ML20132A115

From kanterella
Jump to navigation Jump to search
Technical Requirements Manual, Volume 1
ML20132A115
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 04/16/2020
From:
Detroit Edison, Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML20132A115 (38)


Text

DETROIT EDISON - FERMI 2 AUTOMATED RECORD MANAGEMENT DISTRIBUTION CONTROL LIST 04/16/20 PAGE 1 Media: 8 1/2 X 11 Number Cnt Issue DTC Doc. Serial Number Page Rev Copies Lvl Date Sec Status

================-===========================================================----

TMTRM TRM VOL I 122 1 IR 04/16/20 AFC Please destroy or mark all revised, superseded, or cancelled documents as such. CONTROLLED stamps must be voided by lining through and initialing.

==========================================================-=================----

Detroit Edison EF2, C/0 Info Mgmt 140 NOC, 6400 North Dixie Highway, Newport MI 48166. (734) 586-4338 OR (734) 586-4061 for questions or concerns.

Ref: u33890

LICENSING DOCUMENT TRANSMITTAL FERMI 2 TECHNICAL REQUIREMENTS MANUAL - VOL I

  • Revision 122 dated 04/16/2020 Immediately, upon receipt of the item(s) below, please insert and/or remove the pages indicated.

Destroy the removed pages. Be sure that Revision 121 has been inserted prior to inserting these pages.

SECTION REMOVE and DESTROY INSERT In Front of TRM Manual Title Page Rev 121 12/27/2019 Title Page Rev 122 04/16/2020 Immediately following List of Effective Pages List of Effective Pag~s .

. Title Page LEP-1 through LEP-4 Rev 121 LEP-1 through LEP-4 Rev 122 04/16/2020 12/27/2019 .

Core Operating Limits Cycle 20, Revision 1 Cycle 21, Revision 0 Report 27 pages 31 pages Note: The changes above reflect those justified and described in LCR# 19-060-COL.

  • END
  • *Fermi 2 Technical

,Requirements Manual Volume I DTE*

Electric

  • DTC: TMTRM Date 04/16/2020 I File: 1754 ARMS -INFORMATION DSN: TRM VOL I Recipient I Rev: 122 L, ~?:.._

