ML20070H305

From kanterella
Jump to navigation Jump to search
Nonproprietary Westinghouse Revised Thermal Design Procedure Instrument Uncertainty Methodology for Vogtle 1 & 2 Nuclear Power Station (for RTD Bypass Loop Elimination)
ML20070H305
Person / Time
Site: Vogtle  Southern Nuclear icon.png
Issue date: 12/31/1989
From: Moomau W
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML19310D315 List:
References
WCAP-12463, NUDOCS 9103140031
Download: ML20070H305 (33)


Text

.-

. 1 - ; . , . ; a y, m..

. , ., 4 ..

,. ; y.- c-y, 3;_..

~ , ' . ..l. . ;J.. k(

~

. _ - : 7 . ... . . .[- z,. .

f %i@.'

3, , -

.' . ' f. : . N . ll; .

'\.,

l [. ; . * . . ' ' . f .' h * * .s.[.= _ .. ._

. . .' . ; . y.;; :

[  ; _a [ I . " .' ' ' [ , -

'[ .

6.

~ ., . .. .. .

-w_ .

~ ; a; ' .i '9.c .-  : g .. .:

. ' - 'I',

f _f,p.+ '{Q

,u, . : . 'l_' - '

, .; i . .,

  • e ,e, " 4%

-., , ' _.wy. .a o i t. -T ' !. -

..t . ) ;)g. '.g;.

y;. w R
:.

. ..,; .; ., . .. ,p r :. ..

, Q . ; . 7 ". If ,; 3* f ..:  ; ' } , 1. . .j ,[ ". u . . ; ,... 'c ~.=N. e. - *

.,, MQ .!

J

.h..l .-] gl ,< n l a . : . - ..  ; . , .. . , y ,, . f). g ,c W up g,.. ,,g,y y 9 ,, a ; ; f. q-J .\ c qf.. p gp.mpgf. .;., . .

c

-;  ;<; p.

,3, 4<-: ( . _

. .... e.

i Q.,

,, .. ...,m,;..~.- y v. r : .14'- c - .I u>

..... . . . . . w c: q4, mm:J.1 c p!/i.e. 4 . M . .. F, ",og

.' x  ?' S,N ? 9?E ? pE ' Y f f, .m

. . - '. ,{ . :: >]f.? ?

(l;)/j

.g ]l k,9,lfFY U Y. W '

yy , . z

] y ,;n. , i 3 , n[ },,

. ~, N . . . , a

' ' [,

$ wa[/. , ' -

.. . 6tj .

._ _ ; . y a.x: . L ut ' . ,, : h. f. 7. , r-Yi , L . ' p ,q l . , ,, p,

[pLAq

~ ~ -

'.. l. N * - h . ' ' 'hy p["."r  : ." nin . Q }, y .

.[ ..Q w (o'.

N, >Q,tn 1%. 4 ,.

4 4 . '. . .

y .,6.. .* * .t i.g t iq . h}p} y..

. i.

. . : g - a, . .,. ,* g t. s s., s o

1 g .;a;,

t

, y;_; ;, - 3 y:. p 4 ; gj. - p,i.

o ,o, ! ; i r .c R.v.,..,

p..

Q,j j.,J. (.p]. ..,

. . . . ,,.;.-: p .}m . .

1 g a. $ .

. ,. , . i

'. .1.-

o t .f 2 f i: i q, ga ' g ; .

',.*.I.,' .

..?

d ' l. . .

. ' ' 'r ' g t e,' . ' .

9 < f J.;..d l ;I '

af .

ig, , %. q i .4  ;.- .,c.L o}i ~, , (t, .

, - . r.o i !

q q: ., ,w oi . ., 7n., F  :

& 'I ' .. N kff r(  ;.) ,'

..v. _ _} [ [Q.l.

.f;.-

.s

5. 4 h, g g 4,.. .c p r., e . 4,. t .

x .,.

,y' '. ):  ;; _ ,.y,y ,, n y .

  • ,2.

.:v ,, -

g~ : 1,t .g V yAa ;kp..h: L h ,,~:Mys%pt.; '.,,,>L..,,g'.,.. . .

s.

.-.. . r.

,x s .

.g.. ,

j .. . .;

. y .

A. ... . . , .. . . , o m.,.y e c. . p, .,. - 4. p , .

an ,i,n.. . . .

g ..

,q

.s.

. _- . .. v.

3..

.y. , .f.. y w:

n

- i a,. \o ..;;. . - r _..: . . ., , 3 :, .. _

,3 Q. -w.:.  ; ;

.g

, ;. ' . e,

' [m; h a .h, .(-fb. .,N, (\g . .m! 'l, .Y. Il y

.- .: .s . .

.3'

- " , , ' .. -( ' /l h t; . . . . e .b'

..L o .fi g . , , tee ! [.

j,.  ;,

, i ' . . '. b.b 4 . h '. . .

r

. .c y g . ,- , .. . . ,. . . ,, om .

i ., y -

, 7.- ja,. . ., .. , , m.), . . . .s .;. ,

.. . - es y . -

- f y_..., ..-4. 3..; ;,. ;4, p. ;n..  :. c -n4gg y, p;J .

.. ..  ;. . . . . . - g ,

.. ' i . \ ,c . , , .;, !) h . . . ,. '

\ , ,, .

1-L * , .;.  ; . _ ,

...~ . . ( . . . i'._.* ".

. 7 .

} '. . :. j.; ,j p ,9 gi:9

<gy,3{4, j; ... .,A, ..,g.. 0( I;

.. n. ,

q ..;. s. .., .

7 ....

.. .. y ti

,. .--p. s. .. . ) , ,. ;- .s.. .. ,, , , . , .. i, ,.. .

, .. ,fijo .

. 9 , ,. ,
.

--; -3.

s

+4

.o-

. .. Q, f .e

',(J:. ..

p

, i l9j,6 .

. . a - . . .  % ...

g,

.,f.- t 4 .," ,. .8 e . .

f. . . ,,, [, "gj .,l.e;- .,-;f+,;,3'j-  :

Q .(3)

,[ .

t, . - -

. . . . i , g s. +

L-

,.a-y i

,- a. . .-. -. . - ..

..i a ;r . . ;m. p. -

or p1 . . ... - t, ,,.e

c

,~ . . i, . .i . . .

.... " . .. 5 r

- l'; I' , , q '[ q )g / -'..I.~.

