ML20235G945

From kanterella
Jump to navigation Jump to search
Surge Line Stratification Presentation Overheads - Georgia Power/Nrc Meeting 890125
ML20235G945
Person / Time
Site: Vogtle 
Issue date: 01/31/1989
From: Chang K
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20011C539 List:
References
WCAP-12133, NUDOCS 8902230412
Download: ML20235G945 (83)


Text

._.

o1..

WESTINGHOUSE CLASS 3 L

4 L'

l WCAP-12133' ll. >

..e

)-

l-w-

l Surge Line Stratification Presentation Overheads -

l-Georgia Power /NRC Meeting - 1/24/89 Prepared by: 'K. C. Chang Plant Engineering Department January 1989 1

A' WESTINGHOUSE ELECTRIC CORPORATION Power Systems Business Unit P.O. Box 355 Pittsburgh, Pennsylvania 15230 l

l 8902230412 890215 PDR ADOCK 050004'5 2

A PDC

_i.,

1

{

~

l VOGTLE UNIT 2 PRESSURIZER SURGE LINE STRATIFICATION l

UPDATE OF DESIGN TRANSIENTS l

STRESS ANALYSIS i

d ASME Ill FATIGUE USAGE FACTOR

~

FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK CONCLUSION l

m 1

J

v v

b bo o

I s

Q M

l L

i w

w O

l l

1v J

D/o vs

/v W

o o

se w

w

~

l l

l Isometric vi*W Of PWR 2

J

\\

' =

8 R-h

~

~

N E

m w

~

O w

n y

a

,s 8*

s 5

a:

M m

W g

8

~

y N

W E

a g

e E

f f

w e

N C

>=

N N

g E

o 2

I M r N

3 g

E 8

n A

N e,

l l

3

--- --.-- j

i i

0

~

PRESSURIZER SURGE LINE STRATIFICATION UPDATE OF DESIGN TRANSIENTS STRESS ANALYSIS

~

ASME Ill FATIGUE USAGE FACTOR FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK CONCLUSION

~

l et i

A

I PRESSURIZER SURGE LINE TRANSIENT DEVELOPMENT WITH STRATIFICATION l

o Design Documentation o

Thermal Hydraulics of Stratification o

Monitoring Programs i

o Operations Survey I

o Heat Transfer and Stress Analysis o

Stratification Profiles o

Transient Types o

Heatup - Cooldown Transients o

Design Transients w/ Stratification O

e 5

L

-- a

i TRANSIENT DEVELOPMENT FLOW CHART a

SYSTEM DESIGN MONITORED INFORMATION DATA (1)

(3)

STRATIFICATION HE AT TRANSFER

- EFFICTS CRITERIA -

STRESS ANALYSl3 (2)

(4) 8,C,e HISTORICAL DATA

~

(8) l TRANSIENTS '

(10) e Event Design

  • Cycles. Design + Monitored e Transient Type Structures =

Design + Monitored Transient Magnitude i

o_

l l

l 6

_A

r

'")

J

$'c

  • v f

r t on am I

t cl r

ao u g

eoP

)

RC poo

)

S L

R l

H a

taR c

=

e(

i Hp p

o y

ta o m

o oL T

l r

mt d l

(

o a

m a

sa r

ee ev n

Ro a

tSe m

r G

e g

l

R a

i y

D

)

I r

yS ia w

aC

[

)

l pV MW'V S

irxuSC C

o l

A Ye V

F

(

v C

r la m

(

)

e n

e mN.

