ML20195B846

From kanterella
Jump to navigation Jump to search
Forwards Responses to Actions Items Developed at 880719 Meeting Re Snubber Reduction Program & Application of Direct Generation Response Spectra & Rev 0 to Version 1.1, Equipment Dynamic Analysis Software Package:Theory..
ML20195B846
Person / Time
Site: Catawba  Duke Energy icon.png
Issue date: 09/16/1988
From: Tucker H
DUKE POWER CO.
To:
NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM)
Shared Package
ML20195B852 List:
References
NUDOCS 8811020234
Download: ML20195B846 (69)


Text

..

Il I Duke huer Compa:7  !!n B Tose IN Vwe Preside t Charlour, N C 28242 3gg, ,

(704)373 4531 h DUKEPOWER September 16, 1988 1

nne =vtt control Desk.

U. S. Nuclear Regulatory Otminissicn Washington, D. C. 20555 1

l

Subject:

Catawba Ntclear Station '

Docket tk>e. 50-413 and 50-414 Direct Generation Response S g t.re i

Gentiment A meeting was held on Utily 19, 1988 in the NBC's offices to discuss our i smhr reducticm g%=u and the application of Direct reneration Response i Spectra (D:sRS). As a Insult of the meeting, 8 action it'm were developed. '

Attached are our respcmses to the action itms.

It is recognized this methodology represents a significant charge in the I

desicp bases of Catawba, therefore NBC rcview an1 approval of the use of PGRS was requested in nf February 24,' 1988 letter. However, it is our intentien to 4 DGRS to reduce the ntmber of snubbers durirg the Unit I refueling cuta93

.eruch is carrently planned to start Noverrber 23, 1988. 'Iberefore, it is requested if approval can not be given to use DGRS generically cn all systes at Catmiba, interim appmtal should be given before Novmber 1,1988 to '.d reaval of the following nurber of snnbhars fItin the systes indicatedt Snnhhars to be raroved Snubbers to be ru oved System ,

frtn Unit 3 fr m Unit 2 C+ cut Cooling (RC) 16 Norm Auxiliary Feedwater (C7J 87 101 Safety Injection (NI) 12 None Cherdnal ani Volune  !

8 Norw Cornf.d (NV) 43 26 Desidual Heat R e avsl Main Steam Supply to Auxiliary  ;

Equipnent (SA) 6 Nono  ;

Main Stem Vent to 14 Atmosphere (SV) 14 7

8811020234 880916

  • I(

PDR ADOCK 05000413 P PDC

]

i U. S. Nuclear Regulatory Ocunission September 16, 1988 Page Two

'Ihe results of action item 2 should be available before Oce r 3, 1988. We will send the results as soon as possible.  :

r Very truly yours,

/

W i

Hal B. Tucker PGL/

Attachnent .

xc: (w/ attactnents except for NRSP 'Iheory and Verification Manual and m  !

Docunent Manual) .

Dr. J. Nelson Grace, Regional Adninistrator l U. S. Nuclear Regulatory Otzmission  !

Region II 101 krietta Street, NW, Suite 2900 -

Atlanta, Georgia 30323  ;

Mr. W. T. Orders  !

NPC Resident Inspector i Catawba Nuclear Station r

k 6

l i

i

_ _ _ _ _ _ _ - _ - _ _ _ _ _ _ - - - - ~ - - _ - _ - _ _ _ _ _ _ _ _ _ __

Evaluate the piping analysis results (loads and stresses) using the '

NRC site specific spectra, based on the Wolf Creek and Perry analyses i and the Catawba design spectra (Newmark spectra anchored at .15g peak <

ground acceleration) generated with variab1w damping and the E0 ASP Code.

Response

An evaluation of four typical piping analysis problems was performed using the NRC site specific spectra, based on the Wolf Creek and Perry analyses and the Catawba design spectra (Newmark spectrr anchored at

.15g peak ground accoleration) generated with variable .iamping and the E0 ASP Code.

The systems included in this evaluation are as follows:

CA - Auxiliary Feedwater KC - Component Cooling ND - Residual Heat Removal As a typical example Figure 1 shows that the site specific spectral is approximately 20% higher than the Catawba design spectra in the range of 3 to 15 Hz. The four piping analysis problems evaluated averaged 40% of the modes in the 3 to 15 Hz range.

The results of the evaluation as shown in Table 1 demonstrate that the differences in loads and stresses are typically within 10%.

Therefore the use of site-specific spectra has no significant impact on the Catawba piping analysis and support design.

la

)

E 0 T

I o N. _

Z.o- ot T_o $$ ~

o o . 9.

0 _

S . t 1

/ . e 2 . i S .

R L

A t 0

0 O ,

A c- t

( EU '5 PO P

OI  %

P a

LV M . EI AS t A VD dJ

~

D NN EI u a o c

E ,

+ x A4s T ti 2

AL B Ae CD t RA -

p. o I

TR tI c

C AV . t I

S D

. t E E .

t N

PB .

E t 0 O O O 5C S ,

S U. '

N t

'o. E .

H x4 S 44 t

- f EE .

Kz t N i S=S 0 I

N=R I , t 2

'o. O D

O0R+ P I m P0 . a R

o S6N 5O oE t

s E VT i

I

. ' 4 l

k~

e a 'o. P F REA .

e a

LR .

EE . t s

o D GEL ,

t'o.

EOC .

t LC P BA .

O YD t

LRO AI t 2

0 EI R ,

'3 VLE I P .

t NXU6 0 1

EA8 _

o m1o $ E'  %

o $ , o. E W . Zo.e Z . o. 1 3.JUu1

.L L O*r t

f TABLE 1 3

Number of Number Modes in Load

  • Stress problem of Modes- 3-15 Hz Ranae Difference Difference  !

KCA 30 11 6% 9% z CAD 109 4L Id% 9%  :

NDN 57 22 5% 3%

! NDA 94 38 6% 5% [

1 I i j 72 30 9% 7%

l

  • The support loads generated by the site specific and the Catawba design ,

I spectra using variable damping and the EDASP Code were reviewed with the i actual support designs. The support designs have been found adequate i j to support the new loads. l l l I

l 2

. t

! I I l l l J i

l i L i

I l J l l

1 I l l,

1 1

< r

Action item:

  • A comparison wili be made of results from the direct generation method, time history method and actual earthquake records. The Perry containment will be considered as a representative structure if the necessary recorded seismic event results for the comparison are available.

Response

We have just received information on the Perry containment stick model.

We will submit our results as soon as we are able.

Action item:

The power spectral density (PSD) will be compared from the Catawba time histories to the requirements in the Standard Review Plan 3.7.1, proposed revision 2. If the PSD's are within SRP 3.7.1 acceptance criteria, comparison spectra will be generated between the time history method and direct generation method. In the event that the PSD's are not within the acceptance criteria (sufficient high frequency energy content) a time history will be provided that meets the acceptance criteria to be used in the comparison.

Response

Two time histories were used for this comparisons. The first time history was developed for Duke Power's Cherokee and Perkins projects.

This earthquake envelopes the RG 1.60 spectra and includes significant high frecuency content (Figure titled "P81 Earthquake used for -

Comparisons"). The second time history was recorded during an actual earthquake. It does not envelop RG 1.60 but it has a high frequency peak centered at 20 Hz. (Figure titled "Alternate Earthouake used for Comoarisons"). Within our time constraints, we were not able to write or acquire the software necessary to compute a power spectra directly from a time history; therefore we could not determine if either of these two time histories were acceptable under SRP 3.7.1, proposed revision 2. We are confident that comparisons using these two earthquakes would adecuately address concerns about the high frequency performance of EDASP. ,

Response spectra were computed at 0.5% and 5.0% damping for six floor elevations in the Catawba reactor building using STRVOL time history methods and E0 ASP power spectra methods. The EDASP P50s were estimated from the P81 spectra and the Alternate spectra at 5.0% damping. The following response spectra plots show the results.

Comparisons using the P81 earthquake show that the EDASP spectra are consistent with the time history spectra. In general, the EDASP spectra run along the center of the time history spectra in the low frequency range (0.2 Hz. - 5.0 H2.) and exceed the time history spectra in the high frecuency range ( > 5.0 Hz.). Tabulated comparisons are provided for 0.5% and 5.0% damped spectra at elevations 628+8 and 713+1. Comparisons using the Alternate earthquake show that the EDASP spectra consistently meet or exceed the time history spectra at a most points over the entire frequency range.

P81 Earthquake used for Comparisons psi Spectra. Reg Guide 1.60 Spectra. E Cateube Site Specific Spectsa 10.0 '

' ' ~

iq

_ IIII IIII File : P81EQ.rs Desping .05

. 1.00 -

m -

~

__ File : RG160.rs

,^^^ Damping .05 5 .

5 L

e

  • e ss o

J.

/ /

./ '--

~ .

E 0.10 l  !

/ =

File : CSITE.rs Damping .05 Pc Preerse RE.fL.or 0.011 - - a till - n 1111 . . . i t il

. 0.10 1.00 10.0 100.0 Frerguency (Hz.)

, - , , . - - - , , _.---.,a - . , -- ,, ,-. ,. ..---.---..- --,., _ .--, . ,,, , - - - , ~ . . - ,-. , - ~ , - - - - . , - - - , - - _ . - . _ - _ _ _ . _ - - _ . _

P81 Earthquake used for Comparisons PSD Computed from the 5.0% Desped Response Spectra 1.00E-03 - = -

11ll a lll ingl File : P81EQ50P.RS Duration - 15 sec.

Prob. Exceed. .15 7

N QN 7.50E-04 i b -

l 3 e

i E 5.00E-04 l 1 o e , \

ho - , -

! e I ai t a.50s-04 i

<1 g

z 1 y o

i

)

IIll

)f I!IN- - i fill

~-

"I***" I 7#11#

l 0.00 - - i - - i O.10 1.00 10.0 100.0 Frequency (Hz.)

