ML20237K130

From kanterella
Revision as of 13:37, 24 January 2021 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Rev 1 to Offsite Dose Calculation Manual
ML20237K130
Person / Time
Site: Peach Bottom  Constellation icon.png
Issue date: 03/13/1987
From: Cotton J
PECO ENERGY CO., (FORMERLY PHILADELPHIA ELECTRIC
To:
Shared Package
ML20237K112 List:
References
PROC-870313, NUDOCS 8709040208
Download: ML20237K130 (43)


Text

. . .

. 4. . * .-.. . .

..17 --

  • CONTROLLED APPROVE' -

.g.- , , , VOID PREVIOUS ISSUL i.

1 DI"7RIBUTION PER A-

..t \.

i-

,_..-. u_.  ; - .

E .

Offsite Dose Calculation Manual

. Revision 1 ,

~

. .c. *

  • / .

3

~

~

Peach Bottom Atomic Power Station '. '

Units 2 and 3- .'

l F -

j . .

Ph'iladelphia Electr'ic Company Docket Nos. 50-277 & 50-278 PORC Approval: MM ,

J//S/P7

/PORC ' Chairman / ped A-f4 h7,e/ 7 Dite

  • e

?. . . . .. ~. . .

1 i

i 3 4

!?R'1888"S$8S"g!;7

R ,

Wwa=Titi=,w i 5",F+. k- i: :+ :W:yM: - ~

7 '

k, lit.Dif8/563D$@nifdM&MMR$3fFJIfif/.lfJEi$: VYrNSWMEW?t',d?"MA'D.

27 (-lW4 , %QM;;;MSf?g:5 'li?ssiMEW/NM5EMM94/9?BWM 3 &ht.w ?9:= W==44=m~  :

l l .

u OILED APPROVED COPr.-

f YOID PRE 7IOUS Isspg " Table of Contents

1) DISTRIBUTION Pye g '- -

a ,

I. Purpose F

II. Instrument Setpoints III. Liquid Pathyay Dose Calculations f

)

5 I A. Liquid Radwaste Release Flow Rate Determination l .

$ B. Surveil 11ance Requirerant 4 8.B.2 l

C. Surveillance Requirement 4.8.B.4a i

.IV. Gaseous Pathyay Dose Calculations Surveillance Requirement 4.8.C.1 A. .

l, B. Surveilla'nce Requirement 4.8.C.2 ) ,

i C. Surveillance Requirement 4.8.C.3 i ., D. Surveillance Requirement 4.8.C.5a .

. E. Surveillance Requirement 4.8.C.6b

!  : y l

, V., .

. Nuclear Fuel Cycle Dose Assessment - 40.CFR 130 l

f A. Surveillance Requirement 4.8.D ,

t VI. ,

Calendar Year Dose Calculations f A. Unique Reporting Requirement 6.9.3.2 t

j VII. Radiological Environmental Monitoring Program A. Surveillance Requirement 4.8.E l VIII. Bases l

r I \

2 i c

I.

t I -

l r

l L

$ e i

s

-_ -- .__ --- - _ - - _---____.___________-_____.m______.______m-_ _ _

t

, s Rev. 1 f I. Purpose l

l The purpose of the Offsite Dose Calculation Manual is to l establish methodologies and procedures for calculating

~ ~ ~ ~ ~

doses to. individuals in areas at and beyond the SITE BOUNDARY due to radioactive effluents from Peach Bottom Atomic Power Station. The results of these calculations are required to determine compliance with Appendix A to Operating Licenses DPR-44 and DFR-56, " Technical Specification and Bases for Peach Bottom Atc.nic Power Station Units No. 2 and 3".

II. Setpoint Determination for Liquid & Gaseous Monitors l A. Liquid Radwaste Activity Monitor Setpoint Each tank of radioactive waste is sampled prior to release. A small liquid volume of this sample is analyzed for gross gamma (well count) activity. This

analysis is performed in a.NaI well counter. This l i

, . well counter has a counting efficiency similar to the

, . liquid radwaste discharge gross activity monitor. The l well co'unter and liquid radwaste discharge gross activity. monitor are calibrated against the same ~]

liquid radioactivity source in'the geometry to b^ used. ~

by eact detector. An efficiency is determined.for .,

each rJdwaste tank to be released. Exceeding the expecteo response would indicate that an incorrect )

l } sample had been obtained for that release and the release is automatically stopped.

t S.P. = (Net CPM /ml(well) X Eff W/RW).+ Background

CPS S.P. = Liquid Radwaste gross. activity monitor setpoint in CPS .

NetICPM/m5(well) = gross gamn!a activity for the ~

radwaste sample tank determined by the well counter.

Eff W/RW = conversion factor betw'een well counter and liquid radwaste gross activity monitor (CPS (R/W

monitor).- CPM /ml(well)).

Background CPS = Background reading of the liquid

  • l radwaste gross activity monitor l (CPS).

1

w . . . . -

Rev. 1 The alarm'and trip pot setpoints for the liquid radwaste activity monitor are determined from a calibration curve for the alarm pot and trip pot. The alarm pot setting includes a factor,of 1.25 to allow for analysis error, pot setting error, instrument .

error and calibration error. The trip pot setting j includes a factor of 1.35..to allow for analysis error, 1 pot setting error, instrument error and calibration ~

error. The flow rate determination includes a margin of assurance which includes consideration of these i errors such that the instantaneous release limit of 10 l CFR 20 is not exceeded. .

B. Liquid Radwaste Release Flowrate Setpoint

, Determination The trip pot setpoint for the liquid radwaste release flowrate is determined by multiplying the liquid

. radwaste flowrate determined above by 1.2 and'using

. th'is value on the appropriate calibration curve for the discharge flow meter to be used. The Peach Bottom radwaste system has two flow monitors (high flow (5 to 1 300 gpm) and low flow (0.8 to 15 gpm)). The factor of ,

1.2 allows for pot setting error and instrument error.

The flow ratc determination includes a margin of .

~

assurance which includes consideration of this error such that the instantaneous release limit of 10 CFR 20 is not exceeded. .

C. Setpoint Determination for Gaseous Radwaste The high and high-high alarm rr t points for the main stack radiation monitor, Unit 2 roof vent radiation monitor and Unit 3 roof' vent radiatio,n monitor are determined as follows-High Alarm - the high alarm setpoint is set at approximately 3 x the normal monitor reading.

High-Hich Alarm - the high-high alarm setpoint is set at a release rate from this vent of approximately~30% of-the instantaneous -release-limit of 10 CFR 20 as specified in Technical Specification- - 3.8.C.l.a for the most

, restrictive' case (skin or total body) on an unidentified basis. - l To determine these setpoints

Rev. 1-i i

solve the gaseous effluent ~ dose rate equations in section IV.A.

of the ODCM to determine what main stack release rate and

, roof vent release rate will produce a dose rate of 150 mrem /yr to the. total body and a dose rate of 900 mrem /yr to i the skin (30% of the limit of 3000 mrem /yr) from each release i

> point. Using the smallest (most i

restrictive) release-rate for each release point determine

, monitor response required to produce this release rate q J assuming a normal vent flow rate and pressure correction ]

factor. Set the high-high .

! alarm for approximately this .

l monitor response. ,,  ;

D. Setpoint Determination for Gaseous Radwaste i

i .

)

Flow Monitors ,

The alarm setpoints for the main _elack, flow monitor is as follows:

t-

~

Low Flow Alarm - 10,000 CFM. - This setting insures l

that the main stack minimum dilution

, flow as specified in T'echnical Specification 3.8.C.4.a is maintained.

l The alarm setpoints for the roof vent flow monitors l ,

are as follows:

i 5

! Low Flow Alarm - 1.5 x 10 cfm'

! '5

! High Flow Alarm - 5.4 x 10 cfm l III. Liculd Pathway Dose Calculations f*

r A.

Liquid Radwaste Release Flow Rate Determination l Peach Bottom Atomic Power Station Units 2 and 3 have

} one common discharge point for liquid releases. The

following calculation assures that the radwaste t release-limits are met. -

i

  • ee 6r= = " ~

s r i' t

I k

6  ;

j Rev. 1 The-flow rate of liquid radwaste, released from the site to areas at and beyond the SITE BOUNDARY shall be such that the concentration of radioactive material l i after dilution shall be limited to the concentration i specified in 10 CFR 20.106(a) for radionuclides other than noble gases and 2X10 E-4 uC1/ml total activity concentration for all noble gases as specified in l_ Technical Specification 3.8.B.l. Each tank of j radioactive waste is sampled prior to release and'is quantitatively analyzed for identifiable gamma emitters as specified in Table 4.8.1 of the Technical  !

. Specifications. From this gamma isotopic analysis the {

maximum permissible release flow rate is determined as  !

follows:

! . Determine a' Dilution Factor by:

Dilution' Factor =

} uCi/ml i -

MPCi ,

A L r ).

l uCi/ml i =.the activity of each identified .

l gamma-emitter in uCi/ml , ,

~

MPCi = The MPC specified in 10 CFR 20, Appendix r

B, Table II, Column 2 "for radionuclides '

-4 .

other than noble gases or 2 X 10 uCi/ml -

l ,

for noble gases. ,

Determine the Maximum Perm'issible Release Rate with this -

! Dilution Factor by:

I 5 Release Rate (gpm) = A X 2.0 X 10 B X Dilution Factor A = The number of circulating water pumps running which will provide dilution 5

2.0 X 10 = the flow rate in'gpm for each l- circulating water pump running

~ '

B = margin of assurance which includes consideration of the m'aximum error in~the activity'setpoint, the maximum error in the flow l: ,

setpoint, and possible loss of 5 out of the'6 i

,- possible circulating wat'er-pumps during a - '

l release. The value used for B is 10.0 i

Rev. 1 f

s L* B. Surveillance Requirement 4.8.B.2

?l

(; i Dose contributions from liquid effluents released to b  !' areas at and beyond the SITE BOUNDARY shall be h calculated using the equation below. This dose g calculation uses those appropriate radionuclides

'4 listed in Table III.A.l. These radionuclides account b

for' virtually 100 percent of the total body dose and bone dose from liquid effluents.

