ML20235G945

From kanterella
Jump to navigation Jump to search
Surge Line Stratification Presentation Overheads - Georgia Power/Nrc Meeting 890125
ML20235G945
Person / Time
Site: Vogtle Southern Nuclear icon.png
Issue date: 01/31/1989
From: Chang K
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20011C539 List:
References
WCAP-12133, NUDOCS 8902230412
Download: ML20235G945 (83)


Text

._. ._ _ . _ _ _ _ . .

o 1 ..

!- WESTINGHOUSE CLASS 3 4

L L'

l WCAP-12133' l

l. >

..e

)-

l- ..

w- ,

l Surge Line Stratification Presentation Overheads -

l-Georgia Power /NRC Meeting - 1/24/89 Prepared by: 'K. C. Chang Plant Engineering Department January 1989 1

A' WESTINGHOUSE ELECTRIC CORPORATION Power Systems Business Unit P.O. Box 355 Pittsburgh, Pennsylvania 15230 l l

8902230412 890215 2 ,

PDR ADOCK 050004'5  ! ;;-

A PDC

_i. ,

1

~

{

l VOGTLE UNIT 2 -

l PRESSURIZER SURGE LINE STRATIFICATION UPDATE OF DESIGN TRANSIENTS l

STRESS ANALYSIS i d

ASME Ill FATIGUE USAGE FACTOR

~

FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK CONCLUSION l

m 1


_-------.--___J

v v bo bo I

s Q

LO Mw l i

w l

% l 1v J vs D/o Wo se /v w

o w

~

l l ,

l Isometric vi*W Of PWR 2

J

\

' =

8 R-

~

h  !

~

N w E m

~

O y w n a ,s 8 5

s .

a:

M m

. W g 8 , $

~

N W y a

" E g e E $ f f w e N

>= C N g "

E o N

2 I

M r N

  • 3 g

E 8 n A

.  ! N e,

l l

3

--- --.-- j

i i

0

~

PRESSURIZER SURGE LINE STRATIFICATION UPDATE OF DESIGN TRANSIENTS STRESS ANALYSIS

~ '

ASME Ill FATIGUE USAGE FACTOR FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK CONCLUSION

~

l et i

A

I PRESSURIZER SURGE LINE TRANSIENT DEVELOPMENT WITH STRATIFICATION l

o Design Documentation o Thermal Hydraulics of Stratification o Monitoring Programs i

o Operations Survey I

o Heat Transfer and Stress Analysis o Stratification Profiles o Transient Types o Heatup - Cooldown Transients  !

o Design Transients w/ Stratification O

e 5

L _ ________---________--_a

i

, TRANSIENT DEVELOPMENT FLOW CHART a

SYSTEM DESIGN MONITORED INFORMATION DATA (1) (3)

STRATIFICATION HE AT TRANSFER

- EFFICTS CRITERIA - STRESS ANALYSl3 (2) (4) 8,C,e HISTORICAL DATA

~

(8) l _

TRANSIENTS '

(10) e Event Design

  • Cycles. Design + Monitored e Transient Type Structures =

Design + Monitored Transient Magnitude i

o_

l l

l 6

. _A

'") J r

$'c f

  • v r t on "

t cl am r I

ao u g eoP )

RC p o

)

S o

L

t R

H l

a aR e(

Hp = i c

p o y l r o ta o T oL (

mt a ra d l o

sa y

r yS

)

ml t

ee Se n G

I ev Ro

R m

e i

D m

a r

g a

, ia aC )

l ir x pV " ,

[

S w o

uSC ( C l A Ye v

V F C

a

) MW'VL J

la f

1 r

, i n L

(

e t

m e

s n y mN. w o

S

- d t n

) le a laS L l l

vR o gl ) a oH o e ac umR C ti t p de({

isRm r oy et e o HT( Rat es t c

Hy a

.' ,s S e

\ , R ole k /

a' ,E t

R c s a e e V s

g )

gt ) n i S ea geC r n tc i dp y h aLiVC lo T C (

C(

< k a

1 l

i I . l l-Aux. Spray

  • M1 4 bd
  • - Spray From Loop CL 4W l.