vV

. FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES

ii iii iv Revision Revision Revision Revision Revision 106 107 105 106 Page TRM 3.3-30 TRM 3.3-31 TRM 3.3-32 TRM 3.3-33 Revision Revision 31 Revision 31 Revision 31 Revision 31 TRM V Revision 107 TRM 3.3-34 Revision 31 TRM vi Revision 31 TRM 3.3-34a Revision 106 TRM 1.0-a Revision 31 TRM 3.3-35 Revision 60 TRM 1.0-1 Revision 31 TRM 3.3-36 Revision 104 TRM 2.0-1 Revision 31 TRM 3.3-37 Revision 72 TRM 3.0-a Revision 31 TRM 3.3-38 Revision 31 TRM 3.0-1 Revision 63 TRM 3.3-39 Revision 31 TRM 3.0-2 Revision 72 TRM 3.3-40 Revision 56 TRM 3.0-3 Revision 54 TRM 3.3-41 Revision 56 TRM 3.0-4 Revision 72 TRM 3.3-42 Revision 45 TRM 3.1-a Revision 31 TRM 3.3-43 Revision 62 TRM 3.1-1 Revision 31 TRM 3.3-44 Revision 72 TRM 3.2-1 Revision 31 TRM 3.3-45 Revision 31 TRM 3.3-a Revision 31 TRM 3.3-46 Revision 31 TRM 3.3-b Revision 31 TRM 3.3-47 Revision 31 TRM 3.3-c Revision 106 TRM 3.3-48 Revision 31 TRM 3.3-d Revision 31' TRM 3.3-49 Revision 31 TRM 3.3-1 Revision 120 TRM 3.4-a Revision 31 TRM 3.3-2 Revision 116 TRM 3.4-1 Revision 36 TRM 3.3-3 Revision 31 TRM 3.4-la Revision 71 TRM 3.3-4 Revision 31 TRM 3.4-lb Revision 71 TRM 3.3-5 Revision 31 TRM 3.4-2 Revision 31 TRM 3.3-6 Revision 31 TRM 3.4-3 Revision 31 TRM 3.3-7 Revision 31 TRM 3.4-4 Revision 31 TRM 3.3-8 Revision 106 TRM 3.4-5 Revision 31 TRM 3.3-9 Revision 31 TRM 3.4-6 Revision 31 TRM 3.3-10 Revision 106 TRM 3.4-7 Revision 31 TRM 3.3-11 Revision 31 TRM 3.4-8 Revision 31 TRM 3.3-12 Revision 67 TRM 3.4-9 Revision 31 TRM 3.3-13 Revision 74 TRM 3.4-:10 Revision 31 TRM 3.3-13a Revision 67 TRM 3.5-1 Revision 31 TRM 3.3-14 Revision 67 TRM 3.6-a Revision 70 TRM 3.3-15 Revision 31 TRM 3.6-1 Revision 60 TRM 3.3-16 Revision 31 TRM 3.6-2 Revision 67 TRM 3.3-17 Revision 31 TRM 3.6-3 Revision 31 TRM 3.3-18 Revision 100 TRM 3.6-4 Revision 109 TRM 3.3-19 Revision 31 TRM 3.6-5 Revision 87 TRM 3.3-20 Revision 31 TRM 3.6-6 Revision 33 TRM 3.3-21 Revision 116 TRM 3.6-7 Revision 31 TRM 3.3-22 Revision 31 TRM 3.6-8 Revision 31 TRM 3.3-23 Revision 31 TRM 3.6-9 Revision 85 TRM 3.3-24 Revision 31 TRM 3.6-10 Revision 31 TRM 3.3-25 Revision 31 TRM 3.6-11 Revision 31 TRM 3.3-26 Revision 31 TRM 3.6-12 Revision 31 TRM 3.3-27 Re:vision 31 TRM 3.6-13 Revision. 71 TRM 3.3-28 Revision 76 TRM 3.6-14 Revision 31 TRM 3.3-29 Revision 76 TRM 3.6-15 Revision 31 TRM Vol. I LEP-1 REV 122 04/16/2020

