ML082270701

From kanterella
Jump to navigation Jump to search
Technical Requirements Manual, Title Page Rev. 90, List of Effective Pages LEP-1 Through LEP-4 Rev. 90, and Cycle 13 Rev. 1
ML082270701
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 08/06/2008
From:
Detroit Edison
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML082270701 (29)


Text

DETRO*9VEDASON - FERMI 2 AUTOMATED RECORD MANAGEMENT DISTRIBUTION CONTROL LIST 08/06/08 To: 00935 US NRC PAGE 1 DOCUMENT CNTRL DESK WASHINGTON, DC 20555 Media: 8 1/2 X 11 Number Cnt Issue DTC Doc. Serial Number Page Rev Copies Lvl Date Sec Status TMTRM TRM VOL I 90 1 IR 08/04/08 AFC Please destroy or mark all revised, superseded, or cancelled documents as such. CONTROLLED stamps must be voided by lining through and initialing.

Detroit Edison EF2, C/O Info Mgmt 140 NOC, 6400 North Dixie Highway, Newport MI 48166. (734) 586-4338 OR (734) 586-4061 for questions or concerns.

Ref: cb1461 A'00(

"Aw

-4)J LICENSING DOCUMENT TRANSMITTAL FERMI 2 TECHNICAL REQUIREMENTS MANUAL - VOL I Revision 90 dated 08/04/08 Immediately, upon receipt of the item(s) below, please insert and/or remove the pages indicated.

Destroy the removed pages. Be sure that Revision 89 has been inserted prior to inserting these pages.

Location Remove Insert In Front of TRM Manual Title Paae Rev 89 06/05/08 Title Page Rev 90 08/04/08 Immediately following List of Effective Pages List of Effective Pages Title Page LEP- 1 through LEP- 4 Rev 89 06/05/08 LEP-1 through LEP- 4 Rev 90 08/04/08 Core Operating Limits Cycle 13, Rev 0 06/05/08 Cycle 13, Rev 1 08/04/08 Report END

1-1

..ýj Fermi 2 Technical Requirements Manual Volume I Detroit Edison ARMS - INFORMATION DTC: TMTRM File: 1754 DSN: TRMVOLI I Rev: 90 Date 08/04/2008 Recipient 9

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Pace Revision TRM i Revision 76 TEN 3.3-31 Revision 31 TRM ii Revision 73 TRM 3.3-32 Revision 31 TRM iii Revision 31 TRM 3.3-33 Revision 31 TRM iv Revision 76 TRM 3.3-34 Revision 31 TRM v Revision 79 TRM 3.3-35 Revision 60 TRM vi Revision 31 TRM 3.3-36 Revision 41 TRM 1.0-a Revision 31 TRM 3.3-37 Revision 72 TRM 1.0-1 Revision 31 TRM 3.3-38 Revision 31 TRM 2.0-1 Revision 31 TRM 3.3-39 Revision 31 TRM 3.0-a Revision 31 TRM 3.3-40 Revision 56 TRM 3.0-1 Revision 63 TRM 3..3-41 Revision 56 TRM 3.0-2 Revision 72 TRM 3.3-42 Revision 45 TRM 3.0-3 Revision 54 TRM 3.3-43 Revision 62 TRM 3.0-4 Revision 72 TRM 3.3-44 Revision 72 TRM 3.1-a Revision 31 TRM 3.3-45 Revision 31 TRM 3.1-1 Revision 31 TRM 3.3-46 Revision 31 TRM 3.2-1 Revision 31 TRM 3.3-47 Revision 31 TRM 3.3-a Revision 31 TRM 3.3-48 Revision 31 TRM 3.3-b Revision 31 TRM 3.3-49 Revision 31 TRM 3.3-c Revision 31 TRM 3.4-a Revision 31 TRM 3.3-d Revision 31 TRM 3.4-1 Revision 36 TRM 3.3-1 Revision 34 TRM 3.4-la Revision 71 TRM 3.3-2 Revision 59 TRM 3.4-lb Revision 71 TRM 3.3-3 Revision 31 TRM 3.4-2 Revision 31 TRM 3.3-4 Revision 31 TRM 3.4-3 Revision 31 TRM 3.3-5 Revision 31 TRM 3.4-4 Revision 31 TRM 3.3-6 Revision 31 TRM 3.4-5 Revision 31 TRM 3.3-7 Revision 31 TRM 3.4-6 Revision 31 TRM 3.3-8 Revision 31 TRM 3.4-7 Revision 31 TRM 3.3-9 Revision 31 TRM 3.4-8 Revision 31 TRM 3.3-10 Revision 31 TRM 3.4-9 Revision 31 TRM 3.3-11 Revision 31 TRM 3.4-10 Revision 31 TRM 3.3-12 Revision 67 TRM 3.5-1 Revision 31 TRM 3.3-13 Revision 74 TRM 3.6-a Revision 70 TRM 3.3-13a Revision 67 TRM 3.6-1 Revision 60 TRM 3.3-14 Revision 67 TRM 3.6-2 Revision 67 TRM 3.3-15 Revision 31 TRM 3.6-3 Revision 31 TRM 3.3-16 Revision 31 TRM 3.6-4 Revision 55 TRM 3.3-17 Revision 31 TRM 3.6-5 Revision 87 TRM 3.3-18 Revision 52 TRM 3.6-6 Revision 33 TRM 3.3-19 Revision 31 TRM 3.6-7 Revision 31 TRM 3.3-20 Revision 31 TRM 3.6-8 Revision 31 TRM 3.3-21 Revision 59 TRM 3.6-9 Revision 85 TRM 3.3-22 Revision 31 TRM 3.6-10 Revision 31 TRM 3.3-23 Revision 31 TRM 3.6-11 Revision 31 TRM 3.3-24 Revision 31 TRM 3.6-12 Revision 31 TRM 3.3-25 Revision 31 TRM 3.6-13 Revision 71 TRM 3.3-26 Revision 31 TRM 3.6-14 Revision 31 TRM 3.3-27 Revision 31 TRM 3.6-15 Revision 31 TRM 3.3-28 Revision 76 TRM 3.6-16 Revision 31 TRM 3.3-29 Revision 76 TRM 3.6-17 Revision 31 TRM 3.3-30 Revision 31 TRM 3.6-18 Revision 31 TRM Vol. I LEP-I REV 90 08/04/08

