ML17303A185

From kanterella
Jump to navigation Jump to search
Forwards Changes to FSAR Chapters 1,8 & 9 Re Cooling Water Supply & Return Lines,Unit Load Rejection Test,Reg Guide 1.108 & Transmission Network.Justifications for Changes Listed
ML17303A185
Person / Time
Site: Palo Verde Arizona Public Service icon.png
Issue date: 12/19/1986
From: Haynes J
ARIZONA PUBLIC SERVICE CO. (FORMERLY ARIZONA NUCLEAR
To: Knighton G
Office of Nuclear Reactor Regulation
References
RTR-REGGD-01.108, RTR-REGGD-1.108 ANPP-39456-JGH, GL-84-15, TAC-64357, NUDOCS 8612300315
Download: ML17303A185 (126)


Text

e REGULATORY INFORMATION DISTRIBUTION 8; I'El'I." (R IDS>

ACCESSION NBR: 8612300315 DOC. DATE: 86/12/19 NOTARIZED: NO DOCKET 0 FACIL: STN-50-530 Palo Verde Nuclear Stationg Unit 3g Arizona Publi 05000530 AUTH. NAME AUTHOR AFFILIATION HAYNESg J. G Arizona Nuclear Pouer Prospect (formerly Al i zona Public Serv RECIP. NAME RECIPIENT AFFILIATION KNIQHTON, Q. W. PWR Prospect DiY ecto'te 7

SUBJECT:

Foeeaeds changes to FEAR Chaptees I S Ik 9 ee cooling eaten supplg 5 return linesg unit load regection test'Reg Guide 5 &+

1. 108 5 transmission network. Sustifications 'For changes listed. No unreviemed safety questions involved.

DISTRIBUTION CODE: BOOID COPIES RECEIVED: LTR g ENCL TITLE: Licensing Submittal: PSAR/FSAR Amdts 5 Related Correspondence g SIIE:

NOTES: Standardized plant. M. Davis. NRR: 1Cg. 05000530 REC IP IENT COPIES RECIPIENT COPIES ID CODE/NAME LTTR ENCL ID CODE/NAME LTTR ENCL PWR-B EB 1 1 PWR-B PEICSB 2 2 PMR-B FOB 1 1 PMR-B PD7 L* 1 PWR-B PD7 PD 1 1 LICITRAg E Oi 2 2 PWR-B PEICSB 1 PMR-B RSB INTERNAL: ACRS 41 6 6 ADM/LFMB 1 0 ELD/HDS3 1 0 IE FILE 1 IE/DEPER/EPB 36 1 1 IE/DGAVT/GAB 21 1 NRR BWR ADTS 1 0 NRR PWR-B ADTS 1 0 NRR L' 1 1 NRR/DHFT/MTB 1, FILE 04 1 1 RQN5 3 3 ORB /MIB 1 0 EXTERNAL: BNL(AMDTS ONLY) 1 1 DMB/DSS (AMDTS) 1 1 LPDR 03 1 1 NRC PDR 02 1 1 NSIC 05 1 1 PNL GRUEL> R 1 NOTES:

TOTAL NUMBER OF COPIES REQUIRED: LTTR 37 ENCL 32

,ta) ') g II I I'))Qa li I ')I -

It atj ) a

' ll

' <<1 Ity). I )

i',"

'a ',r r, ~

a, ~

it;pt ' ","Ii, I ~"

" ti t-aa a ha al l ) 1 I" Ial a I\ a c,I 1 tt << 'I ~

R 'I

)

aat,l <<>>

<< aj 'W,l,p/f I I a)

$p fta Q th lt j Qa I,I ~

+> 'I 'I aa<<g~ a $

a* aaj'a ~ I, al f J$ t.'il,/fJ<<)

a0 i) ~ 1 If 1>> $ A P'Vt<<t <<1 1 i-

"hl'<<ti 1'>>

II a>>tg '- ) ", '.

) "1

~ s w as))fa. 3'S".'ll>>C'p<< ')ll

", <1<<hatt<<1, 1 -t. -. a P 1<<,

<<<<ha)<<i

<<>> "$ )ha

<< l <<.1~3a '4 t. t(Y

" I ~ t<<1 yJ gf ~a Jh h,)fa<<f

)

(<<ll

~ a

" ~

II ~ ') ja

<<1<<1 <'<<, P"- a y'"

I)ai tt& alta

$ I~ " <<h ah

~

t<<a'It,)H aj I

~ h<<

Arizona Nuclear Power Project P.o. BOX 52034 ~ PHOENIX, ARIZONA85072-2034 December 19, 1986 ANPP-39456-JGH/JKR/98.05 Director of Nuclear Reactor Regulation Attention: Mr. George W. Knighton, Project Director PWR Project Directorate P7 Division of Pressurized Water Reactor Licensing 8 U.S. Nuclear Regulatory Commission Washington, D.C. 20555

Subject:

Palo Verde Nuclear Generating Station (PVNGS)

Unit 3 Docket No. 530 Changes to the FSAR Concerning Chapters 1, 8 and 9 File: 86-D-005-419.05 86-G-056-026

Dear Mr. Knighton:

Attached for your review on PVNGS Unit 3 are FSAR changes to Chapters 1, 8 and

9. These changes involve; (1) modifying cooling water supply and return lines to provide cooling water from jacket cooling water in lieu of spray pond water to the diesel generator governor oil cooler; (2) changing the unit load rejection test so as to test the fast bus transfer at the same time; (3) taking an excep-tion to Regulatory Guide 1.108; (4) reflecting changes made to the PVNGS trans-mission network.

These changes are justified because; (1) the higher temperature of the cooling water improves the performance of diesel generator governor; (2) the test objec-tive and acceptance criteria will still be met (this change was transmitted in a letter, ANPP-38553, to Region V dated October 3, 1986); (3) this change is in accordance with Generic Letter 84-15 and the Technical Specifications; (4) these changes have no effect on the ability of PVNGS to comply with regula-tory requirements.

For PVNGS Units 1 and 2, safety evaluations have been completed for implemen-tation of these changes in accordance with the requirements of 10 CFR 50.59.

The safety reviews and evaluations have determined that there are no unreviewed safety questions involved with the changes. These changes will be included in the next FSAR amendment.

If you have any questions, please contact Mr. W. F. Quinn of my staff.

Very truly yours, 86123003ig Bhii2ip PDR .'.ADOCK A 05000530 PDR J. G. Haynes Vice President Nuclear Production JGH/JKR/rw Attachment PII0L

~

It'

I Mr. George M. Knighton

Subject:

Changes to the FSAR Concerning Chapters 1 , 8 and 9 ANPP- 39456 Page 2 cc: 0. M. De Michele E. E. Van Brunt, Jr.

E. A. Licitra R. P. Zimmerman A. C Gehr

i 1,

li

C gp/D, I

PVNGS FSAR .. 861 ~3003> 5--I OTHER AUXILIARY SYSTEMS .

Protection of the DGCNS from wind and tornado effects

.in section 3.3. Flood design is discussed in is'iscussed section 3.4. Missile protection is discussed in section 3.5-

~

~

-Protection against dynamic effects associated with .postulated rupture of piping is discussed in section 3.6. Environmental design is discussed in'ection 3.11.

'Codes and standards applicable to the DGCWS are listed in table 3.2-3..

9.5.5.2 S stem Descri tion The arrangement of the diesel generators and components of the DQ:WS is shown in figures 9.5-8 and 9.5-9.

The DGCWS is procured as an integral part of the Diesel Generator system. The design..parameters of the air cooler and jacket water cooler are listed in table 9.5-8A.

The DGCWS is shown schematically in figure 9.5-10. The DGCWS consists of a combustion air (intake) coolh,, a closed loop jicket cooling system consisting of an engine-driven cooling water pump, a water-cooled jacket water heat exchanger, a surge tank (jacket water stand pipe), valves, instrumentation, and controls. The engine turbocharger is also cooled by the DGCWS. A small motor-driven recirculation jacket water pump, a heater, and a thermostat are included in the system to maintain the jacket water in a..warm standby condition.

Each diesel engine has its own independent DGCWS. Cooling water from the essential spray pond system (ESPS) is used as the coolant in the jacket water heat exchanger.

Cooling water flow is from the water pump discharge through the jacket water heat exchanger, then through the engine ~~3 pve~nc<

turbocharger, ~Mcombustion, air coolers in parallel, en ci coo<<~~

LoM ge~e.&ion ~~~

~g u.lK, N I )

0 0

ik

D!PF RE~C+5, 4 ~~ W

. I. i-. ~-Kg

.Z, zan%. roc. gb /a S B<g .

cg M

,3. HH5 c wit~ WHK kr ceca OE(G ET~a W ~Z 270 ~/ T4 sr&7" 4 M 7 &i~C. Z M55 7 X M 9 ~M 5 SBC.A ~

~'7 . f~/ 8EC/<'E87EE'sl

!I Ik

~ ~

PVNGS FSAR SPECIFIC INFORMATION TO BE INCLUDED'N FSAR'ist of prereguisites which, must be completed and verified.

prior to the start of a particular test. The use of prerequi-sites in test procedures ensures that the safety of the plant is not. dependent on the performance of untested systems.

Phase'I test procedures are scheduled to: be approved and, available for review by the NRC inspectors at least 60 days prior to the'ir scheduled,,performance date. 'Phase II 'through IV Startup Test. Program administrative control procedures, the majority of the individual,test procedures and the, following milestone controlling procedure documents: Fuel Loading, Post Core HFT, Initial Criticality, Low Power Physics Test and Power Ascension. are-.scheduled to be approved and available for review at least 60 days prior to fuel load. The remaining individual test procedures will be-scheduled for approval and available for review .by the NRC inspectors at least 60 days prior to their intended" performance date.

14.2.12 INDIVIDUAL TEST DESCRIPTIONS Individual test descriptions are l'isted in table 14.2-1 and are presented in appendix 14B. I. l.2'l FSAR sections 1.9.2.4.9 and 1.9.2.4. 14'-1..9.2.4.17idesctine 15 deviations to testing d'escribed in CESSAR Section 14.2.12.

April 1986 .14.2-31 Amendment 15

0 PVNGS .FSAR

'CONFORMANCE TO NRC REGULATORY GUIDES

RESPONSE

For instruments within the Bechtel scope of supply, the posi-

.tion of Regulatory Guide 1.105 is accepted, except that securing devices are not used since sei'smic and/or plant vibration tests have demonstrated that drift specifications are met without thei;r use.

REGULATORY GUIDE'.108: Periodic Testing of Diesel Generators Used as Onsite Electrical Power .Systems at. Nuclear Power Plants (Revision 1,

'August l977)

RESPONSE

The position of. Regulatory Guide 1.108 is accepted with the following interpretations:

A. In defining the boundary of a diesel generator unit for the purpose of this guide, the following clarifi-.

cations are made:

Startin Air S stem Boundary starts at, the air receivers (isolation valve down stream of the air dryers)-. Air compressors and dryers are not included since the engine can be started five times from air stored in the receivers.