J a

e Fr *

?

./

1 g . .

1 s.

a

) .

J .

l\

l ..

I 2 .

.I j .

4 6 '

5 4

0.

3 s

9 .

r3 .

l 4

s... .. . ,

? .

t Y

.I i

. , / 1 I, .

h 3

)

s L

Rev. l m

D = A T E 23 t 1=1 1

'C il F

i_ i la where: .

D = the cumulative dose commitment to the total e

body or any orga'n,1I, from liquid effluents for the total' time period m , in mrem

$ e t'

, 1=1 1

! 20s t = the length of the lth time period over which 1 C and F are averaged for the liquid release, il . 1-in hours.

. C = The average concentration of radionuclides, i, in

. . 11 undiluted liquid effluent during time. period 2it

, from any liquid release, (determined by the effluent'samplin~g analysis program, Technical Specification Table 4.8.1), in uCi/ml.

. A '5' = the site related ingestion dose commitment i' factor to the total body or organ,'t', for each radionuclides listed in Table III.A.1, in mrem-ml per hr-uC1. See Site Specific Data.**

F = .the near' field average dilution factor for 1 C during any liquid efflu.ent release. Defined il as the ratio of the maximum undiluted liquid waste flow during release to the average flow from the

, discharge structure to Conowingo Pond. .

-III.C Surveillance Requirement 4.8.B.4a Projected dose contributions from liquid effluents shall be calculated using the methodology described in section III.B.