L f

, i t

a L

s J

1 n

y w

S le a

o t

d n

)

laS L

l

)

l vR o

gl a oH e a umR o

de({

C c

ti isRm r

p toy et e o

HT Rat t

e s c

(

Hy a

S

,s e

\\

R

,ol k

e t

s c s a e e V

/

R a'

,E g

)

n gt )

i S

ea geC n

tc r

i aLiV dp h

C lo C

y

(

T C(

k a

1 l

i I

l l-Aux. Spray

  • M1 4

bd

  • - Spray From Loop CL 4W l.

h

~

e Spray From Loop CL Surge Line Connecting

  • to Loop HL

~

RCS Pressurizer 8

)s ruo H

(

e m

iT

)F

(

e ru ta re i.

p m

e T_

e

e, c,

n w

)

o s

d l

r o

u oC o

e H

do

(

M e

e m

lb b

i u

T B

mae tS

)F

(

e ru ta r

ep m

e T

E

l i,*

e l

z i

=

16 5

g a

s W

~

j Q&

j 11

e.

c, a

~

r

~

e

=

z y

t i

ic r

e.

o d,

nu c,

e i,

l u

os l

V 7.___yC-a F

i s

d t

lo ae

/

cr

/

t P

r[_

n d i

a f

~ =

l n o it r y

g c aT t

ae ic

_ ~ S t

o rd le t

n V

S U a

r s

~

e z'

w w u'

N'

\\

~

ir o

s] m' f

\\

s o

l e

jt1I1t Fb r

P m[ v wltIIg l

ltII4

\\

E f

o" r

i o

\\

r t

f n

o wh ei oT e" ltII4 t'

t l

n F

ar to me H

t i

t tsa EP

~

r1Illlllll1jll

{'ljl'!l

e, C,

8 O

)ep i

e P

r D

u I

h t

c a

n i

r e

3 4

p 1

(

m e

l i

e fo T

rP e

s ru s

ta e

r l

e n

p o

me i

T s

s n

se e

ln m

)

o s

is i

n e

D e

e m

r iD ge d

(

e lg n

A

t

MONITORING PROGRAMS i

~

o General Criteria Drwelop Sufficient Data to Characterize All Critical Operating Transients Heatup and Cooldown Most Critical Times (Continuous Monitorlag)

Temperature Data Needed:

o Characterize Temperature Profiles o

Capture Transient Effects o

Develop input for Structural Analysis o

Externally Mounted RTD's/TC Used Displacement Needed:

o Check Potential interferences o

Benchmark Structural Analysis o

LVDT's (Lanyards) Used 3

14

MONITORING PROGRAMS Plant-System Data Needed Obtain Actual Fluid Temperatures / Pressures Identify Critical System Operations Correlate Operations to Transients

.P O

O en e

15

___]

s t'

=.a i

!. :4, 1

t nn ar* = '

ma.a.-.

x t

2.N "g

. ors on 1

- rr m L

la.

1.

Ee

,y y g gs yg-I2Ol.gg}.MOOL b

D z

1 2

U 4

%ie f

MONITORING INSTRUMENTATION LgATlW

-A l.

s 1

16

N O

I T

A C

I F

I T

A 0

R

, 0

, 7 T

,, 0 S

D N

EE E

NF A

I LS A

T EA D

G 8

R8 U3 1

0 S-0 9

0

,3 2

,0 T

I N

U E

L T

G O

,,0 V

,0 32 0

0 0

0 0

0 0

0 0

0 0

0 0

9 8

7 6

5 4

3 2

1 0

1 2

2 1

1 1

1 1

1 1

1 1

1 08 1

Odw 3hwa.3F O

1 N

O I

T A

C I

F I

T A

0 0

R

7 T

0 S

E6 0

N0 H

I LA T

A D

E 8

G8 R3 1

U-0 9

S0 0

, 3

, 0 2

T I

N U

E L

T G

O

_ 0 V

, 0

~

32 0

0 0

0 0

0 0

0 0

0 0

0 0

0 2

0 8

6 4

2 0

8 6

4 2

0 8

4 4

4 3

3 3

3 3

2 2

2 2

2 1

1 0 0 8

1 C g w S Wo3 k $ a. 3 V c

M

00 u

1 mm 1 uu u

. ' ~

uu N

uu u

O u

u I

u=

T A

uu u

C uuu I

uu F

uu I

uu T

u m

A mu 0

s. 0 R

. 7 T

0 e-S

.w w

0

=

E5

==

4 NE T

I

)

S LA R

T U

A O

D E

H 8

(E G8 M

I R3 T

U1

. 0 S9 0

0 s

uu 3 m0 2

m u

s.