.f'L

. . 1.s. ' [;l ' _

. , . . . ; . . -* * ,Y.. ,

  • i 1, [o .q :, ' . . . '. s 'gs , .;

..e: ;

, .  ;  !> 's -

, - ( t u y>;

.no , f . 4~p. . . , . . .

.r , i,-in;e A,yl y .,.

.. . s .

  1. e. .

- ..in n ,at. .

.)

' , 3. . p . .m.

, I ',' 2

,.[. -

.Uv,>I, - ' *

' -. ., .'. .:. f.

1

' . . '.' a i i j , ,.

. .- ,p .1

,; , ??m' 1s ni ,si[.1 ~. dj s

- .: . .1 p :

g " ; . g >. . g>p,W, i h g,4 i , . . p,t

': . x -

m -

.: : .. t

.m

.. D.1 . .( 9 e, . .

. . 9rv s. q i, ), r. .

.m. m g}_p, s.y;)p

...s.

r ., . :., .: u ,1 \o . , . . . .hp._;- . - . ' ~ .,

s ..? -

. m..

> ,. I

. ~.. ; .t , . . e< o -

..,. * . c o( .y y . . .

y- .{

. . - ,z ,, o u  ;(. .. -

.s. _ . -

, -c ,)y:t \ . ,tj;n .:,n-

2. q , n .,;\ .

4

. . . y.,; q. ,. , \

, .; -- : -. a. j ,. x .

Ac

  • qg . y . . , ;. . . , n ,o , ... . . .

I.

.' . , . . . .. .s'-  ;..(,,.'.. g b[

.,.3..

' . t. .-. ',... .., .

., .1. .

. . ,y i, . . . g . . .

t s e , .i . g . . . . . . .s. , e . . , .

., ... . 4 i, ..

.a , . , , .

.s

< .c.!th:)g ;h.r-.>' a+",

f..

4

. . : . . o ? , y;g p.

.u; .L. .' - -:

._ gi-l

. i .

3 .,.-.

q :y s t , f.n . s

.g .

p.,'.

,e n . , e po , uo . k -, , ,.. .

.. s L

.,t.

, , pi  : 1 N. ' . , . r .. :, &.

' ~

.T

%, ' _y x

t &;; ,:G ; :,f, .3 . .' . ' ;

'~& 3 >; _f. c y. .,.

, I

';,9:,',

t

~ }'

", s ..

_ .y . . .p Q:g,s (. . , ' . , s

my;w,; . .~ pfyr,b,.xn.;

' ; d '). : ~:, 8 i ., .

  • L Q: q.z-;iyM;....;.%

. . u

N '

i ,. f .'. . h f d'l _. f S. . .; i

. ' w ,.;

.w.

,. n 14 w .. .s . . .

Mg \ . m w qe:, i + :. k.~. ; ,.

m..  :

.c4uQw pQ~ . ..:

p.q :.,e, mi; . yj.y

.  ;; . p 4; Wpq u - u.s

.; Lm.. k.p..y;&y .w .  ;- e .  ;  ; . . ~ .. d s w / . 3 p.: .f d.e '. :

.a

~ . r,y .

. , . . / _ 4. . . .-

, . m 3y

. [f[H .'Ogh.h, v[i .. . . - ..<

f i f,T [.k L ff lN {Sph,y% dg y yf'f.Q. T( 4 f;

m m, - - -

t F. i g

,'.f an@ w

- . l m

4 I l l i 1 ,

u <

l l .

l MORL UNRESTRICTED DISTRIBUTION  !

i y.

DATE. "

WEC q i

i l h

.'i' , i l

te

,'g 1 l

1

[

3

!*'I I

I ^ l :, ' k

i $- N' gi:_ E I - j' ,

l s :l l

l ,

( i( i '

I t

I g, $.3_.*

I t-. s i i ~

l L i,  !

I I

e L tr

, l g

t

-t; _

- . . -- r J

.j!

u., , k'3 ,

J j' \ t I i .; ; '

t . . . '

f-')'l s

  • I j r, , y ,

i1-g fti.s., 1 .;

[-

1 p ;[l 6. , 4.' +

5 3

[

1 i .o F' .n ,

1

.' 3ii ,

r k

,i

?.

pW  : 4.\, ;g' , ' )":

?

r

,.','y t

}

. t ..

i .* . ' . g5 p i

m

_ j ym p ':.g)2;_ )- '{

,g_.

d, m

_f 3.t,?? u, i

r ..,

f l ,h N

p m. ' p h

1

' ,I s

!l e,., , i -b' y s

'f '

3 f i t;

' = -

-l i i a n-.4g[.' . i i 4, < p [j iI' ,' j *. -o

)-

i ,, 1. ' ,o,

,i)

) g, g.

l (m.k J%.%

. .; pf L , '

, 4' i-

'b'-

4m 1 - t, ' t e, W; e s .. , .

1 .p 1 6 -,a i 4 , 3. .

l i>k' 7

'.l y[ '

i.

4{li;it['

5

- _ -'bd.,,

- ~ j _'hIb t -

-.. f I  % '", k f.- 3 k 3 .f,., s [

,a  ?

4, iL

> 4? , i

) ';

. i c; g O, s , a i-  :

e,,. 3 .

..q l k, $ ,. .

l M

,, h i' j :3 -3' p' . _; , .i' i [j- -3j I 4

..,  :. h/

,.]I

\1 I

' ~

A '

[

l.iW; .i _. k ~; _ i : n  ;,; l Q. ;7 .

l L* y. ,f ;N , ' ' s r ( ,, , '( , ,

v V, L

.'-c#l s-3 [

i . .s : f w "t ;, # _

m t 14 1

3. " .

t3 p i

?\.;e

( v1 _.

', .]' , al- sd  ;

's ,; s: , y l l ,

a4e 'p -

w p 1 _

.o e -

s

'a: , ;l ty" e , ,

G 2

} , y j "py V i ', . y., " '

3 ., m.

,, ' .v s 3 .o :p ii'- 1

( ,

I

+1. 4w,apspg ,l -

.c

...(

I i A i ,

. i; al j _:g' ' . - r 7 Y'

G ' ~.\ ,'(.: 5 h

's ,: '

c _>- 5

\,}; l 4 1e I

. 3 4

i: 6 , .> > , i

\ . b

{ ~ p' o. . a . , ,

[- ..;i

..). , t n.. ( ' y ! "- p i f , I

--.. _ _ _._.. . ... ._ . . .,_m,. - - .