.6 FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TRM 3.6-19 Revision 31 TRM 3.8-13 Revision 61 TRM 3.6-20 Revision 31 TRM 3.8-14 Revision A6 TRM 3.6-21 Revision 31 TRM 3.8-15 Revision 31 TRM 3.6-22 Revision 31 TRM 3.8-16 Revision 31 TRM 3.6-23 Revision- 31 TRIM 3.8-17 Revision 43 TRM 3.6-24 Revision 58 TRM 3.8-18 Revision 33 TRM 3.6-25 Revision 31 TRM 3.9-a Revision 31 TRM 3.6-26 Revision 31 TRM 3.9-1 Revision 31 TRM 3.6-27 Revision 31 TRM 3.9-2 Revision 65 TRM 3.6-28 Revision 31 TRM 3.9-3 Revision 80 TRM 3.6-29 Revision 31 TRM 3.9-4 Revision 88 TRM 3.6-30 Revision 31 TRM 3.9-5 Revision 31 TRM 3.6-31 Revision 31 TRM 3.10-1 Revision 31 TRM 3.6-32 Revision 70 TRM 3.11-a Revision 31 TRM 3.6-33 Revision 31 TRM 3.11-1 Revision 31 TRM 3.6-34 Revision 31 TRM 3.12-a Revision 31 TRM 3.6-35 Revision 31 TRM 3.12-1 Revision 75 TRM 3,.7-a Revision 73 TRM 3.12-2 Revision 31 TRM 3.7-b Revision 31 TRM 3.12-3 Revision 31 TRM 3.7-1 Revision 60 TRM 3.12-4 Revision 89 TRM 3.7-2 Revision 70 TRM 3.12-5 Revision 53 TRM 3.7-3 Revision 70 TRM 3.12-6 Revision 53 TRM 3.7-4 Revision 73 TRM 3.12-7 Revision 31 TRM 3.7-5 Revision 31 TRM 3.12-8 Revision 57 TRM 3.7-6 Revision 31 TRM 3.12-9 Revision 40 TRM 3.7-7 Revision 31 TRM 3.12-10 Revision 31 TRM 3.7-8 Revision 31 TRM 3.12-11 Revision 49 TRM 3.7-9 Revision 31 TRM 3.12-12 Revision 31 TRM 3.7-10 Revision 44 TRM 3.12-13 Revision 75 TRM 3.7-11 Revision 31 TRM 3.12-14 Revision 31 TRM 3.7-12 Revision 72 TRM 3.12-15 Revision 31 TRM 3.7-13 Revision 31 TRM 3.12-16 Revision 75 TRM 3.7-14 Revision 31 TRM 3.12-17 Revision 31 TRM 3.7-15 Revision 83 TRM 3.12-18 Revision 75 TRM 3.7-16 Revision 31 TRM 3.12-19 Revision 31 TRM 3.7-17 Revision 31 TRM 3.12-20 Revision 75 TRM 3.7-18 Revision 77 TRM 3.12-21 Revision 31 TRM 3.7-19 Revision 31 TRM 3.12-22 Revision 31 TRM 3.7-20 Revision 79 TRM 3.12-23 Revision 31 TRM 3.8-a Revision 31 TRM 3.12-24 Revision 31 TRM 3.8-1 Revision 31 TRM 3.12-25 Revision 31 TRM 3.8-2 Revision 31 TRM 3.12-26 Revision 75 TRM 3.8-3 Revision 73 TRIM 3.12-27 Revision 31 TRM 3.8-4 Revision 31 TRM 3.12-28 Revision 31 TRM 3.8-5 Revision 31 TRM 3.12-29 Revision 78 TRM 3.8-6 Revision 50 TRM 3.12-30 Revision 31 TRM 3.8-7 Revision 50 TRM 4.0-1 Revision 31 TRM 3.8-8 Revision 50 TRM 5.0-a Revision 31 TRM 3.8-9 Revision 50 TRM 5.0-1 Revision 31 TRM 3.8-10 Revision 50 TRM 5.0-2 Revision 31 TRM 3.8-11 Revision 50 TRM 5.0-3 Revision 31 TRM 3.8-12 Revision 31 TRM 5.0-4 Revision 31 TRM Vol. I LEP-2 REV 90 08/04/08