T e

I su N

U su E

=_

L T

G O

u s 0 u

V m0:

32 0

0 0

0 0

0 0

0 0

0 0

0 0

0 2

0 8

6 4

2 0

8 6

4 2

0 8

6 4

4 3

3 3

3 3

2 2

2 2

2 1

1 008 1

ni Ovy3Na:wIw1 -

n M

.O O

(

E:"

R Z

i O

/

i F-'

<C i

O E

LL.

F-i

$C Z

EC

-s H

EC O

E W

I C

ZE i

=

^

A n<

I N

=

2 o

5 W

Z g

OO tf a

=

1 19 E

G Di

=

CA S

!m!

-E C b

E I

Z i

D i

B E

W E

J i

F-E O

E O

i EE M

i i

i i

i i

i i

i l

i i

i O

C C

C C

C C

C C

C C

C C

C CJ T

N O

CO LD T

N O

EC LD T

N C

10 O

T T

T M

M M

M M

N N

N N

N O C to e

Croso)3anivasan31 20

1 OPERATIONS SURVEY-i

~

o Summary of Plants Surveyed NO. OF YEARS OF OPERATION PLANT LOOPS (MAXIMUM)

V0GTLE 4

2 a,c.e l

o Reviewed Typical Heatup Cooldown Process o

Reviewed Administrative / Tech Spec Limitations o

Reviewed Historical Events and Time Durations o

Developed Heatup - Cooldown Profiles 21

-a

STRATIFICATION PROFILES

-- 8, C, e e

6 5

e i

4 4

(

0 22

a,c e Surge Line Hot Cold Interface Locations 23

C) e P

O e

C a.3 m

'4W' I

ew i'

3 wSw e

> ~

b E

O

=

6 C

O

'&4-w0 J

Ww4Te w

C 30 V40Z e

O l

l 24 I

1 TRANSIENT TYPES e

a,C,0 C

e 4

0 e

1 i

4 6

25

TRANSIENT TYPES

~

o Historical Data o

Reviewed Records of Past Heatups and Cooldowns Obtained Maximum Press. - Hot Leg Temp Diff.

Approximate Time at Temp Plateaus O

O 6

9 9

e 26

a,c,e l

l

\\

3 e

i l

l I

l.-

l t

ll=

1 a,c.e I

r Typkal[

,, emperature Profiles 27

(

HEATUP - COOLDOWN TRANSIENTS o

Transients Were Developed Based On:

Typical Heatup Cooldown Curves Envelope (Plus Margin) of Events (Transients) Monitored Historical Data on Temperature Plateaus a,c.e ;

l e

f l

I l

l.*

i 28

)

DESIGN TRANSIENTS WITH STRATIFICATION o

Heatup and Cooldown Combined With Other Events-o Design Transient Criteria a,c.e l

1 o

input for Local and Structural Analysis Defined - Plus Nozzle o

Striping Transients Defined to Consider Maximum Stratification Cycles Regardless of Range 29 I

1

[7,'k..

SURGELINE TRANSIENTS'WITH' STRATIFICATION HEATUP (H)_AND C00LDOWN.(C) 200 CYCLES TOTAL.

- a,c.e JG D--

f.'

l r

e e

i4

[,

e e

. W I

30

SURGE'LINE TRANSIENTS WITH STRATIFICATION NORMAL AND UPSET TRANSIENT LIST

^

a,c.e O

O d

e

' 9 e

4 e

O L

31

SURGE LINE TRANSIENTS WITH STRATIFICATION NORMAL AND UPSET TRANSIENT LIST a.c,e 9

e O

e a

F e

O BubuMD 9

32

I a,C,0 SURGE LINE TRANSIENTS - STRIPING LOADS FOR HEATUP (H) and C00LDOWN (C)

