ML20010G042
ML20010G042 | |
Person / Time | |
---|---|
Site: | Wolf Creek |
Issue date: | 09/10/1981 |
From: | Koester G KANSAS GAS & ELECTRIC CO. |
To: | Harold Denton Office of Nuclear Reactor Regulation |
References | |
NUDOCS 8109150267 | |
Download: ML20010G042 (73) | |
Text
{{#Wiki_filter:KANSAS GAS AND ELECTRIC COAfPANY G L E *t N L *L 0 E S T E a
. .< . m .c e ~c a ..
September 10, 1981 I. I@ C' prH s %, Mr. Harold R. Denton, Director ' Office of Nuclear Reactor Regulation ,k h.,
\\
U.S. Nuclear Regulatory Commission Washington, D.C. 20555
; S p } qJggy 1 9"
U.S.coavesssa
=cun %w d, . 2 s N KMLNPC 81-110 dh Re: Docket Number STN 50-482 Ref: NRC Letter dated 8/7/81 fror RLTedesco, NRC, "/lT@~
to GLKoester, KG&E
Dear Mr. Denton:
The referenced letter requested additional information in the area of geotechnical engineering. Transmitted herewith are responses to questions in the referenced letter. The outstanding response to question 241.5 WC, Items 2 thru 5, will be forwarded to you on October 1, 1981. This information will be formally incorporated into the Wolf Creek Generating Station, Unit No. 1 Final Safety Analysis Report in Revision 6. This infonnation is hereby incorporated into the Wolf Creek Generating Station, Unit ';o. 1 Operating License Application. Yours very truly, y/ l GLK:bb Attach cc: Dr. Gordon Edison (2) Division of project Management Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, D.C. 20555 300/y Thomas Vandel Resident NRC Inspector ! Box 311 Burlington, Kansas 66839 8109150267 810910 PDR ADOCK 05000482 A PDR 201 N Market ~ Wochora, Kansas - Mail Address' PO. Box 208 I Wrchita. Kansas 67201 - Telephone Area Code (316) 26 t-6451
OATI! Ol' AFFIIDIATION STATE OF KIsNSAS )
) SS:
COUNTY OF SEDGWICK ) I, Glenn L. Koester, of lawful age , being duly sworn upon oath, do depose, state and affirm that I am Vice Presi '.ent - Nuclear of Kansas Gas and Electric Company, Wichita, Kansas, that I have signed the foregoing letter of transmittal, know the contents thereof, and that all statements contained therein are true. KANSAS GAS AND ELECTRIC CO.'iPANY A'I'I'ES T : . 1 4g,y /fJ/1fa By_Glenn L. Koestei h ' Vice President - Nuclear W.B. Walker, Secretary STATE OF KNJSAS )
) FS:
COUNTY OF SEDGWICK ) BE IT FIfD1BERED that on this loth day of September, 1981 , be fore me, Evelyn L. Fry, a Notary, personally appeared Glenn L. Koester, Vice President - Nuclear of Kansas Gas and Electric Company, Wichita, Kansas, who is personally known to me and who executed the foregoing instrument, and he duly acknowledged the execution of the same for and on behalf of and as the act and deed of said corporation. IN WITNESS WilEREOF, I have hereunto set my hand and affixed my seal the date and year above written. f - %g... :
....qp. l /
DTl\sS}'.'
' (d /1 n. v'bV ~ / Efelyn p Fry , ' Notary /
- eens -
*Pyp\.\'
C !
,p g. My Cgfardssior, expires on August 15, 1985. ,' ~ /- .{ .. f C Y
SNUPPS-WC Q241.1 In Figure 2.5-97a through 2.5-97e show th. data points used in developing these curves. Also plot the mean and the standard deviation curves. R241.1 Data points have been added to Figures 2.5-97d and e, Figure 241.1-1 and 241.1-2. No dynamic tests were performed on the pipe bedding material, since several alternative materials were to be used as pipe bedding. The pipe bedding materials ranged ' in gradation from gravelly sand to medium sand with little or no fines (see response to Question 241.3). The shear modulus range and strain degra-dation curves (Figure 2.5-97c) were, therefore, chosen e; those for dense sands and gravelly sands as presented in " Soil Behavior Under Earthquake Loading Conditions"; State of the Art Evaluation of Soil Characteristics for Seismic Response Anal-ysis; Shannon and Wilson,1972. Dynamic triaxial tests on the Heumader shale were not performed due to problems with slaking during coring and high fissility of the core. Resonant column tests were attempted on some samples (Table 2.5-38), however, due to uncertainty regarding the applicability of the resonant column tests on rock samples (insufficient apparatus stiffness) and the problems with slaking and fissility of the core samples, these test resulte were not regarded as reliab le and were only used for evaluation of a possible lower bound shear modulus. The strain degradation curves on Figure 2.5-97a and b, were, therefore, based on the Spophysical test results
. for anchor points at 10 percent shear strain, the strain degradation curvea for the residual soils (Figure 2.5-97f), and judgment.
The shear wave velocities at the plant site, mea-sured along an open end line using a sledgehammer for impact energy, indicated an average shear wave velocity for the Upper and Lower Heumader shales in the range of 1400 to 1500 feet per second. Since the strength of the Lower Heumader shale (being calcareous in nature) is higher than the Upper Heumader shale, the shear wave velocity in the Upper Heumader shale should be lower than that in the Lower Heumader shale. The resonant column tests on samples from the Upper Heumader shale showed chear wave velocities in the range of 500 to 800 feet per second. Considering that these tests results would be too low (insufficient test-ing apparatus stiffness and shale fissility), the shear wave velocity for the Upper Heumader shale Rev. 6 241-1 10/81
. SNUPPS-WC R241.1 (continued) at the plant site was estimated to be 1000 feet per second. Thus, since the average velocity for a the Heumader shale was measured in the range of 1400 to 1500 feet par second, the shear wave velo-city of the Lower Heumader shale was estimated to be 1800 feet per second. These velocities correg spond to slpar moduli of approximately 5 x 10 and 15 x 10 Pounds per square foot for the Upper and Lower Heumader shales, respectively.
The strain degradation curves for the pper Heu-mader shale was selected as that of the upper bound for the residual soils at the site (Figure 2.5-97f). However, the shear modulus for the Lower Heumader shale due to its calcareous nature and highet strength, was conside red less strain dependent, and a flatter strain degradation curve was estimated for this material. The compressional wave velocity in the Heumader shale near the ESWS Pumphouse (Boring HS-14, Fig-ure 2.5-102c) was measured by an uphole compres-sional wave velocity survey. The average compres-sional wave velocity obtained was approximately 2625 feet per second for both the Upper and Lower Heumader shales. The Upper Heumader shale at Boring HS-14 is highly weathered and soil-like, and would, with a Poisson's ratio of 0.4 to 0.45, have a shear wave velocity in the range of 1050 to 800 feet per second. However, the Upper Heumader shale at the ESWS Pumphouse (Borings ESWS-28 and ESWS-29) is slightly less weathered than at Boring HS-14. The shear wave velocity for the Upper Heu-mader shale at the ESWS Pumphouse was, therefore., estimated to be the same as that at the plant site, namely 1000 feet per second. The Lower Heumader shale at the ESWS Pumphouse is also weathered to a lesser degree than at HS-14. The shear wave velocity for the Lower Heumader shale was, there-fore, estimated to be 1300 feet per second, giving a shear modulus of4 8 x 10 6 pounds per square foot at a strain of 10 Percent and lower. This shcar modulus corresponds to a Poisson's ratio of approximately 0.40 using a compressional wave velocity of 3200 feet per second. The strain de-gradation curves were taken as those for the Heumader shale at the plant site. Since similar materials tend to have comparable strain degradation characteristics, the strain degradation curves obtain from dynamic triaxial tests on shale samples taken in Illinois (Maquoketa Rev. 6 241-2 10/81 ___~
, SNUPPS-WC R241.1 (continued)
Shale) are shown on Figure 241.1-3 (Carroll County I Station Site Suitability, Site Safety Report Doc-ket Nos. S50-599 and S50-600). Also shown are the strain degradation curves for the Meumader Shale j from Figure 2.5-97b. The Maquoketa Shale contains the same type clay mineral constituents as the Heumador Shale, and, in addition, the fractional clay contents are within 10 to 20 percent of those of the Heumader Shale. The Atterburg Limits for both shales are between 30 and 40 percert for the Liquid Limit and between 15 and 20 pcreent for the Plastic Limit. No measurable swelling clay miner-1 als were detected in either shala, and both shales exhibit similar strength properties. Fig-ure 241.1-3 presents the mean strain degradation curve for 13 tests for the Maquoketa Shale and the test results for a sample from the Maquoketa shale with the highest unconfined compressive strength (460 pounds per square inch as compared to 300 l pounds per square inch obtained for the Lower i Heumader Shale). As shown, the strain degrada-tion characteristics for the Maquoketa Shale are quite similar to those estimated for the Heumader Shale. Therefore, the estimated strain degrada-tion curves for the Heumader Shale are considered representative. i 1 Rev. 6 4 241-3 10/81 4 _-.,,---.---.-t.-.c.,3.m%+-.- - - , ,,,.y e-p--e.-wn..~..- -. ~---,,e -
- .- -- - . _ = _ _ . _. .
1 [ 140 - r- ; .;; q {
~
7 -
- : , , g . ,7 y, , .- ii i i: i 1.;
4 , ~! i , . , '!' .i.' 1::" p, cc o.u +,m . oi. 1 I i r- '
- 6
- e r-l-
--+--
TE ST
,,9, Ct esl Tr pr p) **f 5LaE pp)
Sv'as1L5 '
*l A- ?
l l 6 , . t' ] ] l- i e i 6 , I ; i in suo e ,1 t i20. i l - - i
!'l - ' ' 'l UPPER LIMIT CRUSHED l: -- -
i 8 '" = ^ 4 l
. 1 ' ' ' '" # g 4 l l
l 'l. ROCK STRUCTURAL FILL M f+ E
+
ll 1li d. , i 7~ I.E .. .]. '* 133 3000 b d 4 b il l l t l . , . ..; . . l, . .. 3. . 5 132 3000 .+ (N3 1 } , i ,4 , 4
; {
l lt' J 100 - -!'
'*l-- - - + - - - ^ -----'- r -
i
., 'l !! .I. l , ,i .;. i - I .. r 4 E ,I , l . }' '
- j. . ..
{
-t +
w i i , ! ,
, . ' ) I - . 4.i o , i ,
r - 7 ,; , I. , e li,
...1... i g i. , i , - . , .. , .
2
-l'+. ' . ,$ [.
I f, l<, , !' 4 t t t. j l 1 t il I- 9
~*I I x B O '-- --- I 4
I i. r- - i- ~s-~} '4 , i -i . . - . i
- -~ ~
6 j O-I i
) l i i,i i b . .h . , 6
- t. ; j i }- i .
c i I 6 i .- - ,t.- a ,. c i
,f .,t. g I ,+ 'i,-
t-i
- r
- t . >
m .1 .4 7
;I ...m 4 .4 - .+- . - -b J 3 , . . < ; i. { .) -, 1 . . . .r*
- i- -
o t l , .i iI,I ,A
. i. ,., ?': N: . . . .l .'
i IL l . 3. .. .
..i.. , , 4, a 60 L o ;.
F
+- ,j t- -- - - i--+ ,< . . -.i.* +--. 4 +-2 --i.4 3 . t .- l l ,
4, i , ! , t- i - i 1
.i .
i. l 2
.{. , 3 g ., .,.! - ._.. - % a ....-_ , ,. . .. 4 i , i ! .,. . . 2 j.el1 . i .}. . .F s g i l .l I.
I
< O m 40 --- --- -+- -- ;--- i -j - d i -- t -- 't ' d, ' 'l '
nmx
- n o r.1 Z n
n Il q -t 7 t --- - p--- ---- ; 1.
+ -i. .