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TRM 5.0-5 Revision 31 TRM B3.4.6-1 Revision 31 TRM 5.0-6 Revision 31 TRM B3.4.7-1 Revision 31 TRM 5.0-7 Revision 31 TRM B3.5-1 Revision 31 TRM 5.0-8 Revision 31 TRM B3.6.1-1 Revision 31 TRM 5.0-9 Revision 31 TRM B3.6.2-1 Revision 67 TRM B1.0-1 Revision 31 TRM B3.6.3-1 Revision 87 TRM B2.0-1 Revision 31 TRM B3.6.4-1 Revision 31 TRM B3.0-1 Revision 63 TRM B3.6.5-1 Revision 31 TRM B3.0-2 Revision 63 TRM B3.6.6-1 Revision 70 TRM B3.0-2a Revision 72 TRM B3.6.7-1 Revision 31 TRM B3.0-2b Revision 72 TRM B3.6.8-1 Revision 31 TRM B3.0-2c Revision 72 TRM B3.7.1-1 Revision 31 TRM B3.0-3 Revision 31 TRM B3.7.2-1 Revision 31 TRM B3.0-4 Revision 31 TRM B3.7.3-1 Revision 73 TRM B3.0-5 Revision 54 TRM B3.7.4-1 Revision 31 TRM B3.0-6 Revision 72 TRM B3.7.4-2 Revision 31 TRM B3.0-7 Revision 72 TRM B3.7.5-1 Revision 31 TRM B3.1-1 Revision 31 TRM B3.7.6-1 Revision 31 TRM B3.2-1 Revision 31 TRM B3.7.7-1 Revision 31 TRM B3.3.1-1 Revision 31 TRM B3.7.8-1 Revision 31 TRM B3.3.1-2 Revision 31 TRM B3.7.9-1 Revision 79 TRM B3.3.2-1 Revision 31 TRM B3.8.1-1 Revision 31 TRM B3.3.2-2 Revision 31 TRM B3.8.2-1 Revision 31 TRM B3.3.3-1 Revision 67 TRM B3.8.3-1 Revision 89 TRM B3.3.4-1 Revision 31 TRM B3.8.4-1 Revision 31 TRM B3.3.4-2 Revision 84 TRM B3.8.5-1 Revision 31 TRM B3.3.5-1 Revision 31 TRM B3.8.6-1 Revision 43 TRM B3.3.5-2 Revision 31 TRM B3.9.1-1 Revision 31 TRM B3.3.6-1 Revision 31 TRM B3.9.2-1 Revision 65 TRM B3.3.6-2 Revision 31 TRM B3.9.3-1 Revision 31 TRM B3.3.6-3 Revision 31 TRM B3.9.4-1 Revision 31 TRM B3.3.6-4 Revision 31 TRM B3.10-1 Revision 31 TRM B3.3.6-5 Revision 76 TRM B3.11.1-1 Revision 31 TRM B3.3.6-6 Revision 76 TRM B3.12.1-1 Revision 31 TRM B3.3.7-1 Revision 31 TRM B3.12.2-1 Revision 44 TRM B3.3.7-2 Revision 70 TRM B3.12.3-1 Revision 31 TRM B3.3.8-1 Revision 31 TRM B3.12.4-1 Revision 31 TRM B3.3.9-1 Revision 31 TRM B3.12.5-1 Revision 31 TRM B3.3.10-1 Revision 56 TRM B3.12.6-1 Revision 31 TRM B3.3.11-1 Revision 45 TRM B3.12.7-1 Revision 31 TRM B3.3.12-1 Revision 62 TRM B3.12.8-1 Revision 31 TRM B3.3.13-1 Revision 31 TRM B3.3.14-1 Revision 31 TRM B3.4.1-1 Revision 31 TRM B3.4.1-2 Revision 71 TRM B3.4.1-3 Revision 71 TRM B3.4.1-4 Revision 71 TRM B3.4.1-5 Revision 71 TRM B3.4.2-1 Revision 31 TRM B3.4.3-1 Revision 31 TRM B3.4.4-1 Revision 31 TRM B3.4.5-1 Revision 31 TRM Vol. I LEP- 3 REV 90 08/04/08