S i

S 0

4 l

l.-

33

CONCLUSIONS o

All Current Design Transients Enveloped 1

{

-a,c,e o

Monitoring Programs From Plants Contained Sufficient Data to Develop Conservative understanding of Stratification o

Operations Surveys Provided for' Interpretation of 1 onitored Results o

Stratification Profiles Developed For Entire Line o

Transient Types Developed l

o Revised Design Transients Developed With Stratification l

i l

e l

e 34

)

i

\\

PRESSURIZER SURGE LINE STRATIFICATION l

UPDATE OF DESIGN TRANSIENTS l

STRESS ANALYSIS l

ASME lil FATIGUE USAGE FACTOR l

O FATIGUE CRACK GROWTH LEAK-BEFORE BREAK CONCLUSION i

e 0

35

i l'

l i

l l

l l

l DETERMINATION OF THE EFFECTS OF THERMAL STRATIFICATION a,C,0 e

l l

R 4

e a

w O

d.

36 F

_J

1 i

STRESS ANALYSIS

.c ^

Piping System Structural Analysis Local Stress Analysis Striping Stress Analysis O

e a

i e

e 37 a

d HOT COLD A

A UMU MM/

SIMPLY SUPPORTED SEAM

/

/

/

/

~

l Hot

/

h OLc

/

CANTILEVER BEAM Figure 9 Bowing of Beams Subject to Top to Bottom Temperature Gradient 38

8,C,e A

e d

4 4

0 O

m Y

e 8,C,e Profile 39 i

i.

g;.

e V

e-5 l

It' 6

-.E och aW E W wa N= E.C

==

e N

b-A att w U E =

ch. L**

N NC.

>= 2

= W w

e' man -

8.

'W es 40

1 TEMPERATURE. PROFILES IN PRESSURIZER SURGE LINE a,c,e e

(

i O

e 9

e e

e e

41

CONCLUSION - GLOBAL STRESS ANALYSIS l

Temperature Profiles Established Through Parametric Study e

Rigid Support H006 Replaced by Spring and Snubber to Reduce e

Support Loads Eleven (11) Cases Analyzed to Calculate All Required Loading e

Conditions e

Pressurizer Nozzle Loads Under Evaluation e

Hot Leg Nozzle Loads Acceptable o

Piping Stress Within Code Limits Using CMTR for Reducer e

Stratification Loads on Support H002 Within Design Allowable e

Pipe Movements to be Reviewed Against Clearance and Verified Duri.ng the Next Heatup 4

9 42

LCCAL STRESS CONSIDERATIONS O

o Stresses Due to Non-Linear Thermal Gradient o

Striping t

a e

4 e

I l

e e

43

LOCAL STRESS - FINITE ELEMENT MODELS/ LOADING

~

8,C,0 e.

9 t

k i

l e

=

e 44 1

I

t a,c.e 1

4 Piping Thermal Boundary Conditions 45

_ - ~ ~ - - ~ - - - - - ~ _ _ _. _ _ _ _ _ _ _ _ _ _ _

l l-l a,c.e d

f qa,c.e Surge Line Local Axial Stress on inside Surface a

] Axial Locations 46

7-i-

. a,c.e.

.t

- - a,c,e Surge Line Local Axial Stress on Outside Surface at Axial Locations 47

HOT LEG NOZZLE STRESS ANALYSIS

~

o Two 3-Dimensional Models Developed o

Loading included Pressure Bending Moments Stratification o

Stratification Profile Based on Observation During RCP Trlp e

l l

4 9

l i

48

i O

e U.

N 8

1 E

S P

T C2 2<

v W

O.

O CU W

D w) m 0

4 9

49

^~t-

@e

. Q, i

- 4

.*~

. e i

'1 I

i

.i i

i f'!

i

{

i I.

f

(

W i

w n

l

.g_

{

i W

..C

- M

.W I

e w-t

'3

.i!

e, i

k a

1 j

-l e

a j

l e

e

.)