~

h ,_, e Spray From '

Loop CL Surge Line Connecting

  • to Loop HL

~

RCS Pressurizer 8

)

s r

u o

H

(

e i

m T

)

F

(

e r

t u

a r

e i . p m

e T_ _

e

e, c,

n w

) o s

r d

l o

u C o

o e H

d

( o M

. e l e

m b b

i u

T B m

a t

e S

)

F

(

e r

t u

a r

.. e p

m e

T -

E

l i,*

e l

z ,

i

=

- 16 5

  • g a

s W

~ j Q& j 11

e.

c, a -

- ~

r - ~

e =

i z t y

r ic

e. o d, nu c, l

e i,

u os a V _

_ l F

i t s - _

_ d l

ae o 7.___yC-crP /

r[_ / t i

f ~=

n a d l

i y n g c o

t r _ _

ae rd i

l t

c o

_~ S t

aT e

t n V SU

- r ._ _

e s ~

z' a

ww i

r u' N' \

~

o s

l o s]

e m' f jt1I1t

\

Fb l P

r ltII4 m[ vr wltIIg

\

f E o" i o n f r t o

\

ei wh t' oT e" ltII4 arn t l _

F t

o i

me t t t

H sa EP

~

r1Illlllll1jll

e, C,

, 8 O )

e

, p e

r i

D P

t u I h

c a

r i

n 3

e 4 p 1

(

m l e

i e f o

. T P r

e s r u

. s t a

l e e r

n p i

o e m

T s s n s e

e l n

) o s m i s

e i

n e D e m

r i D

g e

d

(

l e _

g _

.. n A

t

MONITORING PROGRAMS i

~

o General Criteria Drwelop Sufficient Data to Characterize All Critical Operating Transients Heatup and Cooldown Most Critical Times (Continuous Monitorlag)

Temperature Data Needed:

o Characterize Temperature Profiles o Capture Transient Effects o Develop input for Structural Analysis o Externally Mounted RTD's/TC Used Displacement Needed:

o Check Potential interferences o Benchmark Structural Analysis o LVDT's (Lanyards) Used 3

14

MONITORING PROGRAMS Plant-System Data Needed Obtain Actual Fluid Temperatures / Pressures Identify Critical System Operations Correlate Operations to Transients

.P O

O en e

15

_ _ _ ___]

s

$ t' i

= .a  :

.  !. :4, 1

nn ma .a .- .

- t

- , - - ar* = '

x . ...

. ors on t 2.N "g 1

- rr m L la.

1.

E e

,y y g gs yg-I2Ol.gg}.MOOL b

D z 1 2

U< _. , , ,..

4 e

i f

-A MONITORING INSTRUMENTATION LgATlW

l. s 1

16

, 1 N ,

I O ,

T ,

A ,

C I

F I

T ,

A ,

, 0 R , 0

, 7 T ,

, 0 S D N ,

EE ,

NF EA I

. LS ,

A T ,

EA D ,

G 8 ,

R8 - ,

U3 1 0

S- 9 ,

0 0 ,3

,0 2 ,

T I

N U ,

E ,

L ,

T ,

G ,

O ,

,0 V - - - - - - - - - -

,0 3

0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 9 8 7 6 5 4 3 2 1 0 2 2 1 1 1 1 1 1 1 1 1 1 0

8

  • 1 Odw 3hwa.3F O

, 1 N

O I

T ,

A C

I F

I T ,

A ,

, 0 R ,

7 0

T _

_ 0 S ,

E6 0 ,

N0 H I ,

LA T ,

A ,

D ,

. E 8 G8 -

R3 1 ,

. U- 9 ,

, 0 S0 ,

, 3 0

0 2 ,

T I

N _

U ,

E ..

L ,

T ,

G  ;

. O ,

0 V - - - - - - - - - - - - ~

, 0 3

2

. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 8 6 4 2 0 8 6 4 2 0 8 4 4 4 3 3 3 3 3 2 2 2 2 2 1 1 0 0

- 8 1

C g w S Wo3 c

k $ a. 3 V-M

0 0:

u 1 m

m 1

._ u

_ u

.'~ u u

u N u u

u O

u u

I u

=

T -.

