ML15351A407

From kanterella
Jump to navigation Jump to search
Technical Requirements Manual, Volume I
ML15351A407
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 11/20/2015
From:
Detroit Edison
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML15351A407 (31)


Text

DETROIT EDISON - FERMI 2 AUTOMATED RECORDS MANAGEMENT DISTRIBUTION CONTROL LIST To: 00935 US NRC DOCUMENT CONTROL DESK WASHINGTON, DC 20555 Media: 8 1/2 x 11 Number Cnt Issue DTC Doc. Serial Number Page Rev Copies Lvl Date Status TMTRM TRM VOL I 110 1 JR 11/20/15 AFC Please destroy or mark all revised, superseded, or cancelled documents as such.

"CONTROLLED" stamps must be voided by lining through and initialing.

Detroit Edison EF2, C/O Info Mgmt 140 NOC, 6400 North Dixie Highway, Newport MI 48166.

Call (734) 586-4220 OR (734) 586-4554 for questions or concerns.

LICENSING DOCUMENT TRANSMITTAL FERMI 2 TECHNICAL REQUIREMENTS MANUAL - VOL I Revision 110 dated 11/20/15 Immediately, upon receipt of the item(s) below, please insert and/or remove the pages indicated.

Destroy the removed pages. Be sure that Revision 109 has been inserted prior to inserting these pages.

SECTION REMOVE and DESTROY INSERT In Front of TRM Manual Title Page Rev 109 02/09/2015 Title Page.Rev 110 11/20/2015 List of Effective Pages List of Effective Pages Immediately Title Page following LEP- 1 through LEP-4 Rev 109 02/19/15 LEP-1 through LEP-4 Rev 110 11/20/15 Core Operating Limits Cycle 24 pages17, Revision 0 Cycle 18, Revision 1 Report 24 pages END

Fermi 2 Technical Requirements Manual Volume I DTE Electric ARMS - INFORMATION DTC: TMTRM I File: 1754 l DSN: TRM VOLJ I[ Rev: 110 Date 11/20/2015 Recipient c -

FERMI 2 - TECHNICAL REQUIREMENTS MIANUAL VOL I LIST OF EFFECTIVE PAGES Pag_.ee Revision Page Revision TEN i Revision 106 TEN 3.3-31 Revision 31 TEN ii Revision 107 TEN 3.3-32 Revision 31 TEN iii Revision 105 TEN 3.3-33 Revision 31 TEN iv Revision 106 TEN 3.3-34 Revision 31 Revision 107 TEN* 3.3-34a Revision 106 TEN vi Revision 31 TEN 3.3-35 Revision 60 TEN* 1.0-a Revision 31 TEN 3.3-36 Revision 104 TEN 1.0 Revision 31 TEN 3.3-37 Revision 72 TEN 2.0-1 Revision 31 TEN 3.3-38 Revision 31 TEN 3.0-a Revision 31 TEN 3.3-39 Revision 31 TEN 3.0-1 Revision 63 TEN 3.3-40 Revision 56 TEN 3.0-2 Revision 72 TEN 3.3-41 Revision 56 TEN 3.0-3 Revision 54 TEN 3.3-42 Revision 45 TEN 3.0-4 Revision 72 TEN 3.3-43 Revision 62 TEN 3.1-a Revision 31 TEN 3.3-44 Revision 72 TEN 3.1-1 Revision 31 TEN 3.3-45 Revision 31 TEN 3.2-1 Revision 31 TEN 3.3-46 Revision 31 TEN 3.3-a Revision 31 TEN 3.3-47 Revision 31 TEN 3.3-b Revision 31 TEN 3.3-48 Revision 31 TEN4 3.3-c Revision 106 TEN 3.3-49 Revision 31 TEN4 3.3-d Revision 31 TEN 3.4-a Revision 31 TEN 3.3-1 Revision 106 TEN 3.4-1 Revision 36 TEN 3.3-2 Revision 106 TEN 3.4-la Revision 71 TEN 3.3-3 Revision 31 TEN 3.4-lb Revision 71 TEN4 3.3-4 Revision 31 TEN 3.4-2 Revision 31 TEN 3.3-5 Revision 31 TEN 3.4-3 Revision 31 TEN4 3.3-6 Revision 31 TEN4 3.4-4 Revision 31 TEN 3.3-7 Revision 31 TEN 3.4-5 Revision 31 TEN 3.3-8 Revision 106 TEN 3.4-6 Revision 31 TEN 3.3-9 Revision 31 TEN 3.4-7 Revision 31 TEN4 3.3-10 Revision 106 TEN 3.4-B Revision 31 TEN 3.3-11 Revision 31 TEN 3.4-9 Revision 31 TEN 3.3-12 Revision 67 TEN 3.4-10 Revision 31 TEN 3.3-13 Revision 74 TEN 3.5-1 Revision 31 TEN 3.3-13a Revision 67 TEN 3.6-a Revision 70 TEN 3.3-14 Revision 67 TEN 3.6-1 Revision 60 TEN 3.3-15 Revision 31 TEN 3.6-2 Revision 67 TEN 3.3-16 Revision 31 TEN 3.6-3 Revision 31 TEN 3.3-17 Revision 31 TEN 3.6-4 Revision 109 TEN4 3.3-18 Revision 100 TEN 3.6-5 Revision 87 TEN 3.3-19 Revision 31 TEN 3.6-6 Revision 33 TEN 3.3-20 Revision 31 TEN 3.6-7 Revision 31 TEN 3.3-21 Revision 59 TEN 3.6-8 Revision 31 TEN 3.3-22 Revision 31 TEN 3.6-9 Revision 85 TEN 3.3-23 Revision 31 TEN 3.6-10 Revision 31 TEN 3.3-24 Revision 31 TEN 3.6-11 Revision 31 TEN 3.3-25 Revision 31 TEN 3.6-12 Revision 31 TEN4 3.3-26 Revision 31 TEN* 3.6-13 Revision 71 TEN 3.3-27 Revision 31 TEN 3.6-14 Revision 31 TEN 3.3-28 Revision 76 TEN 3.6-15 Revision 31 TEN4 3.3-29 Revision 76 TEN 3.6-16 Revision 31 TEN 3.3-30 Revision 31 TEN 3.6-17 Revision 31 TEN Vol. I LEP- 1 110 LEP-1REV 11/20/15

FERMI 2 - TECHNICAL REQUIREMENTS MIAZUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TENI 3.6-18 Revision 31 TEN 3.8-12 Revision 31 TEN 3.6-19 Revision 31 TEN 3.8-13 Revision 61 TEN 3.6-20 Revision 31 TEN 3.8-14 Revision 46 TEN 3.6-21 Revision 31 TEN 3.8-15 Revision 31 TEN 3.6-22 Revision 31 TEN 3.8-16 Revision 31 TEN 3.6-23 Revision 31 TEN 3.8-17 Revision 43 TEN 3.6-24 Revision 58 TEN 3.8-18 Revision 33 TEN 3.6-25 Revision 31 TEN 3.9-a Revision 31 TEN 3.6-26 Revision 31 TEN 3.9-1 Revision 31 TEN 3.6-27 Revision 31 TEN 3.9-2 Revision 65 TEN 3.6-28 Revision 31 TEN 3.9-3 Revision 80 TEN 3.6-29 Revision 31 TEN 3.9-4 Revision 88 TEN 3.6-30 Revision 31 TEN 3.9 Revision 31 TEN 3.6-31 Revision 31 TEN 3.1i0-1 Revision 31 TEN 3.6-32 Revision 70 TEN 3.11l-a Revision 31 TEN 3.6-33 Revision 31 TEN 3.11i-1 Revision 31 TEN 3.6-34 Revision 31 TEN 3.12-a Revision 31 TEN 3.6-35 Revision 31 TEN 3.12-1 Revision 75 TEN 3.7-a Revision 107 TEN 3.12-2 Revision 31 TEN 3.7-1 Revision 60 TEN 3.12-3 Revision 31 TEN 3.7-2 Revision 107 TEN 3.12-4 Revision 102 TEN 3.7-3 Revision 70 TEN 3.12-5 Revision 108 TEN 3.7-4 Revision 73 TEN 3.12-6 Revision 53 TEN 3.7-5 Revision 31 TEN 3.12-7 Revision 31 TEN4 3.7-6 Revision 31 TEN4 3.12-8 Revision 57 TEN 3.7-7 Revision 31 TEN 3.12-9 Revision 40 TEN 3.7-8 Revision 31 TEN 3.12-10 Revision 31 TEN 3.7-9 Revision 31 TEN 3.12-11 Revision 49 TEN 3.7-10 Revision 44 TEN 3.12-12 Revision 31 TEN 3.7-11 Revision 31 TEN 3.12-13 Revision 75 TEN 3.7-12 Revision 72 TEN 3.12-14 Revision 31 TEN 3.7-13 Revision 31 *TEN 3.12-15 Revision 31 TEN 3.7-14 Revision 31 TEN 3.12-16 Revision 75 TEN 3.7-15 Revision 98 TEN 3.12-17 Revision 31 TEN 3.7-16 Revision 31 TEN 3.12-18 Revision 75 TEN* 3.7-17 Revision 31 TEN 3.12-19 Revision 31 TEN 3.7-18 Revision 77 TEN4 3.12-20 Revision 75 TEN 3.7-19 Revision 31 TEN 3.12-21 Revision 31 TEN 3.7-20 Revision 79 TEN 3.12-22 Revision 31 TEN 3.8-a Revision 31 TEN 3.12-23 Revision 31 TEN 3.8-1 Revision 31 TEN 3.12-24 Revision 31 TEN 3.8-2 Revision 31 TEN 3.12-25 Revision 31 TEN 3.8-3 Revision 96 TEN 3.12-76 Revision 75 TEN 3.8-4 Revision 96 TEN 3.12-27 Revision 31 TEN 3.8-5 Revision 31 TEN 3.12-28 Revision 31 TEN 3.8-6 Revision 50 TEN4 3.12-29 Revision 78 TEN 3.8-7 Revision 50 TEN4 3.1-2-30 Revision 31 TEN 3.8-8 Revision 50 TEN 4.0-1 Revision 31 TEN 3.8-9 Revision 50 TEN 5.0-a Revision 105 TEN 3.8-10 Revision 50 TEN 5.0-1 Revision 105 TEN 3.8-11 Revision 50 TEN 5.0-2 Revision 105 TEN Vol. I LEP-2 LEP-2REV 110 11/20/15