LOCAL STRESS CONSERVATISM 8,C,0 e

e e

I l

l 1

l O

O e

D 51 i

1 RESULTS 1

_ a,c.e o

Stress Profiles Developed for Pipe Cross-Section l

o Maximum Stresses Occur on inside Surface Near Interface-o Results Consistent with Theory o

Stresses to be Combined with Structural Bending g.

e a

O 8

6 m

5 52

PRESSURIZER-SURGE LINE STRATIFICATION THERMAL STRIPING ANALYSIS i

BACKGROUND:

Feedwater Line it 7#R's Flow Tests For L)'t RR Experimental Tests in Japan Mitsubishi Heavy industries, Ltd.

Thermal Striping Affects ASME Fatigue Analysis

- Temperature Fluctuations at Boundary Thermal Discontinuity Stresses Usage Factor for Fatigue Life

)

'4 h

D O

53

PRESSURIZER SURGE LINE STRATIFICATION THERMAL STRIPING ANALYSIS Factors Which Affect Striping Stress:

Fluid Temperature Delta T & Cycles Frequency of Oscillation Surface Film Coefficient Material Properties -

(Thermal Conductivity)

(Thermal Diffusivity)

(Modulus of Elasticity)

(Coefficient of Thermal Expansion)

Wall Thickness Thermal Striping Potential (a T Level vs. Time)

D 9

54

PRESSURIZER SURGE LINE STRATIFICATION THERMAL STRIPING ANALYSIS 1

Therrnal Striping Stresses j

d o

Peak Stress Range and Stress Intensity Calculated l

Surface Nodes o

Through Wall Stress at High Peak Stress Locations a,c,e O

9 e

i e

9 55

PRESSURIZER SURGE LINE STRATIFICATION

~

. THERMAL STRIPING ANALYSIS Conservatism:

o Striping Occurs at One Location o

Surface Film Coefficient High & Constant Flow o

Thermal Transient AT and Cycles O

C O

O m

l 56

i i

Pressurizer Surge Line Stratification Thermal Striping i

^* 1 Boundary Between Hot & Cold Stratified Ft.sid Hot Fluid See Detail 1

/

[

Boundary Between Hot & Coid h

C Surge Pipe

~

L Cold

\\

Fluid Hot Fluid i h = 1.125 in.

,Ct A+

Cold Fluid Section A A Do i3 026954 027 9 -

+

57

a 4

e Pressurizer Surge Line Stratification Thermal Striaing th = 1.125 in h

/

o i

O Time s

r i

T insulated i i Outside g

Surface g

b T Amphtude of Flued Temperature Oscillation Versus Trne h - inside surface Heat Transfer Pipe Wall Film Coemeent

.t Surface Temperature f

t

  • Intenor Temperature 9

9 58

\\

e

'I J

9 6

e 1

. m..

U.

E 2

9 e

W

~

.5 E

.u.

e UM-I I

59

PRESSURIZER SURGE LINE STRATIFICATION UPDATE OF DESIGN TRANSIENTS l

STRESS ANALYSIS i

ASME !!! FATIGUE USAGE FACTOR

~

FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK CONCLUSION 1

l 60

f 9

)

CUMULATIVE USAGE FACTOR: EVALUATION.

e o

Code / Criteria o

Previous Design Method o

Stress input o

Stress Classification / Combination o

Load Combinations / Usage Evaluation I

o Results o

Conservatism 1

9 I

~

)

61

CODE / CRITERIA o

ASME B&PV Code, Sec. Ill,1986 Edition NB3600 NB3200 o

Level A/B Service Limits Primary Plus Secondary Stress intensity s 3Sm (Eq.10)

Simplified Elastic-Plastic Analysis Expansion Stress, S, s 3Sm (Eq.12) -

Global Analysis Primary Plus Secondary Excluding Thermal Bending 5 3Sm (Eq.13)

Elastic-Plastic Penalty Factor 1.0 s K, s 3.333 Peak Stress (Eq.11)/ Cumulative Usage Factor (Ucum)

