ML103280060

From kanterella
Jump to navigation Jump to search
Technical Requirements Manual - Vol I., Rev. 100 Dated 11/12/10
ML103280060
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 11/15/2010
From:
Detroit Edison
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML103280060 (32)


Text

DETROIT EDISON - FERMI 2 AUTOMATED RECORD MANAGEMENT DISTRIBUTION CONTROL LIST 11/15/10 TO: 00935 US NRC PAGE 1 DOCUMENT CNTRL DESK WASHINGTON, DC 20555 Media: 8 1/2 X 11 Number Cnt Issue DTC Doc. Serial Number Page Rev Copies Lvl Date Sec Status TMTRM TRM VOL I 100 1 IR 11/12/10 AFC Please destroy or mark all revised, superseded, or cancelled documents as such. CONTROLLED stamps must be voided by lining through and initialing.

Detroit Edison EF2, C/O Info Mgmt 140 NOC, 6400 North Dixie Highway, Newport MI 48166. (734) 586-4338 OR (734) 586-4061 for questions or concerns.

Ref: cb1461 40(0

LICENSING DOCUMENT TRANSMITTAL FERMI 2 TECHNICAL REQUIREMENTS MANUAL - VOL I Revision 100 dated 11/12/10 Immediately, upon receipt of the item(s) below, please insert and/or remove the pages indicated.

Destroy the removed pages. Be sure that Revision 99 has been inserted prior to inserting these pages.

SECTION REMOVE and DESTROY INSERT In Front of TRM Manual Title Page Rev 99 09/27/10 Title Page Rev 100 11/12/10 Immediately following List of Effective Pages List of Effective Pages Title Page LEP-1 through LEP-4 Rev 99 09/27/10 LEP-1 through LEP-4 Rev 100 11/12/10 3.3 Instrumentation Page TRM 3.3-18 Rev 52 02/02 Page TRM 3.3-18 Rev 100 11/10 Page TRM 3.3-36 Rev 41 10/00 Page TRM 3.3-36 Rev 100 11/10 Core Operating Limits Report Cycle 14, Rev 1 (22 pages) Cycle 15, Rev 0 (23 pages)

END

Fermi 2 Technical Requirements Manual Volume I Detroit Edison ARMS - INFORMATION DTC: TMTRM File: 1754 I DSN: TRMVOLLI Rev:100 Date 11/12/2010 Recipient CI:F-

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TRM i Revision 76 TRM 3.3-31 Revision 31 TRM ii Revision 73 TRM 3.3-32 Revision 31 TRM iii Revision 93 TRM 3.3-33 Revision 31 TRM iv Revision 76 TRM 3.3-34 Revision 31 TRM v Revision 79 TRM 3.3-35 Revision 60 TRM vi Revision 31 TRM 3.3-36 Revision 100 TRM 1.0-a Revision 31 TRM 3.3-37 Revision 72 TRM 1.0-1 Revision 31 TRM 3.3-38 Revision 31 TRM 2.0-1 Revision 31 TRM 3.3-39 Revision 31 TRM 3.0-a Revision 31 TRM 3.3-40 Revision 56 TRM 3.0-1 Revision 63 TRM 3.3-41 Revision 56 TRM 3.0-2 Revision 72 TRM 3.3-42 Revision 45 TRM 3.0-3 Revision 54 TRM 3.3-43 Revision 62 TRM 3.0-4 Revision 72 TRM 3.3-44 Revision 72 TRM 3.1-a Revision 31 TRM 3.3-45 Revision 31 TRM 3.1-1 Revision 31 TRM 3.3-46 Revision 31 TRM 3.2-1 Revision 31 TRM 3.3-47 Revision 31 TRM 3.3-a Revision 31 TRM 3.3-48 Revision 31 TRM 3.3-b Revision 31 TRM 3.3-49 Revision 31 TRM 3.3-c Revision 31 TRM 3.4-a Revision 31 TRM 3.3-d Revision 31 TRM 3.4-1 Revision 36 TRM 3.3-1 Revision 34 TRM 3.4-la Revision 71 TRM 3.3-2 Revision 59 TRM 3.4-lb Revision 71 TRE 3.3-3 Revision 31 TRM 3.4-2 Revision 31 TRM 3.3-4 Revision 31 TRM 3.4-3 Revision 31 TRM 3.3-5 Revision 31 TRM 3.4-4 Revision 31 TRM 3.3-6 Revision 31 TRM 3.4-5 Revision 31 TRM 3.3-7 Revision 31 TRM 3.4-6 Revision 31 TRM 3.3-8 Revision 31 TRM 3.4-7 Revision 31 TRM 3.3-9 Revision 31 TRM 3.4-8 Revision 31 TRM 3.3-10 Revision 31 TRM 3.4-9 Revision 31 TRM 3.3-11 Revision 31 TRM 3.4-10 Revision 31 TRM 3.3-12 Revision 67 TRM 3.5-1 Revision 31 TRM 3.3-13 Revision 74 TRM 3.6-a Revision 70 TRM 3.3-13a Revision 67 TRM 3.6-1 Revision 60 TRM 3.3-14 Revision 67 TRM 3.6-2 Revision 67 TRM 3.3-15 Revision 31 TRM 3.6-3 Revision 31 TRM 3.3-16 Revision 31 TRM 3.6-4 Revision 55 TRM 3.3-17 Revision 31 TRM 3.6-5 Revision 87 TRM 3.3-18 Revision 100 TRM 3.6-6 Revision 33 TRM 3.3-19 Revision 31 TRM 3.6-7 Revision 31 TRM 3.3-20 Revision 31 TRM 3.6-8 Revision 31 TRM 3.3-21 Revision 59 TRM 3.6-9 Revision 85 TRM 3.3-22 Revision 31 TRM 3.6-10 Revision 31 TRM 3.3-23 Revision 31 TRM 3.6-11 Revision 31 TRM 3.3-24 Revision 31 TRM 3.6-12 Revision 31 TRM 3.3-25 Revision 31 TRM 3.6-13 Revision 71 TRM 3.3-26 Revision 31 TRM 3.6-14 Revision 31 TRM 3.3-27 Revision 31 TRM 3.6-15 Revision 31 TRM 3.3-28 Revision 76 TRM 3.6-16 Revision 31 TRM 3.3-29 Revision 76 TRM 3.6-17 Revision 31 TRM 3.3-30 Revision 31 TRM 3.6-18 Revision 31 TRM Vol. I LEP-I REV 100 11/12/10