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TEN 31.0-1 Revision 31 TEN 33.6.2-1 Revision 67 TRN 32.0-1 Revision 31 TEN 33.6.3-1 Revision 87 TRN 33.0-1 Revision 63 TEN4 33.6.4-1 Revision 31 TEN 33.0-2 Revision 63 TEN4 33.6.5-1 Revision 31 TEN 33. 0-2a Revision 72 TEN4 B33.6. 6-1 Revision 70 TRN 33. 0-2b Revision 72 TEN 33.6.7-1 Revision 31 TEN 33. 0-2c Revision 72 TEN B33.6. 8-1 Revision 31 TEN 33.0-3 Revision 31 TEN B33.7. 1-1 Revision 31 TEN 33.0-4 Revision 31 TEN 33.7.2-1 Revision 107 TRM33.0-5 Revision 54 TEN 33.7.3-1 Revision 73 TEN 33.0-6 Revision 72 TEN 33.7.4-1 Revision 31 TEN 33.0-7 Revision 72 TEN 33.7.4-2 Revision 31 TEN Revision 31 TEN 33.7.5-1 Revision 31 TEN B33.2-1 Revision 31 TEN 33.7.6-1 Revision 31 TEN 33.3.1-1 Revision 31 TEN 33.7.7-1 Revision 99 TEN 33.3.1-2 Revision 31 TEN 33.7.8-1 Revision 31 TEN 33.3.2-1 Revision 31 TEN 33.7.9-1 Revision 79 TEN 33.3.2-2 Revision 31 TEN B33.8. 1-1 Revision 31 TEN 33.3.3-1 Revision 67 TEN 33.8.2-1 Revision 31 TEN 33.3.4-1 Revision 31 TEN 33.8.3-1 Revision 96 TEN 33.3.4-2 Revision 84 TEN 33.8.4-1 Revision 31 TEN 33.3.5-1 Revision 31 TEN 33.8.5-1 Revision 31 TENI 33.3.5-2 Revision 31 TEN 33.8.6-1 Revision 43 TEN B33.3. 6-1 Revision 31 TEN 33.9.1-1 Revision 31 TEN* 33.3.6-2 Revision 31 TEN 33.9.2-1 Revision 65 TENlB33.3. 6-3 Revision 31 TEN 33.9.3-1 Revision 31 TEN*B33.3. 6-4 Revision 31 TEN 33.9.4-1 Revision 31 TEN4B33.3. 6-5 Revision 76 TEN 33.10-1 Revision 31 TEN433.3.6-6 Revision 76 TEN 33.11.1-1 Revision 31 TEN433.3.7-1 Revision 31 TEN 33.12.1-1 Revision 31 TEN 33.3.7-2 Revision 31 TEN B3312.2-1 Revision 44 TEN 33.3.7-3 Revision 106 TEN 33.12.3-1 Revision 31 TEN4 33.3.8-1 Revision 31 TEN 33.12.4-1 Revision 31 TEN 33.3.9-1 Revision 31 TEN 33.12.5-1 Revision 31 TEN 33.3.10-1 Revision 56 TEN 33.12.6-1 Revision 31 33.3.11-1 Revision 45 TEN 33.12.7-1 Revision 31 TEN 33.3.12-1 Revision 62 TEN 33.12.8-1 Revision 31 TEN 33.3.13-1 Revision 31 TEN 33.3.14-1 Revision 31 TEN 33.4.1-1 Revision 31 TEN 33.4.1-2 Revision 71 TEN 33.4.1-3 Revision 71 TEN 33.4.1-4 Revision 71 TEN 33.4.1-5 Revision 71 TEN 33.4.2-1 Revision 31 TEN 33.4.3-1 Revision 31 TEN 33.4.4-1 Revision 31 TEN 33.4.5-1 Revision 31 TEN 33.4.6-1 Revision 31 TEN 33.4.7-1 Revision 31 TEN 33.5-1 Revision 31 TEN 33.6.1-1 Revision 31 TRM Vol. I LEP-3 TE ol 110 11/20/15 LP3REV

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES CORE OPERATING LIMITS REPORT COLR 18, Revision 1 Page Revision

  • Notation Page 1 1 -

2 1"-

3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 TRM Vol. I LEP-4 TRM ol.I 110 LP-4REV 11/20/15

COLR - 18 Revision 1 Page 1 of 24 FERMI 2 CORE OPERATING LIMITS REPORT CYCLE 18 REVISION 1 Prepared by:

aul R. Kiel

/623 /5~

ate Principal Technical Expert, Reactor Engineering Reviewed by:

Rich 4Beck Jr.

Sernio*/ngineer, Reactor Engineering Date 1/"/"

Approved by:

Michael A. Lake Date Supervisor, Reactor Engineering October 2015

COLR - 18 Revision 1 Page 2 of 24 TABLE OF CONTENTS

1.0 INTRODUCTION

AM)

SUMMARY

............................................................. 4 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE ................................ 5 2.1 Definition................................................................................. 5 2.2 Determination of MAPLHGR Limit ................................................... 5 2.2.1 Calculation of MAPFAC(P) ................................................... 7 2.2.2 Calculation of MAPFAC(F) ................................................... 8 3.0 MINIMUM CRITICAL POWER RATIO ......................................................... 9 3.1 Definition ............................................................. i.................... 9 3.2 Determination of Operating Limit MCPR ............................................. 9 3.3 Calculation of MCPR(P)............................................................... 11 3.3.1 Calculation of Kp .............................................................. 11 3.3.2 Calculation oftc................................................................ 13 3.4 Calculation of MCPR(F)............................................................... 14 4.0 LINEAR HEAT GENERATION RATE ......................................................... 15 4.1 Definition ............................................................................... 15 4.2 Determination of LHGR Limit........................................................ 15 4.2.1 Calculation of LHGRIFAC(P)................................................. 17 4.2.2 Calculation of LHGRFAC(F)................................................. 18 5.0 CONTROL ROD BLOCK INSTRUMENTATION ............................................ 19 5.1 Definition ............................................................................... 19 6.0 BACKUP~STABILITY PROTECTION REGIONS ............................................ 20 6.1 Definition............. ...................................  :.................................. 20

7.0 REFERENCES

.................................................................................... 23

COLR - 18 Revision 1 Page 3 of 24 LIST OF TABLES TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS..................... 6 TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS ......................... 8 TABLE 3 0LMCPR1 oo/1 o5 AS A FUNCTION OF EXPOSURE AM) "t...........................10 TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS.............................. 14 TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES ...................... 16 TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS .............................. 18 TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOTNTS WITH FILTER................................................................................... 19 LIST OF FIGURES FIGURE 1 BSP REGIONS FOR NOMINAL FEED WATER TEMPERATURE .......... 21 FIGURE 2 BSP REGIONS FOR REDUCED FEED WATER TEMPERATURE .......... 22

COLR - 18 Revision I Page 4 of 24

1.0 INTRODUCTION

AND

SUMMARY

This report provides the cycle specific plant operating limits, which are listed below, for Fermi 2, Cycle 18, as required by Technical Specification 5.6.5. The analytical methods used to determine these core operating limits are those previously reviewed and approved by the Nuclear Regulatory Commission in GESTAR II (Reference 7).

The cycle specific limits contained within this report are valid for the full range of the licensed operating domain.

OPERATING LIMIT TECHNICAL SPECIFICATION APLHGR 3.2.1 MCPR 3.2.2 LHGR 3.2.3 RBM 3.3.2.1 BSP REGIONS 3.3.1.1 APLHGR = AVERAGE PLANAR UINBAR HEAT GENERATION RATE MCPR = MINIMUM CRITICAL POWER RATIO LHGR = LINEAR HEAT GENERATION RATE RBM = ROD BLOCK MONITOR BSP BSP

= BACKUP STABILITY PROTECTION

COLR - 18 Revision 1 Page 5 of 24 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE 2.1 Definition

  • The AVERAGE PLANAR LINEAR HEAT GENERATION RATE- (APLHGR) shall be applicable to a specific planar height and is equal to the sum of the LINEAR HEAT GENERATION RATEs (LHGRs) for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the fuel bundle at the height.

2.2 Determination of MAPLHGR Limit The maximum APLHGR (MAPLHGR) limit is a function of reactor power, core flow, fuel type, and average planar exposure. The limit is developed, using NRC approved methodology described in References 7 and 8, to ensure gross cladding failure will not occur following a loss of coolant accident (LOCA). The MAPLHGR limit ensures that the peak clad temperature during a LOCA will not exceed the limits as specified in 10CFR50.46(b)(1) and that the fuel design analysis criteria defined in References 7 and 8 will be met.

The MAPLHGR limit during dual loop operation is calculated by the following equation:

M4PLHGRLII = MIN (MAPLHGR (P), MAPLHGR (F))

where:

MAPLHGR (P) = MAPFAC (P) x MAPLHGRSTF MAIPLHGR (F)= MAPEAC (F)x MAPLHGR*r Within four hours after entering single loop operation, the MAPLHGR limit is calculated by the following equation:

MAPLHGRLI = MIN (MAPLHGR (P), MAPLHGR (F))

where:

MAPLHGR (P) = MAPFAC (P) x MAPLHGRS*

MAPLHGR (F) =MAPFAC (F)x MAPLHGRSI MAPFAC (P) and MAPEAC (F)are limited to 0.80 The Single Loop multiplier limit is 0.80 (Reference 2) based on assuring a Loss of Coolant Accident (LOCA) while in single loop will be bounded by the two loop LOCA (Reference 12).

COLR - 18 Revision 1 Page 6 of 24 MAPLHGRsTD, the standard MAPLHGR limit, is defined at a power of 3486 MWth and flow of 105 Mlbs/hr for each fuel type as a function of average planar exposure and is presented in Table

1. (Reference 2) When hand calculations are required, MAPLHGRsm- shall be determined by interpolation from Table 1. MAPFAC(P), the core power-dependent MAPLHGR limit adjustment factor, shall be calculated by. using Section 2.2.1. MAPFAC(F), the core flow-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.2.

TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS GE 14 Exposure GE 14 MAJPLH-GR GWD/ST kW/ft 0.0 12.82 19.13 12.82 57.61 8.00 63.50 5.00 F fuel Types 2= GE14-P10CNAB38I-4G6/1 1G5-100T-150-T6-4372 14 = GE 14-P 10OCNAB376-4G6/9G5/2G2-100T- 150-T6-406 1 3= GE14-P10CNAB38 1-4G6/9G5-100T-150-T6-4371 15 = GE14-PlO0CNAB373-7G5/6G4-100OT-1 50-T6-4064 4= GE14-P10CNAB38 1-15G5-100OT-150-T6-4373 16 = GE14-P10CNAB376-15GZ-100OT-150-T6-4063 5= GE14-P10CNAB381-6G6/9G5-100T-150-T6-4374 17= GE 14-P 10CNAB379-14GZ-100OT-150-T6-4259 9= GE 14-P10CNAB380-7G5/8G4-100T-150-T6-3 152 18 = GE14-PI1OCNAB38 1-4G6/1 1G5-100T-150-T6-4260 11 =GE14-P10CNAB375-13G5-100T-150-T6-3339 19-- GE14-P10CNAB381-4G6/12G5-100T-150-T6-4261 12 = GE14-P10CNAB376-15G5-100T-150-T6-3340 20= GE14-P 10CNAB379-1 5GZ-100T-150-T6-4262 13 = GE14-P10OCNAB375-14G5-100T-150-T6-3338

COLR - 18 Revision 1 Page 7 of 24 2.2.1 Calculation of MAPFAC(P)

The core power-dependent MAPLHGR limit adjustment factor, M\APFAC(P) (Reference 2, 3, 11

& 15), shall be calculated by one of the following equations: ,*

For 0 <P <25:*

No thermal limits monitoring is required.

For 25 < P<29.5:*

With turbine bypass OPERABLE, For core flow < 50 Mlbs/hr, MAPFAC (P) = 0.604 + 0.0038 (P- 29.5)

For core flow > 50 Mlbs/hr, MAPFAC (P) = 0.584 + 0.0038 (P- 29.5)

With turbine bypass INOPERABLE, For core flow < 50 Mlbs/hr, MAPFAC (P) =0.488 + 0.0050 (P- 29.5)....

For core flow > 50 Mlbs/hr, MAPFAC (T) =0.436 + 0.0050 (P-29.5)

For 29.5 < P<100

  • MAPFAC (P) = 1.0 + 0.005234 (T - 100) where: P = Core power (fraction of rated power times 100).