A u u

u C

I u

u u

u u

F I

u u

u u

T u m

A m u

s.

0 R . 0:

. 7 T e

- 0 S -

w w

0 =

=

E5 '

=

NE T4 I

. )

LA . S T

_ R A _ U D O E 8

. H G8 - .

(E M :_

, R3 .

I T

U1 - .

0 S9 0 s u

u 3 0:

m0 m

2 u s.

T I

e s

u N -

U s

u E =_

L ._

T _

G O u s

u 0 V - - - - - - - - - - - -

m0:

3 2

,. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 8 6 4 2 0 8 6 4 2 0 8 6 4 4 3 3 3 3 3 2 2 2 2 2 1 1 00 8

1 nin Ovy3Na:wIw1 -

M

.O O

E

. (  :"

R Z i O

/

i F-'

<C i O E LL.

F- i

$ $C Z EC

-s H EC O  !

E W C I ZE i

= ^

A n<< I

=

N 2

o " 5 W g  ! Z OO a  !!

=

tf 1

- 19 E

- G Di =

CA S

!m!

EC b  !

E I

Z i D iB E

W E J i F- E O E O i EE i i i i i i i i i l i i i M O C C C C C C C C C C C C C CJ T N O CO LD T N O EC LD T N C 10 O T T T M M M M M N N N N N - *-

O C to

. e Croso)3anivasan31 20

1 OPERATIONS SURVEY-

. i

~

o Summary of Plants Surveyed NO. OF YEARS OF OPERATION PLANT LOOPS (MAXIMUM)

V0GTLE 4 2 a,c.e l

o Reviewed Typical Heatup Cooldown Process o Reviewed Administrative / Tech Spec Limitations o Reviewed Historical Events and Time Durations

.- o Developed Heatup - Cooldown Profiles 21

__ - - - - - - - - - - - - - - - - - -a

STRATIFICATION PROFILES

-- 8 , C , e e

6 5

e i

4 4

(

0 22

a,c e Surge Line Hot Cold Interface Locations 23

C) e P

O e

C a.

3 m

'4 W'

I e

w i' w

3 S

w e

b

>~

E

. O

=

. 6 C

O 4-w 0

J W

w 4

Te w

C 30 V

4 0

Z e

O l

l 24 I

1 TRANSIENT TYPES e

a,C,0 C

e 4

0 e

1 i

4 6

25

TRANSIENT TYPES

~

o Historical Data o Reviewed Records of Past Heatups and Cooldowns Obtained Maximum Press. - Hot Leg Temp Diff.

Approximate Time at Temp Plateaus O

O 6

9 9

e 26

a,c,e l

l

\

3 e

i l

l I

l.-

l t

l=

1 I r a,c.e Typkal[ ,, emperature Profiles 27

( - _ - - _ - - _ - __ -__ - -_-_ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

HEATUP - COOLDOWN TRANSIENTS o Transients Were Developed Based On:

Typical Heatup Cooldown Curves Envelope (Plus Margin) of Events (Transients) Monitored Historical Data on Temperature Plateaus a,c.e ;

l e

f l

I l

l.*

i 28

)

DESIGN TRANSIENTS WITH STRATIFICATION o Heatup and Cooldown Combined With Other Events-o Design Transient Criteria a,c.e l

l 1

o input for Local and Structural Analysis Defined - Plus Nozzle o Striping Transients Defined to Consider Maximum Stratification Cycles Regardless of Range 29 I 1

1

[7,'k ..

SURGELINE TRANSIENTS'WITH' STRATIFICATION HEATUP (H)_AND C00LDOWN .(C) 200 CYCLES TOTAL. - a ,c.e JG

, D--

f .'

l r

e e

i4

[ ,

e e

.W I

30

SURGE'LINE TRANSIENTS WITH STRATIFICATION NORMAL AND UPSET TRANSIENT LIST

^

a,c.e O

O d

e

' 9 e

4 e

O L  :

31

SURGE LINE TRANSIENTS WITH STRATIFICATION NORMAL AND UPSET TRANSIENT LIST a.c,e 9

e O

e a

F e

O BubuMD 9

32

I a,C,0 SURGE LINE TRANSIENTS - STRIPING LOADS FOR HEATUP (H) and C00LDOWN (C)