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TRM 3.6-19 Revision 31 TRM 3.8-13 Revision 61 TRM 3.6-20 Revision 31 TRM 3.8-14 Revision 46 TRM 3.6-21 Revision 31 TRM 3.8-15 Revision 31 TRM 3.6-22 Revision 31 TRM 3.8-16 Revision 31 TRM 3.6-23 Revision 31 TRM 3.8-17 Revision 43 TRM 3.6-24 Revision 58 TRM 3.8-18 Revision 33 TRM 3.6-25 Revision 31 TRM 3.9-a Revision 31 TRM 3.6-26 Revision 31 TRM 3.9-1 Revision 31 TRM 3.6-27 Revision 31 TRM 3.9-2 Revision 65 TRM 3.6-28 Revision 31 TRM 3.9-3 Revision 80 TRM 3.6-29 Revision 31 TRM 3.9-4 Revision 88 TRM 3.6-30 Revision 31 TRM 3.9-5 Revision 31 TRM 3.6-31 Revision 31 TRM 3.10-1 Revision 31 TRM 3.6-32 Revision 70 TRM 3.11-a Revision 31 TRM 3.6-33 Revision 31 TRM 3.11-1 Revision 31 TRM 3.6-34 Revision 31 TRM 3.12-a Revision 31 TRM 3.6-35 Revision 31 TRM 3.12-1 Revision 75 TRM 3.7-a Revision 73 TRE 3.12-2 Revision 31 TRM 3.7-b Revision 31 TRM 3.12-3 Revision 31 TRM 3.7-1 Revision 60 TRM 3.12-4 Revision 98 TRM 3.7-2 Revision 70 TRM 3.12-5 Revision 53 TRM 3.7-3 Revision 70 TRM 3.12-6 Revision 53 TRM 3.7-4 Revision 73 TRM 3.12-7 Revision 31 TRM 3.7-5 Revision 31 TRM 3.12-8 Revision 57 TRM 3.7-6 Revision 31 TRM 3.12-9 Revision 40 TRM 3.7-7 Revision 31 TRM 3.12-10 Revision 31 TRM 3.7-8 Revision 31 TRM 3.12-11 Revision 49 TRM 3.7-9 Revision 31 TRM 3.12-12 Revision 31 TRM 3.7-10 Revision 44 TRM 3.12-13 Revision 75 TRM 3.7-11 Revision 31 TRM 3.12-14 Revision 31 TRM 3.7-12 Revision 72 TRM 3.12-15 Revision 31 TRM 3.7-13 Revision 31 TRM 3.12-16 Revision 75 TRM 3.7-14 Revision 31 TRM 3.12-17 Revision 31 TRM 3.7-15 Revision 98 TRM 3.12-18 Revision 75 TRM 3.7-16 Revision 31 TRM 3.12-19 Revision 31 TRE 3.7-17 Revision 31 TRM 3.12-20 Revision 75 TRM 3.7-18 Revision 77 TRM 3.12-21 Revision 31 TRM 3.7-19 Revision 31 TRM 3.12-22 Revision 31 TRM 3.7-20 Revision 79 TRM 3.12-23 Revision 31 TRM 3.8-a Revision 31 TRM 3.12-24 Revision 31 TRM 3.8-1 Revision 31 TRM 3.12-25 Revision 31 TRM 3.8-2 Revision 31 TRM 3.12-26 Revision 75 TRM 3.8-3 Revision 96 TRM 3.12-27 Revision 31 TRM 3.8-4 Revision 96 TRM 3.12-28 Revision 31 TRM 3.8-5 Revision 31 TRM 3.12-29 Revision 78 TRM 3.8-6 Revision 50 TRM 3.12-30 Revision 31 TRM 3.8-7 Revision 50 TRM 4.0-1 Revision 31 TRM 3.8-8 Revision 50 TRM 5.0-a Revision 93 TRM 3.8-9 Revision 50 TRM 5.0-1 Revision 31 TRM 3.8-10 Revision 50 TRM 5.0-2 Revision 31 TRM 3.8-11 Revision 50 TRM 5.0-3 Revision 31 TRM 3.8-12 Revision 31 TRM 5.0-4 Revision 31 TRM Vol. I LEP-2 REV 100 11/12/10