F
- + - - .I'.
j l ll.' .., I. q.l . .+ i
- 4
. , lI-l con p i.- , ,
j . . ]' g. . . . . i a, ,, , 4. . . mco n
..). .[ -r y77 .' .g. . i. + ; ;
i.. gm3 m
.{ LOWER LIMIT CRUCHED ROCK y,-
5]'j
- t[ r o m f?i ri_,.
m
> m m -
l i,j l ;. l j! .' : , STRUCTURAL FILL . hl t ,- i:;;:
., A1 r t - l-i z7 i 1 , , , [M t mmo
- c. m g A
~c X ho .__i__f. . ,. .
s# i i J. Q _. . J, lM
; i " . . . ..g ,. "' 8' p'. '- .. .. p .- 4 m o Z 42Q 8 e . L .. '.,, .i 4 -4 1 g ,. -. j x m
- l.
. . 1 ,
_m ., em .(.. l .i . 1 . .u
~.!dy, . .
y >o Z l j n. . . .j -- . . Il '- j 9 g9y . . - ._
- C,
$>m >- *- Zzm i ' 1 ' r n i *t .! , . ":i ' .;
11 c-x+ ;Omy , l' [
'c
- t. {'
i
----.-..j- .!
f 4A
't. .n.'
l .;!:
. ;.. . H} , p, . l t 1 -
- oz -
-< - 0: - - -
i l 4 , i. ,
.. .. .; i, ~A-t c
mco n 31 9~Z m io-4 30 - 3 10 -2 go-l 300
>xc r<r m O SINGLE AMPLITUDE SHEAR STR AIN (PERCEN1 )
m ., m s, mC tn D M l. G . tw =7i(m'I'," 2y > est is m som rouurs, co " d m tu c Af 0 de C THE PLAN rx (d "G 'A'M" ST N , '"3 a O 5"'55 '" " - Z . canA1:as to e,t<-u ,. m v 6 i9n.
._+9- .. . . - - . . --- - ,-.g.7- q ,- ..y ,, , , , ,,
35 i i- ,.
i' , . f.lll } ,, }
e
'E ST No t Clasif *V twt e La r a c y PR E 5'.6,#t arP0GL1 4- , -
ein . ( Pc s , ( er r ) ,
, p i i
l' . , : in 3oco e i
--j- j ' .A- L g :-4 * '" "' -
30 - ~ - -- - -- -
-+~ ~~ - , i e i -
4
,; . 3 i3a 3000 s . . .- 4 t , .L . . _
[t '. 4 133 3cco O q
.l. ... ! , s is 3cco a
- i l 1 il i 1 1
1
-' - - +-* I l +, . . , . ,r- 1 .~ 25 ~-+ --- -- *- - - - - - - + -
- --+-+--- e- - -**
s --l l --[ r; -I- i ': .* } I-w z
! I. .i.'
1 : L.
.; j .,l ' ll .l: ..).
u
.t..
e i
.j,. .,. .J,.,, . . . .1 y , l ., I .;i. ...I [,& , . ..
1 ,. ,,.
.t.
L- t.j.i - m .. , t i . ..
.r c i , .
20- - l- +-
- - t, .i .. -ri- . . l, j
4
+
i i . , . ,. l .# ;. . ;. 4 _O. . , a. 4, , . , .. 4 ! i , , , r n .+ . . . ... u ._ _ .o.. .
.1 .j.
4,
.i 1 , p.
i
.,t.
4. J.4
,.. j , .. .i.
4
.. .. i.
- t. , 4 t .; ,
t , . ,, 4, 6' y i..,, .. . I - .-
- i. 4 64
.(. 1 } i + - A,. -+-
o is , - , 1
- +
i
.44., . 4 - ,..1 .... .-.
a i
.Z-j .6 . . .e- , . l. . o. p. . I ... , . . . , ... .
j 41 y {.
.i g
- 7. , . e ig g j 4
+
pt. ..,. 9 I'
.,h 4.' ._ - . _Eet . . 54 .- ..J g . ' *1 .. .
gv'% ( < o i .
.,t;l
J: :l l- 1,
, l.' . .
a
- s. 1.l 1i . ' x, , j .
;g , O l g, .
j g ___ CURVE FOR CRUSHED ROCK u_._.! I -~I i o __ .' . ..-.,._;_.._ _ . . . - - + -
- o o Z n l1 STRUCTUR AL F ILL & PIPE -l; ' ' '-
'j .+ll't'{- a ' -.d,+-- Q: l - [ i e, [j h' - ?
j 1 h ngmn ' '
> n i , , Lit 4E BEDD!!aG e; hl ,j ,' '4-.i,. '" ' 3p' >p...
i . i ..-
- o m o . -
. . { _-..4 x,
c m . , ,. .a . . _r . j ,. . 1 . '
...{..
m 4-
~1 m
zz,m a.,,3 r.l > m I
'f - , . . *A'...... .' ,. ' ' " . .1....'^4-. ~
4 m m -- o 7%
- l ' 'b ie ' - +- ** i 1 -
I* * 'l- .I' 4* o3a c mC
- 5.-- m'---t4- -+i-- 'T- ~ + - . 1 *' * * *i ~ ~ ' ~ ~ ' ' - *
- J
;;' +
il'J]
- n Nm :o o m .< Z Q ,
f
, l i I 'l '- l ,,, "a' '*l[ .
om nHo N y -4 2 m
,. - +i . -l 4 i . '
i
+
lil-l 1.i..., . o
..L . . -
i
+ -. .e l i -- .i - .-U+
t . x 3o 3 _.g- ZZm =
..i..- . 6 .- , t .~...-.3 +. s 4 1 . p .- '.t'*
q.
- i.,, ,. . . . - ;~i '.~~q. * .-_ ..'j- .O:Dax ..t..
to o . 1 .: . . . ' .. .t..I, , : :, . . .l . .(- ..' t. ,,m.. " .I .- . .q , Ol.. .I. ..
.A= -a -< " - - - - - -
o = i m - ~- go-1 tog 3oo N r) C [;; Z 10 - 4 10 - 3 10 - 2
- :o :o O SINGLE AMPLITUDE SHEAR STRAN (PERCENT)
- r<> p r m -j .n jg ri o O .,>
o m ~ -- w. y y . O i. cascatm na orts-m. auty c. n,n 2 e.o stactsr s tunor c.cir4tcas secc. no. A-3852 SEC Tion 30s.50.
. . . , =
l
-6 10 - , . , , .. i. , .,i.
r
, i.{t,;,!! . ,, i; . ., ., . .. ,e- .p .(
- l. . . j _- 4 .1 i;j. .
. . 4.- ..-s . r, .--.L_.,,_I, i, _-p k,r ., t g ..;q . ; ....g . . .. - _ _ _ _1 . . ; - .p,,
i!!i
~ i ;-
i i , , oli j
' .;- f ; ql .a . ._;b;;-i '-l,!p ._ y _ .
LOWER HEuttADER SHALE (K G & E) ** DECRADATION CURVE N00ERATELY WEATHERED SH/1E 7'~ 4-- (MA.Q')0 KETA. ). (qu .= 46_0 .PS.I) - . - - - , . 10 ~' ' ~ - - -
--*'r-- -~ - - , - . . % % : iej- -. * :- L~ ~ ~ 't g ,
N HPPER HEUMADER SHALE (K G r, E)
*l % N i -
i T*
; -s- , *~~-...' e % * . ~ % -
3 a
*% , .i i O
o
! [ i--j .l 4i';
1 6 ti,t ,. e.~ . . e 2 *-----... j ;7 cr ,*-'---
- 7-4 1 l } '
T l
! lg**,'
i 10 , x m
% UPFER BOUND CCHfSIVL SOILS (K G L E) . . N .l, l
N ' .. !! g (RESIDUAL SOILS) , i . . N 1-H :
, ' l ;l; ,., ii lI p H, t'L i . )
l 82 g n , o -
- i'ir ,
^[-[;i g -*i' % : Ti m.
- o = :o , .
M m i l MEAN OF 13 TESTS :i 1 - - , Im .
> m '
HICHLY TO PODrRATELY WEATHERED SHALE '[t .
>0 o X !i, , ,! .I .
mC 'a MEAN = 125 PSI) r- x c }, ,. . 6 I
.o; .' (MAQUCKETA) l w . "o 42O m m -1 i !! l - 'i ! ' iI !
I I I I ' IIII I ! H ~i I II 10
- - >i to & x- > -4 Z ! l _z l o-o -a Zzm y o 10 3 10 10-3 10 10 - 10 o
z=- _ O :p hn ccw Y -<
- e
.-4 SINGLE AMPLIT':DE SHE% STP AIN, %
o :o m Z x< mm :o o
--t m m m > m q m2 zx O > .5 -f ?
m o z
- SNUPPS-WC Q241.2 Provida a summary of the results of field density and moisture content tests used for quality con-trol during construction of structural fill under and backfill around the Category I structures.
Present the renults as a statistical distribution plot or by other convenient method (s) to be able to ve rify that the specified compaction has been attained. Provide the above data for each type of fill separately for the Power Block Unit, the ESWS pumphouse, the ESUS discharge structure and the seismic Category I pipelines and electrical duct banks. R241.2 The information is provided on Figures 241.2-1 through 241.2-19. Rev. 6 241-4 10/81
- - -u 330 ,
300- _. NUMBER CF TESTS = 1856 250 - 200-o 2 o 150- - 100- _ I
~
50 - l l _
~
l - 0- i i i 6 i i ! 85 90 95 100 105 110 l PERCENT COMPACTION NOTES: N 1. RETESTS ON AREAS WHERE TESTS DID l l NOT MEET CCMPACTION CRITERI A ARE l; e INCLUDED IN THIS PLOT. e
- 2. MIMINUM COMPACTION IS 957. ASTM D-1556, 1
" WOLF CREEK GENERATING STATION UNIT NO.1 FINAL SAFETY ANALYSIS REPORT FIGURE 241.2-1 POWER BLOCK - STRUCTURAL FILL STATISTICAL DISTRIBUTION PLOT
i 50-Nu.1SER OF TESTS = 293 40-30-t; - 5 3 0 g - 20-10 - _i l o ' ' I - l 6 4 1 90 95 100 105 llO PERCENT COMPACTION l NOTES:
- 1. RETESTS ON AREAS WEAI TESTS DID NOT l'EET C0;iPACT10N CRITERI A ARE INCLUCED IN THIS PLOT.
l
- 2. MINIMLM COMPACTION IS 95% ASTM D-698 3
4 8 l 6 1 3
" WOLF CREEK GENERATING STATION UNIT NO.1 FINAL SAFETY ANALYSIS REPORT FIGURE 241.2-2 l POWER BLOCK - C0HESIVE FILL l
STATISTICAL DISTRIBUTION PLOT
2-NUMBER OF TESTS = 7 MATERI AL IDENTIFICATION NO. RD-8 { 801, PEL ATIVE DENSITY = 102 pcf z q _ _ _ _ _ (ALTERNATE 2) 8 e w I i 4 I i 100 105 11 0 l15 12 0 DRY DENc;f Y (pcf) 2-NUM0ER OF TESTS = 2 b 2 y I- - - O MATERI AL IDENTiflCATION NO. RD-10 W 80~ RELATIVE DENSITY = 97 pcf E (ALTERNATE 2) 0 i i -- 1 105 110 115 120 DRY DENSITY (pcf) 2-NUMBER OF 'ESTS = 3 I b
~
MATERI AL IDENTIFICATION NO. RD-17 8 80f RELATIVE DENSITY = 100 pcf g (ALTERNATE 5) s I I I
$ 100 105 110 115 O DRY DENSITY (pcf) b WOLF CREEK GENERATING STATION UNIT NO.1 FINAL SAFETY ANALYSIS REPORT FIGURE 241.2-3 POWER BLOCK - PIPE BEDDING MATERIAL STATISTICAL DISTRIBUTION PLOT
2-NUMBER OF TEST = 2 b z g i_ _ _ o MATERIAL IDENTIFICATION NO. RD-24 w a: 80", RELATIVE DENSITY = 96 pcf (ALTERNATE 5) O i , i 105 l10 ll5 12 0 DRY DENSITY (pcf) 2-NUMBER OF TESTS = 1 u 5 3 l- - w MATERI AL ICENTIFICATION NO. RD-29 [ 80" BELATf vE DENSITY = 93 pcf (ALTERNATE 5) O i i i 85 90 95 100 DRY DEN" Y (pcf) l 2-NUMBER OF TESTS = 2 b
, i_ _ _
O W MATERI AL ICENTIFICATION NO. RD-30 [ 80, RELATIVE DENSITY = 99 pcf ( ALTERNATE 5) s O i , i j 90 95 100 105 o DRY DENSITY (pcf) a l 0 WOLF CREEK GENERATING STATION i UNIT NO.1 FINAL SAFETY ANALYSIS REPORT FIGURE 241.2-4 POWER BLOCK - PIPE BEDDING MATERIAL STATISTICAL DISTRIBUTION PLOT
=
10 - NUMBER OF TESTS = 34 U z
$ 5- - - - COHESIVE FILL m _ _
O , , , i 85 90 95 100 105 PERCENT COMPACTION 15- - I; UMBER OF TESTS = 62 10-o z _ _ 3 O E 5- - STRUCTURAL FILL 0 , , , i 85 90 95 100 105 PERCENT COMPACTION NOTES:
- 1. RETESTS ON /REAS WHERE TESTS DID NOT MEET COMPACTl0N CRITERI A ARE P- INCLUDED IN THESE PLOTS.
