ML20235G945
| ML20235G945 | |
| Person / Time | |
|---|---|
| Site: | Vogtle |
| Issue date: | 01/31/1989 |
| From: | Chang K WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
| To: | |
| Shared Package | |
| ML20011C539 | List: |
| References | |
| WCAP-12133, NUDOCS 8902230412 | |
| Download: ML20235G945 (83) | |
Text
._.
o1..
WESTINGHOUSE CLASS 3 L
4 L'
l WCAP-12133' ll. >
..e
)-
l-w-
l Surge Line Stratification Presentation Overheads -
l-Georgia Power /NRC Meeting - 1/24/89 Prepared by: 'K. C. Chang Plant Engineering Department January 1989 1
A' WESTINGHOUSE ELECTRIC CORPORATION Power Systems Business Unit P.O. Box 355 Pittsburgh, Pennsylvania 15230 l
l 8902230412 890215 PDR ADOCK 050004'5 2
A PDC
_i.,
1
{
~
l VOGTLE UNIT 2 PRESSURIZER SURGE LINE STRATIFICATION l
UPDATE OF DESIGN TRANSIENTS l
STRESS ANALYSIS i
d ASME Ill FATIGUE USAGE FACTOR
~
FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK CONCLUSION l
m 1
J
v v
b bo o
I s
Q M
l L
i w
w O
l l
1v J
D/o vs
/v W
o o
se w
w
~
l l
l Isometric vi*W Of PWR 2
J
\\
' =
8 R-h
~
~
N E
m w
~
O w
n y
a
,s 8*
s 5
a:
M m
W g
8
~
y N
W E
a g
e E
f f
w e
N C
>=
N N
g E
o 2
I M r N
3 g
E 8
n A
N e,
l l
3
--- --.-- j
i i
0
~
PRESSURIZER SURGE LINE STRATIFICATION UPDATE OF DESIGN TRANSIENTS STRESS ANALYSIS
~
ASME Ill FATIGUE USAGE FACTOR FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK CONCLUSION
~
l et i
A
I PRESSURIZER SURGE LINE TRANSIENT DEVELOPMENT WITH STRATIFICATION l
o Design Documentation o
Thermal Hydraulics of Stratification o
Monitoring Programs i
o Operations Survey I
o Heat Transfer and Stress Analysis o
Stratification Profiles o
Transient Types o
Heatup - Cooldown Transients o
Design Transients w/ Stratification O
e 5
L
-- a
i TRANSIENT DEVELOPMENT FLOW CHART a
SYSTEM DESIGN MONITORED INFORMATION DATA (1)
(3)
STRATIFICATION HE AT TRANSFER
- EFFICTS CRITERIA -
STRESS ANALYSl3 (2)
(4) 8,C,e HISTORICAL DATA
~
(8) l TRANSIENTS '
(10) e Event Design
- Cycles. Design + Monitored e Transient Type Structures =
Design + Monitored Transient Magnitude i
o_
l l
l 6
_A
r
'")
J
$'c
- v f
r t on am I
t cl r
ao u g
eoP
)
RC poo
)
S L
R l
H a
taR c
=
e(
i Hp p
o y
ta o m
o oL T
l r
mt d l
(
o a
m a
sa r
ee ev n
Ro a
tSe m
r G
e g
l
- R a
i y
D
)
I r
yS ia w
aC
[
)
l pV MW'V S
irxuSC C
o l
A Ye V
F
(
v C
r la m
(
)
e n
e mN.