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TRM 5.0-5 Revision 31 TRM B3.4.6-1 Revision 31 TRM 5.0-6 Revision 31 TRM B3.4.7-1 Revision 31 TRM 5.0-7 Revision 31 TRM B3.5-1 Revision 31 TRM 5.0-8 Revision 93 TRM B3.6.1-1 Revision 31 TRM 5.0-9 Revision 31 TRM B3.6.2-1 Revision 67 TRM B1.0-1 Revision 31 TRE B3.6.3-1 Revision 87 TRM B2.0-1 Revision 31 TRM B3.6.4-1 Revision 31 TRM B3.0-1 Revision 63 TRM B3.6.5-1 Revision 31 TRM B3.0-2 Revision 63 TRM B3.6.6-1 Revision 70 TRM B3.0-2a Revision 72 TRM B3.6.7-1 Revision 31 TRM B3.0-2b Revision 72 TRM B3.6.8-1 Revision 31 TRM B3.0-2c Revision 72 TRM B3.7.1-1 Revision 31 TRM B3.0-3 Revision 31 TRM B3.7.2-1 Revision 31 TRM B3.0-4 Revision 31 TRE B3.7.3-1 Revision 73 TRM B3.0-5 Revision 54 TRM B3.7.4-1 Revision 31 TRM B3.0-6 Revision 72 TRM B3.7.4-2 Revision 31 TRM B3.0-7 Revision 72 TRE B3.7.5-1 Revision 31 TRM B3.1-1 Revision 31 TRM B3.7.6-1 Revision 31 TRM B3.2-1 Revision 31 TRM B3.7.7-1 Revision 91 TRE B3.3.1-1 Revision 31 TRM B3.7.8-1 Revision 31 TRM B3.3.1-2 Revision 31 TRM B3.7.9-1 Revision 79 TRM B3.3.2-1 Revision 31 TRM B3.8.1-1 Revision 31 TRM B3.3.2-2 Revision 31 TRM B3.8.2-1 Revision 31 TRM B3.3.3-1 Revision 67 TRM B3.8.3-1 Revision 96 TRM B3.3.4-1 Revision 31 TRM B3.8.4-1 Revision 31 TRE B3.3.4-2 Revision 84 TRM B3.8.5-1 Revision 31 TRM B3.3.5-1 Revision 31 TRM B3.8.6-1 Revision 43 TRM B3.3.5-2 Revision 31 TRM B3.9.1-1 Revision 31 TRM B3.3.6-1 Revision 31 TRM B3.9.2-1 Revision 65 TRM B3.3.6-2 Revision 31 TRM B3.9.3-1 Revision 31 TRM B3.3.6-3 Revision 31 TRM B3.9.4-1 Revision 31 TRM B3.3.6-4 Revision 31 TRM B3.10-1 Revision 31 TRM B3.3.6-5 Revision 76 TRM B3.11.1-1 Revision 31 TRM B3.3.6-6 Revision 76 TRM B3.12.1-1 Revision 31 TRM B3.3.7-1 Revision 31 TRM B3.12.2-1 Revision 44 TRM B3.3.7-2 Revision 31 TRM B3.12.3-1 Revision 31 TRM B3.3.8-1 Revision 31 TRM B3.12.4-1 Revision 31 TRM B3.3.9-1 Revision 31 TRM B3.12.5-1 Revision 31 TRM B3.3.10-1 Revision 56 TRM B3.12.6-1 Revision 31 TRH B3.3.11-1 Revision 45 TRM B3.12.7-1 Revision 31 TRM B3.3.12-1 Revision 62 TRM B3.12.8-1 Revision 31 TRM B3.3.13-1 Revision 31 TRM B3.3.14-1 Revision 31 TRX B3.4.1-1 Revision 31 TRM B3.4.1-2 Revision 71 TRM B3.4.1-3 Revision 71 TRM B3.4.1-4 Revision 71 TRM B3.4.1-5 Revision 71 TRM B3.4.2-1 Revision 31 TRM B3.4.3-1 Revision 31 TRM B3.4.4-1 Revision 31 TRM B3.4.5-1 Revision 31 TRX Vol. I LEP- 3 REV 100 11/12/10

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES CORE OPERATING LIMITS REPORT COLR 15, Revision 0 Page Revision Notation Page 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 TRM Vol. I LEP-4 REV 100 11/12/10

ECCS Instrumentation TR 3.3.5.1 TABLE TR3.3.5.1-l (Page 2 of 3)

Emergency Core Cooling System Instrumentation RESPONSE TINE FUNCTION TRIP SETPOINT (seconds)

3. High Pressure Coolant Injection (HPCI) System
a. Reactor Vessel Water Level - Low Low, Level 2 > 110.8 inches"c6 <60a
b. Drywell Pressure - High < 1.68 psig NA
c. Reactor Vessel Water Level - High, Level 8 < 214 inches(c) NA
d. Condensate Storage Tank Level - Low > 3 inches NA T27 inches above tank bottom)
e. Suppression Pool Water Level - High < 3.5 inches(d) NA
f. Manual Initiation NA NA
4. Automatic Depressurization System Initiation System (ADS) Trip System A
a. Reactor Vessel Water Level - Low Low Low, > 31.8 inchesCc) NA Level 1
b. Drywell Pressure - High < 1.68 psig NA
c. Automatic Depressurization System Initiation < 105 seconds NA Timer
d. Reactor Vessel Water Level - Low, Level 3 > 173.4 inches(c) NA (Confirmatory)
e. Core Spray Pump Discharge Pressure - High > 145 psig, NA increasing
f. Low Pressure Coolant Injection Pump Discharge > 125 psig, NA Pressure - High increasing
g. Drywell Pressure - High Bypass < 420 seconds NA
h. Manual Inhibit NA NA
i. Manual Initiation NA NA (continued)

(a) Instrument response time need not be measured and may be assumed to be the design instrumentation response time. Prior to return to service of a new transmitter or following refurbishment of a transmitter (e.g., sensor cell or variable damping components), a hydraulic response time test will be performed to determine an initial sensor-specific response time value. This value is the maximum analyzed, combined instrument and system hydraulic response time. The system hydraulic response time test criterion is maintained by the Fermi 2 IST program to ensure the integrated system response time remains well within the analyzed limit.

(c) As referenced to instrument zero Top of Active Fuel (TAF).

(d) Suppression Pool Water Level instrument zero is 14 ft 6 inches above bottom of Torus at elevation 557 ft 0 inches.