__2__.

WESTINGHOUSE CLASS S WCAP 12463 WESTINGHOUSE REVISED THERMAL DESIGN PROCEDURE INSTRUMENT UNCERTAINTY METHODOLOGY FOR GEORGIA POWER V0GTLE 1 AND 2 UUCLEAR POWER STATION (FORRTDBYPASSLOOPELIMINATION)

DECEMBER, 1989 W.H.Moomau i i

I Westinghouse Electric Corporation I

Energy Systems P.O. Box 355 Pittsburgh, Penn:ylvania 15230 Copyright by Westinghouse Electric 1989, c All Rights Reserved

TABLE OF CONTENTS SECTION TITLE PAGE I. Introduction 1

11. Methodology 2 III. Instrumentation Uncertainties 4 IV. Conclusions 22 ReTarences 26 9

e 1

i

9 LIST OF TABLES TABLE NUMBER TITLE PAGE i Pressurizer Pressure Controi 5 System Accuracy 2 Rod Control System Accuracy 7 3 Flow Calorimetric Instrumentation 15 Uncertainties 4 Flow Calorimetric Sensitivities 16 5 Calorimetric RCS Flow Heasurement 17 Uncertainties 6 Cold leg Elbow Tap Flow Uncertainty 20 7 Power Calorimetric Instrumentation 24 Uncertainties 8 Secondat/ Side Power Calorimetric 25 Measurement Uncertainties I

ii

LIST OF ILtVSTRATIONS FIGURE NUMBER TITLE PAGE 1 RCS Flow Calorimetric Schematic 28 2 Power Calorimetric Schematic 29

'l iii b

e WESTINGHOUSE REVISED TilERHAL DESIGN PROCEDURE INSTRUMENT UNCERTAINTY METHODOLOGY FOR GEORGIA POWER V0GTLE 1 AND 2 NUCLEAR POWER STATION (FOR RTD BYPASS LOOP ELIMINtTION)

1. INTRODUCTION Four operating parameter uncertainties are used in the uncertainty analysts of the Revised Thermal Design Procedure (OTDP). These parameters are Pressurizer Pressure, Primary Coolant Temperature (Tavg), Reactor Power, 'and Reactor Coolaat System flow. They are frequent 1/ monitored and several are used for cont,nl purposes. Reactor power is monitored by the performance of. a secondary side heat balance (power calorimetric) once every 24 h'aurs. RCS fic, is monitored by the performance of a precision flow calorimetric at the beginning of each cycle. Pressurira pressure is a controlled parameter and the uncertainty reflects the control system.

T avg is a cantrolled parameter via the temperature input to the rod control system and the uncertainty reflects this control system. This report is based on the elimination of RTD Bypass Loops in the design to measure I,ot and cold leg reactor coolant system temocratures.

Westinghouse has been involved with the development of several technsques to treat instrumentation uncertaintics. An early version (for D. C. Cook 2 and Trojan) used the methodology out1(ned in WCAP-8567 " Improved Thermal Design Procedure",(1,2,3) which is based on the ceaservative assumption that the uncertainties can be described with un(form probability distributions. Another approrch (for McGuire and Catawba) is based on the more realistic assumption that the uncertainties can be described with random, normal, two sided probability distributions.(4) This approach is used to substantiate the acceptability of the protection system setpoints for many Westinghouse plants, e.g., D. C. Cook 2(N , V. C.

Summer, Wolf Creek, Millstone Unit 3 and others. The second approach is now utilized for the determination of all instrumentation errors for both RTDP parameters and protection functions.

The uncertainty calculations in thir o ort are based on a detailed review 1-

l of Plant Vogtle procedures for instrument calibration, heat balance calculations, and RCS flow measurement. The evaluation of heat balance uncertainties includes both the precision heat balance for RCS flow determination as well as the PROTEUS plant computer heat balance used for the daily nuclear instrumentation alignment surveillance. The uncertainty calculations are based on the standard Westing.

houso design for RTD Bypass Loop Elimination.

11. METHODOLOGY The methodology used to combine the error components for a channel is the square root of the sum of the squares of those groups of components which are statistically independent. Those errors that are dependent are combined arithmetica11y into independent groups, which are (hen systematically combined. The uncertainties used are considered to be random, two sided distributions. The sum of both sides is equal to the range for that parameter, e.g., Rack Drift is typically

[ )+a,c, the range for this parameter is [ ]+a,c This technique has been utilized before as noted above, and has been endorsed by the NRC staff (6,7,8,9) and various industry standards (10,ll),

The relationships between the error components and the channel instrument error allowance ave variations of the basic Westinghouse Setpoint Methodology (12) and are defined as follows:

s

'1. Fur precision parameter indication using Special Test Equipment tr a DVM at the input to the racks; CSA .((SCA + SMTE + SD)2 + (SPE)2 + (STE)2+ (RDOUT)2)l/2 Eq.1

+ BIAS q 2. For parameter indication utilizing the plant process computer; CSA - ((SCA + SMTE + SD)2 + (SPE)2 + (STE)2 + (RCA + RMTE + RD)2

+ (RTE)2 + (1D)2 + (A/D)2)l/2 + BIAS Eq. 2

3. For parameters which have control systems; CSA = ((PMA)2 + (PEA)2 +(SCA + SMTE + SD)2 + (SPE)2 + (STE)2

, + (RCA + RMTE + RD + CA)2 + (RTE)2)l/2 + BIAS Eq. 3 2-

where:

CSA = Channel Allowance PMA- = Process Measurement Accuracy PEA = Primary Element Accuracy SCA = Sensor Calibration Accuracy SMTE = Sensor Measurement and Test Equipment Accuracy SPE = Sensor Pressure Effects GTE = Sensor Temperature Effects '

SD = Sensor Drift RCA = Rack Calibration Accuracy RMTE = Rack Measurement and Test Equipment Acccaacy RTE = Rack Temperature Effects RD = Rack Drift RDOUT_ = leadout Device Accuracy (DVM or gauge)

ID = Computer Isolator Drift A/D = Analog to Digital Conversion Accuracy CA = Controller Accuracy The parameters above are as defined in references 5 and 12 and are based on'SAMA Standard PMC 20.1,1973(13). However, for ease in understanding they are paraphrased selow:

PMA - non-instrument related measurement errors, e.g.,

temperature stratification of a fluid in a pipe, PEA - errors due to a metering device, e.g., elbow, venturi, orifice, SCA - reference (calibration)accur' ar a sensar/ transmitter, SPE - , change in input-output rela 6 L ship due to a change in static pressure-for a d/p cell, i STE - cbuge in input-output relationship due to a change in ambient temperature for a sensor / transmitter, A change in input-output relationship over a period of time SD -

! at reference conditions for a sensor / transmitter, RCA--- reference (calibration) accuracy for all rack modules in l loop or channel assuming the loop or channel is string l

-calibrated, or tuneo, to this accuracy.

