdown of the Power Company CVEPCO>. The order Surry Power Station Units 1 and 2 within 48 hours I after receipt of the order. I The order required all piping systems originally seismically analyzed using algebraic summation of intramodal responses to be reanalyzed using methodology I currently acceptable to the NRG staff. In carrying out this reanalysis, I amplified response spectra developed using techniq.~es have been used. soil-structure interaction CSSI) I Soil-structure interaction has been the subject of much dialogue between the I Staff, VEPCO, and Stone & Webster since the Order, the fundamental purpose of I which was to agree on the details of the SSI methodology for use in developing suitable amplified response spectra and their use in subsequent pipe stress I analysis. I Over the course of numerous discussions, the NRG staff asked for documentation in a number of areas, and it is the purpose of this report to reply in detail I to the NRG staff's requests. This report includes and supplements information I on SSI previously submitted by letters dated May, 2, 1979 and May 24, 1979. I 1-1 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I This report describes the basis for performing soil-structure interaction analyses to develop amplified response spectra for use in reevaluating the I pipe stress and support loads. The soil properties are developed from I subsurface data into a soil profile, in which each stratum has parameters. its The required dynamic properties in each layer are described first own soil I by the small strain values of shear modulus, and then site response analysis is used to develop values of damping and shear modulus that are compatible I with the strains to be expected during an earthquake. The design basis earthquake CDBE> and the operating basis earthquake COBE> are described by I ground response spectra and by artificial time histories that give response I spectra enveloping the ground response spectra. The* analysis structure interaction is performed by two methods: a one-step, finite of so~l-element I method, and a three-step, analytically based method. This report describes how these methods, including the structural representation, are derived and I how they are used to develop amplified response spectra. I Results for different methods and for different input are compared, and their I application to pipe stress analysis is discussed. I The results show that the three-step CREFUND/FRID-AY) method gives conservative results that are consistent with the present state-of-the-art of soil-I structure interaction. I I 1-2 I I
I SURRY POWER STATION, UNITS 1 AND 2 I
- I 2.0 SOIL PROPERTIES I The soil properties developed for use in the soil-structure interaction I analyses are presented in this section of the report.
I The computer SHAKE developed by Schnabel, Lysmer, and Seed< 1 a, and discussed in Section 9.1 program I vas used to calculate strain compatible shear moduli and damping from low strain values determined. from field testing and empirical formulae based on I laboratory test data. Although most of the data are included in reports that have been previously submitted to the NRC for completeness, the data are summarized below~ I 2.1 SUBSURFACE DATA I Soil properties used in the SHAKE analyses vere obtained from previous I geotechnical studies at the site for Units 1 and 2 in 1966< 1 > and 1969<2> and Units 3 and Z.. in 1973.n> Additional data, included in Appendix 9.6, vere I obtained in 1978 from previously unpublished studies related to construction I of a building. new condensate polishing demineralizer adjacent to the Unit 2 turbine Subsurface profiles for use in this analysis were developed from I data compiled from each of these studies. The correlation of soil properties over the entire Surry site ~s discussed in detail in Section 2.3. I I I 2-1 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I Investigations conducted prior to the construction of Units 1 and 2c 1 > included 65 test borings to a maximum depth of 200 feet, laboratory tests on I soil samples to determine shear strength, compressibility, permeability, and I density, and seismic refraction surveys to wave velocities of near surface soils. measure compressional and Further testing reported in the Surry shear I land 2 FSAR'2' included determinations of relative density of the upper sands, consolidation testing of upper and lower clays, and pile load tests. I Resonant column tests were run on two samples of Pleistocene clay and one of Miocene clay.c~, The boring location plan for Units land 2 is shown on I Figure 2-1. I More extensiv.e geotechnical investigations were conducted for the Units 3 and I 4 site study, and are presented in the Surry 3 and 4 These studies included 67 borings Geotechnic.al Report. n varying in depth from 91.5 t~ 175 feet9 I piezometer installations, laboratory testing on split-spoon and thin wall tube samples., borehole permeability tests, and seismic cross-hole surveys. The I* boring location plan for Units 3 and 4 is shown on Figure 2-2. I 2.2 SUBSURFACE PROFILE I Generalized soil profiles through the containments of Units land 2 are I- presented in Figures 2-3 and 2-4. A profile through the Units 3 and 4 containments, presented as Figure 2-5, is an extension of Section A-A in I I 2-2 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I Figure 2-3. These sections vere interpreted from borehole data and are I representative of subsurface conditions underlying the Surry site, I In general, the upper 65 to. 85 feet consists of a complex deposit of Pleistocene age fluvial and estuarine sediments overlain by occasional, thin, I recent alluvial deposits. In the vicinity of Units land 2, the Pleistocene deposits are characterized by alternating layers of dense sands and over I consolidated, plastic clays down to approximately El -40 fee.t, the top of the Miocene clay sediments. Groundwater levels, measured in piezometers installed I* in the upper and lover Pleistocene sands at Units land 2, indicate an average I vater level at approximately El +5 feet. I The surface of the Miocene clay represents an erosional plain from vhich the overlying Pliocene and early Pleistocene deposits have been removed. This I surface is very regular, smooth, and at times capped by a thin, gravelly sand layer. The Miocene clay at the site consists of moderately to highly plastic, I stiff to medium, grayish green silty clay. The Miocene clay is the deepest I stratum penetrated by borings at the 200 feet of the Miocene sediments site. are Regionally, considered to the upper 150 be of the Yorktown to I formation. The Yorktown is underlain by the St. Mary's and Calvert formations, also of Miocene age. These three formations comprise the I Chesapeake Group and are estimated to be about 240 feet thick in the site area. 1 *> I I 2-3 I I_
I SURRY POWER STATION, UNITS 1 AND 2 I I Underlying the Miocene formation at an estimated El -280 feet are.older Eocene I and Paleocene sediments, consisting mainly of marls and quartz soils are represented in the_ SHAKE sands. These analyses as dense sands, vith a layer I thickness of 100 feet. For purposes of ana:lyses, the bottom of the Paleocene sands has been established as the base layer, resulting in a total soil column I depth of 406 feet. " I Cretaceous sediments, consisting of clay and sand beds to bedrock, underlie I the Paleocene marls for a thickness of about 900 feet. estimated at Bedrock at the site is 1,300 feet below the ground surface based upon deep drill holes I iri the region. I 2.3 SOIL PARAMETERS I A comparison vas made between soil properties obtained from investigations of Units land zc,,J> and those obtained from Units 3 and 4cs, to determine the I feasibility of using the cross-hole data from the latter units to obtain small I strain shear modulus values. compiled from available Composite plots of various soil properties data were to verify the similarity of the soils, and to I determine parameters for use in an empirical determination of shear modulus using the Hardin and Black formulas.cs, I I I 2-4 I I
I SURRY POWER STATION, UNITS l AND 2 I I Properties ~irectly input into SHAKE to define the soil profile include total I unit weight, small strain shear modulus, moduli calculated from Hardin and and Black small formulas strain were damping. based Shear on static I parameters such as plasticity index, overconsolidation ratio, void ratio, and effective overburden pressure. The derivation of these properties is I discussed in detail in Section 2.3.l. Geo~hysical data used to obtain low strain shear moduli and Poisson*s ratio are discussed in Section 2.3.2. I I 2.3.l Static ~arameters I Static parameters. used to define the soil profile input into SHAKE and to correlate properties of the soil uni~s at the site are discussed below. I. 2.3.l.l Pleistocene Sands I Pleistocene sands and Pleistocene clay occur in alternating layers above I El -40 feet. The sands are dense and generally high in silt - content. A I comparison of blow counts from borings taken in the main plant area for Units land 2 with blow *counts from Surry 3 and 4 indicates that the average I relative density for the Pleistocene sands is about 70 percent and that the Units land 2 data agree vith the Units 3 and 4 data. The dry unit weight of I the sand is plotted against elevation on Figure 2-6. An average value of dry unit weight of 98 pcf was used in the analyses. I I 2-5 I I
I SURRY POYER STATION, UNITS 1 AND 2 I I 2.3.1.2 Pleistocene Clays I Pleistocene clays at the site are dark olive to dark gray, with low to medium I plasticity. line. Atterberg limits plot along or Liquid limits range from about slightly above Casagrande's A-50 to 70 percent and natural water I contents vary from about 30 to 60 percent. Atterberg limits for Units 1 and 2 are plotted with data from Units 3 and 4 on Figure 2-7. I Consolidation tests conducted on the Pleistocene clays indicate that the I overconsolidation ratio COCR) of the Pleistocene clays *is approximately 3. I The maximum past pressure of the clays at Surry increases linearly with depth, verifying that the site has been subject to significant erosion of overlying I sediments. Preconsolidation pressures, obtained by Schmertman's method,(~> from recent unpublished studies at Units 1 and 2 (Appendix 9.6) are plotted on I Figure 2-8. The preconsolidation pressures from Surry 3 and 4 data have been recomputed, using Schmertmann's technique,(~> and are replotted on Figure 2-8. I The replotted points agree closely with the estimated past vertical ef.fective I stress line developed for the site and used in the SHAKE analyse~. I I I I 2-6 I I
I SURRY POWER STATION, UNITS l AND 2 I I 2.3.l.3 Miocene Clays I The Miocene clay is a stiff, olive green, overconsclidated clay with a liquid I limit varying from about 45 to about 75 percent and a varying from 30 to 40 percent. natural water content Sporadic thin lenses cf sand are found within I the clay zone. Atterberg limits and water contents fer samples from Units l and 2 are plotted with Units 3 and 4 data en Figure 2-7. An average water I content cf 38 percent and plasticity index cf 46 percent were used for the upper 50 feet cf the Miocene_ clay in the analyses. Between elevations -90 and I -190 feet, an average PI cf 36 percent was used. Preccnsclidaticn pressures I are plotted en Figure 2-8 and OCR Pleistocene clay, the maximum past pressure is plotted en Figure 2-9. increases linearly As with the with depth, I indicating previous erosion at the site. decreases with depth, from approximately 3.3 at the The OCR top for the Miocene cl~y to an extrapolated I value cf l.3 toward the bottom cf the layer. I Total unit weight for the Miocene clay is plotted en Figure 2~10. Agreement I between Units land 2 data and Units 3 and 4 data is good, further the uniformity cf the Hiccene clay at the site. indicating An average total unit veight I of 120 pcf was used in the SHAKE analyses. I I I 2-7 I I.
I SURRY POWER STATION, UNITS 1 AND 2 I I 2.3.2 Geophysical Data I Cross-hole and up-hole seismic surveys were performed for the site study at I Units 3 and 4. c 7 > The cross-hole survey was conducted along a *line the proposed connecting location of the Unit 3 containment with the Unit 4 containment, I in Borings B201 .through B206 Csee Figure 2-2 >. Up-hole tests were performed in boreholes B339 and B340 to verify the cross-hole data. P and S wave I velocities were measured in each hole at 10 foot intervals down to El -140. A summary of seismic wave velocities is *presented in Table 2-1. Shear wave I velocity. remains.fairly constant with depth, exhibiting only a slight increase
- I toward the lower depths.
wave velQcities in actuality Below the ground water table, measured compression represent the P wave velocity through the I groundwater, and a value of 5000 fps has been used in computations for Poisson's ratio. I Dynami~. Poisson's .ratios were calculated from P and S wave velocities, using I the following equation: I µ = !::ZR 2-2R I I where µ = Dynamic Poisson's ratio I R -(~)' I 2-8 I I
I SURRY POYER STATION, UNITS l AND 2 I
- I Vs= ehear wave velocity I V = compression wave velocity p
I - Above the groundwater table, the measured compressional wave velocity was
-obtained from Table B-5 of Reference l, based on a seismic refraction test I performed at. Units land 2. An average value of VP= 2008 fps was used with I the measured shear wave velocity to calculate the dynamic Poisson's ratio_ for soil above the groundwater table.
I Shear wave velocities used to calculate dynamic Poisson's ratio below the I water table were calculated from strain compatible values of shear modulus obtained from the SHAKE analyses in the free field and presented in Table 2-4 I for the DBE and OBE cases, according to the following equation: I Vs =Ji
-J)
I where Vs = strain compatible shear wave velocity I G p
-= strain compa-tible shear modulus = mass density of soil I
Poisson's ratios for* each layer, for DBE and OBE conditions, are listed in Table 2-2. I I 2-9 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I* 2.4 MODULUS AND DAMPING PROFILES I Soil profiles were*developed for the free-field case and under each Category I I structure. These *profiles are based on the generalized soil profiles described in Section 2.2 and.are tabulated in Tables 2-4 through 2-12 *. Soil I parameters associated with each layer have been developed from laboratory and field testing at Units 1 and 2 and Units 3 and-4. Values of low strain shear I modulus were obtained primarily from cross-hole tests at Units 3 and 4cs, and I checked using empirical formulas from Hardin* and Blackcs> and laboratory data reported by Hardin.,~, Comparisons between soil data from Units 1 and *2 and I Units 3 and 4, discussed in Section 2.3.1, sho'W' excellent agreement. I 2.4.1 Small Strain Shear Modulus I Small strain shear modulus values input into SHAKE were obtained predominately from the cross--hole data from Units 3 and 4 discussed in Section 2.3.2 because I shear wave velocity data from Units 1 and 2c 1 > were incomplete. Shear modulus I values from tes~s at Units 3 and 4 are plotted on Figure 2-11. Values shear modulus obtained from geophysical testing represent the maximum or small of I strain values. The solid line on Figure 2-11 represents the average value for Gmax input into SHAKE.
- 1 I
I 2-10 I I
I SURRY POWER STATION, UNITS l AND 2 I I Shear modulus values from cross-hole*data vere checked using the Hardin and I Black empirical formulas.<*> For sands: I Gmax = .1230 C2 'e!-ep (O'oct) o
- 5 I
vhere: I -I G max e
= small strain shear modulus in psi = void ratio I O' oct = effective octahedral normal stress in psi I For clays:
I Gmax = 1230 c2 *i~-el 2 (OCR)K. (croct)" 0
- 5 I
I vhere: I OCR = overconsolidation ratio
-, K = factor dependent upon plasticity index CPI>
I I 2-ll I I
I SURRY POWER STATION, UNITS l AND 2 I I For sands, Ka was calculated using Hendron's plot of OCR vs. Ka.<*> The OCR I was considered to be similar to that for the underlying preconsolidation loads are clays, attributable to eroded *sediments. in that the For clays, Ka was calculated from a. plot of Ka vs PI for various OCR from Brooker and Ireland.t*> Dat:a used to obtain shear modulus from Hardin and Black formulas I are presented in-Table 2-3. The values of"Gmax are plotted with shear modulus values obtained from cross-hole tests on Figure 2-11. Agreement between t?e I two methods is excellent, with the empirically derived shear moduli slightly less than the. seismic values. I .. I Resonant c.olumn tests were performed by Hardin'", on two block samples taken in the Pleistocene* clay and l:tube sample driven into the Miocene clay using a I. Dames & Moore sampler. Hardin tested each sample at the end of primary consolidation, after approximately 2 to 3 hours, and overnight to determine I the effects of secondary consolidation. The shear wave velocities corresponding to these shear moduli were plotted with time for each sample I water content, and the shear wave velocity and shear modulus at 20 years were I extrapolated to determine the long-term
-Anderson . and Woods< 11 > have shown effect of secondary consolidation.
that laboratory determinations of shear I modulus on clay soils agree with field determinatio.ns when the labo?='atory data are extrapolated to a time of 20 years. Figure 2-16 shows that the laboratory
- 1 obtained shear moduli and damping agree well with the cross hole obtained I
I *2-12 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I shear* moduli for a wide range of effective confining stresses and natural I water contents. I 2.4.2 Strain Dependent Modulus and Damping I The calculation of strain dependent modulus and damping profiles is discussed in detail in the following sections. I I 2.4.2.1 Summary of SHAKE Analysis I The computer program SHAKE< 1 a> was used to obtain values of shear modulus and damping at strain levels compatible with those induced during DBE and OBE I conditions. The time histories from the El Centro 1940 (North-South component> and Kern County CTaft S69E> earthquakes were normalized to a peak I . acceleration of .15g and .07g for the DBE and OBE, respectively. These I motions were input at the ground surface and deconvolved in the free field El -380 feet, which was established as the base layer for SHAKE. to The I deconvolv!,!d time history was then amplified up through the soil profile to the
. base of the structure. Iterations of shear modulus and damping with strain .
I were performed internally by SHAKE in both .the free field and *under the structures. The values obtained from the final iteration were tabulated for I each layer in the soil profile, and the average values of shear modulus and damping using El Centro and Taft accelerograms as input were used in soil-I .. I 2-13 I I.
I SURRY POWER STATION, UNITS 1 AND 2 I I structure interaction calculations. Strain compatible shear modulus and I damping values for the DBE and OBE are included in Tables 2-4 to 2-11. I 2.4.2.2 Earthquake Accelerograms I Two strong motion time-history accelerograms were used in the SHAKE analyses to determine strain compatible soil properties: the 1940 El Centro earthquake I (North-South component> and the 1952 Kern County earthquake CS69E component of I the Taft record>. representative_ *of The El Centro earthquake record was chosen the strongest motions available from because it deep soil sites, is I whereas Taft was* chosen because o*f its wide frequenc:>' range and strong motion characteristics. I The Taft S69E record," from *the 1952 Kern County earthquake, has a maximum I acceleration of .179g at a time of 3.70 sec and a mean square frequency of I 2.95 Hz. Each value of the accelerogram was multiplied by a factor of .836 to scale the record to a peak acceleration of .15g for the DBE at Surrr. A I similar scaling technique was used t~ obtain the Taft record for the OBE. Frequencies over 20 Hz were excluded from the time history input at ground I. surface in order to allow convergence of the iterations when deconvoluting in the free field and to maintain deconvoluted time histories with mean square I- frequencies close to the original Taft record in each of the layers of the soil profile. The time history at the base layer, El -380 feet in this I I 2-14 I* I
I SURRY POWER STATION, UNITS 1 AND 2 I I analysis, vas stored for later use in amplification analyses under each of the I structures. The peak acceleration of the Taft record at the base layer deconvolution to El -380 feet vas .215g. after I The 1940 El Centro earthquake, North-South record, vas also used in the SHAKE I analyses. The maximum recorded acceleration at El Centro'vas .349g at a time I of 2.12 sec, vith a mean square freque~cy of 3.18 Hz. accelerogram vas multiplied by a factor of .43to scale the El Each value of the Centro record I to the Surry DBE. Frequencies above 15 Hz vere cut off the El Centro record. The peak acceleration of the El Centro record at the. base layer after I deconvolution to El -380 feet vas .324g. I 2.4.2.3 Soil Profile I A horizontally layered, idealized soil profile was established for the SHAKE I analysis based on previous studies discussed in Section 2.2. the profile and relevant soil properties for A description of each layer are_ included in I Tables 2-4 to 2-11 for the fre~ field case and for free field, -the each structure. In profile consists of three layers of Pleistocene soils, from the I the ground surface at El +26 feet to the top of the Miocene clay at
- 1 El -40 feet. The *Miocene clay extends 100 foot layer of-Eocene and Paleocene sands.
from -40 to -280 feet, overlying a The base layer has been set at I El -380 feet. I 2-15 I I
SURRY POWER STATION, UNITS 1 AND 2 I I The soil profiles under each structure are identical to the free field case I below El -40 feet. used to define The soil profiles shovn in Figures 2-3 and 2-4 the soil layerin~ have been under each structure in the Pleistocene I *sediments. The containment is founded on the Miocene clay, at El -40 feet, but the other structures are founded at higher elevations, either on the* I Pleistocene clay or sand. I The structures themselves have been represented as "pseudosoils" in the SHAKE I analysis. that These soils are described by unit weights and shear vave velocities are compatible with the structure. For unit weight, the total veight. of I the structure was divided by the thickness of the pseudosoil layer. The shear vave velocity was computed from the first harmonic natural period of the I structure, using the folloving equation: I I I where: I ~-., V = equivalent shear wave velocity for structure s
.H = thickness of pseudosoil layer 'T = natural period of the structure I
I 2-16 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I 2.4.2.4 Strain Dependency Relationships I The variation of shear modulus with strain is input into SHAKE using the shear I modulus factor K varying with strain. modulus K is an empirical factor relating shear to confining stress for sands and undrained shear strength for clays. I The shear modulus is calculated from the shear modulus factor K by the following equations: I For sands: I I G : 1000K s Ccra> 0 " 5 f I. where: I G = shear modulus in psf Ks = shear modulus factor for sands O'a = effective octahedral stress in psf I Fs = scaling factor of low strain shear modulus value I For.clays: I G = Kc Fc I I 2-17 I I.
I SURRY POWER STATION, UNITS 1 AND 2 I I where: I Fe= scaling factor for low strain shear modulus value I Kc= shear modulus faetor for clays I The decrease of shear modulus vith inct'easing shear strain is presented in terms of K to conform vith the input format required in the SHAKE program. I The strain dependency relationships of Ks and Kc, plotted with shear strain, I are presented in Figures 2-12 and 2-13, respectively. on empirical These curves are based data plotted by Seed and Idriss and reported in the Shannon and 1* llilson report.' 11 > The factor Fis calculated internally by the program, using the small strain values of shear modulus and Ks or Kc input into the program. I This calculated value of Fis used in subsequent iterations to compute the new shear modulus based on a K vs shear strain curve that has been shifted from I the empirical curve by the factor F to account for site conditions as defined by Gmax. I I The increase of damping r~tio for sands and clays with increasing shear strain is plotted on Figures 2-14 and 2-15, respectively. These curves are based on .1- data plotted by Seed and Idriss.< 11 > The curves were modified by the µse of a damping correction factor 1 c1a, which accounts for the variability of damping
- 1 vith depth:
I I 2-18 I 1.:
I SURRY POWER STATION, UNITS l AND 2 I I F0 = 2.53 - 0.45 log crv I where: I r0 = factor modifying damping curves I crv = vertical effective overburd,b stress in psf I 2.4.2.5 Strain Compatible Shear Moduli and Damping I The shear moduli and damping values corresponding.to the shear strain induced I by the DBE and OBE are presented in tabular form for each and for the free field case in Tables 2-4 through 2-11. structure analyzed The results represent
- 1. values obtained from the last iteration of shear. moduli and damping. Criteria for convergence of iterations were established at plus or minus 5 percent of I * *the previously iterated value. The data include strain-compatible moduli and I damping ratios calculated from the two earthquake accelerograms described in Sect~on 2.4.2.2, i.e., El Centro North-South and Taft S69E. An average value I was calculated for .each soil layer and used to model the soil in subsequent soil-structure interaction analyses.
I 1* For the reactor containments, values of shear modulus and damping from the first iteration of-SHAKE are listed for DBE and OBE conditions in Table 2~12. I These values represent SHAKE's first estimate of the shear strain level 2-19 I I
I SURRY POYER STATION, UNITS 1 AND 2 I
,I induced by the earthquake and, therefore, result in shear moduli values that I are too high, and damping values that are too low in the upper portion of the profile, and too high at depth. The differences between the low strain values 1* of shear modulus CGmax) and the first iteration values vary by as much as . 450 percent, but subsequent iterations converge quite rapidly. Typical I variations between first and second iteration values are only 10 to
- 1 20 percent, which is close to the final 5 percent difference.
iteration convergence criterion of I 2.4.2.6 Variation of Shear Modulus I The effect of increasing and decreasing the low strain shear moduli CGmax> by I 50 percent vas evaluated using SHAKE. The El Centro and Taft earthquake records, ~ormalized for the DBE, were input at the ground surface in the free I field, deconvoluted to the base layer and then amplified up through the soil I to the containment structure. shear moduli remained unchanged. All soil parameters other than the low strain
. -I.he depth of the soil profile for the analysis using Gmax minus 50 percent was reduced from 406.to 261 feet. The use of such low values of shear moduli with a deep soil profile causes the iterations for strain dependent properties to diverge. Convergence was attained by eliminating the frequency content of the time histories above 10 Hz and by establishing the half space at a high.er I 2-20 I
I_
I SURRY POYER STATION, UNITS l AND 2 I I elevation. The full profile vas used in the soil-structure interaction I analysis, using extrapolated values of strain compatible modulus and damping for the bottom layers of the profile
- The strain compatible soil properties for Gmax pl.us 50 percent and Gmax minus I. 50 percent are listed on Tables 2-13 and 2-14, for the free field and under the reactor containment, respectively. Poisson's ratio, calculated for these I cases using small strain values and strain compatible values from the DBE, are I listed on Table 2-2.- Strain compatible soil properties for Gmax are included in Tables 2-4 and 2-5 for the free field and containment, respectively.
I The expected variation of shear modulus at lov strain levels and at strain .I levels associated with strong.motion earthquakes vas evaluated. using cros~- hole data from the site< 7 > and laboratory data used to obtain the shear .I modulus factor for clays curve in Figure 2-13, as reported in Reference ll. I In this analysis, the shear modulus factors G/Su vere normalized with the lov I strain value of Gmax/Su from the same curve, shear strain relationship. To determine resulting the in variation a G/Gmax versus of G, vhich is a t function of the product of Gmax and G/Gmax, it is assumed that Gmax and G/Gmax are uncorrelated. Thus I I I 2-21 I
SURRY POWER STATION, UNITS 1 AND 2 v2G = v2Gmax + v2G/Gmax + v~max v~/Gmax I
- 1 w~ere 1:. V * = coeffic~ent of variation of in situ Gmax values from Gmax shear wave velocities determined from cross-hole data I (Figure 2-11>
I VG/Gmax = coefficient of variation of G/Gmax from SW-AJA curves I (Ref. 11) VG =*coefficient of variation of G values at various shear strain levels From VG' the expected variation as a percentage of the average G value for a particular shear strain level can be estimated. This variation was I +/-8.4 percent at low shear strains and ranged from +/-46.1 to +/-77.8 percent of ,_ the average shear modulus at a shear strain level of 2 x 10- 3 to 6 x ., 10- 1 percent, the range of shear strain levels generated by the DBE and OBE at the site. at higher Although the percentage variation of the average G value is shear. strain levels, the actual range of moduli higher values is
- 1 approximately the same as at low strain levels.
I 2-22 I I
I SURRY POWER STATION, UNITS 1 AND 2 'I I 2.5
SUMMARY
ON SOIL PROPERTIES I Procedures - followed to obtain soil properties for the soil-structure I interaction analyses and their use in developing amplified response spectra are summarized as follows. I .I First, a small strain soil profile was developed from the best available.soil data, including cross hole seismic shear wave velocity measurements, as well I ~.~ as data from borings and samples. .I Second, the effect of an earthquake*in the free field was evaluated using the SHAKE computer program. The control motion was specified at the surface of I the free field; two real. records were used - El Centro and Taft - normalized to the acceleration level of the specified design earthquake COBE or DBE>. I The program iterated to obtain values of shear modulus and damping compatible I with the levels of strain developed during the earthquake. The average of the ,. results from the-two records was used in f_urther analyses and is here called the strain compatible, free field profile
- Third,- the moduli* and material damping for the strain compatible, free-field profile were used for the REFUND/FRIDAY analyses.