~

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES

  • Page TRM TRM TRM TRM 3.6-16 3.6-17 3.6-18 3.6-19 Revision Revision Revision Revision Revision 31 31 31 31 Page TRM 3.8-10 TRM 3.8-11 TRM 3.8-12 TRM 3.8-13 Revision Revision Revision Revision Revision 50 50 31 61 TRM 3.6-20 Revision 31 TRM 3.8-14 Revision 46 TRM 3.6-21 Revision 31 TRM 3.8-15 Revision 31 TRM 3.6-22 Revision 116 TRM 3.8-16 Revision 31 TRM 3.6-23 Revision 31 TRM 3.8-17 Revision 43 TRM 3.6-24 Revision 115 TRM 3.8-18 Revision 33 TRM 3.6-25 Revision 31 TRM 3.9-a Revision 31 TRM 3.6-26 Revision 31 TRM 3.9-1 Revision 31 TRM 3.6-27 Revision 31 TRM 3.9-2 Revision 65 TRM 3.6-28 Revision 31 TRM 3.9-3 Revision 80 TRM 3.6-29 Revision 31 TRM 3_9....:4 Revision 88 TRM 3.6_;30 Revision 31 TRM 3.9-5 Revision 31 TRM 3.6-31 Revision 31 TRM 3.10-1 Revision 31 TRM 3.6-32 Revision 70 TRM 3.11-a Revision 31 TRM 3.6-33 Revision 31 TRM 3.11-1 Revision 31 TRM 3.6-34 Revision 31 TRM 3.12-a Revision 31 TRM 3.6-35 Revision 31 TRM 3.12-1 Revision 75 TRM 3.7-a Revision 107 TRM 3.12-2 Revision 31 TRM 3.7-1 Revision 60 TRM 3.12-3 Revision 31 TRM 3.7-2 Revision 107 TRM 3.12-4 Revision 102 TRM 3.7-3 Revision 70 TRM 3.12-5 Revision 108 TRM 3.7-4 Revision 73 TRM 3.12-6 Revision 53 TRM 3.7-5 Revision 31 TRM 3.12-7 Revision 31 TRM 3.7-6 Revision 31 TRM 3.12-8 Revision 112 TRM 3.7-7 Revision 31 TRM 3.12-9 Revision 40 TRM 3.7-8 Revision 31 TRM 3.12-10 Re~ision 31 TRM 3.7-9 Revision 31 TRM 3.12-11 Revision 49 TRM 3.7-10 Revision 44 TRM 3.12-12 Revision 31 TRM 3.7-11 'Revision 31 TRM 3.12-13 Revision 75 TRM 3.7-12 Revision 72 TRM 3.12-14 Revision 31 TRM 3.7-13 Revision 31 TRM 3.12-15 Revisi_on 31 TRM 3.7-14 Revision 121 TRM 3.12-16 Revision 75 TRM 3.7-15 Revision 115 TRM 3.12-17 Revision 31 TRM 3.7-16 Revision 115 TRM 3.12-18 Revision 75 TRM 3.7-17 Revision 115 TRM 3.12-19 Revision 31 TRM 3.7-18 Revision 120 TRM 3.12-20 Revision 75 TRM 3 .. 7-19 Revision 31 TRM 3.12-21 Revision 31 TRM 3.7-20 Revision 79 TRM 3.12-22 Revision 31 TRM 3.8-a Revision 31 TRM 3.12-23 Revision 31 TRM 3.8-1 Revision 31 TRM 3.12-24 Revision 31 TRM 3;8-2 Revision 31 TRM 3.12-25 Revision 31 TRM 3.8-3 Revision 96 TRM 3.12-26 Revision 75 TRM 3.8-4 Revision 113 TRM 3.12-27 Revision 31 TRM 3.8-5 Revision 31 TRM 3.12-28 Revision 31 TRM 3.8-6 Revision 50 TRM 3.12-29 Revision 78*