- 2. MINIMUM COMPACTION IS 957, ASTM D-698 to FOR COHESIVE FILL, 957. ASm D-1557 FOR y STRUCTURAL FILL.
R WOLF CREEK GENER ATING STATION UNIT NO.1 FINAL SAFETY ANALYSIS REPORT FIGURE 241.2-5 ESWS STRUCTURES STATISTICAL DISTRIBUTION PLOT
.15- NUMBER OF TESTS = 69 I
10 - U - 5 h ES'45 UNIT-2 PLUG g _ _ CCHESivE FILL
'5-O -- , , ,
90 95 100 105 PERCENT COMPACTION 15 - NUMBER OF TESTS = If+ 10 - l b - l 5 8 W ES'JS PlFELihE AND DUCT BANK 5 STRUCTURAL FlLL 5-l l O- , , i 90 95 100 105 PERCENT COMPACTION P. O NOTES:
- 1. RETESTS ON /REAS VHERE TESTS DID O NOT MEET COMPACTION CRITERI A NIE
$ INCLUDED IN THESE PLOTS.
k 2. MINIMUM COMPACTION is 957. ASTM D-698 WOLF CREEK GENERATING STATION l FCR COHESIVE FILL. 957, ASTM D-1557 FOR UNIT NO. I j STRUCiJRAL FILL. FINAL SAFETY ANALYSIS REPORT l FIGURE 241.2-6 ESWS STATISTICAL DISTRIBUTION PLOT
.40- _
N'JMBER OF TESTS = 880 120-100-
~
COHESIVE FILL
~
80-U 5 2 - O 60-l l 40- _ I l 20- - O i i i i 85 90 95 100 105 l10 PERCENT COMPACTION O NOTES: e
- 1. RETESTS ON AREAS tlHERE TESTS DID o NOT MEET COMPACTION CRITL?t A ARE
$ INCLUDED IN THIS PLOT.
E 2. tilNIMUM COMPACTION IS ASTM D-1557. WOLF CREEK GENERATING STATION
" UNIT NO.1 FINAL SAFETY ANALYSIS REPORT FIGURE 211.2-7 6
ESWS PIPELINE AND DUCT BANK STATISTICAL DISTRIBUTION PLOT
T 25-e NUMBER OF TESTS = 118 20-7
~
BEDDING ttATERI AL ALTERNATE
> MATERI AL IDENTIFICATION NO. RD-8 O 807,PELATIVE DENSITY = 102 pcf ~
b (ALTERNATE 2) 8 u w IO-5- O I I I I i 1 85 90 95 100 105 110 115 DRY DENSITY (pcf) l TOTES:
- 1. RETESTS ON /$EAS WHERE TESTS DID TOT NET COMPACTION CRITERI A ARE thCLUDED IN THIS PLOT.
E
- ?
8 E WOLF CREEK GENER ATING STATION
' " UNIT NO.1 FINAL SAFETY AN ALYSIS REPORT ,
FIGURE 241.2-8 ESWS PIPELINE AND DUCT BN1K STATISTICAL DISTRIBUTION PLOT , .J
"~~ - . - _- , , _ , ,___
6,
!PJMBER OF TESTS = 11 4 - - $ BEDDING MATERI AE z MATERI AL IDENTIFICATION NO. RD-9 y 80"4 RELATIVE DENSITY = 97 pcf o (ALTERNATE 2)
E 2_ _ i 1 O , , , , 90 95 100 105 llc DRY DENSITY (pcf) NOTES:
- 1. RETESTS ON AREAS WHERE TESTS DID 1 NOT MEET COMPACTICN CRITERI A ARE INCLUDED IN THIS PLOT.
l l l S
?
8 a 3
" WOLF CREEK GENERATING STATION UNIT NO.1 FINAL SAFETY ANALYSIS REPORT FIGURE 2f+1.2-9 ESL PIPELINE AND DUCT BANK STATISTICAL DISTRIBUTION PLOT
0 i2 1 _ 0 __ 1 D Rf c l
.p O
N7 l 9 N 10 = 0 TY _ i2 AT l 1 CI IS LFN AIE I TD RN E E E )2 T0V A1 M I T TE GALLA A INIE RR N R ]- 5 DE E 1 T DT% L 1 EA0 B M 8 (A
~ )
f
- 30 1
c p (
- Y T - I S
_ N E D 5 Y _ 0 RO 1
~ DE 0 I R DA - i01 SA 2 TI 1 SR
_ 2 EE TT _ I
=
ER . S RCT T E O S iNL E WOP T I STS F ACI O i5 EAH _ RPT R 9 AM .. E ON __ B NCI _ M O U TD SEE N
- TED SMU E L
- TTC S EON E RNI
_ T O . N 1 0
- - - 9 5
0 5 0 2 2 1 1 O
>o58wE 7
0 4 6 0 9 9 2 6 7 gor-n O:x$ omzmn3d2O m4h - 02 Cz
- zOb 2Zy,- $h<. >z> $G :m'h-2
. o 7 h=m y .Y o 1
mmCm 2 mr m ,,- CC " m - i> H m S c o "; m E d 9 u G i-
0 7 R s3 1 1 Df R c
.p O0 N0 1
R N 5 OI = k TY I AT CI I S FN I E TD N ) EE 5 DVI IT E T LAA AL N I E R L 0 RR E i2 E T T%L 1 A0A M8( 5 )
^ i1 1 f c
p _ ( Y T I S N E
- 0 D -- l l
Y R D DE 5 I R DA b , l S/ Tl SR EE TT
. ERI .
RCT E O _ HNL WOP I
- O STS ACI EAH
_ b l RPT AM ON NCI O l TD SEE TED i U l S E f L TTC l S: EON E RNI T l O . N 1 5
- - - - 9 0 5 0 5 O 2 1 1 7
0 >ozwg u' 4 6 0 9 9 6 7 EO n nN m" OmZm">dzO mgg Z cZC ZO. 8
= =
IZ? 5< >Z>P - mmhm4-2 8$ tf.Jb o P - 0c^ U5 E =A mmCb Zo 3 H$ h sp2m ~ S o $:n~ c S~ yoH
i l l l l 10- MATERI AL ICENilFICATION NO. RD-22 807, RELATIVE DENSITY = 96 pcf (ALTERNATE 2) NUMSER OF TESTS = 72 _ u 5 85- _ g - _ 6 i i i i i 95 100 105 (10 115 12 0 DRY DEN SITY (pcf) l L E
?
8 A
$ WOLF CREEK GENERATING STATION N UNIT NO.1 FINAL SAFETY ANAI.YSIS REPORT FI GURE 2f+1.2-12 ESWS PIPELINE AtlD DUCT BANK BEDDING MATERIAL STATISTICAL DISTRIBUTION PLOT
10 - MATERI At. IDENTIFICATION ND. RD-73 NUMBER OF TESTS = 55 807. R; ATIVE DEN 3lTY = 107 pf p ( AL"_r.NATE 4) Z s - 85-E 0- I i I i i i 100 105 11 0 115 120 125 l'O Di4Y DENSITY (pcf) liOTES:
- 1. RETESTS ON AREAS kHERE TESTS DID NC T MEET COMPACTICH CRITERI A ARE lhCLUDED lh THIS PLOT.
i E 4 8 - l a l 0 WOLF CREEK GENER ATING STAllON
" UNIT NO.1 l
FINAL SAFETY ANALYSIS REPORT l FIGURE 21+1. 2- 13 s ESWS PIPELINE AND DUCT BANK BEDDING MATERIAL STATISTICAL DISTRIBUTION PLOT l r;.5 r" - n
4-NUMBER OF TESTS =12 b z MATERIAL IDENTIFICATION NO. RD-214 80% RELATIVE DENSITY = 96 pcf y 2- - - (ALTERNATE 5) o E u. O i , i i 10 0 105 11 0 115 95 DRY DENSITY (pcf) 6-NUMBER OF TESTS = 18 4- _ b 5 3 0 MA1ERI AL ltENTIFICATICN NO. RD-26 y 807, RELATIVE CENSITY = 95 pcf w - 2- - - (ALTERNATE 2)
' i O i i i i 100 105 11 0 11 5 120 g
95 DRY DENSITY (pcf) f
?
b WOLF CREEK GENER ATING STATION
" UNIT NO.1 FINAL SAFETY ANALYSIS REFORT FIGURE 241.2-14 ESWS PIPELINE AND DUCT BANK BEDDING MATERIAL STATISTICAL DISTRIBUTION PLOT I
L
6-4- - 3 MATERIAL 10ENTirtCATION NO. RD-29 o 807, RELATIVE DENSITY = 93 pcf NUMEER OF TESTS =15
] (ALTERNATE 5) s S
E 2-O, , , , , 85 90 95 100 105 DRY DENSITY (pcf) 8-6- NUMEER OF TESTS = 40 MATERIAL IDENTIFICATION NO. RD-30 807 RELATIVE DENSITY = 99 pcf y (ALTERNATE 5) o N 3 4- - - u w 2- - l 0 3 i i i
+ 90 95 100 105 11 0 o DRY DENSITY (pcf)
E , O WOLF CREEK GENERATING STATION
~
! n0TES: UNIT NO. I
- 1. RETESTS ON ARFAS WERE TESTS DID FINAL SAFETY ANALYSIS REPORT NOT MEET COMPACTION CRITERI A ARE INCLUDED IN THESE PLOTS. FIGURE 241.2-15 ESWS PIPELINE AND DUCT BANK BEDDING MATERIAL STATISTICAL DISTRIBUTION PLOT
70-60-hUMSER OF TESTS = 29) 50-40-o a O
- u. 30-f-
20 - 10-O O f-p , , i i i
-10 -5 0 5 10 DEVI ATIO N FROM OPTl MU M MOISTURE CONTENT, */o E
4 8 5 0 no7gs: WOLF CREEK GENERATING STATION
- UNIT NO.1
- 1. RETESTS ON AREAS WHERE TESTS DID' NOT FINAL SAFETY ANALYSIS REPORT PEET COMPACil0N CRITERIA ARE INCLUDED IN THIS PLOT.
- 2. ACEEPTANCE CRITERIA 15 1 2X CF OPTIMIM FIGURE 241.2-16 NCISTURE CONTENT, HOWEVER FAILING TESTS POWERBLOCK C0HESIVE FILL ON THE ORY SIDE WERE GENERALLY ACCFPTED iF THE DENSITY REQUIREMENTS VEkE SET. STATISTICAL DISTRIBUTION PLOT
l 20 - 15 - N'pBER OF TESTS = 3f+ z
$ 10-g _
tr
- u. -
5-0- i i i i i
-10 -5 0 5 10 DEVIATION FROM OPTI MU M M 015TU R E CO NT ENT, /o E ?
e a
$ NOTES: WOLF CREEK GENERATING STATION UNIT NO.1
- 1. RETESTS ON AREAS VHERE TESTS DID NOT ,
PEET COMPACTION CRITERI A ARE INCLUDED FINAL SAFETY ANALYSIS REPORT IN THis FLOT.