9

    • See Note 1 in Bases i

i 5

Rev. 1

-- 1 TABLE III.A.1 LIQUID EFFLUENT INGESTION DOSE FACTORS

- (Decay Corrected) ,

~~~~

A T Dose Factor (mrem-m1 per hr-uci) i Radionuclides - Total Body Bone 5 5 Cs-137 3.98x10 4.44x10 )

5 5 Cs-134 6.74x10 3.47x10 4 5 P-32 5.93x10 3.28x10 4 4 Cs-136 9.83x10 3.45x10 4 4 Zn-65 '

3.87x10 2.69x10 5 5 Sr-90 . 1.88x10 7.67x10 0 0 .

~

E-3 2.13x10 2.13x10 *

~

2 2 Na-24 2.24x10 4.41x10 .

2 2

,I-131 ,

1.86x10 2.28x10 2 2 Co-60 .

7.40x10 7.40x10

  • 2 2 ,

I-133 ,

1.97x10 2.28x10 2 2 .

Fe-55 1.31x10 8.12x10 2 4 Sr-89 8.83x10 3.08x10 3 4 Te-129m 2.01x10 1.27x10 2 2 Mn-54 9.82x10 9.82x10 2 2 Co-58 2.59x10 2.59x10

  • 3 3 l Fe-59 1.14x10 ' 1.26x10 l 2 3 j Te-131m 4.57x10 1.12x10~  ;

1 2 I

.Ba-140 3.66x10 5.57x10 l t . .. . -

3 3 i I Te-132 1.40x10 2.29x10

]

j ' ._ - - .

-y-l

~

! Rev. 1 l

NOTE: The listed dose factors are for radionuclides that may be detected in liquid effluents and have significant dose i consequences. These factors are decayed for one day to account ,

{_ for the time between effluent release and ingestion of fish by

the maxirhum exposed individual.

i f

f

  • There is no bone dose factor given in R.G. 1.109 for these nuclides.

f Therefore, the whole body dose factor was used.

p e i

9 s

l . .

.c 3 ..

8 g .

{

1

]

y .

7 e

I k i 9

I l I .

,I ta l I

1 1

) . . -

l.

t 8-

d

- , e i ,

- IV. Gaseous Pathway Dose Calculations

! A. ' Surveillance Requirement 4.8.C.1

', .( .

l The dose rate in areas at~and beyond the SITE BOUNDARY due to radioactive materials released in gaseous, effluents shall.be determined by the expressions below:

l.- Noble Gases:

- The dose rate from radioactive noble gas releases shall be determined by either of two methods. Method (a), the Gross Release Method, assumes that all noble gases released are the most limiting nuclide - Kr-88 for total body dose and Kr-87 for skin dose. Method (b), the Is'otopic Analysis-Method, utilizes the results of n'oble gas analyses required by specification 4.8.C la.

, For, normal operations,.it is expected that method (a) will be used.. However,.if noble gas releases are close to ti he limits as calculated by method (a),

method (b)'can be used to allow more operating

  • flexibility by using data that more accurately reflect

. actual releases. .

{ . .

a. Gross Release Method*

t D =VQ +K (X/Q) Q.,

TB NS V NV D

s

= (L (X/Q) +1.lB)h + (L + 1.lM) (X/Q) h

's NS V NV

, l

. where:

.The location is the site boundary, 1097m SSE from the vents. This location results in the highest calculated dose to an individual from noble gas releases.

I'. -

D = total body dose ra'te, in mrem /yr.

TB '

! ~

s l ,

D = skin dose rate , in mrem /yr.

L s L.... . . . .

! 1 I

~\

l .

l. -

,.w n . - ,v .w.a.,.--.a.~.~~_-n.__..r.n.n.w..~..~ ,-. - - ~ .r.

(.a u.a.w. n c a.a.are k

l- Revo 1

)-

J'

-4 V = 4.72 X 10 mrem /yr~per uCi/sec; the constant

i. for Kr-88 accounting for the gamma' radiation

!' from the elevated. finite plume. This constant

[ -

was developed using MARE program with plant n ,

specific inputs.for PBAPS. -

s.- .

i .

I O =

the gross release rate of noble cases.from the j' NS stack determined by gross activity stack 4

monitors averaged'over one hour, in uCi/sec..

4 3'

(.

a K = 1.47 X 10 mrem /yr per-uCi/m ; the total body dose factor due to gamma' emissions for Kr-88 (Reg Guide 1.109, Table,B-1).

-7 3 - .

,.. (X/0) = 5.33 x 10 sec/m ; th'e highest calculated s y annual average relative concentration for,any area at or beyond the S'ITE BOUNDARY for all

{

>y g vent releases.

V .

f 0 '= the gross release rate of. noble gases in gaseous l

NV effluents from vent releases determined by gross c ', activity vent monitors averaged over one hour, in uCi/.sec. . .

4 .

b 3 . 3 E L = 9.73 x 10 mre.7/yr per uCi/m ; the skin dose

! factor due to beta emissions for Kr-87. (Reg Guide 1.109, Table B-1).

j -8 3 (X/0) = 9.97 x 10 sec/m ;.the highest calculated I. s annual: average relative concentration from the stack releases for any area at or beyond the SITE BOUNDARY.

l l -4 B = 1.74 x 10 mrad /yr per uCi/sec; the constant

. for Kr-87 accounting for the gamma radiation from L

the elevated finite plume. This constant was developed using MARE program with plant specific

! inputs-for PBAPS. -

b 3 3

. . . _ . . . . M = 6.17 x 10 mrad /yr per uC1/m ; the air dose factor due to gamma emissions for Kr-87.

[ (Reg Guide 1.109, Table B-l,'.

t . .

f .

.4 Rev.'1

b. Isotopic Analysis Method

^ !.

, l 4 4  !. . .

"j . D =[_(V Q +K (X/Q) Q )

. ,' TB ,. ' i l' is i v iv P

. .. 7 D '

=Y (L (X/Q).+'l.lB )Q + (L + 1.lM ) (X/Q). (Q. )

s i_ i s i is i i V iv_

where:

The. location is the site boundary, 1097m-SSE from the vents. :This. location results in the highest calculated dose to an individual from noble gas releases.

r ,

D = total body dose rate, in mrem /yr'.

c . . TB

,1 D. = skin do'e, s in mrem /yr.

>. S -

j V' = the~ constant for each identified noble gas i i radionui:lide for the gamma radiation f rom *I

. the elevated finite plume..The constants -

, were developed using the MARE program with

  • i t j plant specific inputs for PBAPS. Values are -

r . .

listed on Table IV.A., in mrem /yr,per' l;

[ i uC1/sec.

f Q = the release rate of noble gas radionuclides,

' is . 1, in gaseous effluents from the stack determined by isotopic analysis averaged over one hour,' in uCi/sec.

K = the total body dose factor due to gamma ,

t i emissions for each identified noble gas I radionuclides. Values are listed on Table IV.A.,

3 in mrem /yr per~uci/m .

e

!. 3 ,

j (X/0) = 5.33 x 10 se'/m c  ; the highest calculated  ;

k V annual average relative concentration for i

[ any area at or beyond the SITE BOUNDARY for

[ all vent releases.

). .

s-... .. . ,

L

[ N 4 d

H .s s r -

}'

11 _

[:- .

L .

f~ l W_m .____--___m___ . - - - _ . - _ _ - - - - - . _ . - - - -

~ .~. , ..~ . _ _ . _ _ . _ . _ _ _ - - - _ . . . _ - - _ - _ - - - - - - - _

Rev. 1 ~. .

b = the' release rate of noble gas radionuclides, iv 1, in gaseous effluents from all vent releases determined by isotopic. analysis

, ,' averaged over one hour, in uCi/sec. _

L = the skin' dose factor due to beta emissions i for each identified noble gas radionuclides.

Values are listed on Table IV.A., in.

' 3 mrem /yr per uCi/m..

-8 3 l (x/0) = 9.97 x 10 sec/m ; the highest calculated

  • s annual average relative' concentration from j the stack releases for any area at or bey ~ond the SITE BOUNDARY.

~

B = the constant for each' identified noble gas  ;

i radionuclides accounting for the gamma- '

radiation from the elevated finite plume.

The constants were developed using MARE program with plant specific inputs'for PBAPS. Values are listed on Table IV.A., in i mr,ad/yr per uC1/sec. ^ ~ '

^

M = the air dose factor due to gamma emissions .

l ,

i for each identified noble gas radionuclides.

Values are listed on Table IV.A, in mrad /yr

-3 per uCi/m .

f 1.1 = unit conversion, converts air dose to skin dose, mrem / mrad.-

l-I I

y ,

9 9

e e t b '

  • g

l.

I .

I j Rev. 1 l

t L

2. Iodine-131,. Iodine-133, tritium and radioactive

, materials in particulate form, other than noble gases,  !

with half-lives greater than eight days: '

I .

~~'

r- . . -

I D =

(CF)P W Q +W Q -

L T IS I S V IV y L 3

~;

L where:

I

)

l l' The location is-the site boundary, 1097m SSE from the j

! vents. -

i

[ .

D = dose rate tolthe_ thyroid, in mrem /yr.

T .

-l

~