Note: This range applies with pressure regulator in service and, for power >85%, it also applies with the pressure regulator .out of service

COLR - 18 Revision 1 Page 8 of 24 MAIPFAC(P) for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or Equal to 29.5% and Less Than or Equal to 85% and both Turbine Bypass and Moisture Separator .*

Reheater Operable:

For 29.5<P<45:

MAPFAC (P) = 0.680 + 0.0062 7 (P - 45)

For 45<P<60:

MA4PFAC (P) = 0.758 + 0.0052 (P - 60)

For 60<P<85:

MAPFAC (P) = 0.831 + 0.00292 (P -85) where: P = Core power (fraction of rated power times 100).

2.2.2 Calculation of MAPFAC(F)

The core flow-dependent MAPLHGR limit adjustment factor, MAPFAC(F) (Reference 2 & 3),

shall be calculated by the following equation:

MAPFAC(F)= MIN(C, Ap x -- + BF) 100 where:

WT = Core flow (Mlbs/hr).

AF=Given irn Table 2.

BE = Given in Table 2.

C = 1.0 in Dual Loop and 0.80 in Single Loop.

TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr) AF BE 110 0.6787 0.4358

  • As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 18 Revision 1 Page 9 of 24 3.0 MIIu CRITICAL POWER RATIO TECH SPEC IDENT OPERATING LIMIT 3.2.2 MCPR 3.1 Definition The MINIMUM CRITICAL POWER RATIO (MCPR) shall be the smallest Critical Power Ratio (CPR) that exists in the core for each type of fuel. The CPR is that power in the assembly that is calculated by application of the appropriate correlation(s) to cause some point in the assembly to experience boiling transition, divided by the actual assembly operating power.

3.2 Determination of Operating Limit MCPR The required Operating Limit MCPR (OLMCPR) (Reference 2) at steady-state rated power and flow operating conditions is derived from the established fuel cladding integrity Safety Limit MCPR and an analysis of abnormal operational transients. To ensure that the Safety Limit MCPR is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which event will cause the largest reduction in CPR.

Three different core average exposure conditions are evaluated. The result is an Operating Limit MCPR which is a function of exposure and "t. "t is a measure of scram speed, and is defined in Section 3.3.2. Cycle 18 operating limits are based on the Dual Loop SLMCPR of 1.08.

The OLMCPR shall be calculated by the following equation:

OLMCPR =MAX(MCPR(P), MCPR (F))

MCPR(P), the core power-dependent MCPR operating limit, shall be calculated using Section 3.3.

MCPR(F), the core flow-dependent MCPR operating limit, shall be calculated using Section 3.4.

In case of Single Loop Operation, the Safety Limit MCPR (Reference 2) is increased to account for increased uncertainties in core flow measurement and TIP measurement. However, OLMCPR is not increased when operating in single loop due to inherent conservatism.

COLR - 18 Revision 1 Page 10 of 24 In case of operation with one Turbine Pressure Regulator out of service, OLMCPR limits are bounding when reactor power is less than 29.5% or greater than 85%. When reactor power is greater than or equal to 29.5% and less than or equal to 85%, then operation with one Turbine Pressure Regulator out of service is permitted if both Turbine Bypass Valves and the Moisture Separator Reheater are operable. (Reference 2 and 11)

TABLE 3 0LMCPRloo/lo5 AS A FUNCTION OF EXPOSURE AND T1 (Reference 2 and 11)

EXPOSURE CONDITION (MWD/ST) 0LMCPR10 0 11 0 5 BOTH Turbine Bypass Valves AND Moisture Separator Reheater Two Loop Single Loop OPERABLE BOC to 8000 '1u= 0 1.30 1.30 1.44 1.44 8000 to EOC "7= 0 1.33 1.33

'U:=I 1.50 1.50 ONE Turbine Pressure Regulator Out of Service AND Reactor Power between 29.5% and 85%

AND BOTH Turbine Bypass Valves and Moisture Separator Reheater Operable BOC toBEOC t1 =0 1.33 1.33 T=1 1.50 1.50 Moisture Separator Reheater INOPERABLE BOCtoEOC t=0 1.41 1.41 t= 1 1.58 1.58 Turbine Bypass Valve INOPERABLE BO to EOC '17=0 1.39 1.39 t::r 1 1.56 1.56 BOTH Turbine Bypass Valve AND Moisture Separator Reheater INOPERABLE BOC to EOC t=:0 1.45 1.45

-r= 1 1.62 1.62

COLR - 18 Revision 1 Page 11 of 24 3.3 Calculation of MCPR(P)

MCPR(P), the core power-dependent MCPR operating limit (Reference 2, 3, 11, & 15), shall be calculated by the following equation: ,

MCPR(P) = Kp x OLMCPRJOO/IoS Kv, the core power-dependent MCPR Operating Limit adjustment factor, shall be calculated by using Section 3.3.1.

0LMCPR 100 /105 shall be determined by interpolation on "t from Table 3 (Reference 2), and "t shall be calculated by using Section 3.3.2.

3.3.1 Calculation of Kp The core power-dependent MCPR operating limit adjustment factor, Kv (Reference 2, 3, 11, &

15), shall be calculated by using one of the following equations:

Note: P =Core power (fraction of rated power times 100) for all calculation of Kv For 0<P<25:

No thermal limits monitoring is required.

For 25<P<29.5:

When turbine bypass is OPERABLE, Kp(KBl,+ (0. 03 2 x (29.5 -P)))

0LMCPR lOO/1 OS where: KBYP = 2.18 for core flow < 50 Mlbs/hr

= 2.46 for core flow > 50 Mlbs/hr When turbine bypass is INOPERABLE,

-(Knyp + (0.076 x (29.5 - P)))

OLMCPR 100/los where: KBYP = 2.65 for core flow < 50 Mlbs/hr

= 3.38 for core flow > 50 Mlbs/hr

COLR - 18 Revision 1 Page 12 of 24 For 29.5<P<45*

Kp=1.28 +/- (0.0134 x (45-P))

For 45<P<60*

Kp =1.15 + (0. 00867x (60 -P))

Kp for Moisture Separator Reheater Operable and Turbine Bypass Valves Operable or Inoperable For 60<P<85" Kp= 1.065+/-(0.0034x(85-P))

For 85<P<100" Kp= 1.0+(0.004333x(100- P))

Kp for Moisture Separator Reheater Inoperable and Turbine Bypass Valves Operable or Inoperable For 60<P<85" Kp= 1.076+(0.00296x(85-P))

For 85<P<100:

Kp= 1.0+(0.00507x(100- P))

Kp for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service, Reactor Power greater than 29.5%, and both Turbine Bypass and Moisture Separator Reheater Operable:

For 29.5<P<45*

KP =1.52 +(0.01193X (45 -P))

For 45<P<60*

Kp = .362+ (0.01053 X (60- P))

For 60 <P <85" Krl= .2 1 7 +(0.0058x (85 -P))

For 85<P<100" For Reactor Power > 85%, the Pressure Regulator Out of Service condition is not limiting (Reference 11). Calculate Kp using the applicable equations above based on Moisture Separator Reheater and Turbine Bypass Valve operability.

COLR - 18 Revision 1 Page 13 of 24 3.3.2 Calculation oftq The value of t, which is a measure of the conformance of the actual control rod scram times to the assumed average control rod scram time in the reload licensing analysis (References 4 & 24),

shall be calculated by using the following equation:

T/A T-*B where: TA = 1.096 seconds TB =0.830+0.019x 1.65 /*]*seconds 1=1 Tare- = ____

1=1 n =number of surveillance tests performed to date in cycle, N1t number of active control rods measured in the ith surveillance test, Ti= average scram time to notch 36 of all rods measured in the ith surveillance test, and N1 = total number of active rods measured in the initial control rod scram time test for the cycle (Technical Specification Surveillance Requirement 3.1.4.4).

The value of t* shall be calculated and used to determine the applicable OLMCPR 1001 105 value from Table 3 within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of the conclusion of each control rod*scram time surveillance test required by Technical Specification Surveillance Requirements 3.1.4.1, 3.1.4.2, and 3.1.4.4.

COLR - 18 Revision 1 Page 14 of 24 3.4 Calculation of MCPR(F)

MCPR(F), the core flow-dependent MCPR operating limit (Reference 2 & 3), shall be calculated by using the following equation:

MCPR(F)= MAX(l.21, ( AF XWT -+ BF))

where:

WT= Core flow (Mlbs/hr).

AF= Given in Table 4.

BF= Given in Table 4.

TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr) AF BF Single or Two Loop 110 -0.60 1 1.743

  • As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 18 Revision 1 Page 15 of 24 4.0 LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING LIMIT 3.2.3 LHGR 4.1 Definition The LINEAR HEAT GENERATION RATE (LHGR) shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length. By maintaining the operating LHGR below the applicable LHGR limit, it is assu~red that all thermal-mechanical design bases and licensing limits for the fuel will be satisfied.

4.2 Determination of LHGR Limit The maximum LHGR limit is a function of reactor power, core flow, fuel and rod type, and fuel rod nodal exposure. The limit is developed, using NRC approved methodology described in References 7 and 8, to ensure the cladding will not exceed its yield stress and that fuel thermal-mechanical design criteria will not be violated during any postulated transient events. The LHGR limit ensures the fuel mechanical design requirements as defined in References 1 & 21 will be met.

The LHGR limit during dual loop operation is calculated by the following equation:

- LHGRUMT = MIN (LHGR (P), LHGR (F))

where:

LHGR (P) = LHGRFAC (P) x LHGRtDo LHGR (F)= LHGRFAC (F) x LHGRSTD Within four hours after entering single loop operation, the LHGR limit is calculated by the following equation:

LHGRUMIT-- MIN (LHGR (P), LJHGR (F))

where:

LHGR (P) =LFIGRFAC (P) x LHGRsTD LHGR (F) = LHGRFAC (F) x LHGRSTD LHGRFAC (P) and LHGRFAC (F)are limited to 0.80 The Single Loop multiplier limit is 0.80 (Reference 2) based on assuring a LOCA in single loop will be bounded by the two loop LOCA (Reference 12).

COLR - 18 Revision 1 Page 16 of 24 LHGRsTD, the standard LHGR limit, is defined at a power of 3486 MWth and flow of 105 Mlbs/hr for each fuel and rod type as a function of fuel rod nodal exposure and found in the Table 5 reference. When hand calculations are required, LHGRsm shall be determined by interpolation from the Table 5 reference. LHGRIFAC(P), the core power-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.1. LHGRFAC(F), the core flow-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.2.

N TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES For GE14 fuel listed below, the most limiting LHGR for Uranium Only fuel rod is found in NEDC-32868P Revision 5 Table D-2 (References 1 & 21).

For GE14 fuel listed below, the most limiting LHGR for Gadolinia Bearing fuel rods is found in NEDC-32868P Revision 5 Table D-4 (References 1 & 21). Utilize the row for 6% Rod/Section wt-% Gd 20 3 Fuel Types 2 =GE14-P10OCNAB38 1-4G6/1 1G5-100T-150-T6-4372 14 = GE 14-P 10CNAB376-4G6/9G5/2G2-100T- 150-T6-406 1 3 =GE14-P10CNAB381-4G6/9G5-100OT-150-T6-4371 15 = GE 14-P 10CNAB373-7G516G4-100OT-1 50-T6-4064 4 = GE14-P 10CNAB381-15G5-100T-150-T6-4373 16 = GE14-P 1OCNAB376-15GZ-100T-150-T6-4063 5 = GE14-P1OCNAB381-6G6/9G5-100OT-150-T6-4374 17 = GE 14-P 1OCNAB379-14GZ-100OT- 150-T6-4259 9 = GE14-P 10CNAB3 80-7G5/8G4-100aT-i50-T6-3 152 18 = GE14-P 10CNAB381-4G6/1 1G5-100OT-150-T6-4260 11 =GE14-P10CNAB375-13G5-100T-150-T6-3339 19 = GE14-P 1OCNAB3 81-4G6/12G5-100T-150-T6-4261 12 = GE14-PI10CNAB376-15G5-100T-150-T6-3340 20= GE 14-P 10OCNAB379-15GZ- 100OT-1 50-T6-4262 13 = GE14-P10CNAB375-14G5-100T-150-T6-3338

COLR - 18 Revision 1 Page 17 of 24 4.2.1 Calculation of LHGRFAC(§P)

The core power-dependent LHGR limit adjustment factor, LHGRFAC(P) (Reference 2, 3, 11 ,&

15), shall be calculated by one of the following equations:

For 0 <P <25:*

No thermal limits monitoring is required.