Fuel Oi.l Subs stem

.Starts at the diesel fuel oil day tanks. The fuel oil transfer subsystem is in the scope .of the diesel fuel oil system and not part of diesel generator .syst: em for test purposes.

Coolin Water S stem The essential spray, pond cools the engine jacket water, lube oil, turbocharger, discharge air, and 1.8-63

il

'!5

PVNGS FSAR CONFORMANCE TO NRC REGULATORY GUIDES governor oil cooler. This system is not:part of the diesel generator unit..

Id.s r= zv Position C.2.e.7 Tests to verify correction of a problem will be con-ducted after the affected diesel is declared. "ready for service." The diesel and associated systems may be operated as necessary to,perform troubleshooting and verify correction of specific problems, .prior to such declaration, without these operations .counting as a test, for the purposes of complying with this Regulatory Guide.

Refer to sections 14.2,.7 and 16.3/4.

REGULATORY GUIDE 1.111: Methods:for Estimating Atmospheric Transport and Dispersion of .Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors (Revision 1,. July 1977)

RESPONSE

Information cont'ained in Regulatory Guide 1.111 is utilized as discussed i;n section 2.3 REGULATORY GUIDE 1,.112: .Calculation of Releases of Radioactive Materials i.'n Gaseous and. Liquid Efflu-ents from Light-Water-Cooled Power Reactors (Revision O-R, May, 1977)

RESPONSE

Information contained in Regulatory Guide 1.112 is utilized as discussed in section 11.3.

1.8-64

il 4l

DIESEL'EHERATOR TEST SCHEDULE Humber of Failures Number of Failures In in Last 100 Valid Last 20 Valid Tests" Tests" ~T Once per 31 days

>5 Once per 7 days "Criteria for determining number of failures and number of valid tests shall be in accordance with Regulatory position C.2.e of Regulatory Guide 1. 108, but determined on.a per diesel generator basis.

For the purposes of determing the required test frequency, the previous test failure count may be reduced to zero if a complete diesel overhaul to like"new conditions is completed, provided that the overhaul including appropriate post-maintenance operation and testing, is specifically approved by the manufacturer and if acceptable reliability has been demonstrated. The reliability criterion shall be the successful completion of 14 consecutive tests in a single series. Ten of these tests shall be in accordance with Surveillance Requirement 4.8. 1. 1.2.a.4; four,tests, in accordance with Surveillance Requirement 4. 8. l. l. 2. c. If this criterion is not satisfied during the first series of tests, any alternate criterion to be used to transvalue the failure count to zero requires HRC approval.

""The associated test frequency shall be maintained until seven consecutive failure free demands have been performed and the number of failures in the last 20 valid demands has been reduced to one.

il 0

0

A((!oS c4 ( hence l4~Jcg C?tNIJJ 5 LI.L )o

~.

'NCJ IIUI>>ttI I $ ~ r4C JRS P'/ r KVILCIICI

'rt' / critEvlc c i+vtvrtc?

~ i' JJJ

~

iC Jtt

~ I I

(LC

\

~ M I I I I

~L rr rr SOI 8 N 4

/PP I

/J / /urtrtC D JCJ/>>JRJ riwv /LwD tt >> ~

P" 7

I 4 SRI AO I

r It Ir irt, F

'/4.>> . I I I

I I I

C t I/4ttt 1I cvJRD/IJ rfcr/ p I I I I

I

~ r I 11 1 r>> I ge

\ l I 0 4 t

~r \ *. ~

LYIDIFRSFIVkC tt?AD 1 CACCP I r 'DCVIICC C ~NOT V LEGE ND (rv?vite) tv'4>>r rtrtt ~

s I'Lit 4 .

Irrt>>'>>LMQ clvrrprtrtl fr>> rrc irrtvlr \Ii; I

Jl >>,ll I t>> trrUI

'J I>> IUUYILI1\4 Lr t.'ALI I,IU>>LIL I J-C-ZVAPCS. R 1 V.?

llilit Jl I'tl CJU C/lll ~

Util4 \>>tert'll Ult, UlSIU ll I N,trt.U I'Jhl Vndr I'(uelC Jr (r'I'IlttJIIII>>!(IClltttl

~ Jl I I>>l ~ ILM UJC. Irtttl V:I'AI(

LILL~ tt t LllltlllILSC,

~ Orr>>J lt~ \I Ulster 'a ILIJILELL Q4- LLUL rttUrtltrLIVLI ~ lr ~ SITS CCIICRAL ARRISRCEIICIIT IS ~ ~ LSI Ill>>itllJlrUL (Shcct 1 of 2)

(gQ- UUJ IttttV tllll F(gttrc 1.2-3 tatt$ 4 I I 'I L41ISLLUI

0 0

PVNGS FSAR

~yg/

FCPp

8. ELECTRIC POWER

8.1 INTRODUCTION

I 8.1.1 UTILITY GRID DESCRIPTION The Palo Verde Nuclear Generating Station (PVNGS), Units 1,2; 6 3, is connected Hew N by its - Cc associated transmission system to .

Arc+uccg egcc.o 1< +orcc iu- 5 caw+h 0'n [4<4 r-++

the extra high voltage lalgla4 i$ $ 1'renig'ly lnpb ceccnect eh +u o+er 'CH< 5'yp1'ones ~'kin (EHV) g4zd. The<transmission g.er3e System~~ %ac.

s>,q~ C "h'r,i consists of four 525 ku d ~.cl (<c ihrc c, transmission lines in 4aa.= corridors from PVNGS;-and-eae-

- (refer to figure 8'.l-l).

p<1c, gc J< ~c dcnsw'egg ~ ca~a U<cs l dl- (c(kh 525 kY krMh.~csSc><

In addition to the c cwl~~~4cn~r %ro n P>' Y(.-Ac'ongee'1 S ~he. 1.V r'>~ ~w 1~4 c

~a c4 ~ ~ H. che, APS l4c ca 6 c(g. 5v)S4'ftcacc Qg e cs1 %chloe cv 6 Yi; ve1 substation~~in the service territory of San Diego Gas 8 Electric (SDG&E). This N

vJa 5 ConSkc vc.reA.

transmission l'ine for the purpose] of transmitting power, purchased or sold~ 4c'-%W r. eel SDGSE >from Arizona, New Mexico, and West Texas utilities D

.PCS and improving the>power supply to the Yuma, Arizona area The xn erconnection 'of this tran mission line wxt the PVNGS switchyard has not been finali ed. It is anticipated, how-ever, that the interconnec on will utilize one 'of the spare line positions available n the PVNGS switchyard.

p .

g, p,~o ~cj,4m'e Sow+bern P(C<aic4-When Units 1,2,S3 are complete, the+EHV~grtd, including the transmission system associated with PVNGS, will- have a proxi-Sl oo k '

transmission lines, as well as I',

mately -4244- miles of 525 kV transmission lines, over c(p)aug;wc..1cl)

-(Prus n s 9 e1 1l oo

'I

+5 pro f* -k C/

cubi PCS y~

miles of 230 kV and below transmission lines. In addition to the 0 grid contains ~ oP 'oal-fired '4-~e-PVNGS nominal net generating capacity of 3810 MWe, the EHV over 12,484-MWe of generation, m nuclear y goo fAca1m~ ev totaling plants C~ener~+i en 8.1-1

II 0

~

QC'Z8/

g ~QC

>9h 2.Q,ooo 13 5oo

'lab PVNGS FSAR f hyd ggg~V

-g g OAkA geothermal generation, and approximately Thes'e systems Tucson Electric Powe San D ego Gas and mpany, Pacific Gas p

~344-MWe of gas/oil-fired generation, approximately~

S

~

pp

<zoo generation. This networ a so contains 38 EHV transmission stations and 18 interconnections with neighboring system include

'y e,INTRODUCTION

<woo MWe (c.q~ <c MWe-~~4-Company, Electric Company, 4~r~~ oE'f

/

~g and Light, Nevada Power Company, and the U.S.

Bureau of Reclamation. These interconnections provide for the interchange of power and the improvement of system reliability.

~

8.1.2 ONSITE POWER SYSTEM DESCRIPTION The onsite power system for each unit is shown in figure 8.3-1. Four offsite sources of power provide preferred power to the three units through secondary windings of three startup transformers. The onsite power system of each unit is divided into two separate systems--the non-Class IE power system and the Class IE power system which is divided into two separate load groups. Power is supplied to the auxiliaries at, 13.8 kV, 4.16 kV, and 480V levels. The onsite power system includes the Class IE power system which provides auxiliary ac and dc power for equipment used to shut down the reactor safely following a 'design basis event. The Class IE buses of each unit must be energized in order to provide preferred or standby power to the safety-related loads of each unit. The Class IE power systems are designed in accordance with IEEE 308-1974.

A Class IE dc system provides four channels of 125V dc control power for Class IE switchgear, essential ac power inverters, and other engineered safety feature (ESF) equipment (refer to figure 8.3-4).

8.1-2

0 4l

~ I Q /4/

l~ V r 4<4 a

/SR i

t ~s

+so 5 E. c Co Ov ~r PV 4 IC ~~ l Co A E.

A Co.~ V r

+~ S- b.

E le~

0 II

To UPL UTAH ~Itvppvvc++-

Glen Canyon Navalo COLO To I LAOLVP I NEVF MEXICO Four Corncis.

NEVADA To SCE Moenko pi I 7 --v ly U

Il Fraguatt

~

To Mead 1

/y'houa Sandra IS BULK) cst Mesa I

CALIFORNIA l

Springer ville JL To Dn ers Palo Lycstwing Verde Prnnack Peak PIIX Liberty Kyrene Ic Silvcrking I)

LEIPnj)i V~I( y II a. tav Ea. Ir.

/

Saguaro Tar to lr tp gr Arroyo LEOENOE tgaa TRANSMISSION LINE SVSTEM Sousn (Lordsburg) Luna 555 SILKV 255

/ IDeming)

MAPOR Powtn PLANTS BB 8 irknell Newman MATOR SVSSTATIONS Q Aio Grande Palo Verde Nuclear Gencratmg Stetson AOOITIONSASSOCIATEOWITNPVNGS SISKV LINES 4 Caliente FSAR MEXICO 5255 5 25 GRID SYSTEtt

<Site l Or 2)

PLBuyo BE 1-1

il 0

4l

TO INTER MOUNTAIN SUS O

Topoar MIDWAY

+MEAD MeCULLOUCN ',,'L DORADO MOENKOPI t.