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES CORE OPERATING LIMITS REPORT COLR 13, Revision 1 Page Revision Notation Page 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 TRM Vol. I LEP-4 REV 90 08/04/08

"8 COLR - 13 Revision I Page ] of 22 FERMI 2 CORE OPERATING LIMITS REPORT CYCLE 13 REVISION 1 Prepared by:

P.R. Kiel *ate Principal Engineer, Reactor Engineering Reviewed by: Date R. O'Sullivan Date Station Nuclear Engineer J. Wines (Dat- e8 COLR Checklist Reviewer Approved by: Date R. A. Gailliez Supervisor - Reactor Engineering July 2008

4 COLR- 13. Revision 1 Page 2 of 22 TABLE OF CONTENTS

1.0 INTRODUCTION

AND SUM M ARY ................................................................................ 4 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE ........................................ 5 2.1 Definition ....................................................................................................... 5 2.2 Determination of MAPLHGR Limit .................................................................... 5 2.2.1 Calculation of M APFAC(P) ................................................................... 7 2.2.2 Calculation of MAPFAC(F) ................................................................... 8 3.0 M INIM UM CRITICAL POW ER RATIO ............................................................................ 9 3.1 Definition .................................................................................................................. 9 3.2 Determination of Operating Limit MCPR ............................. 9 3.3 Calculation of M CPR(P) ........................................................................................ 10 3.3.1 Calculation of Kp .................................................................................. 11 3.3.2 Calculation of ............................................ 12 3.4 Calculation of M CPR(F) .................................................................................. 13 4.0 LINEAR HEAT GENERATION RATE ............................................................................ 14 4.1 Definition ............................................................................................................... 14 4.2 Determination of LHGR Lim it ......................................................................... 14 4.2.1 Calculation of LHGRFAC(P) ............................................................... 16 4.2.2 Calculation of LHGRFAC(F) ............................................................. 17 5.0 CONTROL ROD BLOCK INSTRUM ENTATION ........................................................... 18 5.1 Definition ................................................................................................................ 18 6.0 BACKUP STABILITY PROTECTION REGIONS .................................................... I.......... 19 6.1 Definition ............................................................................................................... 19

7.0 REFERENCES

....................................................................................................................... 21 7.1 Source References ............................................................................................ 21 7.2 Basis References ................................................................................................ 21

COLR- 13 Revision 1 Page 3 of 22 LIST OF TABLES TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS ........................ 6 TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS ........................ 8 TABLE 3 OLMCPRoo/o 10 5 AS A FUNCTION OF EXPOSURE AND .................................. 10 TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS ..................................... 13 TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES ......................... 15 TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS ...................................... 17 TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILT E R .................................................. .................................................................. 18 TABLE 8 BSP REGION DESCRIPTIONS .......................................................................... 19 LIST OF FIGURES FIGURE 1 BSP REGIONS FOR NOMINAL FEEDWATER TEMPERATURE ............... 20

COLR - 13 Revision I COLR - 13 Revision 1 Page 4 of 22

1.0 INTRODUCTION

AND

SUMMARY

This report provides the cycle specific plant operating limits, which are listed below, for Fermi 2, Cycle 13, as required by Technical Specification 5.6.5. The analytical methods used to determine these core operating limits are those previously reviewed and approved by the Nuclear Regulatory Commission in GESTAR II (Reference 9).

The cycle specific limits contained within this report are valid for the full range of the licensed operating domain.

COLR - 13 Revision 1 Page 5 of 22 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING LIMIT 3.2.1 APLHGR 2.1 Definition The AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) shall be applicable to a specific planar height and is equal to the sum of the LINEAR HEAT GENERATION RATEs (LHGRs) for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the fuel bundle at the height.

2.2 Determination of MAPLHGR Limit The maximum APLHGR (MAPLHGR) limit is a function of reactor power, core flow, fuel type, and average planar exposure. The limit is developed, using NRC approved methodology described in References 9 and 10, to ensure gross cladding failure will not occur following a loss of coolant accident (LOCA). The MAPLHGR limit ensures that the peak clad temperature during a LOCA will not exceed the limits as specified in 10CFR50.46(b)(1) and that the fuel design analysis criteria defined in References 9 and 10 will be met.

The MAPLHGR limit during dual loop operation is calculated by the following equation:

MAPLHGRL....= MIN (MAPLHGR (P), MAPLHGR (F))

where:

MAPLHGR (P) = MAPFAC (P) x M4PLHGRSTD MAPLHGR (F) = MAPFAC (F) x MAPLHGRS Within four hours after entering single loop operation, the MAPLHGR limit is calculated by the following equation:

MAPLHGR&.= MIN (MAPLHGR (P), MAPLHGR (F), MAPLHGR (SLO))

where:

MAPLHGR (SLO) = 1.0 x M4PLHGRST The Single Loop multiplier is 1.0 since the offrated ARTS limits bound the single loop MAPLHGR limit. (Reference 2)

COLR - 13 Revision 1 Page 6 of 22 MAPLHGRSTD, the standard MAPLHGR limit, is defined at a power of 3430 MWt and flow of 105 Mlbs/hr for each fuel type as a function of average planar exposure and is presented in Table

1. (Reference 2) When hand calculations are required, MAPLHGRSTD shall be determined by interpolation from Table 1. MAPFAC(P), the core power-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.1. MAPFAC(F), the core flow-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 2.2.2.