f CF = 1.09; the correction factor accounting for the use of iodine-131 in lieu of all radionuclides

, released in gaseous effluents including Iodine-133.

t 7 3 P =.1.484 x 10 mrem /yr per uCi/m ; the dose

, I parameter for I-131 via the inhalation ..

pathways. The dose factor is based on the ,

critical individual organ, thyroid, and most,

' t

{ restrictive ags group, child. All values.are '

from Reg. Guide 1.109 (Tables E-5 and E-9).

1

" -7 3 W = 1.03 x 10 sec/m ; the highest calculated

-S' annual average relative concentration for any area at or beyond the SITE BOUNDARY from ,

stack releases. (SSE boundary) ,

i i

Q = the release rate of iodine-131 in gaseous l

IS effluents'from the stack determined by the effluent sampling and analysis program (Technical l

Specification Table 4.8.2) in uCi/sec.

-7 3 W = 4.78 x 10 sec/m ; the highest calculated l l

v annual average relative concentration for any area at or beyond the SITE BOUNDARY for g all vent releases (SSE boundary). -

j L

l l j- . .

- - - ~ -

O = the release rate of iodine-131 in gaseous

. IV effluents from all vent releases, determined by the effluent sampling and analysis program ,

l (Technical Specification Table 4.8.2) in uCi/sec. -

1 f

s .

Rev. 1 TABLE IV.A - Constants for Isotopic Analysis Method (corrected for decay during transit)

Total Plume-

~ ~ ~

Body Skin Gamma Beta Air Body Plume-Air Dose Dose Air Dose Dose Dose Dose Factor Factor Factor Factor Factor Factor B K L M .N V i i i i i i

, (mrad /yr (mrem /yr (mrem /yr (mrad /yr (mrad /yr (mrem /yr per per per per per per Radionuclides uCi/sec) uCi/m3) uCigg 3)_ uCi/m') (uCi/m2) uC1/sec) l Kr-87 1.74E-04 5.92E+03 9.73E+03 6.17E+03 1.03E+04 1.66E-04 i

Kr-88 3.15E-04 1.47E+04 2.37E+03 1.52E+04 2.93E+03 4.72E-04

,Xe-133 1.19E-05 ,

2.94E+02 3.06E+02 3.53E+02, 1.05E+03 1.llE-05

Xe-133m 1.09E-b5 2.51E+02 9.94'E+02 3.27E+02 1.48E+03 1.01E-05

~

Xe-135 6.37E-05 .l.81E+03 1.86E+03 1.92E+03, 2.46E+03 5.95E-05 Xe-1.35m 6.61E-05 2.53E+03 5.76E+02 2.72E+03 5.99E+02 6.17E-05 Xe-138 1.52E-04 7.33E+03 3.43E+03 7.54E+03 3.94E+03 1.46E-04 l The values K , L, M , and N are taken from Reg Guide 1.109, l . i i i i Table B-1.'The values B. and V' were developed using the MARE i i

. program with plant specific inputs for PBAPS.

p l

i

} .

g I

l l

1

t . .

h*s c.

, Rev. 1 p

J s IV.B Surveillance Requirement 4.8.C.2 l

E The air' dose'in areas at and beyond'the SITE BOUNDARY due to noble gases released in gaseous effluents shall be determined by L  : the expressions,below.

l: The air dose shall be determined byLeither of two methods.

L Method (a), - the Gross Release Method, assumes that all noble f gases released are the most limiting nuclide - Kr-88 for gamma radiation and Kr-87 for beta radiation. Method (b), the l Isotopic Analysis Method, utilizes the results of noble gas L analyses' required by specification 4.8.C.la.

l For normal operationsi.it is expected,that Method (a) will be used. However, if noble gas teleases are close to the limits as

calculated by. Method (a), Method (b) can be used to allow more L operating flexibility by using data that more accurately reflect l- actual releases. ,

I

1. for gamma radiation: ,

.i .

y }

a) Gross Release Method

~

D y, = 3.17 x 10 (M (X/Q) O ,+ BQ) /

,_ v v, s_j where: .

The. location is the SITE BOUNDARY 1097m SSE from the vents. ,

This location results in the highest. calculated gamma air dose from noble gas releases.

D = gamma air dose, in mrad.

I

-8 3.17 x 1G = years per second.

4 3 M = 1.52 x 10 mrad /yr~per uC1/m ; the air dose factor due to gamma emissions for Kr-88. (Reg Guide 1.109, Table B-1)

-7' 3

,(X/Q) = 5.33 x 10. sec/m ; the highest calculated-V annual average relative concentration from vent releases for any area at or beyond the SI.TE BOUNDARY.

'**=%,

! _____________ - __ ______ _ __ - __ a

.,,, w.m m u m u m w m m ;n.;;magg.; w w +2 w ;aus.3.g . a.a ag?S5MM$$P 22.N hk2kiS%WS$$20NrWESSS$N5IfEMVEN3lE21PhiWE*ENWS?' 30%

Rev. 1

'Q = the gross release of noble gas v radionuclides in gaseous effluents from all vents, determined by gross activity vent monitors, in uCi. Releases shall be l cumulative over the calendar quarter or '

year as appropriate.

-4 B = 3.15 x 10 mrad / year per uCi/sec; the constant for Kr-88 accounting for the gamma radiation from the elevated finite plume.

The constant was developed using the HARE program with plant specific inputs for PBAPS.

6 = the gross release of noble gas S . radionuclides in gaseous releases from l the stack determined by gross activity stack monitor in uCi. Releases shall be

). cumulative over the calendar qui ter or year as appropriate.

b) Isotopic Analysis Method

~

-8 D M (X/Q) D +B D E = 3.17 x 10 iI ,i '. v iv' i is ,

where:

The location is the SITE BOUNDARY, 1097m SSE from the vents. This location r'esults in the highest calculated gamma air dose from noble gas releases.

D y = gamma air dose, in mrad.

-8 3.17 x 10 = years per second.

M = the air dose factor due to gamma emissions i for each identified noble gas radionuclides.

Values are listed on Table IV.A, in mrad /yr l 3'

per uCi/m .

Rev. 1

' ' i t .

-7 3 i1 l (X/Q) = 5.33 x 10' sec/m ; the highest calculated .l V average relative concentration from vent j releases for any area at or be' yond the

. SITE BOUNDARY.

- .. ~ 5 -

D- = the release of noble gas radionuclides, i, iV in gaseous. effluents from all vents as determined by isotopic analysis, in uC1.

Releases shall be cumulative over the j calendar quarter or. year, as appropriate. j B = the constant for each identified noble gas i radionuclides accounting for the gamma radiation for the elevated finite plume.

The constants were developed using the MARE l

program with plant specific inputs for PBAPS.

Values are list'ed.on Table IV.A, in mrad /yr  ;

per uCi/sec. ,, .l Q z the release of noble gas radionuclides, i, l is, in gaseous effluents from the stack determined j j .by isotopic analysis, in uCi. Releases shall .

, .,be cumulative over the calendar quarter or .

year, a,s appropriate. l l

l

2. for beta radiation:

a) Gross Rel' ease Method

-8 D = 3.17 x 10 N (X/Q) D + -(X/Q) D O m. v v s s i , , where: 1 i

The location is the SITE BOUNDARY 1097m SSE from the vents.  ;

l This location results.in the highest calculated gamma air i dose from noble gas releases.  !

D = beta air do,se, in mrad.

i-

-8 l

3.17 x 10 = years per second.

l i

. l l----,.,

1  !

I  !

1 i

t I

  • t. **"  %*

Q_* '

f: Rev. 1 . .

i' j- 4

'I 3 l o N = 1.03 x'10 mrad /yr per uCi/m.; the air L dose factor due to beta emissions for h .

Kr-87. (Reg Guide 1.109, Table B-1)

~

-7 3

[. (X/0) = 5.33 x 10 sec/m ; the highest calculated L. )

8- v annual aver,a,ge relative concentration from j

[ vent releases for any area at or beyond the i f SITE BOUNDARY. I

. l b .i 0

v

= the gross release of noble gas )

(, radionuclides in gaseous effluents from {

g- , all vents determined by gross activity i

! vent monitors, in uC1. Releases shall be p- cumulative over the calendar quarter or {

year, as appropriate. 4 i

i

- 8' 3 I (x/Q) = 9.97 x 10 sec/m.; the highest calculated

[' s annual average relative concentration from

} the stack r.eleases for e.ny area at or beyond j j . the SITE BOUNDARY. ,

,I l

k 0 = the' gross release of noble gas :

[ -

s', radionuclides in gaseous releases from l the stack determin.ed by gross activity

. stack monitors, in uC1. Releases shall

[ be cumulative over the calendar quarter

[ '