S

= K,S /2 (Eq.14) alt p

Design Fatigue Curve U

s 1.0 cum 62

e STRESS INPUT o

Pressure Stress Transient Pressure WECAN 2-D Unit Pressure Stress o

Moment Stress ANSYS Global Moments WECAN 2-D Unit Moment Stress.

a,c.e I

e

(

m l

l l

I 63

CONSERVATISM

- FATlGUE USAGE o

ASME Code Methodology / Fatigue Curve Enveloping Peak Stress Intensification, K, = 1.8, at o

Butt Welds NB3681:' K

= 1.2, K

.8, K3"

=

g 2

i l

O W

I I

$4 4

e 1

e i

64 i

4 CONCLUSIONS -' FATIGUE USAGE i

Maximum Usage Factor Less Than ASME Code Allowable o

of 1.0 (NB-3653) At Most Locations j

l Evaluation Continuing On o

1 14 x 16 Reducer.

j Pressurizer Nozzle 4

1 O

i t

en 9

65 t.

_ 9 e

+

9 PRESSURIZER SURGE LINE STRATIFICATION

~ UPDATE OF DESIGN TRANSIENTS STRESS ANALYSIS ASME Ill FATIGUE USAGE FACTOR 4

FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK l

l CONCLUSION i

e e

66

FATIGUE CRACK GROWTH o

Standard ASME Section XI Methods Used o

Crack Growth Law Based on Current Proposed Curve for Austenitic SS in Air Environment o

initial Flaw Sizes Selected Based on Section XI inspection Detection Tolerances o

All Locations Checked for FCG o

Results Crack Growth at All Locations Remain Well Within 0.6T

~

e e

67

FATIGUE CRACK GROWTH EQUATION FOR AUSTENITIC STMNLESE STEEL 3

)

(

= C F S E AK.30 3

d where d

Crack Growth Rate in micro-inches / cycle

=

e

-0 C=

2.42 x 10 F=

frequency fac' tor (F = 1.0 for temperature below 800*F)

S=

R ratio correction (S = 1.0 for R = 0; S = 1 + 1.8R for O < R <.8; and S = -43.35 + 57.97R for R > 0.8)

E=

Environmental Factor (E = 1.0 for PWR) aK =

range of stress intensity factor, in psi /in l

l and R is the ratio of the minimum K, (Kimin) to the maximum K, (K,, ).

1 6

68

c 3.0= WT*

I, f I

I.

l.. f._.f..'; l...

/.

3 3

soUD UNtl FOR 70T l

/

l I'.

g*.

. OASMCD D'15 FOR 550T

f.,

r.. ' s......'.w,...,,..

f.. _p[f...;..

../.. j.. [..

,.7 f,.

i q i..

.7 5

_,/.,/: /:.,.

l

.. f....._

,/

,/,/.

p.

.{n. c.s,.,...,.

f....,

. %.,.4..

./.

IR e c..7s

.i..

j 3-

_f.,

i :

1 I.I.

i.

.1

?

I I

,/...,...../...

fi

/ /

fi. !!

. _....... ~

, _,._,./........ r.. /..

3._...,...,..

.__...._._.._......t......

a._s_,......= ;..

.i +..

,fi t f;...,

/.

.. o.oq q-i-g(....

r 1..y...,

.a

. _,./.,../!..i

' I i

I l

i /../.;.........

/,./. #

+

/ /

i

/'

/ ' / '.

e, 2.0 uf sd u (ksh/in.)

o Fatigue Crack Growth Rate Curve for Austenitic Stainless Steel 69

r 1

)

PRESSURIZER SURGE LINE STRATIFICATION i

l l

I UPDATE OF DESIGN TRANSIENTS l

STRESS ANALYSIS A5ME Ill FATIGUE USAGE FACTOR FATIGUE CRACK GROWTH LEAK-BEFORE-BREAK CONCLUSION a

i 70 l

4

' REASSESSMENT OF LEAK-BEFORE-BREAK

)

Leak-before-break methodology involves the following:

(1) Establishing material properties including fracture toughness values (2) Performing stress analyses of the structure (3) Review of operating history of the structure j

(4) Selection of locations for postulating flaws (5) Determining a flaw size giving a detectable leak rate (6) Establishing stability of the selected flaw (7) Establishing adequate margins in terms of leak rate detection, flaw size and load.

a (8) Showing that a flaw indication acceptable by inspection remains small throughout service life.