Time History vs PSD Techniques (P81 Earthquake)

Reactor Building Elevation 562+0 10.0 _-

' = '

= -

- =

IIII 1111 I lig File : TH0iP81.rs Damping .005 as rn- smer. n maary 1.00 L 1 - I

, _ File : P0iP81.rs g t '

Damping .005 g - 4 '

j '

as tro. anase eso e - -

\ -

s. ,' -

e -

o M 0.10 E/

? _

PC Program AS_ PLOT 0.01 - a iIll - a t ill - - a f ill 0.10 1.00 10.0 100.0 Frequency (Hz.)

Time History vs PSD Techniques (P81 Earthquake)

Reactor Building Elevation 562+0 10.0 '

' s '

' s III] III[ l ijg l

File : TH0iP81.rs Damping = .05

~

~

RS fra STREL Time Mistory i n j ."

e 1.00 - _

~

2 -

~

File : P0iP81.rs i

WI Damping .05 i ,

@ v 4 --, _

. astr. onse m 1

e _

f k.

o i

o i

< 0.10 _ _

C Z

{

' Pc Progres R5_PLDT Howielen 2

- = 1Ill - = Ili.st -

  • IIII

'l 0.01 - - -

0.10 1.00 10.0 100.0 l

Frequency (Hz.)

Time History vs PSD Techniques (P81 Earthquake)

Reactor Building Elevation 595+4 10.0 -

- i aq

'=

ll

=

iIII File : TH02P81.rs Damping .005

~

g RS fra STML Time Nistory

\, i\ .

H ,- ' '

." i.00 b ' '

h t _

i o - 3 File : P02P81.rs l

(

~

~

'"Ai Damping .005 E -

4 .

as rs = c ase eso c.

,/ -

u M 0.10 =

=/_

Pc progree ns_PLDT l *"

0.01 - - a t ill - a t ill - - = IIII 0.10 1.00 10.0 100.0 Frequency (Hz.)

1 - - _ _ _ . _ - _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -

Time History vs PSJ Techniques (P81 Earthquake)

Reactor Building Elevation 595+4 10.0 -

- = -

- =

3111 IIgg 1g File : TH02P81.rs Damping .05

= -

R5 frtus SNWL Tim Nistory

]

~ ,

." i.00 "'

~

Z Z ____ File : P02P81.rs l c

/ ~

Damping .05 l e

hM '

'v,, -

ks fr- m er eso l u

M 0.10

__ =

Pc Preeram as_Pt.or 0.01 - * = IllI - - a illI - - ' ' llI 0.10 1.00 10.0 100.0 Frequency (Hz .)

Time History vs PSD Techniques (P81 Earthquake)

Reactor Building Elevation 628+8 10.0 --i1 s ig)

- =

illl

- i '

ig g

File : TH03P81.rs

Damping .005 as tru. s m ss. t w mistory

, s e.

- [

. 1.00 -

l l -

= -- ,

s, File : P03P81.rs c

Damping .005 as rn- unst eso )

h.c.

j ','

f, ,'

1 o

i E 0.10 1

~~

/ 5 _

PC Program RS_ PLOT

-

  • Ill! - a IllI - - ' 'III 0.01 - -

0.10 1.00 10.0 100.0 Frequency (Hz.)

Time History vs PSD Techniques (P81 Earthquake)

Ronctor' Building Elevation 62S+8 10.0 * -

s igl

- i' =

III] i gji File : TH03P81.rs Damping .05

~ ~

R$ frte sTamt Time mistory er-%

. 1.00 I e _ _

~

c

-E

/V 's ,'

3 File : P03P81.rs Damping .05

.S N

as in mese eso u

l -

M 0.10

~

Pc Progres RS_PLDT 0.01 - - a t ill - a t ill - a t ill 0.10 1.00 10.0 100.0 Frequency (Hz.)

Time History vs PSD Techniques (P81 Ear thquake)

Reactor Building Elevation 662M 10.0 ' ' ' ' '

I Fit III] r.I I II File : TH04P81.rs Damping .005 u rna s a mt. % n w y

?,

g ,

- 1.00 .

m . -

. 3

~

{ '

, ,_/ ' . * . , 3 File : PO4P81.rs Damping .005

g. _2 0 - -

as rn. nase eso

e. .

O -

e ,

u .

< 0.10 -

=/

E _

Pc Progres RE_FLOT 0.01 - a I t il - - a iIll - - a iIII 0.10 1.00 10.0 100.0 Frequency (Hz.)

Time History vs PSD Techniques (P81 Earthquake)

Reactor Building Elevation 662+0 10.0

3M

~

,ggg

- i sig[

~

File : TH04P81.rs Damping .05 R5 fnm S!tlEL Time timtory m

'e = -

~

- s '

C ____ File : PO4P81.rs E

d -_ __

~

Damping .05 as rn. mese eso

~

e e

u M ~

e 0.10

= = -

. - t PC Pr*ser*ee RS fLOT Revielen 2 O.01 - ' 1 t il - - a iII! ^ **

g,og 10.0 100.0

, , . . - =a

Time History vs PSD Techniques (P81 Earthquake)

Reactor Building Elevation 691+2 10.0 -

iggg C

Ill 3% -

_ _ , File : TH05P81.rs Damping .005

\ ~_ nstemsmstw m s f-

.* 1.00 { '

.A _

E C , ' " -

File : P05P81.rs g &

Damping .005 n, r,. - ,.

L ,

. l U

e 0.10 -

E/

=

end

-nm ed me 0.01 - - ' ^^

.00 0.0 M.0 Frequency (Hz.)

_ - _ _ _ - - .. -- - - - ~ ~ ~ ~ ~

Time History vs PSD Techniques (P81 Earthquake)

Reactor Building Elevation 691+2 10.0 -

- = -

- =

i igig i s ll 1:3 -

~

File : TH05P81.rs

~

Desping .05 q ] as rn. snes. rw w

. 1.00

= --

~ N =

~ -

File : P05P81.rs g Damping .05 0 '-

as rn- near m u

E 0.10 =

=_ -

~

Pc poesram as> lot 0.01 - = 'llI - - = ' I II - - ' 'III 0.10 1.00 10.0 100.0 Frequency (Hz.)

I

Time History vs PSD Techniques (P81 Earthquake)

Reactor Buliding Elevation 713+1 a

10.0 ' '

if III 311]

Iq File : THO6P81.rs Damping .005

_ 1 _

as rn. sner, n may 3 1.00 File : P06P81.rs E q-Damping .005 as inn unst tso

a. .

c.

o u

4 0.10

=/

E_

Pc presrae 2EJLOT 0.01 - - a illl - - a t ill - - = IIll 0.1C 1.00 10.0 100.0 Frequency (Hz.)

Time History vs PSD Techniques (P81 Earthquake)

Reactor Building Elevation 713+1 10.0 , , , . , ,

,,q ig

,,g

~

File : TH06P81.rs Damping .05

- S -

ns rn. same n., m%

~

1~00 i ja -

3 -

~

File : P06P81.rs c Damping .05 o -

a as rn. msr eso g ..

U S 0.10 -

.=_

=__

M m

D 0.01 - " ' - "' '

10.0 00.0 Frsquency 04z.)

L fine Mistory *s Power Spectria 7 ectal pes H 1 tarth pake taput, output et tievetion 628+6 .

I Desponse spectie et 0 M Desping 71ss Mistory Power Sportria fine Mistory Iwer Spectria freq(Hs) necol(6) Freq(Ns) &ccel(G) % Olifer. Freq(un)&coel(G)Freq(N:)necel(0)% Differ.

0.20 0.069 0.20 0.064 1.41 6.75 1.0% 6.75 1.177 9.35 0.30 0.1M 7.00 0.923 7.00 1.019 10.33  ;

0.40 0.223 0.40 0.183 17.68 7.25 0.023 7.25 0.064 4.98 l 0.50 0.262 7.50 0.H9 1.50 0.741 10.70 l 0.60 0.372 0.60 0.278 +25.22 7.75 0.M3 7.75 0.678  %.52 f 0.70 0.229 4.00 0.557 8.00 0.632 13.31 O 40 0.393 0.00 0.291 25.87 4.25 0.601 ,

0.90 0.349 8.50 0.520 4.50 0.543 12.17 [

1.00 0.454 1.00 0.421 7.99 4.75 0.575 1.10 0.493 9.00 0.515 9.00 0.542 12.98 [

1.30 0.C1 1.30 0.576 M.65 9.25 0.5H t 9.50 0.5M 9.50 0.592 10.39  :

1.30 0.611 -

1.40 0.6M 1.40 0.M3 +27.15 9.75 0.590 1 50 0.970 10.00 0.600 10.00 0.576 4.07 ,

F 1.60 0.644 1.60 0.742 15.01 10.50 0.640 10.50 0.553 13.63 11.00 0.646 11.00 0.500 10.10 i 1.70 0.M3 23.52 11.50 0.676 11.50 .0.731 4.10  !

1.00 0.643 1.to 0.795 1.90 0.744 12.00 0.727 12.50 0.999 M.16  !