RTE - change in input-output relationship due to a change in ambient temperature for the rack modules, RD -

change in input-output relationship over a period of time at reference conditions for the rtek modules, RDOUT - the measurement accuracy of a special test local gauge, digital voltreter or multimeter on it's most accurate applicable w it for the parameter measured, ID - change in it,g# output relationship over a period of time at reference conditions for a control / protection sigtal isolating device, A/D -

allowance for conversion accuracy of an analog signal to a

-digital signal for process computer use,

~

CA -

allowance for the accuracy of a controller, not including d 4 band.

BIAS - a non-random uncertainty for a sensor / transmitter or a process parameter.

A more detailed explanation of the Westinghous,e methodology noting the interaction of several parameters is provided in references 5 z.nd 12.

III. Instrumentation UMertainties The instrumentation unceytainties will be discussed first for the two parar..'::ers which are controlled by automatic systems, Pressurizer

?ressure, and Tavg (through Rod Control).

.l. E8fSSVRIZER PRESSURE Pressurizar Pressure is controlled by comparison of the measured-vapor space pressure and a reference value. Allowances are made for the tran:mitter a.nd the process racks / controller. As noted on Table 1, the electronics uncertainty for this function is [

]+a,c which corresponds to an accuracy of [

]+a,c. In addition to the controller

. accuracy, an allowance is made for pressure overshoot or undershoot due to the interaction.and thermal inertia of the heaters and spray. Based

~ on. an evaluation of plant operation,- an allowance of

[ ]+a,c was made for this effect. Therefore, a total control system uncertainty of [ ]+a,c is calculated, which results in a standard deviation of [ ]+a,c (assuming a normal. two sided probability distributiva).

s TABLE 1 PRESSURIZER'. PRESSURE CONTROL SYSTEM ACCURACY

-+a,c SCA =

SMTE=

STE -

SD =

BIAS =

RCA =

RMTE=

RTE -

RD -

CA =

- - +a,c i ELECTRONICS UNCERTAINTY =

PLUS ELECTRONICS UNCERTAINTY =

.PLUS CONTROLLER UNCERTAINTY =

i

1 1

\

l

2. TAVG -l 1

i 1T ayg -is controlled by .a system that compares the auctioneered high )

T avg from the loops with a reference usually derived from the First Stage Turbine-Impulse Chamber Pressure. T ayg is the average of the narrow range T H and TC values. The highest loop T avg is then used

-in the controller, Allowances are made (as noted on Table 2) for the 1 RTDs, transmitter and the process racks / controller. The CSA for this function is dependent on-the type of RTD, pressure transmitter, and the location of the RTOs, i.e., in the RTD bypass manifold or in the Hot and

. Cold-legs.. Based on the assumption that 3 TH and-l TC

-cross-calibrated Weed RTDs are used to calculate T avg and the RTDs are

-located in the Hot and Cold legs, the-CSA for the electronics is

[ ]+a,c. Assuming a normal, two s Med probability distribution results in an electronics star.dard deviation (si) of

[ )+a,c,.

LHowever, this does not' include the controller deadband of_ 1,5 0, F

Theicontroller accuracy is the combination of the instrumentation accuracy =and the deadband. -The probability distribution for the deadband

'has been determined to be [

'].+a,c The< variance for the deadband uncertainty is the'n:-

(s2) "I l+#' '

4 Combining /the. variance for instrumentation d deadband results in a controller variance of:

(sT) := (si)2 + (s2) "I 3+"'

1 t

The control ~ler sT = [ ]+8' for a total uncertainty of

[_ .)+a , c ,

e

1 l

. 'Ji:

e 3.1 - :t:

' t p,. ;

  • s TABLE 2-ROD CONTROL SYSTEM ACCURACY-l;I' ' if I

i

-be Tavg -TURB PRES- .

-+a,c j PMA -- 1

-SCA'--

SMTE-STE'- -;

SD = 1

+

BIAS =: I o '

s RCA~=- ,

l

~RMTE=.

RMTE=  ;

RTE ---

'R0.

CA .-

BI AS.-  ;

l RTDs.USED -' TH TC - 1 '

  • a,c 4 ELECTRONICS'CSA' i-s ELECTRONICS-SIGMA - -i

-r

'q. '

CONTROLLER SIGMA =

' CONTROLLER BIAS: :- -?

+ '

-CONTROLLER CS_Ac -

[

l -

9 t

3 y

.g.

j I

g I I

, iI-f -'

lllm

[- -

1

j. -

p (jM9 o r v

w.

i

~

.e liji;

. , , ,, c._ -, c.; .: ,_ --..-.,2 _ . . - . _ . . , - _ . . -

3. RCS FLOW RTDP ad some plant Technical Specifications require an RCS flow meas.rement with a high degree of accuracy. It is assumed for this error analysis that the flow measurement is performed within thirty days of calibrating tne measurement instrumentation. Therefore, except where necessary due to sensor location, drift effects are not included, it is also assumed that the calorimetric flow measurement is performed at the beginning of a cycle, i.e., no allowances have been made for Feedwater venturi fouling, and above 70% RTP.

The flow measurement is performed by determining the Steam Generator thermal output (correctad for the RCP heat input and the loop's share of primary system heat losses) and the enthalpy rise (Delta-h) of the primary coolant. Assuming that the primary and secondary sides are in equilibrium, the RCS total vessel flow is the sum of the individual primary loop flows, i .e. ,

WRCS - N(WL ).

Eq. 4 The . individual primary loop volumetric flows are determined by correcting the thermal output of the Steam Generator for Steam Generator blowdown (if not secured), subtracting the RCP heat addition, adding the loop's share of the primary side system losses, dividing by the primary side enthalpy rise and multiplying by the Cold Leg specific volume. The equation for this calculation is:

WL - (AH03 g - O p + (Q t M CI (hg-h) C Eq. 5 where; W

L

= Loop flow (gpm)

A - 0.1247 gpm/(ft3 /hr) 0g3

- Steam Generator thermal output (Btu /hr)

Qp RCP heat addition (3tu/hr)

Qt

- Primary system net heat losses (Btu /hr)

V C

= Specific volume of the Cold Leg at TC (ft 371h)

N- - - -

Number of primary side loops by - Hot Leg enthalpy (Btu :t.

hC

-- Cold Leg enthalpy -(Btu /lb).

