ML14098A254
ML14098A254 | |
Person / Time | |
---|---|
Site: | Fermi |
Issue date: | 03/19/2014 |
From: | DTE Energy |
To: | Document Control Desk, Office of Nuclear Reactor Regulation |
References | |
Download: ML14098A254 (40) | |
Text
DETROIT EDISON - FERMI 2 AUTOMATED RECORD MANAGEMENT DISTRIBUTION CONTROL LIST 03/19/14 To: 00935 US NRC PAGE 1 DOCUMENT CNTRL DESK WASHINGTON, DC 20555 Media: 8 1/2 X 11 Number Cnt Issue DTC Doc. Serial Number Page Rev Copies Lvl Date Sec Status TMTRM TRM VOL I 106 1 IR 03/19/14 AFC Please destroy or mark all revised, superseded, or cancelled documents as such. CONTROLLED stamps must be voided by lining through and initialing.
Detroit Edison EF2, C/O Info Mgmt 140 NOC, 6400 North Dixie Highway, Newport MI 48166. (734) 586-4338 OR (734) 586-4061 for questions or concerns.
Ref: u18400 40o1
LICENSING DOCUMENT TRANSMITTAL FERMI 2 TECHNICAL REQUIREMENTS MANUAL - VOL I Revision 106 dated 3/19/14 Immediately, upon receipt of the item(s) below, please insert and/or remove the pages indicated.
Destroy the removed pages. Be sure that Revision 105 has been inserted prior to inserting these pages.
SECTION REMOVE and DESTROY INSERT In Front of TRM Manual Title Page Rev 105 11/21/13 Title Page Rev 106 3/19/14 Immediately following List of Effective Pages List of Effective Pages Title Page LEP-1 through LEP-4 Rev 105 11/21/13 LEP-1 through LEP-4 Rev 106 3/19/14 Table of Contents TRM-i Rev 76 08/05 TRM-i Rev 106 03/14 TRM-iv Rev 76 08/05 TRM-iv Rev 106 03/14 3.3 Detailed Index of TRM 3.3-c Rev 31 10/99 TRM 3.3-c Rev 106 03/14 Section 3.3 Instrumentation TRM 3.3-1 Rev 34 4/00 TRM 3.3-1 Rev 106 03/14 TRM 3.3-2 Rev 59 11/02 TRM 3.3-2 Rev 106 03/14 TRM 3.3-8 Rev 31 10/99 TRM 3.3-8 Rev 106 03/14 TRM3.3-10Rev3l 10/99 TRM 3.3-10 Rev 106 03/14 TRM 3.3-34a Rev 106 03/14 B3.3 Instrumentation TRM B3.3.7-3 Rev 106 03/14 Core Operating Limits COLR Cycle 16, Revision 1, COLR Cycle 17, Revision 0, Report (COLR) September 2012 February 2014 Pages 1 through 24 Pages 1 through 24 END I ,
Fermi 2 Technical Requirements Manual Volume I DTE Energy ARMS - INFORMATION DTC: TMTRM File: 1754 I DSN: TRMVOLI Rev:106 Date 3/19/14 Recipient
FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TRM i Revision 106 TRM 3.3-31 Revision 31 TRM ii Revision 73 TRM 3.3-32 Revision 31 TRM iii Revision 105 TRM 3.3-33 Revision 31 TRM iv Revision 106 TRM 3.3-34 Revision 31 TRMv Revision 79 TRM 3.3-34a Revision 106 TRM vi Revision 31 TRM 3.3-35 Revision 60 TRM 1.0-a Revision 31 TRM 3.3-36 Revision 104 TRM 1.0-1 Revision 31 TRM 3.3-37 Revision 72 TRM 2.0-1 Revision 31 TRM 3.3-38 Revision 31 TRM 3.0-a Revision 31 TRM 3.3-39 Revision 31 TRM 3.0-1 Revision 63 TRM 3.3-40 Revision 56 TRM 3.0-2 Revision 72 TRM 3.3-41 Revision 56 TRM 3.0-3 Revision 54 TRM 3.3-42 Revision 45 TRM 3.0-4 Revision 72 TRM 3.3-43 Revision 62 TRM 3.1-a Revision 31 TRM 3.3-44 Revision 72 TRM 3.1-1 Revision 31 TRM 3.3-45 Revision 31 TRM 3.2-1 Revision 31 TRM 3.3-46 Revision 31 TRM 3.3-a Revision 31 TRM 3.3-47 Revision 31 TRM 3.3-b Revision 31 TRM 3.3-48 Revision 31 TRM 3.3-c Revision 106 TRM 3.3-49 Revision 31 TRM 3.3-d Revision 31 TRM 3.4-a Revision 31 TRM 3.3-1 Revision 106 TRM 3.4-1 Revision 36 TRM 3.3-2 Revision 106 TRM 3.4-la Revision 71 TRM 3.3-3 Revision 31 TRM 3.4-lb Revision 71 TRM 3.3-4 Revision 31 TRM 3.4-2 Revision 31 TRM 3.3-5 Revision 31 TRM 3.4-3 Revision 31 TRM 3.3-6 Revision 31 TRM 3.4-4 Revision 31 TRM 3.3-7 Revision 31 TRM 3.4-5 Revision 31 TRM 3.3-8,. Revision 106 TRM 3.4-6 Revision 31 TRM 3.3-9 Revision 31 TRM 3.4-7 Revision 31 TRM 3.3-10 Revision 106 TRM 3.4-8 Revision 31 TRM 3.3-11 Revision 31 TRM 3.4-9 Revision 31 TRM 3.3-12 Revision 67 TRM 3.4-10 Revision 31 TRM 3.3-13 Revision 74 TRM 3.5-1 Revision 31 TRM 3.3-13a Revision 67 TRM 3.6-a Revision 70 TRM 3.3-14 Revision 67 TRM 3.6-1 Revision 60 TRM 3.3-15 Revision 31 TRM 3.6-2 Revision 67 TRM 3.3-16 Revision 31 TRM 3.6-3 Revision 31 TRM 3.3-17 Revision 31 TRM 3.6-4 Revision 55 TRM 3.3-18 Revision 100 TRM 3.6-5 Revision 87 TRM 3.3-19 Revision 31 TRM 3.6-6 Revision 33 TRM 3.3-20 Revision 31 TRM 3.6-7 Revision 31 TRM 3.3-21 Revision 59 TRM 3.6-8 Revision 31 TRM 3.3-22 Revision 31 TRM 3.6-9 Revision 85 TRM 3.3-23 Revision 31 TRM 3.6-10 Revision 31 TRM 3.3-24 Revision 31 TRM 3.6-11 Revision 31 TRM 3.3-25 Revision 31 TRM 3.6-12 Revision 31 TRM 3.3-26 Revision 31 TRM 3.6-13 Revision 71 TRM 3.3-27 Revision 31 TRM 3.6-14 Revision 31 TRM 3.3-28 Revision 76 TRM 3.6-15 Revision 31 TRM 3.3-29 Revision 76 TRM 3.6-16 Revision 31 TRM 3.3-30 Revision 31 TRM 3.6-17 Revision 31 TRM Vol. I LEP-1 REV 106 3/19/14
FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TRM 3.6-18 Revision 31 TRM 3.8-12 Revision 31 TRM 3.6-19 Revision 31 TRM 3.8-13 Revision 61 TRM 3.6-20 Revision 31 TRM 3.8-14 Revision 46 TRM 3.6-21 Revision 31 TRM 3.8-15 Revision 31 TRM 3.6-22 Revision.31 TRM 378-16 Revision 31 TRM 3.6-23 Revision 31 TRM 3.8-17 Revision 43 TRM 3.6-24 Revision 58 TRM 3.8-18 Revision 33 TRM 3.6-25 Revision 31 TRM 3.9-a Revision 31 TRM 3.6-26 Revision 31 TRM 3.9-1 Revision 31 TRM 3.6-27 Revision 31 TRM 3.9-2 Revision 65 TRM 3.6-28 Revision 31 TRM 3.9-3 Revision 80 TRM 3.6-29 Revision 31 TRM 3.9-4 Revision 88 TRM 3.6-30 Revision 31 TRM 3.9-5 Revision 31 TRM 3.6-31 Revision 31 TRM 3.10-1 Revision 31 TRM 3.6-32 Revision 70 TRM 3.11-a Revision 31 TRM 3.6-33 Revision 31 TRM 3.11-1 Revision 31 TRM 3.6-34 Revision 31 TRM 3.12-a Revision 31 TRM 3.6-35 Revision 31 TRM 3.12-1 Revision 75 TRM 3.7-a Revision 73 TRM 3.12-2 Revision 31 TRM 3.7-b Revision 31 TRM 3.12-3 Revision 31 TRM 3.7-1 Revision 60 TRM 3.12-4 Revision 102 TRM 3.7-2 Revision 70 TRM 3.12-5 Revision 53 TRM 3.7-3 Revision 70 TRM 3.12-6 Revision 53 TRM 3.7-4 Revision 73 TRM 3.12-7 Revision 31 TRM 3.7-5 Revision 31 TRM 3.12-8 Revision 57 TRM 3.7-6 Revision 31 TRM 3.12-9 Revision 40 TRM 3.7-7 Revision 31 TRM 3.12-10 Revision 31 TRM 3.7-8 Revision 31 TRM 3.12-11 Revision 49 TRM 3.7-9 Revision 31 TRM 3.12-12 Revision 31 TRM 3.7-10 Revision 44 TRM 3.12-13 Revision 75 TRM 3.7-11 Revision 31 TRM 3.12-14 Revision 31 TRM 3.7-12 Revision 72 TRM 3.12-15 Revision 31 TRM 3.7-13 Revision 31 TRM 3.12-16 Revision 75 TRM 3.7-14 Revision 31 TRM 3.12-17 Revision 31 TRM 3.7-15 Revision 98 TRM 3.12-18 Revision 75 TRM 3.7-16 Revision 31 TRM 3.12-19 Revision 31 TRM 3.7-17 Revision 31 TRM 3.12-20 Revision 75 TRM 3.7-18 Revision 77 TRM 3.12-21 Revision 31 TRM 3.7-19 Revision 31 TRM 3.12-22 Revision 31 TRM 3.7-20 Revision 79 TRM 3.12-23 Revision 31 TRM 3.8-a Revision 31 TRM 3.12-24 Revision 31 TRM 3.8-1 Revision 31 TRM 3.12-25 Revision 31 TRM 3.8-2 Revision 31 TRM 3.12-26 Revision 75 TRM 3.8-3 Revision 96 TRM 3.12-27 Revision 31 TRM 3.8-4 Revision 96 TRM 3.12-28 Revision 31 TRM 3.8-5 Revision 31 TRM 3.12-29 Revision 78 TRM 3.8-6 Revision 50 TRM 3.12-30 Revision 31 TRM 3.8-7 Revision 50 TRM 4.0-1 Revision 31 TRM 3.8-8 Revision 50 TRM 5.0-a Revision 105 TRM 3.8-9 Revision 50 TRM 5.0-1 Revision 105 TRM 3.8-10 Revision 50 TRM 5.0-2 Revision 105 TRM 3.8-11 Revision 50 TRM Vol. I LEP-2 REV 106 3/19/14
FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TRX B1.0-1 Revision 31 TRM B3.6.2-1 Revision 67 TRM B2.0-1 Revision 31 TRM B3.6.3-1 Revision 87 TRM B3.0-1 Revision 63 TRM B3.6.4-1 Revision 31 TRM B3.0-2 Revision 63 TRM B3.6.5-1 Revision 31 TRM B3.0-2a Revision 72 TRM B3.6.6-1 Revision 70 TRM B3. 0-2b Revision 72 TRM B3.6.7-1 Revision 31 TRM B3.0-2c Revision 72 TRMB3.6.8-1 Revision 31 TRM B3.0-3 Revision 31 TRM B3.7.1-1 Revision 31 TRM B3.0-4 Revision 31 TRM B3.7.2-1 Revision 31 TRM B3.0-5 Revision 54 TRM B3.7.3-1 Revision 73 TRM B3.0-6 Revision 72 TRM B3.7.4-1 Revision 31 TRN B3.0-7 Revision 72 TRM B3.7.4-2 Revision 31 TRM B3.1-1 Revision 31 TRM B3.7.5-1 Revision 31 TRM B3.2-1 Revision 31 TRM B3.7.6-1 Revision 31 TRM B3.3.1-1 Revision 31 TRM B3.7.7-1 Revision 99 TRM B3.3.1-2 Revision 31 TRM B3.7.8-1 Revision 31 TRM B3.3.2-1 Revision 31 TRM B3.7.9-1 Revision 79 TRM B3.3.2-2 Revision 31 TRM B3.8.1-1 Revision 31 TRMB3.3.3-1 Revision 67 TRM B3.8.2-1 Revision 31 TRM B3.3.4-1 Revision 31 TRM B3.8.3-1 Revision 96 TRM B3.3.4-2 Revision 84 TRM B3.8.4-1 Revision 31 TRE B3.3.5-1 Revision 31 TRM B3.8.5-1 Revision 31 TRM B3.3. 5-2 Revision 31 TRMB3.8.6-1 Revision 43 TRM B3.3.6-1 Revision 31 TRM B3.9.1-1 Revision 31 TRM B3.3.6-2 Revision 31 TRM B3.9.2-1 Revision 65 TRMB3.3.6-3 Revision 31 TRM B3.9.3-1 Revision 31 TRM B3.3.6-4 Revision 31 TRM B3.9.4-1 Revision 31 TRMB3.3.6-5 Revision 76 TRM B3. 10-1 Revision 31 TRM B3.3.6-6 Revision 76 TRM B3. 11. 1-1 Revision 31 TRM B3.3.7-1 Revision 31 TRM B3.12.1-1 Revision 31 TRM B3.3.7-2 Revision 31 TRM B3.12.2-1 Revision 44 TRM B3.3.7-3 Revision 106 TRM B3.12.3-1 Revision 31 TRM B3.3.8-1 Revision 31 TRE B3.12.4-1 Revision 31 TRM B3.3.9-1 Revision 31 TRM B3.12.5-1 Revision 31 TRM B3.3.10-1 Revision 56 TRMB3.12.6-1 Revision 31 TRM B3.3.11-1 Revision 45 TRM B3.12.7-1 Revision 31 TRM B3.3.12-1 Revision 62 TRMB3.12.8-1 Revision 31 TRM B3.3. 13-1 Revision 31 TRM B3.3.14-1 Revision 31 TRM B3.4.1-1 Revision 31 TRM B3.4. 1-2 Revision 71 TRM B3.4.1-3 Revision 71 TRM B3.4.1-4 Revision 71 TRM B3.4.1-5 Revision 71 TRM B3.4.2-1 Revision 31 TRM B3.4.3-1 Revision 31 TRM B3.4.4-1 Revision 31 TRM B3.4.5-1 Revision 31 TRM B3.4.6-1 Revision 31 TRM B3.4.7-1 Revision 31 TRM B3.5-1 Revision 31 TRM B3.6.1-1 Revision 31 TRM Vol. I LEP-3 REV 106 3/19/14
FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES CORE OPERATING LIMITS REPORT COLR 17, Revision 0 PReVision Notation Page 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0.