TRM Vol. I TRM 3.3-18 REV 100 11/10

LOP Instrumentation TR 3.3.8.1 TABLE TR3.3.8.l-l (Page 1 of 1)

LoBss of Power Instrumentation FUNCTION TRIP SETPOINT ALLOWABLE VALUE

1. 4.16 kV Emergency Bus Undervoltage (Loss of Voltage)

Division I

a. Bus Undervoltage 4.16 kV Basis/

3033.0 Volts NA Phase to Phase Relay 120 V Basis/

86.66 Volts

  • 84.92 and < 88.39 Phase to Neutral Relay 120 V Basis/

87.56 Volts > 85.80 and < 89.31

b. Time Delay 2.0 seconds NA Division II
a. Bus Undervoltage 4.16 kV Basis/

3078.0 Volts NA Phase to Phase Relay 120 V Basis/

87.94 Volts > 86.18 and < 89.70 Phase to Neutral Relay 120 V Basis/

88.85 Volts > 87.08 and < 90.63

b. Time Delay 2.0 seconds NA
2. 4.16 kV Emergency Bus Undervoltage (Degraded Voltage)

Division I

a. Bus Undervoltage 4.16 kV Basis/

3924.6 Volts NA Phase to Phase Relay 120 V Basis/

112.13 Volts > 111.55 and < 112.71 Phase to Neutral Relay 120 V Basis/

113.29 Volts

  • 112.71 and < 113.88
b. Time Delay 44.0 seconds NA
c. Time Delay with LOCA 6.7 seconds NA Division II
a. Bus Undervoltage 4.16 kV Basis/

3679.6 Volts NA Phase to Phase Relay 120 V Basis/

105.13 Volts > 104.55 and < 105.71 Phase to Neutral Relay 120 V Basis/

106.22 Volts > 105.64 and < 106.80

b. Time Delay 21.4 seconds NA
c. Time Delay with LOCA 6.7 seconds NA TRM Vol. I TRM 3.3-36 REV 100 11/10

COLR - 15 Revision 0 Page 1 of 23 FERMI 2 CORE. OPERATING LIMITS REPORT CYCLE 15 REVISION 0 Prepared by: .... r ....

Daniela Atanasovski Engineer, Reactor Engineering Reviewed by:

Paul] Kiel Dte Principal Engineer, Reactor Engineering Approved by:

R.,A. Gailliez date' Supervisor - Reactor Engineering August 2010

COLR - 15 Revision 0 Page 2 of 23 TABLE OF CONTENTS

1.0 INTRODUCTION

AND

SUMMARY

............................................................ 4 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE ............................ 5 2.1 Definition ..................................................................................... 5 2.2 Determination of MAPLHGR Limit .................................................. 5 2.2.1 Calculation of MAPFAC(P) .................................................. 7 2.2.2 Calculation of MAPFAC(F) .................................................. 8 3.0 MINIMUM CRITICAL POWER RATIO ........................................................ 9 3 .1 D efinition ..................................................................................... 9 3.2 Determination of Operating Limit MCPR ............................................ 9 3.3 Calculation of MCPR(P) ............................................................... 10 3.3. 1 Calculation of K ............................................................... 11 3.3.2 Calculation of r .................................................................. 12 3.4 Calculation of MCPR(F) ............................................................... 13 4.0 LINEAR HEAT GENERATION RATE ........................................................ 14 4.1 Definition................................................................................. 14 4.2 Determination of LHGR Limit ....................................................... 14 4.2.1 Calculation of LHGRFAC(P) ................................................... 16 4.2.2 Calculation of LHGRFAC(F) ................................................... 17 5.0 CONTROL ROD BLOCK INSTRUMENTATION ............................................. 18 5.1 Definition ................................................................................. 18 6.0 BACKUP STABILITY PROTECTION REGIONS .......................................... 19 6.1 Definition ................................................................................. 19

7.0 REFERENCES

................................................................. .................. 22

COLR - 15 Revision 0 Page 3 of 23 LIST OF TABLES TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS ................ 6 TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS ..................... 8 TABLE 3 OLMCPR1 001 05 AS A FUNCTION OF EXPOSURE AND t........ ................ 10 TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS .......................... 13 TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES .................... 15 TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS .......................... 17 TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FIL TE R ...................................................................................... 18 TABLE 8 BSP REGION DESCRIPTIONS .......................................................... 20 LIST OF FIGURES FIGURE 1 BSP REGIONS FOR NOMINAL FEEDWATER TEMPERATURE ............. 20 FIGURE 2 BSP REGIONS FOR REDUCED FEEDWATER TEMPERATURE ............. 21

COLR - 15 Revision 0 Page 4 of 23

1.0 INTRODUCTION

AND

SUMMARY

This report provides the cycle specific plant operating limits, which are listed below, for Fermi 2, Cycle 15, as required by Technical Specification 5.6.5. The analytical methods used to determine these core operating limits are those previously reviewed and approved by the Nuclear Regulatory Commission in GESTAR II (Reference 7).

The cycle specific limits contained within this report are valid for the full range of the licensed operating domain.

OPERATING LIMIT TECHNICAL SPECIFICATION APLHGR 3.2.1 MCPR 3.2.2 LHGR 3.2.3 RBM 3.3.2.1 BSP REGIONS 3.3.1.1 APLHGR = AVERAGE PLANAR LINEAR HEAT GENERATION RATE MCPR = MINIMUM CRITICAL POWER RATIO LHGR = LINEAR HEAT GENERATION RATE RBM = ROD BLOCK MONITOR SETPOINTS BSP = BACKUP STABILITY PROTECTION

COLR - 15 Revision 0 Page 5 of 23 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING LIMIT 3.2.1 APLHGR 2.1 Definition The AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) shall be applicable to a specific planar height and is equal to the sum of the LINEAR HEAT GENERATION RATEs (LHGRs) for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the fuel bundle at the height.

2.2 Determination of MAPLHGR Limit The maximum APLHGR (MAPLHGR) limit is a function of reactor power, core flow, fuel type, and average planar exposure. The limit is developed, using NRC approved methodology described in References 7 and 8, to ensure gross cladding failure will not occur following a loss of coolant accident (LOCA). The MAPLHGR limit ensures that the peak clad temperature during a LOCA will not exceed the limits as specified in 10CFR50.46(b)(1) and that the fuel design analysis criteria defined in References 7 and 8 will be met.