For 25< P <29.5:*

Witlh turbine bypass OPERABLE, For core flow < 50 Mlbs/hr, LHGRFAC (P') = 0. 604 + 0.0038 (P'- 29.5)

For core flow > 50 Mlbs/hr, LHGRFAC (P) = 0.584 + 0.0038 (.P- 29.5)

With turbine bypass INOPERABLE, For core flow < 50 Mlbs/hr, LHGRFAC (P) = 0.488 + 0.0050 (Pl- 29.5)

For core flow > 50 Mlbs/hr, LHGRFAC (P) - 0.436 + 0.0050 (P - 29.5)

For 29.5 < P < 100*

LHGRFAC (P') = 1.0 + 0.005234 (P - 100) where: P = Core power (fraction of rated power times 100).

Note: This range applies with pressure regulator in service and, for power >85%, it also applies with the pressure regulator out of service

COLR - 18 Revision 1 Page 18 of 24 LHGRFAC(P) for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or Equal to 29.5% and Less Than or Equal to 85% and both Turbine Bypass and Moisture Separator Reheater Operable:

For 29.5<P<45*

LHGRFAC (P) = 0.680 + 0.0062 7 (P - 45)

For 45<P<60*

LHGRFAC (P) = 0. 758 + 0. 0052 (P - 60)

For 60 <P <85:

LHGRFAC (P) = 0.831 + 0.00292 (P - 85) where: P --Core power (fraction of rated power times 100).

4.2.2 Calculation of LHGRFAC(F)

The core flow-dependent LHGR limit adjustment factor, LHGRFAC(F) (Reference 2 & 3), shall be calculated by the following equation:

WT LHGRFAC(F): MN(C, Ax +B) where:

WT =Core flow (Mlbs/hr).

AF = Given in Table 6.

BF = Given in Table 6.

C = 1.0 in Dual Loop and 0.80 in Single Loop.

TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS Maximum Core Flow *

(Mlbs/hr) AF BF 110 0.6787 0.4358

  • As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 18 Revision 1 Page 19 of 24 5.0 CONTROL ROD BLOCK INSTRUMENTATION

-N 5.1 Definition The nominal trip setpoints and allowable values of the control rod withdrawal block instrumentation are shown in Table 7. These values are consistent with the bases of the APRM Rod Block Technical Specification Improvement Program (ARTS) and the MCPR operating limits. (References 2, 5, & 10).

TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER Setpoint Trip Setpoint Allowable Value LPSP 27.0 28.4 IPSP 62.0 63.4 HPSP 82.0 83.4 LTSP 117.0 118.9 ITSP 112.2 114.1 HTSP 107.2 109.1 DTSP 94.0 92.3 Where:

LPSP Low power setpoint; Rod Block Monitor (RBM) System trip automatically bypassed below this level IPSP Intermediate power setpoint HPSP High power setpoint LTSP Low trip setpoint ITSP lntermediate trip setpoint HTSP High trip setpoint DTSP Downscale trip setpoint

COLR - 18 Revision 1 Page 20 of 24 6.0 BACKUP STABILITY PROTECTION REGIONS TECH SPEC REFERENCE OPERATING LIMIT 3.3.1.1 Action Condition J Alternate method to detect and suppress thermal hydraulic instability oscillations TRM REFERENCE OPERATING LIMIT 3.4.1.1 Scram, Exit, and Stability Awareness Regions-6.1 Definition The Backup Stability Protection (BSP) Regions are an integral part of the Tech Spec required alternative method to detect and suppress thermal hydraulic instability oscillations in that they identify' areas of the power/flow map where there is an increased probability that the reactor core could experience a thermal hydraulic instability. The BSP Regions are required if the Oscillation Power Range Monitors are inoperable. Regions are identified (refer to Figures 1 and 2) that are either excluded from planned entry (Scram Region), or where specific actions are required to be taken to immediately leave the region (Exit Region). A region is also identified where operation is allowed provided that additional monitoring is performed to verify that the reactor core is not exhibiting signs of core thermal hydraulic instability (Stability Awareness Region). (Reference 2)

The boundaries of these regions are established on a cycle specific basis based upon core decay ratio calculations performed using NRC approved methodology. The Cycle 18 regions are valid to a cycle exposure of 11,127 MWD/ST (Reference 22).

The Cycle 18 BSP boundaries defined in Figure 1 are applicable when final feedwater temperature is near the optimum range as illustrated in 20.107.02, Loss of Feedwater Heating Abnormal Operating Instruction. Figure 2 is applicable to operation with Feedwater Heaters Out-Of-Service (FWHOOS) or with Final Feedwater Temperature Reduction (FFWTR) or when final feedwater temperature is below the optimum range.

COLR - 18 Revision 1 Page 21 of 24 Figure 1- BSP Regions for Nominal Feedwater Temperature 80 70 0

a, 40 30i" 20 30 Perc~ent (%)*ol Rated Core Flow Nominal feedwater heating exists with all feedwater heaters in service, the moisture separator reheaters in service, and reactor water cleanup in or out of service. Nominal Feedwater temperature is determined with the Loss of Feedwater Heating Abnormal Operating Procedure, 20.107.02. If feedwater temperature is less than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph of Enclosure A of 20.107.02, Loss of Feedwater Heating, then Figure 1 can be used.

COLR - 18 Revision 1 Page 22 of 24 Figure 2- BSP Regions for Reduced Feedwater Temperature 80 70 30 20 Percent (%)of Retedl Core Roaw Reduced feedwater temperature is analyzed for a 50 degree Fahrenheit reduction in feedwater temperature. If feedwater temperature is more than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph of Enclosure A of 20.107.02, Loss of Feedwater Heating, then Figure 2 can be used.

COLR - 18 Revision 1 Page 23 of 24

7.0 REFERENCES

Core Operating Limits Report references are cited for two purposes. Many references are used as the basis for information, numbers, and equations found in COLR. These references tend to""

be fuel type or cycle specific. Other references are listed as basis information for the content and structure of COLR but are not Cycle specific.

1. "Fuel Bundle Information Report for Enrico Fermi 2 Reload 17 Cycle 18," DRF: 001N4128, Revision 0, July 2015 (LHGR Limits), DTC:TRVEND, DSN: Cycle 18 FBIR
2. "Supplemental Reload Licensing Report for Enrico Fermi 2 Reload 17 Cycle 18," Global Nuclear Fuel, DRF: 001N4127, Revision 0, July 2015 (MAPLHGR Limits, SLO Multiplier, MCPR Limits, SLMCPR, Off-Rated Limits, Backup Stability Regions, OPRM setpoints, RBM setpoint), DTC:TRVEND, DSN: Cycle 18 SRLR
3. "GEl4 Fuel Cycle-Independent Analyses for Fermi Unit 2", GE-NE-0000-0025-3282-00 dated November 2004 (ARTS Limits equations, RR Pump Seizure)
4. Letter from Greg Porter to B. L. Myers, "Scram Times for Improved Tech Specs." GP-990 14, October 22, 1999 containing DRE A12-00038-3, Vol. 4 information from G. A.

Watford, GE, to Distribution,

Subject:

Scram Times versus Notch Position (TAU Calculation), Edison File No. R1 -7242

5. NUMAC Power Range Neutron Monitoring System (PRNM) Surveillance Validation, Design Calculation DC-4608 Volume 1, Revision G (RBM A and B Set-points), DTC:

TDPINC, DSN: DC-4608 VOL I

6. Detroit Edison Fermi-2 Thermal Power Optimization Task T020 1: Operating Power/Flow Map, Edison File No. T13-050, (P-F Map for BSP figures)
7. "General Electric Standard Application for Reactor Fuel (GESTAR II)," NEDE-2401 1-P-A, Revision 21 with amendments
8. "The GESTR-LOCA and SAFER Models for the Evaluation of the Loss-of-Coolant Accident - SAFER/GESTR Application Methodology," NEDE 23785-1-PA, Revision 1, October 1984
9. "Fermi-2 SAFERIGESTR-LOCA, Loss-of-Coolant Accident Analysis," NEDC-31982P, July 1991, and Errata and Addenda No. 1, April 1992
10. "Maximum Extended Operating Domain Analysis for Detroit Edison Company Enrico Fermi Energy Center Unit 2," GE Nuclear Energy, NEDC-31843P, July 1990

COLR - 18 Revision 1 Page 24 of 24

11. Fermi 2 Pressure Regulator Out of Service Evaluation - Verified Final Report, Letter 1-2L1-RMS-4 dated February 10, 2011. DTC:TRVEND, DSN: 1-2LHRMS-4 Edison File Number: R1-8100 (PROOS Limits)
12. "DTE Energy Enrico Fermi 2 SAFERIPRIME-LOCA Loss of Coolant Accident Analysis" DRF: 000N1319-R0 dated March 2015
13. Letter from T. G. Colburn to W. S. Orser, "Fermi Amendment No. 87 to Facility Operating License No. NPF-43 (TAC NO. M82 102)," September 9, 1992
14. Letter from J. F. Stang to W. S. Orser, "Amendment No. 53 to Facility Operating License No. NPF-43: (TAC No. 69074)," July 27, 1990
15. "Fermi 2 TRACG Implementation for Reload Licensing Transient Analysis", Revision 1, 0000-0128-8831l-Ri, June 2014, Edison File No. R1-8 124.
16. Methodology and Uncertainties for Safety Limit MCPR Evaluations, NEDC-32601P-A, August 1999
17. Power Distribution Uncertainties for Safety Limit MCPR Evaluation, NEDC-32694P-A, August 1999 O 18. R-Factor Calculation Method for GEl 1, GEl2, and GEl3 Fuel, NEDC-32505P-A, Revision 1, July 1999
19. "Turbine Control Valve Out-Of-Service for Enrico Fermi Unit-2," GE -Nuclear Energy, GE-NE-J1 1-03920-07-01, October 2001
20. Letter from David P. Beaulieu (USNRC) to William T. O'Connor, Jr. (Detroit Edison),

"Fermi Issuance of Amendment RE: Changes to the Safety Limit Minimum Critical ...

Power Ratio (TAC NO. MC4748)," dated November 30, 2004 (SLMCPR Limit)

21. "GE 14 Compliance with Amendment 22 of NEDE-2401 1-P-A (GESTALR II)", NEDC-32868P, Revision 5, May 2013 (LHGR Limits), Edison File No: R1 -7307
22. Cycle 18 Stability Information, DTC: TRVEND DSN: Cycle 18 Stability, Edison File No:

R1-8355 (Stability Limiting Exposure)

  • 23. "Fermi 2 - Issuance of Amendment Re: Measuremnt Uncertainty Recapture Power Uprate

, (TAC No. MV1F0650)" Letter from Thomas Wengert, NRC, to Joseph Plona, DTE Electric dated February 10, 2014.