N'ONAVE DAVIS O

CAMINO+

VINCENT

/ ICT--ORV ILES'UCERNE O IJ LOS N ANCELES VALLEY IV AREA LUDO MIRA ARIZONA NETW LOL I~ L IN t~SI

\ CERE+- /PARKER SERRAtso VERS ONOf RE 5 DOS E

(~q

~ j.s is4 sill I CALIfORNIA v.,pc~

MEXICO LEDENDI 1995 TRANSMISSION LINE SYSTEM 29JKV TTDKV SJ5KV 525K V MAJOR POWER PLANTS Palo VrrIle Nuclear Generaling Slation MAJOR SUBSTATIONS Q FSAI(

ADDITIONSASSOCIATEOWITH PVNCS sss<<s GRID SYSTEM lSHEET 2 OF 2l CHANGE Figure 8.1-1

0 II

Ard/

PVNGS FSAR

/9~8'.2 OFFSIDE POWER SYSTEM 8.

2.1 DESCRIPTION

The offsite power system consists H rig~a~

of four physically independ-8 <<. <~cx>a.o C.c h i 4o,"ni~ 5o~th~n ACl~4.

ent circuits from the power grid to the PVNGS switchyard.

Offsite power from the switchyard through three startup transformers and six intermediate buses is provided to supply two physically independent preferred power circuits to the ac power distribution system of each unit. The offsite power system is described in this section and is depicted in figures 8.1-1 and 8.2-1,.

8.2.1.1 Transmission Network The transmission system associated with PVNGS supplies offsite ac power at 525 kV for startup, normal operation, Z'(.>t

,and safe shutdown of Units 1, 2, and 3. The four 525 kV lines of this system, PVNGS to Westwing, PVNGS to 4+reae,)

~. ~ ~

K PVNGS .to Q rcnc' approximately 44,

't9

~, ~

and PVNGS to Devers cover distances of and 235 miles, respectively.

All four transmission lines associated with PVNGS traverse relatively flat terrain and their design meets grade B requirements specified by the National Electrical 'Safety Code, sixth edition.

The Code specifies loading areas, ~~A-wind loads for towers and conductors, and safety- factors to be. used. The conductors and the overhead ground wires are dampened to maintain acceptable levels of vibration. There are no crossings of the four 525 kV lines associated with PVNGS and none of the lines cross under any existing lines.

March 1980 8. 2-1 Amendment. 1

0 II

8/4/

PVNGS FSAR iP+~F OFFSITE POWER SYSTEM The four .transmissi'on lines associated with the PVNGS switch-yard, and their rights-of-way, are designed so as. to eliminate line proximities which could result in, simultaneous failure of more than one circuit.

~ ~ ~

.8.2.1.2 Switch ard and Connections to the Onsite Power

~sstem Prior to the construction of PVNGS there were no transmission lines to, or transmission switchyards in the. vicinity of, the site.

Construction of PVNGS includes construction of a 525 kV switchyard of the breaker-and-a-half designccher in which three breakers are provided for every two ~e.

VC<gn.n~6o e >

)<w c. %res ro(M+ ~

The switchyard

+

is connected to the four 525 kV transmission lines associated with PVNGS, the 525/24 kV turbine generator main transformers, and the 525/13.8 kV startup transformers, as shown in figures 8.2-2, 8..2-3, and 8.2-4. These figures reflect the development of the switchyard as each unit is added.

Each turbine generator connects to the switchyard through a main transformer, a 525 .kV tie line, and two 525 kV switchyard breakers, as shown on figure 8.2-4. Physical connections between the units and the 525 kV switchyard are shown in figure 8.2-1..

The three startup transformers connect to the switchyard through-two 525 kV switchyard breakers each, and feed six 13.8 kV intermediate buses. These buses are arranged in three pairs, each pair feeding only one unit.

The intermediate buses for Units 1, 2, and 3 are inter-connected to the startup transformers so that each unit's buses can access all three startup transformers when all startup transformers are connected to the switchyard.

Amendment 9 8. 2-2 August 1982

, ~

0 II 0

PVNGS FSAR OFFSITE POWER SYSTEM Transmission line protective relays can be tested on a routine basis. This can be accomplished without removing the trans-mission lines from service. Generator, main transformer, and service transformer relays are tested on a routine basis when the generator is offline.

Onsite power components will be periodically inspected and maintained as required. This can be accomplished without removing the transmission lines, generators, or'ransformers from service.

8.2.1.3..3 Regulatory Guide 1.32 As described in section 8.2.1.3.1 listing I, an independent immediate access circuit is. provided to each Class IE bus for each unit.

8.2.1.3.4 Industry Standards The design ~.-

ha~>

comply with applicable standards and recommen-dations of:

Institute of Electrical and Electronics Engineers, Inc.

( I EEE.)

National Electrical Manufacturers Association (NEMA)

National'Electrical Code (NEC)

American Society of Civil Engineers (ASCE)

Underwriters'aboratory, Inc. (UL)

American Iron and Steel Institute (AISI) 8.2.2 ANALYSIS The transmission system associated with PVNGS is planned so that the loss of a single transmission element (i.e., line or trans-former) does not result in loss of load, transmission overload, undervoltage condition, or loss of system stability to the Arsq~qi- pea Pc ~leo - oh~i4c'ni Qovfhei~ gev'iih~

C extra Amendment 6 8.2-6 October 1981

4l PVNGS FSAR

~ a OFFSITE POWER SYSTEM high voltage (EHV) grid. Offsite power supply reliability is determined by the performance of the four 525 kV supply circuits associated with PVNGS. The source stations for these circuits 4cvw (Westwing, Kyrene, M~gum~ and Devers) all have -C~e- or more connected circuits of 230 kV and above, which provide the appropriate reliability.

a Power flow studies conducted for the described system indicate that the system can reliably deliver power to all project par-ticipants using the above planning criteria. Dynamic stability studies have shown that the system can withstand the following disturbances without loss of system stability or loss of load.

A. A permanent 3-phase fault on the switchyard 525 kV bus 5'crit > c4 dy pwcafw f 1

with subsequent loss of the critical 525 kV li;ne.

pcarec hen vSe<4 "~ +4. Pw~(o Y(rJc i gin)i ~~~ C~>Cgr~;~Pg <s 4<>

0 g.~ (r.lg - Yi.)g l 525

~ 1<+ p<>ww 0 yil%Savw l <n C $

B. A sudden loss of one of the three PVNGS units with no under-frequency load shedding measures in effect.

C. The sudden loss of the largest single load on the Al ~'n~ - flew!>~~.Co.- Ccai4~.c.

'-for-n

- S. ~~4<HC<r.d"

'n withstanding these disturbances, which are used as design criteria, the system ezhibits a very stable response, with 1

significant positive damping achieved and with system frequency deviation held within acceptable limits. This stability is substantiated by voltage and frequency curves in appendiz SB.

In addition generator angle curves are included for representa-tive units throughout the system. These constitute an important indication of the system damping and stability response. These results represent the response of the system associated, with

"/o PVNGS with-kOg-p generation stability margin.

o 's<

area indicate outage rates ofM forced outageper year per October 1981 8,. 2-7 Amendment 6

0 II 0

PVNGS FSAR OFFSXTE POWER SYSTEM F00 $ c'v)+5 M4-line

~

miles for outages On 230 kV systems in. the area, 3'f similar )GC data indicate outage 1 ~

1' '1 A~~ +c %d,v'i"r% .

outages These outages are most commonly attributable to lightning.

Other causes are fog, contamination, flooding, other aspects of weather, falling objects, equipment failure, emergency

~

maintenance, employee error, and, hypothetically, dust.

contamination. The chief constituents of dust storms are nonconducting clay dust (usually quartz) and conducting gypsum (calcium sulphate,) which can contaminate the insulators. This contamination increases the probability of flashover, especially with fog or dew, by disclosing the salts to form an electrolyte.

However, dust buildup is reduced by the self-clearing action of the "V" string insulator configuration used in EHV line construction and by the abrasive. action of the dust and sand.

Also, any adverse conditions resulting from insulator con-tamination within the switchyard can be. corrected by washing the insulators.

APS has never experienced a flashover in any of its EHV switch-yards due ~

5)r i<E'ly to dust on insulators and has found that dust storms will contribute little to the outage statistics of EHV trans-mission lines.

gg ~+ QgV)

Likewise, APS has not experienced any known<insulation failures at the 15 kV or 4 kV voltage levels in either open substation facilities or enclosed,switchgear. Therefore, it is felt that dust loading on the 13.8 kV system will not be a problem. The system is designed such that, with rare exceptions, forced out-ages do not result in loss of load.

Amendment 10 8.2-8 December 1982

0

<<<<<<<<O rOCrlorOa<<COI Sr rrlocc p Cllvlr I f ls ocr scrrrurorco Srsrcrcrhls trro ccc 5 SIISrrrrOC shear ocvvo s rrrKIII

/ >>ovr vo foorcsrOO<<cov sloor.vo racrcsroo<<ro rooo clrvlr o rc rvco /f CArcofoo ochtcs 50 r, cv

'~r/ /

cl

,C

\ v c.

I frrvc IIIVI rro&plrrvCOE.

<<on crvcs ~CC S?c VCV C crc'v rl OITvc~cc C Q Vhllr J SfrPKAII

<<tOIIVI

((>'14 Gale)

~ sorer'<<cllvs

-Scsur ClhC'rrIOS

('Jlu Vcccle bclclrsr (icslccsllclg Slstiun

('SA I(

525 KV SWITCHYhRD RMD COCPCECTI<NS TO OMSITE POWER SYSTEM FIguro 8.2-1

II 525 KV FAOLf 525 KV FROM WESTIVIN KYRENE 3 8 9 525 KV SWITCIIYAAO STAATUP STAATUP STARTUP, TRANSFOAMER TAANSFOAMEA TRANSFORMER NO. 3

) ) ) ) ) ) ) ) ) ) ) )

OVEAAEAO 13.8KV INTEAMEOIATEBUSES NOTE:

CONFIGURATION IS AS OF FUEL LOAO OATE UNIT I UNIT NO.I Palo Verde Nuckar Generating Station FSAR 525 KV SWITCHYARD SINGLE LINE DIAGtuut FOR UNIT I Figure 8.2-2

C 5~ tLV FC.ei>

Nv. Tt, E tCL 828 Kv FRasf ~i) 82S KV F ROIS 82$ KV TFEST ITIN g, KYRENE FROMOEVERS 625 KV SWITCHYARD STARTS STARTUF STARTUF TRANSFORMER TRANSFORMER TRANSFORMER a NO. 2

) ) ) ) ) ) ) ) ) ) )

OVERHEAD 118 KV INTERMEDIATE8USES OVERHEAD UNIT NO.2 NOTE:

C'SAlt Palo VcFItc Nuclear Gcnccatlng Stattott 525 KV SWITGttYARD CONFIGURATION AS OF FUEL LOAD DATE UNIT 2 SINGLE LINE DIAGRAM FOR UNITS I F 2 Figure 8.2-3

0 0

$ 'g5'Y fIEM(~

IJI'.>l Way Z r

42$ KV FR~

TIESTFIIN 42$ KV FROM KYRENE 425 KV FROM 525 KV FROMOEVERS

$ 25 KV SNITCIIYARO START VF TRANSFORMER STARTVF TRANSFORMER IS.S KV INTERMEOIA'TE SVSES

) ) ) ) ) ) ) ) ) ) ) )

OVERNEAO OVERNEAO OVERREAD UNIT V NIT Vk IT NO I NO.2 NO. 4 Palo Vcrcle Nuclear Generating Station FSAll NOTEI CONFIGURATION AS OF 525 KV SWITCNTARD FOE 4 EOAO OATS UNIT 4 SIWCLE LI2IE DIACSIAtt FOR DTIIITS I, 2 4 3 Flnure 8.2 4

0 ik

D namic Stabilitv Cases Power Flow Base Case 1988 Heavy Summer base case with Palo Verde generator output increased 7% (4077 MW) for stability margin and western flow of 4857.8 .MW.