The MAPLHGR limit during dual loop operation is calculated by the following equation:

MAPLHGRUAO = MIN (MAPLHGR (P), MAPLHGR (F))

where:

MAPLHGR (P) = MAPFA C (P) x MAPLHGRsTD MAPLHGR (F) = MAPFA C (F) x MAPLHGRSTD Within four hours after entering single loop operation, the MAPLHGR limit is calculated by the following equation:

MAPLHGRL,,MI= MIN (MAPLHGR (P), M4PLHGR (F), MAPLHGR (SLO))

where:

MAPLHGR (SLo) = 1.0 x AMPLHGRTD The Single Loop multiplier is 1.0 since the off-rated ARTS limits bound the single loop MAPLHGR limit. (Reference 2)

COLR - 15 Revision 0 Page 6 of 23 MAPLHGRsD, the standard MAPLHGR limit, is defined at a power of 3430 MWt and flow of 105 Mlbs/hr for each fuel type as a function of average planar exposure and is presented in Table 1. (Reference 2) When hand calculations are required, MAPLHGRsTD shall be determined by interpolation from Table 1. MAPFAC(P), the core power-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.1. MAPFAC(F),

the core flow-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.2.

TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS GE14 Exposure GE14 MAPLHGR GWD/ST KW/FT 0.0 12.82 19.13 12.82 57.61 8.00 63.50 5.00 Fuel Types 1 = GE14-P1OCNAB400-16GZ-100T-150-T6-2787 7 = GE14-P1OCNAB381-16G5-100T-150-T6-2999 2 = GE14-P1OCNAB399-16GZ-100T-150-T6-2788 8 = GE14-P1OCNAB380-4G6/9G5-100T-150-T6-3150 3 = GE14-P1OCNAB380-10G5/4G4-10OT-150-T6-2868 9 = GE14-P1OCNAB380-7G5/8G4-100T-150-T6-3152 4 = GE14-P1OCNAB381-7G5/8G4-100T-150-T6-2869 10 = GE14-P1OCNAB378-14GZ-100T-150-T6-3151 5 = GE14-P1OCNAB381-7G6/8G4-100T-150-T6-2877 11 = GE14-P1OCNAB375-13G5.0-100T-150-T6-3339 6 = GE14-P1OCNAB381-7G5/8G4-100T-150-T6-2869 12= GE14-P 1OCNAB376-15G5.0-100T-150-T6-3340 13= GE14-P1OCNAB375-14G5.0-100T-150-T6-3338

COLR - 15 Revision 0 Page 7 of 23 2.2.1 Calculation of MAPFAC(P)

The core power-dependent MAPLHGR limit adjustment factor, MAPFAC(P) (Reference 2 &

3), shall be calculated by one of the following equations:

For 0 < P < 25:

No thermal limits monitoring is required.

For 25 < P < 30:

With turbine bypass OPERABLE, For core flow < 50 Mlbs/hr, MAPFAC (P) = 0.606 + 0.0038 (P- 30)

For core flow > 50 Mlbs/hr, MAPFAC (P) = 0.586 + 0.0038 (P - 30)

With turbine bypass INOPERABLE, For core flow < 50 Mlbs/hr, MAPFAC(P) = O.490 + O.0050(P- 30)

For core flow > 50 Mlbs/hr, MAPFAC(P) 0.438+0.0050(P-30)

For 30 < P < 100:

MAPFAC(P) = 1.0+0.005224(P-100) where: P = Core power (fraction of rated power times 100).

COLR - 15 Revision 0 Page 8 of 23 2.2.2 Calculation of MAPFAC(F)

The core flow-dependent MAPLHGR limit adjustment factor, MAPFAC(F) (Reference 2 &

3), shall be calculated by the following equation:

WT MAPFAC(F) = MIN(1.0, AFx - +BF) 100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 2.

BF = Given in Table 2.

TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr) AF BF 110 0.6787 0.4358 "As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 15 Revision 0 Page 9 of 23 3.0 MINIMUM CRITICAL POWER RATIO TECH SPEC IDENT OPERATING LIMIT 3.2.2 MCPR 3.1 Definition The MINIMUM CRITICAL POWER RATIO (MCPR) shall be the smallest Critical Power Ratio (CPR) that exists in the core for each type of fuel. The CPR is that power in the assembly that is calculated by application of the appropriate correlation(s) to cause some point in the assembly to experience boiling transition, divided by the actual assembly operating power.

3.2 Determination of Operating Limit MCPR The required Operating Limit MCPR (OLMCPR) (Reference 2) at steady-state rated power and flow operating conditions is derived from the established fuel cladding integrity Safety Limit MCPR and an analysis of abnormal operational transients. To ensure that the Safety Limit MCPR is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which event will cause the largest reduction in CPR. Three different core average exposure conditions are evaluated. The result is an Operating Limit MCPR which is a function of exposure and "r. t is a measure of scram speed, and is defined in Section 3.3.2. Cycle 15 operating limits are based on the Dual Loop SLMCPR of 1.08.

The OLMCPR shall be calculated by the following equation:

OLMCPR = MAX(MCPR(P), MCPR(F))

MCPR(P), the core power-dependent MCPR operating limit, shall be calculated using Section 3.3.

MCPR(F), the core flow-dependent MCPR operating limit, shall be calculated using Section 3.4.

In case of Single Loop Operation, the Safety Limit MCPR (Reference 2) is increased to account for increased uncertainties in core flow measurement and TIP measurement.

However, OLMCPR is not increased when operating in single loop due to inherent conservatism.

COLR - 15 Revision 0 Page 10 of 23 3.3 Calculation of MCPR(P)

MCPR(P), the core power-dependent MCPR operating limit (Reference 2 & 3), shall be calculated by the following equation:

MCPR(P) = Kp x 0LMCPR 1 oo 11 o5 Kp, the core power-dependent MCPR Operating Limit adjustment factor, shall be calculated by using Section 3.3.1.

OLMCPRQo 10 105 shall be determined by interpolation from Table 3 (Reference 2), and r shall be calculated by using Section 3.3.2.