- The. thermal output of the Steam Generator is determined by a precision secondary-. side calorimetric measurement, which is defined as:

QSG - (hs - h f)Wf Eq. 6 ,

where; -h s - Steam enthalpy (Btu /lb) hf

- Feedwater enthalpy (Btu /lb) [

W f

Feedwater flow (ib/hr).

The Steam enthalpy is based on measurement of Steam Generator outlet Steam pressure, assuming saturated conditions. The Feedwater enthalpy is based on the measurement of Feedwater temperature and a Feedwater-pressure of 1000 psia. The Feedwater flow is determined by multiple measurements and the following calculation:

Wf - (K)(F a)((Pf)(d/p;)1/2 Eq. 7 where;- K -- Feedwater venturi flow coefficient F. a

- Feedwater venturi correction for thermal expansion

-- - Feedwater density (1b/ft3 )

pf d/p Feedwater venturi pressure drop (inches H2 0).

The Feedwater venturi- flow coefficient is the- product of a number of

- constants including as-built dimensions of the venturi and~ ca', o rtion

. tests performed by the vendor. The thermal expansion correction is based on.the coefficient of expansion of the venturi material and -the difference between Feedwater temperature and-calibration temperature. ,

' Feedwater density is based on the measurement of Feedwater temperature L-

- and a Feedwater pressure of 1000 psia. The venturi pressure drop is L obtained from the output of the differential-press re cell connected to l the venturi.

'RCP heat-addition is determined by calcuir,1cn, based on the best estimate of coolant flow, pump head, arc pump hydraulic efficiency.

p t. ,

The primary system net heat losses are determined by calculation, considering'the following system heat inputs and heat losses:

Charging flow Letdown flow Seal injection flow RCP thermal barrier cooler heat removal Pressurizer .tpray flow Pressurizer-surge line flow Component' insulation heat losses Component support heat losses CRDM heat losses.

A single ca culated sum for 100% RTP operation is used for these losses or heat inputs.

The Hot Leg and Cold Leg enthalpies are based on the measurement of the Hot leg temperature, Cold Leg temperature and a Pressurizer pressure of 2250 psia. The Cold Leg specific volume is based on measurement of the Cold leg temperature and a Pressurizer pressure of 1250 psia.

The RCS flow measurement is thus based on the following plant

. measurements:

Steamline pressure (Ps )

.Feedwater temperature (Tf ) ,

Feedwater venturi differential pressure (d/p)

Hot leg temperature (Tg)

Cold Leg temperature (TC )

-Steam Generator blowdown (if not secured)

-and on the following calculated values:

'Feedwater vs. ci flow coefficients (K) ,

Feedwater venturi thermal expansion correction (Fa)

Feedwater density (pf)

Feedwater pressure (P7)

Pressurizer pressure (Pp)

.c V

k d

}

Feedwater enthalpy; (hf ) [

Steam enthalpy (h3 )

Moistureicarryover (impacts h3 )- I Primary system. net heat losses-(QL )

RCP heat addition (Qp ) [

Hot leg enthalpy (hH)-.

'f - Cold Leg enthalpy (hC )*

1hese measurements and calculations are presented schematically on Figure a g

.The derivation of the measurement errort and flow uncertainties t,a Table 5-are noted below.

-- t Secondary Side LThe secondary side uncertainties are in fcur prim:ipal areas, Feedwater 4

flow, Feedwater enthairy a tam enthi 9 an. RCo hnt addition. These four -areas are specificaily-identified on Table 5.

t For the measurement 1of Feedwater flow, each Feedwater venturi is.  ;

. calibrated by the- vendor .a a hydraulics laboratory under controlled 4

conditions to an accuracy of [. ]+a,b,c.- The calibration

data which substantiates this accuracy is provided to the plant by the r vendor. '.An; additional uncertainty factor of-[- )+a,c is <

-included for.? installation effects,. resulting inia conservative overall-

~

s (flowLeoefficient (K): uncertainty of'(- ]+a,c. Since the

calculated RCS' loop flow is related to the calculated Steam Generator thermal output which in .arn is proportional to feedwater flow, the P. ..

-coefficient uncertainty is expressed as [' ~]+a,c. It should_-

y Lbe noted that .no 'allowanceits made for venturi: fouling. The. venturis-

  • 'shouldib i a:ected, and cleaned .if necessary, prior to performance of y ,

!the precision measurement; If fouling is present-but not removed, it's

. effects'must be treated as'a flow bias.

The uncertainty applied to the Feedwater venturi thermal expansion (correction _(F,)is}basedontheuncertaintiesofthemeasuredFeedwater

. temperature.and the coefficient of therma 1' expansion for the venturi

.11

)

1 l material, usually 304. stainless steel. For this material, a change of

'i=2.0-0 F in the nominel Feedwater temperature range changes Fa by 10.004 % and the-Steam Generator thermal output. by the same amount.

Based'on data' introduced into the ASME Code, the uncertainty _in aF for 304 stainless steel is 15 %. This results in ae additional uncertainty of ( ]+a,c in Feedwater flow. Westinghouse uses the conservative value of ( )+a,c, Using the_1967 ASME Steam Tables it-is possible to determine the

---sensitivities of,various parameters to changes in Feedwater temperature and pressure. Table 3 notes the instrument uncertainties for the

-hardware used to perform the measurements. Table 4 lists the various sensitivities. . /s can be seen on Table-4, Feedwater temperature uncertainties have an impact on venturi f ,a Feedwater density and Feedwater enthalpy. Feedwater pressure uncerthinties impact feedwater

-density and Feedwater _enthalpy, feedwater venturi d/p uncertainties are converted to % Feedwater flow using the following conversion factor:

_% flow a (d/puncertainty)(1/2)(transmitterspan/100)2 Typically, the Feedwater flow transmitter span is ( )+a,c of

. nominal - fl ow.-

Using the 1967 ASME Steam Tables again, it is possible to determine the sensitivity o,f Steam enthalpy.to chenges in Steam pressure and Steam quality. _ Tabla 3 notes: the uncertainty in Steam pressure and Table. 4

~provides the sensitivity. For Steam quality, the' Steam Tables were used to' determine the sensitivity at a moisture content of ( ]+a,c. This '

value is noted on Table 4. .