I I 2-23 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I Fourth, the motion at the b~se of the profile obtained in the SHAKE analysis I of the free field was input to several profiles representing the under the Category I buildings. soil The top layers of these profiles had masses column I and fundamental periods equivalent to those of the corresponding buildings.
-1 \!./ -
The small strain values of soil shear moduli llere adjusted to account for the additional static stresses imposed by the buildings. The computer program I SHAKE building was run to obtain strain compatible moduli and damping values £or each profile. - The average - of results for the two time histories
,_ established each profile * .I - Fifth, the strain compatible properties under each building were used in the finite element dynamic analyses as soil properties directly under the I corresponding buildings. The strain compatible, free field soil properties I were used for the elements representing the soil properties -were interpolated between free field. Strain compatible these values for two columns of I, * * .r elements adjacent to the building.
I Sixth, no further iteration on soil properties was performed in either the
;I REFUND/FRIDAY or the finite element analysis. -1
. I-.._, 2-24 I
I SURRY POWER STATION, UNITS 1 AND 2
- 1.
I 2.6, REFERENCES 1* 1. Dames & Moore Report, Environmental Studies Proposed Nuclear Power Plant. Surry, Virginia, December 1966. I I 2. Virginia Electric & Power Company, Final Safety Analysis Report. Surry ,~ 3. Power Station, Units 1 and 2, Part B, Volume 1, December 1969. Virginia Electric & Power Company, Geotechnical Report. Surry Power I: Station, Units 3 and 4, June, 1973. II 4. Virginia. Electric & Power Company, Preliminary Safety Analysis Report, I Surry Power Station, Units land 2, Appendix 59.9A, October 1967. I 5. Hardin, B.O. and Black, W.L., Closure to Vibration Modulus of Normally ,. Consolidated Clays. Journal of Soil Mechanics ASCE Volume 95, SM 6, November 1969. and Foundations Division, 1: 6. Schmertmann, J.M., The Undisturbed Consolidation of Clay. Trans. ASCE, I' Vol 120, p 1201, 1955. I 7. Virginia Electric & Power Company. Preliminary Safety Analysis Report. ., Surry Power Station, Units 3 and 4, Comment 2.62, Amendment 7 and 2.5.4.4, enclosure 3, Amendment l, Comment I I 2-25 I
SURRY POWER STATION, UNITS l AND 2
'I I 8. Lambe, T.W. and Yhitman, R.V. Soil Mechanics, Fig. 10.12. p 128, John I Wiley, New York, 1969, after Hendron, 1963.
-1 9. Lambe, T.W. and Yhitman, R.V. Soil Mechanics. Fig. 20.8, p 300, John tUley, New York, 1969, after Brooker and Ireland, 1965. 1* I 10. Schnabel, P.B., Lysmer, J., and Seed, H.B. SHAKE, A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites. Earthquake t Engineering Research Center, Report No. EERC72-l2 December
. modified for SWEC Computer System in Program ST2ll Version 2 Level O>.
1972 Cas ii. 7 ll. Shannon . l Wilson - Agbabian-Jacobson - Soil Behavior Under Earthquake I Loading Conditions. Report prepared for U.S. Atomic Energy Commission, -1*
~-
Contract No. W-705-eng-26, January 1972.
- I 12 *. Newmark, N.U., and Hall, Y.J., Seismic Design Criteria for Nuclear Reactor Facilit,ies. May 25, 1967.
t I: - 13. Anderson, **o.G. and Yoods, R.D., Comparison of Field and Laboratory Shear- ., . Moduli:, in : -In* * ~ Measurement 91: £Q.U Properties, Conference, No. Carolina State University, June 1975.
- ASCE Specialt;y
-1 ., 2-26 I I
I SURRY POYER STATION, UNITS 1 AND 2 I TABLE 2-1 I
SUMMARY
OF GEOPHYSICAL DATA I' Shear Wave Co!!lpression Wave Elevation Velocity Velocity
'I (ft) +10 Cfps) 900 Cfps>
5200 II 0 900-950 5800
-10 -20 -30 900 900 900 5600 5700 5500
'I -40 950 5500
-50 1000 5400 -60 980 5400 I -70 -80 970 1000 5400 5200 I: 950 5500 -90 -100 970 5000 -110 1000 5400 -120 950 5600 I -130 1000 5500 I -140 1000 5500 I
I l of l I * -* h* h** *.._ ***
SURRY POWER STATION, UNITS 1 AND 2 TABLE 2-2 POISSON'S RATIO FREE FIELD Top of avgrage Gmax Gmax +~O" Gmax -50" Mll.t I.ia1er Elev! .J!M _QM Lo\l Strain I!lL Low Strain DBE l +26 ,442* .442 .406. .406 .473 ,473 2 +5 ,491 ,487 .477 .482 ,493 .497 3 -20 .496 ,494 ,477 .493 ,493 .499 4 -40 ,496 .494 .475 .493 ,492 .498
. 5 -65 .495 .493 .475 .493 ,492 .499 6 -90 ,495 .493 ,476 .491 .492 ,499 7 -123 * ,496 ,493 ,476 ,492 .492 ,499 8 -157 ,496 ,493 ,476 ,492. ,492 .* 499 9 -190 ,496 .493 ,476 ,492 .492 .499 10 -235 ,496 ,493 ,476 .493 .492 .499M 11 -280 ,477 ,468 ,446 .457 .484 .49311 12 -330 .481 ,471 ,446 .463 ,484 .494M l!Qll:
M Extrapolated Data used in SSl, l of l
SURRY POWER STATION, UNITS l AND 2 TABLE 2-3 SHEAR MODULUS DETERMINATIONS HARDIN AND BLACK EQUATIONS Gmax Total G from used Elevation Plastic Unit Hardin in of Index Weifht -Black. SHAKE La:teI Soil Unit IPerc!:mt} OCR Kn. Cks > _e_ lliil il.ill
+26 to +5 Pleistocene Clay 44 3.5 1.00 .120 1.26 1011 1585 +5 to -20 Pleistocene Sand 3.0 0.55 .120 0.70 2229 3310 -20 to -40 Pleistocene Clay 32 3;0 0.90 .120 0.84 3091 3310 -40 to -90 Miocene Clay 46 3.3 LOO .110 l.05 3160 3310 -90 to -190 Miocene Clay 36 2.3 0.80 .120 1.05 3211 3530
-190 to -280 Miocene Clay 30 1.3 0.60 .120 0.96 3487 3530 -280 to -380 Eocene and 1.3 0.50 .135 0.40 8448 8225 Paleocene Sands l of l
- - .. - ...... - . . till . . . . . ,.._ - SURRY POWER STATION, UNITS 1 AND 2
*. TABLE 2-Q STWUN COHPATI.BLE SOXL PROPERTIES Free Field Average Gmax DBB = 0.15q ODE z:: 0.07g Top Low Strain Total Shear Modulus Shear Modulus Thick- of Values Unit lkBf) Damoing lksfl Damping Layer ness Layer Gmax Cs Wt Taft ElCentro Aver- Taft ElCentro Aver- Taft El.Centxo Aver- Taft ElCentro Aver- ~ iftl Elev. (ltsfl .Jm§l ~ Soil Unit~ N-S m!L- §il.! N-S. rum._ S69E N-S rum._ 669E N-B ~
1 2'i +26 1585 .120 Pleisto- 581 5q7 56q .069 .012 .071 840 823 832 .051 .051 .051 cene Clay 2 25 +5 3310 .120 Pleisto- 1859 17116 1802 .071 .076 .0111 2468 2380 21124 .oqq .048 .046 cene Sand 3 20 -20 3310 .120 Pleisto- 793 766 780 .010 .on .071 1255 1201 1228 .052 .0511 .053 cene Clay 4 25 -40 3310 .110 Miocene 760 797 778 .068 .067 .068 11119 1155 1152 .053 .053 .053 Clay 5 25 -65 3310 .110 Miocene 881 895 888 .060 .060 .060 1190 1261 1226 .050 .047 .049 Clay 6 33 -90 3530 .120 Miocene 976 909 943 .056 .os8 .057 1476 1QOS 1441 .0111 .043 .042 Clay 1 33 -123 3530 .120 Miocene 916 879 898 .055 .056 .056 11t25 1323 1374 .0111 .043 .0112 Clay 8 311 -157 3530 .120 Miocene 908 890 899 .. 053 .053 .053 1368 13oq 1336 .040 .0112 .0111 Clay 9 115 -190 3530 .120 Miocene 871 8113 857 .051 .052 .052 131J9 13111J 1347 .039 .039 .* 039 Clay 10 115 -235 3530 .120 Miocene 854 742. 798 .049 .053 .OS'i 1298 1301 1300 .038 .038 .038 Clay 11 50 -280 8225 .135 Eocene 5Q97 4018 IJ758 .on *.051 .OIJ.3 61159 6195 6327 .0211 .027 .026 Sands 12 50 -330 8225 .135 Paleocene 4696 3309 4003 .0111 .059 .050 6105 56511 5880 Q026 .031 .029 Sands 1 of 1 .
I*,; SURRY POWER STATION, UNITS 1 g 2 TABLE 2-5 STRAIN COMPATIBLE SOIL PROPERTIES Reactor Containment Average Gmax DBE* 0.15g ODE* 0.07g Top Low Strain Total Shear Modulus Shear Modulus Thick- of Values Unit lksfl Da!!ming lksfl Da!!ming Layer ness Layer Gmax Cs Mt Taft ElCentr~ Aver- Taft ElCentro Aver- Taft ElCentro Aver- Taft*ElCentro Aver-
~ _il!J_ Elev. fksfl .J!e!l. ~ Soil Unit §ill H-S J!9!!_ ill! !-S .!SI!- S69E . N-S UL., S69E N-S !filL_
-1'. 1 21 +26 1073
- 1106 Structure 2 45 +5 1073
- 1106 Structure 3 25 -110 3310 .110 Miocene 720 728 7211 .012 .on .072 1175
- 1138 1151 .054 .055 .055 Clay II 25 -65 3310 .110 Miocene 728 861 795 .068 .062 .* 065 1121 1196 1159 .053 .051 .052 Clay 5 33 -90 3530 , 120 Miocene 959 8115 902 .058 .062 .060 11123 1405 111111 .oqq .01111 .Ollll Clay 6 33 -123 3530 .120 Miocene 935 881 908 .055 .* 051 .056 1396 1299 13118 .0112 .0115 .0114 Clay 7 34 -157 3530 .120 Miocene 900 818 889 .0511 .055 .055 1325 13113 13311 .0112 .041 .0112 Clay 8 115 -190 3530 .120 Miocene 853 199 826 .053 .0511 .0511 1318 1325 1322 .040 .0110 .Dito Clay 9 115 -23S 3530 .120 Miocene 838 751 195 .050 .053 .052 12811 1269 1277 .039 .039 .039 Clay 10 50 -280 8225 .135 Eocene 51130 3931 116811 .035 .053 .01111 ~509 6239 637' .0211 .021 .026 Sands 11 50 -330 8225 .135 Paleocene 11518 3225 3872 .0113 .061 .052 6117 5721 5919 .026 .030 .029 Sands 1 of 1
---- SURRY POWER STATION, UNITS 1 AND 2 TABLE 2-6
. !i STRAIN CWPATIBLR SOIL PROPERTIES I Auxiliary Building' DBE"' 0.15g ODE a 0.07g Top Low Strain Total Shear Modulus Shear Modulus
':l'hick- of Values Unit lkafl Damoing lkafl Damoing.
Layer nesa Layer Gmax Ca 1ft Taft BlCentro Aver- Taft ElCentro Aver- Taft ElCentro Aver- Taft ElCentro Aver- _l!!!..!.._ lftl ~ CkaU J!l!!l J]sill Soil Unit S69E N-S .rum._ S69B N-S .!9!L_ S69E H-S .!9!L_ S69B H-S ~
'i 21 +26 1057 .0893 Structure 2 7 +5 1057 .0893 Structure 3 18 -2 3310 .120 Pl.eieto- 1118 1001 . 1060.
- 0611 .069 .067 1651 15'3 1597 .046 .ou .0117 cene Clay II 20 -20 3310 .120 Pl.eiato- 11199 1433 1466 .085 .088 .087 2271 2212 22112 .051 .053 .052 cene Sand 5 25 -40 3310 .110 Miocene 729 769 749 .072 .070 .071 1172 1156 11611 .;.055 .055 .055 Cl.ay 6 25 -65 3310 .110 Hiocene 799 869 8311 .066 .063 .* 065 1150 1208 1179 .053 .051 .052 Clay 7 33 -90 3530 .120 Miocene 989 876 930 .057 .061 .059 111119 11122 11136 .0113 .01111 .OIIIJ Clay 8 33 -123 3530 .. 120 Miocene 938 889 911J .056 .057 .057 11112 1333 1313 .0112
- OU .0113 Clay 9 34 -157- 3530 0120 Miocene 901 872 881 .0511 .055 .055 1326 1372* 13119 .ou .041 .0112 Clay 10 45 -190 3530 .120 Miocene 854 825 8110 .053 .0511* .0511 13112 1361 1352 .OIIO .039 .0110 Clay 11 *5 * -235 3530 .120 Miocene 815 752 7BIJ .051 .053 .052 1281 1289 1285 .039 .039 .039 Clay 12 50 -280 8225 .135 Eocene 55211 3983 117511 .0311 .052 .ou 61130 6260 6345 .025 .027 .026 Sanda 13 50 -330 8225 .135 Paleocene 11696 32110 3968 .0112 .061 .052 6114 5720 5917 .021 .031 D029 Sanda 1 of 1
I '
; .. .. - *- 1!111 SURRY POWER STATION, UNITS 1 S 2 TABLE 2-7 STRAIN COMPATIBLE SOIL PROPERTIES 'l'IU:bine/Servlce Building B-1t Ccxnponent I
DBE* f.15g ODE* 0.07g Top Low Strain Total Shear Modulus Shear Modulus Thick- of Valueg Unit Cksf) Damping Ckaf) Damping Layer ness Layer Gmax Cs lit Taft BlCentro Aver- Taft Bleentro Aver- Taft ElCent:r:o Aver- Taft ElCentro Aver-
..J!e.r._ Cftl Elev. Cksf I Jfl!!!l. ~ Soil Unit ~ u-s !!I!- S69E u-s !!l!L. §!!I u-s !!1!L. S69E N-S !!!!._
1 20.5 26 163 .oq31 Structure 2 25.5 5.5 3310 .120 Pleisto- 1qo5 1411 1qo9 .058 .058 .058 2005* 1863 1934 .0113 .oq5 .0115 cene Clay 3 20 -20 3310 .120 Pleisto- 1688 1767 1728 .oeo .077 .on 21106 2337 2372 .0118 .051 .oso cene Sand II 25 -40 3310 .110 Miocene 760 8117 BOIi .073. .069 .on 1306 1267 1287 .052 .053 .053 Clay 5 25 -65 3310 .110 Miocene 74' 877 813 .010 .0611 .067 12H 12110 1227 .052 .051 .052 Clay ' 6 33 -90 3530 .120 Miocene 991 9111 953 .o5e .061 *.060 11122 11156 11139 .0115 .01111 .045 Clay 1 33 -123 3530 .120 Miocene 925 825 815 .057 .061 .059 12811 13'2 1313 .Qq6 .Olis .0116 Clay 8 3Q -151 3530 .120 Miocene 813 903 888 .056 .055 .056 13611 133' 13q9 .oq2 .0113 .ou Clay 9 115 -190 3530 .120 Miocene 8117 821 8311 .osq .055 .* 055 1313 1359 1336 .o*u .oqo .oq1 Clay 10 115 -235 3530 .120 Miocene e5q 11111 799 .051 .05q .053 1283 1291 1287 .040 .039 .OIIO Clay 11 50 -280 8225 .135 Eocene 5555 11050 11803 .035 .052 .01111 6628 6196 61112 .023 .028 .026 Sands 12 50 -330 8225 .,135 Paleocene 47311 3268 11001 .0112 .061 .052 62115 5118 5982 .026 .031 .029 Sands
- 1. of 1
SURRY POWER STATION* UNITS 1 & 2 TABLE 2-8 STRAIN C<J,SPATIBLE SOIL PROPERTIES Hain Steam Valve Douse N-S Component DBE* 0!15g ODE a: 0!07g Top Low Strain Total Shear Modulus Shear Modulus Thick- of Values Unit lk&fl Dameing (ksf} Daming Layer ness Layer Gmax Cs wt Taft ElCentro Aver- Taft ElCentro Aver- Taft ElCentro Aver- Taft ElCentro Aver-
~ lfti Elev. Jk!i1. J!11AL ~ Soil Unit §!ll N-S !!l!L_ S6!JE u-§ !!g!L_ S69E N-S ' J!!l!L_ §ll! u-s !filL_
1 18 +26 935 .132 Structure 2 3 +8 1585 .120 Pleisto- 394 3116 370 .078 .083 .081 6211 598 611 .057 .059 .058 cene Clay 3 25 +5 3310 .120 Pleiato- 1831 1670 1751 .071 .078 .075 2111111 2366 21105 .0115 .0118 .0117 cene sand Ii 20 -20 3310 .120 Pleisto- 787 772 780 .070 .070 .010 12113 1203 1223 .052 .0511 .053 cene Clay 5 25 -40 3310 .no Miocene 762 806 7811 .on .066 .067 11110 1166 1153 .053 .052 .053 *i Clay 6 25 -65 3310 .110 Miocene 902 910 906 .059 .059 .059 1195 1265 1230 .oo .0111 .OIJB Clay 7 33 -90 3530 .120 Miocene 969 901 935 .056 .058 .057 11188 1392 111110 .0111 .0114 .043 Clay 8 33 -123 3530 .120 Miocene 888 876 882 .056 .056 .056 11119 1315 1367 .0111 .0113 .OIJ2 Clay 9 311 -151 3530 .120 Miocene 893 880 887 .053 .053 .0.53 1379 1286 1333 .0110 .0112 .Oll1 Clay 10 115 -190 3530 .120 Miocene 867 835 851 .051 .052 .052 1335 13112 1339 .039 .039 .039 Clay 11 45 -235 3530 .120 Miocene 8511 726 790 .M9 .053 .052 1296 12811 1290 .038 .038 .038 Clay 12 50 -280 8225 .135 Eocene 51199 3923 11711 .034 .052 .043 61175 61611 6320 .024 .021 .026 Sands 13 50 -330 8225 .!35 Paleocene 11799 32113 11021 .0110 ,060 .oso 6066 5631 58119 .021 .031 .029 Sands 1 of 1
- - - - - -' - - - - - - *- - - - - - SURRY POWER STATION, UNITS 1 J\ND 2 TABLE 2-9 STRAIN COMPATIBLE SOIL PROPERTIES Containment Spray Pumphouee DBE* 0115g OBB
- 0.07g Top Low Strain Total Shear Modulus Shear Modulus Thick- of Values Unit lksf} Da!!!l!ing lksfl Da!!!l!ing Layer ness Layer Gmax Cs Wt Taft ElCentxo Aver- Taft ElCentro Aver~ Taft E~Centro Aver- Taft ElCentro Aver-No. lftl ~ JJ9!!l J!l!!l. lkcf) Soil Unit S69E H-S !!I!!- ill! H-S !!1!L- S69E u-s !!I!.- S69B N-S !IDL.
1 17 +26 1838 .0611 Structure 2 II +9 3310 .120 Pleisto- 1171 16511 1113 .050 .052 .051 2352 2291 2325 .038 .039 .039 cene Clay 3 25 +5 3310 .120 Pleisto- 2087 19118 2018 .065 .012 .069 2609 2533 2571 .0111 .01111 .0113 cene Sand II 20 -20 3310 .120 Pleisto- 838 BOit 821 .012 .013 .073 1*341 1271 1309 .052 .055 .054 cene Clay 5 2S -40 3310 .110 Miocene 7411. 787 766 .012 .010 .011 1175 1165 1170 .055 .055 .055 ,, Clay 'I I 6 25 -65 3310 .110 Miocene 829 863 8116 .065 .063 .0611 1156 1220 1188 .053 .050 .052 '; Clay 1 33 -90 3530 .120 Miocene 991 873 932 .057 .061 .059 11151 11120 1436 .0113 .01111 .0114 Clay 8 33 -123 3530 .120 Miocene 935 895 915 .056 .057 .057 11126 13113 1385 .0112 .01111 .0113 Clay 9 311 -157 3530 .120 Miocene 898 878 888 .0511 .055 .055 1319 1362 13111 .0112 .0111 .0112 Clay 10 115 -190 3530 .120 Miocene 855 831J 8115 .053 .051J .OSlt 13111 13511 13118 .0110 .039 .0110 Clay 11 115 -235 3530 .120 Miocene 818 751 '185 .051 .053 .052 1282 1300 1291 .039 .039 .039 Clay 12 50 -280 8225 .135 Eocene 5533 3985 11759 .0311 .052 .0113 6415 6256 6336 .025 .021 .026 sands 13 50 -330 8225 .135 Paleocene 11762 3242 11002 .0111 .061 .051 6117 5705 5911 .021 .031 .029 Sands 1 of 1
- - - - -* - - - - - - - *- - - - - - - SURRY PONER STATION* UNITS 1 AND 2 TABLB 2-10 STRAIN C<MPATIBLE SOIL PROPERTIES SafeCJUards Building N-8 Canponent DBE* lh15g ODE., 0.07g Top Low Strain Total Shear Modulus Shear Modulus Thick- of Values Unit (ksfl Dmiming (ksfl Da!!!J?!ng Layer ness Layer Gmax Cs Wt Taft ElCentro Aver- Taft ElCentro Aver- Taft ElCentro Aver- Taft BlCentro Aver-
..!!2- lftl E l e v . ~ J!1!!!1. ~ Soil Unit S69E n-s .mm.._ ml n-s .!!U!.,_ §jg N-S !!!IL.~ l!-B !!I!!_
1 16.5 +26 2qq11 .076 Structure 2 11.5 +95 3310 .. 120 Pleisto- 1671 150 1610 .051 .053 .052 22'2 2172 2207 .039 .0110 .OQO cene Clay 3 25 +5 3310 .120 Pleisto- 2021 1882 1955 .067 .0111 .071 2575 21190 2533 .0112 .0115 .01111 cene Sand
. 20 -20 3310 .120 Pleisto-cene Clay 821 79q 811 .071 .073 .072 1328 1215 1302 .* 052 .051J .053 5 25 -QO 3310 .110 Miocene 71111 190 167 .011 .069 .010 1167 1183 1175 .051J .05q .0511 .t Clay i
6 25 -65 3310 .110 Miocene 831 8611 851 .0611 .063 .0611 1162 1225 11911 .052 .050 .051 Clay 7 33 -90 3530 .120 Miocene 981 886 937 .051 .060 .059 1456 11110 11133 .043 .0411 .oq11 Clay* 8 33 -123 3530. .120 Miocene 930 889 910 .056 .051 .051 11125 1335 1380 .041 .044 .043 Clay 9 34 -151 3530 .120 Miocene 897 882 890 .0511 .oss .055 1326 13113 1335 .OIJ2 .042 .oq2 Clay 10 45 -190 3530 .120 Miocene 856 835 846 .053 *.053 .053 1341 1333 1337 .oqo .040 .040 Clay 11 q5 -235 3530 .120 Miocene 826 149 188 .051 .053 .052 12811 1289 1287 .039 .039 .039 Clay 12 so -280 8225 .135 Eocene 5526 3911 4149 .0311 .052 .043 61120 6220 6320 .025 .027 .026 Sands 13 so -330 8225 .135 Paleocene. 117611 32112 11003 .0111 .061 .051 6138 5680 5909 .026 .031 .029 Sands 1 of 1
- - - -* -* - - - - -- - -*- - - - - - - SORRY PONER STATION, UNITS 1 AND 2 TABLE 2-11 STRAIN COHPATIBLJI SOIL PROPERTIES Fuel Building B-1f Canponent DBE IC 0.1~ OBB IC 0.07g Top Low Strain Total Shear Modulus Shear Modulus Thick- of Values . Unit IYfl Da!!!l!ing lksfl Damuing Layer ness Layer Gmax Cs Ht Taft B1Centro Aver- Taft B1Centro Aver- Taft B1Centro Aver- Taft B1Centro Aver-
-1!!b_ lfti Elev. JUfi Jfl?!l. Js;ft Soil Unit S69E N-S ! ! I L - ~ n-s !!l!L_ S69B N-8 ,!g!_~ N-S .!!IL..
1 21 +26 2397 .173 Structure 2 q +5 2397 .173 Structure 3 21 +1 3310 .120 Plelsto- 16118 11156 1552 .0711 .082 .078 2298 2259 2279 .0111 .0119 .0118 cene Sand II 20 -20 3310 .120 Pleisto- 781 7118 765 .067 .068 .068 1180 1187 11811 .052 .052 .052 cene Clay 5 25 -110 3310 *.110 Miocene 7711 826 BOO .0611 .062
- 063 1099 1163 1131 .052 . .oso .051 Clay 6 25 -65 3310 .no Miocene 903 866 885 .057 .058 .058 1166 1275 1221 .0118 .0115 .0117 Clay 7 33 -90 3530 .120 Miocene 950 898 9211 .055 .057 .056 11158 1331 1395 .0110 .01111 .0112 Clay B 33 -123 3530 .120 Miocene 832 910 871 .056 .053 .055 11l10 12110 1325 .0110 .01111 .0112 Clay 9 311 -157 3530 .120 Miocene 895 8U 872 .052 .053 .053 1397 1255 1326 .038 .0112 .0110 Clay 10 115 -190 3530 .120 Miocene 863 821 8112 .~so .052 .051 13,u 1299 1320 .038 .039 .039 Clay 11 115 -235 3530 .120 Miocene 885 705 795 .011'1 .052 .050 1317 1180 12119 .037 .0110 .039 Clay 12 50 -280 8225 .135 Eocene 5369 3990** 11630 .035 .051 .0113 6501 5936 6219 .023 .029 .026 Sands 13 so -330 8225 .135 Paleocene 11681 32311 3958 .0110 .059 .oso 59011 5566 5735 .028 .031 .030 Sanda 1 of 1
- - - - - - - - - - - - *- - - - - - - SURRY PONER STATION* UNITS 1 AND 2 TABLE 2-12 First Iteration Values STRAIN C<X4PATIBLE SOIL PROPERTIES Reactor Containment
!!BB* 0 1 1~ ODE* 0.07g Top LoW Strain Total Shear Modulus Shear Modulus Thick- of Values Unit (ksfl DanlPing (ksf! Damging Layer ness Layer Gmax Cs 11t Taft ElCentro Aver- Taft BlCentro Aver- Taft BlCentxo Aver- Taft ElCentro Aver- ~ 1ft) Elev. Jlmfl.. .ll1?!l. JJsgfl. Soll Unit S69B H-S !!l!t_ S69E n-s Y!L~ u-s !!I!_ S69B H-S !!l!L..