TABLE 1 FUEL, TYPE-DEPENDENT STANDARD MAPLHGR LIMITS GEl 1Exposure GE 11MAPLHGR GE14Exposure GE14MAPLHGR GWD/ST KW/FT GWD/ST KW/FT 0.0 13.42 0.0 12.82 19.72 13.42 19.13 12.82 27.22 12.29 57.61 8.00 63.50 8.90 63.50 .5.00 Fuel Types 18 = GEl I-P9CUB404-12GZ-1OOT-146-T6-2543 3= GE14-P1OCNAB380-I0G5/4G4-1OOT-150-T6-2868 19 = GEl I-P9CUB408-12GZ-IOOT-146-T6-2604 4= GE 14-P 1OCNAB381-7G5/8G4-1OOT-150-T6-2869 20 = GE 1 -P9CUB380-12GZ-1OOT-146-T6-2605 5= GE14-P IOCNAB381-7G6/8G4-1OOT-150-T6-2877 1 = GE14-PIOCNAB400-16GZ-100T-150-T6-2787 6= GE14-PlOCNAB38I -7G5/8G4-1OOT-150-T6-2869 2 = GE14-P IOCNAB399-16GZ- 10T- 150-T6-2788 7= GE14-PI OCNAB381-16G5- 100T-150-T6-2999

COLR - 13 Revision I Page 7 of 22 2.2.1 Calculation of MAPFAC(P)

The core power-dependent MAPLHGR limit adjustment factor, MAPFAC(P) (Reference 3),

shall be calculated by one of the following equations:

For 0 <P < 25:

No thermal limits monitoring is required.

For 25 < P<30:

With turbine bypass OPERABLE, For core flow < 50 Mlbs/hr, MA PFAC (P) 0.606 + 0.0038 (P - 30)

For core flow > 50 Mlbs/hr, MAPFAC (P) 0.586 + 0.0038 (P - 30)

With turbine bypass INOPERABLE, For core flow < 50 Mlbs/hr, MAPFA C(P)= 0.490 + 0.0050(P- 30)

For core flow > 50 Mlbs/hr, MAPFAC(P) = 0.438+0.0050(P-30)

For 30<P<100:

MAPFAC(P) = 1.0 +0.005224(P-100) where: P = Core power (fraction of rated power times 100).

COLR - 13 Revision ]

Page 8 of 22 2.2.2 Calculation of MAPFAC(F)

The core flow-dependent MAPLHGR limit adjustment factor, MAPFAC(F) (Reference 3), shall be calculated by the following equation:

WT MAPFAC(F) = M1N(1.0, AFX- +BF) 100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 2.

BF = Given in Table 2.

TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS Maximum Core Flow*

(MIlbs/hr) AF BF 110 0.6787 0.4358 As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 13 Revision 1 Page 9 of 22 3.0 MINIMUM CRITICAL POWER RATIO TECH SPEC IDENT OPERATING LIMIT 3.2.2 MCPR 3.1 Definition The MINIMUM CRITICAL POWER RATIO (MCPR) shall be the smallest Critical Power Ratio (CPR) that exists in the core for each type of fuel. The CPR is that power in the assembly that is calculated by application of the appropriate correlation(s) to cause some point in the assembly to experience boiling transition, divided by the actual assembly operating power.

3.2 Determination of Operating Limit MCPR The required Operating Limit MCPR (OLMCPR) (Reference 2) at steady-state rated power and flow operating conditions is derived from the established fuel cladding integrity Safety Limit MCPR and an analysis of abnormal operational transients. To ensure that the Safety Limit MCPR is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which event will cause the largest reduction in CPR.

Three different core average exposure conditions are evaluated. The result is an Operating Limit MCPR which is a function of exposure and T. T is a measure of scram speed, and is defined in Section 3.3.2. Cycle 13 operating limits are based on the Dual Loop SLMCPR of 1.08.

The OLMCPR shall be calculated by the following equation:

OLMCPR = MAX(MCPR(P), MCPR(F))

MCPR(P), the core power-dependent MCPR operating limit, shall be calculated using Section 3.3.

MCPR(F), the core flow-dependent MCPR operating limit, shall be calculated using Section 3.4.

In case of Single Loop Operation, the Safety Limit MCPR (Reference 2) is increased to account for increased uncertainties in core flow measurement and TIP measurement. OLMCPR will increase by 0.01 when operating in single loop.