TheLnet pump heat uncertainty ~is derived from the combination of the

~

primary' system net heat losses and pump heat addition and are summarized j for a four loop plant as follows: I 1

n l

I N

System heat losses: -2.0 MWt  ;

' Comp'onent conduction;and-convection losses -1.4

Pump heat' adder +14.0 Net: Heat input to RCS +10.6 MWt
The_ uncertainty on system _ heat _ losses, which is escentially all due to ac harging and letdown flows, .has been estimated to_ be [ ]+a,c of the a

calculated value. Since-direct measurements are not possible. the

. uncertainty on component conduction and convection losses has been assumed

tb be [' ]+a,c of the: calculated value. Reactor coolant pump 1hydraulicsf are known :to a relatively h.igh confidence level, supported by system hydraulics tests performed'at Prairie Island II and by input power imeasurements from several plants, therefore, the uncertainty for the pump

' heat. addition is estimated to be'[ ]+a,c of. the best estimate clue.

'Considering'these parameters as one quantity, which is designated the net-

pump heat = uncertainty, the combined uncertainties are less than

[ l]+a,c:of -the total,:- which is [ ]+a,c of core power.

~

. Primary Sidg iThe primary side'un' certainties are-in three principal areas,-1:ot Leg ,

lenthalpy, Cold Leg enthalpy and Cold Leg specific vol.ume. These-are 1

specifically noted on Table 5. Two primary side parameters are actually

~

measured,;TH ;andlTC ,3andi a Pressurizer pressure of 2250_ psia is used to ideterminef enthalpies. ; Hot leg enthalpy
is -influenced by- Tp,-. Pressurizer 1

pressure and., Hot Leg; temperature streaming. The uncertainties for the 1  ? instrumentation:are noted:on Table 3, the sensitivities are:provided on

, LTable 4. iThe Hot Leg streaming is split into' random and' bias (systematic)

E components. -For the Vogtle units-with RTDs located in thermowells placed in 1 theLscoops (bypass manifolds eliminated), the streaming uncertainty is [

m -]+a;c random and_[ -

)+a,c-systematic. .

q 4

-.u .- - . _ _

- - - - . -. .- - .- ~ -

r LThe Cold Leg enthalpy. and specific volume' uncertainties are-impacted by TC

'and Pressurizer pressure. Table 3 notes the T C instrument uncertainty and-Table 4 pro'vides'the sensitivities.

- Noted on Table 5.is.the~ plant specific RTD cross-calibration systematic allowance. When necessary, an allowance is made for a systematic temperature error due-to the RTD cross-calibration procedure. No allowance was necessary

. for. this: plant.-

Parameter dependent effects are identified on Table 5. Westinghouse has I determined the dependent sets in the calculation and the. direction of interaction,:i.e., whether components in a dependent set are additive-or  ;

subtractiv+ with respect to a conservative calculation of RCS flow. The same work was; performed for the instrument bias values. As a result, the -

calculation explicitly accounts-for dependent effects and biases with credit taken for sign (or direction'of impact), "

. Using Table 5, the 4" loo) uncertainty equation.(with biases) is as follows: >

+a,c

' Based on the number of loops, number, type, measurement method of RTDs, the

- averaging of. the three hot. leg temperatures, and the~ vessel- Delta-T, the flow uncertaintyif.orithe precision flow calorimetric is:

E of loops - flow uncertainty (% flow)

+a,c 4-34

a, _ , . , .. ._ - . _ _ _ _ _ _ . _ . _ _ _ __

y

TABLE 3-FLOW CALORIMETRIC INSTRUMENTATION UNCERTAINTIES v (% SPAN) FW TriMP;. FW PRES FW d/p STM PRESS TH TC PRZ PRESS

+a,c

, :SCA --

'SMTE.

SPE -

.STE -

SD:'-

R/E =

RDOUT-BIAS-

'CSAi-

  1. OF INST USED 3 1 1 j, op(l) psia (2) % d/p(3)~ psia (4) 0 F(5) op(5) psia (6)

~INSTESPAN - 500. -1500. 120.- 1500. 120. 120. 600.

I.'!ST UNC. r- -

+a,c ,

-(RANDOM):-

.INSTiUNC.-

- 'I

--(Bl AS):  ;

IN0MINAL- = 440 - 1100, 1000. 618.2 558.9 2250.

p K

L - Notes:

. (1) FinalEfeedwater temperature from plant computer.-'A conservative p uncertainty value of 2.0_0F is.'used.

-(2)Assumedconstantin3recisionheatbalance-(notmeasured)

. . t l A conserv:tive value is used.

(3) Measured-with test"d/p gauge. Does not include-venturi uncertainty.

(4) Measured =with'testpressuregauge. -!

~ (5) Uncertainty assumes temperature measured with DVM at. output of R/E converters and the averaging of the three- hot leg temperatures.

~

L-  :.(6) Assumed constant in precision heat balance. The values are based on

$, . permanently _ installed plcnt instrumentatian.

r it i s t - 4! ~r ., -

T .

x ,  ;

1

< l 1

TABLE 4 FLOW CALORIMETRIC SENSITIVITIES FEEDWATER~ FLOW'

" =

TEMPERATURE TMATERIAL =

DENSITY

-TEMPERATURE =

PRESSURE: -

DELTA P = ,

. FEEDWATER ENTHALPY ,

TEMPERATURE' =

PRESSURE -

hs =

1192.9 BTU /LBM <

- 'l hr- 419.5 BTV/LBM

,' ~Dh(SG) -

773.4 BTV/LLM STEAM- FNTHALPY: ,

+a,c j '

PRESSURE: =

-M0ISTURE e-

. H0i LEG:ENTHALPY

< TEMPERATURE- - -

PRESSURE:

'-[

h H

= 640.2' BTU /LBM i

h. -- -558.3 BTU /LBM: -

_D (VESS) '81.9 BTU /LBM:

Cp(T)L  :-

H 1.548 BTU /LBM OF COLD LEG ENTHALPY-

+a,c-TEMPERATURE =

PRESSURE.- -

'Cp(T)C_ 1.266 BTU /LBMOF.

COLD LEG SPECIFIC VOLUME 4 4 - -

+a,c +

, ~ TEMPERATURE -

PRESSURE:

3 f

s . 3 q ;. ,m

'M, ' t

- ., - . ....m. . . . . . . . . - . - . _ _ , _ . , , _ . . ._ -

. _ . _.. .. ._ _ _. - . . - _ _ . . _ . _ ~ _ _- _ _-- ._ _ .