- 2. ACCEPTANCE CRITERI A IS t 2% OF OPTlHUM FIGURE 241.2-17 MOISTURE CONTENT, HOWEVER FAILING TESTS ON THE DRY SIDE VERE CENERALLY ACCEPTED ESWS STRUCTURES C0HESIVE FILL IF THE DENSITY REQUIREMENTS WERE MET. STATISTICAL DISTRIBUTION PLOT
.. y
1 1 l i i l l 20-I l NUMBER OF TESTS = 69 l 15 -
~
o z
$ 10-8 x
5-0 , ll i i l i i
-10 -5 0 5 10 DEVI ATION FROM OPTIMUM MOISTURE CONTENT, %
S 4 8 5 NOTES:
$ WOLF CREEK GENERATING STATION
- 1. RETESTS ON AREAS VHERE TESTS Dl0 NOT UNIT NO.1 PEET COMPACTION CRITERI A ARE thCLUDED IN THIS PLOf.
FINAL SAFETY ANALYSIS REPORT
- 2. ACCEPTANCE CRITERI A 1512% OF OPTIMUM MOISTURE CONTENT. HOWEVER FAILING TESTS FIGURE 241.2-18 ON THE DRY SIDE WERE CENERALLY ACCEPTED ESWS UNIT 2 PLUG COHESIVE FILL IF THE DENSITY REQUIREMENTS WERE MET.
STATISTICAL DISTRIBUTION PLOT
a l
\ ' \
15 0 - NUMBER OF TESTS = 880 '{ i 100 - t 5 m O u m 50 - - r-l ' I I I I' I O -10 -5 0 5 IO DEVI ATION FROM OPTIMUM MOISTURE CONTENT, % NOTES: WOLF CREEK GENERATING STATION
- i. RETESTS ON AREAS WHERE TESTS DID NOT UNIT NO.1
- PEET COMPACTION (*lTERIA ARE INCLUDED FINAL SAFETY ANALYSIS REPORT IN TH15 FLOT.
c 2. ACCEPTANCE CRITERIA 15 1 24 0F OPTIMUM '~ MOISTURE CONTENT, HOWEVER FAILING TEilS FIGURE 241.2-19 cN THE DRY SIDE WERE CE::ERALLY ACCEPTEL ESWS PIPELINE C0HESIVE BACKFILL IF THE DENSITY REQUIREMENTS WERE MET. STATISTICAL DISTRIBUTION PLOT
- ) ,
SNUPPS-WC Q241.3 Provide details of the six different types of backfill and the bedding materials used in the j construction of ECCS seismic Category I piping and electrical duct banks including gradation and plasticity index requirements, and principal construction criteria. R241.3 The information is provided in Sargent & Lundy's Specifications A-3852, (Section 301.5). These , specifications are reproduced here as Attachment 241.3-1 (sheets 1 through 4). Rev. 6 241-5 10/81
ATTACHMENT 241.3-1 (SilEET I 0F _') 4 5 ARGENT &TUNu T j ENGINCERs A-3852 CHsCAGO Amd. 3, 05-10-77 I l l l l l l l l l i 301.5 Bedding for Circulating Wa*er Pipeline, Warming Water Pipeline, Service Water Pipeline, ESWS Pipelines and ESWS Electrical Duct Banks: Amd.
- a. The bedding shall be shaped to fit the underside of the pipe to pro-l vide a continuous firm bearing.
ATTAgi??NT 241. 3-1 (SilEET 2 0F 4) SARGENT & LU NDY ENGtNEERs A-3852 C H'c ^ c o Amd. 5, 02-21-79 al. There shall be a minimum of 6 inches of bedding below the pipe inverts Amd.4 where bottom of the trench is soil and a minimum of 12 inches of bedding where the bottom of the trench is rock. a2. The bedding shall extend to at least the mid height of the pipe for pipe-lines and to a minimum of 12 inches above the crown elevation of ESWS pipelines. A minimum of 12 inches of bedding material shall be placed Amd.4 along the sides of the pipes and the ESWS ductbanks that are not poured against in-situ materials. Where the ESWS ductbanks can be placed against in-situ material, bedding material is not required.
- b. When placing backfill the differential level from one side to the other Amd.3 side of the pipe or ductbank shall not exceed one foot.
- c. Bedding Material: Amd.4 cl. ESWS Pipeline. ESWS Electrical Duct Banks, Circulating Water Pipelines, Warming Water Pipeline and Service Water Pi,peline: Amd.4 cl.1 Bedding material shall be a pea gravel or crushed stone with not less than 95% passing 1/2 inch and not less than 95% to be retained on the No. 4 sieve. The bedding material shall have less than 5 percent friable materials as determined by ASTM C-li2 and less than 45 per-cent loss as determined by ASI?! C-131.
c2. As an alternate to Paragraph ci the following gradation may be Amd.5 used. c2.1 Bedding material shall conform to the applicable requirements of Amd.4 Paragraph 301.5. Bedding material shall have less than 5 percent friable materials as determined by AST" C-142 and less than 45 percent loss as determined by ASI?! C-131, except gradation shall be one of the following: (1) ALTERNATE NO. 1 Amd.4 Sieve Size Passing % 1 ! 3/4" 95-100 3/8" 40-60
#8 0-05 (2) ALTERNATE No. 2 l Sieve Size Passing %
1/2" 95-100
#4
- 0-20
! #8 0-08 i
ATTAGIMENT 241. 3-.1_ (SilEET 3 0F 4) SARGENT & LUNDY ENG1NEERs A-3852 Amd. 5, 02-21-79 (3) STERNATE NO. 3 Amd.4 Sieve Size Passing % 3/4" 100 3/8" 85-100
#8 40-60 #30 5-30 #100 0-02 (4) ALTER'; ATE No. 4 Amd.4 Sieve Size Passing %
3/8" 100
#4 95-100 #8 50-85 #16 25-50 #30 10-35 #50 5-30 #100 0-15 (5) ALTERNATE No. 5 Amd.5 Sieve Size Passing %
1" 100 3/4" 90-100 3/8" 20-55
#4 0-10 #8 0-5 (6) ALTERNATE NO. 6 (Sand) Amd.5 Sieve Size Passing %
3/8" 100
#4 95-100 #8 80-100 #16 50-85 #30 25-60 #50 10-30 #100 2-10
T ATTACHMENT _241_. 3-1 (SilEET 4 0F 4) SARGENT & LUNDY ENGINECRS A-3852 Amd. 5, 02-21-79
- d. The bedding material shall be placed in not more than 6 inch layers and vibratory tanped to a relative density of not less than 80% as determined by ASTM D-2049.
. SNUPPS-WC Q241.4 For the ESWS discharge structure, submit drawings showing plans and typical cross-sections of the limits of excavation and types of fill and back-fill materials.
- R241.4 The information is provided on Figure 241.4-1.
l i l l l l l ! Rev. 6 241-6 10/81 L
i 1 2 k, 9 %
- a
<c w . e : : '; ' e i" B r
I d i 8.e s[~ o Ei z
., y - .
i.: z 22 i i
-'1e 1 r ,
s T1 0:
,a ,a - c_r m - -- -:: g E t yr E ri r.i 4 ". "S i= Ew 4.f r -- - 8 .. u O'<I _ mm I l E Y t S* =$
WEZ< J
** N o.
I I
'-IiE E*g' E*g = * ;;; ;i ' :g '*" OE> W 5 ;
E!i !E3 2 SE at- a 4 i as er sr 29* 4 h;e y ..--- . S* S*
~
M 5 as y y'f , g E $hhC e fh gg u 2 : Lr bA ': b I $ E* l O 3 1333 NI NOlivA373 l o I ' o
~ o o o
l I I
' Z l l x :
5 o'~ N g a
>C >< -7 K- < 9- . E . ., 2 & z 2 g " s q a
e I E'.
- J N 9 W U
' ' 4 I
lff s $ m (/) 0-
' I ! r , r, - I s
i f I II' l g , l I!f I I _L K g 1 6
, f , o_
tut - l' i I 3 I
,1I ' ' s /. ls 6J LJ :
f !
/ :.
m, e i I I I i 1 R o o o i e b $ 1333 NI NOlivA313 3 d 5 s ", e' Y. . s ;
.;; { .i' !-
y 4 ? 0 EiZ Y 1
SNUPPS-WC Q241.5 1. In Figure 2.5-47 show locations and limits of soft material, if any, that was replaced by competent material during construction.
- 2. For the ECCS pipeline, provide typical trans-verse cross section showing the excavation limits, pipe, bedding, and different kinds of backfill materials 4
- 3. Provide typical longitudinal section and cross section details of excavation and back-fill near the interface between the ECCS pipet and the structures.
- 4. What are the estimated total and differential settlements of the ECCS pipe and the struc-tures at their interface due to both static and dynam2c loads?
- 5. What is the estimated settlcment of the ECCS piping due to both static and dynamic loads?
R241.5 1. No soft material was encountered.
- 2. Response to be provided by October 1, 1981.
- 3. Response to be provided by October 1, 1981.
- 4. Response t be provided by Cotober 1, 1981.
- 5. Response to be provided by October 1, 1981.
Q241.6 Provide a copy of the Bechtel Topical Report, (2.5.4.7) BC-TOP-4A, referenced on page'2.5-199 of the FSAR. R241.6 Bechtel Topical Report, BC-TOP-4n, was approved by the NRC on October 31, 1974 ( Ref e rence ) and has been used on many previous plant designs where Bechtel is the architect / engineer.
Reference:
Letter of October 31, 1974 from R. W. Klecker, NRC, to John V. Morowski, Bechtel Power Co rpo ra tion. Rev. 6 4 241-7 10/81
- ~ . . . . . . - - - - , . . , . _ _ _ , , ~ , ,
SNUPPS-WC Q241.7 Provide a plot of the magnitude and distribu-(2.5.4.10.1.3) tion of lateral earth and water pressures used in the design of subsurface walls and,
- on the same figure, plot the dynamic lateral pressures computed from the soil-structure interaction analyses due to the building and soil response under dynamic loading condi-tions. Provide such plots for the main powerblock structures, the ESWS pumphouse, and the ESWS discharge structure.
R241.7 The plots of the magnitude and distribution of lateral earth and water pressures as well as dyna-mic lateral pressures are provided in Figures 241.7-1 through 241.7-6. Rev. 6 241-8 10/81
. Fig. 241.7 4 d- AUXILIARY BUILDING j EXTERIOR WALL DESIGN NOTE: Tile WATERTABLE WAS ASSUMED TO BE AT GRADE LEVEL.
9 5 Pg Pg
- - : =
t j JL
+--
t~ 4 N ;
\ \
u 6 j
+: ; ; _ ;
l Pg PS2 PW TOTAL WITil LOAD FACTORS STATIC M l.7 (ESP) DYN X 1.9 (KSF) EARTH PRESS EART11 PRESS ! P - PW IS @ EL. 2000' @ EL. 1973' L3 PS2 Ph , 0.32 2.43 2.85 0.10 0.53 0.95 KSF 5.6 KSF I O.32 KSF 0.63 KSF 0.95 KSF 4 i i 4 5 1, 5.6 KSF 5.6 KSF
! STATIC DYNAMIC STATIC & DYNAMIC P which is the static pressure due to surcharge loading, varied according ,
tb,the irnposed load due to the building adjacent to the exterior wall of the
, auxiliary building.
. Piq. 241.7-2 CONTROL BUILDING EXTERIOR WALL DESIGN y N C-B C-1 Surcharge = 0.25 KSr + + 4 4 + t 4 l .__, C-r Diesel + Wall B " COM?1.
Generator CORR. A % ~ CONTROL PLDG. Bldo.
" O " BLDG a
g 4. N m
.= %. \ We 1. . A Wall C -
U W c 03 n i ~ C-n Aux. Bldg. PLAN VIEW l L-
. Fig. 211.7-3 CONTROL Bt!ILDING EXTERIOR WALL DESIGN WALL A P.Q P c.
lEL. 2000'-0" , l I
+
l EL. 1984'-0" - T .