1 21 +26 1073
- 1106 Structure 2 45 +5 1073 .1106 Structure 3 25 -40 3310 .110 Miocene 861 871 866 .066 .065 .066 12116 1365 1306 .051 .0118 .050 Clay 25 -65 3310 .110 Miocene 8'0 .063 .063 1271 12110 .oso .0118 .0119
" Clay 873 857 .062 1208 5 33 -90 3530 .120 Miocene 871 896 i811 .061 .060 .061 1330 1302 1316 .0116 .0117 .0117 Clay 6 33 -123 3530 .120 Miocene 862 869 866 .058 .058 .058 1257 1275 1266 .046 .0115 .0116 Clay 1 311 -157 3530 .120 Miocene 817 870 81111 .057 .055 ~056 1199 1312 1256 .045 .0112 .01111 : .
Clay *1 8 45 -190 3530 *.120 Miocene 782 81l5 814 .055 .053 .0511 1181 12511 1218 .043 .0112 .043 .i Clay i I 9 115 789 760 .0511 .052 .053 1161 1237 .0112 .0110 .0111 ,.'
-235 3530 .120 Miocene 730 1199 Clay 10 50 -280 8225 .135 Eocene 33111 3605 31160 .063 .056 .060 5257 5530 53911 .037 .034 .036 Sands 11 50 -33Q 8225 .135
- Paleocene 3219 31150 3335 .061 .056 .059 5075 54611 5270 .037 .033 .035 Sands 1 oft
- - - - - - - - - - - -*- - - - - - - SURRY POHER STATION, UNITS 1 AND 2 TABLB 2-13 STRAIN COMPATIBLE SOIL PROPERTIES Gmax ~ 501 Free Field Average Gmax + 501 (DBE) Average Glnax - 501 (DBE) Top Low Strain Total Shear Modulus Shear Modulus Thick- of Values Unit (kaf) Damping lksfl . panping Layer ness Layer Gmax Cs 1ft Taft B1Centro Aver-*Taft B1Centro Aver- Taft B1Centro Aver- Taft ElCentro Aver-
-1f.2.t-. (ftl ~ JJs!!!.l. Jm!1. Jl§S!l Soil Unit S69B N-S !9!L- S69B N-S .!m!_ S69B N-S .1!9!L- S69B N-6 l!!l!L.
1 21 +26 1585 .120 Pleisto~ 1058 1038 10Q8 .058 .059 .059 192 172 182 .090 .094 .092 cene Clay 2 25 +5 3310 .120 Pleisto- 3351 31Q9 3250 .05Q .060 .057 672 6711 673 .099 .098 .099 cene Sand 3 20. -20 3310 .120 Pleisto- 1Q63 1367 1Q15 .062 .065 .o6q 33q 359 347 .076 .074 .075 cene Clay q 25 -QO 3310 .110 Miocene 1290 1263 1277 .06Q .065 .065 351 3311 3q3 .010 .072 .071 Clay 5 25 -65 3310 .110 Miocene 1287 1330 1309 .061 .060 .061 323 329 326 .070 . .069 .010 Clay 6 33 -90 3530 .120 Miocene 1665 1656 1661 .052 .052 .052 3QO 358 3q9 .066 .o65 .066 Clay 1 33 -123 3530 .120 Miocene 1629 1Q75 1552 .050 .053 .052 328 316 322 .064 .065 .065 Clay 8 3q -157 3530 .120 Miocene 1568 1Q35 1502 .OQ8 .051 .050 327 271 299 .061 .071 .066 Clay 9 45 -190 3530 .120 Miocene 1531 1Q26 1Q79 .oq7 .oq9 .oq9 316 219 268 .o59 .oeo .010 Clay 10 45 -235 3530 .120 Miocene 1Q55 1Q12 1433 .OQ6 .OQ7 .OQ7 Clay 11 50 -280 8225 .135 F.ocene 8723 7903 8313 .031 .037 .035 Sands 12 50 -330 8225 .135 Paleocene 7953 6831 7392 .03Q .OQ3 .039 sands
~=
- Extrapolated data used in SSI.
1 of 1
- - - - - - - - - - - - *- - - - - - - SURRY PONER STATION* UNITS 1 AND 2
'l'J\BLB 2-11l STRAIN. COMPATIBLE SOIL PROPERTIES Gmax :t50I Reactor Containment
- Aver;:agg Gmax + 501!! l!!BEI Average §mag - 501 tDBEI Top Low Strain Tota1 Shear Modulus Shear Modulus Thick- of Valueg Unit tksfl Dame!ng . tksfl DamDing Layer ness Layer Gmax Cs Wt Taft ElCentro A~er- Taft,B1Centro Aver- Taft ElCentro Aver- Taft B1Centro Aver-
~ lftl Bley. tksfl J!e!!l.. Jlmll Soll Unit .§.§21 H-S !!!I!!.,_ §ill H-S !!!I!!_ S6 9E N-S A!I!!_ ~ N-S !!l!L..
1 21 +26 1013
- 1106 Structure 2 45 +5 1073 .1106 Structure l 25 -40 3310 .110 Miocene 1331 1255 1296 .0611 .061
- 066 310 330 320 .016 .0111 .075 .
Clay II 25 -65 3310 .110 Miocene 1261 1218 1269 .063 .063 .063 308 279 2911 .012 .011 .075 Clay 5 33 -90 3530 .120 Miocene 1511!) 1635 1592 .055 .053 .0511 335 3119 342 .068 .067 .068 .,i Clay 6 33 -123 3530 .120 Miocene 1617 1478 *1549 .051 .051t .053 333 299 316 .065 .069 .on Clay 1 34 -157 3530 .120 Miocene 1558 11178 1518 .049 .051 .050 310 2711 292 .063 .072 .068 Clay 8 115 -190 3530 .120 Miocene 1528 1483 1505 .o*n .0110 .Olla 305 209 257 .061 .084 .073 Clay 9 45 -235 3530 .120 Miocene 111Q9 1406 11128 .041 .0111 .0111 Clay 10 50 -280 8225 .135 Eocene 8198 1190 8294 .031 .038 .031J Sands 11 50 -330 8225 .135 Paleocene 7941 6918 7430 .035 .042 .on Sands 1 of 1
- I r----i-------------------============================-------- -** --
0 PIIZ.OMETl1t.A__ 0
"Y I +
0 IO
.ltOUI"'
I -.,-tVtSCHAW_GI: CJi.HJi.l. .(UNLINE"D)
...__ _ _ _ _ _~___s_EAL _ _P_IT=:\ ~wr--£-IR----------~----.,--~---------~ - \\ I /
I ~-------',----. 1
\;::::!:I \
l r f
....,,._o'-1-'----'-l".._;O,c_'~-- - - ~ _ _ , _ I""--'0"---l:f-+1-----1-----..!l.2'5~0:__
l--'-'.. 1 e,* __:=---!,---...!..I~~o!,!.'_ _ __,_ __..JIL.1'5~0:_'----~lo-+-1
~iE-'L P I T . - - \ -
W El R. ~
\
l I 1 V
--~.z. __..!_l..~Oe!:.'---1 ~"IOM'!aT*Q 0.0UP O"t PIE:ZOME:TY::.R Le;Vl:;L$
I L. l : : 1 - - - t - - - - - - - - - t - - - - - : - . . _ __ _ _+--------=----1f--------+-----------!4'~'_____..,., I I
~- I I I I / "10. T\P to Le.\J.
I ~c.w. t>ISC.M. I I C.'W. PISCH. I ~NNl"L I I TUNNl!.L P1J).. - \0.0 + \. \ I I I I I B-8 ~ I I.. B-16 1---__j,=::::::::::::::::::::::::::::::::::::=t:=========~~..:::::::::::::::::t======================!:=======================:t====~=================!l::+/-:====--*-----------*~-----~
~R.QAIZ ,.-i 1
e-"'*~te.Q. G,IIOUP n 8-21 t 1 I I IJ I I 8*26 ~ P1B
~ l C. -19.0 -;\.'l + \.; + \.'3 ~ /~~~, i p 'ZA. -8.' + ~.,
I 111 1-Vl~ p 'Z, P., - ~?,.S ~ 3.';,
..* _ __..____+ ____AAc....a....,\ . + J-= r~:~/ "' *-**1 0
II\ P'ZC -38. '2 .+ 3.Z I r ,
,-~ 90 a 40'&.. I JJ & 1 REA.CT O FU EL ISLDG *., y RlEACTOR : : P3~ -3l .. O -\1.8 , 1. a.,14 "7..alr.*".':....*s__....
T_ .....=8=-*.:.:...ll_, _ _ _ _ _ coNT,-1111M
. _ _ . 1. . . . . . . 8-17 "" co111TA.1NMENT 8-221 1 100+00 P3f:> -5\.0 -\'l.Z ~~ L -~ !
I ............ i
\..
u.,T ** , 2.5-' AU'IULIARV
~ur*T_N**A-2.
I;.- I P4C. P40
-3 \.0 -ss.o t '2.2 -2,,3 RA R KIN Gi \ C.O~ T, ,r-......__
l"""'ii:i"
-,;-+-,
l. BLPG I. I b. I
"- I spg .'( STEFi!'\ .'T ~--......I,.,,,,.,,*:1,,.__!::P=l\f::I:=,::::::::::V=A=L\/=E=IIS='=-**_8_*_4_6__j , -* *::: 8-* '---~=i=I==~==:!=!.___ _ l; *. 11 PS~ - 1.0 +~.o ',', )I...?,, /"}/ P':)~ --?J'l,0 +S.3 co~~~QO~W\ '"'0,1 I WA~l!HOU5tl! ~~~t>
A.
'\J.. \\J~\.l. -'1,0 S. '"~\.L --9.0 q;' ' 'i 'l ' ', i / / ( ( ~ -'2'2,0 -'ZA.-0 , , 'l1 \ r1"' , oo' 0-50 ,( ( eC-3 c-G~
I 1 , ;* OFFIC.E
..,__.._.m1o-===='"'" a BLPG 1 1 1 8-4 71 -.. H ._ 11 I I 1 1 'o ,(
0 r\,\ AA , . . . >--1--------=L I I I i
- . C-1 II C-5 Q'.
- ,TIJR.8.* C:jEN. UNIT Nol I T\J..&!'S~I 1: ...:.7,***c;r 1,1./_Nl:T No .i. + e CCIJDEIJ-S~."TE I I I *1 PCLI-SMIIJC:, I ---- I- \ nn o, n C)~MIUEt:.Al.12ER
__.~=="---~--'--__j_ __!Yc.......!..._Y__!_~y 8-18 8- 23 ~ ,. C-2 e I'I I1 Qi~~* ~4 8-13 1 1 1 I ! 1 1
- 11c-4 ---DENOTES LOCATION OF PIEZOMETER GROUP J ~ :f. r.:=j
! I I TILE Fl ELP +
I =---t ct L Va A*brl . .o I, 1 I Pl -UI J : 0 Un_: i d2 i [? [? [? I : I .1 + 0 8 TRANSF'Oi..MER
-----------+---;.'.....;....'-----'-'------1'.;.--~
I I I I I 1'RII'°" t r. TRA.NSFORME"' I I . I
------+-'-'_,__,_,___________~
I I I
.-..R.I!.-.. L.
11 0-5
+DENOTES BORINGS I I I I I I i I I I I I I RO .... P I I I I 8-9 / B-14 , I I I /* .. - - - - - - - - - ~ t-19 I I / 8-24 I
1 I I I
- -f ; I~ ~ I Q 8 8 * ~~~~~ +
I I _J ~ \_ START UP II_ _ _ _ ..JI HltoH Ll:Vl!L TR ...N5 FORMERS I --1 (+-
~ 5TJltUC.TUIU INTAl(.E ---1:,
Cl Q PAVED Hl<!iH LEVEL INTAt<:E CANAL
-*--------**--~ FIGURE 2-1 PLAN LOCATION OF BORINGS AND PIEZOMETERS I ~ I *,* ;r *r SURRY POWER STATION UNITS 1 AND 2 I ,.....___________
FROM: SURRY 1 & 2 FSAR, _;_ _____________________________________________________ FIG .. 2.4-2-- SCALE - FEET ~-----------
I I I I CALLED NORTH I I _ ( APPROX. TREE LINE I 0 P5(A+B) lt Dl~CHARGE CANAL P8 DLP14(A+B). B146 J D p 13(A+B) I P6 oC60 P7 0 P2(A,B,C)
. B135S**
L-8135 EI _,, B201
~-°"3 Bl33SJ a202-e204 * -~-...L......IIL/
_, B134* B133 ~-....._ B206 A 1:......J" E I\ e203 rB205 ; _JB .1 L B136* / -~&137 8137S* 8143
*B129 ).8138
- Bl38S
- B130 8131 rt-- ' f_c_
I BIOi --**8_10_2__o-- B103* B27 B30 B1211 l
. .B104-=---.Bl05--.BI06- ::wPll~A:Br--1
- B144.
B107 9
- J B122 B123
.0,2~_**e_1_2s L8 1 3 9 - - - - - 9126 B145 - B142 I
- L-*e140 *
- 8141
*e,27 * *8128 EXISTING UNITS euo. BIii B112 B114 B109* * * * *B113
- I PIO(A+B) *8147 I w A
lt l~TAKE CANAL I ji'j I z, w.-1a
- 0 I&: N LEGEND z FIGURE 2-2 I
l&I 0: 0 0 B27 - BORINGS FOR UNITS I e. 2 0
+ 0 200 400 e BIOi - BORINGS FOR UNITS 364 SITE PLOT PLAN 0 0 Pl (A, B, Cl - PIEZOMETERS FOR UNITS 16 2 II) SURRY POWER STATION-UNITS 1 AND 2 e PIO(A-+ Bl - PIEZOMETERS FOR UNITS 3 6 4 I *
- SCALE - FEET At______jA - SITE SUBSURFACE PROFILE FROM, SURRY 3 AND 4 GEOTECHNICAL REPORT, FIGURE 6 I
I I
_; ____ _- - .. - - -*- - *- -!- - I B-11 (B-45(60'N) 8*17 8-48(32'N) B-22 II I 40 1* I I II I II 40 I CONTAINMENT FUEL CONTAINMENT 20 STRUCTURE No.1 BUILDING STRUCTURE No. 2 20 REMOTE O.W.L. 8 IL 0 === 0 m I I z z 0*20 -20 !2
~
I-
~ ~-40 ........... ********* -40 ~
1 w EL -41,0 w STlff SILTY CLAY STIFF IIILTY CLAY
-60 EXCAVATED AS Of OCT. 4,1967 -60 TIP IL *70' -80 -80 NOTES:
11 11 11 11
- 1. SAND A AND SAND 8 CORRESPOND TO PLEISTOCENE SANDS IN TEXT.
- 2. MED. CLAY CORRESPONDS TO PLEISTOCENE CLAY IN TEXT.
- 3. STIFF SILTY CLAY CORRESPONDS TO MIOCENE CLAY IN TEXT.
SECTION A-A' 0 40 120 160 HORIZONTAL SCALE-FEET FIGURE 2-3 SUBSURFACE PROFILES SURRY POWER STATION-UNITS 1 AND 2 FROMr SURRY*.16 2 FSAR, FIG. 2.4-3;
/ . *I i: '!
I B-14 (150'1) B-15Cl50'W) 1-16(150'1) B-19U50'E) 1-18 8-41(19'1) 1-20050' E) B-46(25'1) l-ll B-45(11'1) B-2Hl50'E) II I I I I II t II I CONTAINMENT II 40 STRUCTURES 40 I TURBINE ROOM CONTROL AUXILIARY I I I ROOM BUILDING 20 I I I CLAY 20 I I I SAND t- I I I llL!J 0 EL-2.0' I 0 ~ lL I I z z Q-20 -20Q t-
~ ~-40 ~---- i_, -40 IJJ I STIFF SILTY CLAY IJJ IJJ I I CLAY I -60 I
I FINE SAND . j SAND 'c' -60 I TIP EL -TO'
-='
II SAND)~ TIP JL-TO'
.I I -BO I -BO NOTES:
I I 11 11 11 11
- 1. SAND A AND SAND 8 CORRESPOND TO I PLEISTOCENE SANDS IN TEXT. I
- 2. MEn CLAY CORRESPONDS TO PLEISTOCENE I CLAY IN ,EXT. I
- 3. STI.FF SILTY CLAY CORRESPONDS TO MIOCENE CLAY IN TEX~
- 4. S"AND C CORRESPONDS TO THIN SECTION B-B' SAND LA.YER IN MIOCENE CLAY 0 40 BO 120* 160 FIGURE 2,.-4..
HORIZONTAL SCALE-FEET SUBSURFACE PROFILES SURRY POWER STATION-UNITS 1 AND 2 FROM: SURRY 1 & 2 FSA~, FIG. 2.4*4
I I I I I ~ ~ 106 107 125 I. I L.57.05' +40
+40 ' -EL34.7D' +20 +20 I 0 0 -20 -20 I I-Ill Ill IL -40 l'I r -40 l'I ~
I ~ I z 0 I-
~ -60 - ~ - *- - -60 0z -re l'I Ill -80 -80 l'I .J I ~
Ill
-100 -100 -~--
I -120
-140 -120 -140 I -160 NOTE*
- 1. SEE SITE PLOT PLAN (FIGURE 6)
FOR PROF ILE LOCATION.
-160 2.(D PROFILE UNIT NUMBERS REFERENCED IN TEXT.
I EXPLANATION* REPRESENTATIVE SOIL STRATA I. STRATIGRAPHY IS INT'tllPOLATED fROt:I BORINGS.
- 2. REFER TO SORING LOGS FOIi DETAILED SAMPLE DESCRIPTIONS.
0 50 100 150 200 CLArE"Y SAND .§AI/Jl r--""1 I GENERALLY, UIIIFOtllll, FIN£, 10'1, TO GENERALLY, POORLY GIIAOED, COARSE TO FINE. HORIZONTAL SCALE - FEET Q) L__J ~~:Sr.°t'lfH:'caAll~ca~:\'::: II[~~~~ MOSTLY IIEDtUM <10% NOta-PLASTIC FINES, MEDIUM DENSE TO DENSE. LIGHT BROWN. (SP, SW OR SP-SM) CLAr CLAYCY SILT
~NE'.IIALLY. HIGHLY PLASTIC, 51. TO GENERALLY, ~ODERAT!:LY PLASTIC, 5% TO e %
65'. FINE SANO, STIFF, LIGHT GRAV MOTTLED WITH RED l!!IIIOWN. ICHI FINE SAND, STIFF, MEDIUM GRAY GftEEN. (MHJ I SILTY SA/ID SL~i~tt~L~ YELLOW HOWN.
'::~i::rt~:~ ~s"r 1l°F l'N°Et IHI 1
L 1 MEDIUM DENSE TD DENSE, LIGHT GRAY AND SILTY CLAY GENEIIALLY, MOOEIIATELY TO HIGHLY PLASTIC, 51'. TO 8% FINE SANO, STff, MEDIUM GRAY GIIEEN. (MIOCENE DEPOSITION) (CL Ofll CH) FIGURE 2-5 SITE SUBSURFACE PROFILE C-C SAMDY QPAl1fl. OIi 6/fAVELLr $AMO lltrERIICDDED SAND AltD §!AY SURRY POWER STATION-UNITS 1 AND 2 I GEHEIIALLY, WELL GRADED, DENSE TO VERY GENERALLY, UNlf'ORIII, FIN. eROWN SAND DENSE, LIGHT GflAY DROWN. IGW OR SW) ANO GIIIAY BROWN CLAY. IIC. CL 011 CH) FROM: SURRY 3 AND 4 GEOTECHNICAL REPORT, FIGURE 9 I I I
I I 430 . . . . . - - - - - - - - - - - - - - - - - - - - - - - - , FINAL GROUND EL. +26.5' I + 20 o-----'*+---
/
I ~ 10 WATER TABLE
*AVERAGE VALUE USED IN ANALYSIS I ...
Ill Ill 0 o-------~ I_. "'I z 0 j:: - IO
~
I Ill
..I Ill I - 20 o--~-+---..
o-----+---- 0-------------... I -:so 6---------+-----..
*f]SfU .
- I
+
tJ,--~-+---A
-4S ..__ _ _,.__ ___..._______._ _ _-J.......
7'0 90 ,o 100 110
---L.----...1 120 130 I DRY U~IT WEIGHT - LBS/FT!
I LEGEND I + o IN SITU DRY DENSITY MINIMUM DRY DENSITY(STONE & WEBSTER DATA)
- MAXIMUM DRY DENSITY(STONE e. WEBSTER DATA)
I 6 MINIMUM DRY DENSITY(DAMES & MOORE DATA)
- MAXIMUM DRY DENSITY (DAMES & MOORE DATA)
I I FIGURE 2-6 DENSITY vs ELEVATION FOR I PLEISTOCENE SANDS SURRY POWER STATION - UNITS I AND 2 I FROM: SURRY 3 & 4 GEOTECHNICAL REPORT. FIG. 18
I 1 + 30
+20
- I +10 I 0 El
- PLEISTOCENE
-10 SILTS AND CLAYS -1 -20 : I 19S I
I I -30 D1 8 .,I I- -40 Lu Lu
""I -50 z
I I 0 I- - 60 I c( Lu AVERAGE I ..J Lu
-10 -ao PLASTIC LIMIT SED AVERAGE LIQUID LIMIT USED I -90 CLAYS I -100 -110 WATER CONTENT USED I -120 IN ANALYSIS
.I_* -130
-140 I - -- -- .. -- -*- 150 .!--..1..--L..l::::::::!:::::l!!::::::======::i::=:::::ll:-....L--l.....-.J--..;..--J.-.....J 0 10 20 30 40 50 60 70 80 90 100 110 120 130 WATER CONTENT - PERCENT I
PL Wn LL I
- I DATA FROM UNIT l&.2 ENVIRONMENTAL STUDIES REPORT. B*II, B*l3, THRU B*23.
FIGURE 2-7 I a DATA FROM UNIT If. 2 CONDENSATE POLISHER STUDIES WATER CONTENTS AND ATTERBERG-- LIMITS vs ELEVATION SURRY POWER STATION-UNITS l AND 2 I --*--ii DATA FROM SURRY 3 & 4 FROM* SURRY 3f.4 GEOTECHNICAL REPORT, FIG. 26 I
I - _-----** *
-** -~~~. 0 +30 10 +20 - 20 *=--~ ::=:::: - LEGEND e INCREMENTAL +10 / l_ ~*-
0 CONSOL.IOAT!_ON TEST CONSTANT RATE OF' STRAIN CONSOLIDATION TEST I 30 40 (
\ ,.* \
ESTIMATED PAST VERTICAL EFFECTIVE
- TRm "':D ON THIS ,ruo, 0
-10 I I-w w
50
\ ** A -20 I- "-I \ -e-~ : w I w u
ct LL. a:: 60 REINTERPRETEDQ
\ * -30 w "-I z
BY SCHMERTMANfl 2 I
- ) -40 V,
70 MET HOD---"' I-ct Q > z w
.J
- )
0 eo -50 w I a:: 0
.J 90 -60 w
I-
~
- E X
L:J 0 I Cl
~
I-Cl. 100 00
-70 a::
c.. c..
~
w 110 -80 Q
.I 120 -90 I ..
130
* -100 I 140 - 110 150 0 -120 I 160 ..__....,._ __.__.......ii-,......1_ _....._ _..__ _ _ _ _ _ _ _ _ _ ___. -130 0 2 4 6 8 10 12 14 _16 18 20
_I r I VERTICAL EFFECTIVE STRESS - Kg/cm2 0 5 10 VERTICAL EFFECTIVE STRE:SS-tons/ft2 I I 15 2.0 I a INCREMENTAL CONSOLIDATION TEST FROM UNIT IE.2. ENVIRONMENTAL STUDIES REPORT. FIGURE 2-8
~ CONSTANT RATE OF STRAIN CONSOLIDATION TEST PRECONSOLIOATION STRESSES I 6 0
FROM UNIT IE.2. CONDENSATE POLISHER STUDIES. INCREMENTAL CONSOLIDATION TEST FROM UNIT IE.2. CONDENSATE POLISHER STUDIES. DATA FROM SURRY 3&4 IN CLAYS SURRY POWER STATION* UNITS l AND 2
-.I FROM* SURRY 3 E. 4 GEOTEC11NICAL REPORT, FIG. 33 I
-*1111
-- ...i *- -*-:-- i-:- *- - .. I - 60 -30 -70 1~NOCR *Cf MEAN RR 0.032 lMEAN CR 0.305 C!iEAN Cv 7 a 10- 4 cm 1/111c - 40 I o 0 01 I-w w - 80 *~o 0 I
- I ., ol -50 iJ.
I I *-ww I0 I 00 (j) b.l u
-90 0~00 'b (IX) 0 01 Oo -60 la.
I cl 0I I 0 z
~
la. 0 0:: U)
-too -
I I F -70 I-
"'1 ol I >
0 z 0 ll:
- 110 i (D 0 I
00 I I I -80 w _J uJ w (!)
~
0
-120 - I I q,I 00 I -90 t-cl ~ ..J 100 Id / Cl)
I I >< 0 ID
- c I-
-130 o/* I
- 0 Oe ol -100 0:
(\.. Q. w
-140 I I I -
Q. ct 0 I I I I
-110 -150 /oo I 0 0 ml ml -120 I I I -160 -130 0 2 3 4 5 6 0 .QI .02 .03 .04 .05 .06 .07 0 0.1 0.2 0.3 0.4 0.5 0.6 0 10 20 *30 40 50 60 70 OCR RR CR Cv 10-4cm 2 /sec
- FROM REPORT:"ENVIROMENTAL STUDIES UNIT 1&2 0
INCREMENTAL CONSOLI.IJATION TEST. CONSTANT RATE OF STRAIN CONSOLIDATION TEST. NOTE: . OCR OVER CONSOLIOATION RATIO-ifvm/dvo Cv DATA TAKEtl AS AVERAGE VALUE ON FIGURE 2- 9 RR RECOMPRESSION RAT 10 - c,dlt to RECOMPRESSION FROM o'vo TO cfvm*
SUMMARY
OF CONSOLIDATION CR COMPRESSION RATIO
- Cc/It 80 Cv COEFFICIENT OF CONSOLIDATION. '.