TRM 3.8-7 Revision 114 TRM 3.12-30 Revision 31 TRM 3.8-8 Revision 50 TRM 4.0-1 Revision 31 TRM 3.8-9 Revision 50 TRM 5.0-a Revision 105*

TRM Vol. I LEP-2 REV 122 04/16/2020

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES

  • TRM TRM TRM TRM 5.0-1 5.0-2 Bl.0-1 B2.0-1 Revision Revision Revision Revision Revision 119 105 31 31 TRM TRM TRM TRM B3.4.7..:.1 B3.5-1 B3.6.1-1 B3.6.2-1 Revision Revision Revision Revision Revision 31 31 31 67 TRM B3.0-1 Revision 63 TRM B3.6.3-1 Revision 87 TRM B3.0-2 Revision 63 TRM B3.6.4-1 Revision 31 TRM B3.0-2a Revision 72 TRM B3.6.5-1 Revision 31 TRM B3.0-2b Revision 72 TRM B3.6.6-1 Revision 70 TRM B3.0-2c Revision 72 TRM B3.6.7-1 Revision 31 TRM B3.0-3 Revision 31 TRM B3.6.8-1 Revision 31 TRM B3.0-4 Revision 31 TRM B3.7.1-1 Revision 31 TRM B3.0-5 Revision 54 TRM B3.7.2-1 Revision 107 TRM B3.0-6 Revision 72 TRM B3.7.3-1 Revision 73 TRM B3.0-7 Revision 72 TRM B3.7.4-1 Revision 31 TRM B3.1-1 Revision 31 TRM B3.7.4-2 Revision 31 TRM B3.2-1 Revision 31 TRM B3.7.5-1 Revision 31 TRM B3.3.1-1 Revision 31 TRM B3.7.6-1 Revision 31 TRM B3.3.1-2 Revision 31 TRM B3.7.7-1 Revision 99 TRM B3.3.2-1 Revision 31 TRM B3.7.8-1 Revision 31 TRM B3.3.2-2 Revision 31 TRM B3.7.9-1 Revision 79 TRM B3.3.3-1 Revision 67 TRM B3.8.1-1 Revision 31 TRM B3.3.4-1 Revision 31 TRM B3.8.2-i Revision 31 TRM B3.3.4-2 Revision 84 TRM B3.8.3-1 Revision 96 TRM B3.3.5-1 Revision 31 TRM B3.8.4-1 Revision 31 TRM B3.3.5-2 Revision 31 TRM B3.8.5-1 Revision 31 TRM B3.3.6-1 Revision 116 TRM B3.8.6-1 Revision 43 TRM B3.3.6-2 Revision 31 TRM B3.9.1-1 Revision 31 TRM B3.3.6-3 Revision 31 TRM B3.9.2-1 Revision 65 TRM B3.3.6-4 Revision 31 TRM B3.9.3-1 Revision 31 TRM B3.3.6-5 Revision 76 TRM B3.9.4_;1 Revision 31 TRM B3.3.6-6 Revision 76 TRM B3.10-1 Revision 31 TRM B3.3.7-1 Revision 31 TRM B3 .11.1-1 Revision 31 TRM B3.3.7-2 Revision 31 TRM B3.12.1-1 Revision 31 TRM B3.3.7-3 Revision 106 TRM B3.12.2-1 Revision 112 TRM B3.3.8-1 Revision 31 TRM B3.12.3-i Revision 31 TRM B3.3.9-1 Revision 31 TRM B3.12.4-1 Revision 31 TRM B3.3.10-1 Revision 56 TRM B3.12.5-1 Revision 31 TRM B3.3.11-1 Revision 45 TRM B3.12.6-1 Revision 31 TRM B3.3.12-1 Revision 62 TRM B3.12.7-1 Revision 31 TRM B3.3.13-1. Revision 31 TRM B3.12.8-1 Revision 118 TRM B3.3.14-1 Revision 31 TRM B3.4.1-1 Revision 31 TRM B3.4.1-2 Revision 71 TRM B3.4.1-3 Revision 71 TRM B3.4.1-4 Revision 71 TRM B3.4.1-5 Revision 71 TRM B3.4.2-1 Revision 31 TRM B3.4.3-1 Revision 31 TRM B3.4.4-1 Revision 31 TRM B3.4.5-1 Revision 31 TRM B3.4.6-1 Revision 31 TRM Vol. I LEP-3 REV 122 04/16/2020

FERMI 2 - TECHNICAL :REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES

  • CORE OPERATING LIMITS :REPORT COLR 21, Revision 0 Page Revision Notation Page 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0 21 0 22 0 23 0 24 0 25 0 26 0 27 0

/28 0 29 0 30 0 31 0

  • TRM Vol. I LEP-4 :REV 122 04/16/2020

COLR ~ 21 Revision 0 Page 1 of31

  • FERMI2 CORE OPERATING LIMITS REPORT CYCLE21 REVISIONO
  • Prepared by:

ew

    • eer, Reactor Engineering

'?hz.~~

Reviewed by:

PaulRK.iel ~

Principal Technical Expert, Reactor Engineering Approved by: 3--,J, ;ltr.JO Michael A. Lake Date Supervisor, Reactor Engineering

  • February 2020

COLR - 21 Revision 0 Page 2 of31

  • TABLE OF CONTENTS 1.0 IN'TRODUCTION AND

SUMMARY

.. *.................................................................................. 4 2.0 SAFETY LIMIT MINIMUM CRITICAL POWER RATIO .................................................. 5 2.1 , Defmition ........................................................................................................................ 5 2.2 Determination of Cycle Specific SLMCPR .. :................................................................. 5 3.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE ............................................ 6 3.1 Defmition .......................................................................................................................... 6 3.2 Determination ofMAPLHGRLimit ............................................................................... 6 3.2.1 Calculation ofMAPFAC(P) ..................................................................................... 9 3.2.2 Calculation of MAPFAC(F) ................................................................................... 11 4.0 MINTh1UM CRITICAL POWER RATIO ............................................................................. 12 4.1 Definition .............................................. :........................................................................ 12 4.2 Determination of Operating Limit MCPR .................................................................... 12 4.3 Calculation ofMCPR(P) ............................................................................................... 14 4.3.1 Calculation of KP .................................................................................................... 14 4.3.2 Calculation of 't .................................................................................. : ....*................ 17 4.4 Calculation of MCPR(F) ............................................................................ ;................... 18 5.0 LINEAR HEAT GENERATION RATE ............................................................................... 19 5.1 Defmition ...................................................................................................................... 19 5.2 Determination ofLHGR Limit. ..................................................................................... 19 5.2.1 Calculation of LHGRFAC(P) .................................... :......................................: ..... 22 5.2.2 Calculation ofLHGRFAC(F) ................................................................................. 24 6.0 CONTROL ROD BLOCK INSTRUMENTATION ............................................................. 25 6.1 Definition ...................................................................................................................... 25 7.0 BACKUP STABILITY PROTECTION REGIONS .................................................. '. .......... 26 7 .1 Defmition ...................................................................................................................... 26