L f
, i t
a L
s J
1 n
y w
S le a
o t
d n
)
laS L
l
)
l vR o
gl a oH e a umR o
de({
C c
ti isRm r
p toy et e o
HT Rat t
e s c
(
Hy a
S
,s e
\\
R
,ol k
e t
s c s a e e V
/
R a'
,E g
)
n gt )
i S
ea geC n
tc r
i aLiV dp h
C lo C
y
(
T C(
k a
1 l
i I
l l-Aux. Spray
- M1 4
bd
- - Spray From Loop CL 4W l.
h
~
e Spray From Loop CL Surge Line Connecting
- to Loop HL
~
RCS Pressurizer 8
)s ruo H
(
e m
iT
)F
(
e ru ta re i.
p m
e T_
e
e, c,
n w
)
o s
d l
r o
u oC o
e H
do
(
M e
e m
lb b
i u
T B
mae tS
)F
(
e ru ta r
ep m
e T
- E
l i,*
e l
z i
=
16 5
g a
s W
~
j Q&
j 11
e.
c, a
~
r
~
e
=
z y
t i
ic r
e.
o d,
nu c,
e i,
l u
os l
V 7.___yC-a F
i s
d t
lo ae
/
cr
/
t P
r[_
n d i
a f
~ =
l n o it r y
g c aT t
ae ic
_ ~ S t
o rd le t
n V
S U a
r s
~
e z'
w w u'
N'
\\
~
ir o
s] m' f
\\
s o
l e
jt1I1t Fb r
P m[ v wltIIg l
ltII4
\\
E f
o" r
i o
\\
r t
f n
o wh ei oT e" ltII4 t'
t l
n F
ar to me H
t i
t tsa EP
~
r1Illlllll1jll
{'ljl'!l
e, C,
8 O
)ep i
e P
r D
u I
h t
c a
n i
r e
3 4
p 1
(
m e
l i
e fo T
rP e
s ru s
ta e
r l
e n
p o
me i
T s
s n
se e
ln m
)
o s
is i
n e
D e
e m
r iD ge d
(
e lg n
A
- t
MONITORING PROGRAMS i
~
o General Criteria Drwelop Sufficient Data to Characterize All Critical Operating Transients Heatup and Cooldown Most Critical Times (Continuous Monitorlag)
Temperature Data Needed:
o Characterize Temperature Profiles o
Capture Transient Effects o
Develop input for Structural Analysis o
Externally Mounted RTD's/TC Used Displacement Needed:
o Check Potential interferences o
Benchmark Structural Analysis o
LVDT's (Lanyards) Used 3
14
MONITORING PROGRAMS Plant-System Data Needed Obtain Actual Fluid Temperatures / Pressures Identify Critical System Operations Correlate Operations to Transients
.P O
O en e
15
___]
s t'
=.a i
!. :4, 1
t nn ar* = '
ma.a.-.
x t
2.N "g
. ors on 1
- rr m L
la.
1.
Ee
,y y g gs yg-I2Ol.gg}.MOOL b
D z
1 2
U 4
%ie f
MONITORING INSTRUMENTATION LgATlW
-A l.
s 1
16
N O
I T
A C
I F
I T
A 0
R
, 0
, 7 T
,, 0 S
D N
EE E
NF A
I LS A
T EA D
G 8
R8 U3 1
0 S-0 9
0
,3 2
,0 T
I N
U E
L T
G O
,,0 V
,0 32 0
0 0
0 0
0 0
0 0
0 0
0 0
9 8
7 6
5 4
3 2
1 0
1 2
2 1
1 1
1 1
1 1
1 1
1 08 1
Odw 3hwa.3F O
1 N
O I
T A
C I
F I
T A
0 0
R
- 7 T
0 S
E6 0
N0 H
I LA T
A D
E 8
G8 R3 1
U-0 9
S0 0
, 3
, 0 2
T I
N U
E L
T G
O
_ 0 V
, 0
~
32 0
0 0
0 0
0 0
0 0
0 0
0 0
0 2
0 8
6 4
2 0
8 6
4 2
0 8
4 4
4 3
3 3
3 3
2 2
2 2
2 1
1 0 0 8
1 C g w S Wo3 k $ a. 3 V c
M
00 u
1 mm 1 uu u
. ' ~
uu N
uu u
O u
u I
u=
T A
uu u
C uuu I
uu F
uu I
uu T
u m
A mu 0
- s. 0 R
. 7 T
0 e-S
.w w
0
=
E5
==
4 NE T
I
)
S LA R
T U
A O
D E
H 8
(E G8 M
I R3 T
U1
. 0 S9 0
0 s
uu 3 m0 2
m u
s.