TEST DATA IN MIOCENE CLAYS ii"110 EXISTING VERTICAL EFFECTIVE STRESS. 1 SURRY POWER STATION - UNIT I AND 2 O"vm MAXIMUM PA\ST VERTICAL EFFECTIV_E STRESS. FROM: SURRY 3 E. 4j GEOTECHNICAL REPORT, FIG. 34
I *--** ....... ________......._________________ I .. -* - * * * -* * ,.......... -*-**20 - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- 30 I - 40 TYPICAL UPPER BOUNDARY OF MIOCENE CLAY I,' I; °'co CJ I - 50 CO 00
(:) I -60 I' I-uJ uJ
- 70 "'I" -so I z 0
I-.
~ -90 ffi I
(:) uJ [:l
..J 0 00 LI.I -100 *i § E)
I - 110 I!) 8 [:l oCo I -120 Cl s rq.
-130 I
Iii 51
-140 Ill I
--- -***-------*-*----- -- *** ------- *-* *---150-- 85 95 100 105 110 115 120
&:I 125 130 135 90 1 TOTAL UNIT WEIGHT - LB/FT 3 ., 8 DATA FROM UNIT 11,.2 ENVIRONMENTAL STUDIES REPORT 8*11 1 B*l71 8*22.
I
- 0 DATA FROM UNIT IE.2 ENViRONMENTAL STUDIES REPORT 8*7.
DATA FROM SUR RY 3 REPORT
- e. 4 GEOTECHNICAL FIGURE 2- 10 TOTAL UNIT WEIGHT vs ELEVATION I FOR MIOCENE CLAYS SURRY POWER STATION* UNIT 1 AND 2
-I __ .. ___ __ FROM* SURRY 31,.4 GEOTECHNICAL REPORT, FIG. 29 I
I I Small Strain Shear Modulus (ksf) Gmax I +26 1' 1000 2000
~000 4000 5000 GROUND SURF~CE~
6000 7000 8000 I 0
,p ~ ,,.
2,
! PLEISTOCENE .fl I;)
I -20
-/.,.0 \
i i I Fi . I o SHEAR MODULI FROM CROSSHO LE I . I I I I I ~
~
I I ,_
~
I SHEAR MODULI DERIVED FROM OTHER SOIL PARAMETERS AN D EMPIRICAL FORMULA**** ** *-.
,I -90 I
I ,. I~
--**** -* ***---1-* -
I I
.~I -
I SHEAR* MODULI USED FOR SHAKE RUN I I MIOCENE, T I
.I I I
--1** I I I I ' I I -280 . I ~
-T !i j I 'EOCENE &
- PALEOCENE
-I a\ .. -- - . i I
I -330 i FIGURE 2-11 BASE LAYER; Vs= 2000 fps I Gs= 16770 ksf
SUMMARY
OF G MAX VS. ELEVATION SURRY POWER STATION-UNITS 1 AND 2 I
I I' -I 0 r-1 I I
*1 I-I J ,-; .
I I I
... I ... ~ ,/
r:.!l) 0 1+-1
., / ,-- ... 1(\ * ~
0
-s::t+-t ...... IL.;~...;
I-
~ ~ Q) -Cl) J.4 ;c / r-1 0
-1 -
/ / * / ~ ... ::.::er~ ll'\* .,-1 /
I-
/ ~ *r-1 '"d~
I /. d o~r.z."' i.. I-8 - c-- /- ~
... ,-;25U ~')
II _g rt: '5
/ *i.. /
aj I
- .::, Cl)- Ill
.c:
C/)
/ /
C r-! 0 I /
/ / -/
I / I /
~
rl 0 0 0 I I I I. 8 0 0 I 0 l.r\ 0 C""\ 0 N o. FIGURE 2-12 I SHEAR MODULUS FACTOR FOR SANDS SURRY POWER STATION-UNITS 1 ANO 2 I
- ..,.. - .. - -*-*i-' ...,.......... ,'... -**-:'llilll - - I II I I I I I I I 11 I
' -r , , **.T G = K ~Fe fhear'14oclulus of Clay 2500 from Fig. 5. lf, ref. 11, for Kc max= 2300
[~
*,"1 ~-.
2000 ' I'- I', l's
~\
I'> K C
- C,,
u \ I\ f\. ti) (/) "11 C :C - '\
- u m G> I"
!,, :0 )> §5 ITI 1000
['\ I'\ 0
- E 111 s:: I\)
Q I
"'~~ ;u O ~
u, C OJ
~ r
- ! C 0 (/)
z ~ c!: ~ I'-. z 0
- j -I
(/) 0
"'f's ~ ~
- 0 0
~ '-...
0
- 0 9-...
I\) i- - ~!)_____ 0 r ., [
)>
(I)
;10-/~ * '10-3 10-2 10-1 1 10 Shear St.rain%
1.
--- ..... - * - 111111 -*-*- ... -**-* - - -- - - - J5 I I I I I II 11 I .1 Damping Ratio for Send. (from Fig. 5.9, ref. 11) JC
?5 ,,, ....
l/
/ / 't~ 20 ) )
0 /
*r-l ~- .I +:> ~ *C:::
l:lO S:1
*rl ri, \ @ 15 I/ ~ I I
V (/) C "11 C )> G) /
~ =i::
I C 10 ~
/ -< '1J :0 ' "'D ~ZN ITI G) I
- u :0 .....
111 V (/) )> ,i:. i:! -I ,.lj
~//.
0 a s *' z ,, ... -*
*o ~ :0 =i (/)
v [',' (/) )>
~z \- ...... - .. ---*-- --- -- - J~ ~
0 C (/) O 0.0001 . : 0.001 0~01 - - 0.1 1 10 I\) Shear . t1train %
- - - -*-* - *-*-*.:- - -*-* ..**- -*- - - - I 35 I I I I I I 1111 I I I I I 111 l Damping Ratio for Glay (from Fig 5.14, ref. ll)
JO
/y "
V
/
25 I/
'ti!.
0
*rl +>
- -'.0 V
V
~ 11 to I/ *d I fil',u 15 I/ ~
V en O "Tl c)>- V
- u 3: G')
- u
-< '"D ~
C 10 /
/ ~ zl'll
- .E Gl I\) .,.
1,k l fl! I i..,...v
- u ::u -(JI v
~ -f )> - )>
v
.:! 0 0
z 'Tl 5
-v t..,.V -----; j j ,O ! - ..
I C ::U ... _*IL~ ....------ z 1T----..-* ' _.
-n : ;;! r ;
I
~ )> 0 )>
z
-< 10-11 io-3 10-2 . 10-1 U) 1 10
- l. 0 I'\) ~,hear Strain : ¥ (%)
- I I EFFECTIVE CONFINING PRESSURE- KS F I 10,000 9
I 2 3 4 5 67891 2
~ ~ ~ - 2 0 YEARS EXTRAPOLATION OVERNIGHT IN SECONDARY RESONANT COLUMN TEST, PLEISTOCENE CLAY I LL.
8 7 6 CONSOLIDATION
. END OF PRIMARY CONSOLIDATION AVG W = 27.2 °/o en I ~
en 5
- J 4
...J I :J 0
0
- E RESONANT COLUMN TEST, PLEISTOCENE CLAY AVG W = 36.2%
f:, MIOCENE CLAY 20 YEARS EXTRAPOLATION I a::
<(
LLJ
- c U)
I 11--,11,,K__,, INSlTU SEISMIC SURVEY PLEISTOGENE CLAY INSITU SHEAR MODULI FOR PLEISTOCENE CLAY EXTRAPOLATED FROM RESONANT COLUMN TESTS FOR FIELD WATER CONTENTS I IOOO _ _ _ _ __...._ ___._ _....___ _......___.____.__..___.__ _ _ ___. lo/$ffd1 INSlTU SEISMIC SURVEY MIOCENE CLAY lNSITU SHEAR MODULI FOR MIOCENE CLAY EXTRAPOLATED FROM RESONANT COLUMN TESTS FOR FIELD WATER CONTENTS PLEISTOCENE CLAY MIOCENE CLAY I LEGEND: I SYMBOL TEST 1.D. .SAMPLE NO. UNIT WATER CONTENT(%) CONSOLIDATION TIME 0 DYNAMIC TEST BLOCK 2 PLEISTOCENE CLAY 29.2 END OF PRIMARY CONSOL. 2-3 HRS I
- II II II 29.2 OVERNIGHT IN SECONDARY CONSOL,::::: 15 HRS END OF PRIMARY CONSOL. 2-3 HRS A DYNAMIC TEST 2 BLOCK 2 PLEISTOCENE CLAY 25.6 I .&
EJ II DYNAMIC TEST 3 II TUBE II MIOCENE CLAY 25.6 36.6 OVERNIGHT IN SECONDARY CONSOL::::: 15 HHS END OF PRIMARY CONSOL. 2-3 HRS I ISi II II II II END OF PRIMARY SWELL 2-3 HRS
- II II II II OVERNIGHT IN SECONDARY SWELL::::: 15 HRS I 0 TEST NO. I BLOCK PLEISTOCENE CLAY 35. 8 END OF PRIMARY CONSOL, 2*3 HRS
- II II II II OVERNIGHT IN SECONDARY CONSOL.:::::: 15 HRS I <> TEST NO. 2 BLOCK PLEISTOCENE CLAY 35.8 END OF PRIMARY CONSOL. 2-3 HRS
- II II II II OVERNIGHT IN SECONDARY CONSOL::::::f5HRS FIGURE 2-16 I COMPARISON OF FIELD AND LABORATORY *MODULUS DETERMINATIONS I SOURCE: From Hardin Test Data, Reference 4 SURRY POWER STATION UNITS I AND 2 I
I SURRY POYER STAT.ION, UNITS l AND 2 I I 3.0 GROUND RESPONSE SPECTRA I The selection of seismic design parameters has been discussed in detail in I Section 2.5 of the Surry land 2 Final Safety Analysis Report CFSAR).< section of the report describes the *smoothed ground response spectra-. 1 > This I 3.1. DESIGN BASIS EARTHQUAKE CDBE) AND OPERATIONAL BASIS EARTHQUAKE lOBE) I For a safe and o.rderly shutdown of the* station, a maximum horizontal ground I acceleration of 0.15 g is used for the DBE. A horizontal ground acceleration I of 0.07 g was established for the OBE. 2/3 the appropriate horizontal accelerations Vertical accelerations are taken as acting simultaneously and in I phase to produce maximum loads or stresses. I 3.2* GROUND RESPONSE SPECTRA I The ground response spectra used in design are shown in Figures 3-1 and 3-2 I for the OBE and DBE, respectively *. The spectra were constructed in accordance with the principles of the standard Housner spectra as follows: I For fre~uencies higher than about 2 cycles per second, the Housner spectra
- 1 have been followed and normalized to a horizontal ground acceleration of 7 percent of gravity for the OBE and 15 perc~nt of gravity for the DBE.
I I 3-1 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I In the frequency range between 0.3 and 2 cycles per second, Housner's I average spectra have been normalized to a maximum ground velocity of about 4 inches* per second for the OBE and 9 inches per second for the DBE, I For frequencies lower than about 0,3 cycle per second, the spectra were I prepared using data suggested by Newmark and Hall in their paper.<2> I 3.3 ARTIFICIAL TIME HISTORY I The artificial time history has a total duration of 15 seconds*, with about I 3.5 seconds each of rise and fall time, whose ground response spectrum is forced to fit the specified site spectrum. An artificial accelerogram which I reproduces the frequency content displayed either in a response spectrum or in a power spectral density function is simulated statistically by using a I stochastic model as described in Reference *.3. In this model, the earthquake I motion is considered density function, duration, to be and a wide-band stationary proce_ss whose spectral maximum acceleration are specified. The I artificial motion is generated by matching the target or site spectrum for several specified percentages of critical damping at 100 oscillator periods I distributed from 0.02 CSO Hz) to 6.666 C0,15 Hz> seconds. For a detailed treatment of the mathematical procedures, see References 4 and 5. I I I 3-2 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I The acceleration time history* yields ground response spectra at damping values I of. 0.5, 2, and 5 percent that envelop the smoothed site design ground response spectra for those damping values <see Figure 3-3, for example). I 3.4 GROUND RESPONSE SPECTRA AT BASE OF CONTAINMENT I At the request of the NRC, the ground response spectra at the level of the I reactor containment mat in the free field were calculated and plotted using SHAKE. The artificial earthquake developed for the Surry site vas normalized I to the DBE maximum acceleration of .15 g and input at the ground surface of I the free-field profile. The earthquake motion vas deconvoluted to the base of. the profile and the computed motion at El -40 ft, the containment founding I grade, vas used to calculate the real velocity and acceleration response spectra and the tripartite plot of real displaceme~t, pseudovelocity, and I pseudoacceleration vs frequency. These spectra are plotted for damping ratios of .5, 1.0, and 3.0 percent. I I Response Gmax spectra calculated were calculated for three soil profiles, represented by the from seismic cross-hole surveys and discussed in I Section 2.4.1, Gmax plus.SO percent, and .Gmax minus 50 percent. for each soil profile are plotted in Figures 3-4, 3-5, and 3-6, The spectra respectively. I Also plotted in these figures is the envelope for .5 percent damping, as I I 3-3 I I
I SURRY POWER STATION, UNITS l AND 2 I I- pres_ented in Figure 2.5-5 of the Surry l and 2 FSAR, <1 > and Figure 3-2 of this I report. I
3.5 REFERENCES
I- L Virginia Elect.ric & Power Company, Final Safety Analysis Report. Surry Power Station, Units land 2, Part B, Volume 1, December 1969. I
- 2. Newmark, N.O., and Hall, W.J., Seismic Design Criteria for Nuclear Reactor I Facilities. May 25, 1967.
I 3. Hou, S.N., Earthquake Simulation Models and their Applications. Research I Report R68-17,* Department of Civil Engineering, MI!, 1968. I 4 *. Rascon, O.A *. - and Cornell, C.A., Strong Motion Earthquake Simulation. Res~arch Report R68-15, *Department of Civil Engineering, MIT, 1968. I I 5. Tsai, N.C., Spectrum Compatible Motions for Design Purposes. Journal of Engineering Mechanics Division, ASCE, Vol 98, No. EM2, Rev. 4, Paper. 8807, I April 1972, p 345-356. I I I 3-4 I I
"Tl PERIOD IN HCONDI
- u 0 100 10 ID ID 40 ID &V ID ft'b hw,11111!.11111111 h Ii I l.11111111 I II Ii I II I I I ii I l1111l.n1h111
~ ~ t; t Ill n Ii I illllliil Ii Ii I I I I I *-I ,I,--hml1111h111l1111 * -- -*Ii*ii,---1111111111--
Ir 1111 I I I I --"I --- -- - 1 1 I111111111 I11111 111 I I il11nlnnh11111111111
- i:
(/) ISO C
- u
- u J>
z 0 I\)
"Tl I.
(/) J>
- u "Tl G>
C
- 0 <
"1 "1 I\) r- °' ~
I 0 n i=i i::: I..... 4 I ~ )( ,,,
- r jZ J Ii
- 0
'~ 2
(/) 0 :::0 "Tl , en C ""D f"'1 G),~
~ rri (/J C fl'I 1 -< :::0 ""D ::u n 1-o )> 0 rn g ,o-i Z ,:E - (/J (>I . C 1.0 , * . t *), ,91-xf~.X 0.11 ,, 7 -> "10 .::0 z rri I ~J El,t) ,r.q.., '}'~,._,,.,.91 *,< F ii1"\. kl' V
- ~rz:;p%t1~
r
!~ )> (/J 'J> r "tJ -I rri o
z)> __. to 0
, I (/J - , 0.4 C - :::0 ~en l> o.s L.t'?V'" '<.;:*, t, . < I ~~ ~rri -")> 0 11'1 J> :::0 0.2~ ~
I\)
- c
!")
U> D en C U> **r~
)>
t)l rri FREQUENCY IN CYCLESIIECOND
I I ---------------------------------- . ____...... ____ f' ;-: DEC. I, IS'.39
;-- ~.. ._*
I I I I I I 0 z 0 I u Ill
.,...Ill Ill ..J u
I u u
...z I ::I 0
Ill C: I I I
- 1 I
I 0 N g**i-w Ill
- lfl N g~~d VELOCITY IN INCHES/SECOND
~ = ~ a .0 I FIGURE 3-2 RESPONSE SPECTRA DESIGN BASIS EARTHQUAKE I FROM: SURRY I AND 2 FSAR, FIGURE 2.5-5 SURRY POWER STATION-UNITS 1AND 2
I I im111111111111111111111p11111111 ~ II I 'I I I I I I !ff'-'~lllljlllljlllllllll jII II j I II I I I I I Fi1llljlllljlllljlllljlllljllll j II I I j I I I 1a.aa 1.aa ,.aa ,.aa 1.aa 1.aa a.so a.<a a.* o.n a.1a a.as a.CM a.a a.11 a.aa I 100.0 90.0 10.0
,o.o PERIDO !SECS! 100.a so.a ea.a ,o.o 10.0 10.0 I so.o 40.0 so.a 30.0 sa.o I zo.o I 10.0 9.0 10.0 a.a a.a a.a I u ,.o a.a LI.I s.o Cl) ,.o s.a s.o 'z I
4.0 s.o s.o z.o z.o I u C
..J ILi ,.o I 1.0 a.a 0.11 o.,
o.a o.a a., 0.1 0.1 I o.s 0.4 a.s o,s I o.z I 0.1 0 *1 a.t a., a.* o.5 1 *0 2.a 10.0 0.1 100.0 CURVE NO I DAMPING 2.0 PERCENT-ARTIFICIAL EARTHQUAKE FIGURE 3-3 I CURVE NO 2 SITE SMOOTHED RESPONSE SPECTRUM, DAMPING 2.0% SURRY O.ISG FREQUENCY (CPS) RESPONSE SPECTRA ARTIFICIAL EARTHQUAKE-29/e DAMPING SURRY POWER STATION* UNITS I AND 2 . I I I I I
I RUN NUMBER S1752942 051779 I *- -- ~* - - - -. PER10D lSECOND&I I I I I I a z 0 u
....cq ....cq =
I u z I-u I 0
......I>
I I I I I.- r, . ,.., FREQUENCY lHZI I I ART EDlDBEl*FREE FIELD FREE Fl;LO DECONVOLUTEl!lflRXI SPE:TRA FOR iOP OF LAYER 4 Di:ll!PJNG VRLUF.S l!I a.cos C, 0 .010 I
- o.O!o FIGURE 3-4 I GROUND RESPONSE SPECTRA
. Gmax SURRY POWER STATION -UN ITS 1 AND 2 I
I RUN NUl1BER S1762940 051779 . I PERIOD (SECONDS J I I I I I I I I I I I I 4 FREQUENCY IHZl cf I ARTIFICIAL E; FIIEE FIELD FREE FiELD DECONVOLUTEl+o0%GftAX> I S~ECTIA FDR TOP OF LAYEii 4 DAn~ING VALUES l!l e o.oos c.010 4 0.030 I FIGURE 3*-5 I GROUND RESPONSE SPECTRA Gmax +50o/o SURRY POWER STATION - UN ITS 1 AND 2 I
RUN NUNBER S17S2941 OS1779 PERIOD (SECONOSJ
'b o. 0.01 I
I ...>- I I I I I I ~ FREQUENCY IHZ l I ARTIFICIAL- EQ. (D8El-FREE FIELD FREE FIELD DECDNVOLUTE!-60X(Jfff;Xl I SPECTRA FOR TDP OF LAYtR 4 OAftPlHG VALUES l!I (!) o.oos 0.010 I .6 0.030 FIGURE 3-6 GROUND RESPONSE SPECTRA I Gmax-50°/o SURRY POWER STATION-UNITS 1 AND 2 I
I SURRY POWER STATION, UNITS l AND 2 I I 4.0 AMPLIFIED RESPONSE ANALYSIS I Soil-structure interaction analysis can be performed using a direct finite I element :solution representations in which the dynamic model is composed of both the structure and the supporting medium. of detailed In a direct I interaction analysis, the effects of embedment upon .stiffness and control motion are automatically included. Although such a procedure may appear to be I efficient, analyses become more difficult to manage when *large, complex I structures are founded upon greatly* stratified media. does not produce any intermediate results, which are often Also, this procedure useful in making I engineering assessments. I Many different procedures may be used to reduce such an analysis to more manageable steps * .For example, a detailed finite element soil model can be I used to compute frequency-dependent stiffnesses that are then used in a second I step for seismic analysis structures, however, some of a detailed method structural model. For embedded that redefines the control motion must be I included. An earthquake with a specified a~plitude and frequency content at the site surface is not necessarily a reasonable input to the detailed model I in the second step. I A multiple-step analysis need not rely upon finite element representations of I soil. The three-step solution described below is based upon the theory of I 4-l I I
I SURRY POWER STATION, UNITS l AND 2 I I elasticity, and includes a solution for the problem of definition of the control motion in the case of embedded structures. I I 4.l DESCRIPTION OF THE THREE-STEP ANALYSIS I The* solution of soil-structure following three steps: interaction problems can be reduced to the I
- l. calculations of frequency-dependent soil stiffnesses I
I 2. modification of the specified surface motion to account for structure embedment I
- 3. interaction analysis I
I These steps are iilustrated in Figure 4-l Csee Reference 2). I 4ol.l Frequency-Dependent Soil Stiffness I The frequency-dependent stiffnesses of a rectangular footing founded at the
- surface of a layered m~dium are computed with the program REFUND, discussed in I Section 9.3. The program solves the problem of forced vibration of a rigid I plate on a viscoelastic, layered stratum using numerical solutions to the I
I I
I SURRY POWER STATION, UNITS l AND 2 I I generalized problems of Cerrutti and Boussinesq Csee Figure 4-2>. The ~ffects of unit horizontal and vertical point loads are combined by superposition to I produce the behavior of a rectangular plate. I Solutions to the problem of a point load on the surface of continuum require I an assumption about the behavior of the medium directly under example, see the Timoshenko and Goodier.<t>.In REFUND, a solution directly under load; for I 'the load is achieved by employing a column of elements for vhich a linear displacement function is assumed. Away from this central column, in the "far-I field," the solution for a viscoelastic layered medium is obtained Csee I Figure 4-3>. I If the central column under the equivalent distributed forces corresponding point; load to is the removed and replaced by internal stresses, the I dynamic equilibrium of the far field is preserved. Since no other prescribed forces act on the far field, the displacements at the boundary Cand any other I point in the far field> are uniquely defined in terms of these boundary I forces. The problem is thus to find the relations forces and the corresponding boundary displacements. between these boundary I It is always possible to express the displacements in the far field in terms I of eigenfunctions corresponding to the natural modes of wave propagation in I the stratum, each having a characterist.ic wave number le. In an unbounded I 4-3 I I
J I SURRY POWER STATION, UNITS l AND 2 I I medium, any admissible; value of t~e wave number k, and hence any wavelength, for a layered stratum, however, only a numerable set of values of is I ~ Ceach one with a corresponding propagation mode> satisfies the boundary conditions. There are thus, at a given frequency, an infinite but numerable I set of propagation modes and wave numbers k that can be found by solving a I transcendental eigenvalue problem. For each eigenfunction the distribution of stresses can be determined up to a multiplicative constant, the participation I factor of the mode. By combining these modal stresses to match any giv'en distribution of stresses at the boundary, the participation factors and the I corresponding dynamic stiffness function relating boundary stresses to I boundary displacements can be determined. ** .I In REFUND'S cylindrical coordinates, loads and displacements are expanded in Fourier series around the axis: I Ur : co r U~ COS n8 .Pr= co L0 p~ cos n8 0 I cO uy =tu"O y cos n8 p., co
= t0 p"'I cos n8 I u9 cO = t-ue 0
sin nB P9= co . L*P9 0 sin n8 I For the problem at hand, only the first two components of the series are I. needed. The Cun.it> vertical force case corresponds to the Fourier. component I of order zero Cn=O>, and the horizontal unit force case corresponds to the I 4-4 I I
I SURRY POWER STATION, UNITS l AND 2 I I Fourier component of ~rder one Cn=l>. Cflexibilityl matrix at a point then follows from the cylindrical displacement The cartesian displacement I components: I
~ . ~)
I .!. (u 1 + u1 ) + .l2 (ur1 - u81 ) cos 29 ur0 cos 9 .l (u1, - u1 ) sin 29 2 *r 8
- 2 8
... . . . . . . . . . . . . . * - - - - - - + - - - ~ - - - - - - - ! 0 u cos 8 u u; sin 9 , ~___ 1_________......__ 1_-+------------1 .
I f (u~ - u~ )sin 28 u~ sin 9 ~ (u: + uk) - ~ (ui - u~) cos 28 . I and the displacement vector for arbitrary loading is U = FP where .I I U is the displacement vector at a point Cx,O,z> while Pis the load vector at* I co,o,o>. The coordinate system is illustrated in Figure 4-4. I For points along the free surface, the reciprocity theorem requires that UO = u'. Hence, F is chessboard symmetric/antisymmetric. REFUND then I r y I 4-5 I* I
I SURRY POWER STATION, UNITS l AND 2 I I .computes the cylindrical displacement components for the two loading cases, and determines the cartesian flexibility matrix Funder the load Caxisl, at I the boundary, and at selected points beyond the boundary. I To compute the subgrade stiffness functions for a rigid, rectangular plate, I the program discretizes the foundation into a number of the global flexibility matrix F from the nodal points and computes submatrices Fusing the I technique just described. Imposing then the conditions of unit rigid body displacements and rotations, it is possible to solve for the global load I vector from the equation I FP = U I I* where U is the global displacement vector satisfying the rigid body condition. I It follows that U is of the form I U = TV I where V is a_ C6xl) vector containing the rigid body translations or rotations I of the plate and T is linear transformation matrix assembled with the I I 4-6 I I
I SURRY POWER STATION, UNITS l AND 2 I' coordinates of the nodal points. The stiffness functions are then obtained from I' I .I which corresponds formally to I I I comparison of REFUND results with another method is shown in Section 9~3. _, A 4.1.2 Embedment Correction I .I !he effects of foundation embedment on the employing correction factors described by Kausel et impedances a1. 1 2> are These included by correction I factors are determined from parametric studies of embedded foundations and are of the form 1 I I in which I 4-7 I I
I SURRY POWER STATION, UNITS l.AND 2 1* .I' CR = corr'ection factor I R = foundation radius I E = embedment depth I. H = depth to bedrock I C, = constants, different values for each degree of freedom. I 'I The become frequency dependent stiffnesses, K, determined by REFUND ~re modified to I: I 4.1.3 Kinematic Interacti6n I In _. the-:_,_ second step of the analysis sho,;:n in Figure 4-1, "kinematic interaction" modifies the purely translational input specified at the surface of the stratum to both a translational and rotational motion at the base of ,. the rigid, massless foundation. inferred from Figure 4-5. The existence of the additional input can be In a stratum undergoing translational motion only, I I 4-8 I I
I SURRY POWER STATION, UNITS l AND 2 ,I'
- 1, the boundary conditions at the "excavation" require the foundation to rotate.