\
4 \
. \
EL. 1974'-0" I.
\p ,
I.
.t 1.
L_Ls2 J CP'e P Sl TOTAL WITil LOAD FACTOFS JTATIC X 1.7 (KSF) DYN X 1.9 (KSP) EARTil PRESS EARTli PRESS l'Q PS1 P2 S PW Ph Ps @ EL. 2000 @ EL. 1974 3.825 1.198 1.651 1.95 2.622 1.423 7.870 8.624 O = 3 KSP f444f EL. 2000'-0" 3.825 KSF 4.045 KSF 7.870 KSP EL. 1984'-0" 6,778 KsF 1.556 KSF 8.334 KSP EL. 1974'-O 8.624 KSP 8.624 KSF STATIC STATIC & DYNAMIC DYNAMIC _ (DESIGN) L... - - - - _ _ _ _ _ _ _ _ _ _ _
4 l . Fig. 241.7-4 ? CONTROL BUILDING EXTERIOR k'ALL DESIGN WALL B , P P, 2000 E S e I _
+-\
1984-0"
- T l \\
< \\ N I
i \ N 1974'0"
- i. %, L ..t. _l, mt I I k p p S2 9 d S1
'! TOTAL WITl! s ! LOAD FACTORS STATIC X 1.7 (KSF) DYN X 1.9 (KSF) EARTII PRESS Pn EARTil PRCH PS1 PS2 Pg P Q PS 9 EL. 2000' @ EL 1974'
- 0.319 1.198 1.651- 1.75 0.219 1.423 1.961 5.118_c.
I O. 0.25 KSF f4444 EL. 2000'-0" 1.642 KSF 1.961 KSF 0.319 F,SF i EL. 1984'-O' 3.272 KSF 0.632 KSF EL. 1974'-0" 5.118 KSF STATIC DYNAMIC STATIC & DYNAMIC (DESIGN)
,n E l ' , b! , ,
O- i l l j, 8' 2 D n o A . O L F S K
/ -
N G 1 - I 6 -. S 1 E D 1 C I . M A - N D vY
+
C I T A T S -
\ = / -
D A EI D r G e RC v AI I I M 6 CA 8 FN 0 3 t UY . G SD n C I -5E 4 I S M A vY I D N . - S 7 U L D J L 1 P A ' 1 4 P 2 M W D U A P R O g O L F I S . i S R CT K F WS E I S E T ME 6 - X AR 6 E N 8 YT . DA \ O\ \ 4 - D F F S
/ - A S EO K , - GL K R 9 ._
AC 9 0 l
! I 0 2 CT 2 RA . 0 - UT 0 SS C
vI T A T S
- D A F O S L K T
CS 4 I E S TR 5 A TT 4 SA
\
t
Pig. 241.7-6 ESNS DISCIIARGE STRUCTURE EXTERIOR t?ALL DESIGt! STATIC EARTl! STATIC DEAN M<W PRESSURE ' HA E MFAE EAM N M DEIM LOtsD 0.277 KSF 0.044 KSF 0.122 KSF O.443 KSF
'4 . + + + = g . _ o ..
1.442 KSF 0. 2 Ti KSF
/ . \ / \ / \ 1.719 KSF
[ V V V STATIC DYtIAMIC STATIC & DYN A'4IC
SNUPPS-WC Q241.8 Revise FSAR Figure 2.5-111 to show the location (Figure of sections GG and HH. 2.5-111) R241.8 Sections GG and HH are shown on Figure 2.5-108. Figures 2.5-111 and 2.5-108 of FSAR have been revised accordingly. 0241.9 In Figure 2.5-112 show the following missing (Figure information. 2.5-112) a) The water levels and the piezometric surfaces i used in the stability analyses for all con-ditions analyzed. b) Show the minimum factor of safety and the corresponding critical sliding wedge. R241.9 Figure 2.5-112 of FSAR has been revised to show the water level and identify the critical f ailure wedge, soil parameters and minimum factor of safe-ty for the cases investigated. The critical fail-ure wedge is the same for each of the cases. Q241.10 1. In Figure 2.5-113 show the following missing (Figure information: 2.5-113)
- a. Subsurface soil profile and the soil parameters for each soil layer that were used in the slope stability analyses.
- b. Show the water levels and the piezo-metric surfaces used in the stability analyses for all conditions analyzed,
- c. Show the minimum factors of safety and the corresponding critical slip circles for each of the cases investigated.
- 2. Discuss the validity of using slip circle method of analysis, particularly for the side slopes of the pumphouse intake channel (3H:1V), conside ring that a) the hard rock layer is in the immediate vicinity of the toe of the slope, b) for the UHS slope you choose to use the sliding wedge method of analysis. Justify the validity of the slip circle method of analysis or investigate the stability of the slopes of the ESWS pumphouse intake channel using the sliding wedge method.
Rev. 6 241-9 10/81
. SNUPPS-WC 0241.10 (continued)
- 3. For the cross section presented in Figure 2.5-113 explain why the minimum factor of
- safe ty for the stability of (3H:1V) slope is higher than the minimum factor of safety for the stability of (511:1V) slope.
R241.10 1. The information requested is shown on Fig-ures 2.5-113a through 2.5-113h. Section 2.5.5.2.2.2 had been revised to include a reference to these figures.
- 2. The 311:1v side slopes of the ESUS Intake Channel are cut into the IIeumader Shale mate-rial. During early stages of design and as presented in the PSAR these slopes were spe-cified to be III:1V. During the excavation of the power block, it was discovered that this material weathers rapidly if it is not pro-tected from exposure. Subsequently, the slopes of the ESWS Intake Channel were flat-tened to 3II:1V and the material was conserva-tively assumed to have the properties of residual clays which had been derived from weathering of similar shale material found where the lieumade r Shale formation was ex-posed along the Wolf Creek Valley.
The residual strength is much less than the strength of unweathered shale. When the material is assumed to be soil in and below the slope, the slip circle method of analysis is applicable.
- 3. For the cross-section presented in Figures 2.5-113a through 2.5-113h the minimum factor of safety for the stability of, the 311:1V slope is higher than the minimum factor of safety for the Sil:1V slope because the height of slope above the toe of the 3fi:1V slope is 5 feet and the height of slope above the toe of the 5H:1V extends from elevation 1070 to existing grade and is much greater than 5 ft.
The height of the 3II:1V slope is limited to l 5 ft. because of the 55 ft. wide bench pro-vided at elevation 1070. l l l Rev. 6 241-10 10/81 L'
. } }. .
4 t'
%.N ~- ./, ,
l l '\ ,'
; i f ' /' i s' / \
e- r~'.' IQ '
$, '.5 ~ '
b l g sm g 3 V) ! p ~ '
.l ,..- I jnyr.y \ ,.
i j N
.,j. 4d .,; .'.. Ny 0 ".l'.'1 ..
f',..,..,, ;
,I cq.% ,4 % ; p? c-' f,_'J. t hh.}-~, %. b.W:->.;..s.3 &,3 -=.:..:..y4l~-~4:.'"sYi?c, ..
o .. . vt N- . -.----- - - - - - - - - - t . ., . s1 q -,r. :-.~".
?I - -r . 'N N / ,, \
22 e'. sgPJ , . w. n.9.,,S.h*l*$t 7.1x". w.
. ,' v ~
i y " E.,; ,.,g
.y y- .r y > --
j h
-N,
- wW5..L? x%
i -
- .x ,f c.,
- . i 2 .
e . 3, s &, ' 3 f
- y. Q'I 6 j' v.a.,_ -
n , t'=r.. ' ,
,; ~ ~ r \. s ,/ , ..
s' t . . s r. t ' ' a -q ' r i .
)g $ i d / g j
- \ -
'y., / , , ' s.. . ,/ .
1
/- . .. .
Whm.t '==:.y;;-..; = M, m .e'~ ~ u,rir;,., ~
=--:'-----
x '/'..,. ,. . . c~w . , y @=. s z ;t r. ~'>r s f. _ _. ._ .. . . . - - - . - - -
. .. . . . ,. s .e n ?- . --g:n ,% .,./x., -;. t ..
j.
-- e. . . e. r . ; ,. I ' r se'N . ~' ,-Ue- ,- ,.. p.,.-
c (. . -, i..
\
N - g% [) $.5 , . -. A 4 h"; .,m ;- i .'
\ y --- 9 ,...\ ,,,,,.. ' , ' y. .s .. i1 \ .
m v
\\ q\\12%%' s.. , ~ ! 1., ' -
ynQ ' i ' h ,P;y' ~y ~-.
%*.j;,\ .a , .i. - - - - - ,e:tcaN - - -~
pd
\, ,. - .. e b44* sy.; ar t iJy r; . i ' i , .
ne s
-s y . _ . - ,- .A. i ~m J' ,.o . /- < 2 .4., --
q x., -
- " .s :, + ~ ,
y 2 .
.6.'a. . m %- .. \
1 .% c - , , , .. -
-t e. v. .n .e,' < - e on,sh -{
e
,,.N.x .. . .. a <, ,
q-- ,
=.. m,e. ~ ~ , , . .,s g y. .3.c ... -. - ~
4 - . . . q '/ ' ' ' ,. ti ,
- .\ 9 .
.- & y -:s r- ., ' N . . .5 .
g y
~. . - . . , N, .WW
- . x ~
m~**= .m . ",. .%_....
- .m( ..- . r- .- _) 1 .x ,, ,~- . g. . E" 1.u s a
s mx,...
.._. . . a .. ,i /, - ;.s ,, . p, ~ _
h.,
., p , .c .-m s ~;-' y .-
- m. )
m
/ v. y .*t,. e . s; , q- ,/ ._
v,%, ,-
- / 8 .
. .., v ,- j s . . . .s, , ,4f' . .A y@ - .t 3--
t$ -
,-.; ; -cx m-
_ t. . J'~ sG ~ .- ' -- , .Rev. ! 6 _ - . g
~ ' ' . - 11 . .-'- e,- x . . . 4. .. h- _ ._- =P- v i; 3 ~ i e . . .- . . . ' .. I 10 81 m
WOLF CREEK GENERATING STATION l UNIT NO. I FINAL SAFETY AN ALYSIS REPORT i FIGURE 2.5-108 ULTIMATE HEAT SINK
, I I . t . 0 . l . l . I , , s r-s ] c} _ 11 $1 j j- y ( - - ---- - -.- - --- -. .- - _ a-- y - ,_ / '~ ', r- " p fe= mL "
s.F,X--* :',":": "".".
==r -
f .-- a ~ ~ ~ o l w My.;.
--.- Vw ,
I* , ( = u_:.. __.f t~" *m.T '*]__ _ '" A_ _f ~ Y N%]. i _ - - 4wh-F- - - - ' s y;-t.! ,,,, : = ; _ !. g = - l J
~~W_ -
I 1l h . e e mee >
# ~ ~1(( -,, c .c l t- /*-- ~
- l d--
, ,tf ]- c;
['y ;pe;'_nd_; ., =,,4 ,,, g.y Jx
,,. 'I r . r-~ Q .i;JA-3.-.4 4
1
~ Tl t]/ g .t 9 -w]= 4R-s ~
I
-n 9#r/~ ~
lTh ;f j 421G a ' rM N.2.Q H.q$,; M} *
'l l
l ! ~
- / d- d'R_4W + p-m r i$114Lij'.YY W2_ye f
.. I *='a' y - ' - * * < ric. 2. 5. ica) - ~~~. ]/ ~l 12 . ...r. a: _., _ \l CJ.m . . kr -a,}
I *- Wen l ll & _ep -- ~ fN7-- + aq F' ' ~- - - j sg , l 'gj-:. II l. , - - *e ==.=. [.. .g GF
;; g '.e - ~tt j 3 &g ' ~_.
j~ ~j Y ,by. ._
- I ^
} } I l ~
E" f [ . m .,, . . , .