O e

e

=

71 4

_...j

LBB CONSERVATISM i

o Factor of 10 on Leak Rate o

Factor of 2 on Leakage Flaw o

Algebraic Sum of Loads for Leakage o

Absolute Sum of Loads for Stability o

Average Properties for Leakage

~

o Minimum Properties for Stability l

e 72

1 l

l.

l 1

l

=

J i

l (This page intentionally left blank.)

9 s

0 e

a e

73

4 4

TYPES OF LOADINGS m

PRESSURE (P)

DEAD WEIGHT (DW)

NORMAL OPERATING THERMAL EXPANSION (TH)

SAFE SHUTDOWN EARTHQUAKE AND SEISMIC ANCHO,R MOTION (SSE) a,c.e 4

m 0

m m

k e

74

{

l r

e e

- m l

-i

=-

E"if 2

o P

N' G' eJ l

I i

E2 9

s<

N p 5

h.

l M

2 8 o(

0 0

dool tampg 62 62e E.

u

  • E j

b l

aj

  • 2 =y o

5 S

3 4

Z 1rr<

=

n g

n o7 E<

gI

.m I

75

1 o

r Case A

This is a normal operating case at 653*F consisting of the algebraic sum of the loading components due to P, DW and TH.

a,c.e Case B:

Case C:

Case D:

This is a faulted operating case at 653*F consisting of the absolute sum (overy component load is taken as positive of P, DW, TH and SSE.

,,c,e-Case E:

a

-4 Case F:

4 b

e b

76 m a

CASES FOR ANALYSES a

M A/D This is here-to-fore standard leak-before-break evaluation 8,C,e A/F B/E l

B/F e

9 C/F enusmas 4-a m.

F 77

e.

c.

a n

ig raM wa l

F eg 5 5 a

9 8 4 9 ka 2 2 6 4 e

L e.

N c,

wO a

S ad e0 l

T F

L s 4 a6 l

U acB3 S

i E

t eBzW i

R r

i

~

B CS I

BL

.c la C

ts 0

le 4

l e6 a

z3 mi-S B S wW 0 0 0 0 f

6 6 2 2 oaI 0 0 7 7 l

nF n 2 2 2 2 ol o ad i

t c

ai e t

ci s or a L CB d e a s D E F F oa

/

/ / /

L C A B A B

\\

l

i is s

is k k k

7 7 8

1 8

6 1

3 02 c,

7 2

N O

ITA C

O L

T A

S s

D se A

r t

s O

S e

L l

g u

n R

i t

g a

n r

i e

t p

s i

O x

E la o

m t

r tc o

e N

p s

e A B F R

n n

n h

o o

o t

i i i i

t t

t w

i i i d d d n

n n

y l

o o

o a

C C C m

on e

e A

6 PRESSURIZER SURGE LINE STRATIFICATION UPDATE OF DESIGN TRANSIENTS STRESS ANALYSIS 9,

+-

ASME Ill FATIGUE USAGE FACTOR o

FATIGUE CRACK GROWTH LEAK BEFORE-BREAK

. c,,,

r-

...;waa :;ue ti 9

e e

80

1 VOGTLE UNIT 2

' SURGE LINE STRATIFICATION i

CONCLUSION -

(PENDING FINAL VERIFICATION) i i

Design Transients Updated to Reflect Stratification in The Surge e

Line e

Monitoring of Unit 2 Will Continue 1

ASME ill Fatigue Usage Factor For Piping Within Code All'owable o

for 40 Years Design Life Fatig'ue Crack Growth Results Acceptable e

e

. Leak Before-Break is Demonstrated a

9

.9

'o 81 L.