24. Qualification of the One-Dimensional Core Transient Model for Boiling Water Reactors -

Volume 1, NEDO-24154-A, August 1986, Edison File No. R1-7389.

0.

DETROIT EDISON - FERMI 2 AUTOMATED RECORDS MANAGEMENT DISTRIBUTION CONTROL LIST To: 00935 US NRC DOCUMENT CONTROL DESK WASHINGTON, DC 20555 Media: 8 1/2 x 11 Number Cnt Issue DTC Doc. Serial Number Page Rev Copies Lvl Date Status TMTRM TRM VOL I 110 1 JR 11/20/15 AFC Please destroy or mark all revised, superseded, or cancelled documents as such.

"CONTROLLED" stamps must be voided by lining through and initialing.

Detroit Edison EF2, C/O Info Mgmt 140 NOC, 6400 North Dixie Highway, Newport MI 48166.

Call (734) 586-4220 OR (734) 586-4554 for questions or concerns.

LICENSING DOCUMENT TRANSMITTAL FERMI 2 TECHNICAL REQUIREMENTS MANUAL - VOL I Revision 110 dated 11/20/15 Immediately, upon receipt of the item(s) below, please insert and/or remove the pages indicated.

Destroy the removed pages. Be sure that Revision 109 has been inserted prior to inserting these pages.

SECTION REMOVE and DESTROY INSERT In Front of TRM Manual Title Page Rev 109 02/09/2015 Title Page.Rev 110 11/20/2015 List of Effective Pages List of Effective Pages Immediately Title Page following LEP- 1 through LEP-4 Rev 109 02/19/15 LEP-1 through LEP-4 Rev 110 11/20/15 Core Operating Limits Cycle 24 pages17, Revision 0 Cycle 18, Revision 1 Report 24 pages END

Fermi 2 Technical Requirements Manual Volume I DTE Electric ARMS - INFORMATION DTC: TMTRM I File: 1754 l DSN: TRM VOLJ I[ Rev: 110 Date 11/20/2015 Recipient c -

FERMI 2 - TECHNICAL REQUIREMENTS MIANUAL VOL I LIST OF EFFECTIVE PAGES Pag_.ee Revision Page Revision TEN i Revision 106 TEN 3.3-31 Revision 31 TEN ii Revision 107 TEN 3.3-32 Revision 31 TEN iii Revision 105 TEN 3.3-33 Revision 31 TEN iv Revision 106 TEN 3.3-34 Revision 31 Revision 107 TEN* 3.3-34a Revision 106 TEN vi Revision 31 TEN 3.3-35 Revision 60 TEN* 1.0-a Revision 31 TEN 3.3-36 Revision 104 TEN 1.0 Revision 31 TEN 3.3-37 Revision 72 TEN 2.0-1 Revision 31 TEN 3.3-38 Revision 31 TEN 3.0-a Revision 31 TEN 3.3-39 Revision 31 TEN 3.0-1 Revision 63 TEN 3.3-40 Revision 56 TEN 3.0-2 Revision 72 TEN 3.3-41 Revision 56 TEN 3.0-3 Revision 54 TEN 3.3-42 Revision 45 TEN 3.0-4 Revision 72 TEN 3.3-43 Revision 62 TEN 3.1-a Revision 31 TEN 3.3-44 Revision 72 TEN 3.1-1 Revision 31 TEN 3.3-45 Revision 31 TEN 3.2-1 Revision 31 TEN 3.3-46 Revision 31 TEN 3.3-a Revision 31 TEN 3.3-47 Revision 31 TEN 3.3-b Revision 31 TEN 3.3-48 Revision 31 TEN4 3.3-c Revision 106 TEN 3.3-49 Revision 31 TEN4 3.3-d Revision 31 TEN 3.4-a Revision 31 TEN 3.3-1 Revision 106 TEN 3.4-1 Revision 36 TEN 3.3-2 Revision 106 TEN 3.4-la Revision 71 TEN 3.3-3 Revision 31 TEN 3.4-lb Revision 71 TEN4 3.3-4 Revision 31 TEN 3.4-2 Revision 31 TEN 3.3-5 Revision 31 TEN 3.4-3 Revision 31 TEN4 3.3-6 Revision 31 TEN4 3.4-4 Revision 31 TEN 3.3-7 Revision 31 TEN 3.4-5 Revision 31 TEN 3.3-8 Revision 106 TEN 3.4-6 Revision 31 TEN 3.3-9 Revision 31 TEN 3.4-7 Revision 31 TEN4 3.3-10 Revision 106 TEN 3.4-B Revision 31 TEN 3.3-11 Revision 31 TEN 3.4-9 Revision 31 TEN 3.3-12 Revision 67 TEN 3.4-10 Revision 31 TEN 3.3-13 Revision 74 TEN 3.5-1 Revision 31 TEN 3.3-13a Revision 67 TEN 3.6-a Revision 70 TEN 3.3-14 Revision 67 TEN 3.6-1 Revision 60 TEN 3.3-15 Revision 31 TEN 3.6-2 Revision 67 TEN 3.3-16 Revision 31 TEN 3.6-3 Revision 31 TEN 3.3-17 Revision 31 TEN 3.6-4 Revision 109 TEN4 3.3-18 Revision 100 TEN 3.6-5 Revision 87 TEN 3.3-19 Revision 31 TEN 3.6-6 Revision 33 TEN 3.3-20 Revision 31 TEN 3.6-7 Revision 31 TEN 3.3-21 Revision 59 TEN 3.6-8 Revision 31 TEN 3.3-22 Revision 31 TEN 3.6-9 Revision 85 TEN 3.3-23 Revision 31 TEN 3.6-10 Revision 31 TEN 3.3-24 Revision 31 TEN 3.6-11 Revision 31 TEN 3.3-25 Revision 31 TEN 3.6-12 Revision 31 TEN4 3.3-26 Revision 31 TEN* 3.6-13 Revision 71 TEN 3.3-27 Revision 31 TEN 3.6-14 Revision 31 TEN 3.3-28 Revision 76 TEN 3.6-15 Revision 31 TEN4 3.3-29 Revision 76 TEN 3.6-16 Revision 31 TEN 3.3-30 Revision 31 TEN 3.6-17 Revision 31 TEN Vol. I LEP- 1 110 LEP-1REV 11/20/15

FERMI 2 - TECHNICAL REQUIREMENTS MIAZUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TENI 3.6-18 Revision 31 TEN 3.8-12 Revision 31 TEN 3.6-19 Revision 31 TEN 3.8-13 Revision 61 TEN 3.6-20 Revision 31 TEN 3.8-14 Revision 46 TEN 3.6-21 Revision 31 TEN 3.8-15 Revision 31 TEN 3.6-22 Revision 31 TEN 3.8-16 Revision 31 TEN 3.6-23 Revision 31 TEN 3.8-17 Revision 43 TEN 3.6-24 Revision 58 TEN 3.8-18 Revision 33 TEN 3.6-25 Revision 31 TEN 3.9-a Revision 31 TEN 3.6-26 Revision 31 TEN 3.9-1 Revision 31 TEN 3.6-27 Revision 31 TEN 3.9-2 Revision 65 TEN 3.6-28 Revision 31 TEN 3.9-3 Revision 80 TEN 3.6-29 Revision 31 TEN 3.9-4 Revision 88 TEN 3.6-30 Revision 31 TEN 3.9 Revision 31 TEN 3.6-31 Revision 31 TEN 3.1i0-1 Revision 31 TEN 3.6-32 Revision 70 TEN 3.11l-a Revision 31 TEN 3.6-33 Revision 31 TEN 3.11i-1 Revision 31 TEN 3.6-34 Revision 31 TEN 3.12-a Revision 31 TEN 3.6-35 Revision 31 TEN 3.12-1 Revision 75 TEN 3.7-a Revision 107 TEN 3.12-2 Revision 31 TEN 3.7-1 Revision 60 TEN 3.12-3 Revision 31 TEN 3.7-2 Revision 107 TEN 3.12-4 Revision 102 TEN 3.7-3 Revision 70 TEN 3.12-5 Revision 108 TEN 3.7-4 Revision 73 TEN 3.12-6 Revision 53 TEN 3.7-5 Revision 31 TEN 3.12-7 Revision 31 TEN4 3.7-6 Revision 31 TEN4 3.12-8 Revision 57 TEN 3.7-7 Revision 31 TEN 3.12-9 Revision 40 TEN 3.7-8 Revision 31 TEN 3.12-10 Revision 31 TEN 3.7-9 Revision 31 TEN 3.12-11 Revision 49 TEN 3.7-10 Revision 44 TEN 3.12-12 Revision 31 TEN 3.7-11 Revision 31 TEN 3.12-13 Revision 75 TEN 3.7-12 Revision 72 TEN 3.12-14 Revision 31 TEN 3.7-13 Revision 31 *TEN 3.12-15 Revision 31 TEN 3.7-14 Revision 31 TEN 3.12-16 Revision 75 TEN 3.7-15 Revision 98 TEN 3.12-17 Revision 31 TEN 3.7-16 Revision 31 TEN 3.12-18 Revision 75 TEN* 3.7-17 Revision 31 TEN 3.12-19 Revision 31 TEN 3.7-18 Revision 77 TEN4 3.12-20 Revision 75 TEN 3.7-19 Revision 31 TEN 3.12-21 Revision 31 TEN 3.7-20 Revision 79 TEN 3.12-22 Revision 31 TEN 3.8-a Revision 31 TEN 3.12-23 Revision 31 TEN 3.8-1 Revision 31 TEN 3.12-24 Revision 31 TEN 3.8-2 Revision 31 TEN 3.12-25 Revision 31 TEN 3.8-3 Revision 96 TEN 3.12-76 Revision 75 TEN 3.8-4 Revision 96 TEN 3.12-27 Revision 31 TEN 3.8-5 Revision 31 TEN 3.12-28 Revision 31 TEN 3.8-6 Revision 50 TEN4 3.12-29 Revision 78 TEN 3.8-7 Revision 50 TEN4 3.1-2-30 Revision 31 TEN 3.8-8 Revision 50 TEN 4.0-1 Revision 31 TEN 3.8-9 Revision 50 TEN 5.0-a Revision 105 TEN 3.8-10 Revision 50 TEN 5.0-1 Revision 105 TEN 3.8-11 Revision 50 TEN 5.0-2 Revision 105 TEN Vol. I LEP-2 LEP-2REV 110 11/20/15