22 0 23 0 24 0 TRM Vol. I LEP-4 REV 106 3/19/14
FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I Table of Contents Section and Title Page TR 1.0 USE AND APPLICATION TR 1.0 USE AND APPLICATION TR 2.0 Definitions ...................................... TRM 1.0-1 TR 2.0 SAFETY LIMITS (SLs)(Blank) .......................... TRM 2.0-1 TR 3.0 Limiting Condition for Operation (TRLCO)
Applicability .................................... TRM 3.0-1 TR 3.0 Surveillance Requirement (TRSR) Applicability .... TRM 3.0-3 TR 3.1 REACTIVITY CONTROL SYSTEMS TR 3.1 Control Rod Drive Housing Support ................ TRM 3.1-1 TR 3.2 POWER DISTRIBUTION LIMITS (Blank) ................... TRM 3.2-1 TR 3.3 INSTRUMENTATION TR 3.3.1.1 Reactor Protection System (RPS) Instrumentation TRM 3.3-1 TR 3.3.1.2 Reactor Protection System (RPS) Shorting Links ... TRM 3.3-3 TR 3.3.2.1 Control Rod Block Instrumentation ................ TRM 3.3-4 TR 3.3.2.2 Feedwater and Main Turbine High Water Level Trip Instrumentation .................................. TRM 3.3-11 TR 3.3.3 Accident Monitoring Instrumentation .............. TRM 3.3-12 TR 3.3.4.1 Anticipated Transient Without Scram Recirculation Pump Trip (ATWS-RPT) Instrumentation ............. TRM 3.3-15 TR 3.3.4.2 Traversing In-Core Probe (TIP) System ............ TRM 3.3-16 TR 3.3.5.1 Emergency Core Cooling System (ECCS)
Instrumentation .................................. TRM 3.3-17 TR 3. 3. 5. 2 Reactor Core Isolation Cooling (RCIC) System Instrumentation ......... .......................... TRM 3.3-20 TR 3.3.6.1 Primary Containment Isolation Instrumentation .... TRM 3.3-21 TR 3.3.6.2 Secondary Containment Isolation Instrumentation .. TRM 3.3-24 TR 3.3.6.3 Low-Low Set (LLS) Instrumentation ................ TRM 3.3-25 TR 3.3.6.4 Suppression Pool Water Temperature Instrumentation TRM 3.3-26 TR 3.3.6.5 TWMS Narrow Range Suppression Pool Water Level Instrumentation .................................. TRM 3.3-28 TR 3.3.7.1 Control Room Emergency Filtration (CREF) System Instrumentation ................................ TRM 3.3-30 TR. 3.3.7.2 Seismic Monitoring Instrumentation ............... TRM 3.3-31 TR 3.3.7.3 Feedwater Flow Instrumentation.................... TRM 3.3-34a TR 3.3.8.1 Loss of Power (LOP) Instrumentation .............. TRM 3.3-35 TR 3.3.9 Appendix R Alternative Shutdown Instrumentation .. TRM 3.3-37 TR 3.3.10 Chlorine Detection System ........................ TRM 3.3-40 TR 3.3.11 Loose-Part Detection System ...................... TRM 3.3-42 TR 3.3.12 Explosive Gas Monitoring Instrumentation ......... TRM 3.3-43 TR 3.3.13 Meteorological Monitoring Instrumentation ........ TRM 3.3-45 TR 3.3.14 Radiation Monitoring Instrumentation ............. TRM 3.3-47 TR 3.4 REACTOR COOLANT SYSTEM (RCS)
TR 3.4.1 Recirculation Loops Operating .................... TRM 3.4-1 (continued)
TRM VOL I TRM-i REV 106 03/14
FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I Table of Contents (Cont'd)
Section and Title Page TR B3. 3 INSTRUMENTATION TR B3.3.1.1 Reactor Protection System (RPS) Instrumentation TRM B3.3.1-1 TR B3.3.1.2 Reactor Protection System (RPS) Shorting Links TRM B3.3.1-2 TR B3.3.2.1 Control Rod Block Instrumentation ............... TRM B3.3.2-1 TR .B3.3.2.2 Feedwater and Main Turbine High Water Level Trip Instrumentation .................................. TRM B3.3.2-2 TR B3.3.3 Accident Monitoring Instrumentation ............. TRM B3.3.3-1 TR B3.3.4.1 Anticipated Transient Without Scram Recirculation Pump Trip (ATWS-RPT) Instrumentation ............ TRM B3.3.4-1 TR B3.3.4.2 Traversing In-Core Probe (TIP) System ........... TRM B3.3.4-2 TR B3.3.5.1 Emergency Core Cooling System (ECCS)
Instrumentation ..................................... TRM B3.3.5-1 TR B3.3.5.2 Reactor Core Isolation Cooling (RCIC) System Instrumentation ................................ TRM B3. 3. 5-2 TR B3.3.6.1 Primary Containment Isolation Instrumentation ... TRM B3.3.6-1 TR B3.3.6.2 Secondary Containment Isolation Instrumentation . TRM 53.3.6-2 TR 23.3.6.3 Low-Low Set (LLS) Instrumentation ............... TRM B3 .3 .6-3 TR B3.3.6.4 Suppression Pool Water Temperature Instrumentation ................................. TRM B3.3.6-4 TR B3.3.6.5 TWMS Narrow Range Suppression Pool Water Level Instrumentation ................................. TRM B3.3.6-5 TR B3.3.7.1 Control Room Emergency Filtration (CREF) System Instrumentation .................................. TRM B3.3.7-1 TR 33.3.7.2 Seismic Monitoring Instrumentation .............. TRM B3.3.7-2 TR B33.3.7.3 Feedwater Flow Instrumentation.................. TRM B3.3.7-3 TR B3.3.8.1 Loss of Power (LOP) Instrumentation ............. TRM B3.3.8-1 TR B3.3. 9 Appendix R Alternative Shutdown Instrumentation . TRM B3.3.9-1 TR B3.3.10 Chlorine Detection System ....................... TRM B3.3.10-1 TR B3.3.11 Loose-Part Detection System ..................... TRM B3.3. 11-1 TR 33.3.12 Explosive Gas Monitoring Instrumentation ........ TRM B3.3.12-1 TR B3.3.13 Meteorological Monitoring Instrumentation ....... TRM B3.3.13-1 TR B3.3.14 Radiation Monitoring Instrumentation ............ TRM B3.3.14-1 TR B3. 4 REACTOR COOLANT SYSTEM (RCS)
TR B3. 4. 1 Recirculation Loops Operating ................... TRM B3.4.1-1 TR B3.4.1.1 Recirculation Loops Operating - Regions ......... TRM B3.4.1-2 TR B3.4.2 Safety Relief Valve (SRV) Position Indication ... TRM B3.4.2-1 TR B3.4.3 Reactor Coolant System (RCS) Leakage Detection System .......................................... TRM B3.4.3-1 TR B3.4.4 Reactor Pressure Vessel Water Level - Cold Shutdown ........................................ TRM B3.4.4-1 TR B3.4.5 Chemistry ....................................... TRM B3.4.5-1 TR B3.4. 6 Structural Integrity ............................ TRM B3.4.6-1 TR B3.4.7 Recirculation Pump MG Set Scoop Tube ............ TRM B3.4.7-1 TR B3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) AND REACTOR CORE ISOLATION COOLANT (RCIC) SYSTEM (Blank) ............. TRM B3.5-1 (continued)
TRM VOL I TRM-iv REV 106 03/14
SECTION 3.3 DETAILED INDEX OF SECTION Page TR 3.3.6.5 Narrow Range Suppression Chamber Water Level Instrumentation ................................... TRM 3.3-28 (TRLCO, ACTION, TRSR)
TR3 .3 .7 .1 Control Room Emergency Filtration (CREF)
System Instrumentation ............................... TRM 3.3-30 (Table TR3.3.7.1-l only)
Table TR3.3.7.1-1 Control Room Emergency Filtration System Instrumentation ................................... TRM 3.3-30 (Technical Specification 3.3.7.1 instrumentation trip setpoints)
TR 3.3.7.2 Seismic Monitoring Instrumentation ................ TRM 3.3-31 (TRLCO, ACTION, TRSR)
Table TR3.3.7.2-1 Seismic Monitoring Instrumentation ................ TRM 3.3-34 (TR 3.3.7.2 applicability)
TR 3.3.7.3 Feedwater Flow Instrumentation ..................... TRM 3.3-34a (TRLCO, ACTION, TRSR)
TR 3.3.8.1 Loss of Power (LOP) Instrumentation ............... TRM 3.3-35 (TRLCO and ACTION)
Table TR3.3.8.1l1 Loss of Power Instrumentation ..................... TRM 3.3-36 (Technical Specification 3.3.8.1 and TR 3.3.8.1 instrumentation trip setpoints)
TR 3.3.9 Appendix R Alternative Shutdown Instrumentation ... TRM 3.3-37 (TRLCO, ACTION, TRSR)
Table TR3.3.9-l Appendix R Alternative Shutdown Instrumentation ... TRM 3.3-39 (TR 3.3.9 applicability)
TR 3.3.10 Chlorine Detection System ......................... TRM 3.3-40 (TRLCO, ACTION, TRSR)
TR 3.3.11 Loose-Part Detection System ....................... TRM 3.3-42 (TRLCO, ACTION, TRSR)
TR 3.3.12 Explosive Gas Monitoring Instrumentation .......... TRM 3.3-43 (TRLCO, ACTION, TRSR)
(continued)
TRM Vol. I TRM 3.3-c REV 106 03/14
RPS Instrumentation TR 3.3.1.1 TR 3.3 INSTRUMENTATION TR 3.3.1.1 Reactor Protection System (RPS) Instrumentation The RPS instrumentation trip setpoints and response times are listed in Table TR3.3. 1.1-1.