8.0 REFERENCES

...................................................................................................................... 30

COLR. - 21 Revision 0 Page3 of31

  • ('

TABLE 1 LIST OF TABLES FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS ............................ 7 TABLE2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS ................................ 11 TABLE3 OLMCPR 100110s AS A FUNCTION OF EXPOSURE AND -c ******************************** 13 TABLE4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS ........................................ 18 TABLES STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES .............................. 20 TABLE6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS ..................................-....... 24 TABLE? CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER 25 LIST OF FIGURES

  • FIGURE 1 BSP REGIONS (NOMINAL FEEDWATER TEMPERATURE) ......................... 27 FIGURE 2 BSP REGIONS (20°F TEMPERATURE REDUCTION) ..................................... 28 FIGURE 3 BSP REGIONS (55°F TEMPERATURE REDUCTION) ..................................... 29

COLR - 21 Revision 0 Page4of31

1.0 INTRODUCTION

AND

SUMMARY

\

This report provides.the cycle specific plant operating limits, which are listed below, for Fermi 2, Cycle 21, as required by Technical Specification 5.6.5. The analytical methods used to determine these core operating limits are those previously reviewed and approved by the Nuclear Regulatory Commission in GESTAR II (Reference 7).

The cycle specific limits contained within this. report are valid for the full range of the licensed operating domain.

OPERATING LIMIT TECHNICAL SPECIFICATION SLMCPR9s19s 2.1.1.2 APLHGR 3.2.1 MCPR 3.2.2

  • LHGR RBM BSPREGIONS 3.2.3 3.3.2.1 3.3.1.1 SLMCPR = SAFETY L'1T MINIMUM CRITICAL POWER RATIO APLHGR = AVERAGE PLANAR LINEAR HEAT GENERATION RATE .

MCPR = MINIMUM CRITICAL POWER RATIO LHGR = LINEAR HEAT GENERATION RATE RBM = ROD BLOCK MONITOR BSP = BACKUP STABILITY PROTECTION

COLR - 21 Revi~ion 0 Page 5 of31

  • 2.0 SAFETY LIMIT MINIMUM CRITICAL POWER RATIO 2.1 Definition TECH SPEC IDENT OPERATING LIMIT 2.1.1.2 SLMCPR9s19s The Technical Specification SAFETY LIMIT MINJMUM CRITICAL POWER RATIO (SLMCPR9s19s) shall be the smallest critical power ratio that exists in the core for each fuel product.

The Technical Specification Safety Limit value is dependent on the fuel product line and the corresponding MCPR correlation, which is cycle independent. The value is based on the Critical Power Ratio data statistics and a 95% probability with 95% confidence that rods are not susceptible to boiling transition. (Reference 20)

The Cycle Specific SLMCPR99.9 presented here is that power in the bundle that is statistically calculated by application of the appropriate correlations and uncertainties to cause some point in

. the bundle to experience boiling transition, divided by the actual bundle operating power.

The SLMCPR99.9 is set such that no significant fuel damage is calculated to occur if the limit is not violated. Since the parameters that result in fuel damage are not directly observable during reactor operation, the thermal and hydraulic conditions that result in the onset of transition boiling are used to mark the beginning of the region in which fuel damage could occur. Although the onset of transition boiling would not res11:lt in damage to BWR fuel rods, the critical power at which boiling transition is calculated to occur has been adopted as a convenient limit. ,

For this cycle, the '.fwo Loop and Single Loop SLMCPR99_9 values (Reference 2) are:

Two Loop SLMCPR = 1.08 Single Loop SLMCPR = 1.11

COLR - 21 Revision 0 Page 6 of31

  • 3.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE 3.1 Definition TECH SPEC IDENT OPERATING LIMIT 3.2.1 APLHGR The AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) shall be applicable to a specific planar height and is equal to the sum of the LINEAR HEAT GENERATION RATEs (LHGRs) for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the bundle at the height.