T e
I su N
U su E
=_
L T
G O
u s 0 u
V m0:
32 0
0 0
0 0
0 0
0 0
0 0
0 0
0 2
0 8
6 4
2 0
8 6
4 2
0 8
6 4
4 3
3 3
3 3
2 2
2 2
2 1
1 008 1
ni Ovy3Na:wIw1 -
n M
.O O
(
E:"
R Z
i O
/
i F-'
<C i
O E
LL.
F-i
$C Z
EC
-s H
EC O
E W
I C
ZE i
=
^
A n<
I N
=
2 o
5 W
Z g
OO tf a
=
1 19 E
G Di
=
CA S
!m!
-E C b
E I
Z i
D i
B E
W E
J i
F-E O
E O
i EE M
i i
i i
i i
i i
i l
i i
i O
C C
C C
C C
C C
C C
C C
C CJ T
N O
CO LD T
N O
EC LD T
N C
10 O
T T
T M
M M
M M
N N
N N
N O C to e
Croso)3anivasan31 20
1 OPERATIONS SURVEY-i
~
o Summary of Plants Surveyed NO. OF YEARS OF OPERATION PLANT LOOPS (MAXIMUM)
V0GTLE 4
2 a,c.e l
o Reviewed Typical Heatup Cooldown Process o
Reviewed Administrative / Tech Spec Limitations o
Reviewed Historical Events and Time Durations o
Developed Heatup - Cooldown Profiles 21
-a
STRATIFICATION PROFILES
-- 8, C, e e
6 5
e i
4 4
(
0 22
a,c e Surge Line Hot Cold Interface Locations 23
C) e P
O e
C a.3 m
'4W' I
ew i'
3 wSw e
> ~
b E
O
=
6 C
O
'&4-w0 J
Ww4Te w
C 30 V40Z e
O l
l 24 I
1 TRANSIENT TYPES e
a,C,0 C
e 4
0 e
1 i
4 6
25
TRANSIENT TYPES
~
o Historical Data o
Reviewed Records of Past Heatups and Cooldowns Obtained Maximum Press. - Hot Leg Temp Diff.
Approximate Time at Temp Plateaus O
O 6
9 9
e 26
a,c,e l
l
\\
3 e
i l
l I
l.-
l t
ll=
1 a,c.e I
r Typkal[
,, emperature Profiles 27
(
HEATUP - COOLDOWN TRANSIENTS o
Transients Were Developed Based On:
Typical Heatup Cooldown Curves Envelope (Plus Margin) of Events (Transients) Monitored Historical Data on Temperature Plateaus a,c.e ;
l e
f l
I l
l.*
i 28
)
DESIGN TRANSIENTS WITH STRATIFICATION o
Heatup and Cooldown Combined With Other Events-o Design Transient Criteria a,c.e l
1 o
input for Local and Structural Analysis Defined - Plus Nozzle o
Striping Transients Defined to Consider Maximum Stratification Cycles Regardless of Range 29 I
1
[7,'k..
SURGELINE TRANSIENTS'WITH' STRATIFICATION HEATUP (H)_AND C00LDOWN.(C) 200 CYCLES TOTAL.
- a,c.e JG D--
f.'