<= t - s-- *h' . e,J l./
6 r l
/ <f, ,* ***/ gl' 4
ct- -- gyic,2,piog)
, < m ca s _ g__ g/ ed dj b "'
[ l11 i, g ' le / ai .,m
- =q ,w.- .=. .i .-
,t v! - - -
L <
==- ==
_ ,. f . 9,.=y- _. . 8 , ai .-. - _ . . . y q f~'-- __ y . t d
- n. .
, _ , , ..} g g _ -3 / ~~ '~~\ lj r '""*i AN ern 'a""' sw.cr . = - %s- '~
i [l, N j f\$~ \
!\ b I I Ip . *T -- t. ;_-- _T 4 ~ : ..- m.: = , * &::.i.:: n .1 ~. - 1 i p.6 \ ('""2 l C "T.".' "'
- q ~m.r
. w':n.c :=E
( W ' I tt I llgg, f fgej ?- .* ' M' " " ~~~'
----- _ ,- ---}y/g 7M}~",~ - c== --s ' ffy C'*,j g g -' ""/* $.. \ aev. 6 \ in 11: g // f 'fj , % . 10/81 -
O MI ' ' -
# WOLF CREEK GENERATING STATION M N*f W ag le 'I ul t E 1C '
UNIT No. l
- W I.f. ? A cl s;a a r., et.aw ]s (=
s* FIN AL SAFETY ANALY5iS REPORT
- - : _ __F *
- FIGURE 2.5-111 ULTIMATE HEAT 51Nr. - SLCFE FRCTECTIOre
, DETAILS FOR IriTAKE CHW.EL
_ SLOFES HEAR PU"NOUSE 6 g e 6 --- ; - -- 6 A 4 6 i 3 l C_-_
MINIMIDI FACTOR CONDITION SOIL PARAMETERS OF SAFETY End of Construction C y=124pcf 4 =10' cu=585 psf 7.8 Steady State y=124pcf 4' =20* c' =400 psf 5.3 Steady State Plus y=124pcf t ' =20' c' =400 psf 3.5 SSE (p.12g) 4 % M AXIMUM NORMAL EL.1980.O' FINAL GRADE *\ FC6CE 9
\v 4 v E LJ 970.O' HEAT SINK} .g # G: ORivai3 FORCE S SSE FCRCE __
EL.19 60.0, ew.. ,- i i CFaicTicnAt RE SISTANCE
\ " " ' " "
ROCK SURFACE CRITICAL WEDGEJ o O' Mp.' _ .% - , M'_ _ _ --g SCALE IN FEET Rev. 6 10/81 WOLF CREEK GENERATING STATION UNIT NO. I FINAL SAFETY ANALYSIS REPORT FIGURE 2.5-112 ULTIMATE HEAT SIf1K - WEDGE ANALYSIS OF EXCAVATED SLOPES
- - _ - _ _ _ . _ - _ _ _ - - _. - - . _- ~ . - - - _ -
4 j SNUPPS-WC 1 l The two slopes (upper slope five horizontal to one vertical and lower slope three horizontal to one vertial) have been j analyzed for the following conditions: l a. Steady state, water in channel at Elevation 1,070 feet; i l b. Steady state with SSE of 0.12g;
- c. End of construction;
- d. End of construction with SSE of 0.12g; and
- e. Rapid drawdown.
' The BISHOP computer program was used.to investigate the stability of slopes for all the above design conditions (Figures 2.5-ll3a through h). The details of this program l are given in Section 3.12. The soil properties used in the l i analyses are given in Table 2.5-55. The shale was conser-vatively assumed to have the properties of residual clay for the stability analyses. i The effective stress method of analysis was used for evaluat-ing the steady state condition with and without an SSE of
, 0.12g. The minimum factors of safety obtained for the static
] case are 7.13 for the three horizontal to one vertical slope and 3.37 for the five horizontal to one vertical slope; the minimum factors of safety with SSE effects are found to be
; 3.37 and 1.86, respectively. These factors are higher than
- required, as indicated in Table 2.5-57.
The total stress method was used to analyze the end of con-struction conditions. The minimum factor of safety obtained i without slope is 3.14. SSE effect for the five horizontal to one vertical With SSE effect, the safety factors obtained
, are 3.88 and 1.74 for slopes three horizontal to one vertical and five horizontal to one vertical, and corresponding soil properties, respectively. For a three horizontal to one
- vertical slope, no analysis was performed for the static
, case, as the available factor of safety with the SSE effect ! is considerably higher than 1.5. 1 Consolidated undrained total stress parameters were used to evaluate the rapid drawdown condition. In this analysis, the draudown is assumed to be instantaneous, and no drainage i occurs during the time the water level is lowered. The min-imum factors of safety obtained for rapid drawdown are 5.69 for the three horizontal and to one vertical slopes. I The five horizontal to one vertical slope is not affected by rapid drawdoun in the ESWS Intake Channel from Elev. 1070 to
, 1065. Table 2.5-57 summarizes the computed and required
- factors of safety for the various cases analyzed. Figures
,' 2.5-ll3a through 2.5-113h show the critical slip circles and minimum factors of safety for the cases investigated. The l intake channel slopes are safe under all conditions consicered. I j 2.5-111 Rev. 6 10/01
TABLE 2.5-57 RESULTS OF SLOPE STABILITY ANALYSES FOR ESWS INTAKE CImNNEL EXCAVATED SLOPES Required Minimum Condition Slope 3:1 Slope 5:1 Factor of Safety Steady State 7.13 3.37 1.5 Steady State 3.37 1.86 1.2 plus SSE (0.12 g) F9 with SSE of 0.12 g Total Stress Analysis is 3.88 (higher than 3.14 1.5 1.5); therefore, no analysis is performed End of Construction 3.88 1.74 1.2 l @ plus SS;-: (0.12 g) g m Rapid Drawdown 5.69 *** 1.2 l y 8 . ***The 5:1 slope is not affected by rapid drawdown in the ESWS Intake Channel from elevation 1070 to 1065. Rev. 6 10/81
6 1 8 y/ N
, a0 R1 O T N I
2 O T I A O .T T P sI S E R L'S W EYO G S a NLC N I 3 NA ANE I S 1 TI Y 1 HAT A .L 5
- C YT A
ROA ETS ENN A 2 KI AL7 N
- ET Y I E
R TID NBA GN T U G IAE TT KUEF E I F SSS W 5 A SEE 6 E S EPP R OO 19 LL C L SS L F A E L IN 1 O F 3 W V" 2 t i L I o O S S G B 5 332 91 9 1 7 \ 5 5 9 2 1 h3 E '5 L 5 G NE AE P NG 0 0 S OE I C 2 S S T R E CW I R T F - t . k A R N A 0F ! 3 P f S
$P 0 o 3 o
L I O S E O C MC - 0 0 4 o S 8 7 s S IL L _ R TF O T __ WC 4 C P 4 o ~ T I N (T U
- 2 6
2 8 s i A F Y _ T . E F N _ R A 0 1 E L S _ T Y R A P A t U K - L t D C M R V a I O U . C m S R S M E M I E W R D U N I D M l l Y O 1 2 3 4 S 5 il n 0 7 9 1
- L E
0 o o o 0 o - 4 4 4 - s 7 e s, s 9, i _ .8e + 2 O'$ 5 h 1 U 4 I.Z 5 : O y j;r O $ .w
!. .' .ii I i
S!!L MMMETEKS SOIL Soll UNIT 57. COMESloN FRIC?l0N ANGLE DESC$tPT40N (y PCF C PSF $ DESTEE I DUMMY L ATER - - 2 wATE R 62 4 0 0 3 #ESIDUAL 12 4 400 23 4 ROCK ISO 5000 3S . p MINIMUM SAFETY FACTOR s 3.37 8 *
+
b a O E i 2034 00 - p 5 g 339- '3 52 .
, b w
g 2014 00 - 3 37 . E . 2
- r
, I
'"
- 00 ~
h 3 79 338 r SOIL i
#* 00 '
EL.19707 Y ! 55' , y Soll 3 h 3
\ SOfL 2 I
LEL. t965 lose 00 - Rev. 6 SOIL 4 10/81 WOLF CREEK GENERATING STATION 8834 00 - UNIT NO. I FINAL SAFETY ANALYSIS REPORT
- , FIGURE 2.5-113b
) ESWS INTAKE CHAN*4EL SLOPE STABILITY ANALYS!$, i 3:1 SLOPE STUJY STATE WITH SSE
- . - _. .- _ . . _ _..--_ -. - __ . - . . - . , , - _ _ . , .. . _ _ . - _ _ . - ~ . . _
} Soll PARA ut T E RS SOst DESCR PTtON UNIT a f. COME $lON F'.lC T ion ANGLE , /g PCF C P$F W DEGREE ! I DUM MY L AYER -- a waTE R 62 4 0 o e 's RtsicuAL #24 Ses so 4 RoCu 15 0 Sooo 35 h MINIMUM . SAFETY FACTOR e 3.88 a U g tom - b. El 390 403 . en 2 014 - 1 g O 388 5
- 2 a is,4 -
E 4 26 344 i _
/ \ = /
g7, SOIL - I
$ EL 1970 Y b - 5 5' ,
y d h_ \ SOIL- 2 3 EL.1955
~ /T W )?ffh SOIL. 4 Rev. 6 10/81 esw - WOLF CREEK GENEMTING STATION UNIT NO. I FINAL sarETv 4%atv;es REPORT FIGURE 2.5-il3c ESWS INTArE CHANNEL SLOPE STABILITY ANALYS!S, '
j 3:1 SLOPE END OF CONSTRUCTION WITH $$E l 4
.,I 1 , r,. .m. - -
Soll PAm awt i t R$ Scil DESCR T 308s ot h$lT Y COME tion FRICT108s ANsLE (T PCF C PSF W DEGREE I DUM W Y LArtR 0 0 0 2 R E SIDUAL 12 4 SOS to 3 ROCK ISO S000 SS MINIMUM SAFETY FACTOR = 5.69 ' 8
+
b 2 U . E A a E. o 5E
- w
! toss -
11 k* 1986 ( OF CHANNEL en s As [ eu. j 550FT. ! s es j iers - se 1970 9 SOIL 2 Soll I g
= ,
5
~ " wut, man SOIL 3 Rev. 6 10/81 WOLF CREEK GENERATING STATION i UNIT NO. I l FINAL SAFETY ANALY$15 REPORT -
Fl.'URE 2.5-113d ESWS INTAFE CHANNEL SLOFE STABillif ANALVS!$. 3:1 SLOFE RAPID DRAWDOW'e CONDIT10'4$ s e
. .. . - - . - . - = - .. _ -. . - - . . . . - - _ . - . - _ _ _ . _ . . - . . .
Y soet renauttens IU' sotL DEScaip tsom Ot N117 Y CoME S10N FmtCiroN ANGLE _m is FCF C FSF B OtGhti j
$ a marca are o o 2 Res1 Dual 12 4 400 30 b roc u g 3 -
iso sooo ss h
- s MINIM M SAFETY FACTOR s 3 37 5
g ross - g 3,39 s so S 3 37 ser 's es * , W tois - e l 2 E '
$ 1986 ~ ( OF CHANNEL e
l SSOFT. l s t975-1970 T T T Solt I 4 , SOIL 2 M\ MX//h\ l , g Soil 3
*.v. 6 !
10/81 WOLF CREEK GENERATING STATION UNIT NO. I FINAL SAFETY ANALYSIS REPORT FIGURE 2.5-113e E$WS INTAKE CHANNEL SLOPE STABILITY ANALYSIS, j 5:1 SLOPE STEADY STATE COND1110MS l .
, -- -- . . . - . . . - ~. - - - - . . - _-- - - . - . . - . . - . - - - . - ~ _ . ~ _. ~ . - - . ~ ~ .
Soil PA R Am( T E RS Soll DESCR TeoM DE NSIT Y CO NE SION F RIC Tion ANGLE
# 9 PC F C PSF S DE GRE E h a wartR 62 4 o o + 40o 2 RESIDUAL 82 4 to b s nocw iso sooo ss g
0 ross -
$ MINIMUM SAF ETY FACTOR I 86 .