4 2.00 1.345 2.00 0.909 32.41 12.50 0.775 ,

2.10 1.295 13.00 0.700 13.00 1.040 33.M 0.912 2.20 1.190 30.49 13.50 0.002 13.50 1.063 32.59 2.20 2.30 0.M3 14.00 0.740 14.00 1.1M 61.M 30.96  ;

2.40 1.620 2.40 1.128 30 M 14.50 0.M0 14.50 1.305 1.653 15.00 1.276 15.00 1.521 19.19 ,

2.50 1.224 30.76 16.00 1.D0 16.00 1.970 60.30 l 2.60 1.764 2.60 16.50 2.414 Y 2.70 1.120 2.40 1.313 2.00 1.551 18.19 17.00 2.031 17.00 2.He 40.19 [

17.55 1.997 17.50 2.959 44.17  :

2.90 1.467 '

3.00 1.M7 3.00 1.5M 14.18 18.00 1.514 18.00 2.619 72.92 3.15 1.264 3.20 1.585 25.00 19.00 1.599 20.00 0.912 20.00 1.026 12.W l 3.30 1.649 3.45 1.704 3.40 1.677 1.54 22.00 0.M3 22.00 0.7M 18.1 l 3.60 1.923 3,04 24.00 0.453 24.00 0.702 54.W  ;

3.60 1.M3 3.00 1.640 3.00 2.204 34.37 M.00 0.426 26.00 0.M0 50.44 l 4.00 2.246 4.00 2.115 5.H 24.00 0.504 ,

I 1.633 4.25 1.741 9.04 30.00 0.404 30.00 0 M4 9.91 l 4.30 1.904 11.61 32.00 0.412 32.00 0.450 9.17  !

4.40 2.154 4 40 i

4.60 2.7M 4.60 2.652 +3.05 33.14 0.390 4.00 3.M3 4.00 4.032 16.H 34.00 0.391 M.00 0.M2 12.91 l 36.00 0.419 7.96 1 5.00 5.204 5.00 5.441 6.26 M.00 0.348 5.25 5.239 5.20 6.391 21.97 34.00 0.306 34.00 0.412 6.H 40.00 0.3M 40.00 0.410 6.66 I 5.33 4.703 5.40 6.690 42.24 5.60 5.374 25.49 42.00 0.342 42.00 0.404 6.67 [

5.50 4.263 40.33 H.00 0.M1  ;

5.75 2.075 5.00 4.0M 6.00 2.045 6.00 2.961 42.04 46.00 0.379 46.00 0.404 6.63 (

6.25 1.041 6.25 1.M7 3.50 48.00 0.378 I 0.376 50.00 0.402 6.76 6.50 1.518 6.50 1.459 3.90 50.00 f

Ivesp 011fer. 14.17 l

l r

I i

l _-. - -

i

! 71m Mistory vs Power tractem 7eche.iques i' Pel Earthquake Iaput, Output et 11evetica 620+0  ;

' 6 o tesquese tractre et 5.0% Dauplat l Time Mistory Power tractrun Time Rister? Power Spectrue (

Freq(NA) Accel (t) Freq(us) nece1(4) % Differ. Freq(Na) Accel (t) Freq(Ns) &ccel(0) % Differ. l

.. . . . . ~ .. . ...... ... . .... .. . .. ... .... ... .

\

l 0.20 0.054 9.30 0.0% 4 .97 4.75 0.7M 6.75 0.H1 11.62 1 0.30 0.102 7.00 0.7M 7.00 0.757 9.H i 0.40 0.1M 0.40 0.137 0.77 7.25 0.H6 7.25 0.728 12.59 f 0.50 0.179 7.2 0.613 7.50 0.675 10 13 l 0.60 0.192 0.60 0.191 -0.42 7.75 0.578 7.75 0.04 9.D J 0.70 0.197 0.00 0.539 0.00 0.603 11.00 I 0.00 0.1M 0.00 0.301 1.43 4.25 9.574  !

l 0.90 0.233 0.50 0.404 8.50 0.558 14.39 ,

I 1.00 0.259 1.00 0.360 0.64 8.75 0.M2 1.10 0.303 9.00 0.M2 9 00 0.52 14.69 1.30 0.337 1,30 0.317 +4. M 9.25 0.130  !

l 1.30 0.247 9.2 v.M4 9.50 0.511 10.24  ;

! 1.40 0.286 1.40 0,300 4.73 9.75 0.504 r

!' 1.50 0.300 10.00 0.474 10.00 0.4M 5.02 l 1.60 0.M2 1.60 0.342 5.57 10.50 0.459 10.50 0.409 6.M i l

i 1.70 0.404 u.00 0 M2 11.00 0.409 10.65 t 1.30 0.03 1.80 0.430 3.11 11.50 0.440 11.50 0.4M 13.47 i l 1.90 0.48 12.00 0.4D 12.50 0.134 25.07 1 2.00 0.M3 2.00 0.471 1.74 12.50 0.441 L 2.10 0.444 13.00 0.509 13.00 0.549 7. M  !

2.20 0.5M 2.30 0.549 -4.19 13.50 0.%) 13.50 0.M6 0.57 [

l 2.30 0.615 14.00 0.5e4 14.00 0.591 1.02 f i 2.40 0.590 2.W 0.%5 4.38 14.50 0.573 14.50 0.636 9.M f 2.50 0.517 15.00 0.M7 15.00 0.649 17.96 l 2.60 0.545 2.60 0.609 3.M 16.00 0.M4 16.00 0.700 17.53 l I

l 2.70 0.657 16.50 0.842 l 2.40 0.713 2.30 0.6H 4.06 17.00 0.824 17.00 0.090 7.H  !

l 2.90 0.703 17.11 0.015 17.50 0.904 5.76 l 3.00 0.700 3.00 0.712 1.H 18.00 0.790 18.00 0.871 11.23 >

3.15 0.774 3.30 0.7M 4.97 12.00 0.753 i

( 3.30 0.7M 30.00 0.uS 20.00 0.05 18.70  ;

3.45 0.779 3.40 0.778 -0.10 22.00 0.H2 22.00 0.5M 7.00 l l i l 3.60 0.900 3.60 0.H5 -4.19 24.00 4.M2 24.00 0.440 10.73

! 3.tu 0.9M 3.00 0.909 5.00 36.00 0.419 26.00 0 #6 11.30 ,

4.00 0.924 4.00 0.932 0.44 20.00 0.445 L 4.30 0.900 4.25 0.M5 6.38 30.00 0.3M M.30 0.431 P.n  !

4.M 1.041 4.40 1.053 3.M 32.00 0.311 32.00 0.422 6.M I I 4.60 1.364 4.40 1.7D 1.00 33.14 0.391 t 4.00 1.476 4.00 1.5M 8.04 M.00 0.390 ut 7.43  !:

5.00 1.70 5.00 1.9D 10.13 M.00 0.347 ti4 7.06 l

5.25 1.7H 5.30 2.142 30.07 M.00 0.3M 1 6.M l l 5.33 1.725 5.40 2.171 25.02 W.00 0.M2 i 4 6.74 (

M 5.50 1. D4 5.60 2.010 13.32 42.00 e.M1 4.. 6.55 5.75 1.610 5.00 1.749 8.M 44.00 0.380  !

6.(C 1.264 6 f? 1.470 14.73 46.CC 0.379 46.0) 0.W3 6.4% j 6.25 1.077 6. 5 1.304 12.13 44.00 0.378 i l

6.50 0.9M 6.50 1.030 9.09 50.00 0.33 53.00 0.401 6.40 l l l l &vsrege Qiffer. 5.45 i 1

f i

r l i

i i

Time Mistory vs Pouet Spectre feclaigues  !

M 1 Barthpahe laput, Output et 13evaties 713+1

. neaponse Ipeetse et 0.n neolat fian Mistory Pouer spectre 71am Mistory Power spectr e Freq(us) toon1(4) Freq(Ns) & cool (4) % Differ. Freq(Ns) &ccel(4) Freq(Ns) nec13(G) t Ciffer.

I 0.20 '0.069 0.20 0.%4 1.37 6.75 2.741 6.75 3.342 ;1.$4 e 0.30 0.127 7.00 2.M0 7.00 3.078 4.70 [

, 0.40 0.224 0.40 0.1H 17.45 7.25 2.20 7.25 2.714 21.01 l

l 0.50 0.204 7.50 2.167 7.2 2.114 6.M '

J 0.M 0.371 0.60 0.M1 25.19 7.75 2.092 7.75 2.142 2.41 O.70 0.231 8.00 1.944 8.00 2.006 1.09 0.00 0.3M 0.00 0.2% +25.59 8.25 1.0$4 0.90 0.355 4.50 1.779 4.50 1.7# 0M i 1.00 0 M9 1.00 0.02 7.00 0.75 1.u) f I

1.10 0.507 9.00 1.262 9.00 1.658 31 10 1.20 0.04 1.20 0.595 M.90 9.25 1.636 f i.2 0.us 9.2 s.X4 9.2 i.iS1 n.34 t 1.40 0.664 1.40 0.446 27.27 9.75 1.511 ,

1.50 1.014 10.00 1.445 10.00 1.329 0.02 )

2 1.60 6.u3 1.60 0.7M 15.00 10. 2 1.297 10.50 1.140 12.10 i

! 1.70 0.917 11.00 1.N9 11.00 1.103 11.74 {

i 1.00 0.647 1.40 v.855 24.M 11.50 1.121 11.50 1.270 13.25 l 1.90 0.821 12.00 1.158 2.00 1 461 2.00 0.995 31.M 12.50 1.245 12.50 1.516 21.79 2.10 1.09 13.00 1.141 13.00 1.M3 30.04 2.30 1.039 2.20  :.325 27.61 13.50 1.046 13.50 1.412 M.M [

2.30 1.000 14.00 1.069 14.00 1.40 M.07 t

. 2.40 1.053 2.40 1.241 30.09 14.50 1.118 14.50 1.5X M.53 2.50 1.044 15.00 1.4M 15.00 1.W1 11.71

. 2.60 2.uS 2.60 1. m .M.02 16.00 i. = i4.= i .*0 M.M t

. 2.70 1.319 16.50 2.251 2.00 1.132 2.80 1.044 20.63 17.00 1.064 17.00 2.549 M.77

~

2.90 1.713 17.55 1.076 17.50 2.623 39.77  ;

H.M 3.00 1.0% 3.00 1.879 14.M 10.00 1.3M 18.00 2.302 3,15 1.406 3.20 1.995 24.21 19.00 1.481 3.M 2.1H .1 .00 0.904 20.00 1.073 9.04

! 3.13 2.248 3.40 2.1M 2.M 22.00 0.7% 22.00 0.094 16.M {

4 3.60 2.677 3.60 2.599 2.M N.00 0.657 24.00 0.990 35. 0 3.00 2.U9 26.00 0.637 M .00 0.870 M.49 4.00 3.264 4.00 3.053 -4.52 28.00 0.6M 26.00 0.7M 19.91

] 4.20 2.5M 4. X 2.1M 4.X 30.00 0.623 30.00 0.140 18.91 3

4.40 3.33 4.40 3.092 -6.10 32.00 Lu3 32.40 0.954 M.72 4.60 4.490 4.60 4.514 0.0 33.14 0,697

)

i 4.00 6.001 4.00 7.213 20.07 M.00 0.646 M.00 0.064 M.M l 5.00 10.493 5.00 10.107 -2.92 M.00 0.600 M.00 0.770 26.13  ;

i S.X 9.M7 $.20 12.D6 D.40 38.00 0.621 34.00 0.720 15.13 i j l.D 1.X1 5.G 13.515 M.09 40.00 0.603 40.00 0.704 16.67 l i 5.50 4.M4 5.60 11.441 77.73 42.00 0.602 52.00 0.6M 16.00  !