l r
e e
i4
[,
e e
. W I
30
SURGE'LINE TRANSIENTS WITH STRATIFICATION NORMAL AND UPSET TRANSIENT LIST
^
a,c.e O
O d
e
' 9 e
4 e
O L
31
SURGE LINE TRANSIENTS WITH STRATIFICATION NORMAL AND UPSET TRANSIENT LIST a.c,e 9
e O
e a
F e
O BubuMD 9
32
I a,C,0 SURGE LINE TRANSIENTS - STRIPING LOADS FOR HEATUP (H) and C00LDOWN (C)
S i
S 0
4 l
l.-
33
CONCLUSIONS o
All Current Design Transients Enveloped 1
{
-a,c,e o
Monitoring Programs From Plants Contained Sufficient Data to Develop Conservative understanding of Stratification o
Operations Surveys Provided for' Interpretation of 1 onitored Results o
Stratification Profiles Developed For Entire Line o
Transient Types Developed l
o Revised Design Transients Developed With Stratification l
i l
e l
e 34
)
i
\\
PRESSURIZER SURGE LINE STRATIFICATION l
UPDATE OF DESIGN TRANSIENTS l
STRESS ANALYSIS l
ASME lil FATIGUE USAGE FACTOR l
O FATIGUE CRACK GROWTH LEAK-BEFORE BREAK CONCLUSION i
e 0
35
i l'
l i
l l
l l
l DETERMINATION OF THE EFFECTS OF THERMAL STRATIFICATION a,C,0 e
l l
R 4
e a
w O
d.
36 F
_J
1 i
STRESS ANALYSIS
.c ^
Piping System Structural Analysis Local Stress Analysis Striping Stress Analysis O
e a
i e
e 37 a
d HOT COLD A
A UMU MM/
SIMPLY SUPPORTED SEAM
/
/
/
/
~
l Hot
/
h OLc
/
CANTILEVER BEAM Figure 9 Bowing of Beams Subject to Top to Bottom Temperature Gradient 38
8,C,e A
e d
4 4
0 O
m Y
e 8,C,e Profile 39 i
i.
g;.
e V
e-5 l
It' 6
-.E och aW E W wa N= E.C
==
e N
b-A att w U E =
ch. L**
N NC.
>= 2
= W w
e' man -
8.
'W es 40
1 TEMPERATURE. PROFILES IN PRESSURIZER SURGE LINE a,c,e e
(
i O
e 9
e e
e e
41
CONCLUSION - GLOBAL STRESS ANALYSIS l
Temperature Profiles Established Through Parametric Study e
Rigid Support H006 Replaced by Spring and Snubber to Reduce e
Support Loads Eleven (11) Cases Analyzed to Calculate All Required Loading e
Conditions e
Pressurizer Nozzle Loads Under Evaluation e
Hot Leg Nozzle Loads Acceptable o
Piping Stress Within Code Limits Using CMTR for Reducer e
Stratification Loads on Support H002 Within Design Allowable e
Pipe Movements to be Reviewed Against Clearance and Verified Duri.ng the Next Heatup 4
9 42
LCCAL STRESS CONSIDERATIONS O
o Stresses Due to Non-Linear Thermal Gradient o
Striping t
a e
4 e
I l
e e
43
LOCAL STRESS - FINITE ELEMENT MODELS/ LOADING
~
8,C,0 e.
9 t
k i
l e
=
e 44 1
I
t a,c.e 1
4 Piping Thermal Boundary Conditions 45
_ - ~ ~ - - ~ - - - - - ~ _ _ _. _ _ _ _ _ _ _ _ _ _ _
l l-l a,c.e d
f qa,c.e Surge Line Local Axial Stress on inside Surface a
] Axial Locations 46
7-i-
. a,c.e.
.t
- - a,c,e Surge Line Local Axial Stress on Outside Surface at Axial Locations 47
HOT LEG NOZZLE STRESS ANALYSIS
~
o Two 3-Dimensional Models Developed o
Loading included Pressure Bending Moments Stratification o
Stratification Profile Based on Observation During RCP Trlp e
l l
4 9
l i
48
i O
e U.
N 8
1 E
S P
T C2 2<
v W
O.
O CU W
D w) m 0
4 9
49
^~t-
@e
. Q, i
- 4
.*~
- . e i
'1 I
i
.i i
i f'!
i
{
i I.
f
(
W i
w n
l
.g_
{
i W
..C
- M
.W I
e w-t
'3
.i!
e, i
k a
1 j
-l e
a j
l e
e
.)