Ignoring the rotational component ~ould result in an unconservative solution. I I Note that the modified motion at the base of the foundation is _nqt equivalent to a deconvolution. The specified surface motion is modified so that I: {F(.0.)[cos( ;/)], f-:S 0.7fn 11 y1 (t) = IFT n F (.1l) [ 0.453] , f > 0. 7 f n and
.* rF(.0.) [ 0.257 (1- cos ; : ) /R] 1 f :S fn cf, 1 ( t) = IF T . n . F.(.0.)[0.257/R],f>fn I
I ,, F (.0.) = Fourier Transform of surface motion IFT = inverse transform I R = foundation radius fn = fundamental shear beam freque:.cy of the column of soil bet~een I. the embedment level and the free surface I I 4-9 I I
SURRY POWER STATION, UNITS 1 AND 2 These relationships are taken from Kausel et al.<l> I. A finite element analysis of a rigid, massless, embedded foundation provides a ,( demonstration that the relations above are reasonable and conservative. Such a comparison is sho~n in Section 9.4. I 4.1.4 Interaction Analysis I' The third step of the procedure illustrated schematically in Figure 4-1 is the I analysis of the structural model supported on the frequency-dependent springs ,I from Step 1 for the modified seismic input from Step 2. The solution is achieved using the program FRIDAY. I FRIDAY evaluates the dynamic response of an assembly of cantilever structures I supported by a common mat and subjected to a seismic excitation. The support I of the mat can be rigid, or it can consist of fiequency-dependentlindependent springs and dashpots Csubgrade stiffnesses>. The equations of motion are I,,, solved in the frequency domain, determining response convolution of the transfer functions and the Fourier transform of time. histories by the input* excitation. The dynamic equilibrium e~uations can be ~ritten in matrix I notation as: MU+ CY+ KY= 0 (1) I I 4-10 I I
I SURRY FOWER STATION, UNITS 1 AND 2 II
- 11 t
Yhere M, c, Kare the mass, damping and stiffness matrices, respectively, and I U, Y are the absolute and relative Cto the moving support> displacement cl' vectors,. ,I These two vectors are related by:
*1* U = Y + EU 9 I (2) ,I:
Yhere Ug is the base excitation vector C3 translations and 3 rotations>, and E I is the matrix: I I T1 0 I I E = I 0 T2 I (3) I' 1 1* 0 t 4-11 I. I
I SURRY POWER STATION, UNITS l AND 2 I
- f
,, where I is .the C3x3) identity matrix, O is the null matrix, and Tl = 0
-{Zl - Zo) zl - Zo 0 -(YL-Yo)
XL - Xo I Yt- Yo -{XL-Xo) 0 I with x., Y., z. being the coordinates of the corresponding mass point; x0 1 1 1 z0 are the coordinates of the common support.
, y0 ,.
J'
.,_,.~
In the frequency response method, the transfer functions are determined by setting, one at a time, the ground motion components equal to a unit harmonic of the form u1 = eiwt. It follows then that U, Y are also harmonic: ,, Y = ...!... Y LW {H* -
= - c.,- 12 J
J E*)elwt J ( H* - EJ) e iwt (4) I t*
- I' 'llhere Hi= Hi Cw> is the vector containing the transfer functions for the jth
,, input ground motio.n, and E i is the Eq 4 into Eq 1 yields j th column of E in Eq. 3. Substitution of I li.-12 I
I SURRY POWER STATION, UNITS l AND 2 I I (-w2M + iwC + K)HJ = (iwC + K)Ej C5l the damping matrix is of the form C = .!.
- ( If w
D, which corresponds to a linear hysteretic damping situation, the equation reduces to I i ,, (6) I In view of the correspondence principle, it is*possible to generalize the equation of motion allowing at this stage elements in the stiffness matrix K ,I with an arbitrary variation vith frequency. This
- enables the use of frequency-dependent stiffness functions or impedance (inverse of flexibility I functions or compliances).
\I Defining the dynamic stiffness matrix: I I (7) 1: ,, !he solution for the transfer functions follows formally from: .I 4-13 I I
,, S*URRY POWER STATION 9 UNITS 1 AND 2 I ,, Hj = -Kd1 (K+iD)Ej =-(I+ w 2 Kd1 M)E1 (8l I
I* Note that the dynamic stiffness matrix Kd does not depend on the loading ii condition Ei, Also, for w = O, Hi(O) = Ei.
- a
,, Having found the transfer functions, the acceleration ti~e-histories follow then from the inverse Fourier transformation:
u=- 1 j{ r CD j=6 (9) I 27T
-CD J=1 \I ,, where, component:
ff = fi CW) is
- the Fourier tran*sform of the lh input acceleration 1'
- 1; ClO)
I 4-14
'I
., SURRY POWER STATION, UNITS 1 AND 2 I I The procedure consists salving Eq 6 far the Six loading then of determining the dynamic stiffness matrix Kd, conditions H .= ~i~* determining the six ,I Fourier transforms of the input components F ={:J, and performing the invers.e ,1 transformation CEq 9), which corresponds formally to: ,I U= 2 ~f c:o
-c:o HF e 1Wt dw I The dynamic equations are solved in FRIDAY by Gaussian elimination, and the Fourier transforms are computed by subroutines using the Cooley-Tuckey FFT
- 1: Cfast Fourier transform) algorithm. A comparison of the results of FRIDAY
~ith another solution is shown in Section 9.5.
4.2 STRUCTURAL MODELING The level of detail in mathematical models of structures is determined by J, consideration of the following: 1. 3. distribution of mass in the buildi.ng symmetry/asymmetry of building arrangement locations at which output is required t... approximate frequency content of input 4-15 I I
I SURRY POWER STATION, UNITS l AND 2 I I The models used in the analysis, typically, are generalized, three-dimensional, multi-mass representations. The total number of degrees of 'I freedom included is more than sufficient frequencies; the number of masses being governed~ as a to encompass all practical the locations at vhich amplified response spectr~ CARS> are required. significant matter, by I Eccentricity between the center of mass and center of stiffness at every level I is included, except where insignificant. As a result, the effects of torsion I upon. the modes and frequencies is automatically determined. is shown in Figure 4-6. The generalized dynamic members A typical model connecting the 'I centers of mass have stiffness matrices determined by tensor transformation from the matrices of the structural elements connecting the centers of stiffness. I To demonstrate the effects of torsion on the results, a comparison was made I between the results of analyses using a and a planar model of the containment. generalized three-dimensional model As expected, the amplified response I spectra are not sensitive to the details of structural modeling for this site.
!he results for the generalized three-dimensional model are virtually I identical to those obtained for the planar.model.
I I I I 4-16 I
I SURRY POWER STATION, UNITS l AND 2 I I 4.4 RESULTS I ,, Output from the third step FRIDAY includes structural response as well as ARS for all- coordinates in each structure coordinate- coincides with a analyzed. building floor In general, - a level. Typical structural structural I displacement and acceleration profiles are shown in Figures 4-6 and 4-7.
.. ARS are generated for two orthogonal horizontal and the vertical directions at_
1* each structural coordinate for both OBE and DBE earthquakes. Typical ARS are I shown in Section 5. For use in. pipe stress automatically broadened t 15 percent to account for problems, variations ARS in peaks soil are and I structural material* properties. \ I Comparisons of ARS generated by the three-step REFUND/FRIDAY method and the finite element PLAXLY method as well as those based on the FSAR earthquake and I the Regulatory Guide l.60 earthquakes were made at the reques~ of the NRC. I The ARS generated for these comparisons used strain compatible soil parameters ,, from the last iteration of the SHAKE program. Comparisons were also made of ARS generated from the_ REFUND/FRIDAY programs I ,. for a variety of soil parameters as requested by the NRC. All ARS comparisons are described in Section 5.
- I 4-17 I
I
,I: SURRY POWER STATION, UNITS l AND Z I I ,, 4.4 l. REFERENCES Timoshenko & Goodier, Theory of Elasticity, 3rd Edition. McGrav-Hill Book ii Co., p 97-109. I z. Kausel, ~hitman, Morray, & Elsabee, The Spring Method for Embedded'
- Foundations. Nuclear Engineering and Design 48Cl978>: 377-392.
I
*1 I
I*
'.r I
I I 4-18 I* I
i i
\
II u* y ( t) [K] nxn y (t) H M cf,(t) r II II
\!;f +
i~
~[K] nxn FREQUENCY KINEMATIC INTERACTION DEPENDENT INTERACTION ANALYSIS STIFFNESS REFUND KINACT FRIDAY FIGURE 4-1 THE THREE STEP SOLUTION SURRY POWER STATION-UNITS 1 AND 2
- 1, i t ,. . l
,I I
---1 I'
., y BOUSSINESQ I
I .I H*e i.0.t
~-----~-----<-......,
I t I 1* y I CERRUTI I FIGURE 4-2 I THE BOUSSINESQ AND CERRUTI PROBLEMS SUR RY POW ER ST AT ION - UN I TS I AN D 2 I
*I I
COLUMN t CENTRAL~- -
--~--------.- *-. -':";..-
i-----------"'""
-I I I !I FIGURE 4-3 IDEALIZATION OF THE BASIC REFUND 1 1 SOLUTION FOR CONCENTRATED LOADS .
SURRY POWER STATION-UNITS 1 AND 2. I I
*I I
II I I FIGURE 4-4
*REFUND' COORDINATE SYSTEM I SURRY POWER STATION-UNITS 1 AND 2 I
- --~--~--
~ *- ---- .. - - -* - -- ' '
II y(t) 81
"'(t) ~ (t )= TRANSLATIONAL ACCELERATION AT .
BASE OF RIGID, MAS~LES$i FOUNDATION FIGURE 4-::0 . . II KINEMATIC
. . INTERACTION . I c#> ( t l =ROT AT.LO NAL.A CC E L ER AT 1-0 N
- SURRY P,OWEfl.STATlO~~uturs__:lAND. 2
{ 1 1, i 1 ,-.-~~ - * - * " . - ' ** f t
. .. *,. :. : .-~ .l ; ;_; ;.:_. ,**1.- - \::: .....: ;. ) ' ' ! ' ,.:- ;*,'l ~** .. i _*:* *.. ~
I --1-*-*--- *- 9 M_5 (0.0, 66.0,0.0) I I I I I - - - STRUCTURAL ELEMENTS
,I I
CONNECT ING CENTERS I I
~---- .. , ..* ...
OF STIFFNESS I CS .
- - - - - GENERALIZED DYNAMIC MEMBER CONNECTING CENTERS OF MASS, M I cs ~M4 (1.72,~5.50, 8.51)
I I I I I I I I I .,I CS I
~ M3 (-3.16, 26.50, 15.26)
I ' cs
'/ ., M2 (-2.87, 13.00,9.82)
I I I y I I I I FIGURE 4-6 I GENERALIZED DYNAMIC MODEL OF A CATEGORY I STRUCTURE SURRY POWER STATION-UNITS 1 AND 2 I
I I I ELEVATION (FEET) DISPLACEMENT (INCHES) 137.52 0---------0 0.39 I ELEVATION DISPLACEMENT (FEET) (INCHES) --1~----* -- 92.10 0.31 96.00 o-------u 1 71.75 0.28 71.00 0.31 I 51.40 0.25 46.00 0.26 I 31.05 0.22 17.00 0.21 I 10.70 0.18
-5.00 0.18 I -9.65 0.15 I 0.12 SHELL I INTERNALS I
I 1* I I FIGURE 4-7 TYPICAL DISPLACEMENT PROFILES I SURRY POWER STATION-UNITS 1 AND 2 I
I I I ELEVATION (FEET) ACCELERATION (G) I 137.52 o------o 0.15 ELEVATION ACCELERATION I (FEET) 96.00 o-------,0 (G) 0.14 92.10 0.12 I . 0.13 71.75 0.11 71.00 I 51.40 0.10 46.00 0.12 I 31.05 0.09 I 10.70 0.08 17.00
-5.00 0.10 0.09 I -9.65 0.07 I 0.07 0.01---*-**-***-*--
I SHELL INTERNALS I I I I I FIGURE 4-8 TYPICAL ACCELERATION PROFILES SURRY POWER STATION-UNITS 1 AND 2 I I
I SURRY POYER STATION, UNITS l AND 2 I I 5.0 COMPARISONS OF RESULTS I Comparisons of amplified response spectra CARS) were prepared for the I following cases: I l. Methodology - REFUND/FRIDAY VS PLAXLY I 2. Earthquake - FSAR vs Regulatory Guide l.60 I
- 3. Soil Parameter Variation - low strain, first and last iterations from I SHAKE; ,+/-50 percent variation of low strain input to SHAKEo I 5.l REFUND/FRIDAY VS PLAXLY I The containment structure was analyzed two ways for purposes of comparison I using strain ~ompatible soil parameters from the SHAKE program.
I l. A one-step analysis using the fini~e element program PLAXLY I 2. A three-step analysis using the methodology described in Section 4.1 I The following observations can be made about the ARS shown in Figures 5-1 I through 5-3.: I 1* 5-1 I
I SURRY PO'liIBR STATION, UNITS l AND 2 I I l. At the mat level, the results of the two methods are very close. I 2. With increasing elevation, the REFUND/FRIDAY results become more I conservative with respect to the PLAXLY' results. This is a consequence of the conservative assumption made about the rotational I part of the input in the kinematic interaction step Csee, for example, Figure 9.4-2>. I I 5.2 *FSAR EARTHQUAKE VS REGULATORY' GUIDE l.60 EARTHQUAKE I Additional analyses vere performed at the request of the NRC using the three-step method CREFUND/FRIDAY) to compare the design earthquake in the FSAR to I that specified by Regulatory Guide l. 60. The ARS sho~m in Figures 5-4 through I 5-6 are comparisons of consistent piping analysis bases; that is, the for equipment da.mpings associated with the Regulatory Guide l. 60 earthquake C2 spectra I and 3 percent) are displayed with the l percent spectra for the FSAR earthquake. The soil shear moduli and damping used for these analyses are I from the last iteration of the SHAKE program.
- 1 Even though the Regulatory Guide 1.60 ~arthquake is significantly more I energetic than the FSAR.earthquake, the results are very close.
I I I 5-2 I
I SURRY POYER STATION, UNITS l AND 2 I I 5.3 VARIATION OF SOIL PROPERTIES I At the request of the NRC, ARS were generated for a range of soil shear I modulus and damping ratio: .. I l. The low~strain soil shear mod~.lus CGmax> with soil damping ratio equal to 0.05. 1* I 2. Shear modulus and damping after one iteration in SHAKE, starting from the low-strain modulus CGmax>. I
- 3. Shear modulus and damping consistent with earthquake amplitude, but I calculated by the program SHAKE starting from l l/2 times
- the low-strain modulus CGmax plus 50 percent).
I
- I 4. Shear modulus and damping consistent with earthquake amplitude, but calculated by SHAKE starting from l/2 of the low-strain modulus CGmax I minus 50 percent).
I 5. Shear* modulus and damping*from the last iteration of SHAKE, starting I with the low strain modulus CGmax>. I I I 5-3 I
I SURRY POWER STATION, UNITS l AND 2 I I The ARS for Cases l, 2, and 5 are compared in Figures 5-7 through 5-16 for piping damping ratios of .005, .OLO, and .030. They indicate that the I analysis is sensitive to extreme variations in parameters but that, vithin the I limits of the iterations of SHAKE, both the amplitudes and are vell-behaved. frequency content I The ARS for Cases 3, 4 and 5 are shovn in Figures 5-17 through 5-24 for piping I damping ratios of .005, .OlO, and .030. Beginning the SHAKE analysis vith l/2 I the lov-strain modulus CGmax minus 50 percent> results in extremely lov moduli for the final iteration. Again, vhile apparently sensitive to extreme I variations of input parameters, the amplified response analysis is relatively insensitive to variations of modulus and damping in the reasonable middle I range of values. I 5.4 SAMPLE PIPE STRESS PROBLEMS I On the basis of discussions vith the NRC Staff on 20 April 1979, pipe stress I analyses vere done for three systems in the containment building.. These are analyses for the DBE condition in accordance vith the code equation: I I I vhere Sp = Pressure stress I 5-4 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I SDL = Dead weight stress I SDBE = DBE earthquake stress due to restraint displace-I ment and inertia effects I Sh = Allowable stress at operating temperature I These analyses were done using NUPIPE for Ca> the original ARS; and ARS using soil structure interaction by REFUND/FRIDAY, Cb) Regulatory Guide 1.60 spectra I and l. 61 damping values, and Cc> FSAR ground response *spectra for piping I damping values equal to O.S to 1 percent. I Note that, for the purposes of these stress analysis comparisons, the ARS for conditions Cb) and Cc) outlined above were not peak broadened. I I Tables S-1 through S-3 show pipe stress summaries for three samples. I I I I I 5-5 I I
I SURRY POWER STATION, UNITS l AND 2 I TABLE 5-1 I SAMPLE PROBLEM 706 PIPE STRESS
SUMMARY
, PSI I Stress* Per Stress* Per SSI Reg. Guides I . --*-* *- . *--* Location
-- Original ARS l/2?. Dam:Qing l.60 & 1.61 ARS ,?. Dam:Qing . Stress* Per SSI FSAR ARS l/2?. Damoing rn )2am:Qing Point Inertis1, ~ Inerti 9 ~ Inertia I.9.t.il -*- Inertia Total I 10** 4,631 ll,174 3,480 9,93J. 2,508 8,535 2,300 8,350 10 3,869 9,944 2,913 8,951 2,103 7,854 l,965* 7,706 I 32 2,223 8,047 l,646 7,549 948 6,867 873 6,822 I 40**
40 3,223 2,425 10,140 8,974 2,390 l,799
- 9,161 8,241 l,394 l,060 7,723 7,167 l,282 975 7,613 7,084 I 15** 5,665 12,693 4,259 ll, 152 3,083 9,479 2,828 9,226 15 3,269 9,687 2,460 8,789 1,800 7,811 1,651 7,665 I 75 2,122 9,364 1,617 8,828 1,378 8,298 .1,261 8,199 100 690 8,995 528 8,642 398, 7,764 364 7,741 I 115 980 7,851 874 7,697 627 7,223 569 7,169 I 130**
130 l,189" 10,376 891 9,327 919 691 9,807 8,901 685 513 8,632 8,021 628 470 8,577 7,979 I 155~0E 486 7,605 473 7,493 272 7,055 . 243 7,0.34 155 363 7,253 354 7,169 204 6,843 182 6,827 I NOTES: I
- Computed using NUPIPE computer program for DBE
** Elbow I Allowable Stress= l.8Sh = 30,769 psi Fundamental Frequency= 4.864 CPS I
I l of 1 I
I SURRY POYER STATION, UNITS l AND 2 I TABLE 5-2 I SAMPLE PROBLEM 1020 PIPE STRESS
SUMMARY
, PSI I Stress!E Per Stress!E Per SSI Reg. Guides* I --**-- -*-*-----*
. Lo.cation Point Original ARS l/?,: Dameing J;nerUs ~
1.60 & 1.61 ARS 2,: Damt>ing J;nettis I.Q.tsl Stress!E Per SSI FSAR ARS l/2,: Dameing Inertia. 1,: Da.meing Total - Inertia Tot'aJ. I 2 2,058 8,812 2,378 8,622 l,558 6,582 1,352. 6,379 l2!ElE 703.... 7,645 752 7,237 539 5,673- 471 5,607 I 12 542 6,612 580 6,285
- 415 S,050 363 4,999 I 24 34 1,032 2,215 5,624 l6,3ll l,040 2,286 5,480 14,937 812 2,014 4,862 10,783 707 l, 727 4,759 10,545 I . 34*:IE 2,868 4,780 20,206 21,991 2,959 18,437 5,024 *20,407 2,608 13,091 2,236
- ,5*;*275 12,783 13,824 38 3,778 14,322 I 38H 6,165 27 ,2ll 6,483 25,225 4,870 17,500 4,220 16,857 50 l,343 10,072 1,488 9,823 l,077 8,695 917 8,560 I 55 869 8,706 911 8,482 623 7,645 543 7,578 I 62 ao~oE 386 404 9,696 10,629 459 9,397 416 *l0,209 498 441 8,477 8,974 406 364 8,396 8,897 I so 308
- 9,530 317 9,212. 332 8,280 274 8,223 86 1,170 13,110 1,282 12,418 926 10,189 791 10,058 I NOTES:
I lE Computed using NUPIPE comp.uter program for DBE
!Elf Elbow /
I Allowable Stress= l.8Sh = 33,750 psi Fundamental Frequency= 5.231 CPS I I l of l I
I SURRY POWER STATION, UNITS l AND 2 I TABLE 5-3 I SAMPLE PROBLEM 1555 PIPE STRESS
SUMMARY
, PSI I Stress* Per Stress* Per SSI Reg. Guides --*-* -* *---- ----* --~------* Original ARS
.. Location Vi?. Dam12ing !,60 & 1.61 ARS 2?. Da.mi2ing Stress* Per SSI FSAR ARS 1.12?. Da.mi2ing 1?. Da.m1>ing Point Inertia I.Q.t.s! Inert;ia. Total Inertia. _I.Q.Ul __ Inertia I.Qlll 1 l 2,863 5,309 844 3,lOS l,063 3,080 860 2,880 5 2,441 4,744
- 756 2,894 938 2,845 759 2,668 I 5** 3,055 5,604 941 3,280 l, 172 3,219 947 2,997 I 15 37 l,198 6,174 3,310 7,974 526 l,538 2,540 3,213 599 2,071 2,425 3,695 484 l,673 2,316 3,304 I 45** 9,691 ll,926 2,379 4,441 3,225 5,069 2,605 4,450 45 7,724 9,781 l,900 3,819
- 2,573 4,317 2,079 3,823 I 57 3,246 4,976 878 2,635 l,123 2,794 913 2,596 I
- 65 51** 3,895 3,080 5,765 4,687 l,053 912 2,933 2,548 l,344 l ,114 3,130 2,616 l,093 908 2,888 2,424 I 105 5,181 7,328 l,317 3,397 l,735 3, 53°2 l,408 3,209 105** 6,402 8,756 l,623 3,887 2,144 4,059 l,739 3,657 I liQIM:
I Hi
- Computed using NUPIPE computer program for Elbo'W' DBE I Allo'W'able Stress - 1.ash = 30,882 psi Fundamental Frequency= 4.070 CPS I
I I l of l I
I . . - I . -.. . . . . . . . . . . . . ..--------------------------------~*-H*---*---* I
--- -**-**-*- --********* - *****--- -* - ..0.80 I I **- ....!.. *-----0.70 DAMP 3.00%
_ I _____ * - _ _ _ _ _ .Q60
.J_ _____ -- .- - . -~ o.~ **--*. -*-*--
0 tc
***1-*---- *-* . -- a:0.40 l&J ..J l&J **1 *-- - - -- .u.a3o u <C ?( \ //v *-- / ....
1* 0.20 ... lt/
/1/ \ A.
V ~~ v~ ~ V'"" --
' V I. ... 0.10 _, I ******,- "V fJ,/', - r,......
IV
~ ;,r/ ~ . -0.0 0.0 0.10 0.20 0.30 0.40 Q.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 I PERIOD-SECONDS I
I /
,/
LEGEND I - - - - REFUND/FRIDAY
- - - - PLAXLY .
I I I I FIGURE 5-1 COMPARISON OF REFUND/FRIDAY AND PLAXLY RESULTS -ARS AT MAT
,I . SURRY POWER STATION - UNITS I AND 2
I
- -----*- *----* ...... * -- * --*** **0.80 I
I - 0.70 DAMP 3.00% .1. 0.60
--1 (!) . - . - - ~-0;5()
I 0
~
a: 0.40 f\r I \ V I Lu
.J Lu 80.30 " - /v- J I\ ..
I ~ ..
~
1l~ IV r/ fJ~\
~"'~ ~ ~ . ~~
0.20 J. '._;-/ .;,- ~ I -- 0.10 _ __,,,1. ,/
; "'\ f'J \..,
I .-
* -*0,0 ' .... ------***
0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 I PER 100-SECONOS I I I LEGEND
- - - - REFUND/FRIDAY - - - - PLAXLY I
I I I FIGURE 5-2 COMPARISON OF REFUND/ FRIDAY AND PLAXLY - ARS AT OPERATING FLOOR I SURRY POWER STATION-UNITS I AND 2
1 * .. --- **0.80 I I DAMP 3.0_0% _, ***0.70 o.sp . -
-I c., -I \V I"' . --- . L QSO z V I * ~
0 a: 0.40 --*-*"- . \ \ I IJJ
~
IJJ 8 0.30 *- J ,...- v* - ... ,,~ ~ 11 ct -- I *,
'\V / --~ v-- ... ~ -, 0.20 ~
Lr"' .I
~ ~/'./ "\J', "~! -~
I ~
- Q;IQ -./
I
- 0.0 ***- -* - * -* -- - -****
0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 I PERIOD-SECONDS I I I LEGEND
- - - - REFUND/FRIDAY - - - - PLAXLY I
I I FIGURE 5 -:3 I COMPARISON OF REFUND/FRIDAY AND PLAXLY - ARS AT SPRINGLINE I
- SURRY POWER STATION* UNITS I AND 2
- - L - - - - - - , - - - - - - - - - - - - -..---* I -------2.0 .. I
**- - -*--*-----*-***-*-** -* - .. - **};8 *- --'*------**** ---- --** -- l-.6 h4 1- z
(!) 0 1.2 tt -
-1 * ** a:*
LLJ
.J LLJ LO u
u 0.8* I <
- *0.6 -
I 0.4 I 0.2 _,..._ kt 'J- ~~ [r<_
~ ' ~- ,- -~ :-'-- ~
I'..-. /./ "' ....... _ -- .
....... ~ / /.- ~ -~ fi/ ~ ~~ ~
I -- - O; 0 0.00 0.10 0.20 o.30 o.40 o.so 0.60 0.10 o.ao o.90 1.00 1. 10 urn. I PERIOD-SECONDS I LEGEND
- - - - FSAR EARTHQUAKE 1% DAMPING - - - - REGULATORY GUIDE 1.60 EARTHQUAKE 2% DAMPING I - * - REGULATORY GUIDE 1.60 EARTHQUAKE 3% DAMPING I
I FIGURE 5-4 I COMPARISON OF THE FSAR AND REGULATORY GUIDE 1.60 EARTHQUAKES-ARS AT MAT I SURRY POWER STATION* UNITS I AND 2 I ,-,.