TABLE 3 OLMCPR1 0no 05 AS A FUNCTION OF EXPOSURE AND T EXPOSURE (MWD/ST) (MWDST)OLMCPR CONDITION 1 ,,/0 5 Both Turbine Bypass and Two Loop Single Loop Moisture Separator Reheater OPERABLE BOC to 7197 =0 1.35 1.35 1.46 1.46 7197 to 8697 1.38 1.38

-c0 1.49 1.49 8697 to EOC 1.44 1.44 1.61 1.61

,c0 Moisture Separator Reheater INOPERABLE BOC to EOC 1.47 1.47 1.64 1.64

,c0 Turbine Bypass T 1 INOPERABLE BOC to EOC 1.48 1.48 1.65 1.65 Both Turbine Bypass and 'r 0 Moisture Separator Reheater INOPERABLE BOC to EOC 1.51 1.51 T = 1 1.68 1.68

COLR - 15 Revision 0 Page 11 of 23 3.3.1 Calculation of K, The core power-dependent MCPR operating limit adjustment factor, KI (Reference 2 & 3),

shall be calculated by using one of the following equations:

For 0 < P< 25 No thermal limits monitoring is required.

For 25 < P < 30 When turbine bypass is OPERABLE, (KB,, + (0. 032 x (30- P)))

OLMCPRioolios where: KB* = 2.16 for core flow < 50 Mlbs/hr

= 2.44 for core flow > 50 Mlbs/hr When turbine bypass is INOPERABLE, (KBY + (0. 076 x (30 -

P)))

OLMCPRioolio5 where: KB7 = 2.61 for core flow < 50 Mlbs/hr

= 3.34 for core flow > 50 Mlbs/hr For 30 < P < 45 :

Kp= 1.28 + (0.0134 x (45-P))

For 45 < P < 60 :

Kp= 1.15 + (0.00867 x (60-P))

For 60 < P < 100:

Kp= 1.0 + (0.003 75 x (100-P))

where: P = Core power (fraction of rated power times 100).

COLR - 15 Revision 0 Page 12 of 23 3.3.2 Calculation of T The value of tr, which is a measure of the conformance of the actual control rod scram times to the assumed average control rod scram time in the reload licensing analysis (Reference 4),

shall be calculated by using the following equation:

(rae, -- B)

TA TB where: TA = 1.096 seconds TB = 0.830 + 0.019 x 1.65 nN, seconds i=I n

ENin i=1 n = number of surveillance tests performed to date in cycle, Ni = number of active control rods measured in the iff surveillance test, T. = average scram time to notch 36 of all rods measured in the i? surveillance test, and N = total number of active rods measured in the initial control rod scram time test for the cycle (Technical Specification Surveillance Requirement 3.1.4.4).

The value of 'r shall be calculated and used to determine the applicable OLMCPR1 0,105 value from Table 3 within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of the conclusion of each control rod scram time surveillance test required by Technical Specification Surveillance Requirements 3.1.4.1, 3.1.4.2, and 3.1.4.4. Prior to performance of the initial scram time measurements for the cycle, a T value of 1.0 shall be used to determine the applicable OLMCPRloo,, value from Table 3.

COLR - 15 Revision 0 Page 13 of 23 3.4 Calculation of MCPR(F)

MCPR(F), the core flow-dependent MCPR operating limit (Reference 2 & 3), shall be calculated by using the following equation:

MCPR(F)= MAX(1.21, (AF x W +BF))

100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 4.

BF = Given in Table 4.

TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr) AF BF Single or Two Loop 110 -0.601 1.743 As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 15 Revision 0 Page 14 of 23 4.0 LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING LIMIT 3.2.3 LHGR 4.1 Definition The LINEAR HEAT GENERATION RATE (LHGR) shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length. By maintaining the operating LHGR below the applicable LHGR limit, it is assured that all thermal-mechanical design bases and licensing limits for the fuel will be satisfied.

4.2 Determination of LHGR Limit The maximum LHGR limit is a function of reactor power, core flow, fuel and rod type, and fuel rod nodal exposure. The limit is developed, using NRC approved methodology described in References 7 and 8, to ensure the cladding will not exceed its yield stress and that fuel thermal-mechanical design criteria will not be violated during any postulated transient events.

The LHGR limit ensures the fuel mechanical design requirements as defined in Reference 1 will be met.

The LHGR limit during dual loop operation is calculated by the following equation:

LHGR. = MIN (LHGR (P), LHGR (F))

where:

LHGR (P) = LHGRFAC (P) x LHGR,,T LHGR (F) = LHGRFAC (F)x LHGRST LHGRSTD, the standard LHGR limit, is defined at a power of 3430 MWt and flow of 105 Mlbs/hr for each fuel and rod type as a function of fuel rod nodal exposure and is presented in Table 5. Table 5 contains only the most limiting Gadolinia LHGR limit for the maximum allowed Gadolinia concentration of the applicable fuel product line. (Reference 1) When hand calculations are required, LHGRSTD shall be determined by interpolation from Table 5.

LHGRFAC(P), the core power-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.1. LHGRFAC(F), the core flow-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.2.

COLR - 15 Revision 0 Page 15 of 23 TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES GE14 Most Limiting GE14 Uranium Only Fuel Rods Gadolinia Bearing Fuel Rods Exuosure LHGR Exvosure LHGR GWD/ST KW/FT GWD/ST KW/FT 0.0 13.40 0.0 12.26 14.51 13.40 12.28 12.26 57.61 8.00 55.00 7.32 63.50 5.00 60.84 4.57 el Types 1 = GE14-P1OCNAB400-16GZ- 10OT- 150-T6-2787 7 = GE14-P1OCNAB381-16G5-100T-150-T6-2999 2 = GE14-P1OCNAB399-16GZ- 10OT- 150-T6-2788 8 = GE14-P1OCNAB380-4G6/9G5-100T-150-T6-3150 3 = GE14-P1OCNAB380-10G5/4G4-100T- 150-T6-2868. 9 = GE14-P1OCNAB380-7G5/8G4-100T-150-T6-3152.

4 = GE14-P1OCNAB381-7G5/8G4-100T- 150-T6-2869.