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TEN 31.0-1 Revision 31 TEN 33.6.2-1 Revision 67 TRN 32.0-1 Revision 31 TEN 33.6.3-1 Revision 87 TRN 33.0-1 Revision 63 TEN4 33.6.4-1 Revision 31 TEN 33.0-2 Revision 63 TEN4 33.6.5-1 Revision 31 TEN 33. 0-2a Revision 72 TEN4 B33.6. 6-1 Revision 70 TRN 33. 0-2b Revision 72 TEN 33.6.7-1 Revision 31 TEN 33. 0-2c Revision 72 TEN B33.6. 8-1 Revision 31 TEN 33.0-3 Revision 31 TEN B33.7. 1-1 Revision 31 TEN 33.0-4 Revision 31 TEN 33.7.2-1 Revision 107 TRM33.0-5 Revision 54 TEN 33.7.3-1 Revision 73 TEN 33.0-6 Revision 72 TEN 33.7.4-1 Revision 31 TEN 33.0-7 Revision 72 TEN 33.7.4-2 Revision 31 TEN Revision 31 TEN 33.7.5-1 Revision 31 TEN B33.2-1 Revision 31 TEN 33.7.6-1 Revision 31 TEN 33.3.1-1 Revision 31 TEN 33.7.7-1 Revision 99 TEN 33.3.1-2 Revision 31 TEN 33.7.8-1 Revision 31 TEN 33.3.2-1 Revision 31 TEN 33.7.9-1 Revision 79 TEN 33.3.2-2 Revision 31 TEN B33.8. 1-1 Revision 31 TEN 33.3.3-1 Revision 67 TEN 33.8.2-1 Revision 31 TEN 33.3.4-1 Revision 31 TEN 33.8.3-1 Revision 96 TEN 33.3.4-2 Revision 84 TEN 33.8.4-1 Revision 31 TEN 33.3.5-1 Revision 31 TEN 33.8.5-1 Revision 31 TENI 33.3.5-2 Revision 31 TEN 33.8.6-1 Revision 43 TEN B33.3. 6-1 Revision 31 TEN 33.9.1-1 Revision 31 TEN* 33.3.6-2 Revision 31 TEN 33.9.2-1 Revision 65 TENlB33.3. 6-3 Revision 31 TEN 33.9.3-1 Revision 31 TEN*B33.3. 6-4 Revision 31 TEN 33.9.4-1 Revision 31 TEN4B33.3. 6-5 Revision 76 TEN 33.10-1 Revision 31 TEN433.3.6-6 Revision 76 TEN 33.11.1-1 Revision 31 TEN433.3.7-1 Revision 31 TEN 33.12.1-1 Revision 31 TEN 33.3.7-2 Revision 31 TEN B3312.2-1 Revision 44 TEN 33.3.7-3 Revision 106 TEN 33.12.3-1 Revision 31 TEN4 33.3.8-1 Revision 31 TEN 33.12.4-1 Revision 31 TEN 33.3.9-1 Revision 31 TEN 33.12.5-1 Revision 31 TEN 33.3.10-1 Revision 56 TEN 33.12.6-1 Revision 31 33.3.11-1 Revision 45 TEN 33.12.7-1 Revision 31 TEN 33.3.12-1 Revision 62 TEN 33.12.8-1 Revision 31 TEN 33.3.13-1 Revision 31 TEN 33.3.14-1 Revision 31 TEN 33.4.1-1 Revision 31 TEN 33.4.1-2 Revision 71 TEN 33.4.1-3 Revision 71 TEN 33.4.1-4 Revision 71 TEN 33.4.1-5 Revision 71 TEN 33.4.2-1 Revision 31 TEN 33.4.3-1 Revision 31 TEN 33.4.4-1 Revision 31 TEN 33.4.5-1 Revision 31 TEN 33.4.6-1 Revision 31 TEN 33.4.7-1 Revision 31 TEN 33.5-1 Revision 31 TEN 33.6.1-1 Revision 31 TRM Vol. I LEP-3 TE ol 110 11/20/15 LP3REV

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES CORE OPERATING LIMITS REPORT COLR 18, Revision 1 Page Revision

  • Notation Page 1 1 -

2 1"-

3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 TRM Vol. I LEP-4 TRM ol.I 110 LP-4REV 11/20/15

COLR - 18 Revision 1 Page 1 of 24 FERMI 2 CORE OPERATING LIMITS REPORT CYCLE 18 REVISION 1 Prepared by:

aul R. Kiel

/623 /5~

ate Principal Technical Expert, Reactor Engineering Reviewed by:

Rich 4Beck Jr.

Sernio*/ngineer, Reactor Engineering Date 1/"/"

Approved by:

Michael A. Lake Date Supervisor, Reactor Engineering October 2015

COLR - 18 Revision 1 Page 2 of 24 TABLE OF CONTENTS

1.0 INTRODUCTION

AM)

SUMMARY

............................................................. 4 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE ................................ 5 2.1 Definition................................................................................. 5 2.2 Determination of MAPLHGR Limit ................................................... 5 2.2.1 Calculation of MAPFAC(P) ................................................... 7 2.2.2 Calculation of MAPFAC(F) ................................................... 8 3.0 MINIMUM CRITICAL POWER RATIO ......................................................... 9 3.1 Definition ............................................................. i.................... 9 3.2 Determination of Operating Limit MCPR ............................................. 9 3.3 Calculation of MCPR(P)............................................................... 11 3.3.1 Calculation of Kp .............................................................. 11 3.3.2 Calculation oftc................................................................ 13 3.4 Calculation of MCPR(F)............................................................... 14 4.0 LINEAR HEAT GENERATION RATE ......................................................... 15 4.1 Definition ............................................................................... 15 4.2 Determination of LHGR Limit........................................................ 15 4.2.1 Calculation of LHGRIFAC(P)................................................. 17 4.2.2 Calculation of LHGRFAC(F)................................................. 18 5.0 CONTROL ROD BLOCK INSTRUMENTATION ............................................ 19 5.1 Definition ............................................................................... 19 6.0 BACKUP~STABILITY PROTECTION REGIONS ............................................ 20 6.1 Definition............. ...................................  :.................................. 20

7.0 REFERENCES

.................................................................................... 23

COLR - 18 Revision 1 Page 3 of 24 LIST OF TABLES TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS..................... 6 TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS ......................... 8 TABLE 3 0LMCPR1 oo/1 o5 AS A FUNCTION OF EXPOSURE AM) "t...........................10 TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS.............................. 14 TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES ...................... 16 TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS .............................. 18 TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOTNTS WITH FILTER................................................................................... 19 LIST OF FIGURES FIGURE 1 BSP REGIONS FOR NOMINAL FEED WATER TEMPERATURE .......... 21 FIGURE 2 BSP REGIONS FOR REDUCED FEED WATER TEMPERATURE .......... 22

COLR - 18 Revision I Page 4 of 24

1.0 INTRODUCTION

AND

SUMMARY

This report provides the cycle specific plant operating limits, which are listed below, for Fermi 2, Cycle 18, as required by Technical Specification 5.6.5. The analytical methods used to determine these core operating limits are those previously reviewed and approved by the Nuclear Regulatory Commission in GESTAR II (Reference 7).

The cycle specific limits contained within this report are valid for the full range of the licensed operating domain.

OPERATING LIMIT TECHNICAL SPECIFICATION APLHGR 3.2.1 MCPR 3.2.2 LHGR 3.2.3 RBM 3.3.2.1 BSP REGIONS 3.3.1.1 APLHGR = AVERAGE PLANAR UINBAR HEAT GENERATION RATE MCPR = MINIMUM CRITICAL POWER RATIO LHGR = LINEAR HEAT GENERATION RATE RBM = ROD BLOCK MONITOR BSP BSP

= BACKUP STABILITY PROTECTION

COLR - 18 Revision 1 Page 5 of 24 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE 2.1 Definition

  • The AVERAGE PLANAR LINEAR HEAT GENERATION RATE- (APLHGR) shall be applicable to a specific planar height and is equal to the sum of the LINEAR HEAT GENERATION RATEs (LHGRs) for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the fuel bundle at the height.

2.2 Determination of MAPLHGR Limit The maximum APLHGR (MAPLHGR) limit is a function of reactor power, core flow, fuel type, and average planar exposure. The limit is developed, using NRC approved methodology described in References 7 and 8, to ensure gross cladding failure will not occur following a loss of coolant accident (LOCA). The MAPLHGR limit ensures that the peak clad temperature during a LOCA will not exceed the limits as specified in 10CFR50.46(b)(1) and that the fuel design analysis criteria defined in References 7 and 8 will be met.

The MAPLHGR limit during dual loop operation is calculated by the following equation:

M4PLHGRLII = MIN (MAPLHGR (P), MAPLHGR (F))

where:

MAPLHGR (P) = MAPFAC (P) x MAPLHGRSTF MAIPLHGR (F)= MAPEAC (F)x MAPLHGR*r Within four hours after entering single loop operation, the MAPLHGR limit is calculated by the following equation:

MAPLHGRLI = MIN (MAPLHGR (P), MAPLHGR (F))

where:

MAPLHGR (P) = MAPFAC (P) x MAPLHGRS*

MAPLHGR (F) =MAPFAC (F)x MAPLHGRSI MAPFAC (P) and MAPEAC (F)are limited to 0.80 The Single Loop multiplier limit is 0.80 (Reference 2) based on assuring a Loss of Coolant Accident (LOCA) while in single loop will be bounded by the two loop LOCA (Reference 12).

COLR - 18 Revision 1 Page 6 of 24 MAPLHGRsTD, the standard MAPLHGR limit, is defined at a power of 3486 MWth and flow of 105 Mlbs/hr for each fuel type as a function of average planar exposure and is presented in Table

1. (Reference 2) When hand calculations are required, MAPLHGRsm- shall be determined by interpolation from Table 1. MAPFAC(P), the core power-dependent MAPLHGR limit adjustment factor, shall be calculated by. using Section 2.2.1. MAPFAC(F), the core flow-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.2.

TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS GE 14 Exposure GE 14 MAJPLH-GR GWD/ST kW/ft 0.0 12.82 19.13 12.82 57.61 8.00 63.50 5.00 F fuel Types 2= GE14-P10CNAB38I-4G6/1 1G5-100T-150-T6-4372 14 = GE 14-P 10OCNAB376-4G6/9G5/2G2-100T- 150-T6-406 1 3= GE14-P10CNAB38 1-4G6/9G5-100T-150-T6-4371 15 = GE14-PlO0CNAB373-7G5/6G4-100OT-1 50-T6-4064 4= GE14-P10CNAB38 1-15G5-100OT-150-T6-4373 16 = GE14-P10CNAB376-15GZ-100OT-150-T6-4063 5= GE14-P10CNAB381-6G6/9G5-100T-150-T6-4374 17= GE 14-P 10CNAB379-14GZ-100OT-150-T6-4259 9= GE 14-P10CNAB380-7G5/8G4-100T-150-T6-3 152 18 = GE14-PI1OCNAB38 1-4G6/1 1G5-100T-150-T6-4260 11 =GE14-P10CNAB375-13G5-100T-150-T6-3339 19-- GE14-P10CNAB381-4G6/12G5-100T-150-T6-4261 12 = GE14-P10CNAB376-15G5-100T-150-T6-3340 20= GE14-P 10CNAB379-1 5GZ-100T-150-T6-4262 13 = GE14-P10OCNAB375-14G5-100T-150-T6-3338

COLR - 18 Revision 1 Page 7 of 24 2.2.1 Calculation of MAPFAC(P)

The core power-dependent MAPLHGR limit adjustment factor, M\APFAC(P) (Reference 2, 3, 11

& 15), shall be calculated by one of the following equations: ,*

For 0 <P <25:*

No thermal limits monitoring is required.

For 25 < P<29.5:*

With turbine bypass OPERABLE, For core flow < 50 Mlbs/hr, MAPFAC (P) = 0.604 + 0.0038 (P- 29.5)

For core flow > 50 Mlbs/hr, MAPFAC (P) = 0.584 + 0.0038 (P- 29.5)

With turbine bypass INOPERABLE, For core flow < 50 Mlbs/hr, MAPFAC (P) =0.488 + 0.0050 (P- 29.5)....

For core flow > 50 Mlbs/hr, MAPFAC (T) =0.436 + 0.0050 (P-29.5)

For 29.5 < P<100

  • MAPFAC (P) = 1.0 + 0.005234 (T - 100) where: P = Core power (fraction of rated power times 100).

Note: This range applies with pressure regulator in service and, for power >85%, it also applies with the pressure regulator .out of service

COLR - 18 Revision 1 Page 8 of 24 MAIPFAC(P) for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or Equal to 29.5% and Less Than or Equal to 85% and both Turbine Bypass and Moisture Separator .*

Reheater Operable:

For 29.5<P<45:

MAPFAC (P) = 0.680 + 0.0062 7 (P - 45)

For 45<P<60:

MA4PFAC (P) = 0.758 + 0.0052 (P - 60)

For 60<P<85:

MAPFAC (P) = 0.831 + 0.00292 (P -85) where: P = Core power (fraction of rated power times 100).