LOCAL STRESS CONSERVATISM 8,C,0 e
e e
I l
l 1
l O
O e
D 51 i
1 RESULTS 1
_ a,c.e o
Stress Profiles Developed for Pipe Cross-Section l
o Maximum Stresses Occur on inside Surface Near Interface-o Results Consistent with Theory o
Stresses to be Combined with Structural Bending g.
e a
O 8
6 m
5 52
PRESSURIZER-SURGE LINE STRATIFICATION THERMAL STRIPING ANALYSIS i
BACKGROUND:
Feedwater Line it 7#R's Flow Tests For L)'t RR Experimental Tests in Japan Mitsubishi Heavy industries, Ltd.
Thermal Striping Affects ASME Fatigue Analysis
- Temperature Fluctuations at Boundary Thermal Discontinuity Stresses Usage Factor for Fatigue Life
)
'4 h
D O
53
PRESSURIZER SURGE LINE STRATIFICATION THERMAL STRIPING ANALYSIS Factors Which Affect Striping Stress:
Fluid Temperature Delta T & Cycles Frequency of Oscillation Surface Film Coefficient Material Properties -
(Thermal Conductivity)
(Thermal Diffusivity)
(Modulus of Elasticity)
(Coefficient of Thermal Expansion)
Wall Thickness Thermal Striping Potential (a T Level vs. Time)
D 9
54
PRESSURIZER SURGE LINE STRATIFICATION THERMAL STRIPING ANALYSIS 1
Therrnal Striping Stresses j
d o
Peak Stress Range and Stress Intensity Calculated l
Surface Nodes o
Through Wall Stress at High Peak Stress Locations a,c,e O
9 e
i e
9 55
PRESSURIZER SURGE LINE STRATIFICATION
~
. THERMAL STRIPING ANALYSIS Conservatism:
o Striping Occurs at One Location o
Surface Film Coefficient High & Constant Flow o
Thermal Transient AT and Cycles O
C O
O m
l 56
i i
Pressurizer Surge Line Stratification Thermal Striping i
^* 1 Boundary Between Hot & Cold Stratified Ft.sid Hot Fluid See Detail 1
/
[
Boundary Between Hot & Coid h
C Surge Pipe
~
L Cold
\\
Fluid Hot Fluid i h = 1.125 in.
,Ct A+
Cold Fluid Section A A Do i3 026954 027 9 -
+
57
a 4
e Pressurizer Surge Line Stratification Thermal Striaing th = 1.125 in h
/
o i
O Time s
r i
T insulated i i Outside g
Surface g
b T Amphtude of Flued Temperature Oscillation Versus Trne h - inside surface Heat Transfer Pipe Wall Film Coemeent
.t Surface Temperature f
t
- Intenor Temperature 9
9 58
\\
e
'I J
9 6
e 1
. m..
U.
E 2
9 e
W
~
.5 E
.u.
e UM-I I
59
PRESSURIZER SURGE LINE STRATIFICATION UPDATE OF DESIGN TRANSIENTS l
STRESS ANALYSIS i
ASME !!! FATIGUE USAGE FACTOR
~
FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK CONCLUSION 1
l 60
f 9
)
CUMULATIVE USAGE FACTOR: EVALUATION.
e o
Code / Criteria o
Previous Design Method o
Stress input o
Stress Classification / Combination o
Load Combinations / Usage Evaluation I
o Results o
Conservatism 1
9 I
~
)
61
CODE / CRITERIA o
ASME B&PV Code, Sec. Ill,1986 Edition NB3600 NB3200 o
Level A/B Service Limits Primary Plus Secondary Stress intensity s 3Sm (Eq.10)
Simplified Elastic-Plastic Analysis Expansion Stress, S, s 3Sm (Eq.12) -
Global Analysis Primary Plus Secondary Excluding Thermal Bending 5 3Sm (Eq.13)
Elastic-Plastic Penalty Factor 1.0 s K, s 3.333 Peak Stress (Eq.11)/ Cumulative Usage Factor (Ucum)
S
= K,S /2 (Eq.14) alt p
Design Fatigue Curve U
s 1.0 cum 62
e STRESS INPUT o
Pressure Stress Transient Pressure WECAN 2-D Unit Pressure Stress o
Moment Stress ANSYS Global Moments WECAN 2-D Unit Moment Stress.