S i

S 0

4 l

l.-

33

1 CONCLUSIONS o All Current Design Transients Enveloped 1

- -a,c,e

{

o Monitoring Programs From Plants Contained Sufficient Data to Develop Conservative understanding of Stratification o Operations Surveys Provided for' Interpretation of 1 onitored Results o Stratification Profiles Developed For Entire Line o Transient Types Developed l o Revised Design Transients Developed With Stratification l

i l

e l

e 34

)

i

\

. PRESSURIZER SURGE LINE STRATIFICATION l

UPDATE OF DESIGN TRANSIENTS  !

l STRESS ANALYSIS l

ASME lil FATIGUE USAGE FACTOR l O

FATIGUE CRACK GROWTH LEAK-BEFORE BREAK CONCLUSION i

e 0

35

i l'

l i l l l

l l

DETERMINATION OF THE EFFECTS OF THERMAL STRATIFICATION a,C,0 e

l l

R 4

e a

w O

d .

36 F

_J

1 i

STRESS ANALYSIS

.c ^

Piping System Structural Analysis Local Stress Analysis Striping Stress Analysis O

e a

i e

e 37

_a

d HOT COLD A A UMU MM/

SIMPLY SUPPORTED SEAM

. /

. /

/ - - - - - _ _ _ -

/

~

l

/ Hot h

/

OLc CANTILEVER BEAM  ;

Figure 9 Bowing of Beams Subject to Top to Bottom Temperature Gradient 38

8,C,e A

e d

4 4

0 O

m Y

e 8,C,e Profile 39 i

i.

g; .

' e V

e-5 l "

It' 6

- .E och a

W EW wa N

= E

.C

==

e N b-

, A att w U E =

ch. L N N

  • - C.

>= 2

= W w

e' man -

8

'W es 40

1 TEMPERATURE. PROFILES IN PRESSURIZER SURGE LINE e - - a,c,e

(

i O

e 9

e e

e e

41

CONCLUSION - GLOBAL STRESS ANALYSIS l

e Temperature Profiles Established Through Parametric Study e Rigid Support H006 Replaced by Spring and Snubber to Reduce Support Loads e Eleven (11) Cases Analyzed to Calculate All Required Loading Conditions e Pressurizer Nozzle Loads Under Evaluation e Hot Leg Nozzle Loads Acceptable o Piping Stress Within Code Limits Using CMTR for Reducer

- e Stratification Loads on Support H002 Within Design Allowable

- e Pipe Movements to be Reviewed Against Clearance and Verified Duri.ng the Next Heatup 4

9 42

LCCAL STRESS CONSIDERATIONS O

o Stresses Due to Non-Linear Thermal Gradient o Striping t

a e

4 e

I l

e e

43

LOCAL STRESS - FINITE ELEMENT MODELS/ LOADING  ;

~

8,C,0 e .

9

. t k

i l

e

=

e 44 1

I

t

. a,c.e 1

4 Piping Thermal Boundary Conditions 45

-- _ - ~ ~ - - ~ - - - - - ~ _ _ _ . _ _ _ _ _ _ _ _ _ _ _

l l-l a,c.e d

f qa,c.e

. Surge Line Local Axial Stress on inside Surface a

] Axial Locations 46

7-i-

. a ,c .e .

.t

-- - - a,c,e Surge Line Local Axial Stress on Outside Surface at Axial Locations 47

HOT LEG NOZZLE STRESS ANALYSIS

~

o Two 3-Dimensional Models Developed o Loading included Pressure Bending Moments Stratification o Stratification Profile Based on Observation During RCP

- Trlp e

l l

4 9

l i

48

i O

e U.

N 8

1 E

S P

T C

2 2

v W

O.

O C

U W

D w

)

m 0

4 9

49

^

~t-e i

. Q,

- 4

.*~ .

. e

$ i

'1 I

i

.i i

i f

i

{

i I.  :

f

. ( -!

W i w -

n l

.g_

{

W i

..C

- M

.W I e

w-t

'3 e, .i  !

i k

a 1

j e -l a j l

e e

.)