Stabilit Cases ~L ~ ~

1. Loss of most critical line 88 STBANPP2 t=o 3-phase fault on Palo Verde 500 kV bus.

Flash series .capacitors in Palo Verde-Devers, Palo Verde-North Gila-Imperial Valley-Miguel, Westwing-Moenkopi and Westwing-Navajo.

t=4 cycles Clear fault by removal of Palo Verde-Devers line. Reinsert series capacitors in Palo Verde-North Gila-Imperial Valley-Miguel line.

t=8 cycles Reinsert series capacitors in Westwing-Moenkopi and Westwing-Navajo lines..

t=.9 seconds End of calculations.

2. Loss of a Palo Verde unit 88 STBANPP3 t=o Palo Verde unit 1 dropped. No capacitor flashing or line switching.

t=9 seconds End of calculations.

3. Loss of'largest load 88 STABANPP4 t=o Edmonston pumps dropped (788 MW)..

No capacitor flashing or line switching.

t=9 seconds End of calculations.

RLY/pb 06/06/85

ili iki

"CASE 1 POWER'LOW MAP AND STABiLITY PLOTS

II PAGE II 88 RNPP-BASE NET PV GEN II077 NW. II8%/S0% SC PVIIOA. ALL LINES IN SERVICE. 7% PV GEN IIAAGIN V<1.060 Vol.054 V~).076 V~ 1.045 Vi). 028 345 394. 2 VR I'. 025 V ICTOI)VL HCCULLGH 23.15 tIAVAJO 23. 71 31. I'4 258.6 25. I , 32.56 1196. 2 Knrct(TA -83. 7 SIIIPAOCK 0. G SAHJUAtt345 2 /.'I< 9. 'I 230 833.4 S32.1 V~I. 047 327. J 30.3 -'13.9 680.4 19. 80 -58. 0 -10. 3 175. 8 Y~).043 VRI. 057 -5. 0 GLEN PS -3. 5 FOUACORN 230 500 J<l'5 -92. 2 25.46 LUGO 38-3 TAOS V~I. 054 GLEtICAHT 233. 7 814. 9 218.2 0' 8)7.3 )0.48 Vi).046 -32. 2 "I I S. 6 170.2 -80.7 OJO 4 5.1 Zl.n ELDOAADO 18. 23 GZO.O -75.2 V~).038 3 i<l.B 126<i.2 287.3 V=I. 073 -38.9 .765. 9 25.06

) 02. 3 11.6 20. 93 222. I <I )1. 5 V~ 1.042 Hot:.tIK(<P I -166. 0 183. 6 VIWCEHT -519.4 8. 51 3?7. 7 I I. 8 V*1. 069 -'3l. 3 230 HEAD -76. 3

-4.03 FLAGSTAF V~ I. 036 AMBAOSlf< HORTON Insg.n 76.8 HOHAVE V~ I.16.04)22 29.02 V~ I.OGI 2/ ~ 24 60.7 V~I.033 V~I.OSG HCKIIILET 23.80 V%I. 044 )4. 2'I -3.3 Hl AALot)A 74. 4 345 Y~).049 D-A 575 I - I IG. 2 284. 7 f'I)OLLA ?2.82 24/.2 160. 2 217 6 ~ 463. I 500 V~I . 070 34 5.9 -7.4 V~I 029

~

533.2 04. 3 I I 'I. 8 -?9.) 22. 30 -10 9.2 307. 5 2. 7 23 01

~

658 25 -13. 5 Yml.024 SERRAtlo DOI DO2 APS I 2

~ 92. 0 HESTHESA 23.12 V<I 043 P I tl tt(ICLPK Ht<.t ICTN -) )8.4 sao I.'/.0 )'I

~

-6.05

'1)3.

STA(lotl VOLTACE 409.6 345 445. 3 V~ cnADHAAO )42. 7 ANGLE -165.4 72. 8 I 61 -9'I. 3 500 conownoo WESTHI tlG 345 115. 6 PAJAAITO Y=1.021 500 VALLETSC 500 345 345 125. 9 22. 19 f'OURCOAN V<l. 032 345 4'17 Ya) 034

~ SRHDI A 230 670. 6 -'I. 00 L I BL-Ilrr -57 8 3 6).0 2'I ~ 21 To FQURCOAN -169. 5 Y~).029 -9. 3 SPAIWCAVL 6 ARRO'fo 10.68 S44.7 544.7 G.G To FOUACORH OEVEAS -IS(.O -ISI.O LUHI) 500 V> I, 0? I PALO f.'45 PALOYEAOE 1.058 0, 64 VEAl) Va),030 252 7' 500 21. 47 15 32 -18 AZ-CALIF P It)PKBRB I. 016 1468.n 664. 5 KTREtIE sncunno l<IZ. 2 4057.8

~

345 )4.87 223. 5 bs.b Vi). 030 V=).043 V= I. 020 -70.3 498.6 PNPKAPS I. 017 055.2 15. (<7 )6.GI 10. /6 345 14. 82 IV V~I. 040 163. 4 )4). 7 CADI.'tll.EE HAL it(

SHIPAOCK I. 025 75?. G 20. 5 2/92. 0 345 32. 35 52.4 LOB T<L1 I -383.7 HESTHIHG 1.057 GEt)EAAflott Y~).04J 34S 18. 29 CHOLLA I')0.0 16 ~ <J<) VINCENT HESTHING 1.06G COAOWA(<O 310.0 1011 2~

500 10.,79 FOUI)CORtl 1532. / LEGEIID 133.9 89.9 -173. 0 HIGUEL 1.010 CLEIICAWf 227.9 llfl ilV 79. 3 -68. 3 IO.O Hlor)LGO snn DEVI. I)S

't. 33 HOHI'IVF. 1580.0 0.99G NAVAJO 2250.0 3li" 230 1[V KY

-55. 3 Y" -I . 0'7 Snu fit 59 5

-27. 5 Lk.'" ~ I. '<

1 To Litt)A 230 5 ~ 69 f ALOYE(A) 4o/7.n I'I.')0 V~ I . 0(<'/

I. 090 Sf)H JWWII I'I /5. I Vt< I I. )7. J<l J.HIW05 230 HICut L

-5.57

1. OOG IIOOVCII 2/9.0 EHY NETWORK 1988 V~I . 025

~2'I.

0 I <:t<W( I.L -

2 I G. 6 Y=1.026 I!i. 12 230 Power Flow Map CASE 1

ii il

~

~

Pa.'~T HO. I Q 88 SI8ANPI'2, ALL LIN'ES IH STAVICE, NEI PV GEH*tt077NM, E/M*tt800NM AGllAFA 3I8.0 I ~ X Q NO N-P OC, OV 500/230 ~ 2, Pl -AEV tt8X SC 4 PV-MIGUEL SOX SC. COAOHA[il22.0 I o 0 3-P f'I o PV,FT OAilP ~ FLSH SC ~ CLA o tI C OT PV-OEV, AEIH. SC. I'AI.OVAIt22tI 0 I ~ +

CASE 1 Q ~

03 QQ V LIJQ > ~ ~ ~

~ ~ ~ ~

OQ m

~ ~

I LIJ

~Q ~~

QQ l l \ ~

CC I C)

IQ .i C)Q j

~Q'IJ

) l

~Q l

~ l CLQ ~ ~ ~ ~ ~ ~ I l 'I ~ ~

L 1 l LIJ~ j CC l

~ ~

~ ll

+Q (Z

0-Q N

QJ LIJ ii Q

Q i Q PTS7SHll(i20. 01 I 00 .OO 2.OO 3.nO I i.On s. oo 6. 00 7.on T I HE IN ."i(-CONDS

g

~,

II 0

O PLOT NO. 2 O 88 SIBANPP2, ALL LINES IH SEHVICE ~ NET PY OEH AOllHH, EIH YBOOHH f COG)AICC22.0 L a X HO H-I'C, DY 500/230 I2. PV-DEY llBX SC 4 PV-HICUEL Soi SC. HOIIAVICC22.O I.

  • C CASE 1 O 3-P FT o I'Y,FT OAHP,FLSH SC, CLA o N C Ot I'V-OEV, AEIH. SC. ffAVAJO l26 0 I D

C Qo ~ ~

LLIO l ~

Oo LLI UO ~ 0

+O /

O CLI ll, CC C)

I-o QO CC

~ ~ >, ~

)

LLI ~>

, ~ ,, ~

CLo A

~ ~

~O

~ ~

CC C)

I OOO 0 ~

~~

CL o CC O L

ln 0

~ ~~~ ~~ I~ ~ I~ ~ ~ ~ ~ l ~

LLI O

D ~ ~ ~ ~ \ ah O PTS7SWHG20 I i "0 . 00 1. (I() Of)  :-I. 0I>> i. 0<) ".). 0>>) ri. 00 7. 00 f' thf' ll I'I i slkllb ' ~

oo PL07 NO. 3 88 578AtfPP2. ALL LINES IN StffVICE. NCF PV GEN fl077NH. E/¹fleooNN GLENCAN6I3.8 I ~ X CASE 1 o NO H-P OC, OV 500/230 o2. PV.OEV tlBX SC 4 PY-HIGtlEL SOX SC.

3-P F7 o PY,F7 OANP,FLSH SC. CLA o ff C OV PV-OEV, NEIN. SC. o IAYIGEfI I8.0 I SJUAN 622fI.O I

~ 0 r

~

Q (Do r'

"~ r oo LLj

~

I r ~

LIJ Q Uo 2~

CC CC C)

I-o C)o CI I

)

LIJ I o CLo t rl ~ r I

LIJ o "t"

r

, 4.,

r r Ct:

r CC I ~ re ~ f G

l CC o ~ ~ ~ ~ I- ~ ~ ~ ~ ~ ~ ~

g o I LLI C r '

LIJ *r. r

~:.:r ~

o o 'TS7SIING20.i 01 i b.oo 1 .00 2.00 3.00 Il.oo 5.00 G.oo 7. 00 T I HE IN SECONOS

C, 0

0 i

oP LOT IIO.

o ee sreeepp2, ALL LIAFs III scevlcE. NEr pv GEII.uovreA, Ew*ueoollu CASIAIIGI8.0 I ~ X 0

o(0 Ile3-P II-P Fr OC, O

OV PY,Fr 500/230 OAHP ~

12> PV OEY e8% SC 4 PY-IIIGUEL 50% SC ~

FLSH SC, (LA O e C Or Pv-DEV ~ BEIII~ SC ~

IIAYIIESSG I 8. 0 I ~

INOrN GI22.0 I ~ +

CASE 1 I ~ ~ ~

A

~

Q (3Q LI.I Oa A

laJ

+Q la 4 I ZQ CL 4

~ ~~ ~ I 4 ~

I 4 I I I ~

4

~4 A

4

)

W CCQ

+0 ~ ~ ~

Wo CC lC oQ 4 I

G:a K: -",P- 4<<

W ~ 4 " ~ ~ ~ " ~

W

+Qo.