A 3 apr ,s ee ross - ees E. E O is ser W b o j tois - e R 3 E e 5
;- ens- *t b 1986 w /
55 0 FT. ', e l nis - 1970 ~ Y T SOIL I
! SOIL 2 1
W/fg QQRf\ SOIL 3
. Rev. #
10/81 WOLF CREEK GENERATING STATION UNIT NO. I FINAL SAFETY ANALYS:S REPORT FIGURE 2.5-113f ESWS INTAFE CHANfiEL SLOFE STABILIT Y ANALYSIS. 5:1 510FE STEADY STATE WITH SSE , 4 l 3
6f8 E N S v/ S
. li0 O 7 I1 I 2 H T T A O .l T P $i t S E !
R LSN G EYO g '4 LI S N I I S 3 1 NAT TI Y 1 A 5 iM F. f R A . L 5 L YT ROA ETS ENMA 2 KIN N E ALO ET Y I R TIC 81B L GN T G U 1AF TO E KUE I SS W D m
*!I N E M F
5tN N E S ErE E A R 0 Lt L H C L Sr G C A o ._ mg F t ag F L IN S
- a 0 O O F NG 0 M 1 s i C(
t0 8 ( 8l W 5 n cWs g i a F t s a a T* p a N P 0F 0 51 S S 0 t E P 0 g I _ s
$ 0 O M S L OC S f m_ C o 4
1 S TF 3 T C a 1
$ P N
4 2 8 4 2 8 0 5 8 R T* fd i O .. O T C A F N Y O I L T I
. Y n A U
t E LP t i f D i c F T o 0n 4 I s A 5C e ? R S S C R D . M U MI N t I f o i 2 s M T. S t 0 5 W
/
5
/
s ' a ' s [/ e 2 3 e L I l l s O o r s f e S S s s e
/ /
T WN
/
6 0 8 7 91 9 1 s s 5 s n t o s o 7 s s e t t i es t
?8 + g8 EE 8 Oh= S:' eki ~ 5-} g
sonL PanAastitas ( l SolL SolL Of NSIT Y COMCSION F #'CT s04 ANGLE Ot scalp flCN PCF C psf g C(Gm(( ( 6 wAftn si e 0 0 m t pts 00AL sie ses so
,4 3 motu ISO 5000 SS E -
a m MINtWUM SAFETY FACTO 8t sI.74 o E 74 e es g toss - 0 74 8' r l' ar9 its 5 g tons - I 3 4 : e') 2 195 - U . 5 198 ( OF CHANNEL
$w e 55.0 FT. l d S vers - .
1970 T T T h 3 SOIL 1 Soll 2 , I sess D d' SOIL 3 Pev. 6 10/81 WOLF CREEK GENERATING STATION UNIT NO. I FINAL SAFETT ANALYSIS REPORT FIGURE 2.5-113h ESWS INTAKE CHANNIL SLOFE STABILITY ANALYSIS. 5:1 SLOFE RAPID DRAWDOW4 CONDITIONS
(- SNUPPS-WC Q241.11 Show the critical slip circle and the correspond-(Figure ing minimum factor of safe ty for the cases inves-2.5-115) tigated in the stability analyses presented on Figure 2.5-115. Also, correct Detail A that shows the fine filter layer between the coarse filter layer and the riprap layer. R241.11 Figures 2.5-115B through 2.5-115d show the cri ~ tical slip circles and Factors of Safety for the cases investigated. Section 2.5.6.5.1.2 has been revised to include a reference to these figures. Detail A on Figure 2.5-115 (this is now Figure 2.5-115a) has been corrected. Q241.12 Provide a description of the monitoring sys-(2.5.6.8.4) tem that is being used to measure the move-ments of the Ulis dam. Summarize the data collected to date and compare the results with the estimated movements of the Ulis dam. Comment on the results of this comparison and its safety implication. R241.12 The monitoring system that is being used to mea-sure horizontal and vertical movements of the UlIS dam consists of concrete piers located at Stations
-2+00, 2+00, 4+00, 5+50, 7+00, 8+50, 10+00 and 12+00 along the centerline at the dam crest.
These piers are 3 feet in diameter and are embed-ded in the embankment 5 feet and extend 1 foot above the riprap. A survey maker is embedded in the center of each pier. A comparison marker con-sisting of a 3 inch diameter p$pe with a survey marker attached that extends up to elevation 1091 feet is also provided for making measurements when the piers become submerged. These survey monuments were installed at comple-1 tion of riprap placement on the UHS dam and ini-tial eleva tions were measured on May 20, 1980 and initial coordinate locations were established by i trilateration techniques from reference monuments on May 23, 1980. Vertical settlement readings have been taken month-ly and as of July 10, 1981, the maximum vertical settlement is 0.72 inches at Station 4+00. The height of dam embankment is the greatest at this location (Figure 2.5-116) and the observed settle-l ment is well within the estimated sett1 ment of 1.35 inches for an embankment height of 17 feet and has no influence on the safety of the UliS dam. i Rev. 6 241-11 10/81
Am.
' mer =~ -#
5 2 E .
.= = e~. 2 a /
1
~ E . Q~
s 1
~ EY$ $ el t f 5- m y *E: y " ** h % ) -
e " 5"5 e a w a r _
- - ~l 5-3 2
4 I b/ o E e
// l n 3b e/
3 4 a 4 s
/ 'f n I I
I
%/ %, to '
- ':I e
i y 5 s t
- w Y; q
*>.,/'s g l u 2 O % a c
d' e I R V u 5
?
g g c 4 s
- b. i .I_
.e ' z hj- - - -- J % 4 I U
- 1
\ { \ 7 p N .O N s g
e \q- n,
# N \ :>q \
N g [-
< g e a 5 E " = J 6 I
- a u
e c w, as _ N
=
Q 7 an t k a i e i- t
?E j o
- 4 a$ -
5
.( L Nb "o, ei 8 l.J , , 1 3 t 9f 4 . .a f (
1p h
.J-hl L
SNUPPS-WC Minimum Required Condition Safety Factor
- 4. End of construction plus horizontal carthquake force (0.06 9) 1.0
- 5. Steady state seepage with cooling lake at Elevation 1087 with horizontal earthquake force (0.06 9) 1.0 As noted above, the steady-state cooling lake elevation was taken as 1,087 feet, and the rapid drawdown condition water icvel was taken down to Elevation 1,030 feet. For the steady-state seepage condition, an estimate for the phreatic line waa based on a flow net construction.
The computer program SLOPE was used for evaluating the safety factors for the main dam slopes. The details of SLOPE program are described in Section 3.12. For static stability analysis,- the program SLOPE uses the simplified Bishop method. In this method, the failure surface is assumed to be an arc of a circle. The pore pressures developed in the embankment during construction are also considered in the analyses. The safety factor is defined as the ratio of the moment of the available resisting forces to the moment tending to cause sliding. > To evaluate the effect of an earthquake loading on the stability of slopes and emoankments, a pseudo-static force is used in the computer program SLOPE to represent the deferm-ation effects of earthquake motions. The static force is applied to a slope mass bounded by the slope profile and the assumed failure surface. The carthquake force for a slice is equivalent to the slope mass of that slice times a percent of the acceleration of gravity. Slope mass is calcu-lated using the total unit weights, and does not take into l account any pore pressure effects. The earthquake force for l each slice is applied horizontally through the center of gravity of that slice. r ! In the analysis, an earthquake force equivalent to 0.06g corresponding to the OBE was used to determine the stability of the main dam. l The safety factors obtained from the stability analyses are l greater than the minimums described above and are given in Table 2.5-83. Figures 2.5-ll5b through 2.5-115d show the critical slip circles for the cases-investigated. l l Riprap and filter layers are placed on the upstream slopes and a rock toe is placed on the downstream end of the dam to provide protection against tailwater erosion. i ," 2.5-258 Rev. 6 10/81 L
TABLE 2.5-83 RESULTS OF SLOPE STABILITY ANALYSIS FOR MAIN DAM Computed Minimum Required Condition Factor of Safety Factor of Safety End of construction 1.52 1.4 l Steady state flow, cooling 1.70 1.5 lake at El. 1,087 ft Sudden drawdown, El. 1,087 1.20 1.2 m ft to El. 1,030 ft $ m End of construction plus 1.21 1.0 $ horizontal earthquake force d (0.06 g) O Steady seepage with cooling 1.38 1.0 lake at El. 1,087 with horizontal earthquake force (0.06 g) Rev. 6 10/81
.g vj N io O 7 - Rj I T 2 A o .
3 T r $ S r l L a $ l G yN N i s LO o b S 5 AI I TI s 1 fit y 1 AC A .t - ROA 5 MYRU DTT ENNA 2 IS N NLN ET E R IIO ABC 8 GMvT U G MA TF KUtr E I F SO E A ED S PN E R OE L C t L S G F a Nt N At L hs a o 2 0 5 2 5 O F ce aD 5 3 1 W
$ T 8 R Cp s E
I 2 T W F E1 E B = M O E a R N T B A P 0t t o 0 o O UO s s 0 o L Ee M o, o 41 o s H H f O Oc , T T I S C WWI R O R Y t O T Tc o T C I S e , o 0 C A N s 4 5 A
, , e 8 e F F t
C 4 Y Y E T T D y E E I F F S N o N A A ' o E A S S E s 7 a M a j aL ec D D mfot f c o NN U U A L R 5 s m MM C n N t S E o c A S M 1 N I MI D . MM l l l L r 3 o 0 e 2 e S
'B s 2
k 0 4 0 - 0 L 2 , t
) - 0 4 5 6
4 D t l ( M R
)
4 9 2, D, E B'
'O IE '
( 1
) g 4 5 N '
9 0 l
)1 E 2
6
'7' 1 2 G TO '
0 ( 1 2
/ - 4r E 0o FC 5
1
)
9 -- z
) (3- .- #
m' i 6 2 6 4 6 6 5 '6 ) 2 8 0 1 1 W 5 ' 1 ( "
~
r g o6 f0 e0 r a f
- s. o sE e
mB nO . e r n ae pt nd io r sc e E uE 3 lob
- T L O I
O N 8V. O S o 0 o 0 c 0 t 0 i r 0 e t 0 1 2 m68** h<"gU $=oEn.@a[gul E 5j5 f , I1!1i ;? jj,' 4 i
6 1 8
. v/
20 N R1 O I T T - A O T P 5 E 1S S SN R G N S I 5 c YO LI AT I S - NI T1 Y 11 AD L A . L - M N 5 AYO
= ROA DTC ENN A 2 /
I N NLE EIT Y RJ E IIT
- ABA GNT G MAT TS KUEF E
I F S Y 8 A ED 8 E S PA E 9 R OE LT L G C L SS Nt F A N At a e L I s I o s O F Ns i I t s
- ot io T 0 W
s 7 n r
- s H
18 R f F e3 t w El a Ba
- N OE A
P or o o TB t s s o o t iP e o o UO H t t s O oc i o HH s c TT I I f WW Yr RR Te o OO I Sp r o s TT N y t I s CC t s ' e e A 4 o( FF YY TT EE FF w D " AA 3 o E
- SS s
J A T a Nio t c o MM UU U 3 S s p K c " MW C s
" M t i t NN O o I MM I
R
" i I 3 a 4 - N l 'n L t I O - S F% o c
o t L E 3 s
)
4 1 2 5 / 4 i/ 1 ( / - ll
)
9
, 0 4' $
1 2 ( 9 , 9 . 4 9 : 1 7 I = 7, ) =
) 6 8 2 7 14 3 "
(
)
L ( 4 ? 3 ' 4; r g 1 ' 8 (52, 2 / o6 f0 8 ' e0 8 1 r 1 af st o
- Nbr J' eB E
ew O. r n ao pti d sco e
- E uE lab T VO O
N l.
\t a . o s
o o o s o n g o s o i t i t o s ,, s t i i a8 5 gg 1F.< E$5 53 a ?g5_ $ 5 r j1 j ij ,4 1!