LOCAL STRESS CONSERVATISM

  • 8,C,0 e

e e

I l

l 1

l O

O e

D i

51

1 RESULTS  ;

1

_ a,c.e o Stress Profiles Developed for Pipe Cross-Section -'

l o Maximum Stresses Occur on inside Surface Near Interface-o Results Consistent with Theory o Stresses to be Combined with Structural Bending g . e a

O 8

6 m

5 52

________ - ___ ____ ________________-________________]

PRESSURIZER-SURGE LINE STRATIFICATION

. THERMAL STRIPING ANALYSIS i

BACKGROUND:

Feedwater Line it 7#R's Flow Tests For L)'t RR Experimental Tests in Japan Mitsubishi Heavy industries, Ltd.  ;

. Thermal Striping Affects ASME Fatigue Analysis

- Temperature Fluctuations at Boundary Thermal Discontinuity Stresses '

Usage Factor for Fatigue Life  !

)

'4 h

D O

53

PRESSURIZER SURGE LINE STRATIFICATION

." THERMAL STRIPING ANALYSIS Factors Which Affect Striping Stress:

Fluid Temperature Delta T & Cycles Frequency of Oscillation Surface Film Coefficient Material Properties -

(Thermal Conductivity)

(Thermal Diffusivity)

. (Modulus of Elasticity)

, (Coefficient of Thermal Expansion)

Wall Thickness Thermal Striping Potential (a T Level vs. Time)

D 9

54

. PRESSURIZER SURGE LINE STRATIFICATION THERMAL STRIPING ANALYSIS 1

Therrnal Striping Stresses j d

o Peak Stress Range and Stress Intensity Calculated l Surface Nodes o Through Wall Stress at High Peak Stress Locations a,c,e O

9 e

i e

9 55 ,

PRESSURIZER SURGE LINE STRATIFICATION

~

- . THERMAL STRIPING ANALYSIS I

Conservatism:

o Striping Occurs at One Location o Surface Film Coefficient High & Constant Flow o Thermal Transient AT and Cycles O

C O

O m

l 56

i i

l Pressurizer Surge Line Stratification Thermal Striping i

^* 1 Boundary Between Hot & Cold Stratified Ft.sid Hot Fluid / See Detail 1

[ Boundary Between Hot & Coid

~

h CLSurge Pipe Cold \ ______ __

.' Fluid Hot Fluid i h = 1.125 in.

A+ - ,Ct Cold Fluid Section A A Do i3 026954 027 9 -

+

57

a 4

e Pressurizer Surge Line Stratification Thermal Striaing th = 1.125 in h /

& o ,

O is Time r i T insulated g ii Outside Surface g

T Amphtude of Flued Temperature b Oscillation Versus Trne h - inside surface Heat Transfer Pipe Wall Film Coemeent

.t Surface Temperature f

t

  • Intenor Temperature 9

9 58

\ e  ; ;

-.. 'I J

9 6

e 1

. m. .

U.

E 2 .

9 e

~ W

.5

. E u.

e U

M-I I 59

PRESSURIZER SURGE LINE STRATIFICATION UPDATE OF DESIGN TRANSIENTS l

STRESS ANALYSIS

. i ASME !!! FATIGUE USAGE FACTOR

~

FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK CONCLUSION 1

l 60

f 9

)

CUMULATIVE USAGE FACTOR: EVALUATION .

e

  • 1 o Code / Criteria o Previous Design Method o Stress input o Stress Classification / Combination o Load Combinations / Usage Evaluation I

o Results .

o Conservatism 1

9 I

~

)

61

CODE / CRITERIA o ASME B&PV Code, Sec. Ill,1986 Edition NB3600 NB3200 o Level A/B Service Limits Primary Plus Secondary Stress intensity s 3Sm (Eq.10)

Simplified Elastic-Plastic Analysis Expansion Stress, S, s 3Sm (Eq.12) -

Global Analysis Primary Plus Secondary Excluding Thermal Bending 5 3Sm (Eq.13)

Elastic-Plastic Penalty Factor 1.0 s K, s 3.333 Peak Stress (Eq.11)/ Cumulative Usage Factor (Ucum) alt = K,Sp /2 (Eq.14)

S Design Fatigue Curve U s 1.0 cum 62

e STRESS INPUT o Pressure Stress Transient Pressure WECAN 2-D Unit Pressure Stress o Moment Stress ANSYS Global Moments WECAN 2-D Unit Moment Stress.