  • 10 = GE14-P1OCNAB378-14GZ-100T-150-T6-3151 5 = GE14-P1OCNAB381-7G6/8G4-10OT- 150-T6-2877 11 = GE14-P1OCNAB375-13G5.0-100T-150-T6-3339 6 = GE14-P1OCNAB381-7G5/8G4-100T- 150-T6-2869* 12 = GE14-P1OCNAB376-15G5.0-100T-150-T6-3340 13 = GE14-P1OCNAB375-14G5.0-100T-150-T6-3338

COLR - 15 Revision 0 Page 16 of 23 4.2.1 Calculation of LHGRFAC(P)

The core power-dependent LHGR limit adjustment factor, LHGRFAC(P) (Reference 2 & 3),

shall be calculated by one of the following equations:

For 0 < P < 25:

No thermal limits monitoring is required.

For 25 < P < 30:

With turbine bypass OPERABLE, For core flow < 50 Mlbs/hr, LHGRFAC(P) = 0.606 + 0.0038 (P - 30)

For core flow > 50 Mlbs/hr, LHGRFAC (P)= 0.586 + 0.0038 (P - 30)

With turbine bypass INOPERABLE, For core flow < 50 Mlbs/hr, LHGRFA C(P)= 0.490 + 0.0050(P - 30)

For core flow > 50 Mlbs/hr, LHGRFAC(P) 0.438 + 0.O050(P - 30)

For 30 < P < 100:

LHGRFAC(P)= 1.0 + 0. 005224(P- 100) where: P = Core power (fraction of rated power times 100).

COLR - 15 Revision 0 Page 17 of 23 4.2.2 Calculation of LHGRFAC(F)

The core flow-dependent LHGR limit adjustment factor, LHGRFAC(F) (Reference 2 & 3),

shall be calculated by the following equation:

WT LHGRFAC(F)= MIN(1 .0, AF x - +BF) 100 where:

WT = Core flow (Mlbs/hr).

AF =Given in Table 6.

BF = Given in Table 6.

TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr) AF BF 110 0.6787 0.4358

'As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 15 Revision 0 Page 18 of 23 5.0 CONTROL ROD BLOCK INSTRUMENTATION TECH SPEC IDENT SETPOINT 3.3.2.1 RBM 5.1 DeFinition The nominal trip setpoints and allowable values of the control rod withdrawal block instrumentation are shown in Table 7. These values are consistent with the bases of the APRM Rod Block Technical Specification Improvement Program (ARTS) and the MCPR operating limits. (References 2, 5, 6, & 10).

TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER Setpoint Trip Setpoint Allowable Value LPSP 27.0 28.4 IPSP 62.0 63.4 HPSP 82.0 83.4 LTSP 117.0 118.9 ITSP 112.2 114.1 HTSP 107.2 109.1 DTSP 94.0 92.3 where:

LPSP Low power setpoint; Rod Block Monitor (RBM) System trip automatically bypassed below this level IPSP Intermediate power setpoint HPSP High power setpoint LTSP Low trip setpoint ITSP Intermediate trip setpoint HTSP High trip setpoint DTSP Downscale trip setpoint

COLR - 15 Revision 0 Page 19 of 23 6.0 BACKUP STABILITY PROTECTION REGIONS TECH SPEC REFERENCE OPERATING LIMIT 3.3.1.1 Action Condition J Alternate method to detect and suppress thermal hydraulic instability oscillations TRM REFERENCE OPERATING LIMIT 3.4.1.1 Scram, Exit, and Stability Awareness Regions 6.1 Detinition The Backup Stability Protection (BSP) Regions are an integral part of the Tech Spec required alternative method to detect and suppress thermal hydraulic instability oscillations in that they identify areas of the power/flow map where there is an increased probability that the reactor core could experience a thermal hydraulic instability. Regions are identified (refer to Table 8 and Figure 1) that are either excluded from planned entry (Scram Region), or where specific actions are required to be taken to immediately leave the region (Exit Region). A region is also identified where operation is allowed provided that additional monitoring is performed to verify that the reactor core is not exhibiting signs of core thermal hydraulic instability (Stability Awareness Region). (Reference 2)

The boundaries of these regions are established on a cycle specific basis based upon core decay ratio calculations performed using NRC approved methodology. The Cycle 15 regions are valid to a cycle exposure of 11,210 MWd/st. (Reference 11)

These regions are only applicable when the Oscillation Power Range Monitoring System (OPRM) is inoperable. The Cycle 15 region boundaries defined in Figure 1 are applicable when final feedwater temperature is in the optimum range as illustrated in 20.107.02, Loss of Feedwater Heating Abnormal Operating Instruction. Figure 2 is applicable to operation with Feedwater Heaters Out-Of-Service (FWHOOS) or with Final Feedwater Temperature Reduction (FFWTR) or when final feedwater temperature is below the optimum range.

COLR - 15 Revision 0 Page 20 of 23 TABLE 8 BSP REGION DESCRIPTIONS Region: Nominal Feedwater Temperature Reduced Feedwater Temperature Scram Region: > 96 % Rod Line, < 44% Flow > 85 % Rod Line, < 49% Flow Exit Region: > 67% Rod Line, < 41% Flow > 67% Rod Line, < 41% Flow

> 77 % Rod Line, < 48% Flow > 77 % Rod Line, < 51% Flow

> 102% Rod Line, < 50% Flow > 102% Rod Line, < 55% Flow Stability Awareness > 62% Rod Line, < 46% Flow > 58% Rod Line, < 46% Flow Region > 72% Rod Line, < 53% Flow > 71% Rod Line, < 56% Flow

> 88 % Rod Line, < 55% Flow > 85 % Rod Line, < 60% Flow Table 8 values are conservatively rounded FIGURE 1 - BSP REGIONS FOR NOMINAL FEEDWATER TEMPERATURE 80 70 0 6-

  • 0 30 20 30 40 50 60 Percent (%) of Rated Core Flow Nominal feedwater heating exists with all feedwater heaters in service, the moisture separator reheaters in service, and reactor water cleanup in or out of service. Nominal Feedwater temperature is determined with the Loss of Feedwater Heating Abnormal Operating Instruction, 20.107.02. If feedwater temperature is less than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph of Enclosure A of 20.107.02, Loss of Feedwater Heating, then Figure 1 shall be used if the Oscillation Power Range Monitor is out of service.