3.2 Determination of MAPLHGR, Limit The maximum APLHGR (MAPLHGR) limit is a function of reactor power, core flow, fuel type, and average planar exposure. The limit is developed, using NRC approved methodology described

  • in References 7 and 8, to ensure gross cladding failure will not occur following a loss of coolant accident (LOCA). The MAPLHGR limit ensures that the peak clad temperature during a LOCA wiU not exceed the limits as specified in 10CFR50.46(b)( 1) and that the fuel design analysis criteria defined in References 7 and 8 will be met.

The MAPLHGR limit during dual loop operation is calculated by the following equation:

MAPLHGRUMrr= M1N (MAPLHGR (P), MAPLHGR (F))

where:

MAPLHGR (P) = MAPFAC (P) x MAPLHGRSTD MAPLHGR (F) = MAPFAC (F) X MAPLHGRSTD Within four hours after entering single loop operation, the MAPLHGR limit is calculated by the following equation:

MAPLHGRuMIT = MJN (MAPLHGR (P), MAPLHGR (F))

where:

MAPLHGR (P) = MAPFAC (P) x MAPLHGR~

MAPLHGR (F) = MAPFAC (F) x MAPLHGRSTD

  • MAPFAC (P) and MAPFAC (F) are limited to 0.90 The Single Loop Operation multiplier on MAPLHGR is 0.90. (Reference 2)

COLR - 21 Revision 0 Page 7 of31

  • MAPLHGRsm, the standard MAPLHGR limit, is defmed at a power of 3486 MWth and flow of 105 Mlbs/hr for each fuel type as' a function of average planar exposure and is presented'in Table
1. (Reference 2) When hand calculations are required, MAPLHGRsm shall be determined by interpolation from Table 1. MAPFAC(P), the core power-dependent MAPLHGR limit adjustment factor, shall be* calculated by using Section 3.2.1. MAPFAC(F), the core :flow-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 3.2.2.
  • TABLEl FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS GEl 4 Exposure GE14 MAPLHGR-GWD/ST kW/ft 0.0 12.82 14.51 12.82 19.13 12.82 57.61 8.00 63.50* 5.00 Fuel Types 2 = GE14-PlOCNAB381-4G6.0/11G5.0-lOOT-150-T6-4372 3 = GE14-P10CNAB381-4G6.0/9G5.0-100T-150-T6-4371 4 = GE14.:.PlOCNAB381-15G5.0-lOOT-150-T6-4373 5 = GE14-PlOCNAB381-6G6.0/9G5.0-lOOT-150-T6-4374 6 = GE14-P10CNAB385-13GZ-100T-150-T6-4571 7 = GE14-PlOCNAB384-15GZ-lOOT-150-T6-4572 8 = GE14-P10CNAB383-13GZ-100T-150-T6-4573 9 = GE14-P10CNAB377-15GZ-100T-150-T6-4574 19 = GE14-P10CNAB381-4G6.0/12G5.0-100T-150-T6-4261 20 = GE14-P10CNAB379-15GZ-100T-150-T6-4262 21 = GE14-PlOCNAB383-8G6.0/5G5.0-lOOT-150-T6-4478 22 = GE14-PlOCNAB383-8G6.0/7G5.0-lOOT-150-T6-4479 23 = GE14-P10CNAB383-2G6.0/11G5.0-100T-150-T6-4480 24 = GE14-PlOCNAB383-10G6.0/5G5.0-lOOT-150-T6-4481

COLR - 21 Revision 0 Page 8 of31

  • TAB~E 1 (CONT.)

FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS GNF3 Exposure GNF3 MAPLHGR GWD/ST kW/ft 0.0 14.36 9.07 13.78 21.22 13.01 40.82 10.75 57.60 8.00 63.50 6.00 Fuel Types 25 = GNF3-PlOCG3B388-14GZ-83AV-150-T6-4661 26 = GNF3-PlOCG3B399-14GZ-83AV-150-T6-4662 27 = GNF3-PlOCG3B402-16GZ-83AV-150-T6-4663

  • 28 = GNF3-PlOCG3B419-16GZ-83AV-150-T6-4664

COLR - 21 Revision 0 Page 9 of31

  • 3.2.1 Calculation of MAPFAC(P)

The core power-dependent MAPLHGR limit adjustment factor, MAPFAC(P) (Reference 2, 3 &

15), shall be calculated by one of the following equations. Note that For 0:S-P<25:

No thermal limits monitoring is required.

For 25 :SP :S 29.5 :

With All Equipment OPERABLE, or MSR INOPERABLE For core flow < 50 Mlbs/hr, MAPFAC (P) = 0.568 + 0.00156 (P-29.5)

For core flow~ 50 Mlbs/hr, MAPFAC (P) = 0.568 + 0.00156 (P-29.5)

With Turbine Bypass INOPERABLE, or Turbine Bypass and MSR INOPERABLE

  • For core flow< 50 Mlbs/hr, MAPFAC (P)

For core flow~ 50 Mlbs/hr,

= 0.488 + 0.01067 (P-29.5)

MAPFAC (P) = 0.436 + 0.00511 (P-29.5)

For 29.5 < P :S 45 :

MAPFAC (P) = 0.713 + 0.005-29 (P-45)

For 45 < P :S 60 :

MAPFAC (P) = 0.791 + 0.00520 (P- 60)

For 60 < P :S 85 :

MAPFAC (P) = 0.922 + 0.00524 (P- 85)

For 85 < P :S 100 :

MAPFAC (P) = 1.000 + 0.00520 (P -100) where: P = Core power (fraction ofrated power times 100).

COLR - 21 Revision 0 Page 10 of31

  • MAPFAC(P) for Pressure Regulator Out of Service (PROOS) Limits With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or ,Equal to 25% and both Turbine Bypass and Moisture Separator Reheater (MSR) Operable:

For 25:::P:::29.5:

For core flow< 50 Mlbs/hr, MAPFAC (P) = 0.568 + 0.00156(P-29.5)

For core flow~ 50 Mlbs/hr, MAPFAC (P) = 0.568 + 0.00156 (P-29.5)

For 29.5 < P $ 45 :

MAPFAC (P) = 0.680 + 0.00626 (P -45).

For 45 < P ::5 60 :

MAPFAC (P) = 0.758 + 0.00520 (P- 60)

For 60 < P $ 85 :

MAPFAC (P) = 0.831 + 0.00292 (P- "85)

  • For 85 < P :$100 :

where:

MAPFAC (P) = 1.000 + 0.00520 (P-100)

P = Core power (fraction of rated power times 100).

COLR - 21 Revision 0 Page 11 of31

.* 3.2.2 Calculation of MAPFAC(F) 1 The core flow-dependent MAPLHGR limit adjustment factor, MAPFAC(F) (Reference 2, 3, &

15), shall be calculated by the following equation:

WT MAPFAC(F)= MIN(C,AFx-+ BF) 100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 2.

BF = Given in Table 2.

C = 1.0 in Dual Loop and 0.90 in Single Loop.

TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr) 110 0.8889 0.2613

  • *As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 21 Revision 0 Page I2of31

  • 4.0 lVllNIMUM CRITICAL POWER RATIO TECH SPEC IDENT OPERATING LIMIT 3.2.2 MCPR 4.1 - Definition The MINIMUM CRITICAL POWER RATIO (MCPR) shall be the smallest Critical Power Ratio (CPR) that exists in the core for each type of fuel. The CPR is that power in the bundle that is calculated by application of the appropriate* correlation(s) to cause some point in the bundle to experience boiling transition, divided by the actual bundle operating power.