I I 1.8 t - - - - - - t - - - - + - - - - - - - - - - - - - + - - - + - - - - - + - - - + - - - t - - - - + - - - - t I*
- 1,6 t - - - - - - t - - - - + - - - - - + - - - + - - - - - l e - - - - - + - - - + - - - - - + - - - + - - - t - - - - + - - - - f I 1.4 - - - - - - + - - - - - - - + - - - + - - - - - 1 , - - - - - - - - - . . . . ; . . . .........- - t - - - - - -
I C, z I J, 2 1 - - - - - - t - - - - + - - - + - - - + - - - - - 1 , - - - - + - - - - + - - - - + - - - + - - - t - - - - - - - f 0
-.I I-0:: ,.a i - - - - + - - - + - - - - + - - - + - - - - - - + - - - - - - - - - - - - - - - - - /' A llJ / ,, ...J \ /
I
.I I llJ U 0.8 t----t---+---+--++~,~ ' ' +-'li-f-l - / -:.JMPt----t---+----+---+---t----1 1 11 U f **Ji ,// I l < ,.. \~i f.J.. / \ ' ....,,
- I - 0.6 t----t-----+---+....j-.'tPJ--f-j~..+-i,_.!11,,-=:...._..p~~+----+---+---l----+-----t
,.,.k*. ,,\J "' 'l.~'~ ,., ,._ ,r., l.1.'\.I \, V*. . .'~- ,-' ~"'::-.~=-,--l--,1~~--~
_ ,... (/ I 0.41------+---+.1l1'~~Yl-,i'l?>f-----\,i_L--+...-----l---+---=--+,-3o--.___ a2 -- ~-P
...J,lr'4,'~=--.,~~---,-.'1'. "'°). ~ r I\.. -, .......... *. ~
I ........__*.,:,....-- ,..
. ----;vvr -----~""'./
I * .. 0 . 0 - - - - - - - - - - - -......-----.___....__ _..___ __.._ _...__ _....__......_ _ o.oo 0.10 0.20 0.30 o.40 o.so a.so. 0.10 o.ao a.so 1.00 1.10 1.20 I PERIOD - SECONDS LEGEND: I - - - FSAR EARTHQUAKE 1% DAMPING
- - - - - - REGULATORY GUIDE 1.60 EARTHQUAKE 2% DAMPING I - * - * - REGU'LATORY GUIDE 1.60 EARTHQUAKE 3% DAMPING I
I I FIGURE 5*5 COMPARISON OF FSAR AND REGULATORY GUIDE 1.60 EARTHQUAKES-AAS AT OPERATING FLOOR I SURRY POWER STATION-UNITS I AND 2
_ I_ _ _ _ _ _ _ _,----.. . . . . . . _____________, I I -----_--- *-- ---z.o ... 1 -1.B
.1*** 1.6 1.4 I (!)
I 1.2 z ,. I 0
~
a:: 1.0 I
/1 /IA I ' '\ ii ! , 1 w I\
I ..J w I \ V , ~ ~i
,.,....N 0
a.a j
,_ 0 <(
0.6
..... wt'1 V' *t,V -
ir ~- . ' I 0.4 l IA. "~.' '
,....,* ~, --~I'°'.,', ..... t//
r ...
/,.. ,."'. ~£fi1 ~~-
I'-.:::~-~ i--
- ~
I 0.2 [..J l,,I V .*1*-- ,, 0.0 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 a.so 0.90 1.00 1.10 1.20* ... - -~ '** *-'*'*** PERIOD-SECONDS 1 LEGEND I - - - - FSAR EARTHQUAKE !%DAMPING
- - - - - REGULATORY GUIDE 1.60 EARTHQUAKE 2% DAMPING - * - REGULATORY GUIDE 1.60 EARTHQUAKE 3°/c;, DAMPING I
I FIGURE 5-6
.I COMPARISON OF THE FSAR AND REGULATORY GUIDE 1.60 EARTHQUAKES-ARS AT SPRINGLINE I SURRY POWER STATION-UNITS 1 AND 2 I
_J_______________. .---*-**--* I I ----- -1.80- - . *- I - -1.so- -. DAMP 0.5%
.I ___ - 1.40 *-
1:--- <!)
~ -1.20 0
1-
*I <t a: 1.00 t.LJ -1 t.LJ
-1 (.) U 0.80
<t I . 0.60 .
-, 0.40 ~ f\*~ ,'-""
~ ~,. r---Y \~
t, \ A Vr-.~. . tA ~,l'. ~ -v ~~
~~\v/ ....... _. ._,-- ~
I'.. .
,,1,,-._ ""', ~' -* .... . - ...~-- . .__--~
0.20 I ~~: &*"'*
.. 0.0 -- n__j I .0.0 0.10 0.20 0.30 0.40 0.50 0.60 PERIOD-SECONDS 0.70 0.80 0.90 1.00 1.10 1.20 I LEGEND - - - - LOW STRAIN Gmax I - - - - ~IRST ITERATION FROM SHAKE - * -:-- LAST ITERATION FROM SHAKE I
I FIGURE 5-7 I COMPARISON OF ARS FOR SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT MAT I SURRY POWER STATION-UNITS I AND 2 I
I 1
*---- - ---*-***------*-*-- **--****-*-*2;00
_I I.SO-I *1.60 DAMP 1.0°/o _I_ -- - 1.40
-1 (!) - -~ 1:20-0 l-I et a: 1.00 IJJ ..J w
u I u-o.so ct I 0.60* I 0.40 ~ V~v;- .-~~ I' . *- 0.20
~ Ar ~ \ -::,* ~ ~? ~- ~ ~...~
i __
/1_....,,, :::--- =----:-=.. ....-----
1* ...
-==-':.;; ~~: ~
l*~
... *"' **-* . *-. --* -~ .. 0.0 0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 . 1.10 1.20 I PERIOD-SECONDS I LEGEND LOW STRAIN Gmax I - - FIRST ITERATION FROM SHAKE LAST ITERATION FROM SHAKE I
I FIGURE 5- 8 I COMPARISON OF ARS FOR SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT MAT I SURRY POWER STATION-UNITS I AND 2 I
_ _ _L_ -------------- - - - - --- - - - - I
--,_ -----*- -- --- *---200* - - - - -- - --- - -- --- -i-:eo-1'*=*--*.....;-...... -- ---**..a+----1---+------+----+----+------.1----+----+----+----+--..........
I .. * - * --* * *t.60" I--'"'-""*-=-,--i-c---+-.......--+-----+----+----+----+-----!-----+---+--...-j,---t DAMP 3.0% I _--- --- - - t.4 .......-------F---+----+---+----+----+----+------.-----+-----+----+---t --- - - -- - J__ _ (!) I
- -- - z* r.2o**t-;a;;;..a;..;;;._.-4-a-.--+---4---+---~--+----+---1----+--..,......+.-..............-1..............--t 0 ~
ffi
~
t.00 UJ
*I
(.)
--~ 0.80 ~=---+----+----+---+----+----+----+-----!----+---+....---+---t - - *o:so-s-;.*;..-.;..*=**----***-1-----+-----+----1-------+----+----+--,---+-----,i,-,...--.+-.,.....;..-t,...........,...,....._"_ - ----- --- ,-- *0.40 i,.;;.;...;;;....;;.;.;4,.._ _ -+----+-----+--'---+-------+----+---4---+---+----+------1 --o.o-- --- . --
o.o 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 _ 1.10
.I PERIOD-SECONDS 1.20 I LEGEND - - - - LOW STRAIN Gmax I - - - - - FIRST ITERATION FROM SHAKE - *- LAST ITERATION FROM SHAKE .I I ., FIGURE 5-9 COMPARISON OF ARS FOR SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT MAT I SURRY POWER STATION-UNITS I AND 2
1--*--*-----,--------~-_,...,,...,_.,.___,.___,..,.......,,,.......;,,.. ......--.. .. , ... . ............. ----- *-2.60 r---~----,r---~---,,--~---,---...---........-------..;;.,....-................................... -- .. . -- -** *1
-1 *- * - - --2..40t---:-'."""-+---l---t---l--+--+----+---~--4-----11----l--._.-_-+
____ --I DAMP 0.50% a-2ot---+----ll---+--H-+--+----+---1---+------i-.... ..,._
....,..... . . . . . --+----1-.,...,_....,...,..,...i 1** --2;00 t----+----i---1--H-l---+---+---l---,----+-----lf,,,,,-,..,.,.
__ --f.....,.,., __ .=--..,...-.,..+,-,.,..,..._.......- I
.. 180 1 - - - - - .........-t--Ht-+--+---+---+----+----ii-,-,-,--,---+--.*""'-_-_,+-.,.,.
__ ..-1. I +.60 l---+----11----,+-jH-,i,---!---+----+---~--4---I-_- __ --..-.. ,-I,I--
...-.. -+ .. ---*-----~-
(!) I z I i '\ 0 -1.40 t---t----ll--------t+++--t'-+---+---+---+---l----+-----lf-.-.,....,.....,-+,,,.,.....,--1
~ . .. .
I ~ u 1.20 t---t----lf---1~-if--ffl'--+++.....;.+---+---+----+---!,-,--+,-,....,...,,,,,..,.,_.+--,,,---I f\ ~, 11*. r n ~:\ ,
~* -1.00 l---+----ll-+~-ff-....q...i...+-,...+~+-----4~--~--4---1--_.-_....,.__ .....,...,l.....;. ----4-----1 .. ~ r:: t \ ,~ I ~,\
-.I 0.80 1---.-+----,,jr
~ ~n+. * !!\ ~ ~
- II ..... .
+-+r~y--i~H.~u-+\4,f.i,J V \
1 ~~\""-
\\-~~,~,--~'---4--------11-. . -.----l--------4------1 J~ , j Jil.~1 \J *w~ \~ *1 o.60 t----,1---+-1-tj¥.A!;,t-tR,:rlt"!-f'f!~lf----+----1~~1--l....,./_./;-+~-- ....-... --+------+-,----+---+---1 t'/\1,1 'J ~r-'-\\ ~-
I ~TV 0.401----+----i+-1+-l-l--t-..;._-+--+---+-~"--l--~_....,.,;;,e::.~~.,.,.-,.-l-----4---1 I.
~, ~~-*r-.::....~.~~~~_,f ~r/ I -*~ .._,_
- 0.20 1---+-r-itr,--,1----+---+--+----+-------~--4---1----1-----4-----1 I ~~
......IIIIWl!!.-D'I 0.0 ,.____________________________.,_____...1..,_ _1..,_-=-....,.. ........ ~ ......- ._,.,.._.......---..---'. ..
I a.a 0.10 0.20 o.30 *. 0.40 .o.5o 0.60 PERIOD-SECONDS 0.10 0.80 0.90 1.00 1.10 1.20 LEGEND I LOW ~RAIN. Gmax
- - - - FIRST ITERATION FROM SHAKE ---- * - LAST ITERATION FROM SHAKE I FIGURE 5-10 COMPARISON OF ARS FOR I SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT OPERATING F'LOOR I SURRY POWER STATION-UNITS I AND 2
I I .-1 *- - - -* . * * - * * .2.00- .. _...... _ , ; , - - - , - - ~ - - - - , . - ~ - - r - - - - - . - - - . . . . . . . . - - - - , - - - - , . - - - - r - - - , --* ----------*-
*--- -* .. -- *---- -- --- *- - - ---l.80 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - **- _ --- **----- ..
I DAMP 1.0% t6o------------------------------t I 1.40 i-------------------------------- _J* (!)
~ 1.-201----+----1~--++-n+\+-t-+----+--....,....+---+---+-,---+----1~--+---t
_, ~ a:. 1.00 -----------1*--------------------- - I teo 1---1----1---*++ rlf 1
~,..-+--fr-+\-+'1.-'-r\__.
i-+f+----H"'r+----+---+---~---1-----+---t
~.\.J(\ \ \Jl\'r .\
I.\ ; \./ ~.
-1* 0.60 t---t-----t-t--/'Ht-*"H/""T\-t-+
I r \ ,, .,v. 1\ l\..+.J-t--""1---,......-..,J~-il\~--t-,.-----t----i----i----t----t
. .. ~
lJ t-.\ I I V \ )1-""~\\ ~_.,,.r-_1-.........__----,f----l----l I 0.40 1----1---H/.
;f "'F1'.~".,,'"q,_-.JL.._.._ _+---+~-~.,+.:-...Jot>.:,~?t+-JF'-~7.'!. -~_..:-=*-r'"'II------~...:.;;;-~--
1 QO-
---..,. ~- . 0.20 .....__....1__ ...... ~ - - 4 . . ; . _ _ - - - - - - - - - - - ~ - - + - - - - " " i , ; . . . _ - . . . . . , . . _ - - - - I .Jfar:w..1-.,/_ -*--- --~ - . - ...
I 0.0 0.10 0.20 0.30 0.40 0.50 0.60 PERIOD-SECONDS 0.70 0.80 0.90 1.00 1.10 1.20 I LEGENO
- - - LOW STRAIN Gmax I - - - - - FIRST ITERATION FROM SHAKE - *- LAST ITERATION FROM SHAKE I
I FIGURE 5-11 COMPARISON OF ARS FOR I SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT OPERATING FLOOR I SURRY POWER STATION-UNITS I A.ND 2 I
--1-----**-*--**r-----------------*--***----* I
- -**- *-* -***--**-*- * -* **---*---*-2:00-l *-* - -* --*-** tao I-- .. ---*----- t:60 - -
DAMP 3.0°/o
- -**' (!)
I
**1*-****:*** * * -z-t.20....
0
- --- -----*-----~- \
.-I ~ a:: **1.00 I.LI 1-*. LM (.J
--~ 0.80 --- --*
r A
\
1:, *-* .. *0;60. . . j \
;~\
A
*0.40 .. ,-) ~~ /\ .v ~):>'c"*
I A:r~v* .j'-* ..,/ I\
' ~r 1 -~ '-----:-:: ::?""-*
0;20- ...
~=J' I -* .... *. --** - -0.0-0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 . I.I 0 1.20 I ~,
PERIOD-SECONDS LEGEND
- - - - LOW STRAIN Gmax I' - - - - FIRST ITERATION FROM SHAKE - *- LAST ITERATION FROM S.HAKE I
I FIGURE 5-12 COMPARISON OF ARS FOR I SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT OPERATING FLOOR
.,I SURRY POWER STATION* UNITS _I AND 2 --------,---.----------------------t
**- ---- 3:eo--....----.----..------....... ----,,------r-----,.-----....----.
*-I- - - - - - - - -
- aao---------,.-----------------------
J__ 2.60------------------------------ DAMP 0.50°/o
* -* -*- - *--.. 2.40 i - - - - - + - - - + - - - - t - - + t - + - - - t - - - + - - t - - - - + - - - + - - t - - - - + - - - 1
'---1~ ---;- - --- - -- 2;20 i-----+---+----t--+-+-+---t---+r---t----+--_-+---+---+-----t
**1-------. - --**-*- -2.00 1---4-----+----+-+4-+----+---+-----li----l----+-----ll---+---t- ., *- 1:ao----------------------------
c:, z I ,. I t*o 0 I~ l-v~-~------------------- 1* -~ l.401---------....
~ 1.20 ~ I\,~ I 1----t------+---t--':1-t-' -Hf-++'-,,t+----t+,1tt1\t----+-----+---+------+---+----1 I I\ \ * ~\1 ... -H--f1;i,u.\l,AI,.*'-+~'1----1----+----+-----+---+-----1 -i.oo i---1-------+----++-....i.,..:::,l:a,i. \ ';\~! \ \. ':I I "* i / °' :V'~..\ A \,
0.80 t---+---+---t-tt-t---H--t+-""T"f----t"T"t'Qtf-'tt"t1rt------l---+---+-----1--+----t L~ j" '(J ' \\
.( J j I \ \ \J o.soi---1--r'[-_t-ilr=-/~/1-+j--+----+--t-tt\,,Tt-~-+r~~\- \ \\ .rl'", .*+-~---+-+---+-----i I o~Ot------+--+,i~,1,r+:-/-+-/vT'i:V/J~---+----+------il-----+---l~\;:;;~~~----i.~:.--------.-+----_--f~ )~inlt. ~
I' 0.20~" ...
,1 0.01--..i.-.-......i...----"--..i....--........................_ _.___ _._______..._____,..i.-.---
I o.o 0.10 0.20 o.30 o.40 o.5o a.so PERIOD-SECONDS 0.10 o_ao a.so 1.00 1.10 1.20 LEGEND I - - - LOW STRAIN Gmax
- - - Fl RST ITERATION FROM SHAKE *- LAST ITERATION FROM SHAKE FIGURE 5-13 I COMPARISON OF ARS FOR SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM I AT SPRINGLINE .
SURRY POWER STATION-UNITS 1 AND 2 I
-.l---------*-----------
1 ---*------** - - ----* ... -2.00 __l 80 DAMP 1.0%
.. t 60
__J; . -- - - .
--- .1 f\
I (!)
- ., .. ----*-*** *-*~-* l .20 --**-* * - -:--1.
Q
.... ! 't a l V'
00 LL.I ,J II I I I
...J II II "": \l-\~~'"'
LL.I . \ u u a. 80 !'.t 1, *
<I:
I n *I .
~ -a.60 a.40 I
flJ' - r \ I f I'.
/ ,'))
J f\ I
"' A ~ ~'~ ,.. ~
I ,I'\ bl~ J~*
. ~
- 1 0 .20
-~ =, 7
- 0 .o* -........
a.a . 0.10 0.20 o.30 o.40 a.so 0.60 0.10 0.00 o.90 1.00 1.10
- 1.20 I PERIOD-SECONDS I
,,~.
LEGEND
- - - - LOW STRAIN Gmax
__ :._ ___ FIRST ITERATION FROM SHAKE
- - - - - - - LAST ITERATION FROM SHAKE ',. FIGURE 5-14 COMPARISON OF ARS FOR SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT SPRINGLINE SURRY POWER STATION -UNITS 1 AND 2 I
I
-..1 - - - - - - - - - - - - , - - - - - - - - - - - - - - - , . - - - - - - - I
- ----------- --------2~00-
_l _ ----- -
- L80
. 1. . . . . . .
- t60 DAMP 3.0%
--~I'.--------.
____:,. -~-- z*'*** 0 1.20
~ *t - ---a:-
1'J
..J 1'J -**1.00 A u N -1* .. u <[ *0.80 \.. ,,**- J M- ..,.. ' *~\ " . \. .J(') -;;,c*..'\ ) 'J 0.40 LI If ~*
I
,.J /\. .J I ~* *- ,** ~ ~ ,r -. ,~
I
~ ~ ,,'"'*'
I _, -0.20
- -_.. ..rr* .,::.~ ~ /;.,>Al ,* ~
r---......
* * *----- -*0,0 ...
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.8-0 0.90 1.00 1.10 1.20 Iv' PERIOD-SECONDS I LEGEND
- - - - . LOW STRAIN Gmax
- 1 * -
FIRST ITERATION FROM SHAKE LAST ITERATION FROM SHAKE I'
'I FIGURE 5-15 COMPARISON OF ARS FOR SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT SPRINGLINE SURRY POWER STATION-UNIT 1 AND 2 I
I ao -
.I I 1 * ----- ------ -*** * -- LS*
DAMP 0.5% I ***** -* 1-.6 .J:_ - - *----* ---*1.4 I (!)
- * .--*1.2 -
z 0 I- --*1
~ 1*.0*
uJ
...J uJ
-1 80.e
<t -,--* {\
I-',,,. 0.4 ... M '~\ t
~ J ,., .. Jl\\J,,. V /* "~~0 I',..., ~----- --~
0.2 ~" ~/V :./"'-"
....., i-"~~~ II;,::---'!.':' ~-- ~~ ~v-"""'"' 'r'"'j'- .* ~~ ""-' -**o.o o.o 0.10 0.20 0.30 o.40 o.5o o.so 0.10 o.eo o.90 1.00 1.10 1.20 .I--* PERIOD-SECONDS I LEGEND - - - - LAST ITERATION FROM SHAKE USING Gmax +50%
I -
- - - - - LAST ITERATION FROM SHAKE USING Gmax ------ LAST ITERATION FROM SHAKE USING Gmax -50%
I I FIGURE 5-16 I COMPARISON OF ARS FOR SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT MAT SURRY POWER STAT ION - UNITS 1 AND 2
_1 __________________________~_______ j I
***- -*----*-** * - - * .. *-**
- 2.00-1 1.80 I
**-*- -- ----- *-* - *1--.60* -
DAMP 1.00% _J ___ _ ....
- t40
. 1. (!)
z 0 I 120*
~ .I,~
a:: 1.00* LI.J
..J ..
LaJ I (.) u .ao-
<t *1* .60 .40 I Ar ~~ l[.;v I ,.,, J .- ~ ~ ~ *-~-- -::.....--- --~- *-* ~--
i,..-
.20 ~ .JI' v, . . , v*-r*
I I
- -~i'"' ~*"""-* ~-"* 'J ~...:::~ - - .00-0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 PERIOD-SECONDS I LEGEND LAST ITERATION FROM SHAKE USING Gmax + 50%
I LAST ITERATION FROM SHAKE USING Gmax LAST ITERATION FROM SHAKE USING Gmax -50%
.I 'I FIGURE .5-17 COMPARISON OF ARS FOR SOIL PARAMEtER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT MAT I SURRY POWER STATION - UNITS 1 AND 2 I
--**------*-------r ____ ......,.....,.._....,,...._,,__________________~..------------------------~*-**-*----*-*- -* --*-* *--***-*- - I -*------- ...... ---2...00. *--**-* J. . . -1~80 DAMP 3.0 O/o
. . - --1,60 t C) 1-.40 -I* 0 ~
u Z-- t.20
<t ,I * ---ffi -1.00 ..J I.LI u ~0.80 I 0.60 I 0.40 I 0.20 ~-'-* _,
A. A- - ....._o..,...o~
-..._ ~-~.:; . / ~ ,:to~ ~ --~ --*-* -* -*- ~~C::..'":~ :.!'"---
. .1: .......... -- --0.0-0.00 0.10 0.20 0.30 0.40. 0.50 0.60 0.70 0.8.0 0.90 1.00 1.10 1.20
,f PERIOD- SECON OS LEGEND: ,f LAST ITERATION FROM SHAKE USING Gmax +50% - - - - - LAST ITERATION FROM SHAKE USING Gmax 0 - - - LAST ITERATION FROM SHAKE USING Gmax-50%
I FIGURE 5-18 I COMPARISON OF ARS FOR SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT MAT SURRY POWER STATION-UNITS I AND 2 I
-.1-------------------------------- 1' 1------* --- ----- ~00
- I I . - -l;-80 I.- - ---. *----*-**** --- -L60 DAMP 0.5%
_ J_ : ----* *---l.40-1 .. C)
-----z* --1.20 \
-1' 0 1-
<t a:- h-00 l .... \, 1,~
IJJ
...J IJ.J u ' ,,l \V1 I I
I~ I\
- 1* '! \
.. U 0.80 II I I I ' <t l I , I '\
f ,' ~ f 1... I
.J I \ I " \{ \\ . I ***** -0.60 ~d ~~v-r-, ~ r I I I I I" ,, I ,*
I I
'J ,I' I'< 1./~\.._
r -:-,......_
' I I 0.40 *,_J ,I " .
i'..,.) ~ y\\V
- /J ~
A. i '- ... '-' I '-~- " " ~
***0.20 ._ __,.,.,,..- ~./,J ,'\ \.' -~--
i-¥v'-
...... --0;0**
i--'""""" --*--*- . -~ 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10_ 1.20 I PERI OD -SECONDS
,f LEGEND LAST ITERATION FROM SHAKE USING Gmax +50% - - - - - - - LAST ITERATION FROM SHAKE USING Gmax - - - LAST ITERATION FROM SHAKE USING Gmcx-50%
I I FIGURE 5-19 COMPARISON OF ARS FOR I SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT OPERATING FLOOR
- SURRY POWER STATION - UNITS 1 AND 2
----------*-------------~-__,....,.,__ . ._______ . . . . .,. . .__. .--. ., - - - - *.
I
*------- --------**-2:00 -- -- --*-* ..
I -* - * --* --- '1-.-80 .. - --* --** DAMP 1.0%
* --L60
-~1--------- . - ---1;40 *- .. ---*-* - *-- .
, , _ --- *------- - ** * .. ~- *1;20 ...... *- -- --*-*- *- -*
0 -J' -- -* * -;too I"\ ***- -- **-* - -- --- .. . - - -**- - I . L&J c.,
~-0.80 . \N \, " I j I l\t,\ /' * --- - -- -
- 0;60 ' \ r\ )~ \ \
I '
. ! \ .. I r .,"V J
I,..,\ I ~,/ ~ ""'" r*, *,
~--- \J /*-
0!40
~ *v*
Jj ~,
,~~-~ / '* '1 V I 0.20 - j\._ ~* /*v* ~./ '* " ~~
r--.~
--.---~ ~1 *V*, "V - ... .I ... *---i "'""'. .. ----- ------0.0 ----- -- - -- - ---* -
0.00 0.10 0.20 0.30 OAO 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20
- 1 PERIOD-SECONDS .
LEGEND
- - - - LAST ITERATION FROM SHAKE USING Gmax+50% - - - - LAST ITERATION FROM SHAKE USING Gmax \I' - - - * - LAST ITERATION FROM SHAKE USING Gmax-50%
I
,, FIGURE 5- 20 COMPARISON OF ARS FOR SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT OPERATING FLOOR .I SURRY POWER STATION-UNITS 1 AND 2
*--l------*-*-***-*-*-*-* *-.----** * * * *--** -* . *- ....
I
--***-*-*-*------ -----2:oo-;:*;.; ,;-; ; ;*; ; -- -.----...--.......---.-----.----......----..---"""T""---r-= . ""'--=*=-=*""'-'-""--"'T--""'*=*""'-,,,_**-*-* -- -----*
I
--- *-*------*** ---- - * - ** *-**1:ao11,.;*-'*;.;...**:...:.*.;..;*+ - - - - - - - - - - - " " - - - . i - - - - - - - 4 . . . . ,______._ ....._--_i,.,.--****-=--~=~
DAMP 3.00°/o
- ---,.so ---** * * - , _______ -- - -- *-. **a.401&,;..;;;;;=;.;;.;;.---1----+---1---1---'----1---~--..+..,...----li--....,,,.,..-,,+,--, __.,.,. -_,- (!) *--I- T.20 ............ --
0 Z l-
*i*-*-- --:*1.0011,...;;;.;.;;;;.;;..;.;;j.._ _...j...._---1,_ _--l-_ _~_-+-_ _+-_-t-_ _4=
L&J
..J
___~__=**~-**I,,,**-*""*"""-*=***~.. I,,: __,,,,_=--~--~--***-*-**------*
-1 L&J
- u* o.ao11--;.;;..;..;..;+.---1-----1,---+---~---1---+---+---+,,,-~1--,,...,.,,,.,,-+-,..,.._..,.,_*=***-~-- . - ..