TABLE TR3.3.1.1-1 (Page 1 of 2)
Reactor Protection System Instrumentation RESPONSE TIME FUNCTION TRIP SETPOINT (seconds)
- a. Neutron Flux - High < 120/125 divisions of full scale NA
- b. Inop NA NA
- 2. Average Power Range Monitors(-)
- a. Neutron Flux-Upscale (Setdown) < 15% RTP NA
- b. Simulated Thermal Power - Upscale NA 1.
2.
Flow Biased (g)
High Flow Clamped
< 0.62 (W-AW) (b) + 60.2%,
with a maximum of < 113.5% of RTP I
- c. Neutron Flux - Upscale < 118% RTP NA
- d. Inop NA NA
- e. 2-out-of-4 Voters NA < 0.05(')
- f. OPRM-Upscale NA
- 1. Confirmation Count 14 and
- 2. Amplitude 1.11
- 3. Growth 1.3
- 4. Amplitude 1.3 (continued)
(a) Neutron detectors, APRM channel, and 2-out-of-4 Trip Voter digital electronics are exempt from response time testing. Response time shall be measured from activation of the 2-out-of-4 Trip Voter output relay.
(b) AW = 0% for two loop operation. AW = 8% for single loop operation.
TRM Vol. I TRM 3.3-1 REV 106 03/14
RPS Instrumentation TR 3.3.1.1 TABLE TR3.3.1.1-1 (Page 2 of 2)
Reactor Protection System Instrumentation RESPONSE TIME FUNCTION TRIP SETPOINT (seconds)
- 3. Reactor Vessel Steam Dome Pressure - High < 1093 psig S 0 . 5 5 (C)
- 4. Reactor Vessel Water Level - Low, Level 3 > 173.4 inches(d) < 1.05(C)
- 5. Main Steam Isolation Valve - Closure < 8 closed < 0.06
- 6. Main Steam Line Radiation - High < 3.0 x full power background"z) NA
- 7. Drywell Pressure - High < 1.68 psig NA
- 8. Scram Discharge Volume Water Level - High
- a. Level Transmitter < 592 ft. 6 inches NA
- b. Float Switch < 594 ft. 8 inches NA
- 9. Turbine Stop Valve-Closure < 5% closed < 0.06
- 10. Turbine Control Valve Fast Closure Initiation of fast closure < 0.08(e)
(c) The sensor and relays/logic response time need not be measured and may be assumed to be the design response time. Prior to return to service of a new transmitter/relay or following refurbishment of a transmitter (e.g., sensor cell or variable damper components/relay), a response time test will be performed to determine an initial sensor/relay specific response time value.
(d) As referenced to instrument zero Top of Active Fuel (TAF).
(e) Measured from de-energization of K37 relay, which inputs the turbine control valve closure signal, to the RPS.
(f) A new "full power background" level is established for hydrogen water chemistry based on 100*
power operation with the established hydrogen injection rate. Actual background radiation levels may be less depending on actual power level or hydrogen injection rate.
Setpoint adjustment is not necessary for variations in power or hydrogen injection rate including interruptions in hydrogen flow.
(g) The method for determining the Nominal Trip Setpoints, as-found tolerances and as-left tolerances for this function are contained in Fermi 2 setpoint calculations. Setpoint calculations for this function are in accordance with the methods described in GEH Licensing Topical Reports NEDC-31336P-A, "General Electric Instrument Setpoint Methodology," September 1996 and NEDE-33633P-A, "GEH Methodology for Implementing TSTF-493 Revision 4," January 2014.
TRM Vol. I TRM 3.3-2 REV 106 03/14
Control Rod Block Instrumentation TR 3.3.2.1 TABLE TR3.3.2.1-l (Page 2 of 3)
Control Rod Block Instrumentation APPLICABLE MODES OR REQUIRED OTHER CHANNELS SPECIFIED PER SURVEILLANCE FUNCTION CONDITIONS FUNCTION REQUIREMENTS ALLOWABLE VALUE
- a. Detector not full 2, 5 (M 6 TRSR 3.3.2.1.2 NA in
- b. Upscale 2, 5 (k) 6 TRSR 3.3.2.1.1 < 110/125 divisions TRSR 3.3.2.1.2 of full scale TRSR 3.3.2.1.5
- c. Inop 2, 5 (k) 6 TRSR 3.3.2.1.2 NA
- d. Downscale[* 2, 5 (k) 6 TRSR 3.3.2.1.1 > 3/125 divisions of TRSR 3.3.2.1.2 full scale TRSR 3.3.2.1.5
- 3. Average Power Range Monitors
- a. Simulated Thermal 1 3 TRSR 3.3.2.1.4 Power - Upscale TRSR 3.3.2.1.8
- 1. Flow Biased < 0.62(W - tW) (9 +
57.4%
- 2. High Flow with a maximum of Clamped 110% RTP
- b. Inop 1, 2 3 TRSR 3.3.2.1.4 NA C. Neutron Flux - 1 3 TRSR 3.3.2.1.4 > 3% RTP Downscale TRSR 3.3.2.1.8
- d. Simulated Thermal 2 3 TRSR 3.3.2.1.4 < 14% RTP Power - Upscale TRSR 3.3.2.1.8 (Setdown)
- e. Flow - Upscale 1 3 TRSR 3.3.2.1.4 < 113% rated flow TRSR 3.3.2.1.8 (continued)
(f) This Function shall be automatically bypassed when the IBM channels are on range 1.
(g) The APRM Simulated Thermal Power - Upscale Flow Biased Rod Block setpoint varies as a function of recirculation loop drive flow (W) . AW is defined as the difference in indicated drive flow (in percent of drive flow which produces rated core flow) between two loop and single loop operation at the same~core flow. AW = 0% for two loop operation. AW = 8% for single loop operation.
(k) with any control rod withdrawn from a core cell containing one or more fuel assemblies.
TRM Vol. I TRM 3.3-8 REV 106 03/14
Control Rod Block Instrumentation TR 3.3.2.1 TABLE TR3.3.2.1-2 (Page 1 of 1)
Control Rod Block Instrumentation FUNCTION TRIP SETPOINT
- 1. Source Range Monitors
- a. Detector not full in NA
- b. Upscale < 1.0 X 105 cps
- c. Inop NA
- d. Downscale > 3 cps (b)
- a. Detector not full in NA
- b. Upscale < 108/125 divisions of full scale
- c. Inop NA
- d. Downscale > 5/125 divisions of full scale
- 3. Average Power Range Monitor
- a. Simulated Thermal Power - Upscale
.) Flow Biased < 0.62(W - AW)(') + 54.5%,
I
- 2) High Flow Clamped with a maximum of 108% RTP
- b. Inop NA
- c. Neutron Flux - Downscale > 5% RTP
- d. Simulated Thermal Power - Upscale < 12% RTP (Setdown)
- e. Flow - Upscale < 110% rated flow
- a. Water Level - High < 589 ft. 11 d inches
- b. Scram Trip Bypass NA (a) The APRM Simulated Thermal Power - Upscale Flow Biased Rod Block setpoint varies as a function of recirculation loop drive flow (W). AW is defined as the difference in indicated drive flow (in percent of drive flow which produces rated core flow) between two loop and single loop operation at the same core flow. AW = 0% for two loop operation. AW - 8% for single loop operation.
(b) May be reduced to > 0.7 cps provided the signal to noise ratio > 20.
TRM Vol. I TRM 3.3-10 REV 106 03/14
Feedwater Flow Instrumentation TR 3.3.7.3 TR 3.3 INSTRUMENTATION TR 3.3.7.3 Feedwater Flow Instrumentation TRLCO 3.3.7.3 The Leading Edge Flow Meter instrumentation system shall be OPERABLE.
APPLICABILITY: MODE 1 with THERMAL POWER > 3430 MWt ACTIONS
--- ----------------------------- NOTE---------------------------------------
TRLCO 3.0.4.b is not applicable for the Leading Edge Flow Meter CONDITION REQUIRED ACTION COMPLETION TIME A. One or more systems A.l Restore required 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> inoperable, instruments to OPERABLE status.