COLR - 15 Revision 0 Page 21 of 23 FIGURE 2 - BSP REGIONS FOR REDUCED FEEDWATER TEMPERATURE 80 RtdCrFlw= 100.0OMlb/hr MELLLA Rod Line

  • =7o I 70 Apprx. Natural Circulation Stability Awareness E 60 Scram Reglo S50 E.4 Exit Region C: 40 30.

20 30 40 50 60 Percent (%) of Rated Core Flow Reduced feedwater temperature is analyzed for a 50 degree Fahrenheit reduction in feedwater temperature at 100% power. If feedwater temperature is more than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph of Enclosure A of 20.107.02, Loss of Feedwater Heating, then Figure 2 shall be used if the Oscillation Power Range Monitor is out of service.

Figure 2 is valid until feedwater temperature meets the Minimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph of Enclosure A of 20.107.02, Loss of Feedwater Heating.

COLR - 15 Revision 0 Page 22 of 23

7.0 REFERENCES

Core Operating Limits Report references are cited for two purposes. Many references are used as the basis for information, numbers, and equations found in COLR. These references tend to be fuel type or cycle specific.. Other references are listed because they are basis information for the content and structure of COLR but are not Cycle specific.

1. "Fuel Bundle Information Report for Enrico Fermi 2 Reload 14 Cycle 15," Global Nuclear Fuel, 0000-01 10-6552-FIBR, Revision 0, July 2010 (LHGR Limits)
2. "Supplemental Reload Licensing Report for Enrico Fermi 2 Reload 14 Cycle 15," Global Nuclear Fuel, 0000-01 10-6552-SRLR, Revision 0, July 2010 (MAPLHGR Limits, SLO Multiplier, MCPR Limits, SLMCPR, Appendix D Off-Rated Limits)
3. "GEl4 Fuel Cycle-Independent Analyses for Fermi Unit 2", GE-NE-0000-0025-3282-00 dated November 2004 (ARTS Limits equations)
4. Letter from Greg Porter to B. L. Myers, "Scram Times for Improved Tech Specs." GP-99014, October 22, 1999 containing DRF A12-00038-3, Vol. 4 information from G. A.

Watford, GE, to Distribution,

Subject:

Scram Times versus Notch Position (TAU Calculation)

5. CSCCD-C51 K622/C51 R809C Revision 2, "Programming for Rod Block Monitor (RBM-A)

PIS # C51K622 and Operator Display Assembly (ODA) PIS # C51R809C" (RBM A Setpoints)

6. CSCCD-C51 K623/C51 R809D Revision 2, "Programming for Rod Block Monitor (RBM-B)

PIS # C51K623 and Operator Display Assembly (ODA) PIS # C51R809D" (RBM B Setpoints)

7. "General Electric Standard Application for Reactor Fuel (GESTAR II)," NEDE-240 11-P-A, Revision 16 with amendments
8. "The GESTR-LOCA and SAFER Models for the Evaluation of the Loss-of-Coolant Accident - SAFER/GESTR Application Methodology," NEDE 23785-1-PA, Revision 1, October 1984
9. "Fermi-2 SAFER/GESTR-LOCA, Loss-of-Coolant Accident Analysis," NEDC-3 1982P, July 1991, and Errata and Addenda No. 1, April 1992
10. "Maximum Extended Operating Domain Analysis for Detroit Edison Company Enrico Fermi Energy Center Unit 2," GE Nuclear Energy, NEDC-31843P, July 1990
11. Cycle 15 Stability Information DTC: TRVEND, DSN: Cycle 15 Stability, Edison File Number: R1-8060

COLR - 15 Revision 0 Page 23 of 23

12. "DTE Energy Enrico Fermi 2 SAFER/GESTR Loss of Coolant Accident Analysis for GE14 Fuel" GE-NE-0000-0030-6565 Revision 1 dated June 2008
13. "DTE Energy Enrico Fermi 2 SAFER/GESTR Loss of Coolant Accident Analysis for GEl1 Fuel" GE-NE-0000-0047-1716 Revision 1 dated June 2008
14. Letter from T. G. Colburn to W. S. Orser, "Fermi Amendment No. 87 to Facility Operating License No. NPF-43 (TAC NO. M82102)," September 9, 1992
15. Letter from J. F. Stang to W. S. Orser, "Amendment No. 53 to Facility Operating License No. NPF-43: (TAC No. 69074)," July 27, 1990
16. "Power Range Neutron Monitoring System," DC-4608, Vol. XI DCD, Rev. B and DC-4608 Vol. I Rev. D.
17. Methodology and Uncertainties for Safety Limit MCPR Evaluations, NEDC-32601P-A, August 1999
18. Power Distribution Uncertainties for Safety Limit MCPR Evaluation, NEDC-32694P-A, August 1999
19. R-Factor Calculation Method for GEl 1, GE12, and GE13 Fuel, NEDC-32505P-A, Revision 1, July 1999
20. "Improved LHGR Limits (designated as "GEl 1/13-UPGRADE") for GEl 1 Fuel in Fermi,"

Global Nuclear Fuel, GNF-J 1103057-265, August 2001

21. "Turbine Control Valve Out-Of-Service for Enrico Fermi Unit-2," GE -Nuclear Energy, GE-NE-J 11-03920-07-01, October 2001
22. Licensing Topical Report, "Qualification of the One-Dimensional Core Transient Model for Boiling Water Reactors," Volume 1, NEDO-24154-A 78NED290R1, August 1986
23. Letter from David P. Beaulieu (USNRC) to William T. O'Connor, Jr. (Detroit Edison),

"Fermi Issuance of Amendment RE: Changes to the Safety Limit Minimum Critical Power Ratio (TAC NO. MC4748)," dated November 30, 2004 (SLMCPR Limit)