or year, as. appropriate. -

4 b) Isotopic Analysis Method i _

l . D = 3,17 x 10 [ N (X/Q) 6 + (X/Q) 6 j () i i v iv s is ,

f i

(_ -8

, 3.17 x 10 = years per second.

i 'N = the air dose factor due to beta

( i emissions for each identified noble l' gas radionuclides. Values are listed

. 3 1

$ on Table IV.'A, in mrad /yr per uCi/m .

s '.

s w

l~ . . . . ~- s

, Rev. 1 1

-7 3 1 (X/Q) = 5.33 x 10 sec/m ; the highest calculated g g v annual average relative concentration from l vent releases for any area at or beyond ,

. the SITE BOUNDARY. l 6 = the release of noble gas radionuclides, i, iv in gaseous.. effluents from all vents as determined by isotopic analysis, in uC1.

{

! Releases shall be cumulative over the (

l calendar quarter or year, as appropriate.

]

-8 3

! (X/Q) = 9.97 x 10 sec/m ; the highest calcul'ated' s annual average relative concentration from' the stack releases for any area at or beyond l the SITE BOUNDARY.

L 6 = the release of noble gas radionuclides, U, j is in gaseous effluents from the stack as i

determined by isotopic analysis, in uCi. i I

Releases shall be cumulative over the '

calendar. quarter or year, as appropriate.'

IV,C Surveillance Requirement 4.8.C.3 The dose to an individual from Iod'ine-131, Iodine-133,. tritium

and radioactive materials in particulate form and radionuclides.

other than noble gases with half-lives greater than eight days in gaseous effluents released to areas at and beyond the SITE BOUNDARY shall be determined by the following expression:

-8 D = 3.17 x 10 (CF) (0.5) R W6 +W6

. S IS v'IV.

where:

Location is the critical pathway. dairy 2103m SSW from vents.

D = critical organ dose, thyroid, from all pathways, in mrem.

-8 3.17 x 10 = years per second.

CF = 1.09; the correction factor accounting for the use of Iodine-131 in lieu of all radio-nuclides released in gaseous effluents including t

w ' :- v:m . w- ..:r~ +

n- -~ ~ - ~ , , ,we?- ,+ -

i l, Rev. 1 l '. . .

l I l '

i. - Iodine-133.

s r

t i

L -

, u

[- *

~~+.-.L

( 1 r

i c

a  :

e d I

  • i
e. l 4

}; l a

1

~,

b i

$ l e . . l 4 ,

I.

.. I!

h 4.

4

  • ? - * .

4

= .

>< l

.) ,$ ' I

?

)

!i

e. f d' '

. . t

. < 'I

l . . .
t.

A If a 4

?? o st ,

9

'h i

i s i I

4 .

s 3

Tl a

$E ' I A i A,t W

N a

e ,

i. . ,

i u:p *

<I .

.h

('f .

u -

.J -

3 a.t t-4 v g*

20 -

'e

.i r .

2 L

11 $ q

  • h .

q

Rev. 1

e-L' 0.5 =

fraction cf iodine 1 releases which are f nonelemental.

.)

-! 11 2

' !' R = 2.61 x 10 m- (mrem /yr) per uCi/sec; the

-j dose factor for Iodine-131. The dose. factor is

. based on the critical individual organ, thyroid, and most restrictive age group, infant. See Site l Specific Data.*A.

~

, -10 -2

.W = 4.95 x 10 meters  ; (D/Q) for the food s pathway for stack ' releases.

D =

the release of Iodine-131 from the . stack IS - determined by the effluent sampling and- i

}.

analysis program ('iechnical Specification Table 4.8.2), in uCi. Releases shall be t- cumulative over the calendar quarter or

?

year, as appropriate.

I. .

-9 -2 . .

W = 1.14 x 10 meters. ; (D/Q) for the food ' i i v pathway for vent releases. l

~

l. .

j, Q = the release of Iodine-131 from the vent y IV .

' determined by the effluent sampling and

- analysis program (Technical Specification Table 4.8.2), in uCi. Releases shall be cumulative over the calendar quarter.or year, as appropriate. ,  ;

IV.D Surveillance Requirement 4.8.C.5a The projected doses from releases of gaseous effluents to' areas at and beyond the SITE BOUNDARY shall be calculated in accordance with the following sections of this manual:

a. gamma air dose - IV.B.1
b. beta air dose -

IV.B.2 ,

c.. organ dose - IV.C The projected dose calculation.shall be based on expected release from plant operation. The normal release pathways result in the maximum releases from the plant. Any alternative

, ,, , ,.. release pathways result in lower, releases and therefore lower doses.

** See Note 2 in Bases

% c% ,t . # # $4

  • 4 AVh'  % "J* " mal n 9: 4**F*' ~ _  % .P 1 .4**D. .rr .mm_n. m L h A n_im F

g=gg33,_37- ; ;;;_,-x;;;;;zg.yz;;1w;;;. .aJ '

1 Rev. 1 . .

IV.E Surveillance Requirement 4.8.C.6.b

1. The.three types of recombiner hydrogen analyzers used at Peach Bottom are: -
a. Hays" Thermal Conductivity type (Analyzers 20S192L, 20S192H, 20S222, 20S223,

, 30S192L, 30S192H, 30S222, 30S223)

b. Scott Helium-Immume type (Analyzers 30S222 and 30S223)
c. Exosensor Helium Immume (20S192L and 20S222).
2. Th'e calibration gases;for the two types are:
a. Hays Analyzers and Exosensor Analyzers  ;

, Zero Gas - Air .

. Cal'ibration Gas - 4% Hydrogen, Balance Nitrogen

,, . 1% Hydrogen, Balance Nitrogen

b. Scott Analyzers Zero Gas - Air ,

Calibration Gas - 2% Hydrogen, Dalance Air l

1 1

4 0

1 4

4 e 5 e o b '

  • 4 6

Rev. 1

, V.A Surveillance Requirement 4.8.D j If the doses as calculated by the equations in this manual do l not exceed the limits given in Technical Specifications 3.8.B.2, i

3.8.C.2, or 3.8.C.3 by more than two times,.the conditions of Technical Specification 3.8.D have been met.

If'the doses as calculated by the equations in this manual exceed the limits given in Technical Specifications 3.8.B.2, 3.8.C.2, or 3.8.C.3 by more than two times, the maximum dose or dose commitment to a real individual shall be determined utilizing the. methodology provided in Regulatory Guide 1.109,

" Calculation'of Annual Doses to Man from Routine Releases of j Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", Revision 1, October 1977. Any deviations from the methodology provided in Regulatory Guide 1.109 shall be documented in.the Special Report to be prepared in accordance with Technical. Specification 3.8.D. ,

I' The' cumulative dose contribution from direct radiation from the two reactors at the site and fr.om radwaste storage shall be determin,ed by the following methods:

l Cumulative dose contribution from direct radiation =

. Total dose at the site of interest (as evaluated

~

l -

by TLD measurement) -

Mean of background dose (as evaluated by TLD's  ? 1 at.backgroqnd sites) ,

L Effluent contribution to dose (as evaluated i by surveillance requirement 4.8.D)

This evaluation is in accordance with ANSI /ANS 6.6.1-1979 Section 7. The error using this method is estimated to be approximately 8%.

VI.A ' Unique Reoorting Requirement 6.9.3.h.(3) Dose Calculations for 4

i the Radiation Dose Assessment Report l The assessment of radiation doses for the radiation dose f assessment report shall be performed utilizing the methodology

! provided in Regulatory Guide 1.109, " Calculation of Annual Doses i to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Complian,ce with 10 CFR Part 50, Appendix I", Revision 1, October 197.7. Any deviations from the i methodology provided in Regulatory Guide 1.109 shall be j documented in the radiation dose assessment report.

j The meteorological conditions concurrent with the time of l release of radioactive materials (as determined by sampling l... ,

i ,

l a

J l

-_ _ . _ _ . - _ . . . . - . . - - - ~ - .-

___.-____7__

q

.: Rev..1 , , ,

i l'

['

frequency of measurement);or' approximate methods.shall-be use.d I

,as input to.the dose model.

~

p 3

The Radiation' Dose Assessment. Report shall be submitted within 120 days after. January 1 of each year in order to allow, time for

. the calculation of radiation doses following publication of- i

?< radioactive releases in the Radioactive Effluent Release Report.  !