B. REQUIRED ACTION and B.1 Reduce power to Immediately associated COMPLETION- 3430 MWt.
TIME OF CONDITION A not met.
SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY TRSR 3.3.7.3.1 Perform CHANNEL CHECK. 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> I,
TRM Vol. I TRM 3.3-34a. REV 106 03/14
Feedwater Flow Instrumentation TR B3.3.7.3 TR B3.3 INSTRUMENTATION TR B3.3.7.3 Feedwater Flow Instrumentation BASES The highly accurate Leading Edge Flow Meter CheckPlus Instrumentation allowed an increase in Licensed Thermal Power from 3430 MWt to 3486 MWt by reducing instrument uncertainty. When one or both channels of this instrumentation is out of service, operation at 3486 MWt is allowed for up to 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> following discovery of an INOPERABLE channel. If the instrumentation cannot be repaired within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />, then power must be reduced to and maintained no higher than 3430 MWt until the instrumentation is repaired. If a decrease in power to below 3430 MWt occurs during the 72 hour8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> period, then power must be maintained no higher than 3430 MWt until the instrumentation is repaired.
TRM Vol. I TRM B3.3.7-3 REV. 106 03/14
COLR - 17 Revision 0 Page I of 24 FERMI 2 CORE OPERATING LIMITS REPORT CYCLE 17 REVISION 0 Prepared by: 017 JA/LZ//L Rich&l&W. Beck Jr. l6atW Engineer, Reactor Engineering Reviewed by:
Paul RPKiel b at4 Technical Expert, Reactor Engineering Approved by:
Michael A. Lake Date Supervisor, Reactor Engineering
. February 2014
COLR -17 Revision 0 Page 2 of 24 TABLE OF CONTENTS
1.0 INTRODUCTION
AND SUM MARY ............................................................................... 4 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE ....................................... 5 2.1 Definition ................................................................................................................. 5 2.2 Determination of MAPLHGR Limit .................................................................. 5 2.2.1 Calculation of MAPFAC(P) ................................................................... 7 2.2.2 Calculation of MAPFAC(F) .................................................................. 8 3.0 MINIMUM CRITICAL POW ER RATIO .......................................................................... 9 3.1 Definition .......................................................................................................... 9 3.2 Determination of Operating Limit MCPR. .......................................................... 9 3.3 Calculation of M CPR(P) ........................................................................................ 11 3.3.1 Calculation ofKP ................................................................................... 11
- 3.3.2 Calculation of T.................................................................................... 13 3.4 Calculation of MCPR(F) ................................................................................... 14 4.0 LINEAR HEAT GENERATION RATE .......................................................................... 15 4.1 Definition ......................................................................................................... 15 4.2 Determination of LHGR Limit ........................ ..... .... 15 4.2.1 Calculation of LHGRFAC(P) ............................................................... 17 4.2.2 Calculation of LHGRFAC(F) ............................................................... 18 5.0 CONTROL ROD BLOCK INSTRUM ENTATION ......................................................... 19 5.1 Definition ......................................................................................................... 19 6.0 BACKUP STABILITY PROTECTION REGIONS ...................................................... 20 6.1 Definition ......................................................................................................... 20
7.0 REFERENCES
....................................................................................................................... 23
COLR - 17 Revision 0 Page 3 of 24 LIST OF TABLES TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS ........................ 6 TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS ............................. 8 TABLE 3 OLMCPR1 oollos AS A FUNCTION OF EXPOSURE ANDc ............................... 10 TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS .................................... 14 TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES ............ 16 TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS ...................................... i8 TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER .............................................................................................................. 19 TABLE 8 BSP REGION DESCRIPTIONS ............................................................................. 21 LIST OF FIGURES FIGURE 1 BSP REGIONS FOR NOMINAL FEEDWATER TEMPERATURE ............. 21 FIGURE 2 BSP REGIONS FOR REDUCED FEEDWATER TEMPERATURE ............. 22
COLR - 17 Revision 0 Page 4 of 24
1.0 INTRODUCTION
AND SUMMVARY This report provides the cycle specific plant operating limits, which are listed below, for Fermi 2, Cycle 17, as required by Technical .Specification 5.6.5. The analytical methods used to determine these core operating limits are those previously reviewed and approved by the Nuclear Regulatory Commission in GESTAR II (Reference 7).
The cycle specific limits contained within this report are valid for the full range of the licensed operating domain.
OPERATING LIMIT TECHNICAL SPECIFICATION APLHGR 3.2.1 MCPR 3.2.2 LHGR 3.2.3 RBM 3.3.2.1 BSP REGIONS 3.3.1.1 APLHGR AVERAGE PLANAR LINEAR HEAT GENERATION RATE MCPR MINIMhfM CRITICAL POWER RATIO LHGR = LINEAR IEAT GENERATION RATE RBM = ROD BLOCK MONITOR SETPOINTS BSP = BACKUP STABILITY PROTECTION I,
COLR - 17 Revision 0 Page 5 of 24 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE 2.1 Definition' TECH SPEC IDENT OPERATING LIMIT 3.2.1 APLHGR The AVERAGE PLANAR LINEAR BEAT GENERATION RATE (APLHGR) shall be applicable to a specific planar height and is equal to the sum of the LINEAR HEAT GENERATION RATEs (LHGRs) for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the fuel bundle at the height.
2.2 Determination of MAPLHGR Limit The maximum APLHGR (MAPLHGR) limit is a function of reactor power, core flow, fuel type, and average planar exposure. The limit is developed, using NRC approved methodology described in References 7 and 8, to ensure gross cladding failure will not occur following a loss of coolant accident (LOCA). The MAPLHGR limit ensures that the peak clad temperature during a LOCA will not exceed the limits as specified in 10CFR50.46(b)(1) and that the fuel design analysis criteria defined in References 7 and 8 will be met.
The MAPLHGR limit during dual loop operation is calculated by the following equation:
MAPLHGRL,, = MIN (MAPLHGR (P), MAPLHGR (F))
where:
MAPLHGR (P) = MAPFA C (P) x MAPLHGR1?ST MAPLHGR (iF)= MAPFAC (F)x MAPLHGRS.D Within four hours after entering single loop operation, the MAPLHGR limit is calculated by the
- following equation:
MAPLHGR*,I = MIN (MAPLHGR (P), ]vJAPLHGR (F),MAPLHGR (SLO))
where:
M4PLHGR (SLO) = 1.0 x MAPLHGR.S The Single Loop multiplier is 1.0 since the off-rated ARTS limits bound .the single loop MAPLHGR limit (Reference 2)
COLR - 17 Revision 0 Page 6 of 24 MAPLHGRsTD, the standard MAPLHGR limit, is defined at a power of 3486 MWth and flow of 105 Mlbs/hr for each fuel type as a function of average planar exposure and is presented in Table
- 1. (Reference 2) When hand calculations are required, MAPLHGRsT. shall be determined by interpolation from Table 1. MAtIFAC(P), the core power-dependent MAPLHGR -limit
-adjustment factor, shall be calculated by using Section 2.2.1. MAPFAC(F), the core flow-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.2.
TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS GE14 Exposure GE14 MAPLHGR GWD/ST kW/ft 0.0 12.82 19.13 12.82 57.61 8.00 63.50 5.00 Ftuel Types I =GE14-PlOCNAB400-16GZ-100T-150-T6-2787 14 = GEI4-PIOCNAB376-4G6/9G5/2G2-100T-150-T6-4061 7 = GE14-PIOCNAB381-16G5-100T-150-T6-2999 15 = GEI4-PIOCNAB373-7G5/6G4-100T-150-T6-4064 8= GE14-PIOCNAB380-4G6/9G5-100T-150-T6-3150 16= GEI4-PlOCNAB376-15GZ-100T-150-T6-4063 9= GE14-P10CNAB380-7G5/SG4-100T-150-T6-3152 17 = GE14-PIOCNAB379-14GZ-100T-T6-4259 10 = GE14-P1OCNAB378-14GZ-10OT-150-T6-3151 18 = GE14-PIOCNAB381-4G6/1 IG5-IOOT-T6-4260 11 = GE14-P1OCNAB375-13G5-100T-150-T6-3339 19 = GE14-PIOCNAB38 1-4G6/12G5-100T-T6-4261 12 = GE14-PIOCNAB376-15G5-100T-150-T6-3340 20 = GEI4-P1OCNAB379-15GZ-100T-T6-4262 13 = GE14-P1OCNAB375-14G5-100T-150-T6-3338
COLR - 17 Revision 0 Page 7 of 24
. 2.2.1 Calculation of MAPFAC(P)
The core power-dependent MAPLHGR limit adjustment factor, -MAPFAC(P) (Reference 2, 3 &.