7

,i TABLE S  !

CALOR! METRIC RCS FLOW MEASUREMENT UNCERTAINTIES

?

vi

- COMPONENT INSTRUMENT ERROR FLOW UNCERTAINTY-

'FEEDWATER FLOW +a,c

--VENTURI TilERMAL EXPANSION C0 EFFICIENT TEMPERATURE-MATERIAL--

DENSITY.

TEMPERATURE PRESSURE

- DELTA P o FEEDWATdR ENTHALPY-TEMPERATURE-PRESSURE ESTEAM ENTHALPY PRESSURE MOISTURE..

NET PUMP HEAT ADDITION-HOT LEG ENTHALPY

_' TEMPERATURE STREAMING, RANDOM-

STREAMING, SYSTEMATIC

- PRESSURE -

it " COLD LEG ENTHALPY .

TEMPERATURE

- PRESSURE.

, . COLD LEG' SPECIFIC' VOLUME TEMPERATURE

. PRESSURE fRTD CDSS-CAL SYSTEMATIC ALLOWANCE

-* , ** '+, ++' INDICATE SETS OF' DEPENDENT PARAMETERS

!I i

I L - ,

l - - .

b TABLE 5_(CONTINUED)

.-. -CALORIMETRIC RCS FLOW MEASUREMENT UNCERTAINTIES-7 ..

COMPONENT FLOW UNCERTAINTY 4 BIAS VALUES -- --

+ac

.FEEDWATER PRESS!)RE DENSITY i ENTilALPY STEAM PRESSURE ENTHALPY. <

' PRESSURIZER PRESSURE ~ ENTHALPY - HOT LEG ENTHALPY - COLD LEG FLOW BIAS TOTAL VALUE

+a,c ,

SINGLE LOOP UNCER?AINTY (WITHOUT BIAS VALUES)-

N LOOP UNCERTAINTY- (WITHnUTBIASVALUES) .t N LOOP UNCERTAINTYL (WITHBIASVAlVES)~ ,

3 I

l i

{

' ~r w

i 0,

l

~

l u

it.

e 4

i- ,.

i

The precision flow calorimetric may be used as a reference for the normalization of the Cold Leg elbow taps. Table 6 notes the instrument uncertainties for normalization of the elbow taps, assuming one elbow tap per loop. The d/p transmitter uncertainties are converted to % flow on the same basis as the Feedwater venturi d/p. The elbow tap uncertainty is then combined with the precision flow calorimetric uncertainty. This combination of uncertainties results in the following total flew uncertainty :

  1. of loops flow uncertainty (% flow) 4 1.9 The corresponding value used in RTOP is:
  1. of loops standard deviation (% flow)

-+a,c 4

t

y e

-TABLE 6 COLD LEG ELB0W TAP FLOW UNCERTAINTY

- INSTRUMENT UNCERTAINTIES. .

% d/p SPAN  % FLOW

+a,c-

, PMA = s PEA =~

- SCA =

SPE- -

STE =-

SD ' L

- RCA =

i

--RMTE=-

RTE --

4 RD =4  :

=ID -

A/D =

RDOUT=

BIAS =- _

^

. , . FLOW CALORIM.. BIAS:- -

FLOW CALORIMETRIC -

  • =

INSTRUMENT SPAN'

- - + a , c --

. SINGLE LOOP. ELBOW: TAP FLOW UNC'= 1

%N LOOP' ELBOW 1 TAP-FLOW UNC . =:

s N -LOOP RCS FLOW UNCERTAINTY:

e. '
(WITHOUT:BIASVALUES)-
Ni LOOP;RCS FLOW UNCERTAINTY ~

=

(WITH~ BIAS VALUEE) -- 1.92 ,

1 L. i s ,.

'i g L

i e

20- 1

4,- Reactor Power Generally a plant prforms a primary / secondary side heat balance once every 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> when power is above 15% Rated Thermal Power.- This heat balance is used to verify that the plant is operating within the limits of the Operating License and to. adjust the Power Range Neutron Flux

. channels when the difference between the NIS and the heat-balence is greater than that required by the plant Technical Specifications.

Assuming that the primary and secondary sides are in equilibrium; the core power is. determined by summing the thermal output of the steam-generators, correcting the. total secone ry power for Steam Generator blowdown (if not secured), subtracting the RCP heat addition, adding the primary' side system losses, and dividing by the core rated Btu /hr ,

at-full power. The equation for this calculation is' a RP_= {(N)(OSC - Op +.(0 L @ ))000)-

H Eq. 8 .

where';'

RP - ~ Core power _(% RTP)

N - Number of primary side loops LQ3 g - 1 Steam Generator thermal output (BTU /hr) as defined in-Eq. TQ p - -- RCP heat adder-(Btu /hr) as dehned in Eq. 5 LQL; -- Primary system net heat losset (Btu /hr) as defined _in Eq. 5 Hg = , Core rated 8tu/hr at full power.

ifor the purposes of this uncertainty analysis (and based on H noted-

?above) it--is-assumed thatLthe plant is at 100% RTP when the measurement

.is taken. Measurements performed at lower power levels will result in L :different_ uncertainty values. However, operation at lower power levels.

j results in i_ncreased margin to DNB far in excess of any margin losses due to; increased measurement uncertainty.

The secondary side power calorimetric equations and effects are the same-as .those noted for the precision flow calorimetric (secondary side

_ _ _ _ - . . .. - _ . _ . . .. u . z .2. . _ _ - - __ __ _ . - , _ , ,

portion) equations'6 and 7.

Table 7 provides.the instrument

' uncertainties-for those measurements performed. Since it is necessary_

' to make this determination _ daily, it has been assumed that the plant

process computer will be used for the measurements. The sensitivities 4 calculated are the same as those noted for the secondary side on Table i
4. .As noted on Table 8, Westinghouse has determined the dependent sets in the calculation and the direction of interaction. This is the same as that performed for the RCS flow calorimetrit, but applicable only to power. .The: same was_ performed for the bias values noted. It should be -

- noted that Westinghouse does not include any allowance for Feedwater venturi fouling. The effect of fouling is to result in an indicated

_ power. higher than actual, which is conservative, i

Using the power uncertainty values noted on Table 8, the 4 loop uncertainty (with-bias values) equation is as follows:

+a,c-L . Based on the number of loops and the instrument uncertainties for the ,

.four-parameters, the power measurement uncertainty for.the secondary side power calorimetric is:

'# of ' loops power uncertainty (% RTP)- ,

+a,c IV. CONCLUSIDNS The_ preceding sections provide the methodology for what Westinghouse Jbelieves is -a reasonable means -of accounting for instrument

uncertainties for pressure, temperature, power and flow. The plant-specific instrumentation has been reviewed for Vogtle Units 1 and 2 and the uncertainty calculations are completed based on the standard Westinghouse design for RTD Bypass Loop Elimination. These uncertainty values or more conservative values are used in the RTDP analysis.