2.2.2 Calculation of MAPFAC(F)

The core flow-dependent MAPLHGR limit adjustment factor, MAPFAC(F) (Reference 2 & 3),

shall be calculated by the following equation:

MAPFAC(F)= MIN(C, Ap x -- + BF) 100 where:

WT = Core flow (Mlbs/hr).

AF=Given irn Table 2.

BE = Given in Table 2.

C = 1.0 in Dual Loop and 0.80 in Single Loop.

TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr) AF BE 110 0.6787 0.4358

  • As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 18 Revision 1 Page 9 of 24 3.0 MIIu CRITICAL POWER RATIO TECH SPEC IDENT OPERATING LIMIT 3.2.2 MCPR 3.1 Definition The MINIMUM CRITICAL POWER RATIO (MCPR) shall be the smallest Critical Power Ratio (CPR) that exists in the core for each type of fuel. The CPR is that power in the assembly that is calculated by application of the appropriate correlation(s) to cause some point in the assembly to experience boiling transition, divided by the actual assembly operating power.

3.2 Determination of Operating Limit MCPR The required Operating Limit MCPR (OLMCPR) (Reference 2) at steady-state rated power and flow operating conditions is derived from the established fuel cladding integrity Safety Limit MCPR and an analysis of abnormal operational transients. To ensure that the Safety Limit MCPR is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which event will cause the largest reduction in CPR.

Three different core average exposure conditions are evaluated. The result is an Operating Limit MCPR which is a function of exposure and "t. "t is a measure of scram speed, and is defined in Section 3.3.2. Cycle 18 operating limits are based on the Dual Loop SLMCPR of 1.08.

The OLMCPR shall be calculated by the following equation:

OLMCPR =MAX(MCPR(P), MCPR (F))

MCPR(P), the core power-dependent MCPR operating limit, shall be calculated using Section 3.3.

MCPR(F), the core flow-dependent MCPR operating limit, shall be calculated using Section 3.4.

In case of Single Loop Operation, the Safety Limit MCPR (Reference 2) is increased to account for increased uncertainties in core flow measurement and TIP measurement. However, OLMCPR is not increased when operating in single loop due to inherent conservatism.

COLR - 18 Revision 1 Page 10 of 24 In case of operation with one Turbine Pressure Regulator out of service, OLMCPR limits are bounding when reactor power is less than 29.5% or greater than 85%. When reactor power is greater than or equal to 29.5% and less than or equal to 85%, then operation with one Turbine Pressure Regulator out of service is permitted if both Turbine Bypass Valves and the Moisture Separator Reheater are operable. (Reference 2 and 11)

TABLE 3 0LMCPRloo/lo5 AS A FUNCTION OF EXPOSURE AND T1 (Reference 2 and 11)

EXPOSURE CONDITION (MWD/ST) 0LMCPR10 0 11 0 5 BOTH Turbine Bypass Valves AND Moisture Separator Reheater Two Loop Single Loop OPERABLE BOC to 8000 '1u= 0 1.30 1.30 1.44 1.44 8000 to EOC "7= 0 1.33 1.33

'U:=I 1.50 1.50 ONE Turbine Pressure Regulator Out of Service AND Reactor Power between 29.5% and 85%

AND BOTH Turbine Bypass Valves and Moisture Separator Reheater Operable BOC toBEOC t1 =0 1.33 1.33 T=1 1.50 1.50 Moisture Separator Reheater INOPERABLE BOCtoEOC t=0 1.41 1.41 t= 1 1.58 1.58 Turbine Bypass Valve INOPERABLE BO to EOC '17=0 1.39 1.39 t::r 1 1.56 1.56 BOTH Turbine Bypass Valve AND Moisture Separator Reheater INOPERABLE BOC to EOC t=:0 1.45 1.45

-r= 1 1.62 1.62

COLR - 18 Revision 1 Page 11 of 24 3.3 Calculation of MCPR(P)

MCPR(P), the core power-dependent MCPR operating limit (Reference 2, 3, 11, & 15), shall be calculated by the following equation: ,

MCPR(P) = Kp x OLMCPRJOO/IoS Kv, the core power-dependent MCPR Operating Limit adjustment factor, shall be calculated by using Section 3.3.1.

0LMCPR 100 /105 shall be determined by interpolation on "t from Table 3 (Reference 2), and "t shall be calculated by using Section 3.3.2.

3.3.1 Calculation of Kp The core power-dependent MCPR operating limit adjustment factor, Kv (Reference 2, 3, 11, &

15), shall be calculated by using one of the following equations:

Note: P =Core power (fraction of rated power times 100) for all calculation of Kv For 0<P<25:

No thermal limits monitoring is required.

For 25<P<29.5:

When turbine bypass is OPERABLE, Kp(KBl,+ (0. 03 2 x (29.5 -P)))

0LMCPR lOO/1 OS where: KBYP = 2.18 for core flow < 50 Mlbs/hr

= 2.46 for core flow > 50 Mlbs/hr When turbine bypass is INOPERABLE,

-(Knyp + (0.076 x (29.5 - P)))

OLMCPR 100/los where: KBYP = 2.65 for core flow < 50 Mlbs/hr

= 3.38 for core flow > 50 Mlbs/hr

COLR - 18 Revision 1 Page 12 of 24 For 29.5<P<45*

Kp=1.28 +/- (0.0134 x (45-P))

For 45<P<60*

Kp =1.15 + (0. 00867x (60 -P))

Kp for Moisture Separator Reheater Operable and Turbine Bypass Valves Operable or Inoperable For 60<P<85" Kp= 1.065+/-(0.0034x(85-P))

For 85<P<100" Kp= 1.0+(0.004333x(100- P))

Kp for Moisture Separator Reheater Inoperable and Turbine Bypass Valves Operable or Inoperable For 60<P<85" Kp= 1.076+(0.00296x(85-P))

For 85<P<100:

Kp= 1.0+(0.00507x(100- P))

Kp for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service, Reactor Power greater than 29.5%, and both Turbine Bypass and Moisture Separator Reheater Operable:

For 29.5<P<45*

KP =1.52 +(0.01193X (45 -P))

For 45<P<60*

Kp = .362+ (0.01053 X (60- P))

For 60 <P <85" Krl= .2 1 7 +(0.0058x (85 -P))

For 85<P<100" For Reactor Power > 85%, the Pressure Regulator Out of Service condition is not limiting (Reference 11). Calculate Kp using the applicable equations above based on Moisture Separator Reheater and Turbine Bypass Valve operability.

COLR - 18 Revision 1 Page 13 of 24 3.3.2 Calculation oftq The value of t, which is a measure of the conformance of the actual control rod scram times to the assumed average control rod scram time in the reload licensing analysis (References 4 & 24),

shall be calculated by using the following equation:

T/A T-*B where: TA = 1.096 seconds TB =0.830+0.019x 1.65 /*]*seconds 1=1 Tare- = ____

1=1 n =number of surveillance tests performed to date in cycle, N1t number of active control rods measured in the ith surveillance test, Ti= average scram time to notch 36 of all rods measured in the ith surveillance test, and N1 = total number of active rods measured in the initial control rod scram time test for the cycle (Technical Specification Surveillance Requirement 3.1.4.4).

The value of t* shall be calculated and used to determine the applicable OLMCPR 1001 105 value from Table 3 within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of the conclusion of each control rod*scram time surveillance test required by Technical Specification Surveillance Requirements 3.1.4.1, 3.1.4.2, and 3.1.4.4.

COLR - 18 Revision 1 Page 14 of 24 3.4 Calculation of MCPR(F)

MCPR(F), the core flow-dependent MCPR operating limit (Reference 2 & 3), shall be calculated by using the following equation:

MCPR(F)= MAX(l.21, ( AF XWT -+ BF))

where:

WT= Core flow (Mlbs/hr).

AF= Given in Table 4.

BF= Given in Table 4.

TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr) AF BF Single or Two Loop 110 -0.60 1 1.743

  • As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 18 Revision 1 Page 15 of 24 4.0 LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING LIMIT 3.2.3 LHGR 4.1 Definition The LINEAR HEAT GENERATION RATE (LHGR) shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length. By maintaining the operating LHGR below the applicable LHGR limit, it is assu~red that all thermal-mechanical design bases and licensing limits for the fuel will be satisfied.

4.2 Determination of LHGR Limit The maximum LHGR limit is a function of reactor power, core flow, fuel and rod type, and fuel rod nodal exposure. The limit is developed, using NRC approved methodology described in References 7 and 8, to ensure the cladding will not exceed its yield stress and that fuel thermal-mechanical design criteria will not be violated during any postulated transient events. The LHGR limit ensures the fuel mechanical design requirements as defined in References 1 & 21 will be met.

The LHGR limit during dual loop operation is calculated by the following equation:

- LHGRUMT = MIN (LHGR (P), LHGR (F))

where:

LHGR (P) = LHGRFAC (P) x LHGRtDo LHGR (F)= LHGRFAC (F) x LHGRSTD Within four hours after entering single loop operation, the LHGR limit is calculated by the following equation:

LHGRUMIT-- MIN (LHGR (P), LJHGR (F))

where:

LHGR (P) =LFIGRFAC (P) x LHGRsTD LHGR (F) = LHGRFAC (F) x LHGRSTD LHGRFAC (P) and LHGRFAC (F)are limited to 0.80 The Single Loop multiplier limit is 0.80 (Reference 2) based on assuring a LOCA in single loop will be bounded by the two loop LOCA (Reference 12).

COLR - 18 Revision 1 Page 16 of 24 LHGRsTD, the standard LHGR limit, is defined at a power of 3486 MWth and flow of 105 Mlbs/hr for each fuel and rod type as a function of fuel rod nodal exposure and found in the Table 5 reference. When hand calculations are required, LHGRsm shall be determined by interpolation from the Table 5 reference. LHGRIFAC(P), the core power-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.1. LHGRFAC(F), the core flow-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.2.

N TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES For GE14 fuel listed below, the most limiting LHGR for Uranium Only fuel rod is found in NEDC-32868P Revision 5 Table D-2 (References 1 & 21).

For GE14 fuel listed below, the most limiting LHGR for Gadolinia Bearing fuel rods is found in NEDC-32868P Revision 5 Table D-4 (References 1 & 21). Utilize the row for 6% Rod/Section wt-% Gd 20 3 Fuel Types 2 =GE14-P10OCNAB38 1-4G6/1 1G5-100T-150-T6-4372 14 = GE 14-P 10CNAB376-4G6/9G5/2G2-100T- 150-T6-406 1 3 =GE14-P10CNAB381-4G6/9G5-100OT-150-T6-4371 15 = GE 14-P 10CNAB373-7G516G4-100OT-1 50-T6-4064 4 = GE14-P 10CNAB381-15G5-100T-150-T6-4373 16 = GE14-P 1OCNAB376-15GZ-100T-150-T6-4063 5 = GE14-P1OCNAB381-6G6/9G5-100OT-150-T6-4374 17 = GE 14-P 1OCNAB379-14GZ-100OT- 150-T6-4259 9 = GE14-P 10CNAB3 80-7G5/8G4-100aT-i50-T6-3 152 18 = GE14-P 10CNAB381-4G6/1 1G5-100OT-150-T6-4260 11 =GE14-P10CNAB375-13G5-100T-150-T6-3339 19 = GE14-P 1OCNAB3 81-4G6/12G5-100T-150-T6-4261 12 = GE14-PI10CNAB376-15G5-100T-150-T6-3340 20= GE 14-P 10OCNAB379-15GZ- 100OT-1 50-T6-4262 13 = GE14-P10CNAB375-14G5-100T-150-T6-3338

COLR - 18 Revision 1 Page 17 of 24 4.2.1 Calculation of LHGRFAC(§P)

The core power-dependent LHGR limit adjustment factor, LHGRFAC(P) (Reference 2, 3, 11 ,&

15), shall be calculated by one of the following equations:

For 0 <P <25:*

No thermal limits monitoring is required.