11), shall be calculated by one of the f6llowing equations:
For 0 < P < 25:
No thermal limits monitoring is required.
For 25 <*P < 29.5:
With turbine bypass OPERABLTE, For core flow < 50 Mlbs/hr, MAPFAC (P) = 0.604 + 0.0038 (P- 29.5)
For core flow >: 50 Mlbs/hr, MAPFAC (P)= 0.584 + 0.0038 (P-29.5) 0 With turbine bypass INOPERABLE, For core flow < 50 Mlbs/hr, MAPFAC () = 0.488 + 0.0050 (P- 29.5)
For core flow > 50 Mlbs/hr, MAPFAC (F) = 0.436 + 0.0050 (P-29.5)
For 29.5 < P < 100:
MAPFAC (1') 1.0 + 0.005224 (P -100) where: P Core power (fraction of rated power times 100).
Note: This range applies with pressure regulator in service and, for power >85%, it also applies with te pressure regulator out of service
- COLR- 17 Revision 0 Page 9 of 24 MAPFAC(P) for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or Equal
-to 29.5% and Less Than or Equal to 85% and both Turbine Bypass and Moisture Separator Reheater Operable:
For 29.5 < P < 45 MAPFAC (P') = 0.680 + 0.00627 (P - 45)
For 45<P<60 LAPFAC (T)= 0. 758 + 0.0052 (T - 60)
For 60<P<85: "
MAPFAC (2) = 0.831 + 0.00292 (P - 85) where: P = Core power (fraction of rated power times .100).
2.2.2 Calculation of MAPFAC(F)
The core flow-dependent MAPLHGR limit adjustment factor, MAPFAC(F) (Reference 2 & 3),
shall be calculated by the following equation:
WT MAPFAC(F) = MIN(1.0, AFx-WT+BF) where:
WT = Core flow (Mlbs/hr).
AF = Given in Table 2.
BF = Given in Table 2.
TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS Maximum Core Flow*
(IvMlbs/hr) AF BF 110 0.6787 0.4358 As limited by the Recirculation System MG Set mechanical scoop tube stop setting.
COLR - 17 Revision 0 Page 9 of 24
- 3.0 MINIMUM CRITICAL POWER RATIO TECH SPEC IDENT, *OPERATING LIMIT 3.2.2 MCPR 3.1 Definition The MINIMUM CRITICAL POWER RATIO (MCPR) shall be the smallest Critical Power Ratio (CPR) that exists in the core for each type of fuel. The CPR is that power in the assembly that is calculated by application of the appropriate correlation(s) to cause some point in the assembly to experience boiling transition, divided by the actual assembly operating power.
3.2 Determination of Operating Limit MCPR The required Operating Limit MCPR (OLMCPR) (Reference 2) at steady-state rated power and flow operating conditions is derived from the established fuel cladding integrity Safety Limit MCPR and an analysis of abnormal operational transients. To ensure that the Safety Limit MCPR is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which event will cause the largest reduction in CPR.
Three different core average exposure conditions are evaluated. The result is an Operating Limit MCPR which is a function of exposure and t. T is a measure of scram speed, and is defined in Section 3.3.2. Cycle 17 operating limits are based on the Dual Loop SLMCPR of 1.08.
The OLMCPR shall be calculated by the following equation:
OLMCPR = MAX(MCPR(P), MCPR(F))
MCPR(P), the core power-dependent MCPR operating limit, shall be calculated using
- Section 3.3.
- MCPR(F), the core flow-dependent MCPR operating limit, shall be calculated using Section 3.4.
In case of Single Loop Operation, the Safety Limit MCPR (Reference 2) is increased to account for increased uncertainties in core flow measurement and TIP measurement. However, OLMCPR is not increased when operating in single loop due to inherent conservatism.
COLR - 17 Revision 0 Page 10 of 24 In case of operation with one Turbine Pressure Regulator out of service, OLMCPR limits are bounding when reactor power is less than 29.5% or greater than 85%. When reactor power is greater than or equal to 29.5% and less than or equal to 85%, then operation with one Turbine Pressure Regulator out of service is permitted if both Turbine Bypass Valves and the Moisture Separator Reheater are operable. (Reference 2 and 11)
TABLE 3 OLMCPRioonos AS A FUNCTION OF EXPOSURE ANDIT (Reference 2 and 11)
EXPOSURE CONDITION am/DST' OLMCPR1 0 0 1,o BOTH Turbine Bypass Valves AND Moisture Separator Reheater Two Loop Single Loop OPERABLE BOC to 8000 "T=0 1.29 1.29 T==1 1.45 1.45 8000 to EOC "L=0 1.32 1.32 T=l 1.49 1.49 ONE Turbine Pressure Regulator Out of Service AND Reactor Power between 29.5% and 85%
AND BOTH Turbine Bypass Valves and Moisture Separator Reheater Operable BOC to EOC T0 1.32 132
. =1 1.49 1.49 Moisture Separator Reheater INOPERABLE BOC to EOC T= 0 1.38 1.38 T=1 1.55 1.55--
Turbine Bypass Valve INOPERABLE BOC to EOC T= 0 1.38 1.38
-=1 1.55 1.55 BOTH Turbine Bypass Valve AND Moisture Separator Reheater.
INOPERABLE BOC to EOC T"0 1.44 1.44 T=I 1.61 1.61
COLR - 17 Revision 0 Page 11 of 24
. 3.3 Calculation of MCPR(P)
MCPR(P), the core power-dependent MCPR operating limit (Reference 2, 3 & 11), shall be calculated by the following equation:
MCPR(P) = KP x OLMCPRJoo1Ios Kp, the core power-dependent MCPR Operating Limit adjustment factor, shall be calculated by using Section 3.3.1.
OLMCPR1o0 0nos shall be determined by interpolation on "t from Table 3 (Reference 2), and t shall be calculated by using Section 3.3.2.
3.3.1 Calculation of Kr The core power-dependent MCPR operating limit adjustment factor, Kp (Reference 2, 3, & 11),
shall be calculated by using one of the following equations:
For 0<P<25 No thermal limits monitoring is required.
For 25 < P < 29.5 When turbine bypass is OPERABLE,
-(KB' + (0. 032 x (29.5 - P)))
OLMCPRioomos where: K.Byp = 2.18 for core flow < 50 Mlbs/hr
= 2.46 for core flow > 50 Mlbs/hr.
When turbine bypass is INOPERABLE, KP- (KBY, + (0.0 76 x (29.5 - P)))
OLMCPR jooao5 where: KByp = 2.65 for core flow < 50 Mlbs/hr
= 3.38 for core flow > 50 Mlbs/ht-
COLR - 17 Revision 0 Page 12 of 24 For 29.5<P<45 K = 1..28 + (0.0134 x (45-P))
Foi" 45 P<60 .
Kp =. 1.75 + (0.00867 x (60-P))
For 60<P<100:
K, = 1.0 + (0.003 75 x (100-P))
where: P Core power (fraction of rated power times 100).
Note: This range applies with pressure regulator in service and, for power >85%, it also applies with -thepressure regulator out of service Kp for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or Equal to 29.5% and Less Than or Equal to 85% and both Turbine Bypass and Moisture Separator Reheater Operable:.
For 29.5 <P<45 Kp=1.52+(0.01193x(45-P))
For 45<P<60 Kp=1.362+(0.01053x(60-P))
For 60 < P < 85:
K, =1.217 +(0.O058x(85-P))
where: P Core power (fraction of rated power times 100).
COLR - 17 Revision 0 Page .13 of 24 3.3.2 Calculation of T The value of T, which is a measure of the conformance of the actual control rod scram times to the assumed average control rod.scram time in the reload licensing analysis (Reference 4), shall be calculated by using the following equation:
where: TA = 1.096 seconds TB =0.830+0.019x 1.65 N, seconds NtZNv 1=1=
Tave= ___
n = number of surveillance tests performed to date in cycle, N, = number of active control rods measured in the iP' surveillance test, T'i = average scram time to notch 36 of all rods measured in the i'h surveillance test, and N = total number of active rods measured in the initial control rod scram time test for the cycle (Technical Specification Surveillance Requirement 3.1.4.4).