Q .01 (A P TS7S1! 11GPO I 0 .00 1. 00 2. 00 3. 00 II. 00 rt

s. oo (i. nn

'L1f V 1 I r r ~ ~ ~ ice

e 0

0 i

PLOT NO. 5 X

CASE 0

CU 88 STOANPP2, ALL LINES IN SEAYICE. NET PV GENaHOT/NH, E/H*QOOONH NO N-P OC ~ OY 500/230 32. PV-OEV 08% SC 4 PY-NIGUEL 50% SC.

AEYEAS KTAENE 500 500 s

a 0 3-P FT o PV.FT OANP.FLSN SC, CLA o 0 C OT I'V-OEV, BEIN. SC ~ o I'AI OVAOE500.

Iy y

~ ~ ~ ~ ~ ~ I I

I 00 I h

~ ~ yh I

~ ~ I CC ~ ~~ ~ ~  :""l".": ~

Wo y

~~~

CLm I

L 0 I

~ J h 4 I

i I

I LLj C3 ,l..f I

0

.(g I

I Z0  ::...::...': '...!...i CI: I ~ ~ ~ y~~~

I LI I 0~,

CD Q 0 I

)0 i ~

I

~&I I y WZD y CQ j

~~ ~ -"f I

0 0 ~~~ I~

h I 00 on 2 .no 3. oo I on s. 00 6. 00 7 T Ml'- T h,l <hf: I Ah'fflg

4g 0

PLOT HO. 6 BB STBANPP24 ALL LltlES ltl SEtlVICE, NET PV GENIQO))HM, E/N*VBOONN l uGO SOO. c X No H-P OC, Ov 500/230 ~ 2, Pv OEY ile2 SC 4 rv-HIGUEL 502 SC. ttAVAao SOO. ~ 0 CASE 1 3-P FT o PY,FT OAtlP,FLSH SC, CLA o 0 C BT PV-OEV, AElN. SC. ii lIESTHINGSOO. s 0

~ 1

~ ~ 4 IC)(U \

4 CL ~~

LLI CI

~

a ~4 ~ 4 4

4 '

4 I 4 4 ~

4

~ - ~ ~ A ~ I ~ \

~ ~

zO 4 CL

~CD Q O I

1

)

C)

C)

~

~ -

I rl

~ ~ '*

4 L

~ 4 ~ ~

N Zo 4 4 K) 4 jj ~

C) 4 At

~4 Il.nn 5.nn

.r'n

0. 00 l . 00 2. 00 I IHE IN .')ECONOMY

Il ii 0

PLOT HO. 7 CASE 1 oo stonwrr2, nLL Ltwcs lw stnvtLE, wFl tv GEw*notvww, Ew wnooww NlnnLownsoo. a x C)

~F wn w-t o'c, ov snni230 2. rv tlv iioz sr. a'rv-wtcuEL soz sc. rnslnnln230. o 3-l Ft o rV.FT unnr,rLStt SC. tt.tt o u C nr rV-OEV, nt.tW. SC. 0 VIIICEWI 500. ~ +

~k l 7 r

~ ~ ~ ~ ~ I 7 I ~ ~

7 ~ ~

7 CC ~ ~ 7 I ~ 7 u" o 7

'F 0 m 7 3

I

~ ~

~ 7 ~ 7 4 1 7 7

7 7

7 C

- I 7'

7 ~ 7 ~ ~ ." ~ ~,....'.rlI ~ ~

7 7 7 QJ C3 ~7 I ~ ~ ~ ran ~ ~

FF ~ ~ r C) ~ ~

7 Ft Ct Erl EA'C3 7

CQ 7 1 7

C) 7 tO

. ~

n. 'I 7 ~ 7'll '1 f ~ Il it 1

nn

li 0

oC) PLOT ttO. 8 PY FI SOO.-OEVEAS 500. I

  • X 88 SIBA55PP2>> ALL LINES IN SEIIVICE'. tlEI'V GEN=ki077NH, E/H>>5800NH PY F2 SOO.-N.GILA 500. I ~ 0 tl0 H-P OC, DV 500/230 ~ 2. PY-OEY 5IOX SC 5 PV-NIGllEL SOX SC. PALOVAOESOO.-XVAEikE CASE 1 C) SOO. i 3-P Ff PV,Ff OAklP,FLSII SC, CLf5 Df PY-DEY, AEIN. SC.

In 55 55 5I C o f'AI.OVflDESOU.-HESlHINGSOO. I > )I o

o

>>~

C) \ ~

C) ~ >>

Oo

~IA I

X Zo

~o >>

~l

~ "." ""., 5 C) I I o R.

C3

~ '

LI o o >> ~

LI.J o QU)

~ ~ ~ ~ >>~ ~ << ~ ~ ~

C) ~ ~ >>

C) I

>> 1 o ~ R " >> ~

5 o

o ~ ~ >> .' ~ ~ ~ ~ >> ~

o'f) 1 I .I 2.00

~

0 . 00 1. ()0 ~ 00 II ~ 00 5) 0() b. 00 57; 0(I I I NE I N 5[:( t1NDS

0 CASE 1 Q PLOT NO. 9 Q 88 STBANPP2, ALL Llt)ES Itl SI.RYICE, NET PV GEt)=4077HN, E/Ni4800HN HOENKOPISOO.-NESTNINGSOO. I ~ X o

lA l(O H-P OC.

3-P OV 500/230 i2> PV OCV 48X SC 4 PV-HIGUEL 50X SC ~

FT o PV,FT OAHP.FLSH SC, CLR o 4 C BT PY-OEY, RCltt. SC.

t(AV F SOO.-NCCULLGHSOO. I ~ 0 t)AVAJO SOO.-NESTNINGSOO. I c +

~ 1

~ 11 ~ ~ ~ 11 ~

Q o ~ 11 ~ ~ ~

o o

oo 1~

I QoIA X ~ ~ > '

~ ~ ~ ~~ ~

Zo

~o Q

I o *

~ ~ 1~ ~ ~ ~

C) ~ ~

1 I 0

Q LLJ o

~lA I'

I h*

Qi \ ~ ~ ~ ~

C)

Q

'h J Q X or Q I' I LA I

0. ()0 1. 00 00 II. 00 5. 00 7;00 T 'I >lf Y ll C I P'>'h>IA>

'J Ii i .

PLOT NO. IO CASE 1 C3 88 STOAtlPI'2, ALL LINES IN Sl tlVICE, ttET PV GEN*4077NH, E/H=4800NH 'cNOLLn soo.-snounno soo. I = x C3 tto N-P Oc, OV SOO/230 ~ 2. PV.OEV 48X Sc ( PV-NIGUEL SOZ SC. Fottncontt3us.-cttoLLA Sus. I = o 3-P FT o PV,FI OANP,FLStl SC, CLA o 4 C OT I'V-OEV, NEIN, Sc. Gnt'EIILEE3~IS.-VAIL 3tls. I C)

R oO ~ ~ ~ ~ ~ ~ ~

O

~

C) ~

C) ~ I

~O x~ t ~

P

~OC) t~

~ ~ ~ ~ ~ ~ ~ t ~

I 0

~l t R

C)

O I ~

LLJ0 ~ 1 Q Itt) 3 I'

~ I ~ ~ ~ I ~

C) I I

C)

CU t '

I C)

C) n "1- r-- - "1 '"1 0 .00 I

3.00 2 00 3 00 Il.00 '.00 () ~ 00 7 .00

II II

CASE 2 POWER FLOW MAP AND STABILITY PLOTS

0 0

~g

PAGE II 88 ANPP-OASE NET PV GEtl R )1077 NH. II8%/50% SC PV)IOA. ALL LINES IN SERVICE. 7/ PV GEN HAAGIN YR1.060 VR I. 054 VRI. 076 VR I. 045 V* I . 020 3<151 3921.2 YR1.025 Y I CTORVI. HCCU) I.GH 23.15 NAVAJO 23. 71 31. 14 258. 6 25. I 32. 56 1196. 2 KATEtl1 fl -83.7 SW IPAOCK 0.6 SAWJUAt)345 2/.9 9. 'I 230 833.4 532- I VR I. 047 327. 3 38.3 -'13.9 680.4 19. 80 -58.0 -10.3 175. 8 VR1.043 Y 1.057 LUCiO

-5.0 GEEll PG~ -3. 5 FOUACAAH 230 500 345 -92. 2 38.3

25. 46 TAOS VRI. 054 GLENCAt)T 233. 7 814. 9 21$ .2 0.4 817. 3 10.48 VR1.046 -115.G 178.2 -80 .7 OJO

'I 5.1 21.0 ELDOAfl00 IB.Z3 620.0 -75.2 VRI.038

< Il. 8 1264.2 28/.3 VRI. 073 -38.9 165.9 25.06 102.3 )7.6 20. 93 -222. I f)1 /.5 VR).0'lZ Hill'.tlKUPI -16 6.8 183. 6 V I tlCEt)T -5119. 4 8. 57 3?.7. 7 I I. 8 V=1. 069 -31. 3 230 NERO -76. 3

-4.03 FLAGSTAF YR I. 036 ANDAOSIA NORTON

)059.0 HOWAVE VR).041 29. 02 VR I. 06) VR I ~ 033 76.0 VRI. 056 16. 22 HCK I IILET 2?. 24 60.7 23.80 VRI . 044 14.24 -3.3 HIRALOHA 74.4 345 VR1.049 0-A 575. I -1)G.Z 284. 7 CHOLLA 22.82 24 /.? 160 2 217.6 4C3. I 500 VRI. 070 34 5.9 -7.4 VR).029 533. 2 O'I. 3 114 8 -29. I 22. 38 -10 9.2 367. 5 2.7 23.01 65.8 2.5 "13; 5 1

YR I. 024 SEARAtlo 001 002 APS I 2

~ 92. 0 WESTHESA 23.12 VRI. 043 P I tW)ACLPK )ECHCTN 500 STATION VOLTAGE 409.6 -6.05 34S 'lI)5. 3 YR I. 03'I COAOWADO Ijff. 3 142. 7 AtlGLE ")65. 4 /Z. B I /.61 500 COAotlADO HEST)I ING 115 fi I'AJARITO lb VR1.021 500 VALLETSC SOO 345 345 12S.9 22.)9 FOUflCOAH VRI . 032 345 <)77 4 VR1.034 SANDIA 230 676. 6 -'I. 00 L lULA IT -57 8 36I). 8 24.?. I TO FOurlCORH -169. 5 VR).029 -9. 3 SPAIN)iAVL 153. 6 ARAOTO 345 10.68 S44.7 544.7 -146. 6 TO FOUACORtl DEVEAS -151. 0 - I5 1 .0 LUt)A 500 V*1. 021 PAI 0 PALOVERDE 1.058 0 rill VCAAF. Vi). 030  ?.52 7 500 21. 47 15. 32 -18 / AZ-CALIF PIHPKDRD 1.0)6 If)68. 0 6 )i I I KTI)l'NE SAGUARO 14? 2 fft)57 8 3'IS lff. 87 5! . 5

~ V= I. 038 V=I.043 YR I. 020 -78. 3 II 98. 6 PNPI(APS I. 0) 7 85'1 2 16. 97 IG.CI )8.7G 345 lff. 82 Iv V=1. 040 163. 4 lff I. 7 GAf:F Wl EE HAL IH 345

)IESIHING ).057

32. 35 GI'))ERAT lot) bc'. 4 tt: 6 I) A V*) . /Iffg 111111GI 11~

VRI. 043 2ll 2 2/92.

-303.

0 7

3'15 18. 29 CHOI.I.A I '10. 0 I fi. /10 YIHCEtlT HESIHlt)G ).066 COAOWAOO 3/0.0 I)) /7. 2 500 18. 79 FOUR).'OAW 153?. 7 LEGEHD 133.!) 8 1) g -173.0 Hl GUEL I. 0)8 GLEtl(:AtlT 227.9 !100 KY .))0. 3 500 '/. 33 HOWIIVt.. 1580. 0 345 Kv -5!I. 3 5 IIIII W 5E)

DFVCRS 0.!)9G tlAVA lo 225f).0 c! 30 KV VRI.O?7 230 -5.69 f'AL))VIAD 4077.0 I 'I. 00 VR I . )107 J. Wt t)DS I,'l)IIB Sfltl I))IUI )47'.il I EHV t)ETHORK Vl) I I. I /-3'I c!30 -5.57 Ilouvf ll 2/IJ.O 24.? V I.f)26 H1 ol)EL l. 00G 1988 VRI.A?5 DII.KWI I I =Ill. I. I!s. 12 Power Flow Hap 230 CASE 2

0 ll 0

PLOT NO. I O 88 SIOANI'fQ, AIL LINES IN SI.AVICE. NEIY GEN 4077HN, E/N=4800HN SI8.0 I a X o Na H-P OC, OV SOO/230 i2. PV-OEY 482 SC 2 PY-HICUEL SON SC.

AGllflFA CanaNnOI22.0 I .o CASE 2 onop fALO VERDE uwlt I. Ila cubi 5 FIAsHEo. 0 PAl Ovfl0224.0 I Qoo LIJ Oo LLI Uo Qo ~ 1

~ ~

I')

CCm

  • I ~

Goo I

~ I ~ ~ ~

1 CL 2.

IA LU er I~ \*

~ e ~ ~ 1 G:o ~ ~ ~ e ~

LU o e

CI:

C)-- ~ ~ ~ ~ I~

.o I

CL CT- O

~

"~X~

LLl 11 ~.