a,c.e I
e
(
m l
l l
I 63
CONSERVATISM
- FATlGUE USAGE o
ASME Code Methodology / Fatigue Curve Enveloping Peak Stress Intensification, K, = 1.8, at o
Butt Welds NB3681:' K
= 1.2, K
.8, K3"
=
g 2
i l
O W
I I
$4 4
e 1
e i
64 i
4 CONCLUSIONS -' FATIGUE USAGE i
Maximum Usage Factor Less Than ASME Code Allowable o
of 1.0 (NB-3653) At Most Locations j
l Evaluation Continuing On o
1 14 x 16 Reducer.
j Pressurizer Nozzle 4
1 O
i t
en 9
65 t.
_ 9 e
+
9 PRESSURIZER SURGE LINE STRATIFICATION
~ UPDATE OF DESIGN TRANSIENTS STRESS ANALYSIS ASME Ill FATIGUE USAGE FACTOR 4
FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK l
l CONCLUSION i
e e
66
FATIGUE CRACK GROWTH o
Standard ASME Section XI Methods Used o
Crack Growth Law Based on Current Proposed Curve for Austenitic SS in Air Environment o
initial Flaw Sizes Selected Based on Section XI inspection Detection Tolerances o
All Locations Checked for FCG o
Results Crack Growth at All Locations Remain Well Within 0.6T
~
e e
67
FATIGUE CRACK GROWTH EQUATION FOR AUSTENITIC STMNLESE STEEL 3
)
(
= C F S E AK.30 3
d where d
Crack Growth Rate in micro-inches / cycle
=
e
-0 C=
2.42 x 10 F=
frequency fac' tor (F = 1.0 for temperature below 800*F)
S=
R ratio correction (S = 1.0 for R = 0; S = 1 + 1.8R for O < R <.8; and S = -43.35 + 57.97R for R > 0.8)
E=
Environmental Factor (E = 1.0 for PWR) aK =
range of stress intensity factor, in psi /in l
l and R is the ratio of the minimum K, (Kimin) to the maximum K, (K,, ).
1 6
68
c 3.0= WT*
I, f I
I.
l.. f._.f..'; l...
/.
3 3
soUD UNtl FOR 70T l
/
l I'.
g*.
. OASMCD D'15 FOR 550T
- f.,
r.. ' s......'.w,...,,..
f.. _p[f...;..
../.. j.. [..
,.7 f,.
i q i..
.7 5
_,/.,/: /:.,.
l
.. f....._
,/
,/,/.
p.
.{n. c.s,.,...,.
f....,
. %.,.4..
./.
IR e c..7s
.i..
j 3-
_f.,
i :
1 I.I.
i.
.1
?
I I
,/...,...../...
fi
/ /
fi. !!
. _....... ~
, _,._,./........ r.. /..
3._...,...,..
.__...._._.._......t......
a._s_,......= ;..
.i +..
,fi t f;...,
/.
.. o.oq q-i-g(....
r 1..y...,
.a
. _,./.,../!..i
' I i
I l
i /../.;.........
/,./. #
+
/ /
i
/'
- / ' / '.
e, 2.0 uf sd u (ksh/in.)
o Fatigue Crack Growth Rate Curve for Austenitic Stainless Steel 69
r 1
)
PRESSURIZER SURGE LINE STRATIFICATION i
l l
I UPDATE OF DESIGN TRANSIENTS l
STRESS ANALYSIS A5ME Ill FATIGUE USAGE FACTOR FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK CONCLUSION a
i 70 l
4
' REASSESSMENT OF LEAK-BEFORE-BREAK
)
Leak-before-break methodology involves the following:
(1) Establishing material properties including fracture toughness values (2) Performing stress analyses of the structure (3) Review of operating history of the structure j
(4) Selection of locations for postulating flaws (5) Determining a flaw size giving a detectable leak rate (6) Establishing stability of the selected flaw (7) Establishing adequate margins in terms of leak rate detection, flaw size and load.
a (8) Showing that a flaw indication acceptable by inspection remains small throughout service life.