For 25< P <29.5:*

Witlh turbine bypass OPERABLE, For core flow < 50 Mlbs/hr, LHGRFAC (P') = 0. 604 + 0.0038 (P'- 29.5)

For core flow > 50 Mlbs/hr, LHGRFAC (P) = 0.584 + 0.0038 (.P- 29.5)

With turbine bypass INOPERABLE, For core flow < 50 Mlbs/hr, LHGRFAC (P) = 0.488 + 0.0050 (Pl- 29.5)

For core flow > 50 Mlbs/hr, LHGRFAC (P) - 0.436 + 0.0050 (P - 29.5)

For 29.5 < P < 100*

LHGRFAC (P') = 1.0 + 0.005234 (P - 100) where: P = Core power (fraction of rated power times 100).

Note: This range applies with pressure regulator in service and, for power >85%, it also applies with the pressure regulator out of service

COLR - 18 Revision 1 Page 18 of 24 LHGRFAC(P) for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or Equal to 29.5% and Less Than or Equal to 85% and both Turbine Bypass and Moisture Separator Reheater Operable:

For 29.5<P<45*

LHGRFAC (P) = 0.680 + 0.0062 7 (P - 45)

For 45<P<60*

LHGRFAC (P) = 0. 758 + 0. 0052 (P - 60)

For 60 <P <85:

LHGRFAC (P) = 0.831 + 0.00292 (P - 85) where: P --Core power (fraction of rated power times 100).

4.2.2 Calculation of LHGRFAC(F)

The core flow-dependent LHGR limit adjustment factor, LHGRFAC(F) (Reference 2 & 3), shall be calculated by the following equation:

WT LHGRFAC(F): MN(C, Ax +B) where:

WT =Core flow (Mlbs/hr).

AF = Given in Table 6.

BF = Given in Table 6.

C = 1.0 in Dual Loop and 0.80 in Single Loop.

TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS Maximum Core Flow *

(Mlbs/hr) AF BF 110 0.6787 0.4358

  • As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 18 Revision 1 Page 19 of 24 5.0 CONTROL ROD BLOCK INSTRUMENTATION

-N 5.1 Definition The nominal trip setpoints and allowable values of the control rod withdrawal block instrumentation are shown in Table 7. These values are consistent with the bases of the APRM Rod Block Technical Specification Improvement Program (ARTS) and the MCPR operating limits. (References 2, 5, & 10).

TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER Setpoint Trip Setpoint Allowable Value LPSP 27.0 28.4 IPSP 62.0 63.4 HPSP 82.0 83.4 LTSP 117.0 118.9 ITSP 112.2 114.1 HTSP 107.2 109.1 DTSP 94.0 92.3 Where:

LPSP Low power setpoint; Rod Block Monitor (RBM) System trip automatically bypassed below this level IPSP Intermediate power setpoint HPSP High power setpoint LTSP Low trip setpoint ITSP lntermediate trip setpoint HTSP High trip setpoint DTSP Downscale trip setpoint

COLR - 18 Revision 1 Page 20 of 24 6.0 BACKUP STABILITY PROTECTION REGIONS TECH SPEC REFERENCE OPERATING LIMIT 3.3.1.1 Action Condition J Alternate method to detect and suppress thermal hydraulic instability oscillations TRM REFERENCE OPERATING LIMIT 3.4.1.1 Scram, Exit, and Stability Awareness Regions-6.1 Definition The Backup Stability Protection (BSP) Regions are an integral part of the Tech Spec required alternative method to detect and suppress thermal hydraulic instability oscillations in that they identify' areas of the power/flow map where there is an increased probability that the reactor core could experience a thermal hydraulic instability. The BSP Regions are required if the Oscillation Power Range Monitors are inoperable. Regions are identified (refer to Figures 1 and 2) that are either excluded from planned entry (Scram Region), or where specific actions are required to be taken to immediately leave the region (Exit Region). A region is also identified where operation is allowed provided that additional monitoring is performed to verify that the reactor core is not exhibiting signs of core thermal hydraulic instability (Stability Awareness Region). (Reference 2)

The boundaries of these regions are established on a cycle specific basis based upon core decay ratio calculations performed using NRC approved methodology. The Cycle 18 regions are valid to a cycle exposure of 11,127 MWD/ST (Reference 22).

The Cycle 18 BSP boundaries defined in Figure 1 are applicable when final feedwater temperature is near the optimum range as illustrated in 20.107.02, Loss of Feedwater Heating Abnormal Operating Instruction. Figure 2 is applicable to operation with Feedwater Heaters Out-Of-Service (FWHOOS) or with Final Feedwater Temperature Reduction (FFWTR) or when final feedwater temperature is below the optimum range.

COLR - 18 Revision 1 Page 21 of 24 Figure 1- BSP Regions for Nominal Feedwater Temperature 80 70 0

a, 40 30i" 20 30 Perc~ent (%)*ol Rated Core Flow Nominal feedwater heating exists with all feedwater heaters in service, the moisture separator reheaters in service, and reactor water cleanup in or out of service. Nominal Feedwater temperature is determined with the Loss of Feedwater Heating Abnormal Operating Procedure, 20.107.02. If feedwater temperature is less than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph of Enclosure A of 20.107.02, Loss of Feedwater Heating, then Figure 1 can be used.

COLR - 18 Revision 1 Page 22 of 24 Figure 2- BSP Regions for Reduced Feedwater Temperature 80 70 30 20 Percent (%)of Retedl Core Roaw Reduced feedwater temperature is analyzed for a 50 degree Fahrenheit reduction in feedwater temperature. If feedwater temperature is more than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph of Enclosure A of 20.107.02, Loss of Feedwater Heating, then Figure 2 can be used.

COLR - 18 Revision 1 Page 23 of 24

7.0 REFERENCES

Core Operating Limits Report references are cited for two purposes. Many references are used as the basis for information, numbers, and equations found in COLR. These references tend to""

be fuel type or cycle specific. Other references are listed as basis information for the content and structure of COLR but are not Cycle specific.

1. "Fuel Bundle Information Report for Enrico Fermi 2 Reload 17 Cycle 18," DRF: 001N4128, Revision 0, July 2015 (LHGR Limits), DTC:TRVEND, DSN: Cycle 18 FBIR
2. "Supplemental Reload Licensing Report for Enrico Fermi 2 Reload 17 Cycle 18," Global Nuclear Fuel, DRF: 001N4127, Revision 0, July 2015 (MAPLHGR Limits, SLO Multiplier, MCPR Limits, SLMCPR, Off-Rated Limits, Backup Stability Regions, OPRM setpoints, RBM setpoint), DTC:TRVEND, DSN: Cycle 18 SRLR
3. "GEl4 Fuel Cycle-Independent Analyses for Fermi Unit 2", GE-NE-0000-0025-3282-00 dated November 2004 (ARTS Limits equations, RR Pump Seizure)
4. Letter from Greg Porter to B. L. Myers, "Scram Times for Improved Tech Specs." GP-990 14, October 22, 1999 containing DRE A12-00038-3, Vol. 4 information from G. A.

Watford, GE, to Distribution,

Subject:

Scram Times versus Notch Position (TAU Calculation), Edison File No. R1 -7242

5. NUMAC Power Range Neutron Monitoring System (PRNM) Surveillance Validation, Design Calculation DC-4608 Volume 1, Revision G (RBM A and B Set-points), DTC:

TDPINC, DSN: DC-4608 VOL I

6. Detroit Edison Fermi-2 Thermal Power Optimization Task T020 1: Operating Power/Flow Map, Edison File No. T13-050, (P-F Map for BSP figures)
7. "General Electric Standard Application for Reactor Fuel (GESTAR II)," NEDE-2401 1-P-A, Revision 21 with amendments
8. "The GESTR-LOCA and SAFER Models for the Evaluation of the Loss-of-Coolant Accident - SAFER/GESTR Application Methodology," NEDE 23785-1-PA, Revision 1, October 1984
9. "Fermi-2 SAFERIGESTR-LOCA, Loss-of-Coolant Accident Analysis," NEDC-31982P, July 1991, and Errata and Addenda No. 1, April 1992
10. "Maximum Extended Operating Domain Analysis for Detroit Edison Company Enrico Fermi Energy Center Unit 2," GE Nuclear Energy, NEDC-31843P, July 1990

COLR - 18 Revision 1 Page 24 of 24

11. Fermi 2 Pressure Regulator Out of Service Evaluation - Verified Final Report, Letter 1-2L1-RMS-4 dated February 10, 2011. DTC:TRVEND, DSN: 1-2LHRMS-4 Edison File Number: R1-8100 (PROOS Limits)
12. "DTE Energy Enrico Fermi 2 SAFERIPRIME-LOCA Loss of Coolant Accident Analysis" DRF: 000N1319-R0 dated March 2015
13. Letter from T. G. Colburn to W. S. Orser, "Fermi Amendment No. 87 to Facility Operating License No. NPF-43 (TAC NO. M82 102)," September 9, 1992
14. Letter from J. F. Stang to W. S. Orser, "Amendment No. 53 to Facility Operating License No. NPF-43: (TAC No. 69074)," July 27, 1990
15. "Fermi 2 TRACG Implementation for Reload Licensing Transient Analysis", Revision 1, 0000-0128-8831l-Ri, June 2014, Edison File No. R1-8 124.
16. Methodology and Uncertainties for Safety Limit MCPR Evaluations, NEDC-32601P-A, August 1999
17. Power Distribution Uncertainties for Safety Limit MCPR Evaluation, NEDC-32694P-A, August 1999 O 18. R-Factor Calculation Method for GEl 1, GEl2, and GEl3 Fuel, NEDC-32505P-A, Revision 1, July 1999
19. "Turbine Control Valve Out-Of-Service for Enrico Fermi Unit-2," GE -Nuclear Energy, GE-NE-J1 1-03920-07-01, October 2001
20. Letter from David P. Beaulieu (USNRC) to William T. O'Connor, Jr. (Detroit Edison),

"Fermi Issuance of Amendment RE: Changes to the Safety Limit Minimum Critical ...

Power Ratio (TAC NO. MC4748)," dated November 30, 2004 (SLMCPR Limit)

21. "GE 14 Compliance with Amendment 22 of NEDE-2401 1-P-A (GESTALR II)", NEDC-32868P, Revision 5, May 2013 (LHGR Limits), Edison File No: R1 -7307
22. Cycle 18 Stability Information, DTC: TRVEND DSN: Cycle 18 Stability, Edison File No:

R1-8355 (Stability Limiting Exposure)

  • 23. "Fermi 2 - Issuance of Amendment Re: Measuremnt Uncertainty Recapture Power Uprate

, (TAC No. MV1F0650)" Letter from Thomas Wengert, NRC, to Joseph Plona, DTE Electric dated February 10, 2014.

24. Qualification of the One-Dimensional Core Transient Model for Boiling Water Reactors -

Volume 1, NEDO-24154-A, August 1986, Edison File No. R1-7389.

0.