LLj 1~ I

~ ~ r

~ ~

ID

~ 1 ~ ~ ~ ~

e o P T.S7.SHNG20 t .--

h.oo >.00 2. 00 3. 00 Ii. On 5. 00 ( 00 7. 00 T I ME I N SCl.C)Nj)S

II 0

0

PLOI'O. 2 Q ee SIOAttrii, ALL Llttcs Itt scAvlcc. Itch Iv GEN*uovrtIA, cw.ueooett f CttotAICC22.0 L iX Q tto II-P OC ~ OV 500/230 2, Pv-OEV 'IOX SC 'l Pv-IIIGVEL SOX SC. IIOIIAYICC22.0 L iO CASE 2 OAOP PAI 0 VEROE UHII I, Ho CAPS PI ASIIEO. tIAYAJO I 26. 0 I Q

QQ LIJ Q O IJ3 ~ 1 " = ~ = ~ ~

CQ I

LIJ IQ I QQ ~ ~ = ~ ~ ~ ~ ~

IT IO

~ I ~ ~~ ~ ~

CC  : I C)

I Q '

~~

GQ IA

)

LIJ I .Q 1 1

~ ~ ~~ ~ J ~

LI IQ

.IA J'C C)

IQ CL

~IA LI.I-LIJ

(')

Q Q

Q i'T'S7 ">iiiC~a'. ri i 0 .OO ].on '.00 Tt MF 3 . 00 t N I l. 0()

Sl=l".ANDS S. 00 6. 00 7. on

0 II

oo PLOT HO. 3 88 SIBAIIPP3. ALL LtttCS lu SEAVtCf, Aft PV Cftt*407)HH, EXH.4800ttH GLE ttCAttiil3. 8 I ~ X CASE 2 o

(U ttO H-P OC, OV 500/230 OAOP PALO VEAOE UHII I,

~ 2, PV-OEV 482 SC 4 PV-HICUEL SOX SC.

ttO CAt'S FI,ASttEO. PP IAVTGE4 I8.0 I ~

SJIIAH 0224.0 I 0

'o (Do LLI o ~ ~~ ~

LtJ '\

Jo \ t r p Qo r I

~ ~

CI: Cn t ~

0: +'-"-': -' 1 ~

I o t Vo ~

o (E)

LIJ

~ ~

Io . ~

CI:o I Il ~ l

~ ~

I LIJ o~,- r CC t t I CC te C) tr I o ~

P CC o

LIJ P r IJJ "' "': "-'"' '~Q ~E, t

t o.

C)"

~ 1 7SllHG? 0.'01:

P TS

.J

0. 00 1. 00 2. 00 3. 00 Il. 00 5. 00 6.00 7.00 T I NF. I N ".iF; f AND",i

0 0

~ ~

t, oo PLOT NO.

88 SIDANPPS, ALL LINES IN St AVICE, NEr PV GEN tI077HN, E/N ilOOOHN cnsrnllolo.o I .x t d CASE 2 o

(Q NO H-P DC, OV 500/230 ~2. PV-OEV tl8X SC onop pnLo VEfioE UNlr I. No cnps Fl AsHEo.

PV-HIGUEL SOX SC ~

o NAYNESSltl8.0 I a NUNTN GI22.0 I

\

'o

~

Qo ~ ~ ~ ~ ~ ~ * ~ at ~

LLj Oo

~ ~

~ ~ ~ ~ t t ~

t LLj Uo t ~ - ~ \t * ~-

QQ CLI t~ ~ t ~

CC C3 I

+o Qo ~ t

~o'J t ~ I

) '

~ 1

~ I ~

I CEO t

+O th ~ ~ ~

hJ o-CC t

0: ~ ~

~o I t t

CLo I t

Q I

t t 't t

LI.I QQ o r

>j~i'K"')< )/

t o(0 PTS7~)HtlG20:. 01 '. ~ ~

tt 0 .00 1. 00 2. i)0 3 . OO I1. OO 5. 00 C). 00 7. 00 TIME IN SECt:-)NO.)

if' PLOT HO. 5 88 STOANPPJ. ALL LINES IN SEAVICE ~ NET PV GENs4077HH, E/H*HBOOHH OEvEns 500. ~ x .CASE 2 Q No H-P OC. OV 500/230 ~ 2. PV.OEV 48<'( SC 4 PV-HIGVEL SOX SC ~ HVAFHE soo. ~ o (Q onol pnl.o VEnoE ONI I I, llo cilps FLASHEo. 4 PAI.OVAOESOO. Ir +

~ '

I

~

  • CC ~ ~ e LIJQ I CLm I e I r
T lxl r C3 e e

I Q r r ~ r-'e IVI e

~e CC

~Q ~ ~ e ~

e I

e ~

I,

)

e C) ~ ~

~ ~

Q (A ~ ~

CO ~ ~ r ~ ~~ ~~ ~ ~~ ~ ~ ~ ~ ~

~ ~

l 1

Qw lO 00

1. 00
2. 00 T1NE
3. 00 r ~

I.OO IN SE(ONDS 5 00 llew

~ e e,

'(

e et:

00

~

~fee ~S~a 7 00 e

e

Ik 0

~ ~

PLOT NO. 6 88 STOAtlPPJ, AI.L L lllES lk SEAYICE, HEI PV GEH 4077Hk, E/H=4800Hk I.UI10 500. * ><< CASE 2 HO H-P OC ~ OV 500/230 2. PV ~ OEV 48% SC 4 PV-HIGUEL 50% SC. Ilnvnao SOO. . O OAOP PALO YEAOE Uklf I, HO CAPS PLASUEO. o HESKHIHGSOO.

QC 1

LLj Q

~ ~ I ~ ~

I LIJ 1 C) l IO cn r*

1 ~ ~

CC 1

LI I~

Q 1

~ 1 ~ '1 11 l

)

~ " ' ."

CD

~ 1 C)

~~ '~""1 " ~

(A i/+.

1

'Q3 <<,P &

--"X

--w ~<<~

'I X X C), I C) *( 1 ( ~

1"

0. 00 l. 00 2. 00 3. 00 Il. 00 5. 00 6. 00 7. 00 T I MF IN !il=.CC)NnS

0 PLOi NO. 7 CASE 2 88 SIOAIIPl3, ALL LINES IN SEAYICE, NEE PY GEN tt077<<II, E/H*QOOOIIN NI<<AI.ONASOO. = X CD <<0 N-P OC, OV 500/230 $ 2 ~ PV-OEY IIOX SC 4 PV-NIGUEI. SOX SC. PASIOAIA230. *0 IA OAOP PALO VEAOE UNIT I, NO CAPS fLASNEO. VINCftll 500.

~ ~

Ia' CD CC llJ CD r

I ~ P LIJ C3 I

I

~ j ~ ~ ~ ~

f .." ~

~ y ~

I 0 Al 1 ~

I $ ~

(D CC LI.I~

(J I

)

C)

CD (n~

CD I

CD I 0)

0. 00 >rnO 2. 00 3. 00 I 00 c'0 ,b;00 7.00 T I Ml: IN Sl:CONBS

0 o

O PLOT NO. 8 I'Y Fl SOO.-OEVEAS 500. I 0 X l

88 SIOANPE3, ALL INES IN Sl HYICE, NET I'V GEN00077HN, E/ki>l800HN rv F2 SOO.-N.CII,A 500. I 0 C CASE 2 No H-P OC, uv 500/230 02. Pv-OEY 48X SC 4 Pv-HIOUEL SOX SC. rnlovAOEsoo.-krAEIEE soo.

O

='

I O onor rm.o vFAOE ukll I, No lnls rlnsiiEo, rm ovlluESOO.-NEsTklkcsoo. I = x O D 0

4~

O LE7 l ~ 0 ~ ' ~

o O

0~

Oo

~<o

'I x~ ~ ~ ~ ~

I~

Zo

~O I

o IEI

~ ~

C) ~ ~ ~ e ~ I I oO I LI LLJO ~ ~

0 o

~ I

-~I~~J' ~(pl ~

.~Q~+ ~ .

(p ~ ..: ..' .: ~ -.'. ~ '. ~ ~ - ~

~ ~

O 'I LA

~ 0 I

I

'H- < .+!~"-ii.:R:~

~ ~

/T g -.~~ 'i~~ R E'-.

0

-  :< -,-< R-.

E . ~

O 'I ~

I I I 00 00 l .0 0 2 .00 3 .00 Il.00 5. (10 6.00 7.00 TfMf= 1&I <f. t Iltff1 ~

Ii 4l

~ ~

2 CASE 2 O PLOT NO. e O 88 STOANPP3, ALL LlltES Itl SERVICE ~ NET PY GENatIOTTMH. E/N='IOOOMH MOEIIKOPISOO.-HESTHINGSOO. I ~ X NO N-P OC, OV 500/230 e2I PV.OEV ttOZ SC 4 PY-MIGUEL SOZ SC. ltAV I SOO.-MCCULLGNSOO. I a 4 O OAOP PALO VERDE Uttl T I, tla CAPS FLASIIEO. ttAVAJO SOO.-HESTHINGSOO. I ~ +

AJ I

~ I I'I ~

II O

O I 2 2

~~ ~

O 2 O 2 O ~ ~ ~ ~ ~ I

~ .* ~ ~ ~:

C3

~Q 2 I~

x~

4 2

2 2

~~

' I

' ' I I

'1 I 2 2

I

~Q Q I 2

~

2 I O I (Q 2 I

~ ~ I ~

~

~ ~ ~ .. ~ . ~ ~ .... ~:...-', .:.I..:. ~ ~ ~:....:~ ..

C) I~ ~ : ~ ~

QO hJQ O ~ ~

.~ ~ '...,..:. ~~ ..f

'V I

l

~"'" lj I

-,22! -'- -<~  ::

'l

~ ~

~~ 'I 2

I l I 2 O =~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

  • I 2 O ~ ~ ~ ~ - ~ ~ ~

I I

Q S CU II I ~ ~ ~ ~ - I ~ I I~~  : ~ I ~: ~ ~ ~

'. ~: ~ ~ ~~ ~ ~ ~

O ~ ~ ~ ~ - -I O

2

0. 00 1. 00 00 3 00 Il. 00 5. 00 6. 00 00 T IHF IN ".iFCIIND "3

II 4b

I ~

PLOT HO. 10 CASE 2 D 88 STBANPPQ. ALL LINES ltl SEAYICE, NET PV CEN OOZZ<<K, E/K it800<<K C<<OLLA SOO.-SACUAAO SOO. I . X D NO M-P OC, OV 500/230 ~ 24 PV-OEV 98Ã SC 4 PV-NICUEL 50Ã SC ~ FOUACOA<<305.-C<<OLLA 395 ' ~ 0 OAOP PALO YEflOE Util f I, tlo CAPS FLASIIEO. o CAL'ENIEE3<IS.-VAIL 365. I +

D ~

f

~ ~

4 O

O O

ID

r. ~ ~~ ~ 4 I'

'I I

4 II 4 I

O ~ ~

C) X:W:

~OIn I 4 I'r 54

.~ I

~OD ~ '

~ ~ ~~ ~ ~~ ~

I D 4 '

4 C) I '4 LI 0D LLjO QN 4 4

~ ~

I =~

O ~

O O

CU 4 4 I~

4 4

O C5 1

0 .00 1

1. 00 2. 00 3. 00 Il. 00 5. 00 '6. 00 7. 00 TINE I N SECONDS

Ib 0

CAsc PLOT NO LUGO 500. ~ X 88 STBANPPS, ALL LINES IN SEAVICE, NET PV GEN=9077NH. E/HsQ800NH TESLA 500. R 0 O NO N P OC, OV 500/250 I2c PV-OEV il8Ã SC 4 PV-NIGUEL SOX SC. HESTNESASiIS. s +

OAOP PALO VEAOE UNIT I. NO CAPS FLASNEO ~ HESTHINGSOO. e R

~ ~ ~ ~~ ~ ~ ~ ~

M C

>o C C

C C

C

)O C

C L C

~ ~~~ ~

QJ C3 ~~~~

Z ~

LIJ D C

C3 C

~ C I I LIJ CC

~oo

~ r r. r

~ - LIJO i C

CC I ' I Uo ~ ~ ~ V ~ ~ ~ ~ ~~ c ~ ~

I C (A

C CQ o

o

0. 00 1. 00 2 .00 3. 00 4. 00 5.00 G 00 00 8. 00 00 TTMF TM RFl PINn~

JI 0

0

" 'CASE 3 P,OWER FLOW.

NA'P'ND STABILITY PLOTS

~ i 0

e'AGE I) 88 Al)PP-BASE NET PV GEII R t)077 HH. 48%/50% SC PVI)nfl. AI.L LlHES IH SERVICE. 7/ PV GEH HAf)GIN VRI.OG>O VR1.054 VR).076 VR I.O'ls VR I. 028 345 V IC1I)AVL 394. 2 Vo> I . 025 HCCUI.I.GH 23.15 NAVAJO 7,3. 71 31. )4 258.6 25. I 32. 56 1196.2 KATI:HTA -83. 7 SIIIPAOCK 0.6 SAt)JUAH345 2'I. 9 9. 'I 2JO 833.4 532. I VR I . 0'47 327.3 30.2 VR LUGO

-43.9 I . 057 680.4

-5. 0 OLEII 2"~

19. 80 -Sfl. 0

-3.5 FOUACOAN 230 500 34S

-)0.3 17S.8

-92. 2 38.3 VR1.043