P l

TABLE 7 POWER CALOR! METRIC INSTRUMENTATION UNCERTAINTIES

(% SPAN) FW TEMP FW PRES FW d/p STM PRESS

+a,c SCA =

SMlE-SPE =

STE =

SD =

BIAS =

RCA = .

RMTE=

RTE =

RD -

10 =

A/D =

CSA =

op(l) psia (2) % d/p(3) psia (3)

INST SPAN = 500. 1500. 120. 1300.

INST UNC --

+a,c (RAND 0M;

=p-INST UNC

=

(BIAS)

NOMINAL = 440. 1100, 1000.

Note::

(1) Final feedwater temperature from plant computer. A conservative uncertainty value of 10 F0 is used.

(2) Assumed constant in secondary side heat balance (not measured).

A conservative value is used.

(3) Based on permanently installed plant instrb..ientation.

i

-j 1

TABLE 8 LSECONDARY SIDE POWER CALORIMETRIC MEASUREMENT UNCERTAINTIES

_ COMPONENT INSTRUMENT ERROR POWER UNCERTAINTY

+a,c FEEDWATER FLOW.

.l i

VENTURI- - -

. THERMAL: EXPANSION COEFFICIENT TEMPERATURE MATERIAL- l DENSITY-TEMPERATURE- ,

PRESSURE  !

DELTA P: - 1 FEEDWATER ENTHALPY ,

TEMPERATURE

-PRESSURE

. STEAM ENTHALPY PRESSURE

<- - M0ISTURE-

, j! NET' PUMP HEAT; ADDITION ,

L' BIAS' VALUES FEEDWATER DELTA P-L FEEDWATER- PRESSURE : . DENSITY ENTHALPY STEAM PRESSURE _ ENTHALPY LPOWER-BIAS: TOTAL'VALUE

=* E** -: INDICATE SETS OF'0EPENDENT PARAMETERS

SINGLE LOOP-UNCERTAINTY:(WITHOUT BIAS VALUES)-

N ELOOP UNCERTAINTY (WITHOUT BIAS VALUES)  ;

~Ny LOOP-UNCERTAINTY' -(WITH-BIAS VALUES)

I h

1 k

l i

q w . . .. . . . . . - - . - . .

f h

.r REFERENCES  ;

1.- lWesti_nghouse letter NS CE-1583, C. Eiche1dinger to J. F. Stolz, NRC,-dated I

10/25/77.-

2.
~ Westinghouse letter NS PLC-5111, T. M. Anderson to E. Case, ARC, dated

-5/30/78.  !

I

- 3._-Westinghouse letter NS-TMA-1037, T. M. Anderson to 5. Varga, NRC, dated 6 /2?/78.  !

- 4.:: Westinghouse letter NS-EPR-2577, E. P. Rahe Jr. to C. H. Berlinger, NRC,

dated 3/31/82.
l 1 5. .

Westinghouse Letter NS-TMA-1835, T. M. Anderson to E. Case, NRC, dated

.j 6/22/78.

6.- .NRC letter, S. A. Varga to J. Dolan, Indiana and Michigan Electric Company,

~

iddted 2/12/81'.

7.-- NUREG-0717_ Supplement No. 4, Safety Evaluation Report related to the  ;

operation'of-. Virgil C. Summer Nuclear Station UnitLNo.1, Docket 50-395,

-August, 1982.

8.; Regulatory Guide 1.105 Riv. 2, " Instrument Setpoints for Safety-Related

'! Systems",-_ dated'2/86.

9.f LNUREG/CR-3559 -(PNL-4973), "A Mathematical Model for Assassing the Uncertainties ofilnstrumentation Measurements for Power and Flow of .PWR .

Reactors",.(2/85. -
10. ANSI /ANS Standard 58. A 10?9, "Crite.'ia for . Technical Specifications .for '

Nuclear Power Stations".

(

11. ISA:Sta.1dard S67.04,1982, "Setpoints for Nucliar Safety-Related Instrumentation Used in Nuclear Power Plants"  :

-i .

i , , __- . , . _ _ -.

12. Tuley, C. R., Miller, R. B., " Westinghouse Setpoint Methodology for Control and Protection Systems", IEEE Transactions on Nuclear Science, February, 1986, Vol. NS-33 No. 1, pp. 684-687.
13. Scientific Apparatus Manufacturers Association, Standard PMC 20.1, 1973,

" Process Measurement and Control Terminology".

u_--________-__-____-__--__-______-_____

_~

J n-q Y FIGURE 1 RCS FLOW CALORIMETRIC SCHEMATIC

.- i 1

P P s

P f

Tf h l Ap }  ;

p I H l l

_j { C l I l

j ' !i 1
1 4

4 ,

of K fi h h h, h f

F, C H i r

g 1 n_

. i:r; W b-

f
Ah a- .

b h

s n .

3 J'

[t -

t; s-

)f

) i"c i!

,)

- 0g3 4

k I t- -

?j y_

g Heasured Q u-fa- gL - - p ilo.

F Calculated _F t-l

_ Mass

[j . -

W ir l ,

a '

1r ,

e[ ' I Vol.

[> -

vC Wg j

m

}" 1 f . L k

{ Other Loons h

!t 1!

  • Three hot 1eg temperatures per loop are f

averaged. p ,

s RCS Volumetric Flow 28 wA

.y

?)

i

.;f j -

.g i;

i =.)

FIGURE 2 d{e lt POWER CALORIMETRIC SCHEMATIC u!

q j P, j P j T j {

AP i f f 4

u, j-

,1 f _ , . .. . _

t is t U .

K hg h f

Pp F, Qa *

i 1:-
j  !

il j u }<,

g t-g '

f 4 Q ,

Q I.I.

,i P

I calculated l$

measured -

9 I

f)f]

'tj I

=

m

+'

Other Loops @

v = p ..

Vi

+

il - jr -

11 l 8 (-

} nt *: [; l En

(

u

. b u . y.

I

4. 1 fjf Core Power 11, 29 ff-( .

. . ~

- - ~ . ~ ~ - .