(..)
<X * ** * ** o.so1j;,;..;.;..;;.;.;...;.-1---i---+---iA~,_,./\-'-4----l----i--+---1-.= ..-..= . . *-""'****=-**-=----"'"'**'*--*=--*=****.,..,.,* =. . --*-*-
I - - . . - Q401a---,.;;~+----+1A~.,_/+,J-,..\r-t-~-+/'_,_\',+*K_-~...:1-*'~-+--+---:::~==~.,.,...,....,..,,-;--~ II V j'-.,.1 -1'...",_,.i--:\\. /"':""'r-:::*** --- I 0*20 f /\ I ,_.,.
._...,,,,,,, - \..." "'"*...r- ...J ~-..,_1 -.- ~
I ~~ ,* _..,,,...._ *--:/ ...._,...-
- ~'-....
*-::::~-- ~t:'.-,...._ ** - o,oo,i....;.-=----'---___.._ _.....__ ___..___ _,__ __,...____.._ _.......,,~.,,..,.....,,,.,.,,,.,.,..,~.,.,....,........ --!
I
- '--*--** 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 I I PERICO-SECONDS I LEGEND
- - - - LAST ITERATION FROM SHAKE USING Gmax +50% - - - - - LAST ITERATION FROM SHAKE USING Gmax I' * - * -
- LAST ITERATION FROM SHAKE USING Gmax -50%
I I FIGURE 5-21 COMPARISON OF ARS FOR I SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT OPERATING FLOOR SURRY POWER STATION-UNITS 1 AND 2
_ _l ______________r - - - - - - ~ ~ - - - 1 J e.o "'- .. - ------ --------- ... --- --+.-8 --- I
------- --* ------ ---- ----- -- -1,6- I}
DAMP 0.5%
I -- ------------- ------ -- 1.4 0 I
I\
,1------
(!) z 1.2 0 \ I\ J~ !' I 0 I
~
1:- ------ - ~
- ,:t:-1.0 0 * ,,,, I \ ) I* I ~~
Lu
...J ~
0 II I \ I I \} \\
\
I oo.s 0
~ ) , ' "'. '
I ~
\j \\ ..~,, \ I I _,.*\\ r-. -0.6 0 I ,
I I', f I I I'
".V(\\ ~. ,, . . ...;r '-- '*
I II I
\I I ~
Afi -** -.".... J. . ,. ,
\_.' --0-.4 0- J .n /(
I \I
~
n.. .f* ,* I
~
I 0,2 i, r:, A -' 1\: J 0 ~:J* I"-. *I
.I . ....,-"~ .,
V *
. o.o o.oo 0.10 0.20 o.~o o.40 a.so o.60 o.7o o.ao o.90 1.00 1.10 1.20 I PERIOD-SECONDS I LEGEND - - - - LAST ITERATION FROM SHAKE USING Gmax +50%
I -
- - - LAST ITERATION FROM SHAKE USING Gmox
- LAST ITERATION FROM SHAKE USING Gmax-50%
1-I' FIGURE 5-22 COMPARISON OF ARS FOR I SOIL PARAMETER VARIATIONS
., HORIZONTAL RESPONSE SPECTRUM AT SPRINGLINE SURRY POWER STATION-UNITS 1 AND 2
-***1------------------------ 1' - -*-*------*---*****--***---***-------*---2.00--....,....--,-----y----,.--,r---....,....---,r---"""'l"""---,r----.-*--*.........,,........__.....,...........__,. .
* -taoi----+---1----+---11----+---1---+---1-----+---11----+------4 --*--**-* * -- -- **
DAMP 1.00 °/o
-- t s o i - - - - + - - - - - - - - 1 1 - - - - + - - - - + - - - - + - -.........1----+-----t* ---1--- ---- ... - - l.401----+---1----+---li----+---1---+---1---+---11----+--------e--*------ ------ *1- ' l.~ut------------.--\___\_______________ ~ --~ -t ; t00i-----t---t----t----t-1~M'c1 ... -i-"Jllvr----t;~~---+----t---+------t-........-+------t
- 1. ~ f\ l\ !\ fA\' --------------------
-.~--o.ao---------/-1-\.-t,l!. -,,----,-i',-;-H YJ_/_'__
I 1 I\ / v 1
\\l I\ I ~
r
- 0.601----+-----~--++----'-!"lfX---+---I-T"t---~~-l~-!"'-~r---ll----+----t
' I \\/ ~' / '
I 0.401----
" t\.l
__ +--A'l-r-:.:i;rrf-J-l..-\j:J~~-il--=-.--+-.,/'-J---+_ r~,v\\,* .~ '*--. __ h./-~---'"""C_:"'+--~"""'"~,,,_~'-r----+_~-"+,;:~~--.. .
.:I: - 0;20 JA, * "~"' ~ I ,., /\.... J ~""-."..r -~,,,.. . - V'- u 1* * ***-* **- - O.OO""---'---'----'---------....._-__,_ _....._...,.....__,_ _.....__ ___...___-'-_ __. --*---~ . -------*
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80* 0.90 1.00 1.10 1.20 PERIOD-SECONDS I - - - - LAST ITERATION FROM SHAKE USING Gmax +50%
- - - - - LAST ITERATION FROM SHAKE USING Gmax I * - * -
- LAST ITERATION FROM SHAKE USING Gmax-50%
I I FIGURE 5-23 COMPARISON OF A*RS FOR I SOIL PARAMETER VARIATIONS
,, HORIZONTAL RESPONSE SPECTRUM AT SPRINGLINE SURRY POWER STATION-UNITS 1 AND 2
I ---*--*-*--**-----------------------------~------------- I
----,-. -----*** --*-* ----*-2.00- - J-: so-DAMP 3.0% -- -- -** -*- .... - +. __I * - * ** - -- *L40- -
(!) -**'- z**L-20* 0
~
- -1 .. a: 1.00*
L,J
...J
- 1 **
L,J u
- - u 0.80 I\ J\
c:::(
... --*-0:*60 r, ' \'"K '
V rl .......... ...... I ) ~
\
0.40 *-
!\ \,, / .-.. ~ ~ ~ ~-~----*
I 0~20
- _/:
. ,~*"r.,
J!_J r'
,r-*- ~-/ ~ . i ~ ~*-** Ir--/"'**
i-*-* ~-
. ***-**** -0,Q. - - -
0.00 0.10 0.20 0.30 . 0.40. 0.50 0.60 0.70 0.80 0.90 1.00 I.JO 1.20 PERIOD-SECONDS I LEGEND
- - - - LAST ITERATION FROM SHAKE USING Gmax-+-50%
1* - - - - LAST ITERATION FROM SHAKE USING Gmax
- *- LAST ITERATION FROM SHAKE USING Gmax.;.50%
I I FIGURE 5- 24 COMPARISON OF ARS FOR I' SOIL PARAMETER VARIATIONS HORIZONTAL RESPONSE SPECTRUM AT SPRINGLINE I SURRY POWER STATION- UNITS 1 AND 2 I
I SURRY POWER STATION, UNITS l AND 2 I. I 6.0 APPLICATION OF SEISMIC INPUT TO PIPE STRESS ANALYSIS I\ Seismic input to pipe stress analysis, in general, consists of inertia loads I obtained through the application of amplified response seismic spectra* and building_ displacements applied at support points in accordance with the design
,I load combinations for each piping system.
I) 6.1 AMPLIFIED RESPONSE SPECTRA I\ Amplified* response spectra for pipe stress analysis are developed. and peak . I- broadened in accordance with methods described in Section 4 of this report. Dampi~g values for piping systems are 0.5 percent for t~e OBE and 1.0 percent I for the DBE. I For piping routed between buildings, or at different elevations within the I* same building, an enveloped response spectrum curve is developed *.
- This enveloped curve represents the highest acceleration for all periods for either
-I' separate buildings or different elevations within the same building. I' I* 1; I"
- I 6-1 11
I SURRY POWER STATION, UNITS l AND 2 I I 6.2 BUILDING DISPLACEMENTS I Relative seismic structural displacements within*a building, as. determined I- from the building seismic analysis, are used as inputs to support motion. of piping systems and are considered as static boundary displacements in the I piping analysis. For piping running between buildings, the relative support motion includes the effect of each building's motion taken out of phase; this I is the most conservative approach. I I I I I I I I I I 6-2 I I
- *- ~. - *- -- . - . - - - .. - - - ~* - - - .: ..--- - -
I SURRY POWER STATION, UNITS l AND 2 I I 7.0 INVESTIGATION OF THE EFFECTS OF EARTHQUAKES SMALLER THAN THE DBE I Because the soil shear moduli used in the generation of ARS are functions of I strain,** the ARS are not direct linear functions of maximum ground. acceleration. Therefo.re,
- it is theoretic.ally possible that at some I frequencies the ARS for some smaller earthsuake exceed:those of the DBE.
I The ARS generated for a range of soil moduli provide a basis for estimating I the ARS for earthquakes smaller. than the DBE. For example, the DBE shear moduli for the first iteration of SHAKE are actually consistent wi_th a smaller I earthquake. I For the purpose of this study, an average strain compatible shear modulus for I a range of peak determined using horizontal SHAKE. ground The accelerations analyses were from conduc_ted 0.15 to 0.05 g
- was for the free.-field I profile using the Taft and El Centro accelerograms and - initial Gmax values.
The average shear modulus corresponding to each peak horizontal ground I acceleration was determined by first averaging the shear mod.uli from the last I iteration of SHAKE for the two accelerograms, then calculating the average value over the profile extending belo~ the containment foundation elevation I for a depth of at* least l.5 times the radius of the containment. The variation in average shear modulus versus peak horizontal ground acceleration I is given in Figure 7... 1 *. (' I I 7... 1 I
I SURRY POWER STATION, UNITS l AND 2 I I In the course of this study, ARS have been computed for a variety of values of average shear modulus. By referring to figure 7-l, the peak acceleration can I be* established that corresponds to each of these values of average shear I modulus. I The maximum ground acceleration consistent vith the various moduli, divided by 0.15 g, yields a ratio that can be applied to the ARS calculated using the I first iteration SHAKE moduli for the DBE. These ratios were used to scale spectra at the operating floor. I I Figure 7-2 shovs that the resulting family of ARS at the operating floor are enveloped by the DBE spectrum, demonstrating that the effects of the DBE* are I not exceeded by those of smaller earthquakes. Therefore, it can be concluded that the stresses in piping due t.o the DBE are not exceeded by those due to I smaller earthquakes. I I I I I I 7-2 I I
I
**---1---------------------~------.
I I I en
.J I :,
0 0 1500
- E I a:
<[
I.LI J: en - I I.LI LL. _J co-
~ 1000 ~
I Q.
- E 0
(.) I z
<[
a: 500 t-en I
-,--- 0 .05 .10 .15 .20 1
HORIZONTAL ACCELERATION (G S) 1 I I I FIGURE 7-1 I VARIATION OF SHEAR MODULUS WITH GROUND ACCELERATION I SURRY POWER STATION -UNITS I e. 2
*1
- -1-**
I 2.0 ---i----,--"T"--~---.-......-~---.---....---.-----.---..----,,*-..* -. -- . -**
.I -1.a I 1.6 --I- -IA t----+----+---+----+-----1---+-----1---1------+---+---+----t -- - -----* ---
c., I I z* 0
~
1.2 a: 1.0 I llJ
..J llJ
(.) (.) 0.8 I c:r 0.6 I 0.4 I 0.2
.____..J,N~* .....********* **..'-.1........- -- --.... *~* ***************-ii-*---~-~ ****11t********i- ........
. 1. i,o :
-.11/!/!!'":-."-="""'!: ~:;-****. ** **i 0.0..._ _ _.__ __._ _ _ _ _ ~ _ _ _,.._______........._ _ _"--_ _.__ __.,_ _.,___~ .. - *-.--- *- *-<-
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 I PERIOD-SECONDS I LEGEND
---- 0.15G ----- 0.082G I *-*-*
0.07G 0 .05 G I I FIGURE 7-2 SEISMIC ANALYSIS OF CONTAINMENT FOR I VARIOUS MAXIMUM GROUND ACCELERATIONS HORIZONTAL RESPONSE SPECTRUM AT THE OPERATING FLOOR I SURRY POWER STATION-UNITS 1 AND 2
I SURRY POWER STATION, UNITS 1 AND 2 I I 8.0 CONCDUSIONS I Based upon the data and studies in this report, the following conclusions can I be drawn about the use of soil-structure interaction CSSI) analysis in developing amplified response spectra CARS) for the Surry Power Station site. I
*8.1 USE OF SOIL-STRUCTURE INTERACTION I
I The principles and the methodology of SSI as used herein to develop ARS are applicable to the Surry site and can be used with confidence to conservatively I* predict the seismic forces on piping systems. I 8.2 SOIL PROPERTIES I The soil investigations made at the site to provide information for the licensing and design of Units 1, 2, 3, and 4 are summarized in Section 2 of I this report. The data from these investigations provide an adequate basis for I the development of strain compatible analysis. soil properties for use in the SSI I Soil shear moduli values derived from in situ measurements at the Surry site I are consistent with those obtained from empirical relationships. I I 8-1 I I
I I SURRY POWER STATION, UNITS 1 AND 2 I The .use of low strain shear moduli CGmax> values for soil is not appropriate I in developing ARS because earthquake-induced soil strain levels are approximately 2 orders of magnitude higher than low strain levels. I Using a range of low strain shear moduli values, equal to :50 percent of the I mean value, to develop the strain compatible free-field soil profile is I excessive when compared to a standard deviation saturated clays subjected to varying strain levels. on A more measured values for meaningful range I would be a variation of the iterated strain compatible soil shear*moduli values by :50 percent of the mean value. I 8.3 GROUND RESPONSE I licensed ground response spectra and an enveloping artificial time history .as I input motion at the ground s~rface in the free field is appropriate for use in I the SSI-ARS analysis. I 8.4 AMPLIFIED RESPONSE ANALYSIS I The use of the multi-step analysis procedure described in Section 4 of this report provides an approach that includes conservatisms in stating the I magnitude of the amplified acceleration values and allows development of the I . I 8-2 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I problem in a series of logical steps convenient for an engineering evaluation I of results. I 8.5 COMPARISON OF RESULTS I The results of comparing the different methodologies, the FSAR earthquake compared with the Regulatory Guide 1.60 earthquake and the effect of varying I soil parameters lead to the following conclusions: I l. Comparison of ARS shown in Figures 5-l through 5-3, calculated using I the three-step analysis (REFUND/FRIDAY> CPLAXLY>, and the one..,.step analysis show good agreement at all building levels .with respect to I frequencies at which peaks _occur. The magnitudes of amplified acceleration agree reasonably well at lower levels in the structure. I At higher levels, the REFUND/FRIDAY results generally exceed the PLAXLY results. At some fr.equencies, the ARS calculated for the base I mat by REFUND/FRIDAY have amplitudes less than those obtained from I PLAXLY. Since the spectral amplitudes involved are small fractions of l.O g, there would be no serious consequences in using these I spectra in pipe stress analysis. Nevertheless, it is concluded that base mat spectra vill not be used in pipe stress analyses. I I I 8-3 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I 2, Comparisons of ARS made from Regulatory Guides 1.60 ground response I spectra and 1.61 damping values and ARS calculated on the FSAR committed ground response spectra and the damping basis of values I indicat*e good agreement in amplitude and frequencies of the peaks, I 3. A comparison of ARS for soil parameter variations in Figures 5-7 through 5-15 using low strain shear modulus CGmax>, first iteration I SHAKE, and last iteration SHAKE soil properties shows little variation in frequency of peaks but increasing amplitude of peaks I with increasing shear modulus values. I 4. Comparisons of ARS for soil* parameter variations in Figures 5-16 I through 5-24 using strain compatible soil properties from the last iteration of SHAKE based upon Ca> the low strain shear modulus CGmax> I input to SHAKE, Cb) Gmax + 50 percent input to SHAKE, and Cc> Gmax - 50 percent input to SHAKE show a large variation in I amplitude and frequency of the maximum response. I 5, Changes in the shear modulus of the soil change the frequencies at I which the amplification frequency is evident. function has its peaks, This in the general shapes of the response spectra shift in I for different values of G, The exact frequencies of the specific individual peaks are influenced by the frequency content of the I I 8-4 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I artificial earthquake, so that each individual peak appears in all I spectra. frequency of However, the the essential phenomenon displayed is a shift in* amplification function, causing different pre-I exi-sting peaks to be selected for amplification. I 6. The results show that ARS are not sensitive to torsion in the I structure. I; 7. Studies conducted on three sample pipe stress problems, shown in Tables 5-1, 5-2, and 5-3, compare the results of using ARS based upon I Regulatory pipe stresses. Guides 1. 60 and 1. 61 versus FSAR requirements in terms of Examination of these results shows that neither I earthquake produces excessive inertia stress. I 8. Spectra calculated using the three-step method, the FSAR Design Basis I Earthquake CDBE>, the FSAR DBE structure and piping and damping the strain compatible free-field soil properties are an adequate values, I basis for analysis of piping systems when peak broadened +/-15 percent. In order to provide additional conservatism encompassing the effects I of an exceptionally wide variation in soil properties, the resulting inertia forces on the piping system will be increased by 50 percent I in accordance with the NRC position confirmed in a letter dated I May 25, 1979. I 8-5 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I 8.6 APPLICATION or ARS TO PIPE STRESS ANALYSIS I The application of seismic input to pipe stress analysis as defined in I Section 6 of this report is conservative and serves as an adequate basis for reevaluation of the designated piping systems. I or I 8.7 EFFECTS GROUND ACCELERATION ON ARS I The ARS resulting earthquakes. from the DBE are not exceeded Therefore, the inertial pipe st,resses due by to those the of smaller DBE are an I adequate basis for qualification of piping. I a.a COMPUTER PROGRAM VERIFICATION I The computer programs used to generate the SSI ARS have been qualified by Cll I comparison of results to recognized and widely those used; obtained or from similar programs which C2l comparison of program results to those are I obtained by hand calculations or analytical literature. These comparisons are shown results for the published in technical SHAKE, PLAXLY, REFUND, I KINACT, and FRIDAY programs in Section 9 of this report. Reasonable agreement is demonstrated for these computer programs. I I I 8-6 I I
I SURRY POWER STATION, UNITS l AND 2 I I 9.1 SHAKE I SHAKE is a public domain computer program developed at the University of I California and described by Schnabel, Lysmer, and Seed.< 1 > Stone & Webster has made a fev changes in the program, principally the addition of plotter I capability and improvement of some of the output format, but the prog;am in
,. described by Schnabel, et al.
I use for this work is essentially that 'I' The program layered medium. solves the problem of vertically propagating shear vaves in a The values of*shear modulus and damping £or a particular I layer depend on the average shear strain induced in that layer by the earthquake. The program iterates to obtain values of modulus and damping that I are compatible with the strains and with curves of modulus and damping versus strain. I I Although checked the the program results is vell computed by knovn the and videly used, Stone & Webster has program against those developed I .independently by modulus and damping are Roesset<.2> and internally has also checked that the. calculations of consistent. For example, Figure 9.1-1 shovs the comparison of the amplification functions from SHAKE and Roesset's analysis for the first iteration on the soil profile in Figure 9.1-2. I* I I 9.1-1 I I
I I SURRY POWER STATION, UNITS l AND 2 I REFERENCES I
- l. Schnabel, P.B.; Lysmer, J.; and Seed, H.B. SHAKE: A Computer Program for I Earthquake Response Analysis of Horizontally Layered Sites, Earthquake I Engineering Center, Report No. EERC 72-12, Berkeley, California, December 1972.
University of California, I 2, Roesset, J.M., Fundamentals of Soil Amplification. In: Seismic Design for I Nuclear Po~er Plants, R.J. Hansen, ed., M.I.T. Press, Cambridge, Mass., 1970, pp 183-244. I I I I I I I I I 9.l-2 I I
I 1: I I I 7
~~
I O 6 1-
- 5 lo 1- ~ 4
~\
I I ti(.) 3 I - I\
- I LL.
2 I I
~* ,-( ~<
r.i -~ ROESSET (1970)
.J 0..
- E
..) s \:) /J.
i,-- ,. 1.._,
~
I c:t 0 I --, ,~-~ T
"'....r; ~-le ~-{
2 3 4 5 6 7 8 9 10 11 12 . 13 14 15 FREQUENCY IN CPS 0 NUMERICAL OUTPUT-SHAKE RUN M7253201 I I
- 1 I
I I FIGURE 9.1-1 AMPLIFICATION FUNCTION OF SOIL SURRY POWER STATION-UNITS 1 AND 2 I I
I I I I LAYER I 2 I 3 I . - SOIL I (TYPE 2-SAND) Y =0.125 KCF, K0 =0.5 4 5
-ID @J 1
6 0 V5 =750 /SEC, ,8=10% I 7 8 9 I 10 II .
-I 12 -0 SOIL 2 (TYPE 2-SAND)
I, Y=0.125 KCF, K0 =0.5 V5 =750'lSEC, ,8= 100/o 13 @, 10 14
,1 15 'v I SOIL 3 16 Y=0.140 KCF, I 1 V =1,000,000 /SEC, ,8=0%
I I I FIGURE 9. I - 2 11 SOILS PROFILE USED FOR THE VERIFICATION OF SHAKE SURRY POWER STATION-UNITS 1 AND 2 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I 9 .2 PLAXLY I --*---*------ - PLAXLY is an isoparametric, plane-strain, finite element computer program used I in seismic soil-structure analysis. The equations of motion are solved in the frequency domain. I A primary element in the PLAXLY solution is the consistent transmitting I
*boundary modeling the layered far-field.
reflections associated with more This boundary avoids the unrealistic simplistic "free" or "roller" lateral
-, boundary conditions.
The principal limitations upon the program and its application are the 1-- following:
. _ .l .__ Geometry and material properties must be such that they can be
- I satisfactorily modeled in two dimensions.
I 2. Properties of the layered far-field cannot change horizontally. I 3. Base rock is assumed to be infinitely stiff. I 4. Material properties are isotropic, linearly elastic. I 9.2-1 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I For purposes of comparison, the results of PLAXLY and those of a similar I, program in the public domain, FLUSH CCDC Version 2.2), are sho'im in Figure 9.2-1. The PLAXLY flo~ diagram is shown in Figure 9.2-2. I I I, I I
- I
*I I
I I I I I 9.2-2 I I
I I I
- - - PLAXLY - - - - - - FLUSH 0.6 I EQUIPMENT DAMPING= 3% - 0.5 I -
(!) z Q 0.4 I-
~
I a: Lu
.J 0.3 Lu
(.) I (.)
~
0.2 I 0.1 - O'---....a...--.1...---.i...--i----.i...----i...__ _.__---i_ __.__ __,,____ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 PERIOD (SECONDS) I I I I FIGURE 9. 2-1 COMPARISON OF ARS s*y PLAXLY I AND FLUSH AT OPERATING FLOOR. SURRY POWER STATION-UNITS I AND 2 I I
I I I READ SOIL AND STRUCTURE PROPERTIES AND NODAL COORDINATES I I NONSEISMIC 1- SEISMIC 1 READ INPUT EARTHQUAKE I COMPUTE FOURIER TRANSFORM I NO PRIMARY NONLINEARITY I YES 1- COMPUTE 1-D AMPLIFICATION (DECONVOLUTION) 1 I COMPUTE 1- D SHEAR STRAIN I I I I FIGURE 9.2- 2 (SH. 1 OF 3) 1 PLAXL Y1 FLOW DIAGRAM SURRY POWER STATION- UNITS 1 AND 2 I ---------------------------------------------.... -*- ------------ I
I I I NO I STRAIN ERROR GT. TOLERANCE YES I ' DETERMINE NEW SHEAR CALCULATE AND ASSEMBLE ELEMENT STIFFNESS, MASS MODULUS, DAMP ING FOR EACH SOIL LAYER
- I I COMPLETE DYNAMIC BOUNDARY MATRIX AND BOUNDARY FORCES NEXT I FREQUENCY I GENERATE LINEAR BEAM ELEMENTS' STIFFNESS I
FORMULATE LOAD VECTORS I FROM LEFT AND/OR RIGHT BOUNDARY FORCES NEXT I FREQUENCY ADD TRANSMITTING BOUNDARIES I AND/OR BEAM ELEMENTS' STIFF-NESS TO GLOBAL STIFFNESS I I I I FIGURE 9 .2-2 (SH. 2 OF 3) 1 PLAXLY 1 FLOW DIAGRAM SURRY POWER STATION - UNITS 1 AND 2 I I
I I ! I MODIFY FOR SPECIFIED DISPLACEMENTS I_ NEXT FREQUENCY DETERMINE TRANSFER FUNCTIONS (COMPLEX FREQUENCY RESPONSE) I CYCLE COMPLETE I ( SECONDARY NONLINEARITY ,.,...__ N_o_ _ YES I ASSEMBLE NEW COMPUTE PRINCIPAL SHEAR GLOBAL STIFF- STRAIN IN EACH ELEMENT I NESS MATRIX NO I STRAIN ERROR GT. TOLERANCE YES I ' DETERMINE NEW SOIL CALCULATE REACTION FORCES, PROPERTIES FOR NODAL TRANSFER FUNCTIONS I EACH ELEMENT FOR BEAM ELEMENTS I STORE INFORMATION ON TAPE I COMPUTE DESIRED OUTPUT I (PRINT /PLOT /PUNCH) I I END I I I FIGURE 9.2-2 (SH. 3 OF 3) 1
'PLAXL Y FLOW DIAGRAM SURRY POWER STATION - UNITS 1 AND 2 I
I
I SURRY POYER STATION, UNITS 1 AND 2 I_ I 9.3 REFUND AND EMBED I The computer program REFUND is used for computation of the dynamic stiffness -1 functions (impedance functions> of a rigid, massless, r~ctangular plate welded to the surface of a viscoelastic, layered stratum. The subgrade stiffness I matrix is evaluated for all six degrees of freedom for the range of frequencies specified by the user. Embedment effects are applied subsequently I by the program EMBED. I The program reads the topology and material properties, assembles the subgrade I flexibility matrix, and determines the The foundation impedances by inversion. subgrade flexibility matrix is determined with discrete solutions, to the I problems of Cerruti and Boussinesq. A cylindrical column of linear elements is joined to a consistent transmitting boundary, and the flexibility I
- coefficients *found by applying unit horizontal and vertical loads at the axis.