h There is a very short turnaround time between the determination .;

I3 of all radioactive releases'and publication of the Radioactive  !

!  ; Effluent Release-Report.. This would not allow time for 3

L calculation of. radiation doses'in time for~ publication'in the  !

same report.

O ;VII.A' Surveillance Requirement 4.8.E

q. ..

I- The radiological environmental monitoring l samples shall be  !

!i collected pursuant to Table VII.A.1 from the locations shown on-  !

g-Figures VII.A.1,,VII.A.2 and VII.A.3 and shall be analyzed i pursuant to-the requirements.of Table VII.A.l.. ,

6 -

1'_. ,

{- .

t.

y x . . , 4 f

t. e '.; i
  • i l ,

o L.,  !!1 f

  • f\

4

( >

r '

w . , ,l 3

((c ,

g i J

( ~Y p l- l p f 3

j 1

['js . .)

t' , , ,

a y:

i s

..s. . m. -

  • s l

f .

t '

5 k

j1t n .

et s l l grs t r o da naa s f' edr rc so e eo t nt

^ , oi cn , oare r nl s 5 r nan el e e o ch1 i ohee t al c ,c ac tit th v nri s e2asc T o i emenlf v dooo inT1.t seso ren.c l e5iio m3 v ds as vt hw 3 no yeesnn i doac5 et erssnoo csnrl s5 stl a oobdt hi eoPi t eaapu,s p p .

hB a n pT t oa sl ysose

y. c Tue aot l rnpel h- oc.t ns deao ci ecsB xdst nwdinnm ran en uy a nti e eeoe oyot . sua d6 wPit nt s t aot ni.

o n ti s r P b. o n r n ,bsos0 .

i s

shaSoodCt o et c tii .t ge cnrfi c ct a

t s e yt r snt t a eo i e

.sn ,

s i wf1 eioove i oit myti u s i swt s disnrbit c

s

^ cm oiee t t orSa Dceel nndll eaecf a c i Lnptl ooiil hthineno D TaSI aCmsma T st vinOl m

o

  • _ t t '

~ no '

oB f f f o

~ i f f f o o M t h o .o o- f

_ A cc E w o E .

R ea E W; S E

- G re S N S S N

w W S

S O

i P R D s s s s s s s P -m e e e e e e e no l l l l i l l G or i i i i t i i N i f m m m m m m m

_ I t R ae ^ .

O cc 3. 3 5. 3 .9. 3 7. 3 3 3 7. 3 6. 3 6. 3

.T on 0 0 0 0 0 0 0 I

N La t

0 1

ns e2 e2 e? e2 2 2 e2 e2 e2 1  ? oi t t t t t t t

_ . iD i s i s is i s s s i s i s i s L t St St St St t t St St St A. A ad i i i i i i i i i I

V T t e nn nn nn nn n n nn nn nn N S s, OU OU OU OU U' U OU OU OU E .

E M

L N B O A R T I y V d t N n t.r E ae d.

m i 1 2 R L sa c s s

_ A eN t n

- C l pn V mn mn mooi m oo oo e m

o m

o .

m m m I

o o o G mo y tt ti tt t y t y t t t t

- O ai sr t t t t t a t r t r t t t t

.

  • L St na oe oa ot o a o a o o o o O a od Bt Bt Bs Brd Brd Br B n B B n I ft i n S S b on on o o o

_ D oS t u h h hu ht u ht u ht h i h0 h i A ao cr cr cS cco cco cc c t c7 c t

_ R re cB ae ae a aeB aeB ae a a a2r a a el o eh eh eh eS eS eS - eht e o eht bo Le Pt Pt Pt P e P e P l Pt s Pet Pt s me t a a u 0t 0t 0l rb t c ub

- ua 7i A e Be Co D4i E5i F' 0i Gou Hie 1 ou HS 4S 1 W 1 w 1S I 1S 1 3S 1 2H 1 NS 1 SS 1 SS

- . +. , F ,

  • b

- n

,L. o i

- y t

- a a

. w i he d t t a ao R

_ P m ,

e5 s t c ,'

_ r a -

_ ur '.

- so t

- o/ O pd sa " .

-b Eg 1

, o

  • , jjij }sJ g 6 i

g 'e,' 9' .

.'lj"k r a' .

'l

a ,t

,II Yn!

I M1 u

v e

R n

e t

s s

u c

  • a 4 l

D ,

m r o , a t e s e t s Q e n no 3 oB

.e rf l s 3 i

l ao f i

& e i

h o f m l cf &

M t h f m cE o A cc o 2 i i o R ea sS W 2 m r 2

.2 i 5 E s G re 5 Ds W S 1 t W O iP 30 e t 6 cN s R D s 3 l l s s i

e t P -m e e t n 4 l s id t : ai e u3 U ee na no l i e& nm 'l l o -

G or i nr a i i b&

A3 ol Uo N f P ri R 6 if m Uu2 C0 m m a o dm I

R t

ae rcs t

r1 2 .& y f

og 2

O cc 7. 3 a W d2 n T on aut a 3 5. 3 9. 3 es S l H 8. 3 Ni 0 eri e: 0 0 rt es I L a nt n f 5 r N t .& SU ne&

r .& .& Ai n

s e

i t o

.& sp O ns a2 d d u2 e2 e2 eU l fi en f n2 eS 1

M oi t eef et t l

iD l s t k o t cs i s t t i kU oo i r L t $t aa is if m a ois me A. aut St St So Wf rt t v A ad i ctE cri T t n nn i i 6 o ai I

V N S a OU onN ot n nn nn nw t nt n 6. ti E

LIE LsU OU OU I S 3 AE OSU 35 E M L N B O A R T I V d N n E ae m

L se A

C leN m m me m

o y g

pn m A m n I o o og t m o G mo t t t r t o t t

t P a Dc i

r O ai t t t a o t t n A L St o o oh

. i p 1

B t t o t P d dr O a B 1 B B c o B e S

I f t s t

n l ot 1

h B i a i .o e oc D oS n H h hi c 0M ne V at. i we r

e A cO c cD a h3 - r R re aBr a3e a e e t t a

f t l n v el et o e k el P c1 r a

eA l e l eo i bp o e 1 et k ooi t P et Pt a P a e eet Pe Ds a mm ua t c i t n Nt Pt c t 1

M b W Hrt da 5d a

Jt e Lnn Ma Ni i e 0i A u B yt NS I $S 1 UI I C 1 S 2SS 4S 5 5 e 3S 5 6HS 1 R

  • . . r y

a w

he t l ap P m a

eS r

ur so o/

pd s n E a

!li 1i

- jf t

- ~

[

m 1

v .

_ e R

_ ~

_ e r *

. i s

' s u .

- c

. s ,

i

~~

D

~

m

- o

- t t

3 3 3 3 3 3 3 3 3 * '3

- 3

_ i no & & & & 8 3 & & 3 &

9B & &* & '

~

1 2 2 2 2 2 & 2 2 & - 2

^ M t h 2 2 2 A cc s s s s s 2 s s 2 s

~ R ea s s ,

t t t s t t - t t t G re i t t i i t i id s i i 's t O iP n i i n n i n na t n n t n

- R D U n nd U U n U Uo i U U i O

- P -m U Ua U R n n

- no f o f f f f U f f U f G or o f fR o o f o oe o o c

- N if od o o l f f

- I R

t ae E

S Wo a

E w n *W N

E M E E

N El o W WS o S

W Si N O

T cc on E NR So t

N N N E S v t

5 S WW W I La s sb sp s s s s sn s s s s s N t e ea el e e e e ei e e e e e O ns l l t l i l l l l l l l l l l l 1 M oi i iS iP i i i i iF i i i i i L

iD t

m m r

m r

m m m mm r m mmm m

_ A. A ad 0 a 2 0 1 3 a 3 1 9 0

2. ae 9. e
5. e I T t n . C. .

V N S a 4 4 n 4 n 4 5 5 3 4 n 4 S 4 4 4 E -

E M L N B O A R ~

T I V d N n n e E ae p e o n m i n i i g L sa b h i t L n n A eN d a s L a i o C l a L n t e p i I pn o w i y k k s n m t G mo R l o l e e e b o u a O ai w d na T t n e e u t P t

  • L St e e n ut H e r r S s s

_ O a i e w Rn e e C Cp a O b I f t v R o e r n M m n n C u D oS r t ym o e d da e o S S

_ A e b o dn m h - a aC t C N n R re v a l do ul s o o c - A o n el i t i ur ro o B r rt a B Ri i bp Rd S P Mi Do Gd P B u M P Tt F mm a v B. o h a a ua 7 o 6 1 2n 3 c 4 o 5 6 7 c 8 9 0t 1 NS 1 R 2 3 4E 4S 4R 4 4 4S 4 4 5S 5

_ . * . t

  • _ \I J y

_ a w

h e t l ap P m ,

a eS r

- ur s o ot pa s n E a *

~

,,], ' . . "

",l- l 1, [ A  ! ' 3~ +

2 ,,

.,f '

l 4.'y, '

j; e,2'

' l j1 lW :H

(

1 v

e R

n o

i s

s .

u c ,

s i

D e

, r a

e m t n

o a 3 3 3 .

t t s 3 3

, t 3 a & & 3 & t no . ri & &

oB & 3 2 2 & 2, en . k i

wU 2e 2 M t h 2 & s s 2 s o e A cc t t t Pf sr s R ea sn 2 i i s

  • o tC t G re n s t o n n t nn o i i O iP o e ii s U U i Uo gE ns n R D i l nt t nA i nS Ur U P -m t .i Ua i f f UP f t i e -

no a .m3 n o oD oa ws G

N if or i p dr4&

f s oo t

U A WP A

W M f or E s t oe nl

. f t oe P

f od a

8 2

I t ao6 u f P N 5 . e Sb oi E E o

- R O

ae cc RC 2 ES o W. $r Wt E u Cm Sf MR -

n i Ns S Eo N T on f tA s sm We. so sA Na s f6 e I La onPt ea v ei e c es o sh sl N t e i l h so l L l l sn l i 8 et eg O ns f m .n i g er i e ea ir f l u l a 1

.M iD oi oe oga

.U i

l G imd e

mB l L mra o .

oe3 io mm m iE A.

L A

t ad ral f nio 8.mnt t imn w 6. R 1

.a r imr a 9. H rs u& e r

I T t n nah 2o 0 a 0t 5 e 9' e 0t no' 9. h 4. ae V N sa OMPE 1 N 1 F 2a 1 n 1 n 1 a Oh2 1 t 2 n E ,

E M L N B C A R T I V d N n E ae m t D L sa e A A A M A eN e P P P t m C l r A . s af k I pn A t .

P D . e e Do e G mo PS m. e M r '1 r o e d O ai a v . e 1 e oR r a

. L St .t h o n . t 1 t g C o O a . e gn r o r s vn n neis R I f t ek no G i i a so I s D oS l r ii L A c i i -

wu r e A t i a t t n n rt l oo e l R re n hM t a w d l a ra a nh t g el a P a e e ice Ce or ot L at e a bp mm t

s 90 8 Ns b

F R Ba e Be a Hs b w P E ua i 25 6u 8 9 0r 1 r 4 u p K o 4 2 NS D 1 3 1 S 1 1 2A 2A 2S S 4P 1 2 5 . . . r

  • a y

a w

h e t l ap P -

a eS r

tr sc o/

pd s n E a

- * ,, (

- i n r a

- - e .ddr r h nA oeu

~ e t o1 t t t v i csc e o r.ay t niea c aodtf