I - - a,c.e e

( -

m l

l l

I 63

CONSERVATISM - FATlGUE USAGE o ASME Code Methodology / Fatigue Curve o Enveloping Peak Stress Intensification, K, = 1.8, at Butt Welds NB3681:' K g = 1.2, K 2 =

.8, K3"

  • i l

O W

I I

$4 4

e 1

e i 64 i

4 CONCLUSIONS -' FATIGUE USAGE i i

. l l

o Maximum Usage Factor Less Than ASME Code Allowable of 1.0 (NB-3653) At Most Locations j l

o Evaluation Continuing On l 1

14 x 16 Reducer . j Pressurizer Nozzle 4

1 O

, i t

en 9

65

t. - _ _ _ .

_ 9 e

+

9 PRESSURIZER SURGE LINE STRATIFICATION

~ UPDATE OF DESIGN TRANSIENTS STRESS ANALYSIS ASME Ill FATIGUE USAGE FACTOR 4

FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK l l

CONCLUSION i

e e

66

FATIGUE CRACK GROWTH o Standard ASME Section XI Methods Used o Crack Growth Law Based on Current Proposed Curve for Austenitic SS in Air Environment o initial Flaw Sizes Selected Based on Section XI inspection Detection Tolerances o All Locations Checked for FCG o Results

~

Crack Growth at All Locations Remain Well Within 0.6T e

e 67

1 FATIGUE CRACK GROWTH EQUATION FOR

,' AUSTENITIC STMNLESE STEEL 3

)

(

3 d

= C F S E AK .30 where

=

d Crack Growth Rate in micro-inches / cycle e

C= -0 2.42 x 10

,' F= frequency fac' tor (F = 1.0 for temperature below 800*F)

S= R ratio correction (S = 1.0 for R = 0; S = 1 + 1.8R for .

O < R < .8; and S = -43.35 + 57.97R for R > 0.8)

E= Environmental Factor (E = 1.0 for PWR) aK = range of stress intensity factor, in psi /in l

l

, and R is the ratio of the minimum K, (Kimin) to the maximum K, (K, , ).

1 6

68

c 3.0= WT*

I, f I I.

l.. f._.f..'; l.. . ,.

soUD UNtl FOR 70T /. 3 3

' l / l I'.

g* . OASMCD D'15 FOR 550T

f. ,

r .. ' s......'.w,...,,..

,.7

../.. j .. [..

f, .

f.. _p[f...;..

' 5 i q i..

.7 -.

l . . ,. . . .

_,/. ,/:.. f../:..._., .

p.

,/ ,/ ,/. ,

.{n . c.s ,. ,.. .,.

f .. . .,  ;,,......,.. ,.

%. .i.. ,.4.. . . . . . .. _....

j ..

IR e c. .7s 1 I .I. 3-i .

. .  : ... ./.

i :

_f.,

.1 I? I

,/. . .,... . ./. ..

fi / /

fi. !! ,

._.......~

, _,._, ./. . . .. . .. r . . /. .

.__...._._.._......t...... 3._...,...,..

.i + . .

a._s_, ......= ; . .

g(.. .. /. . . . _ . .  ;..

.. o.oq 1..y...q- , i-

,fi t .af;. ..,

r I ' I i

. . . _, ./. , ../! ..i .

l i /. ./.; . .. . . . . .. ._ .,

/,./. /# /+

' i e, . /'  :/ ' / ' .

2.0 uf sd &.

u (ksh/in.)

o Fatigue Crack Growth Rate Curve for Austenitic Stainless Steel 69

r 1

. )

PRESSURIZER SURGE LINE STRATIFICATION  !

i l

l I

UPDATE OF DESIGN TRANSIENTS l

STRESS ANALYSIS A5ME Ill FATIGUE USAGE FACTOR FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK CONCLUSION a

i 70 l

4

' REASSESSMENT OF LEAK-BEFORE-BREAK )

Leak-before-break methodology involves the following:  !