25. 46 VR), 054 TAOS GLEHCAt)T 233. 7 814.9 218.2 0. '4 017. 3 10.48 V 21.046 -32. 2 -115.6 4 lb,) 21 I ELDOAADO 178.2 -80.7 OJO

~ 18. 23 620. 0 -75. 2 l4.8 VR I ~ 038 3 I?G4.2 287.3 VRI. 073 -38.9 765.9 25.06 102.3 17.6 20.93 -222.1 4) 7.5 VR I . 0'l2 HOI'Nl(I)P I -16 6.8 183. 6 V lt)CENT 519. 4 8. 57 3?7. 7 11. 8 VR I. 069 -31. 3 230 HFAD - IG. 3 4.03

)OS9.O FLAGSTAF VQ I. 036 AHDAOSIA HOATOH HO))AVE V= I . 041 29. 02 VR I. 061 VR I ~ 033 IG. 8 V-l.056 16. 23 HCKIHLET 27. 24 68.

VR I . 0'!4 14. 2'I 7 23. 00 HIAALOHA

-3. 3 74.4 345 V>>1, 049 575. I -1)6.2 284. I CIIOLLA 22. 82 2'I I. 2 160.2 217.6 4fi3. I 500 VR1.070 345 -7.4 VR).029 533.2 ol).3 I I'l. 8 -29. I 22.38 -109 367. 5 2.7 23.01 65.7 2.5 -13. 5 sEAAAtlo nol 002 Aps VR I. 024 1,2 92. 0 I

)IESTHESA 23.12 I . 0'l3 I'I ttt)ACLPK -I )II.!> 500 I.17.034GlC)ICTH V= HI S1AI ION VOLTAGE 409.6 -6.05 3'15 445. 3 V= COAONADO 142. 7 ANGLE -165.4 72. 8 -94.3 500 (

ConotlADO NESTWIIIG 3'lb ) 15.

500 VALLETSC ">00 34s Ii PAJAAITO VR I. 021 345 125. 9 22. 19 FOUACOAN V*'I.O32 345 477 4 VR). 034 SANDIA 230 67G. 6 -4.00 L IDEA1 1 -57 8 3G'). 0 2'l. 7) TO FOUACOntl -) 69. 5 VR).029 -9.3 spnl t)GAVL 153.6 AAAOTO i

345 )0 68 544,7 544. 7 - lnb. 6 TO FOUACOAN DEVEAS -151.0 -151.0  ? Lurtn 500 V*1. 021 PALO S ILVEAKING PALOVEADE 1.058 -.O. 64 VEAOE VR1.030 252. 7 500 21.47 ls 32 -18. 7 AZ-CALIF f' tlPKDAD 1. 016 1467.9 KTAFNE sntiUAAD 147.. 2 4851. 8 3'15 14. 87 223. 4 VR I. 038 V- I . OII3 VR I . 020 - II). 3 498.6 PNPKAPS 1.0) 7 05b 2 I S. f)7 16. 61 10.76 345 14. 82 IV VRI. 040 163. 3 141. 0 GAEEtlLEE HAL IN SI I I P A 0C K 1.025 20.6 2792.0 345 IIES )NING I. 057

32. 35 GEtlCAA1)otl 52.'I tt.b)I.A VR1.041) IOIIIOLII~

V ~ I. f)4 3

-303.7 345 10. 29 C))OLLA 140.0 I b. Go VINCENT HES11! IHG I . 06fi COAOHfllto 370. 0

)OI7.2 500 18.'79 FOUACUAN 1532.7 LEGEND 13:5. 9 89.9 -172.9 HIGUEL 1. 0)0 GLENCfttlZ 227. 9 50I) Kv 79. 3 -GO. 3 500 7. 33 HotlnvE )son.n 345 KV -55 3 SOI) fit TO DE VCflS 0. 996 HnvnJn 2?so.o 230 Kv VR).027 -27 '>

230 -S. 69 pnL ovrnn 4o7 i. 0 14.90 V= I. 007 J. II I H [) 5 I. 008 Sntt JUlltl 1475.1 EIIV NET IIOAK Vt) I L )7.34 230 Hl G>UI'L

-S. S7 IIOOVEA 1.006 219.0 1988  ?=I.O?2 OICI(lll:II -IO.O 22.2 VR I.15 0?6 230 12 Power Flow Map CASE 3

0 sl'

~ ~

PLOT IIO. I o

o 88 SI8ANPP4, ALL LINES IN SIAYICE, NET PV GEN ~ II077NN. E/N,'l800NN AGUAFA 3I8.0 I CASE 3 HO N-P DC, DY 500/230 ~ 2, PV-DEY !IBX SC i PV-NIGUEL 50X SC. COIIONADI22.0 o DAOP EDHONSYON PUNP LOAD, NO CAPS FLASNEO. 0 PAI.OYA022!I.D I Qoo 1 ~

LIJ 0  !

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

I LLI Uo Qo I 1

Clr ~

' ~

j 4 I

CI: 1 (D ~ ~ ~

Io (Do i

~o. (0

)

LIJ I

Io CLo LLIQ ~ ~= 4 4 ~ 1 CI:.

1 I

CC C)

I.

CI: ~ I CCQ QJ M I

~ ~

~ r N ~

r IIJ  !

oo

  • 1 ~ ~ . ~ 1

~ ~

I Q I'.S7Sl<N(i20 ~ OI.": I

".0. oo i.nn 00 .3. 00 Il. 00 S'. 00 00 TIME IN ".)EL'QNl)S

0 0

PLOT IIO. 2 CASE 3 o

o BB SIAAHI'P4 ~ ALL LINES IH Sl AVIIC, HEI Pv CEII=4077NH, E/H=4800NH FCHGH4CC22 ~ 0 L = X No N-r oc, ov soo/230 .2, r v-oEv itoz sc a r v-HIOUCL sox sc. MOIIAVICC22~ 0 L ~ 0 DAOP EONOtlSlotl I'UNP LOAD ~ tto CAPS FLASIIEO. o tlAVAJO 126.0 I = +

lA 1

J ~ I Qoo ~ ~ ~ ~ ~=

LLI ~ ~ ~ ~

Oo ~ 1I I 'I JIB 1 LLj I Uo

+o I ~

~IA'Cm CC

~ ~ ~~ ~ ~ / ~ '" - ~ -: ':-mme ~ '::

I C)

Io Go K

l0

)

IJJ I- I~

CLo

~IA CC I I~\

CC C)

I o CL, ~

I 1 CX.o

~lA LI.I r

o o ~ J ~

lA P TS7".IHNG20. 01 I I

~n nn I nn  :~ nn nn nn I-, nn r. nn 7.nn

i Q PLOT IIO. 3 CASE 3 o 88 SIBANPPItl, ALL LINES IH SI IIVICE~ NEI Pv GCN H077HH, E/k Iloookk GLENCANGI3.8 I ~ X Ho H-p oc. ov 500/230 .2 rv.oEV ilox sc a pv-HIGVEL 502 Sc.

Q ~

onol Eonokslok runr l.ono. Ho cnps rLnsNEo.

IAVIGEII I8.0 I ~ d Al SJUAN G22II.O I ~ +

'o QQ

~o t:lo h

I I

LLI Uo *h

+o h

~ ~ ~

O CLI

\

~~

~

~ h CC r

+o C)o

~ ~~ ~~~ .-

-- ~

~o(O ~ -h II

~ ~ ~

) II 1 ~

IJJ ~ ~

l 1

h IQ h CLo Wo-

~ ~ r

~o

+o ~-

g-Q LIJ Z h

~ ~ ~ ~ ~ lr LLj h ~ ~ ~ 1 oo P T57!illNG20. 01:

t).00 1.00 00 3.00 l1r00 5.00 '6.00 7.00 T I Hl, IN SECONl35

0 o

o CASE 3 ee stonnreu. nt.L Ltktcs IN set IVIII, Ncf rv catt.uovvkkw, cw=>>oookkkt cnstnllclo.o I ~ X II-P 2 'V-OEY lIOX SC 4 rv-NICUCL SOX SC.

o (O

NO OC, Ov 500/230 OAOP Eokkokislokt PUIIP LOAD.

~

tlo CAf'5 FLASIICO. 0 IIAIIILSSGIO.O I NUNlN GI 22. 0 I

=

=

0

+

~~

~

Q (3Q Wo I:-f.cv

'L

~ ~ ~ ~ ~ ~ - ~

I ~

LLI 'o I

~ ~ ~

~o CC co

..':.:;....:'.....::.....I -::....::....::.....j

  • ,i, CC ~ ~ ~ i * ~ ~ ~ ~ ~ ~ ~ ~ ~ w C) I Io ~

~

~

i ~ ~

E)o '

~o

)

W I

CI:o

+Q Wo CC ~ ~ ~

l lC l

~oQ ~ . ~

I I ~

CCQ I

-l l I

I I

~ I l

l j LIJ

+Qo I~

I

' I

~ ~ \

l o

S T.S7.'iHHG20. 01 f P

-'00 0 1 ~ 00 2.00 3. 00 I1. 00 5;no 6 00 7. 00 TIME IN SI.CGNDS

~ ~ e e LOJ NO. 5 CASE 3 08 Slonni'P4. NLL I.INKS lll SIAVICK, tifl PY Gftt~4077ttN. K/Ns4000tIN nf YKIIS 500. a X No H-p nc, ov 500/230 2, pY-OKY itox sc 4 pv-tllGUKL Sox sc. 55YNKtiK 500. a C onop Knnottslott I utip I.onn, No cnrs rlnsiiro. a rnLovnoKsoo.

~ ~

i ."::: :*;* j i lA o lt I

.I ~ ~ 1 I

~ ~~ ~~ I

~ ~

I

..I Wo ..i I

CLw I

~ ~ ~

I 4

I I I

~ ~ ~ ~

I LLj P ~ ~ A C3 I I

~o irn C

I C3 CL ~ ~ ~~

i I

LLio I I

)o E3

~ * ~

~

I I

I I

I (A ~ ~

oo

0. 00 I . 00 2. 00 3. 00 4. 00 5. 00 G. 00 00 T Ml. IN 1 .)f. COMAS

II il

!5

~ ~ 4 PLOT NO. 6 CASE 3 o 88 SIBANf'Pu, ALL LINES IN Sl AVIrl;. ICET I V AEN=uoITNN. Ew*ueooNN Lur,'o soo.

  • x No H-P AC ~ OY 500/230 2. PY-AEY >ll)X SC 4 PY NIGOEL SOX SC. ttnyn.to Soo. ~ uj EQ oAap Euuatlstau Iuur LOAO. No cnrs rLnsut n. o ICESTMI II0500.

I 1 4

~ I

~ 3 I

IlA o I I

~, . 4 z 1 I I'

~ ~ '

3 CC W.o ~ ~

0 ~ ~

'I C

I I I

~

W 3 3

C3

~o

~(n I ~

\

4

~ ~

I CC Wc@

o j 3 3

3 I

')

),o (A

CQ C1>~r 14 1 C

Tt o

0 .00 j. 00 3. 00 I. 00 5. 0(i Gc 00 7. 00 T I HF= I N JECG ND!)

~ i

~

E rior IID. v CASE 3 88 SIOIlHPP4, ALL LINES IH SIllYICE. Hf.l'v CEH=407ltlN, E/H=4800HH o

LA IIO N-P OC, OV SOO/ISO a. I V-UEV ilOX SC a PV-NICUEL SOX SC.

HIAAIOHASOO.

PAStOAIAESO.

~ X a

OAOP EIEHONSION PUHP LOAD. IIO CAI'S fLASHED. 0 YIHCENI Soo. = +

~

I I

oy' 1

'I

~ ~ ~ ~

I

~ E ~ ~ ~ ~

~~

CC IJ-Io ~ ~

Q cn I I

I IJJ ~ ~ ~ ~ ~ ~

I C3 .! I o

(U I

I

~

I

~~

-I I

~ II

~ ~ ~ I ~ ~ ~ ~ ~

CC

~o I f

I I: .:

-X-j

)o E) N l< r (no I j ' ~ ~ I o

(rl t). 00 2. 00 3. Ol) II. 00 5. 00 G. 00 7. 00 T1MF 1N '.)t;CClblll".i

gl 0

0

'li

h P LOt NO. 8 CASE 3 Q Pv FI SOO.-OCVCAS 500. I

  • X o 00 slonttrpu, nlL LINcs ltt scrtvlcc, trrl rv Gctr.untorn, cw*uoootrN rv F2 soo.-N.GILn soo. I a No H-P OC ~ Ov 500/230 ~ 2. PV-IECY uOX SC EE Pv-HIGUCL SOZ SC. I'fEI.OVAOCSOO.-KYACNC 500. I = +

Q onar conotrsloN rrtnr Lono, Nn ~ nr s FLrl"rrco. O PALovnncSOO.-McSININGSOO. I = R LO o

o o

~ ~ ~ I Q

Q '

Go m Chht X

Zo

~o I

Q o

~ ~ ~ \ ~

'I L

E'* LL

C C)

Q o E LLJ Q r+

~m

~

E

~ ~

E L

I I~

I Qi ~ ~ L ~

Q Q

Co h

~EE ".. EE-.; R.-

h o

oi