COLR - 13 Revision I Page 10 of 22 3.3 Calculation of MCPR(P)

MCPR(P), the core power-dependent MCPR operating limit (Reference 3), shall be calculated by the following equation:

MCPR(P) = KpxOLMCPR1oo10o05 Kp, the core power-dependent MCPR Operating Limit adjustment factor, shall be calculated by using Section 3.3.1.

OLMCPR 100/105 shall be determined by interpolation from Table 3 (Reference 2 and 8), and 'r shall be calculated by using Section 3.3.2.

TABLE 3 OLMCPR00 1 /105 AS A FUNCTION OF EXPOSURE AND T EXPOSURE (MWVD/ST) OLMCPR 00 CONDITION 1o 105 Both Turbine Bypass and Two Loop Single Loop Moisture Separator Reheater OPERABLE BOC to 6515 'T=0 1.33 1.34

%T=1 1.44 1.45 6515 to 8515 T=0 1.39 1.40 T= 1 1.50 1.51 8515toEOC -%=0 1.43 1.44 T= 1 1.60 1.61 Either Turbine Bypass or Moisture Separator Reheater INOPERABLE BOC to EOC 1.47 1.48.

'= I 1.64 1.65 Both Turbine Bypass and Moisture Separator Reheater INOPERABLE BOC to EOC T = 0 *1.50 1.51 T= 1 1.67 1.68

COLR- 13 Revision 1 Page 11 of 22 3.3.1 Calculation of Kp The core power-dependent MCPR operating limit adjustment factor, Kp (Reference 3), shall be calculated by using one of the following equations:

For 0<P<25 No thermal limits monitoring is required.

For 25<P<30 When turbine bypass is OPERABLE,

- (KYp + (0.032 x (30 - P)))

Kp- OLMCPRjoowos where: KBYP = 2.16 for core flow < 50 Mlbs/hr

= 2.44 for core flow > 50 Mlbs/hr When turbine bypass is INOPERABLE,

- (KBrP + (0. 076 x (30 - P)))

OLMCPRoo 10o5 where: KBYp = 2.61 for core flow < 50 Mlbs/hr

= 3.34 for core flow > 50 Mlbs/hr For 30<P<45 Kp= 1.28 + (0.0134 x (45-P))

For 45<P<60 KP= 1.15 + (0.00867 x (60-P))

For 60<P<100:

Kp 1.0 + (0.00375 x (100-P))

where: P = Core power (fraction of rated power times 100).

COLR - 13 Revision I Page 12 of 22 3.3.2 Calculation of t The value of r, which is a measure of the conformance of the actual control rod scram times to the assumed average control rod scram time in the reload licensing analysis (Reference 4), shall be calculated by using the following equation:

(vZC-,, -rs)

TA - CB where: "rA = 1.096 seconds N,

zB = 0.830+0.019x 1.65 - seconds Si=

n e=I n = number of surveillance tests performed to date in cycle, N- = number of active control rods measured in the ith surveillance test,

= average scram time to notch 36 of all rods measured in the i'h surveillance test, and N1 = total number of active rods measured in the initial control rod scram time test for the cycle (Technical Specification Surveillance Requirement 3.1.4.4).

The value of tr shall be calculated and used to determine the applicable OLMCPR100 1/ 05 value from Table 3 within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of the conclusion of each control rod scram time surveillance test required by Technical Specification Surveillance Requirements 3.1.4.1, 3.1.4.2, and 3.1.4.4.

Prior to performance of the initial scram time measurements for the cycle, a t value of 1.0 shall be used to determine the applicable OLMCPR0o0/1 05 value from Table 3.

COLR - 13 Revision I Page 13 of 22 3.4 Calculation of MCPR(F)

MCPR(F), the core flow-dependent MCPR operating limit (Reference 3), shall be calculated by using the following equation:

MCPR(F)= MAX(J.21, (A X + BF))

100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 4.

BF = Given in Table 4.

TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr) AF BF Two Loop 110 -0.601 1.743 Single Loop 110 -0.601 1.753

.*As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 13 Revision I Page 14 of 22 4.0 LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING LIMIT 3.2.3 LHGR 4.1 Definition The LINEAR HEAT GENERATION RATE (LHGR) shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length. By maintaining the operating LHGR below the applicable LHGR limit, it is assured that all thermal-mechanical design bases and licensing limits for the fuel will be satisfied.

4.2 Determination of LHGR Limit The maximum LHGR limit is a function of reactor power, core flow, fuel and rod type, and fuel rod nodal exposure. The limit is developed, using NRC approved methodology described in References 9 and 10, to ensure the cladding will not exceed its yield stress and that fuel thermal-mechanical design criteria will not be violated during any postulated transient events. The LHGR limit ensures the fuel mechanical design requirements as defined in Reference 1 will be met.

The LHGR limit during dual loop operation is calculated by the following equation:

LHGRU = MIN (LHGR (P), LHGR (F))

where:

LHGR (P) LHGRFAC (P) x LHGRsr LHGR (F) = LHGRFAC (F) x LHGRTD LHGRSTD, the standard LHGR limit, is defined at a power of 3430 MWt and flow of 105 Mlbs/hr for each fuel and rod type as a function of fuel rod nodal exposure and is presented in Table 5.