.The value of 'I,shall be calculated and used to determine the applicable OLMCPR1001 05 value from Table 3 within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of the conclusion of each control rod scram time surveillance test required by Technical Specification Surveillance Requirements 3.1.4.1, 3.1.4.2, and 3.1.4.4.
COLR - 17 Revision 0 Page 14 of 24 3.4 Calculation of MCPR(F)
MCPR(F), the core flow-dependent MCPR operating limit (Reference 2 & 3), shall be calculated.
by using-the following equation::.
MCPR(F)= MAX(l.21, (AFX lT+ BF))
100 where:
WT = Core flow (Mlbs/hr).
AF = Given in Table 4.
BF = Given in Table 4.
TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS 0 Maximum Core Flow*
(M bs/hr) AF BF Single or Two Loop 110 -0.601 1.743
COLR - 17 Revision 0 Page 15 of 24 4.0 LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING.LIMIT..
3.2.3 LHGR 4.1 Defiintion The LINEAR HEAT GENERATION RATE (LHGR) shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length. By maintaining the operating LHGR below the applicable LHGR limit, it is assured that all thermal-mechanical design bases and licensing limits for the fuel will be satisfied.
4.2 Determination of LHGR Limit The maximum LHGR limit is a function of reactor power, core flow, fuel and rod type, and fuel rod nodal exposure. The limit is developed, using NRC approved methodology described in References 7 and 8, to ensure the cladding will not exceed its yield stress and that fuel thermal-mechanical design criteria will not be violated during any postulated transient events. The LHGR limit ensures the fuel mechanical design requirements as defined in References 1 & 21 will be met.
The LHQR limit during dual loop operation is calculated by the following equation:
LHGR- = MN (LHGJ? (P), LHGR (F))
where:
LHGR (P) = LHGRFAC (P) x LHGRPLS LHGR (F) = LHGR.FAC (F)x LHGR, LHGRsrD, the standard LHGR limit, is defined at a power of 3486 MWth and flow of 105 Mlbs/hr for each fuel and rod type as a function of fuel rod nodal exposure and is presented in Table 5. Table 5 contains only the most limiting Gadolinia LHGR limit for the maximum allowed Gadolinia concentration of the applicable fuel product line. (References 1 & 21) When hand calculations are required, LHGRsTD shall be determined by interpolation from Table 5.
LHGRFAC(P), the core power-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.1. LHGRFAC(F), the core flow-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.2.
COLR - 17 Revision 0 Page 16 of 24 TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES For GE14 fuel listed below, the most limiting LHGR for Uranium Only fuel rod is found in NEDC-32868P Revision 5 Table D-2 (References 1 & 21).
For GE14 fuel listed below, the most limiting LHGR for Gadolinia Bearing fuel rods is found in NEDC-32868P Revision 5 Table D-4 (References 1 & 21). Utilize the row for 6% Rod/Section wt-% Gd203 Fuel Types I = GE14-P1OCNAB400-16GZ-10OT-150-T6-2787 14= GE14-P10CNAB376-4G6/9G5/2G2-100T-150-T6-4061 7-= GE14-P1OCNAB381-16G5-100T-150-T6-2999 15= GE14-P IOCNAB373-7G5/6G4-100T-1 50-T6-4064 8= GE14-PlOCNAB380-4G6/9G5-100T-150-T6-3150 16 = GE14-P1OCNAB376-15GZ-100T-150-T6-4063 9= GE14-PlOCNAB380-7G5/8G4-100T-150-T6-3152 17 = GE14-P1OCNAB379-14GZ-100T-T6-4259 10 = GE14-P10CNAB378-14GZ-IOOT-150-T6-3151 18 = GE14-P1OCNAB381-4G6/1 1G5-100T-T6-4260 11 = GE14-PIOCNAB375-13G5-100T-150-T6-3339 19 = GE14-P1OCNAB3S1-4G6/12G5-100T-T6-4261 12= GE14-P1OCNAB376-15G5-100T-150-T6-3340 20 = GE14-P1OCNAB379-15GZ-100T-T6-4262 13 = GE14-P1OCNAB375-14G5-IOOT-150-T6-3338
COLR- 17 Revision 0 Page 17 of 24 9 4.2.1 Calculation of LHGRFAC(P)
The core power-dependent LHGR limit adjustment factor, LHGRFAC(P) (Reference 2, 3, & 11),
- shall be calculated by one of the following equations:
For 0<P <25:
No thermal limits monitoring is required.
For 25 < P < 29.5:
With turbine bypass OPERABLE, For core flow < 50 Mlbs/hr, LHGRFAC (P)= 0.604 + 0.0038 (P- 29.5)
For core flow > 50 Mlbs/hr, LHGRFAC (P)=0.584 + 0.0038 (P- 29.5) 0 With turbine bypass INOPERABLE, For core flow < 50 Mflbs/hr, LHGRFAC (P) 0.488 + 0.0050 (P- 29.5)
For core flow > 50 Mlbs/hr, LHGRFAC (P)= 0.436 + 0.0050 (PP-29.5)
For 29.5 < P < 100 LHGRFAC (P)= 1.0 + 0.005224 (P - 100) where: P = Core power (fraction of rated power times 100).
Note: This range applies With pressure regulator in service and, for power >85%, it also applies with the pressure regulator out of service
- COLR - 17 Revision 0 Page 18 of 24 LHGRFAC(P) for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or Equal to 29.5% and Less Than or Equal to 85% and both Turbine Bypass and Moisture Separator Reheater Operable:
For 29.5<P<45 LHGRFAC (2') = 0.680 + 0.0062 7 (P - 45)
For 45<P<60 LHGRFAC (P) = 0. 758 + 0.0052 (P - 60)
For 60<P<85:
LHGRFAC (P) = 0.831 + 0.00292 (P - 85) where: P Core power (fraction of rated power times 100).
4.2.2 Calculation of LHGRFAC(F)
The core flow-dependent LHGR limit adjustment factor, LHGRFAC(F) (Reference 2'& 3), shall be calculated by the following equation:
LHGRFAC(F)=MIN(1.0, AFx - +B,)
100 where:
WT = Core flow (Mlbs/hr).
AF = Given in Table 6.
BF = Given in Table 6.
TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS Maximum Core Flow*
(, Mlbs/hr) AF BF 110 0.6787 0.4358
COLR - 17 Revision 0 Page 19 of 24 5.0 CONTROL ROD BLOCK INSTRUMENTATION 5.1 Definition The nominal trip setpoints and allowable values of the control rod withdrawal block instrumentation are shown in Table 7. These values are consistent with the bases of the APRM Rod Block Technical Specification Improvement Program (ARTS) and the MCPR operating limits. (References 2, 5, 6, & 10).
TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER Setpoint Trip Setpoint Allowable Value LPSP 27.0 28.4 IPSP-. 62.0 63.4
-PSP 82.0 83.4 LTSP 117.0 118.9 ITSP 112.2 114.1 HTSP 107.2 109.1 DTSP 94.0 92.3 Where:
LPSP Low power setpoint; Rod Block Monitor (RBM) System trip automatically bypassed below this level IPSP Intermediate power setpoint H1PSP High power setpoint LTSP Low trip setpoint ITSP Intermediate trip setpoint HTSP' High trip setpoint DTSP Downscale trip setpoint I
COLR- 17 Revision 0 Page 20 of 24 6.0 BACKUP STABILITY PROTECTION REGIONS TECH SPEC REFERENCE OPERATING LIMIT 3.3.1.1 Action Condition J Alternate method to detect and suppress thermal hydraulic instability oscillations TRM REFERENCE OPERATING LIMIT 3.4.1.1 Scram, Exit, and Stability Awareness Regions 6.1 Definition The Backup Stability Protection (BSP) Regions are an integral part of the Tech Spec required alternative method to detect and suppress thermal hydraulic instability oscillations in that they identify areas of the power/flow map where there is an increased probability that the reactor core could experience a thermal hydraulic instability. Regions are identified (refer to Table 8 and Figures 1 and 2) that are either excluded from planined entry (Scram Region), or where specific actions are required to be taken to immediately leave the region (Exit Region). A region is also identified where operation is allowed provided that additional monitoring is performed to verify that the reactor core is not exhibiting signs of core thermal hydraulic instability (Stability Awareness Region). (Reference 2)
The boundaries of these regions are established on a cycle specific basis based upon core decay ratio calculations performed using NRC approved methodology. The Cycle 17 regions are valid to a cycle exposure of 13,044 MWD/ST (Reference 22).