5.75 6.M0 5.00 8.910 40.54 44.00 0.000 l 1 6.00 4.904 6.00 6.991 40.53 M.00 0.5M 46.00 0.691 15.42 i j 6.25 4.M1 6.26 4.064 0.M 44.00 0.5M l'

6.50 3.M3 6.50 3.918 1.M 50.00 0.5M $0.00 0.6M 15.10

. . . [

neeraps Oiffer. 14.52 (

l a

i f

,1 l

1 5

71ae Mistory we Pouer spectem 7echalene l 741 Barthpuhe tapet, Output et Elevetles 713+1 j

. Response apostas et 5 0% Deeplat time Misterr Peeer speette Time Mistory pesor tractess  ;

Freg(#s) nosel(s) Preq(ms) nece1(6) % Differ. Fret (Ns) & cool (s) Freq(us) &ce.1(6) % 01ffer. i 0.30 0.0l# 0.30 0.053M9 1.19 6.75 1.M27 6.751.M1451 5.62 {

0.30 0.1027 7.00 1.7M1 7.00 1.771169 2.49 l 0.40 0.1360 0. # 0.134019 0.89 7.25 1.4M6 7.35 1.61M1 0.16 5 0.M 0.1005 7.% 1.M99 7.501.491M3 7.33  !

0.60 0.196 0.60 0.193004 -1.02 7.75 1.3167 7.75 1.392367 5.74  !

0.70 0.1998 0.00 1.2162 8.00 1.3127M 7.H  !

0.25 1.244151 I 0.00 0.30M 0.00 0.304763 0.82 0.90 0.2349 8.50 1.0M1 8.M 1.1M7t4 13.13 f

1.00 0.3675 1.00 0.N 7930 0.16 8.75 1.15042 [

1 10 0.3133 9.00 0.9M 9.00 1.113551 13.17 1.30 0.M0', 1.30 0.320930 -4.13 9.251.041M1 f 1.30 0.3039 9.W 0.M39 9.50 1.051297 17.61  !

1.40 0.N4 1.40 0.31712 4.32 9.75 1.022347 l 1.W 0,J978 10.00 0.9335 10.00 0.99638 6.54 1.60 0.3648 1.60 0.40H 19 6.27 10.50 0 H73 10.50 0.M79 M l.M 1.70 0.403 11.00 0MM 11.00 0.919743 7.2% I 1.FJ 0.4777 1. W 9.457243 -4.30 11.50 0.7412 11.50 0.911M8 16.M

1. A0 0.4671 12.00 0.0034 2.00 0.5034 2.00 0.lD473 4.19 12.50 0.Mel 12.50 0.913174 7.62 I

! .10 0.M41 13.00 0.tM3 13.00 0.907075 4.00 l'.30 0.6 m 2.30 0.630573 -8.43 13.50 0.al25 13.50 0.902M9 $.91 1 3D 0.70M 14.00 0.0176 14.00 0.9042M 10.00 2.40 0.Mll 2.40 0.453 u6 1.30 14.50 0.7757 14.50 0.913M 2 17.74 15.00 0.7115 15.00 0.930707 30.51 t 2.M 0.6M1 2.60 0.649 2.W 0.?D7M l.04 16.00 0.M91 16.00 0.977009 15.06 i

! 3.70 0.7756 16.50 1.006%04 2.hD 0.8644 2.00 0.432576 3.64 17.00 0.9315 17.00 1.034197 10.34 ,

2.90 0.M91 17.55 0.Ml2 17.50 1.029M t.M  :

3.00 0.0700 3.00 0.992130 1.52 18.00 0.9294 14.00 1.0057M 8.27 [

(

3.15 0.900 3.30 0.M5643 2.M 19.00 0.91M 71 3.30 0.9725 20.00 0.7421 30.00 0. M4112 13.75 l 3.45 1.nl3 3.40 1.044739 1.97 22.00 0.7121 22.00 0.7 m 38 9M i 3.60 1.31M 3.601.100712 -9.93 N.00 0.65M 24.00 0.755376 15.17 f 3.00 ' . ?tM M.00 0. 0 51 M.00 0.741230 16.71 4.00 1.M3 4.00 1.413953 2.38 30.00 0.6246 26.00 0.72M16 16.49 4.30 1.M1 4.M 1.577323 9.01 30.00 0.6181 30.00 0.710435 16.30 l 4.40 1.7732 4.40 1.794919 1.22 12.00 0,61M 32.00 0.730the 17.M  ;

I 4.60 3.2M5 4.60 2.2713bt 1.70 33.14 0.H09 4.30 2.6M9 4.00 2.930916 10.31 H.00 0.6092 M.00 0.73008 18.19 5.00 3.3481 5.00 3.U M 69 8.70 M.00 0.6071 M 00 0.711 02 17.19 ,

5.3 3.4513 5.30 4.1M145 20.71 30.00 0.60H M 00 0.70mf 16.15  !

5.33 3.4314 5.404.333118 36.34 40.00 0.WM 40.00 0.6 m 55 15.60 42.00 0.6018 42.00 0.6Mm 15.37 f

5.50 3.6117 5. M 4.100 44 13.75 10.M M.00 0.6001 I 5.75 3.3055 5.00 3.M7962 4.00 2,6372 6.00 3.133954 II.M W.00 0.5997 M .00 0.6 M211 15.09 f 4.25 2.3018 6.35 2.60lMS 13.18 40.00 0.5909 5.% 2.0559 6.50 2.D109 8.52 50.00 0.5M3 50.00 0.647623 14.9) herege Differ. 6.05 i

I l

Alternate Earthquake used for Comparisons l

10.0 ~

iiu

~

'in 'N -

~

File : ALTER.rs Deeping .005

\ -

l 1.00 A .-

S C C

. File : ALTER.rs

.05 c '

Damping 2

m -

~

~

  • ( , ,.

g ,-

d'./

< 0.10 .--

Z 7*f e 9 -

~

l f..

~

pc progree as> LOT nevneten a 0.01 - * ' I N- - *' 'I" ^

O.20 1.00 10.0 1M .0 Frequency (Hz.) l l

i

Alternate Earthquake used for Comparisons PSD Computed from the 5.0X Deeped Response Spectre 1.COE-04 _

,, ~

File : ALTER 50F.RS DJratiDn - 15 sec.

Prob. Exceed. .15 7

u (N 7.50E-05 i

U 5 5.00E-05 O

e 3 _ _

  1. 2.50E-05 e

s ]

E _ _

Pc m PeoJLOT f lII ** M I /*

O.00 -= f ill -

  • 11 - -

0.10 1.00 10.0 100.0 Frequency (Hz.)

Time History vs PSD Techniques (Alternata Eq.)

Reactor Building Elevation 562+0 10.0 '

= 3111 Ill! 3 3ft

~

~

File : TH0iPHY.rs Damping .005

- as rn= snus. n st.cy

. ,1 -

l 1,.

." 1.00 Ie*lt '.

is - ,. 't. -

~

Z I I.

C _ File : P01 PRY.rs f Damping ~ .005 g ,'

0e -

,II,ql as rn. ne c eso

- l  : a' -

k -

:y -

u

  • u '

< 0.10

= ,.-

T =-

.- ff -

,f '

PC Preares IE.fLST flovisiese 2 0.01 - ** t ill- ',

- = 'llI - ** ' III 0.10 1.00 10.0 100.0 Frequency fHz.)

I l

l l

l

Time History vs PSD Techniques (Alternate Eq.)

Reactor Building Elevation 562+0 10.0 , , . , ,

,g

,yg C -

~

File : TH0idRY.rs Desping .05 r,. .ssu. m, %

~]

m 1.00 -

I o~

____ File : PO1 PRY.rs c

o

'~

,- Damping .05 w - e 's 2 true saaer eso

' ~

n -

c

  • e .

m e

-l 3

< 0.10 -

( 'r

\

Y _

= 1 -

~

~ '

Pc Progree IE.PL.CT

, fluvistan 2 0.01' - ' 1III - " ' 'III ^ " ' Il 0.10 1.00 10.0 100.0 Frequency (Hz.)

Time History vs PSD Techniques (Alternate Eq.)

Reactor Building Elevation 595+4 a

l 10.0 s itt s igl

- i sigg - i

- =

_ - i i Z -

File : TH02 PRY.rs 1  !'. Damping = .005 a.

as r- swer. n m, tor,

,  : \ '

\

1 -

.!'W !. 'I ,4 cs 1.00 -

' y','! -

1

~

Z j  ; f v --

File : P02 PRY.rs c -,d '

Damping .005 0

l' i l'd 'N -

as r - m s- eso i

e .- l t  ?