~~~ I I ~L ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ * ~ ~ ~

Q

0. 00 1. 00 2 .DD 3.00 T1NF 7 ll 'f l1.00 AllB;)

S. 00 6. 00 7. 00

'JW Il~

il~

II

PLOT IIO. 9 nn CASE 3 88 SIOAttPP4, ALL LltlES IN SEflVICE. tlEf PV GEtf*tt077HN, E/N*'l80ONN LOGO SOO.-VItlCENI 500. I ~ X NO tl-P OC, OV 500/230 ~ 2, PV-OEV tfBX SC 4 PV-NIGVEL 502 SC. NAGIVllOEtl730.-PASIOAIA230. 3 ~ 0 n OAOP EONONSIOtl PVNP LOAO, tlO CAf'5 fLASIIEO. o I'AAVEE 230.-PASIOAIA230 ~ 3 *+

~ I n

n h 11

  • ~ ~

n

~ 1 C) mn X 1.1

  • 1\ 11 .~ *

~ I

~nw n

~ 1 1 ~

I h ~ ~ =* II

.. WjQ ~ 1

~ I I I n l h \

cu' C)

Q n n

LLJn I

n n

~ ~

I  :~~

1

~ . ~ .::, ~ ~:.

~ ~

n 1 ~ ~

~ 1 nn n

~ h

0. 00 1. 00 2. 00 3. 00 l. 00 5. 00 G. 00 7. 00 TIHI- It;I .,Fr.rhNn

4 il~

~ ~

0

ILor wo. Io CASE 3 oo slonwnu. ALL I.INEs Iw srnvlcE. Nrl I v ccw.uo)7ww, Ew*uoaailll CWALLA SOO.-SAGVAAO 500. I

  • X No w-p oc, ov son(230 I2, I'v nr.v uox sc a pv-NIGUEL sox sc. I'OllACOAN3u5.-CNPLLA 3us. I a 0 onao Eowowslaw ruwr Lano. Na cnls rLnslu.o. a GIAEENLEE3'u5.-VAII. 3'u5. I = +

I ~ V

~ v r oo o

(0

  • w d

o oo X I xx-~~--" v,.>, . ><~,:. -x,.

I I v,-.

~oo t l

~ I loQl ~ V' E3 '" ~ ~ ~ '"- V o

CD -

~ ~ ~ ~~

Wo

~co

~ V r 1 I oo I

V V

V ~

o AJ rr ~ ~

V oo V

o I 0 .00 I. 00 . 00 3. 00 tf. 00 S. OD G. 00 7. 00 T<~t.- >ti .'F.tr'iNOs

V'