- a;' .k ;' ,' ;l . !j , ,; !i i i# i1 1l l
6 1 8
- o/
e0 N P1 O I T T R - A O T P $
- S E l R $
Y G $ d L l N i 5 AP: I S 1 NW O3 i TI Y 1 AO S A .L - M D AYW
/ ROA ENNA 5
2 DTA IR 2
/ N ET Y I
E P NLD II ABD GN T G U MAI TP
, KUEF I F
SA R
. E A E ' E S P - R O L
C L $ F A 4 L IN O F 6 6 7 1
- 3 6
1 N# W 9 1 6 2 3 y2 1
. 1 3
i K C O R 4 l
'e L I
O 4 A S Rl - IL P s. 2 - PiOb I RS e O S
/
_ E L G o o o Nr r Ar o a s r . s r t - Ns e 3 a s 3 or i o S T . R Ce 8 E R T F - E 1 W / A R N / A P or o / l
$s o o /
- L Ee o r o . r o o 0 M s 2 / o' S o 'c 1 C s - R
- O 2 Y t T Tc C -
Ie S i o o o s A ^ r s . s i F ^ N , i e . e e Y o( f T - E F A N N S " o S i
- l E a - e M T' =
t Pf J m n m U ' f C. o e m M oI 't o , o e SRC 'c n I N
" n <, i n '
I S a E s
- M o
A
- a , 4 s o
o e o o o o o si o s o 5 - r i r o r o 9 9 m r 1 1 8* + fN ,b f a 2gO ig
%A~ 5i-
SNUPPS-WC R241.12 (continued) As of the February 16, 1981 (last readings avail-able) measurement of horizontal movement, all of the movements were within 1.57 inches of their initial location as established on May 23, 1980.
, The magnitudes of the movements are within the expected survey accuracy and all or a portion of the movement could be attributed to this. Even if the measured movements have actually occurred, their magnitudes are not large and have no influ-ence on the safe ty implication of the UHS dam.
Q241.13 Provide a summary of the results of field density and moisture content tests performed in connection with quality control during construction of the UHS dam. Present the results as a statistical distribution plot or by other convenient method (s) to verify that the specified compaction has been attained. Compare the compacted in-situ density and mois tu re content of the embankment fill with those of the test specimens from which the design i strength parameters have been determined by labora-tory testing. Based on the above comparison, com-ment on the validity cf the physical and strength parameters used in the design.
, R241.13 The summary of the field density tests are shown on Figures 241.13-1 and 241.13-2. Based on the field tests, 16 of the . 95 field tests failed
- to meet the compaction criteria by 1 to 4 percent
- compaction. However, all failed areas were recom-pacted, or the failing material removed and replaced. Moisture content data are summarized on Figure 241.13-4.
Triaxial tests on six samples obtained from three different boreholes drilled in the UHS-embankment were also pe rfo rmed . The test results are shown on Figure 241.13-3 and Table 241.13-1. As can be seen, all tests yielded strengths higher than the design strength. Based on this information, the j strength parameters used in the design are valid. l Rev. 6 l 241-12 10/81 l i L 1
35 j 30-25-20-U 5 8 su. 15 - tutBER OF TESTS = 195 I 10-5- O , , , , , 85 90 95 800 105 IIO 3 PERCENT COMPACTION o NOTES: o $ 1. RETESTS ON AREAS VHERE TESTS DID g NOT fiEET COMPACTION CRITERI A ARE WOLF CREEK GENERATING STATION inctuot0 :N THESE rt0TS. s UNIT NO. I
- 2. MININUM COMPACTION 15 ASTH D-698 FINAL SAFETY ANALYSIS REPORT FIGURE 241,13-1 UHS DN4 - EARTH FILL EMBANKMENT STATISTICAL DISTRIBUTION PLOT
t MATERI AL IDENTIFICATION NO. LWRD-22 80% RELATIVE DiNSITY = 117 pcf 6-4_ NUMBER OF TESTS = 24 b S E 2- - - - b N O , , , , i i 105 110 !!5 120 125 130 DRY DENSITY (pcf) NOTES-
- 1. RETESTS ON AREAS WHERE TESTS DID NOT NECT COMPACTION CRITERI A ARE INCLUDED IN THIS PLOT.
E 4 8 A 0 WOLF CREEK GENERATING STATION UNIT NO.1 FINAL SAFETY AN ALYSIS REPORT FIGURE 21 .13-2 UHS DAM - FINE I:lPRAP BEDDING STATISTICAL DISTRIBUTION PLOT GdkJ.' t - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - _
2500 4 l 0 j 2006 N 1500 4 2, 02 y a g b , 2 O' .: b e ' i 8000 A: DESIGN ENVELOPE
.s ( c' - 265 psf. $ = 20 , Td - 118 pcf) u 500 f f'-
.a t
/ '; O S00 1000 1500 2000 2500 3000 3500 4000 F, + F 3(PSF) i ,l KEY:
r i 3 - INDICATES TEST NUMBER STRESS CONDITIONS AT: A 0% STRAIN O MAX c',- &3 a MAX F/E 3 S 4 8 A l 0 WOLF CREEK GENERATING STATION
- UNIT NO.1 FINAL SAFETY ANALYSIS REPORT FIGURE 241.13-3 CONSOLIDATED-UNDRAINED TRIAXIAL TEST RESULTS ULTIMATE HEAT SINK DAM
_ . - _ - _ _ _ _ _ _ _ _ _ . . _ _ - - _ _ . . _ . . _ _ _ . _ _ - - - - _ _ . _~
v e 50-NUMBER OF TESTS = 195 40-30 - _ o z 8 m _. 20 - _ 10 - _ l O i i i i 3
'O -5 0 5 10 DEVIATION FROM OPTIMUM MolSTURE CONTENT, %
o
?
8 s
- NOTES:
- 0 WOLF CREEK GENERATING STATION s i. RETESTS ON AREAS VHERE TESTS DID NOT MEE CM ON CRITERIA ARE INCLUCED UNIT NO.1 FIGURE 241.13-4 UHS DNi STATIST! CAL DISTRIB'JTION PLOT
V TABLE 241.13-1
SUMMARY
OF CONSOLIDATED UNDRAINED TRIAXIAL T"3T MTA ON UllS EMBANIOtENT MAfERIAL Im .. . _ (T) (D (D @_ (5) (M) O O O O O O O O
-- cons-1 custs s ceg s -)_ c u g s -2._ c us.-3. cuys-3_ ...... 2. 7 2 _ q ~-'- .$ 4 "i". . 2 9 ,~~ 5 Th ,
l'n 3_ 256 i 61
~~9 t% o . -s _l H tc 3 l s 3_ _ l e -r _. I'? 1 23 4 _
i r. *o ill 5 111 7 __jg7 9 I t ?,J_ ,,, IcGl 10 l [_ ,_
** _k M _,,,,, c56 c-(> C, 5 , _,,,,C $ '} _._ c .$ 9 c 5') _ -
- O'M N 4A 0% DM- 3%L _LD
-' 17 c 21J_ __232._ ._li 1__ 217 _ ___2 7 1 . r. o 12c l tit 7_ _1g2 !!4 8 its G Icc 2.
0 69
. c 4 0,___ c S c_ c. 5 9 _e.r .l 6 c CQ 48 4 C, 6 C, G4 53 6 f. ' :0.' /. . c e c2. c t c2. c. e.c 2. e e c t. c c c2. c col ; .c .c ; .c c .c ,c .c .c .c .c .c .c c .c .c ; .c 5. . s c. c. c. ,.c c. c. c. s . c. s . , . . . . c c 'c .
c s,e c , , .c c s,c c ,c,. c ~.' I c c sc c %.
' e sc c sc c ac c s,c .' i. .! i . .i i. i i i. . .i i .
- i i
n .i i i
. .i i . .i i i
i i
. .i .i .i .i - IK 851 IS L 5 3 l+ 3 5 l_ 15 7.. 36, 66 26- t c7_K . ;d; 'i-fu 32t 31 442.. Mc D3...! i? 445 Its tu. .1% . 323. 65
- ' . ~ 574. 576. 81 ? 1 !5.72 252 185 2. list. It s 2. I's 71 1111 574 5 76 _
! ' '. . 13n !f!c.. 1!52. 2537 ?!42 !n? f3R Mit 2:15 23M list .!74 7 '- ' Mtt life n14 44'l 33// Mc3 'c14 4533 4tV 41c5 N51 2H5 i y "- lG6 ,7c5 1576 hu /cR!.129 2416 (q1_ g) 3, tg7 t:3:_ ygs , t ' e '.' 2?f1 12 3 L 34(S 1!af 7233 2cp 151125 f 3 3tS4 3c3c [1 t.7 l461 _
5E MA.-Lc L_S 2 t :57 117_ _41 1 !!3.t . StL .'13 4 41?_ A75 w- iM.14e -c43 c33 ._c43 M c- 4 o34 c 2t t4c c It o-17 3' il 6_ .15'tML-.5 3 . . !f 3J S 2. 65 L36 46 _26 [p'). 21., __ __
. IC.lb. I h . -15. #1 is c 433 15f. 405.._ l c 3. . 11 3 _23_ an .C5
- 4 31.!t_ (17.1 :(5 L (2!c .. S 1,5 475 l_ 1315 .93 6 45 3...Iol
< - 3, 3331 H tc. 3I52. 25c7 2 r 61. Iss? -(gL 3yst If15 2)B 12 U 1741 - #~ n75 .!414 9 25_3557 3171 2 011 5331 Wii 3149 320'! 2411 tg7o e f - ',' I46 . 75 5. . 15 76 1453 .t??L.911 243t. [41 p 13t3 Il61 f tSI 115. ! . I" ' .' 17G L7 !'1. 1$Pl 2)t3 2pt17M 1<1tg .17 c5 ZG'I 2iD !1SL136 ~ Sn 561 :Ict 92L -5 L 30. .41L !!33 S47 936 dl9 475. _ .1,://ib e4 c 40 4c3 t 33 m il ctt .c H . .o34 c 11 C4C 0 11.. o 17.
w", 2&sbc1 2 r._.14. 12ir in Jtt. _ .tJ_3 3c_35_ lE3_J21 u P4 P. bJea C4 4 99 e . I
SNUPPS-WC Q241.14 Identify the local and federal agencies that have regulatory authority over the main dam, and the license or permit number (s); provide a brief description of the safety inspection program required and confirm your commitment to meet these requirements. R241.14 The following description from Section 12.1.2.3 of the Wolf Croek Environmental Report (OLS) describes regulatory authority over the main dam: In compliance with the provisions of Kansas statutes KSA 82a-301 to 305 " regulating the placing of dams and other obstructions in streams and the making of changes in the course, current or cross-section of streams within the state .. " KG&E has submitted appropriate applications and has received permits for all applicable structures for the construction of WCGS. The Division of Water Resources (Kansas De-partment of Agriculture) is responsible for the inspection of various structures In accordance with the provisions of the Nation-al Dam Safety Act. Representatives of the Division of Water Resources have been con-tacted to inspect the foundations of the Wolf Creek cooling lake dam and related structures af ter excavation was completed. Approval for each area excavated was granted before the construction and backfilling of the structure was undertaken. The initial safety inspection of the cooling lake main dam will be performed by the Kansas Division of Water , sources and/or The U.S. Army Corps of Enginee rs following filling of the cooling lake. However, KG&E has initiated a periodic inspection program including an initial completion inspection, and a periodic inspection program to be performed during and following filling of the cooling lake. This inspection program will include those facil-ities required by Regulatory Guide 1.127 and also the main dam embankment and the saddle dams. The inspection program will include: a complete visual inspection of the dam and the-erosion pro-tection (riprap and vegetative cover); inspection of the downstream area for seepage, wet areas and boils; periodic monitoring of vertical and hori-zontal movements; and observation of the water Rev. 6 241-13 10/81 L
SNUPPS-WC R241.14 (continued) levels in the installed piezometers. The fre-quency of the inspection is monthly during the filling of the cooling lake. After filling and during the inservice period, all performance instrumentation will be monitored monthly except for the horizontal movement surveys which will be performed on an annual basis. The visual inspec-tion will be performed annually for the first four years, every two years for the next four years, and every five years thereafter. In addition, complete inspections will be performed following drawdown in excess of five feet and refilling to normal pool elevation. Rev. 6 241-14 10/81 L}}