Y -

L g a h n

e -

1. *,-l .

1 e s e i g

u

, < 0.10 / _

_ s t -

lh t .

l -

I PC Pec;ls'as RS_ PLOT Revision 2 0.01 - - ' 'llh-

- ' 'lII - - ' ' III 0.10 1.00 10.0 100.0 i

Frequency (Hz .)

i

h i

Time History vs PSD Techniques (Alternate Eq.)

i 1

Reactor Building Elevation 595+4 I

) 10. 0 __ . ,,

, I II

. i  : jl iItt

=_. -

File : TH02 PRY.ca

_. ~

Damping = .05 i

as in. snum. n- motorr i

1 s'

" ,! s'.,

. 1.00 ~,

cs r  ;

l - -

File : P02 PRY.rs I ~

Damping .05

{ E ~ '

as enn nase esa e -

s -

r_  !

t a '.

s '

e ";

o ,

E 0.10 r

i /

/ PC Propea RS_ PLOT l '

Revision 2 0.01 -

' ' 'ig)) - , . 1111 . . i IIII l

0.10 1.00 10.0 goo o Frequency (Hz.)

2

Time History vs PSD Techniques (Alternate Eq.)

Reactor Building Elevation 628+8 10.0 -

- a s i((

- i 11ll i

init File : TH03 PRY.re l '.

Damping .005 l *.

as tr = m m . m n , ton

-  ! ,i -

r.

.\;

I

. 1.00  !"'i

e -

~s, =

/ 1

- File : P03 PRY.rs

.005 i

g  ; I, Damping g

e

- a 1

1,. l k -

as rn= soase eso

c. y ,

~

[

o o

< 0.10 .'

= l =-

- i l -

l -

1

' PC Progres RS_ PLOT 0.01

  • IllI - -
  • IIll - - ' lill 0.10 1.00 10.0 100.0 Frequency (Hz .)

,m. - _ ._ _ _ . _ _ , , .-

6 Time History vs PSD Techniques (Alternate Eq .)

Reactor Building Elevation 628+8 10.0 - a i l-gt

- i - i lll illl Z -

File : TH03 PRY.rs

- Damping = .05

- ~

U fna STREE Time Estory l.

?e 1.00 -

,b =

~

Z  ! -

File : P03 PRY.rs c -

-  ! Damping .05 I, 'k -

as in= cease eso

f. .

. / -

e v u

E 0.10 -

- l -

l

. l -

/ Pc Progres RS PLOT 0.01 - ' ' lll - - ' 'III - - ' 'll!

O.10 1.00 10.0 100.0 Frequency (Hz .)

m -

i Tiine History vs PSD Techniques (Alternate Eq.)

l Reactor Building Elevation 662+0 i

i

! 10.0

alll

- i =i l IIIl l itt File : TH04 PRY.rs Damping .005

- ~

as inn snoor. n- atstarr

. r;  ! ', -

i  ! '

3a 1.00 -

~

Z l

File : PO4 PRY.rs c  ! ,'l Damping .005 4

o i . ,

j -

as rna sonse Pso e

c.

l, 4 -

e -

re , -

e u

o

  • 4: 0.10 l r l = -

_ l -

,/ -

I PC Pr ogr en RS_ PLOT 0.01 - ' I I II> - - * ' III ' " ' III

0.10 1.00 10.0 100.0 l

Frequency (Hz .)

l Time History vs PSD Techniques (Alternate Eq.) I Reactor Building Elevation 662+0 10.0 _. (

t ill I I-gt

-. i IIIl ij

~

File : TH04 PRY.rs Damping = .05

~

~

23 from STRIKE Time History

." i.00 -

m -

,! 3 File : PO4 PRY.rs Damping .05 g h,', l ,

0 -

i

[

's, as from roase eso t_ s s 8 . N -

u E 0.10 =

=E

l l

~ '

e' Pc Program RS_ PLOT 8 lll ""'

0.01 - ' Ill! - ' 1811 - - '

O.10 1.00 10.0 100.0 Frequency (Hz.)

Time History vs PSD Techniques (Alternate Eq.)

Reactor Building Elevation 691+2 10.0 - e . -

i n gl i s ll ily Z -

File : THOSPRY.rs Damping = .005 is r= muor. m. m ton

. .  ; ,s -

H; .l ',

- i

." i.00 .

I, .f .',

m -

l .

~

Z ,

File : P05 PRY.rs c ,' (A I Damping .005 o .

j -

l i

,, ,g as r = onse eso

c. '

e . - 's -

e u ,

M 0.10 [A l =

=_ , -

-- ,e l

- l PC Progres RS_Pt.OT 0.01 - - ' ilIk - ' l 'Il - - ' ' lII O.10 1.00 10.0 100.0 Frequency (Hz.)

1 Time History vs PSD Techniques (Alternate Eq.)

Reactor Building Elevation 691+2 10.0 -- ' ' '

=i alll 111[ i lg File : TH05 PRY.rs Damping = .05 u tram snum. nm. ut. torr

.' = q =

. i. .

. __ File : POSPRY.rs c

  • Damping = .05 O .g , . g' ' .

s, l a r = a u e eso e

c

- \' ls -

e -' , ,

s -

e o

u

< 0.10

=

. l -

l

. o -

Pc Pr ogr se RS_ PLOT 0.01 ' ' III - - ' 'III - - ' ' ll!

0.10 . i.00 10.0 100.0 Frequency (Hz .)

Time History vs PSD Techniques (Alternate Eq.)

Reactor Building Elevation 713+1 10.0 '

- i -

i 13g i

- - i i 11l i ll File : THOF 7Y.rs Damping = . Cod l} RS from ST M t. Tian Mistory 4:  ! -

= .

  • ; i

. " 1.00 I b \,

[

S = i*

. =

e -

File : P06 PRY.rs E .

\ ,. , Damping .005 0 -

, [f ( -

as rn= nase eso

c. ,

l

,e . .

e a '

N 0.10 '

s'

l -

- l -

1 -

/ -

PC Pr ogr se RS_ PLOT O.01 - ' IIlh - - ' 11111 - a iIII 0.10 1.00 10.0 100.0

Frequency (Hz .)

i ll

- - ~ - - - --- . - - - - - - . - - - - - _ , ,__, _

. 1 Time History vs PSD Techniques (Alternate Eq.)

Reactor Building Elevation 713+1 10.0 *' ' '

l idt

= 8111 illi

~

File : TH06 PRY.rs Damping = .05

{ ] as rna stem. n mton

- I' I,

." i.00 e -

.A C 1

l

~

e -

File : P06 PRY.rs

@ .' Damping .05

$.f._

~ .-

\ ~

as rn conse eso u

E O.10

=-

/ =

l -

l -

l -

Pc Progree RS PLOT 0.01 - ' fill~ -

  • Illl - - ' IllI O.10 1.00 10.0 100.0 Frequency (Hz .)

Action Item:

An EDASP Theory and Verification Manual and QA Document Manual will be ,

provided to the NRC. j Response: ,

A copy of the EDASP Theory and Verification Manual is attached. This .

manual also serves as the QA Document Manual. The appendices referenced a at the end of the Theory and Verification Manual are not included in this submittal. All the appendices are available on microfiche at' our offices  :

for your review. l An EDASP users Manual, Version 1.1 is also attached for your information.  :

MB L

T Action Item:

Response 3 to the July 5,1988 NRC sutmittal will be revised to indicate the internal program increment range.

i j Response:  !

Two sets of frequency spacings are used internally in EDASP. For f Response / Power Spectrum conversions, the frequency spacings are specified [

by the user in terms of the number of divisions per octave. Typical- l j

numbers range from 16 to 48 divisions per octave. Taking 32 as the  !

i average number, it corresponds to abcut 0.02 Hz spacing at 1 Hz, and about 0.7 Hz spacing at 33 Hz.

i The frequency spacing used for calculating the elevated power spectra is j equal to one half of the minimum half-power-bandwidth of all the modes * >

, limited by a maximum of 400 points over the entire frequency band.

f d

I i

i Action Item: l A discussion will be provided of haw the EDASP direct generation method '

compares to other direct generation methods. A discussion on the p limitation of the EDASP code will also be included. i I Response
;

j A discussion is provided on the following pages.

i i

\ i j [

t

COMPARTSON OF EDASP iITH OTIIER DIRECT RESPONSE SPECTRU51 GENERATION SIETIIODS INTRODUCTION Duke Power Company used the computer program EDASP of Stevenson & Associates to generate floor response spectra for the snubber reduction program in the Catawba Nuclear Station. During the NRC meeting on July 19, 1988, NRC has raised questions concerning the validity of the EDASP direct response spectrum generation technique and how does it compare with other direct generation methods.

To answer these questions, the theoretical background of EDASP will be reviewed first, then followed by the comparison with other direct generation methods.

EDASP THEORETICAL BACKGROUND To generate the elevated response spectrum (RS) from the base RS, EDASP performs the following three step:

(1) Convert the base RS into power spectral density function (PSD),

(2) Calculate the elevated PSD, and (3) Convert elevated PSD to elevated RS.

The direct generation process in EDASP involves two major components, the RS/PSD -

conversion, and the computation of the elevated PSDs. The calculation oi' elevated PSDs will first be described.

The governing equations for a structural system subject to base excitation is:

[ Af15 * (C]y + (K]y --( Af](T]d. (1) where ( Af].(C) and (K) are the mass, damping, and the stiffness matrices of the system, (T]is a N x 3 transformation matrix containing the directional unit vectors for each degree of freedom, and u is a 3 x ! vector containing the translational base acceleration motion in three orthogonal directions.

Applying the modal transformation results in N decoupled equations:

a , + 2 4,w,a , + wla , - - f. . r . u .

where T., is the participation factor of the ith modal system response due to base excitation in the 4th direction.