These regions are only applicable when the Oscillation Power Range Monitoring System (OPRM) is inoperable. The Cycle 17 region boundaries defined in Figure 1 are applicable when final feedwater temperature is in the optimum range as illustrated in 20.107.02, Loss of Feedwater Heating Abnormal Operating Instruction. Figure 2 is applicable to operation with Feedwater Heaters Out-Of-Service (FWHOOS) or with Final Feedwater Temperature Reduction (FFWTR) or when-final feedwater temperature is below the optimum range.
COLR - 17 Revision 0 Page 21 of 24 TABLE 8 BSP REGION DESCRIPTIONS Region: Nominal Feedwater Temperature Reduced Feedwater Temperature Scram Region: > 94% Rod tine, < 40% Flow > 89% Rod Line, < 47% Flow Exit Region: > 66% Rod Line;< 41%Flow . > 66% Rod Line, < 41% Flow
> 75% Rod Line, < 48% Flow > 75% Rod Line, < 51% Flow
- > 101% Rod Line, < 50% Flow > 102% Rod Line, < 53% Flow Stability Awareness > 56% Rod Line, < 46% Flow > 56% Rod Line, < 46% Flow Region > 70% Rod Line, < 53% Flow > 70% Rod Line, < 56% Flow I > 87% Rod Line, < 55% Flow > 84% Rod Line, < 60% Flow Table 8 values are conservatively rounded FIGURE 1 - BSP REGIONS FOR NOMINAL FEEDWATER TEMPERATURE so I".
C p-I 0?
0 0?
0?
Percent (%) of Rated Core Flow Nominal feedwater heating exists with all feedwater heaters in service, the moisture separator reheaters in service, and reactor water cleaniup in or out of service. Nominal Feedwater ¢ i temperature is determined with the Loss of Feedwater Heating Abnormal Operating Instruction, 20.107.02. If feedwater temperature is less than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph of Enclosure A of 20.107.02, Loss of Feedwater Heating, then Figure 1 shall be used if the Oscillation Power Range Monitor is out of service.
COLR - 17 Revision 0 Page 22 of 24 FIGURE 2 - BSP REGIONS FOR REDUCED FEEDWATER TEMPERATURE so S70 50 40.
30 20.
Percent (%) of Rated Core Flow Reduced feedwater temperature is analyzed for a 50 degree Fahrenheit reduction in feedwater temperature at 100% power. If feedwater temperature is more than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph of Enclosure A of 20.107.02, Loss of Feedwater Heating, then Figure 2 shall be used if the Oscillation Power Range Monitor is out of service.
Figure 2 is valid until feedwater temperature meets the Minimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph of Enclosure A of 20.107.02, Loss of Feedwater Heating.
II
COLR - 17 Revision 0 Page 23 of 24
7.0 REFERENCES
- Core Operating Limits Report references are cited for two purposes. Many references are used as the basis for information, numbers,'hnd equations found in COLR. These references tend to be fuel type or cycle specific. Other references are listed as basis information for the content and structure of COLR but are not Cycle specific.
- 1. "Fuel Bundle Information Report for Enrico Fermi 2 Reload 16 Cycle 17," Global Nuclear Fuel, 0000-0158-9424-FBIR, Revision 0, November 2013 (LHGR Limits), Edison File No:
R1-8254
- 2. "Supplemental Reload Licensing Report for Enrico Fermi 2 Reload 16 Cycle 17," Global Nuclear Fuel, 0000-0158-9424-SRLR, Revision 0, November 2013 (MAPLHGR Limits, SLO Multiplier, MCPR Limits, SLMCPR, Off-Rated Limits, Backup Stability Regions, OPRM setpoints, RBM setpoint), Edison File No: R1-8253
- 3. "GE14 Fuel Cycle-Independent Analyses for Fermi Unit 2", GE-NE-0000-0025-3282-00 dated November 2004 (ARTS Limits equations, RR Pump Seizure)
- 4. Letter from Greg Porter to B. L. Myers, "Scram Times for Improved Tech Specs." GP-99014, October 22, 1999 containing DRF A12-00038-3, Vol. 4 information from G. A.
Watford, GE, to Distribution,
Subject:
Scram Times versus Notch Position (TAU Calculation)
@ 5. CSCCD-C51 K622/C51 R809C Revision 2, "Programming for Rod Block Monitor (RBM-A)
PIS # C5 1K622 and Operator Display Assembly (ODA) PIS # C5 1R809C" (RBM A Setpoints)
- 6. CSCCD-C51 K623/C51 R809D Revision 2, "Programming for Rod Block Monitor (RBM-B)
PIS # C51K623 and Operator Display Assembly (ODA) PIS # C51R809D" (RBM B
!ii Setpoints)
- 7. "General Electric Standard Application for Reactor Fuel (GESTAR H1)," NEDE-24011-P-A, Revision 18 with amendments
- 8. "The GESTR-LOCA and SAFER Models for the Evaluation of the Loss-of-Coolant Accident - SAFER/GESTR Application Methodology," NEDE 23785-1-PA, Revision 1, October 1984
- 9. "Fermi-2 SAFER/GESTR-LOCA, Loss-of-Coolant Accident Analysis," NEDC-31982P, July
- 2- .: 1991, and Errai and Addenda No. 1, April 1992
- 10. 'Maximum Extended Operating Domain Analysis for Detroit Edison Company Enrico Fermi Energy Center Unit 2," GE Nuclear Energy, NEDC-31843P, July 1990 (P-F Map for BSP figures)
COLR - 17 Revision 0 Page 24 of 24
- 11. Fermi 2 Pressure Regulator Out of Service Evaluation - Verified Final Report, Letter 1-2LHRMS-4 dated. February 10, 2011. DTC:TRVEND, DSN: I-2LHRMS-4 Edison File Number: R1-8100 (PROOS Limits)
- 12. "DTE Energy Enrico Fermi 2 SAFERtGESTR Loss of Coolant Accident Analysis for GEl 4 Fuel" GE-NE-0000-0030-6565. Revision 1 dated June 2008
- 13. Letter from T. G. Colbum to W. S. Orser, "Fermi Amendment No. 87 to Facility Operating License No. NPF-43 (TAC NO. M82102)," $eptember 9, 1992
- 14. LIetter from J. F. Stang to W. S. Orser, "Amendment No. 53 to Facility Operating License No. NPF-43: (TAC No. 69074)," July 27, 1990
- 15. "Power Range Neutron Monitoring System," DC-4608, Vol. XI DCD, Rev. B and DC-4608 Vol. I Rev. D.
- 16. Methodology and Uncertainties for Safety Limit MCPR Evaluations, NEDC-32601P-A, August 1999
- 17. PoN~er Distribution Uncertainties for Safety Limit MCPR Evaluation, NEDC-32694P-A, August 1999
- 18. R-Factor Calculation Method for GEl 1, GE12, and GE13 Fuel, NEDC-32505P-A, Revision 1, July1999
- 19. "Turbine Control Valve Out-Of-Service for Enrico Fermi Unit-2," GE- Nuclear Energy, GE-NE-J1 1-03920-07-01, October 2001
- 20. Letter from David P. Beaulieu (USNRC) to William T. O'Connor, Jr. (Detroit Edison),
"Fermi Issuance of Amendment RE: Changes to the Safety Limit Minimum Critical Power Ratio (TAC NO. MC4748)," dated November 30, 2004 (SLMCPR Limit)
- 21. "GEl 4 Compliance with Amendment 22 ofNEDE-24011-P-A (GESTAR II)", NEDC-32868P, Revision 5, May 2013 (LHGR Limits), Edison File No: R1-7307
. 22. Cycle 17 Stability Information, DTC: TRVEND DSN: Cycle 17 Stability Information, Edison File No: Ri-8258 (Stability Limiting Exposure)
- 23. "Fermi 2 - Issuance of Amendment Re: Measuremnt Uncertainty Recapture Power Uprate (TAC No. M1F0650)" Letter from Thomas Wengert, NRC, to Joseph Plona, DTE Electric dated February 10. 2014.