~ r, et ni l ti a . u st Rnn ol n o a ea

~ ~- 9 f aOu enDman dn ouo u/ml t r ,t ssnb e o e .

lf i

.em ehs ial cnc pot vt e

~ ,

y v e n ot veaa m

adeh yi sa m g

. rseh sac bt pel ~t t d eI h

.sn h et cel

,. sgd ea nsel cl ninyh i nmhna ohurg . diawa i oaiO o s mt

- n o

t erdh/

ahgn D l d

. oeeeo sra

~

i s

tt s

ue n i shgfd

  • eoheo dut dre s

e

  • f gb t gi a ies u eoa at rssrpu

~ c = s rehra i i t

~ s e e'e t t ec r rre

!- i - hgviivo oZt aor

~ D T a a. s w a l F1 I cf a

=- . .

w -

3 g

tJ '

~ a 3 3 2

- ( 3 3 no 3 & & 3 ,~ n n3

~.

oB o& o &

  • i - & 2 2 & i i& f

~ M t h s . t2 t o 2d A cc e 2 a s 2d a a2 n .

>. R ea l t t a t s t E sa G re i s id i ao St Ss S t l w

.- O R

P i P D

-m m

3 t d ia no na n Uo U R

tR i

nm rn eU i

ri en t

s e

iy nr Ua s no 0. & UR f f Uo h hU l M

c G or 1 ol o t tf t i f N if 2 f r l ft ao af m of r I t l oe Ei E oo e eo o R ae l s p NH N B wE w w O cc it 5o E E E S N 9. 3 SN

- T on Hi o e h t -

t 0 I La n sC st s sc as as ss N t eU e ea e ea e e .& ee O ns t l . lt l l e el el 'e2 l l 1 M oi if iN iS i i P ti ti t iir

~ . iD so m m m m im i m i s mme n L t - r r r S S St d A. A ad fE a a 7 3 5 i r

6. e 7. e 0. ae 6 5.o I T t n fS n. n nn
n. V N Sa OS 2 n 2n 1 3 J n O0 O0 OU 30b E

E M m

x L

B A

N O

R -

a n T I V

1

.- d -

N n n E ae o e m.

u z

L A

C sa leN m

ml d

o a

nn m mt i

t a

mn 2 i S

t 1

a pn oo I ol R io o oS m1 G mo t i l ai t t t i ot

m. O O

L ai St a

t H Br o

r p

e l

i H

Mt nt a o t

B s

n t r Bh oe oa tt Bt tH t

or A

P n

w r

I D

f t oS ht o o o e t oS h i o

ha t

h-S Bo t ai

. o e A cce C t s r c t ce cr hc t t R re aet a ue a a aw ae ce l a el eSt Fh e c e eh aS et m bo P s N

. t Sd t Pd o . P) Pt e Ds mt 0f a A a a L Z a P0 b w ua 35f 7 2o 3 e 8o A1 8e 3 A u HS 21O 2 3R 3w 3R 5 I( 1 w 21 3S m.

w * + = t

  • w ,tj gI w .

w- y &

_. a s m .

h e w ee nt t l i a a ap e dl

- , _ P m n

a r teuc eS o ci r b it u ur r dr
v. so i aa

- e/ A RP pd

n. mn .

E a 2 a .

~.

+

n

?.f  !,

a

,ij l

  • e' y7  :' u r. y;m {n E

.' ~ * "" n M '9 ^ -

- - , s ,

  • r e

..)'

n s

r e

l me f ars oee na t rao uh

. efd ndt

. ow v o i

t g eet i nh sssl ti t

. an eeoaei di mhhrcrw

m. ok t n oTgt oe r inl ht i

f .ho n l r S cede

-. 1 od nPe hem

, + a r eAh st t e t d k Bt a se u

s v nn aP ,t r e oa t hl rig

, c gtl e a R e enievt ac riwweog

  • a ad wnn

. of neso i t r susaHsd n u eoo i n n 1 s rh , . a o

i s

6 h lprt mu lanms sst

, s nt oo aseiorg a dti an

,~ u ib sunt f o c t k ml ea l s ar l rct ce i

t o i anooho D Sf Mfi pl tt

.n s

- 3 f &

m nt o d s o oe tE t oe2

. t e aN aE ok t 3 r E S was s no e e

~

t t t t t oB &S t* t s e l ni i i i 0 i e hcs oin dn M t h 2t S0 Sl ti e H U nU

- A cc e 2 rl n o R es ak n1 nmi nti t of Pf G

O ra t r o o i cm aio o iP ia . e o

.- R D nM re r D. rl 6 raw t

gE P -m U ek et eE etN nS

- no -

lp S 1 l a lpo- 8 i

i G or f 0 pt pe s ws 0

.~ I N t f t

o3 2

mn3 mg ar mrt mce oe 3 aI adu ail nl R ee E S & Sa syo sri oi -

O cc N? 3 h3 Hb t m Cm

. T on E o s 2 sc s a sc I La u& us& uo ue8 n4 w N t sf o s oi og , ol i

.. O ns eo u2t uD2 unn uE5 d1 1 M iD oi l o ir n i n nio n- e .

isn il s iwi iot t t3 L t m tt U t at t ot t ru au A.

I V

A T

N E

ad t n S a 2h 6t e ni onf CUo nni oan CCU nna oot CCS ndo o yb CHa co&

ob La2

-- E M a

L N B O 2 A R T I se el V d t t eo N n A ii rr E ae P ns e ht m Uo - - t t n L sa . p - 3 - i d o A eN a mm m m s n - c C l pn i oo oe a & m o o I h tC t g D acp P se G mo p t t r 2 Dim nn O ai l o- oe o) ro o oo L St e B Bh g s dt c g5 O a d a

e c nt. t oc n1 i

t ,

I D

ft oS hk ca hse cit i f ei w(t n oe- iwp ar A

l wl co i at aDi o i U ten oa ot R re h en e s n3 s l

- o nr l a el P PI Pt o o3of ooi oT c b p ep C po Hrt C ri mm 0 L3 Mnm .m da t ud ua 2 L Mao L1 oE 1 yt Je on NS 1 I & 1CC 4ECS 6HS 4N Fi

~

. . . . e

. h r

m o

y r f

a e w g t n

. h e e e n ni t l n c i el n ap r a k me o P

  • o f n r i k

~

eS a b r

r u

i r

ido t l eh s i r e S D SS e M ur t g so a . .

. n .

o/ W a b c I m pd s n .

Ea 3 4 ill .l[l1 i li

e , a g g ji i k r n l kl e s n ieu e lit i i ehv rnl i maed n

_ bti d

aoo ir s

el m eh edo ert rnishee r

re ht t af h g oat pct v ozo san lpciT aoaaa

_ f yt l

nat it o f sc mi any sht dnt ot g

. a nt a

hn i 'e. t rewh ecP hs rno uan dee nl r eeem cnei s

mieof t e svnot t t oia bT rsns us

_ 1 edd Ph mot aien . y a

~

rne , wh oSaf l m hant d w aen o e tP rruu t hot e

_ v n ro g ,l A gesh y ti nt t e I egi nsf eBope ar tt an R

l at ie rP r rowaricga .

.p a wl d a pt t heodiil d dmsc opn e

_ eaao nmo shnncea oh t nt dvrpe aa r g

_ vshI oaP t t o ispsc eidr l Cs c i sho ninh i a n ooo* - d uf ti wl nodi t euh

_ o vtC s 4 ro doa , coin rqc i n E m oo~. o cg i ti . nais

_ s i dP r nt ws rt i nymt a-

- s u sw e

.f a oat e icl l prfi auacre ail wmt oel noh si m lid

_ - c mok ti op dpcpht el t pwt cn s rl l e adHm o emt u g t moti e al i h t na ospaaaet earohe

_ iD f amt Si6s F a S s p m v a b s gB wb e

_ m o

t

~

_ t no

__ i oB M t h m.

A cc a R ea sD

_ G re s t O i P e i d R D l no P -m Uo no im3 w G or f t

_ N i f ol I t 9. & o R ae 02 WH O cc N T on .t r I L a ai sa N t en ee O ns rU l n

1 M oi a

. iD f im3 L t eo A.

_ A ad t I T t n iE B. &

V

_ N S e s SS S2 E s

_ E M a L N b ,

_ B O ,

a n A R n h e o T I o r i V d i l tu A t N n t eo f a anm E ae e ac s m cn t eoyi L sa oal i l A eN d l hl S d l lng C l n d ca A ahOn I pn o nh m m P oc i G mo s P ecs s o ra .l d O ai n Pae t . beepe L

O St a

o o g d el d bn st no d

o l

mm

_ i f nbar I f t t n osaa oB o ooaso D oS a i oel i w il f A c w wiih t h t sti k r R re o o t cas ac l eaal e el l n l evt ca o pt vip ep S opaf oe H yeam

_ h- o C Hs t l P t g t

_ ua w f a D eff o HS T 4 62i c 31 6 3viin

= * . r '

s s

t y

c u

a d w o h e r t l P ap P m h ,

d a s o eS i o r F F ur so .

o/ D. c pd x n E a k $l jh jA '

> . . . . .:.-..n. ~w . . . . . . :. . .. . w::.:+~ . ;-s +. . . . -.:. . . . ~  :.. g lh . . . t' ' . .

4 . .

-/ '5 's - I. .m i

~

s g

g / d a t'

'v , - ' j ,W;:., )

\ O'f

__ g

~\ ei -

'~

'_____'s

, _a .

t. _ _ -

/ .* , # .

/ ,

\ _

/ .

\ -==*

%, / y# *

/ # m*

l 4h .

)

g s.. .... . .

( . l 8** 8 r*

i ** *

,.- j."*""* . ,g i .

<s *

. ,o '

a s

/ . i I ( *p *.

v .s e - --

,' .!\

. " *f I *-

se 4ae*.ee e

= 1 4 eeye . 44

-~

.# 6s if 4 y

i, .- .~ ~

3.g.,... ~ __ ,,

... s .

a.*g

  • s 32

,e i l

m i

- < - i g ._ .

S< ,a l '..."s , y .,4, , I (3 u

-- '.' ) i-

_l4

~

f i s.. . '

t.) ~

l. . .; v * '

. 2,

, ;m

.: Q. -

a n -

[~ s .. *' ,,,

i

. 4 u sr f

' p' q.

% 3 af4- a -.\ ; . ..1 y""~ ? .

- 5 3 ..; .3 . .: ... .

_yp:- - :- : _ ~y.- _

, -,_ - = _

5*

..m  ;

. \

u -

,u

<~' -

a j ..

s n

/-

, , 4 ,-

/'

v

)-

N s ,D L

p

~ T' ,

/.

7..

- 3,1"n..,..

- s r ,

i

. g 4, p .

'*\

r . . .. :

M s --

f -

.. /

\. '

.w

v. . .,
  • ENVIRONMENTAL SAMPLING ' STATIONS .

4~

AT INTERMEDIATE DISTANCES FROM' PEACH BOTTOM SITE FIGURE it.L2

  • y,. . [
  • e .

r ; _ - - _ _

V . ..,/ _ ..,....

w.- . . _ ...._..a.

_m .;.. ._.:., -:

p c . D: .

!'i/-l N. ~._ 2 -~ '. .-C ' ~

==&.-:;.,M_g. t-. :~'b- .j g =/.g=..;

p?g.?.w"w~

it .-_ ,, /_ ~; -

';- )- ,__, _

8. .< ,

.'= .. Wi '

r

_=. %.c.,._ ;. <. _ y-=

. . . _ '. -y-

\:. . f ~? .\. a c.'. ; W /s.e- s _.(

. u,. s . ./ _,..

-_- ~~

_d

's-

- ~

y

' g. ._ M. -:- -(~7.N .

-~

E ,._f,. > ,

Ns~ ~ ~ i f. k,. s p~. v,h_,_.

[c..J y ,._. ._M 7 _ (~~~ .- -. .-

~