Using the definition of w8 (3)

H,(w)=

w,8 - w' + 2 4,w,w the response can be written (in the frequency domain) as:

x,(w)- E 6,,H,(w)[ f ,d,(w) (4) where u,(w)is the Fourier transform of the base acceleration history ire the kth direction.

Assuming the base motion input is a zero-mean stationary Gaussian random process, it can be represented by its acceleration power spectral density function alone. Pre-multiply both sides of Equation (4) by the complex conjugate of x,(w)and taking the ensemble average yields:

S, ,(w) - [ [ 6,,6,, H,(w)H'(w) [ [ r,,r,,u ,(w)u',,(w) (5)

, , , o where the

  • ognifies the complex conjugate. Assuming the base excitations in all three directions te be uncorrelated allows the cross terms in the second double summation of Equation (!) to be ignored:

S, ,(w)- [ [ 6,,6,,#,(w)#'(w)[ r,,r,,S, ,(w) (6)

Equation (6) can be separated into its diagonal and cross-term components.

S,. .(w) = 6,*,l#,(w))'[ r',St ,(w)

, .-i

+ 2#* [i se[ l$,, $,, Re (#,(w )n,'(w)} [ r,,r,,s,. ,(w) (7)

Equation (7) represents the relative acceletation of the kth degree of freedom to the base. The absolute acceleration res,vn9 can be shown to be:

S y,,,n(w) - S,..(w) + (!

  • 2 [ r.,$,, Re (#,(w))]S*

(8) where r is the global direction coincide with k.

The above derivation is rigorous. As implemented in EDASP, it includes full couplin between all the modes and, instead of working pseudo-acceleration spectrum, calculate absolute acceleration directly, which in effect included the missing mass correction in the rigid range. The elevated RS will reproduce the base RS even when there are no modes in the frequency range of interest, i.e., when the structure is rigid. '

The RS/PSD conversion equations will be derived in the following section, where the distribution of the maxima for a random process is derived based on. known The PSD response spectrum values can then be obtair.ed by definition with respect to a Cartwright and Longuett-Higgins [2), and Kaul[5]. probability of exc Consider (f. /', / ) is a zero-mean Gaussian random process /(t), the joint probability distribution of p(t i . fi a . & 3) - (2 n ),,*(a m,) g e2.ma xp a ,

(9) where a - m.m.-c !

l m.- /*.H(p.w)S(p)g'dp = the nth spectral moment of the PSD S(p)

  1. (p.w)=
  • ^ *I#

(p'- w')# + 4w*ttpt The mean frequency for /(t) to be a maxima in the range ti < / < ti + dti is l

1 I

(10) f(4,)d t , - [,( p(g, o. g,)lt,} d g ,)d g, and the probability distribution of maxima is found by dividing this distribution by the total mean frequency of maxima, which is (II)

N -[ f,,p(ti.0.43).taldtid t, i

I Substituting Equation (9) into Equations (10) and (!!), the probability distribution of the maxima is I

b p(y) - ~l 2n m ,

E E(q/c) + ac E(q) ., E(u)du ,

in which II3)

E(u)- exp - u' n = y/S (14)

(j$)

E #

  • l - ml/(mg m )

(16) a - n/(I-e )/s 8 The cumulative probability Q(y)is given by Q(y) V(2n).fvs E(u)du + ](1 -c )E(q) 8 E(u)du

Kaul (5] has shown that for large values of n and small e, which is true for most cases, Equation (17) can be approximately written as 8

(38)

Q(y)- /(1 -e )exp(-f q')

Consider a finite duration T of the random process. The expected number of maxima in time T is given by (39)

N - f(m./m,)T The probability that the highest of these maxima in a sample of duration T having the value y, is

( } '

P(y )-

d El~0(7)l" r.v.

Define the response spectrum R(w)as the maximum response in duration T with probability of exceedance of r, therefore (2I) r - f, P(y )dy,- 1 -[ t - Q(R))'

whence Q(R) = 1 -(1 - r)'" (22)

For large N we can write (23)

Q(R)- -

In(1 - r)

Using Equations (14), (17), and (23) gives the response spectrum value at the oscillator frequency w

(24)

R(w) ~ -2m oln (m /m,)"'In(1 - r) o The determination of RS from the t'SD is straight forward using Equation (24). This is not true of the inverse problem in which one requires to obtain the PSD from its RS. In EDASP, the approximate solution derived in Kaul[5] is utilized as the initial guess. The epproximate solution is based on the assumption that the acceleration exceedance level is high, i.e., the probability of exceedance is low, and that e is not too close to 1. The initial solution for the PSD is 8

I S(w)= hK (w)/f-2in In(1-r) f The above derivation is based on a random process with infinite duration. In reality, ,

depending on the damping values of the system, within the duration of an earthquake, the system may not be able to reach the steady state response. To correct for this finite duration prob'em, EDASP uses an equivalent damping (, which is related to the actual damping r, by the equation [8]

(,- & + 2/(wT) (26) l The computation of PSD from RS in EDASP following iteration process

$(w),. i - 3(w),([

  • where the hat indicates the ith estimate. The current PSD estimates are adjusted by the square of the ratio of the response spectra until a prescribed convergence bound is met or the maximum number of iterations is reached. The iteration process converges to a steady response spectrum very rapidly.

D!SCt!SSIONS OF THE EDASP DIRECT OENERATION METHODS

Since the direct generation method used in EDASP is based on general random vibration theories, it works in general for any frequency range, damping ratio, or earthquake characteristics.

One limit, concerning the validity of the equivalent damping equation in Equation (26),

the lowest frequency in the analysis should ta at least several times the inverse of the duration of the seismic event.

The accuracy of the method, however, depends on the validity of the assumptions of the random process, such as stationarity, linearity, and the normal probability distribution properties for a Gaussian process. In our experience with EDASP, as well as in refer-ences Chen (3), Kaul [5), Unruh (15,16), and Singh (13), the direct generation method has achieved comparable but more stable results than the time history method for a wide variety of acceleration time histories.

CONF PARISON TO OTHER DIRECT GENERATION NIETHODS Bleet (1971) f11. Ksour snd Shse (1973) f 41 These early methods are semi-empirical in nature. In general they do not produce as .

accurate results as the newer methods.

Sinah (1975.1930.1935) fil-131 Singh has developed the partial fraction form for the transfer functions and input PSD -

to evaluate the elevated PSD. The peak factor was not evaluated and has been taken as a constant the PSD/RS cor. version process.

Ysnmsreke andfistesrini (1976) f10.17]

Professor Vanmarcke has developed computer program SihtQKE for generating artificial time histories. The RS was converted to PSD first and then time histories were gener-ated by adding random phase angles and an envelope curve. The conversion procedure of RS to PSD in SihtQKE is similar to the direct generation method in EDASP.

Recommended initial guess of PSD from RS to be C(w,)-

I [* * *

-[* c(w)dw w.d, t. - 1 )\ r I

Suggestsd the iteration scheme used in EDASP, Equation (27). Suggested effective damping value as:

g, . (: _ gn .T)*'g K sul (197R) f$1 Provided derivation for the PSD/RS conversion equations. Proposed an approximate and an exact (so-called) solutions to determine the PSD from RS. The approximate solution is implemented in EDASP, in which iterations were added. The exact solution consists of fitting multiple analytical functions to the PSD, where the form of the base functions remains to be verified.

Sundar1rsisn (1981) f141 The solution method is identical to that in EDASP.

I?nruh snd Ksns (19R11 19Rlb)f15 f6]

The RS/PSD conversion implementation is identical to that of EDASP, in that the approximate initial solution derived by Kaul is used, iteration based on Equation (27), .

and artificial damping in Equation (26).

Kiureghian. 91ckmsn snd Neur-Omid (f 9R1) f6]

Solved the mass interaction problem of light equipment in structures. As for the direct .

generation of RS only the mean value of peak response were examined.

Shinnruks Mcchin. snd Mimsrst (19RR) f9)

Professor Shinozuka used the Vanmarcke method (SIMQKE) to generate the PSD, except that the exponent in the iteration process, Equation (27), from 2 to 2.5. The PSD generated is very similar to that of EDASP.

An alte.tnate procedure is suggested to fit a Kanal-Tajimi form of curve to the PSD.

The Karial-Tajimi form is initially proposed for seismic PSD in Japan on a specific site.

The form is simple to implement and easy to derive close form statistical properties (cr the responses. Ilowever, raost required response spectra are of the composita type, i.e.,

they are enveloped or broadened,like the NRC .00 response spectrum, which may be too complicated for a single Kanal-Tajimi spectra to simulate, it might be more appro-priate to employ multiple Kanal-Tajimi functions similar to the exact solution of Kaul.

Chen (1918) f 3]

Chen uses the initial guess and artificial damping of Vanmarcke. The iteration process is performed directly on the iaitial guess.

CONCLUSIONS

Except for the early semi-empirical methods, the direct generation methods for calculat-ing the elevated RS from the base RS are based on rigorous random vibration theories.

Due to the statistical uncertainty of the input time hist.>ry, the results from the direct generation method may not always match with the corresponding time history method.

The direct generation methods will match up better with *te tinte history method statis-tically if a number of time histories were used to generate the response spectra.

The time history method is accurate only if the exact acceleration time history will occur in the future. In reality, the exact time variation is never known, and all we have is the statistical estimates of the seismic events. The direct generation methods, using the PSD as the intermediate step, provides more consistent results than usir.g the time history alone.

These direct generation methods are all derived from the same theoretical basis, they should all produce similar results. The difference lies in details of implementation, spe-cifically, during the RS to PSD conversion, the initial guess of the PSD from RS, the iteration scheme, the effective damping value, and the numerical integration scheme.