Table 5 contains only the most limiting Gadolinia LHGR limit for the maximum allowed Gadolinia concentration of the applicable fuel product line. (Reference 1) When hand calculations are required, LHGRSTD shall be determined by interpolation from Table 5.

LHGRFAC(P), the core power-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.1. LHGRFAC(F), the core flow-dependent LHGR limit adjustment factor, shall be calculated by using Section 4.2.2.

COLR - 13 Revision 1 Page 15 of 22 TABLE 5 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES GEl 1 Most Limiting GEI I Uranium Only Fuel Rods Gadolinia Bearing Fuel Rods Exposure LHGR Exposure LHGR GWD/ST KW/FT GWD/ST KW/FT 0.0 14.40 0.0 12.74 13.24 14.40 10.59 12.74 27.22 12.29 23.99 10.87 63.50 8.90 58.81 7.88 GE14 Most Limiting GE 14 Uranium Only Fuel Rods Gadolinia Bearing Fuel Rods Exposure LHGR Exposure LHGR GWD/ST KW/FT GWD/ST KW/FT 0.0 13.40 0.0 12.26 14.51 13.40 12.28 12.26 57.61 8.00 -55.00 7.32 63.50 5.00 60.84 4.57 Fuel Types 18 = GEl I-P9CUB404-12GZ- 1 OT-1 46-T6-2543 3 = GE 14-P 10CNAB380-10G5/4G4-100T- 150-T6-2868 19 = GEl 1-P9CUB408-12GZ-100T-146-T6-2604* 4 = GE 14-P 1OCNAB38 I-7G5/8G4-1OOT- 150-T6-2869 20 = GE 1 -P9CUB380-12GZ-1OOT-146-T6-2605 5 = GE14-P1OCNAB381-7G6/8G4-1OOT-150-T6-2877

= GE 14-P 1OCNAB400-16GZ- IOOT- 150-T6-2787 6 = GE 14-P 10CNAB381-7G5/8G4-lOOT- 150-T6-2869 2= GEI4-P1 OCNAB399-16GZ- I OOT-1 50-T6-2788 7 = GEI4-PI OCNAB381-16G5-1OOT-150-T6-2999

COLR- 13 Revision 1 Page 16 of 22 4.2.1 Calculation of LHGRFAC(P)

The core power-dependent LHGR limit adjustment factor, LHGRFAC(P) (Reference 3), shall be calculated by one of the following equations:

For 0 < P < 25:

No thermal limits monitoring is required.

For 25 <P<30:

With turbine bypass OPERABLE, For core flow < 50 Mlbs/hr, LHGRFAC(P) 0.606+ 0.0038 (P- 30)

For core flow > 50 Mlbs/hr, LHGRFAC (P) - 0.586 + 0.0038 (P - 30)

With turbine bypass INOPERABLE, For core flow < 50 Mlbs/hr, LHGRFA C(P)= 0.490 + 0. 0050(P - 30)

For core flow > 50 Mlbs/hr, LHGRFAC(P) = 0.438 + 0.0050(P - 30)

For 30 <P< 100:

LHGRFA C(P)= 1.0 + 0.005224(P - 100) where: P = Core power (fraction of rated power times 100).

COLR - 13 Revision I PAge 17 of 22 4.2.2 Calculation of LHGRFAC(F)

The core flow-dependent LHGR limit adjustment factor, LHGRFAC(F) (Reference 3), shall be calculated by the following equation:

LHGRFAC(F)= MrN(]. 0, AF X-- + BF) 100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 6.

BF = Given in Table 6.

TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS Maximum Core Flow (Mlbs/hr) AF BF 110 0.6787 0.4358 As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 13 Revision 1 COLR - 13 Revision I Page 18 of 22 5.0 CONTROL ROD BLOCK INSTRUMENTATION TECH SPEC IDENT SETPOINT 3.3.2.1 RBM 5.1 Definition The nominal trip setpoints and allowable values of the control rod withdrawal block instrumentation are shown in Table 7. These values are consistent with the bases of the APRM Rod Block Technical Specification Improvement Program (ARTS) and the MCPR operating limits. (References 2, 6, 7, & 16).

TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER Setpoint Trip Setpoint Allowable Value LPSP 27.0 28.4 IPSP 62.0 63.4 HPSP 82.0 83.4 LTSP 117.0 118.9 ITSP 112.2 114.1 HTSP 107.2 109.1 DTSP 94.0 92.3 where:

LPSP Low power setpoint; Rod Block Monitor (RBM) System trip automatically bypassed below this level IPSP Intermediate power setpoint HPSP High power setpoint LTSP Low trip setpoint ITSP Intermediate trip setpoint HTSP High trip setpoint DTSP Downscale trip setpoint

COLR-~3 Revision 1 COLR - 13 Revision I Page 19 of 22 6.0 BACKUP STABILITY PROTECTION REGIONS TECH SPEC REFERENCE OPERATING LIMIT 3.3.1.1 Action Condition J Alternate method to detect and suppress thermal hydraulic instability oscillations TRM REFERENCE OPERATING LIMIT 3.4.-1.1 Scram, Exit, and Stability Awareness Regions 6.1 Definition The Backup Stability Protection (BSP) Regions are an integral part of the Tech Spec required alternative method to detect and suppress thermal hydraulic instability oscillations in that they identify areas of the power/flow map where there is an increased probability that the reactor core could experience a thermal hydraulic instability. Regions are identified (refer to Table 8 and Figure 1) that are either excluded from planned entry (Scram Region), or where specific actions are required to be taken to immediately leave the region (Exit Region). A region is also identified where operation is allowed provided that additional monitoring is performed to verify that the reactor core is not exhibiting signs of core thermal hydraulic instability (Stability Awareness Region). (Reference 5)

The boundaries of these regions are established on a cycle specific basis based upon core decay ratio calculations performed using NRC approved methodology. The Cycle 13 regions are valid to a cycle exposure of 11,760 MWd/st. (Reference 2)

These regions are only applicable when the Upscale Trip fuintion of the Oscillation Power Range Monitoring System (OPRM) is inoperable. It must be noted that the Cycle 13 region boundaries defined in Table 8 and illustrated in Figure 1 are not applicable to operation with Feedwater Heaters Out-Of-Service (FWHOOS) or with Final Feedwater Temperature Reduction (FEWTR).

TABLE 8 BSP REGION DESCRIPTIONS Scram Region: > 96% Rod Line, < 43% Core Flow

> 67% Rod Line, < 41% Core Flow Exit Region: > 77% Rod Line, < 48% Core Flow Not in Scram Region -and- > 103% Rod Line, < 50% Core Flow

> 62% Rod Line, < 46% Core Flow Stability Awareness Region > 72% Rod Line, < 53% Core Flow Not in Scram or Exit Region > 98% Rod Line, < 55% Core Flow

COLR - 13 Revision I COLR - 13 Revision I Page 20 of 22 FIGURE 1 - BSP REGIONS FOR NOMINAL FEEDWATER TEMPERATURE 100% CLTP = 3430 MWt MELLLA Rod Line Rated Core Flow = 100.0 Mlb/hr 60

...Stabilty ...

Awareness Region 50 40 30 20 30 40 50 60 Percent (%) of Rated Core Flow

COLR- 13 Revision 1 Page 21 of 22

7.0 REFERENCES

7.1 SOURCE REFERENCES

1. "Fuel Bundle Information Report for Enrico Fermi 2 Reload 12 Cycle 13," Global Nuclear Fuel, 0000-0040-7831-FIBR, Revision 0, June 2007 (LHGR Limits)
2. "Supplemental Reload Licensing Report for Enrico Fermi 2 Reload 12 Cycle 13," Global Nuclear Fuel, 0000-0040-7831 -SRLR, Revision 0, June 2007 (MAPLHGR Limits, SLO Multiplier, MCPR Limits, SLMCPR)
3. "GE 14 Fuel Cycle-Independent Analyses for Fermi Unit 2", GE-NE-0000-0025-3282-00 dated November 2004 (ARTS Limits)
4. Letter from Greg Porter to B. L. Myers, "Scram Times for Improved Tech Specs." GP-99014, October 22, 1999 containing DRF A12-00038-3, Vol. 4 information from G. A. Watford, GE, to Distribution,

Subject:

Scram Times versus Notch Position (TAU Calculation)

5. Evaluation Report, "BSP Stability Evaluation for Fermi 2 Cycle 13," GENE-0000-0066-4165-RO, June 2007 (BSP Limits)
6. CSCCD-C51 K622/C51 R809C Revision 2, "Programming for Rod Block Monitor (RBM-A)

PIS # C51K622 and Operator Display Assembly (ODA) PIS # C51R809C" (RBM A Setpoints)

7. CSCCD-C51 K623/C51 R809D Revision 2, "Programming for Rod Block Monitor (RBM-B)

PIS # C5 1K623 and Operator Display Assembly (ODA) PIS # C5 1R809D" (RBM B Setpoints)

8. "Cycle Management Report Supplement 1 for Fermi 2 Cycle 13" Global Nuclear Fuel, 0000-0075-25 10, Supplement 1, June 2008 (OLMCPR Mid-Cycle Exposure) 7.2 BASIS REFERENCES
9. "General Electric Standard Application for Reactor Fuel (GESTAR II)," NEDE-2401 1-P-A, Revision 14 as amended by Amendment 25 10 "The GFSTR-,OCA and SAFER Models for the Evaluation of the Loss-of-Coolant Accident

ERROR: ioerror OFFENDING COMMAND: imagemask STACK:

-dictionary-

-mark-

-savelevel-