O e
e
=
71 4
_...j
LBB CONSERVATISM i
o Factor of 10 on Leak Rate o
Factor of 2 on Leakage Flaw o
Algebraic Sum of Loads for Leakage o
Absolute Sum of Loads for Stability o
Average Properties for Leakage
~
o Minimum Properties for Stability l
e 72
1 l
l.
l 1
l
=
J i
l (This page intentionally left blank.)
9 s
0 e
a e
73
4 4
TYPES OF LOADINGS m
PRESSURE (P)
DEAD WEIGHT (DW)
NORMAL OPERATING THERMAL EXPANSION (TH)
SAFE SHUTDOWN EARTHQUAKE AND SEISMIC ANCHO,R MOTION (SSE) a,c.e 4
m 0
m m
k e
74
{
l r
e e
- m l
-i
=-
E"if 2
o P
N' G' eJ l
I i
E2 9
s<
N p 5
h.
l M
2 8 o(
0 0
dool tampg 62 62e E.
u
- E j
b l
aj
- 2 =y o
5 S
3 4
Z 1rr<
=
n g
n o7 E<
gI
.m I
75
1 o
- r Case A
This is a normal operating case at 653*F consisting of the algebraic sum of the loading components due to P, DW and TH.
a,c.e Case B:
Case C:
Case D:
This is a faulted operating case at 653*F consisting of the absolute sum (overy component load is taken as positive of P, DW, TH and SSE.
,,c,e-Case E:
a
-4 Case F:
4 b
e b
76 m a
CASES FOR ANALYSES a
M A/D This is here-to-fore standard leak-before-break evaluation 8,C,e A/F B/E l
B/F e
9 C/F enusmas 4-a m.
F 77
e.
c.
a n
ig raM wa l
F eg 5 5 a
9 8 4 9 ka 2 2 6 4 e
L e.
N c,
wO a
S ad e0 l
T F
L s 4 a6 l
U acB3 S
i E
t eBzW i
R r
i
~
B CS I
BL
.c la C
ts 0
le 4
l e6 a
z3 mi-S B S wW 0 0 0 0 f
6 6 2 2 oaI 0 0 7 7 l
nF n 2 2 2 2 ol o ad i
t c
ai e t
ci s or a L CB d e a s D E F F oa
/
/ / /
L C A B A B
\\
l
i is s
is k k k
7 7 8
1 8
6 1
3 02 c,
7 2
N O
ITA C
O L
T A
S s
D se A
r t
s O
S e
L l
g u
n R
i t
g a
n r
i e
t p
s i
O x
E la o
m t
r tc o
e N
p s
e A B F R
n n
n h
o o
o t
i i i i
t t
t w
i i i d d d n
n n
y l
o o
o a
C C C m
on e
e A
6 PRESSURIZER SURGE LINE STRATIFICATION UPDATE OF DESIGN TRANSIENTS STRESS ANALYSIS 9,
+-
ASME Ill FATIGUE USAGE FACTOR o
FATIGUE CRACK GROWTH LEAK BEFORE-BREAK
. c,,,
r-
...;waa :;ue ti 9
e e
80
1 VOGTLE UNIT 2
' SURGE LINE STRATIFICATION i
CONCLUSION -
(PENDING FINAL VERIFICATION) i i
Design Transients Updated to Reflect Stratification in The Surge e
Line e
Monitoring of Unit 2 Will Continue 1
ASME ill Fatigue Usage Factor For Piping Within Code All'owable o
for 40 Years Design Life Fatig'ue Crack Growth Results Acceptable e
e
. Leak Before-Break is Demonstrated a
9
.9
'o 81 L.