I- The rectangular plate global flexibility matrix found is discretized into a number of nodal points, and the using the technique just described. The I foundation stiffnesses are then determinad solving a set of linear equations which result from imposing unit rigid body translations and rotations to the I- plate. I Since REFUND is restricted to surface-founded plates, the effects of embedment are included by adjusting the REFUND results with the program EMBED. The I I 9.3-1 I I
I I. *SURRY POWER STATION, UNITS 1 AND 2 I theoretical bases of these programs and their application to the solution I methodology are described in Section 4.2. I The results of REFUND compare very well with published results. The I comparisons shown in Figures 9.3-2 through 9.3-7 Functions for a Rigid Foundation are based upon "Impedance on a Layered Medium", J.E. Luco, Nuclear I Engineering and Design, Vol 2, 1974. Of the various solutions Luco, the following was selected for comparison Csee Figure 9.3-1>: presented by I Layer 1 Layer 2 I Shear wave velocity 1 1.25 I Specific weight 1 1.1764, I Poisson's ratio 0.25 0.25 I The comparisons sho-;.'n are of the coefficients k and c from which the vertical, translational, and rocking impedances can be expressed: I K = Ka [ k + iaa c] I in which aa is a dimensionsless measure of frequency and Ka is a zero-I frequency stiffness. I I 9.3-2 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I The minor differences shown between the REFUND result and Luce's analysis can I be attributed to the use of an "equivalent" rectangular plate analysis CLuco's is in the REFUND circular) and differences in boundary conditions at the I fop.ting Crough vs. smooth). I .. The REFUND and EMBED flow diagrams are shown in Figure 9.3-8
- I I
I I I I I I I I I 9 * .3-3 I I
I I I I I UNIT I RADIUS I _ ... I- :J: zCL
- ,W I 0 I
I I I I I I I I FIGURE 9. 3-1 LUC0 1S TWO* LAYER PROBLEM SURRY POWER STATION* UNITS I AND 2 I
- I
I-* . I I I I I
** kr I - - - LUCO - - - - REFUND I -* ..... - -
1.0 0.8 I 0.6 I 0.4 0.2 I 0 0 2 3 4 5 6 7 8 Oo I I I I I FIGURE 9. :3 - 2 I ROCKING STIFFNESS COMPARISON-REAL PART SURRY POWER STATION - UNITS 1 AND 2 I *-* *--*-*-***-- ~- - . I
I I I I I I Cr I - - - LUCO
- - - - REFUND I 1.0 0.8 I 0.6 I
I . - **- *-** -*---*-* --*----- --- **---* - Oo I I I I I FIGURE 9.3-3 I ROCKING STIFFNESS COMPARISON-IMAGINARY PART SURRY POWER STATION-UNITS 1 AND 2 I I
I
,-----------------1 I
I I I I I\ - - - LUCO I 1.6 I \
\ - - - - REFUND 1.4 I 1.2 \ '\ \ \
I 1.0
\ \
0.8 I 0.6 _ I_ - - - - - - - - --- - - - - - - - 0.4 0.2 1 0 '---.1...--..L-.-..1.--.i...--.i...--..1.--..1.--..1.---~- o 2 4 5 6 7 8 Oo I I I I FIGURE 9. 3 -4 I HORIZONTAL STIFFNESS *coMPARISON-REAL PART SURRY POWER STATION-UNITS I AND 2 I ----*-- ----------------------------------------- I
I I I I I I
- - - LUCO I - - - - REFUND 1.0 I 0.8 I 0.6 0.4 I 0.2 I I 0'--~-..1.....-~-~-~-~-~-...L.-------;l--
o 2 '3 4 5 6 7 8 Co I I I I I FIGURE 9.3-5 HORIZONTAL STIFFNESS COMPARISON-I IMAGINARY PART SURRY POWER STATION-UNITS I AND 2 I I
I I I I I kv I - - - LUCO I 1.6 1.4
- - - - REFUND I 1.2 I 1.0 0.8 I 0.6 I 0!4 0.2 I 0 0 Oo I
I I*
- 1 Fl GURE 9.3-6 I VERTICAL STIFFNESS COMPARISON-REAL PART SURRY POWER STATION- UNITS 1 AND 2 I
I
I I I I I I c., I - - - LUCO
- - - - REFUND I 1.0 0.8 I 0.6 I 0.4 0.2 I I
I
/
I 0 I QL-..-.i......-..,___..,___..,___..,___..,___......._..,___ _--3~ 2 3 4 5 6 7 8 Oo I I I I FIGURE 9.3-7 VERTICAL STIFFNESS COMPARISON-I IMAGINARY PART SURRY POWER STATION-UNITS 1 AND 2 I I
I I READ FOUNDATION GEOMETRY AND INITIALIZE ARRAYS: TOPOL I READ SOIL PROPERTIES AND ASSEMBLE ELEMENT STIFFNESS 'I MATRICES: INSOIL DEFINE DYNAMIC STORAGE I PARAMETERS READ FREQUENCY INTERVALS I SOLVE QUADRATIC EIGENVALUE PROBLEM: WAVE I COMPUTE TRANSMITTING I BOUNDARY STIFFNESS MATRIX: BOUMA I SOLVE CERRUTTI AND BOUSSINESQ PROBLEMS: SOLVER I COMPUTE MODAL PARTICIPATION FACTORS : BACK ITERATE OVER FREQUENCIES _I -*- -** -*- -* COMPACT EIGENVECTORS (ONLY THE DISPLACEMENTS AT THE FREE SURFACE ARE NEEDED): PRESS I COMPUTE FLEXIBILITY MATRIX : REFUND I COMPUTE STIFFNESS FUNCTIONS : ZAPATA I OUTPUT (PRINT /PUNCH) I I I
- FIGURE 9.3-8 (SH.1 OF 2)
'REFUND' AND 'EMBED' I FLOW DIAGRAMS SURRY POWER STATION -UNITS 1 AND 2 I
I
I I-I I* I 1-- 1 1 EMBED l 1- READ FOUNDATION GEOMETRY 1*-* READ REFUND OUTPUT STIFFNESSES I I_ CALCULATE EMBEDMENT CORRECTION FACTORS I ADJUST STIFFNESSES I OUTPUT (PRINT /PUNCH) I I I
- I I
I FIGURE 9 .3-8 (SH. 2 OF 2) 1 1 REFUND AND I EMBED' I FLOW DIAGRAMS SURRY POWER STATION-UNITS 1 AND 2 I ------------------------------------~*-*-* -***** I
I SURRY POWER STATION, UNITS 1 AND 2 I I 9.4 KINACT I
,-- KINACT is a computer program used in the three-step solution of soil-structure interaction problems. Briefly, the program modifies the specified translational time history at the surface to translati~nal and rotational time 1 histories at the base of a rigid~ massless foundation.
I The theoretical basis for the program is derived from vave propagation theory I and parametric studies of finite element solutions.; . .described in in Section 4.1.3. more detail Comparisons of the spectra of t*ranslational and rotational I motion predicted by KINACT and by PLAXLY are shovn in Figures 9.4-1 and 9.4-2. I As the figures indicate, KINACT slightly underestimates the translational part of the motion, but significantly overstates the rotational part.* This condition results from the dependence of the tvo variables U and O --1 I I I I I 9.4-1 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I I us = surface translational acceleration I UB = translational acceleration of rigid massless foundation I C = constant I E = embedment I This* self-compensating unconservative result. feature of the formulation is insurance against an I The KINAC! flow diagram is shown in Figure 9.4-3. I I I I I* I I I 9.4-2 I I
I I I I I I
- - - KINACT I
,, 0.2
- - - - - PLAXLY C) n l
I\ I I \ z ,I 0 J../
.... ,J
__ i I
' I
- 0.1 I LA.I
.J w
(.) (.) I <t 0 l--.L.--.L.--.L.--.L.--.L.--.1.--.1..--.l.--.l.--......._ ~ - o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 I PERIOD (SECONDS) I I I FIGURE 9. 4-1 I TRANSLATIONAL RESPONSE SPECTRA AT BASE OF RIGID, MASSLESS FOUNDATION SURRY POWER STATION-UNITS 1 AND 2 I
I 1* I I I KIN ACT I 1.2 PLAXLY
'?o I --,c 1.0 I -e> O.B z
2 t-0.6 0::: I \ I I \ ,.,,., IJJ 0.4 .., \I '.t":
...J IJJ u II'" " \...., , ~ 0.2 __ , I '
I . -. 0 0.2 0.3 0.4 0.5 1.-,..___. , _ _ _ . , _ _ _ . , _ _ _ . , _ _ _ - _ . . . . __ _ _ _ _ 0
- 0.1 0.6 0.7 O.B
-_..__-311_
0.9 1.0 I' PERIOD (SECONDS) I I I I FIGURE 9.4-2 I ROTATIONAL RESPONSE SPECTRUM AT BASE OF RIGID,MASSLESS FOUNDATION SURRY POWER STATION- UN ITS 1 AND 2 I
I I READ IN SOIL PROPERTIES IN EACH LAYER I' I COMPUTE SOIL FREQUENCY I READ EARTHQUAKE TIME HISTORY AND SCALE FACTOR I' SCALE EARTHQUAKE I I COMPUTE FOURIER TRANSFORM OF EARTHQUA~E I: COMPUTE ROTATIONAL FOURIER SPECTRUM I _,. COMPUTE TRANSLATIONAL FOURIER SPECTRUM 1* BACKWARD TRANSFORM COMPUTE ROTATIONAL AND I: TRANSFORM TIME HISTORIES .I PUNCH OUTPUT TIME HISTORIES I I I FIGURE 9.4-3 1 KINACT 1 FLOW DIAGRAM SURRY POWER STATION -UNITS 1 AND 2 I I
I SURRY POWER STATION, UNITS 1 AND 2 I I: ,, 9.5 The FRIDAY computer. program FRIDAY is used for dynamic analysis of structures I subjected to seismic loads, accounting for soil-structure interaction by means of frequency-dependent complex soil .springs. J'. I The structure is ,idealized as a set of lumped masses connected .by springs or linear members, and attached to a common support, the mat. The latter is' I supported* by dependent. soil springs or impedances, vhich may or may not be frequency-Alternatively, the mat may rest on a rigid subgrade. The 1: structure may be three-dimensional, but cannot be interconnected; each structure has to be simply connected. Fourier transform technique~ are used I' to determine time histories; cutoff frequency is prescribed internally to 15 Hz. I 1* The theoretical Section 4.1.4. basis and implementation of the program is described in A comparison of FRIDAY vith a public domain program, STARDYNE, I for the seismic shovn in Figure 9.5-1. response of a fixed base, multi-mass, cantilever model is The model is shovn in Figure 9.5-2. ii I I I 9.5-1 I
I I I I 1* 14.0
---FRIDAY I 12.0 l - - - - - STARDYNE - 10.0 I (!)
z 0 8.0 'I I-
<t a:
w
...l 6.0 w
u u
<t \
4.0 \
\
I 2.0 0 ..___ _,___ __,__ _...__ ---- ---- __.____________......._ _...__ __._______~ I 0 0.1 0.2 0.3 0.4 0.5 0.6 PERIOD (SECONDS) 0.7 0.8 0.9 1.0 I I 1* 1* I FIGURE 9.5-1 1 1 COMPAR*ISON OF FRrDAY AND I 1 1 STARDYNE - ARS AT THE ROOF SURRY POWER STATION-UNITS I AND 2 I I
I-I I 1 EL 60 I I I EL 48 1 2
'I EL36 1
I 3 I' 1 EL 24 - - - 1:- 4 1' yG I 1 EL 12 * - - - I' 5
----XG 1
I EL 0 6 I I FIGURE 9. 5-2 1 1 STARDYNE MODEL SURRY POWER STATION- UN ITS I AND 2 I
.I
- I INPUT PARAMETERS
't INPUT SUBGRAOE STIFFNESSES I READ SUPPORT MOTION I ,. COMPUTER FOURIER TRANSFORMS OF INPUT ACCELEROGRAMS I READ STRUCTURAL GEOMETRY AND PROPERTIES I ,,, LOOPING OVER STRUCTURES GENERATE STIFFNESS MATRIX OF STRUCTURES 'I:
READ OUTPUT REQUESTS FORWARD PASS ON STIFFNESS MATRIX IN ALL STRUCTURES I 1: ADD SOIL MATRIX I I I FIGURE 9.5-3 (SH.1 OF 2)
'FRIDAY' FLOW DIAGRAM SURRY POWER STATION-UNITS1 AND 2 I ******-- ******- ____L_.-
I
'I J: I l IMPOSE BOUNDARY CONDITIONS I LOOP OVER FREQUENCIES BACK SUBSTITUTION IN ALL STRUCTURES 'I COMPUTE AND STORE LOOP OVER PROBLEMS
., TRANSFER FUNCTIONS OF REQUESTED OUTPUT , COMPUTE TIME HISTORIES '1* I FOR OUTPUT REQUESTS OUTPUT REQUESTS PRINT, PLOT OR PUNCH I END f
I 1: _ _ _ I I FIGURE 9 .5-3 (SH. 2 OF 2) I
'FRIDAY' FLOW DIAGRAM SURRY POWER STATION -UNITS 1 AND 2 I
.1 SURRY POWER STATION, UNITS 1 AND 2 I ,, APPENDIX 9.6 1--- --- CONSOLIDATION TEST DATA CONDENSATE POLISHING DEMINERALIZER SURRY POWER STATION, UNITS 1 AND 2 f;
1:---- -- 1 I 1: 1* I. 1*
I I SURRY POWER STATION, UNITS 1 AND 2 I 9.6 CONSOLIDATION TEST DATA I Four constant rate of strain consolidation CCRSC) tests, three incrementally loaded consolidation testst and Atterberg limits were run on samples of "'I Pleistocene clay as part of the foundatiorr investigation for the Surry land 2 r consensate polishing demineralizer, located east of the Unit 2 turbine I building Csee Figure 2~1). These tests were used to obtain additional data for comparison with Pleistocene clays tested at Units 3 and 4 and plotted on I Figures 2-7 and 2-8. Enclosed in this appendix are copies of the vertical strain vs effective stress plots for the seven consolidation tests. I I I I I I I I I 9.6-l I I
I STONE, WEBSTER ENGINEERING CORPORATION PAGE ND. - - -
~ltE1.InINR~Y-~
CONSOLIDATION TEST REPORT ITEn ~~~~ CLIENT VEPCO J.a. ND* 1305810 SUBJECT SURRY - UNITS 1&2 I BASED GIi B0RINGC2 SRMP2B COMP* RUN JB 144020 - 02/22/78 14
- 06
- 38 REVISED DEPTH 47 .3 FT CHECKED;::?(*)-"'.; BY,; J'i->C BT I:* tlffll'ILED 77
- 196 12. 53. 37 VER 2 LEV O GT-24 OEDPLOT CONSTANT RATE OF STRAIN - 0.047 PERCENT PER MINUTE 0
I I-z 2
--- -:\!}-
I l&J u I"------ ~ a:: l&J D... ,4 r--.....
1 ~
- z a:
0:: 6 e = e0 - (1 + e 0 )e
'j\.
l~ I I-Ul 8 \ I
..J a:
u I- 10
\
0:: l&J
~ - ._ ~
1. 12 1-4
-------. --- ~ .... ~ ... \ .,
.I ~ u 16 I!).
--~--... ~-
19 I\
'\. ""'~ ..... ' l&J Ul ~
I ., I N
... ::c u
750 - <
..J WATE.R CONTE.NT ( 0/ 0 ) 31.1 r .......
tz OR.Y UNIT WEIGHT (PCF) 87.1 1*
- iu
..0 I
0
- VOID RATIO, eo 0.936 I I i'..a \
z J" I - 0 I-a: 500
,....- '/ \
I 1* . - C \"
~ ~ ...J 0
er.,
- z 0 250
\~ 11111 I'.....~ &.:.I ; u \
I ...
!!: IL [!J 0 I~.
ij . fi
~
IL. l&J 0 0 u 0.1 1.0 RVE~AGE EFFECTIVE STRESS - KIPS PER SQ FT 10 100 I ~
I STONE I. WEBSTER ENGINEERING CORPORATION CONSOLIDATION TEST REPORT PAO£ ND. - - l'ltELlftlNRltY - ITEn ~~~~ I CLIENT VEPCC J.D. ND. 13056.10 SUBJECT SURRY UNITS 11.2 DATE ?4 ~8 78 BY f\t?#! I BASED DN BCRINGCl 1 SAMP11C COMP. RUN JS 144023 - 02/23/78 15. 41.10 DEPTH 44 .O FT CHECKED,<>t;f..., 7.~ BY REVISED BY
/ \:;?-?*'
77 -196 12 .53 .37 VER 2 LEV O GT-24 DEDPLDT I 0 conPILED CONSTANT RATE OF STRAIN - 0.039 PERCENT PER MINUTE IT t- C! ...... z 2
"'0:::"' ~
I (.)
"'0.."' 4 ' ...... ) .... ~
1: -z cc 6- e = e0 - (1 + e 0 )~
~
0::: ~~I.a 1""- --. ....._ t- I I U)
...J cc 6 ~ ~
I -(.) t- 10
' ~ !'a, I' )
( 0::: r* I\ 12 14 I *
*~
16 ~ WATE.R CONTE.NT ( 0/ 0 ) 47.9 l!l
~~
i,
\~ ~)~~
I ~ J
-~ < ; (.) -- !:
z DRY UNIT WEIGHT (PcF) 72.9 U)
*** eo J\
I VOID R.ATIO, 1.313 N '::c 60 I a
*I
(.) I I I I I 1111 I
\
I\ .*
*a Iu C
50 - LL: 59.6 PL: 27.5 LI: 64 ~
~
z PI: 32.l
\/
I - C t-cc 40 l/*1, - I C
...J 30 .........___ .- ........ .,~ ill I'- . .... -"'=' C U) z ...a... C
(.) 20 - . .I .=.. ij a IJ.. C 10 t_._
~
Pl"--* I !
.i II!
IJ..
"'C"'
(.) 0 0.1 1.0 10 AVERAGE EFFECTIVE STRESS - KIPS PER SQ FT e I
I STONE, WEBSTER ENGINEERING CORPORATION CONSOLIDATION TEST REPORT PAGE NO. _ __ PRELinINARY - ITEn---- I CLIENT VEPCO J.o. NO. 13058 SUBJECT SURRY - UNITS 1~2 DATE24 6~.6 76, BY D f:. I; B0RINGC3 SAMP12C DEPTH 40.8 FT CHECKED,R":-'F,,Jc,? BY '."!')}1 BASED ON COMP* RUN JB 144021 - 02/22/78 14
- 07
- 28 REVISED BY ccttP'ILED 77 .196 12. 53. 37 VER 2 LEV O GT-24 OEDPLOT I 0 CONSTANT RATE OF STRAIN - 0.037 PERCENT PER MINUTE I
I
....z I.LI u
a:: I.LI tL 2 4
- -- ....... ""( ~ .,~ ~........._
11!).... I' -z ( C, a:: 6 r--.......
'tll 't!~ e = e0 - (1 + e 0 )~
I- WATER CONTE.NT ( 0/o) 49.2 \ co .J I ..J 8 < tz OR.Y UNIT WEIGHT (PCF) 71.0
\ ~ - ~
cc u I .a::... 10 VOID RATIO, e0
-"' 1.376 \
I.LI
> ~
I'- ........... ' - 12 ..... ~ .1: ' 'l
- --.... r-c; .... _':--
14 -
-* 16
(!). ~
*s ~ \
I
- ii u I.LI LL: 71.2
' 'i!i I',,.
u\
.- co PL: 27.7 LI: 49 % 'r-. !l t
I C\J '
%: 30 PI: 4.3.5 [!
i-,.
'rt\
II ~ u i;r' I
.I C
I - .... ,I z C I-cc 20
~ " '\ ~ ....... ......
I' :* C
. .J '" ' '~ I'... ~ ,. "'\
C er., z i... 0 10
~
j u
!I ')
I .
\
IL. 0 !\. / ~i:m--
~ ~
IL.
. LJ IL. ! I.LI 0 *5*
0 (.J 0.1 1.0 10 100
!; AVERAGE EFFECTIVE STRESS - KIPS PER SQ FT I
.,. STONE~ WEBSTER ENGINEERING CORPORATION PAOE NO. _ __ PRELinINARY-~ CONSOLIDATION TEST REPORT ITEn - - - - - ~ .1 ., SUBJECT BASED ON SURRY - UN I TS 1(2 BOR I NGC 11 SAMP 150 COMP. RUN JS 144024 - 02/23/78 15
- 52
- 03 DEPTH 5 4 .1 FT CHECKED -7.o' ;:;,.,, 7 ~ BY -.J1r ,r REVISED BY 77 .196 12. 53. 37 VER 2 LEV O GT-24 OEDPLOT I con,.ILED CONSTANT RATE OF STRAIN - Q.050 PERCENT PER MINUTE 0
- 1!)....
I I-z LI.I 2 r- ... 11! )..._
~
F--..... u ~ I a:: LLI ll.. 4 e = e0 - ( l + e0
- 1: _
~ ' ~~
t! I\ I* ....z l... 6 cc a:: I-
\
Cl) 8 -
..J cc ~~ ~ ~ \
I
....u I-a::
LLI 10 12 Nn. ....... r,.... N! ....
... _ *, .\ ~" ~~ \...
14
- I . ~
16 - - i:: WATER CONTE.NT ( 0/o) 32.2
- I ....
a N N u LLI
.J !:z OR.Y UNlT WElGHT (PCF) 91.0 .*,. "' Cl)
I
- VOID RATIO, eo o.85.6 u =
D I I 2: u C z 750 I I I I I I 111 LL: 42.5 PL: 20.2 LI: 54 PI: 22 * .3 i 500 1* .... C I-cc
!J ..* ......JC I =
B u
~ ~
C Cl) z 0 u 250 Ii I N
~
0
--~ \
ij ~
*......_l ,_ \_ .
I . I a
...~f ~
LLI 0 u 0 0.1 1.0 10 100 AVERAGE EFFECTIVE STRESS - KIPS PER SQ FT
=
- I
I (,I U,i[ jl. CL.lt;.N'r Wrnrn 11 I NGINfl IIIN(, (OP.POl!A I ION
- - ,.J,0, MUMl'\l.lS,,l. ntJl,C,INU1 NUMDIIM. -1 VIBGINIA ELECTRIC POWER COMPANY 13058.10 --***** _CJ. ______ ***-* _ .
tilYI! OATll UI\MPl.SI. MUMRll'.lt SURRY POWER_S_T_A_T__ IO_N_ _ _ _ _ _ __ 28 JAN 78 lOE oe.PTH ----- I 0 0 0
- I I* '°'°.. -
1-t
~
I c-- 0 c--
$~~
I ~
** ** o* ..:I ~ ~ 1-t ll. ll. ~ 0 . ~
I -- -- - .
~
0 O'
....- r/l $..t V
I / I I Q) p.. {I) p.. J I .,..., r
.!d I ! I Cl)
Cf.l I I C:
..-i ct!
- r:1
~
ti)
~
I 7 M C:
~o ~
{1)..-j
~
ct! ip., 0 .,...,
't:I <
I T I/ I r {I) r-1
.,..., 0 .s §
{I) C: {ll C) I 0 >.. M j .
]!
l ~M 0 p, r-1 I ~a p,* er.a . C: -
) J 0~
ll. ct! I ~ 0 l2: I -. 0 0 to N I -:;.uao.iad - 1Uv1LLS TI'IXv I
*------~
0 **-* ..
**- a, =i n
r a"' c-
-~ '*
Ill iii z
-t m.
1/G
~
Cl)
~ ::e 4
l"l ~ I tu 0 m
~
m m
- ia I\ 0 I ~
z G'\ zm
\ Cl) ~
tz.1 0
~
z G'\ 8 \ 1-3
~
H 0 8
~ !;z: tu I~ \
I 0 E6 z i~' ~
\ ~ ~ ~ ~
J WATER CONTENT (o/o) 88.6
"-- I'--.
f't h r--- t--..
\ I i-r--.J.
t-
<(
OR.Y UNIT WEIGHT (PcF) 47.6
-z VOID RATIO, eo 2.545 g
82 J- U)
~ 9 0
fl z 20 ....:, 1--'C
\.,J ? C ~ 0 0 IP .o Points plotted on basis of strain at 100 mins. V1 Pl )> ~~ ~ Points plotted on basis of strain at 24 hrs. ...J 1--' -I 00 0 0
24 z 0 Ill en
)
0
-I 111 11 ... s,. JI i U) ' \.,J J: .zr o GI z -I
- ' 0) 1--'
tz.Jc I\) C ;;u
* ! I . 111 0* L l 10.0 100.0 \.,J IP II l'I .,,'1 1J I APPLIED STRESS - kips per sq. ft. ~ 0 1
- 0
-*-* --*-* -- -I
I s1u;J[ F. W[OSlll( [NGINflRING COIIPOl!i\llON COi\'S*JLIOl\"'i"ION TEST F~EPO~{i'
.J.o.-*NUMB&.R. * - - - - - DOl'{INu .NUMBI.R. *-1 I VIB.GINIA ELECTRIC POWER COMPANY SURRY POWER STA~ION -- }}_~58.10 _
OATli:. 28 JAN 78 1 - - - - - - - - - _ . . . ; . - - - - - - - - - - - - - - - - ' - - - - - - - - l
- O E . P _ T _ I - I_ _ _ ___.
_..9_3 --' . Sl'\MPl..li. MUMl'H!.R. 16E .I 56.7 FT. 0 0 0 I .,I)
/
V I .. /
/
I / V I V .
- 1*
')
I I ) 0 rll I I 0 M 1 I (!) p., T I I I . -
.a, I I I .i.::
J j CfJ I I I I/ CJ)
~
CfJ I I s::
..-1 ~
H
....:::i p..
I cd
- p..
MS:: CZ:
+:> 0 I l7l ..-1 +:>
ft-j cd 0 :::I 0 c:: r-i r ..-1 0 I I I I rll
.s § s::
Ill C) 0 t;, j I j
'C cd +='M .o p..
r-i p..* I tllO
+:> 0 s::- ..-1 0 +:>
p.. cd I l=l E-< 0 z .. -** **---* I 0 ::<:: ~ o1 ;;; I I- .____ _ _ _ _ _ _ _ _ _ __:..;;__'+""'U'-a-o_.x;c..;a""d'--....a=NI-"--'VHJ.--S-Tn_X_v_ _ _ _ _ _ _ _ _ _ _ _ _ _ __.l
- I}}