REFERENCES

1. Biggs, J. M., "Seismic Response Spectra for Equipment Design in Nuclear Power Plants," Proceedings,1st International Conference on Structural Mechanics in Reac- '

tor Technology, Berlin, West Germany, September 1971, Paper K4/7.

2. Cartwright, D. E. And M. S. Longuett-Higgins, "The Statistical Distribution of Maxima of a Random Function,' Proceedings of the Royal Society of London, Series A Vol. 237,1956, pp. 212-232.
3. Chen, S. J., "A Practical Application of Spectrum Consistent Power Spectral Density Function in Seismic Response of Structures," Proceedings of international Workshop on Seismic Design, Taipei, Taiwan, May 1988.
4. Kapur, K. K., And Shao, L. C., "Generation of Seismic Floor Response Spectra for Equipment Design.* Proceedings, Specialty Conference on Structural Design of Nu. lear Plant Facilities Chicago, Illinois, December 1973.
5. Kaul, M. K., 'Stochutic Characteriution of Earthquakes Through Their Response Spectrum,' Earthquake Engineering and Structural Dynamics, Vol. 6,1978, pp.

497-509.

6. Kiureghlan, A. D., Sackman, J. L. And Nour Omid, D., ' Dynamic Analysis of Light Equipment in Structures: Response to Stochestic Input," Journal of the Engi-neering Mechanics Division, Proceedings of the American Society of Civil Engi-t;eers Vol.109, No.1, February 1983.
7. Rice, S. O., "Mathematical Analysis of Random Noise,' in St/ccred Parcrs on Noise ard Stuhastic Processrs. Ed. N. Wax, Dover, New York,1954.
8. Rosenblueth, E. And Elorduy, J.,"Response of Linear Systems to Certain Traasient Disturbance," Proceedings, Fourth World Conference Earthquake Engineering, San-tiago, Chile, A-1,1969, pp.185-196.
9. Shinozuka, bl., hfochio, T., And Samaras, E. F., "Power Spectral Density Functions spatible With NRC Regulatory Guide 1.60 Response Spectra," Department of Cain Engineering and Engineering hiechanics, Columbia University, Report No.

NUREG/CR-3509, June 1988,

10. "S!hiQKE: A Program for Artificial hiotion Gene ation, User's hianual and Docu-mentation,' Department of Civil Engineering, hiassachusetts Institute of Technology, November 1976.
11. Singh, bl. P., "Generation of Seismic Floor Spectra *, Journal of the Engineering hiechanics Division, Proceedings of the American Society of Civil Engineers, Vol.

101, No. Eh15, October 1975.

12. Singh, St. P., "Seismic Design input for Secondary Systems,' Journal of the Struc-tural Division, Proceedings of the American Society of Civil Engineers, Vol.106, No. ST2, February 1980.
13. Singh, bl. P., "Floor Spewtra for None;2ssically Damped Structures," Journal of the Structural Engineering, Vol.111, No. II, November !?85.
14. Sundara?ajan, C., "An Iterative hiethod for the Generation of Seismic Power Spec-tral Density Functions,' Proceedings, Civil Engineering and Nuclear Power, Knox-ville, Tennessee, September 1980. Vol. VI. .
15. Unruh, J. F. And Kana, D. D., "An Iterative Procedure for the Generation of Con-sistent Power / Response Spectrum," Nuclear Engineering and Design, Vol. 66, 1981, pp.427-43 5.
16. Unruh, J. F. And Kana, D. D., "A Power / Response Spectrum Consistent Procedure for Dynamic Qualification of Components
  • Southwest Research Institute, Interim Report, SwRI Project No. 02-9290, htarch 1981.
17. Ysnmarcke, E. H. And Gasparini D. A., ' Simulated Earthquake Ground hiotions,"

Proceedings,5th International Conference on Structural hiechanics in Reactor Tech-nology, Berlin, West Germany, September 1977, Paper Kl/9.

Action item: *

'

  • Revise the FSAR piping load combinations to reflect the current ASME

' Code, Subsection NF, load combinations when utilizing results from direct generation method, Code Case N-411 and Code Case N-397.

Response

The revised combinations are shown on the following two pages.  ;

5 d

i 7

2 i l

9 I

i 1 . ,

f b

i  !

1

}  ;

a t i

i r

i 4 1

[

4 i

h I

a

(

l i

r

)

I b

t l

.-m,my=+-

- , =%4 --- +--

\

.) i Loading Conditions. Load Combination, and Allowable Stresses for Supports. Restraints and Anchors Duke' Classes A. 8, C and F (6) g NON-NF ALLOWABLE STRESSES I3)

CONDITION LOAD COMBINATION Normal Thermal (2) 1.05

+ Pressure (as applicable)

+ Weight Upset Thermal (2) 1.0S g

+ Thorn 1 Transients

+ OBE

+ OBE Seismic Anchor Movement

+ Pressure (as app!icable)

+ Weight

+ Steam Hammer

+ Relief Valve Faulted Thermal (2) 8

+ Thermal Transients .

+ 15/8 OBE 1.55

+ 15/8 OBE Seismic Anchor Movement

+ Pressure (as applicable)

+ Weight

+ Steam Hammer

+ Pipe Rupture (as applicable)

+ Relief Valve Hydro Thermal III 1.05

+ Pressure (as applicable)

+ Weight NOTES: l (1) Thermal load for hydro conditions will be zero except for cold pulled systems. ,

(2) Use greater of hot load of 1/3 cold load for cold pulled systems hot  !

condition. Use cold load for cold pulled system cold condition.

(3) Stress limits for those portions within the NF jurisdictional boundaries  ;

are in accordance with the applicable paragraphs of Subsection NF as des-l cribed in Subsection 3.9.3.1.5.

(4) For faulted and upset load conditions, a case which replaces seismic and i seismic anchor movement with design bases Tornado, applied to outside piping, must also be considered. .

(5) S = allowable stress from AISC manual _ ,

i

TABLE 3.9.3-11 (Continued)

'(6) Stresses for Supports, Restraints, and Anchors on Duke Classes E. C, and H piping identified as necessary to prevent interaction with Classes . 8 A, B, C and T piping are limited to the value of this table. -

9 4

l l

l .

I e

.j O

n

, Action item:

A discussion will be provided on the sensitivity of the EDASP Code to higher damping values. Additional response curves will be generated with time history and direct generation methods with damping values up to 15%,

for comparison.