~~~ .

.=. _.s-c_/~- - -

.i h i~~"._- -!

( __.

. ~

2- '*

l ,S(._.-$ ,:) ^ _,, .:-F_.,

o - -

j

'._g.

- -- - I

.- V*;,,...

,__,_,~2.*t-~~.,,, ~ _/ " -

l _, ,

=- .-

_ -- a

.,i . r. / _- '

r^-

y .

.< \ ~

=- 'i- _

,. -g ~

_h_ $)+h:.'

2 Id7 v-I $ k_ W pv==- _

y. .

~

y . -.

~

.= .l W '.' .:-

4

._ ~ '#

D o ,_

q

. ~

~~~  :": ' '

. .- W i .
. _ . _" _* " .

. . = ._ .D.t"24 *-

O'* ~~

s::: iV~ v.J _._

  • 3..

,,). ~~~~

- 'l r ~..- .,_.

~.G.r:.

_~J.~ __, .g_~~

i,1 11.___ g yL4-c ".', __ _g2==.

.f

= ?:5'h5

~

y._- ~~

'e y---r .= a:

.-g p

<+ .-=- .=yk ._ ~~

'*[~) _ , ,

2.__h~ . - .=

- ~-

=. _

.:.= ._.1- *

., . 7 :r

d-q
._Q, s

%y cr- Q

.=.

o__-e- .

. .x ..= .. . -

's--A.c.

l s a g._ _

- _ _ . - u_ ~

5I f

.=_

w2. - \ ._

9 m '~ -

tr-c-- -

/

U ~'"i"~ ida :

_.,~

r g _ __j / v s ..' M.

f hk .

s

'.. ,h t _

== ~ u, _ 1, -- >.x! .= -

' ]i ~~ . y=.p- v .. 4 ._

-= ~ - 9 .<,; . , , s,.; .

.,-s ,f.

2

. ./ . .-

.; s ..

s__

5. g- , , ---9 ..):.m
e .=a.= .l

- _ ... s~ '

c *

. .t--

l_e- : .

.a~'~  ;

. f- *

~~

-=.-

L ...-

%;%':/m..:~f*l;I

"- - G~~~

3

';

  • Q_._ = __./g .: .,

% J* . - -

  • - ' ~ * *

~ r .

7 '. ' .-- j'~~

r-

  • g

'i

% g.. ;.W% ' :'.. - .

e.

c$ 0 % r / */ & . w ,f -~ -

i-n - --. .

- g .

> . , s. w...~~.. ,.

E._mM. -

-- p

;,. .s - . * .

s= v g ,. m -

%S i

.=-

y y

~;-

-r .

d_ j, a. .I C. g:* , * .- - . q.,M .~ - * . _

1

. ~~* 2..y., 1 . .-

, ~ , , . - = .yy\~. \

  • .(), @ , _ . ~ . -_ (

\h 6

i . - n . .,. . -~ -  ;

, s, as' -

j', E ~T!__

. ,a; ,. e, =  %'%. I

) .:

% .a

  • V -

/ e _:1 L

  • ., , -i.y. ._. :_

' -f n N

-7 ._ -

..a';} ' 2. $. . h_, ), m - < .

,!, ..n n% . . na tmn n.

,t .

p,,.- f,,,,._,,

~%_-

.. u.nu sun n.

~

,__, ,, "~ t

. 4..m. n..nmm. '

. ENYJRD'NEENTAL ' SAEPLING STATIDHS A i TtD"'

=- AT REEDIE DISTANCES FROM f.EACH g,1 S0TT08 SI l l,',,annu,c. $id "".un annua FIGURE mL3 -

33 ~;- .

- - - - _ - - _ - _ - _ - _ _ _ - ~ ~ _ - - - - - , - . - -

.. g,* g . g.; . . . ., ...~~'.....7JL..~.~... ~ i ~. . .. . .ii.-~.~-.-i--~~~---..--.--;.7.---w----w..o . . . . .

  • j ';. s 4

.g ,

.... ' .w* g w. . _. _. _ _ _ _ _ _ _, . -.

m .

. , .' w v . _, w x~ _

x=s e = -e -

i

=

w

,-Y . a =>.mm cow-

. ,=a.

u. - m =

.).31. .,e p,s e- . ,s_, .

w>g a.

a

. g.

.~.

, u.

,. Y

T L .

t-

/C ~

u -<- 5

~

t .

[: g D,.CT3 m .*w j k '

s I

  • o .NE m ww- 55ic z w w-se d x<

E go.

_ _,r. _i_1 .

i t- , u. -

u. m a u.

O L o -__'T_'_ 1- $E o

. "s<

C v >-. z z -( . o= c -

g w w a 'wa

~m z;a m

/ ) L ~ ~._

s .= .

m-r

<e c e ,w c.

. c.,

s C

m i t <3 -s c ,

o

) .

( o=

o c s c.

Z C.

a c_ =3 3 m w/
c. C 1

s o_o, a, :

e .

! m cr o x-L a_ u. x 1 a.. ,

> a I I i I .

l' r _,w r _,% / e*<cf r.e-< _,N l .-

l t .

.J o

o xz ce< n+<

x= xz xz

  • < <s Lu </< <> s._

~ 2 W C

i 1 w >- .

e 1w

_, s a

w p<' < cc I

e E . '

t 80) ww

=c .

CE

' g,9 g .

gr m <

r_____ a eo. ,

r - - - - - -> oz m.c .

r I h t- =c =

i 48 . sx mmt -

ew g

I

.l wa t-w c=

ww i

i 4

= ' * - -

-g H o w i c3 m i a m cw cz w on 1 I w w s

.h. , sm =w

<a

( _+_ z>_ g =

m i 8

( g,')z $ < -+. gg -

PHIl.ADELPHIA ELECTRIC..C ,

..e a:s o PBAPS 8 --

a .

i

" ~~

l 8 F UNITS 2 8 3 i

(.

v. .., - .

i ____.____.___.___s "i>'$ ,,,

wx --

t.___._> co rz 3

,,, 5 g -d an. Ew_" O OFFGAS RADWASTE g=w E ,_ 5=5 c "-it

w w

os TREATMENT SYSTEM

c. eC ~, O ce <:

u3 2 wc ,_ C M =~)

c=

Z<

c c= M mM e3 a um _ _ _ _ _

z-- - _ - - - _ _ - _ - _ - - _ _ - - - - - - - _ - - - - _ - _ - - - - - - _ -

l .1 .

Lt s, .

h * )

r/- REFUELINGs f l FLOOR EXH' .

(3)

'f-REACTORS ^

t

..-H --

- BLDS EXHs A IDDINE AND (3) l-7

@ W PARTICULATE FILTERS l l REACTOR BLDG t

EQUIP CELL EXH '

s f

VfJ(2) r :-

(2) - 1 i

E HIGH RANGE E' "

(2) 2) E Z w RECDMBINER s C '

x f

-BLDG EXH ' S  !

TURBINE BLOGs K

AREA EXH y, 3)

TURBINE BLDG  : 6- T EQUIP CELL EXH l VffJ(2) (2) g a

g. 10 DINE AND PARTICULATE 1 FILTERS -

TURBINE OPERATINGs C ' ~sm FLOOR EXH

{ .

(3) a:

L RADWASTEs C ~

a *E j_IE_

AREA EXH' E

' (2) a E 3 -

R A DWA S TE' EQUIPS' ' -

CELL EXH VffJ(2)

~

(2)

E "

EXH '

R) 2)

LAB AND s f -

TOILET EXH' (2)

FUM 000 l  :

V//J ,

s

~

PHILADELPHIA ELECTRIC CD i ,

PBAPS i EX ST UNITS 2 & 3 Vff FILTER VENTILATION EXHAUST ,

WASTE TREATMENT SYSTEM

~ r*

. :wc:.wL: ._ w :et? w : =:2- . _ -- - _. __ _ - _ r r3________x

.~-.~ a a::.:2..< - .- ~.. . . . s= , w. 2 u. ~wa a === m ~' w r ~ :..u.w a.=

x w 1Y N'Y 3, v3SBYHOSIO.

H mE_, 831YE-DNI1Y100 BIO ew<< , . .,

! JHZZ 6 h' ) s h q

t. :D<O< ,

OWwO cc H h us er

>- ^

w H O U m2N g o O

OHw C 1

Z auc M ] L l.

=

=acr z U

.l w ._

zO H

[1h o< w c

a c= _.,

f1 C3 p

> OH a I

IL ,

s@- @- e .

1r

, H

\

i

(

CezE CH -

Z ==C DE

[- < ca g -

m j

' -8 N N 1 w w I

{- -

)

CE l

, W WW M + w a zM H t HC- WN H2 < ,

I

  • M CC Q H w *

% << CE ilt: l

+ < =3 g C4 - M ct H w f we <5z Wy< o W

H.

w e.

g o si H CC J B H m

' (

o ca > g C2 W Cg ,

J4 0 w Ol

,- u. m H v. 2

& w*

  • CE CE w m1 gs l

g 2 tu W Cc y H

H w a. g a .

- gscw

< w =

w CD

  • H w m w

l c.s -

w z m w s ,

a o w C' z s m H i.

> > CC m m

- CC w e e w m wm zm a w H =

&w m.3 c HwW

=- H 04 b

m& a a l

gs u.mo'M l l u.

)

a i '~_m L  :

h l.

w  ?

L

-- <z -

Q E-

[

ce uJ Q l

o m o... . . . .

o m -

,- = u.

, C3 L

- M - PHILADELP.HIA ELECTRIC CD.

G * *c PBAPS "j x g"m UNITS 2 & 3 a=. a C4 C i LIQUID RADWASTE'

  • E"E oi TRCATMENT SYSTEM i

w ac . ma Q

  • o . - _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ ___

Rev. 1 i

VIII. BASES Site. Specific Data 1

Note 1: Liquid dose' factors, A TI for section III.B were developed i

using the following site specific data. The liquid pathways  ;

involved are drinking water and fish.:The maximum exposed individual is.an adult.

'A TI = (U /D +U x BP ) K~ x DF x RC 1 w w F i O i l

U = 730 liters per year; maximum' adult usage of drinking w water (Reg Guide 1.109, Table E-5) l

)

D = 5.4; average annual dilution at Conowingo intake, w

U. = 21 kg per year; maximum adult usage of fish (Reg Guide  ;

F 1.109, Table E-5) ,

i j

BF = bioaccumulation factor for nuclide, i, in freshwater I

i fish. Reg Guide 1.109, Table A-1, expect P-32 which.

i uses a value of 3.0E03 pCi/kg per pCi/ liter. -

t 5 6 3 l K = 1.14 x 10 (10 pCi/uci x 10 ml/kg x 8760 hr/yr)

O units conversion factor.

DF. = dose conversion factor for nuclide, 1, for adults in  !

i total body or bone, as applicable. Reg Guide 1.109, Table E-ll, expect P-32 bone which uses a value of f -5 3.0 x 10 .

i 'RC = 1.16; reconcentration from PBAPS discharge back through PBAPS intake, e '

j The data for D and RC were derived from data published in

Peach Bottom Atomic Power Station Units 2 and 3 (Docket Nos.

! 50-277 and 50-278) Radioactive Effluent Dose Assessment, -

t , Enclosure A, September 30,. 1976. All other data except P-32 BF

! and DF were used as given in Reg Guide l.109, Revision 1, l October'1977. The P-32 BP and DF were used'in accordance l with information supplied in Branagan, E.F., Nichols, C.R., and l Willis, C. A., "The Importance of P-32 in Nuclear Reactor l Liquid Effluents", NRC, 6/82.

l_.Lii, '

i t

l

!@f?MP,' * $ f ,@ ' V' " 7 f,'"O "

  • T* . . ' ' i R ~ 9'N N' L' ?" '

"'"7~ - I^ +

]

.;.-< + a .
.a;u;; ; .
.au..,a... c=;; . n:w:. . .x. . . . ... .:. w.n:. . . . , s.a.uwr um_ amwn o. . . , , .,-...a.._

Rev. 1 . .

Note 2 To develop constant R for section IV.C, the following site .

specific data were used:

RC (D/Q) = K'O. (U )F x r x DFL )a (F Cl-F ) - its i F ap m i p se -

A 1. *)w Y p

6 K' = 10 pC1/ Ci unit conversion factor O = 40 Kg/ day; cow's consumptica rate F -

U = 330'1/yr; yearly milk consumption by an infant ap

, -7 -1 ,

= 9.97 x'10 sec decay constant for I-131 i ) -

- 7. -1

= 5.73 x 10 sec decay constant for removal of

, w activity in leaf and plant surfaces. '

-3 F = 6.0 x 10 day / liter, the stable element transfer >

m coefficient for I-131.

r w 1.0 fraction of deposited radiciodine retained in cow's feed grass. -

-2 DFL ='l.39 x 10 mrem /pCi - the thyroid ingestion dose j factor for I-131 in the infant.

f =

0.6; the fraction of the year the cow is on pasture p (average of all farms)

, _. f = 0.484; the fraction of cow feed that is stored feed s while the cow is on pasture (average of all farms).

2 Y. = 0.7 Kg/m - the agricultural productivity of pasture p feed grass.

t = 2 days - the transport time from pasture to cow, to f milk, to receptor. l

~

l l

1 l

_ _ _ - - _ _ .-_ __ _ 1

Rev. 1

, .: i

v. ,

, \

L The pathway is the grass-cow-milk ingestion pathway. .These data were derived _from data published in Peach Bottom Atomic Power Station Units 2 and 3 (Docket Nos. 50-277 and 50-278)

Radioactive Effluent D.ose Assessment, Enclosure A, September i 30, 1976. All,other d'ata were used as given in Reg Guide 1.109, Revision 1,' October 1977.

6 Surveillance Requirement 4.8.B.2 Liquid Pathway Dose Calculations j' The equations for calculating the doses due to the actual release rates of radioactive materials in liquid effluents were developed from j the methodology provided in Regulatory Guide 1.109, " Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the

! Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I",

Revision 1, Oc.tober 1977 and NUREG-0133 " Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plants", October j '1978.

>- 1

~

. Surveillance Requirement 4.8.C.1 Dose Noble Gases' .

]

l 'The equations for calculating the doses due to the actual release : .

( rates of radioactive noble' gases in gaseous effluents were developed, f from the methodology provided in Regulatory Guide 1.109, " Calculation l

of Annual Doses ~to' Man from Routine Releases of.Rgactor. Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I",

!' Revision 1, October 1977, NUREG-0133 " Preparation of Radiological  ;

Effluent Technical Specifications for Nuclear Power Plants", August J 1978, and the atmospheric dispersion model presented in-Information .

i Requested in Enclosure 2 to letter from George Lear to E. G. Bauer {

l dated February 17, 1976, September 30, 1976. The specified equations

provide for determining the air doses in areas at and beyond the SITE ,

i BOUNDARY bhsed upon the historical average atmospheric conditions. 3

  • (

! The dose due to noble gas release as calculated by the Gross Release Method is much more conservative than the dose calculated by the l Isotopic Analysis Method. Assuming the release rates given in i Radioactive Effluent Dose Assessment, September 30, 1976, the values _,

calculated by the Gross Release Method for total body dose rate and
skin dose rate are 6.0 times and 5.7 times, respectively, the values j, calculated by the-Isotopic Analysis Method.

The model Technical specification LCO for all radionuclides and i

radioactive materials in particulate.from and radionuclides other than

( noble gases requires that the instantaneous dose rate be less than the equivalent of 1500 mrem per year. For the purpose of calculating this

~ \

l l l. I I

i l \

1 4 . .  ;, 23 s ,

~ g ,. .

s; .. , . , ,,

, , y

,.m , _m - ,,_ ._ m m _m  ;- s . ._._ .. m ..s__. m .

1.

Rev. 1 instantaneous dose rate, thyroid dose from iodine-131 through the inhalation pathway will be used. Since the operating history to date indicates that iodine-131 releases have had the major dose impact, this approach is appropriate. The value calculated is increased by nine.per. cent to account for the thyroid dose from all other nuclides.

l This allows for. expedited analysis and calculation of compliance with

! the LCO.

1 l

Surveillance Requirement 4.8.C.2 i

Dose Noble Gases

! .The equations for c~alculating the doses due to the actual release rates of radioactive noble gases in gaseous' effluents were developed from the methodology provided in Regulatory' Guide 1.109, " Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for

the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I",
Revision 1, October 1977, NUREG-0133 " Preparation of Radiological .

Effluent Technical Specifications for Nuclear Power Plants", August t .1978, and the atmospheric dispersion model presented in Information .

(

  • Requested in Enclosure 2 to letter from George Lear to E. G. Bauer 3 r dated February 17, 1976, September 30, 1976. The specified equations {

provide for determining the air doses in areas at and beyond .the SITE BOUNDARY based upon the historical average atmospheric conditions.

.The dose due to, noble gas releases as calculat d by the Gross Release i Method is much more conservative than the dose calculated by the .]

Isotopic Analysis Method. Assuming'the release rates given in

- Radioactive Effluent Dose Assessment, September 30, 1976, the values 1 calculated by the Gross Release Method for total body dose rate and skin dose rate are 4.3 times and 7.2 times, respectively, the values calculated by the Isotopic Analysis Method. -

i Dose, Iodine-131, Iodine-133, Tritium, and Radioactive Material in Particulate Form i ,

I

The equations for calculating the doses due to the actual release rates of radiciodines, radioactive material in particulate form, and radionuclides other than noble gases with half-lives greater than 8 days were developed using the methodology provided in Regulatory Guide i 1.109, " Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I", Revision 1, October 1977, NUREG-0133,  !

', " Preparation of Radiological Effluent Technical Specifications for j Nuclear Power. Plants", October 1978, and the atmospheric dispersion

,,model presented in Information Requested'in Enclosure 2 to Letter from j Georoe Lear to E. G. Bauer dated February 17, 1976, September 30, 1976. These equations provide for determining the actual doses based i

upon the historical average atmospheric conditions.

l I

7, _ _ _ _ _ . . _ - _ , - - _ - - _ _ _ ,

k Rev. 1

~

I compliance with the l'0 ,CFR 50 limits for radiolodinss, radioactive B

materials in particulate form and radionuclides other than noble gases

{;'

g with half lives greater than eight days is to be determined by f calculating the thyroid dose from iodine-131 releases. Since the

. . _ _ iodine-131 dose accounts for 92 percent of the total dose to the

,, thyroid, the'value calculated is increased by nine percent to account t

1, for the dose from all other nuclides.

9 8

(,  !

f i,

7,

k.
  • W .t -

F )  !

r

? .

< i 5 '

f(  ! .

r >

3 l

t

?. l p

i

? -

r 1

? 1 i,

3 l

)

E l t 1 b

V. .

i l

.e. . ms -

, j t

41 - . l

):

t h

f a

9 h

f

?

  • . . i'j 7[#

s',* :'." .s. L' , -~*n,+ ,37.-.

. . , ~ . . ,

{} , _

,