(1) Establishing material properties including fracture toughness values (2) Performing stress analyses of the structure (3) Review of operating history of the structure j (4) Selection of locations for postulating flaws (5) Determining a flaw size giving a detectable leak rate (6) Establishing stability of the selected flaw (7) Establishing adequate margins in terms of leak rate a detection, flaw size and load.

(8) Showing that a flaw indication acceptable by inspection remains small throughout service life.

O e

e

=

71 4

-- _...j

LBB CONSERVATISM i

. o Factor of 10 on Leak Rate o Factor of 2 on Leakage Flaw o Algebraic Sum of Loads for Leakage o Absolute Sum of Loads for Stability o Average Properties for Leakage

~

o Minimum Properties for Stability l

e 72

1 l

l .

l

  • 1

=

l J

l i

l (This page intentionally left blank.)

9 s

0 e

a e

73

4 4

TYPES OF LOADINGS m

PRESSURE (P)

DEAD WEIGHT (DW)

NORMAL OPERATING THERMAL EXPANSION (TH)

SAFE SHUTDOWN EARTHQUAKE AND SEISMIC

, ANCHO,R MOTION (SSE)

' - a,c.e 4

m 0

m m k

e 74

{

l r

e e

- m <

l

-i =-

E "if 2

o P N'

eJ G'

l I i 9 E2 s<

N p 5

l

. M h.

2 8 o(

0 0 dool tampg 6 E.2 6

2e E u

  • aj j b l 2 =y o 5

$ S 3 4 Z 1rr<

< = n g

n o7 E<

gI

.m I

75

1 o ;r Case A: This is a normal operating case at 653*F consisting of

, the algebraic sum of the loading components due to P, DW and TH. a,c.e Case B:

Case C:

Case D: This is a faulted operating case at 653*F consisting of the absolute sum (overy component load is taken as positive of P, DW, TH and SSE. ,,c,e-  !

a Case E:

-4 Case F:

4 b

e b

76

_m _a

CASES FOR ANALYSES a

M A/D This is here-to-fore standard leak-before-break evaluation  !

8,C,e A/F B/E l

B/F e

9 C/F enusmas 4-a m.

F 77

. e.

' c.

a

- i n

g r

a M -

w l

a F

e g 5 5 a 9 8 4 9 k

a 2 2 6 4 e

L e.

N c, S

wO ad a

T l

F e0 s 4

, L

' U l

a a6 S i cB3 -

E t eB R

zW i

, r i

~ B CS I _ _

B L

l c

a t C s 0 le 4 a e6 l

z3 S

mi- S B f

oaI wW 0 6

0 6

0 0 2 2 l 0 0 7 7 nF n 2 2 2 2 ol o i

t ad c

ai te ci s or L CB a

d e a s D E/ /F/ F L C oa /

A B A B

\ l

i i i s s s k k k 7 7 8 1 8 6 1 3 0 c, 2

7 ,

2 _

N O

I T

A .

  1. C O

L T

A S s D s A r e

s O S t

e L l g u i

n R t g a

r n i

e t s

p i O x l

E a o t

m r t o c e

N p

_ s A B F e R

n n n h o o o i i i i t

t t t

, i i i d d d w n n n y l

o o o a

. C C C m o

n

  • e e A

6 PRESSURIZER SURGE LINE STRATIFICATION UPDATE OF DESIGN TRANSIENTS STRESS ANALYSIS 9,

+- ASME Ill FATIGUE USAGE FACTOR o

FATIGUE CRACK GROWTH LEAK BEFORE-BREAK

. c,,, ,.

r-

. . .;waa :;ue ti 9

e e

80

1 VOGTLE UNIT 2 i ' SURGE LINE STRATIFICATION CONCLUSION -

(PENDING FINAL VERIFICATION) i i

e Design Transients Updated to Reflect Stratification in The Surge Line e Monitoring of Unit 2 Will Continue 1

,. o ASME ill Fatigue Usage Factor For Piping Within Code All'owable for 40 Years Design Life e Fatig'ue Crack Growth Results Acceptable e . Leak Before-Break is Demonstrated a

9

.9

'o ,

81 L.