Rosconse:

~~~

Two damping parameters were investigated: the structural damping and the responsa spectra damping. Response spectra were computed for two points in the Catawba auxiliary building with structural damping values from 3%

to 7% and response spectra damping values ranging from 0.5% up to 15%.

The E0 ASP PSD used was the same as the PSD used in response to the thi.*d action item for the P81 earthquake. The following plots show the results. The spectra show a good and consistent comparison over all three structural dampings (3%, 5%, 7%) and all three response spectra dampings (0.5%, 5%, 15%). No particular trends were noted with increasing structural damping or response spectra damping.

e

Time History vs Power Spectra Techniques Floor RS in the Aux Bldg at Elev. 577 (3% Structural Damping) 10.0 -

- i - -

- i

ll

=

i n g[ 13g Z

~

~

File : TH813P[.rs Damping .005 as rn= suum. nm. n, torr g -

3e 1.00 ---

i

,V V '

h ---

~

____ File : P813P1.rs c

- iA N /* ,; n. -

8 W Damping .005 V< y 'i 0a - -

as rn m se eso C. /

,/

o E 0.10 E/

E -

Pc Program RS_ PLOT 0.01 - - ' illI - ' I l lI- - - ' f II!

0.10 1.00 10.0 100.0 Frequency (Hz.)

Time History vs Power Spectra Techniques Floor RS in the Aux Bldo at Elev. 577 (3% Structural Damping) 10.0 '

' * ~

_ 811] Illi IItt ,,

File : TH813Pi.rs Damping = .05 as rn- snet m miston

." 1.00 -

is

~

Z Z ____ File : 9813P1.rs

.05 g y "y .,

Damping as rn- saase rm g -

c.

u

)

E 0.10 =

=

PC Progres RS_PLDT 0.01 - - ' I III - - ' I III - - a I III O.10 1.00 10.0 100.0 Frequency (Hz.)

Time History vs Power Spectra Techniques Floor RS in the Aux Bldg at Elev. 577 (3% Structural Damping) 10.0 * * -

- 5 ,,-

a ll; iIIl ig File : TH813Pi.rs Damping = .15 as in- sma n ut torr 7

.' i.00 m

~

~

____ File : P813P1.rs Damping .15

,f % [

~~-- ~.. .

n .

e o

E O.10  :

r f ~

- / -

PC Program RS_ PLOT 0.01 ' Illl - a t ill - - a IllI 0.10 1.00 10.0 100.0 Frequency (Hz.)

Time History vs Power Spectra Techniques Floor RS in the Aux Bldg at Elev. 594 (3% Structural Damping) 10.0 '

=

3 3 Il '3311 I

~

' ' '311tl ..'

File : TH813P2.rs Damping .005 N -

as rn= sma n utston

, i i _

i.00 '

s = $ , 2

____ File : P813F'2.rs C '! 4 ^ Damping = .005

,8 - V* M -

as rn - m s ,eso e ,.

f ,

,o l -

, f. r E 0.10

=

- / E >

Bump M

E e Pc Progres RS_Pt_oT 0.01 - - ' liIll - ' iIll -

  • IIII 0.10 1.00 10.0 100.0 Frequency (Hz.)

4 h

Time History vs Power Spectra Techniques Floor RS in the Aux Bldg at Elev. 594 (3% Structural Damping) 10.0 -

- i iggg IIlp ilg ,

'Z -

File : TH813P2.rs Damping .05 RS fna STBINE Tiam History

", 1.00 ', _

~

Z C ____ File : P813P2.rs c

o

  • M

~

Damping = .05 g _

as rn. acas, eso a .

e s$'

u M 0.10 ,

PC Progree RS_Ft.0T

- ' ' lll 'll! -' 'III 0.01 - - ' -

0.10 1.00 10.0 100.0 Frequency (Hz .)

Time History vs Power Spectra Techniques Floor RS in the Aux Bldg at Elev. 594 (3% Structural Damping) 10.0 '

- =

a ll) ij s 11l

=

sig File : TH813#h.rs Damping .15 as en- smus. n mutarr i

m

." 1.00 -

c3 ..

~

Z / C ____ File : P813P2.rs C T / Damping = .15 3o p'  % -

as rn- erase esu e -

C.

,= . ,, -

e o

N 0.10 _ ,

- / -

)

PC Prop se RS_Pt or 0.01 - - a t ill - = IIll - a IllI 0.10 1.00 10.0 100.0 Frequency (HI.)

Time History vs Power Spectra Techniques Floor RS in the Aux Bldg at Elev. 577 (5% Structural Damping) 10 0 -

- e

.iiigg a ig g' iIg Z

File : TH815N1.rs Damping .005 as r= samt. n m, torr

,' 1 3 1.00 l-j' V C

so Z y,; ,.

F5 . P815P1.rs c

f N ,*

/* -

~

uamping .005 o VJ lN * ,' .

g -

as r= ner eso e -

c.  ? -

?s -

,/

-t 0.10

/ -

PC Progree RS_Pt0T O.01 ' 'll! - ' ' III  : - - ' ' IIIJ 0.10 1.00 10.0 100.0 Frequency (Hz .)

s) eg s

r.

s n 1 r

r r. T O

ui P5 t e

i5 L qp m 50 i m

s P0 P_

i a 1 5 S 8 1 R w o nD H-T g a T

8 -

P l s

r se hl a  ;

w r cr  :

i n mr  : n i u g o

eut ep .

l m nr ep .

l m n r

P*

T cu ia s i a r

s c .

r FD a FD a P at S r _

_ 0 t %

c (5 0 e/

p /

_ ~- ~

=- - -

  • I I

I 0

1 n ,

S . ,

v ,. -

rel ,

eE .

w t oa ,

0 )

P g 4 I

0 z 1 H(

d q I I

l sB ,

My '

y v x I c

n u ,

e yA re m-u q

e oh t .

r F

t n 0 0

si I i S I 1

HR r

Y I eo o ,

ml ,

i F T .

0

_Z- - - Z- - - - _ _ _ __ _ .

1 0 0 10 0 1 0 0 .

0 i 0 0 1

-" . = ~ co 0.c.?.o E

I lill O

s) eg s

r.

s n i r. T ui ,

PS  % i 5 O

L qp m 5i i m

P1 P_

i a 1 . 5 .

S 8 1 R

nD H-T g a n 8 -

P o

s e m hl a g s t a r"

cr  : nm  :

i n m g o

- eut ep -

l mn i s ep =

l m n r

P' T cu ia r s

ia f c

r FD a FD 5 8 P at r S 0

t X c (5 ' .

_ - - - l 0

0 e7 3 _.

- E~ -

l i

1 p7 1 f 5

S .

. a

. = . _

v ~

- rel -

~

~ -

eE ~

w t '

oa 0 ) .

P g 0 z _

f d l l

l 1 H( _

sl B i s

l i

y v x c u i a n yA _ e u

re q e

oh t '

F r

t n ,

. 0 si 0 i S l

l l

1 HR l

i 1

t

'~ <

r eo o =

=

ml - -

i F T - / -

0

- _, -- ~- . - E~ - , .

1 0 0 0 10 0 1 0 0 .

1 1 0 0

  • .e~ @ gc* eoE .

ll li

Time History vs Power Spectra Techniques Floor RS in the Aux Bldg at Elev. 594 (5% Structural Damping) 10.0 __

Z -

~

File : TH815P2.rs Damping .005 i

as rn. saan. n

(

- mi. ton

] _

~

$e, 1.00 _ ,

} ____ File : P815P2.rs

~

Z s c

  • Damping .005

- N -

asrn-treeeso h.

t.

u M 0.10 =

= / -

Pc Progres RS_ PLOT 0.01 a t ill - - a till - a iIII 0.10 1.00 10.0 100.0 Frequency (Hz.)

O Time History vs Power Spectra Techniques Flcer RS its the Aux Bldg at Elev. 594 (SE Structural Damping) 10.0 _ _ . , , .

igg

,,,l File : TH815P2.rs

_ Damping .05

- ~

as frtan STWLKL Time 8tistory I _

- /

1.00

S 3 C File : P815P2.rs M

- ~

c -

Damping .05 0

a as from GASP PSD n -

~

u M 0.10 _._

= x Z -

~

Pc Program RS_ PLOT Revision 2

- ' 'lII II " ' 'It 0.01 - - ^

0.10 1.00 10.0 100.0 Frequency (Hz.)

I .

1 Time History vs Power Spectra Techniques Floor RS in the Aux Bldg at Elev. 594 (SE Structural Deeping) 10.0 - ' -

- =

'=

11lli III) ig

~

File : TH815P2.rs

~

Damping .15 RS frte 51RML Time Mistory m

1.00 -

~

2

'/j/

3 _ File : P815P2.rs Damping .15 E

0 -

as (n. mse eso f

e u

E 0.10 - ,-

r _.

- / -

PC Progree RS.PLDT 0.01 - - a i f lI - - a t ill . . e t if f 0.10 1.00 10.0 100.0 Frequency (Hz.)

Time History vs Power Spectra Techniques Floor RS in the Aux Bldg at Elev. 594 (7% Structural Damping) 10.0 r

,,,I

.. ggy i

sq File : TH817P2.rs Z -

Damping .005

~~

as in- sua T1= n"=7

- ll 1.,., .

,t .

t .

'e 1.00 g -

S = '

C ____ Fi l e : P817P2.rs Z ,

,. 'm Damping .005 O

k ~

as rn= smsr esc e ,- -

m ,

e ,

E 0.10 -

E/

= -

.g

~

Pc Program RS. PLOT novision 2 0*01 - - ' ' III ^ ' ' I ^ "'

0.10 1.00 10.0 100.0 Frequency (Hz.)

L _ _ _

Time History vs Power Spectra Techniques Floor RS in the Aux Bldg at Elev. 594 (7% Structural Damping) 10.0 _

,,g

-Z -

~

File : TH817P2.rs Damping .05

- as in. swa Tw at. tory

?e 1.00 -

J l '

=

~

Z M/

g '

~

____ File : P817P2.rs Damping .05 c

as rn= case eso u

E 0.10 =

=__ -

~

l PC Progree RS_ PLOT l Revision 2 0.01 - - ' 8 III - * ' III - - ' 'III O.10 1.00 10.0 100.0

! Frequency (Hz.)

l I

Time History vs Power Spectra Techniques Floor RS in the Aux Bldg at Elev. 594 (71 Structural Damping) 10.0 _

,g, I -

File : TH817P2.rs Damping = .15

- ~

astr snes.Tw maarv t

ta 1.00 -

~

r -

____ File : P817P2.rs c

M ~

Damping = .15

[ -

as tr= ene eso f.L -

= . ,, -

E.3 .'

< 0.10 ,

' ~~~

- / -

~

l Pc Preeres R5_PLor novielen 2 0.01 - - = ilII - - ' 88II - ' ' ' III 0.10 1.00 10.9 100.0 Frequency (Hz.)

Time History vs Power Spectra Techniques Floor RS in the Aux Bldg at Elev. 577 (7% Structural Damp. ?

10.0 -

- = -

=

- =

iigl IIgl i lft

~

~

File : TH817P1.rs Damping .005

- ~

R$ fr m STRIEL time mistory 1.00 N -N

~

e

~

ly' '

,, =

i , -

File : P817P1.rs IN" ;i

- ~

c ,

Damping = .005 3,

_ T I'Y '

s*, _

as in- ease eso a .

c , -

0 -

o E 0.10

.=

=-

PC Progree RS_pt.0T 0.01 - - ' IIII - ' f ilI - - ' il f lII O.10 1.00 10.0 100.0 Frequency (Hz.)

Time History vs Power Spectra Techniques Floor RS in the Aux Bldg at Elev. 577 (7% Structural Damping) 10.0 _

,,,y .

,,yy -

ig

~~

File : TH817Pi.rs Damping .05 as rn- same. n= m corr

. 1.00 E 3 ____ File : P817Pi.rs

- ~

c .- - Damping .05 O V -

as rn- unst eso

o. .s .

N, o

E 0.10 _

= x PC w on R5_ftDT Revision 2 l 0.01 * 'lII - - ' 'III l

^ ' ' ' 'Il 0.10 1.00 10.0 100.0 Frequency (Hz.)

l l

l qll -

1 s) eg s

r.

s n y n r. T ui i P5 us 15 O qp s 71 t a P1 L

1 . 7 . P_

i e . s nD 8 H= m 1

8 - o s

a e

T gn P e h la g sr n cr  : nu i s

n as i

r eo eut ep -

l sn r ep =

l m nr r

P T cu i e s ia s C e r FD a FD a P at S _

r _

0 t %

c (7 1- -~ -

~

~ ,- -

- - I 0

0 e7 p7 1-l l

I 1

3 5

S . = =

v -

rel -

~

~ -

- eE - -

w t '

oa 0 )

P s l l 0 z 1 H(

d p

l l l i sB l s t y

v x c u = a n N yA .

. e u

re q e

oh t ' .

F r

t 0 si n o,

0 i S

]

I l

1 HR 1

1 l

' I

t r

eo o

  • l
  • ml - -

i F T '

/ -

. -- 0 Z~ 1

- - - ~ . [ . ___ - .

0 0 0 10 .

0 1 0 -

0 .

1 1 0 0

  • m~ @ t.e p e o E lil(l1ll