4.2 Determination of Operating Limit MCPR The required Operating Limit MCPR (OLMCPR) (Reference 2) at steady-state rated power and flow operating conditions is derived from the established fuel cladding integrity Safety Limit MCPR and an analysis of abnormal operational transients. To ensure that the Safety Limit MCPR is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which event will cause the largest reduction in CPR. Three different core average exposure conditions are evaluated. The result is an Operating Limit MCPR which is a function of exposure and 't .. 'tis a measure of scram speed and is defined in Section 4.3.2.

The limiting OLMCPR shall be represented by the following equation:

OIMCPR = MAX(MCPR(P), MCPR(F))

The process to calculate MCPR(P), the core power-dependent MCPR operating limit, is illustrated in Section 4.3.

The process to calculate MCPR(F), the core flow-dependent MCPR operating limit, is illustrated in Section 4.4.

In case of Single Loop Operation, the Safety Limit MCPR is increased to account for increased uncertainties in core flow measurement and TIP measurement. For Single Loop Operation, the OLMCPR is increased by 0.03 (Reference 2) from the Two Loop OLMCPR.

COLR - 21 Revision 0 Page 13 of31

  • In case of operation with one Turbine Pressure Regulator out of service, OLMCPR limits are bounding when reactor power is less than 29.5% or greater than 85%. When reactor power is greater than or equal to 29.5% and less than or equal to 85%, then operation with one Turbine Pressure Regulator out of service is permitted if both Turbine Bypass Valves and the Moisture Separator Reheater are operable. (Reference 2 and 3)

TABLE 3 OLMCPR 100110s AS A FUNCTION OF EXPOSURE AND 1:

EXPOSURE CONDIDON <MWD/ST) OLMCPR10011os BOTH Turbine Bypass Valves

BOC to EOR-6420 't = 0 1.32 1.35

'C= 1 1.35 1.38 EOR-6420to EOR-3420 't = 0 1.32 1.35

't= 1 1.41 1.44 EOR-3420 to BOC 't = 0 1.32 1.35

't = 1 1.42 1.45 ONE Turbine Pressure Regulator Out of Service AND Reactor Power between 29.5% and 85%

AND BOTH Turbine Bypass Valves and Moisture Separator Reheater Operable BOC to BOC 't = 0 1.32 1.35

't= 1 1.42 1.45 Moisture Separator Reheater

- INOPERABLE BOC to BOC 't = 0 1.34 1.37

't = 1 1.45 1.48 Turbine Bypass Valve INOPERABLE BOC to BOC 't = 0 1.34 1.37

't = 1 1.46 1.49 BOTH Turbine Bypass Valve AND Moisture Separator Reheater INOPERABLE BOC to BOC 't = 0 , 1.38 1.41

't = 1 1.50 1.53

  • BOC =Beginning of Cycle EOC =End of Cycle EOR =End of Rated Conditions .

EOR is defined as 100% power, 100% core flow, and all control rods fully withdrawn.

EOR-6420 means 6420 MWD/ST before End of Rated Conditions.

COLR - 21 Revision 0 Page 14 of31 I ** 4.3 Calculation of MCPR(P)

MCPR(P), the core power-dependent MCPR operating limit, shall be calculated by the following equation:

MCPR(P) = Kp x OLMCPR100/10s KP, the core power-dependent MCPR Operating Limit adjustment factor, shall be calculated by using Section 4.3.1. OLMCPR100110s shall be,determined by interpolation on 't' from Table 3, and

,: shall be calculated by using Section 4.3.2.

4.3.1 Calculation of KP The core power-dependent MCPR operating limit adjustment factor, Kp (Reference 2, 3, & 15),

shall be calculated by using one of the following equations:

Note: P = Core power (fraction of rated power times 100) for all calculation of KP.

For O,S P < 25 :

No thermal limits monitoring is required.

For 25 .s P < 29.5 :

When All Equipment is OPERABLE,

( KBYP + ( 0.0067 (29.5 - P)))

X Kp = -------------

0LMCPR1oo/10s

  • For core flow < 50 Mlbs/br, where: KBYP = 1.94 for two loop operation

= 1.97 for single loop operation Kp = ( KBYP +OLMCPR1oo/1os

( 0:0156 (29.5 - P) ))

X For core flow 2'.: 50 Mlbs/br, where: KBYP = 2.13 for two loop operation

= 2.16 for single loop operation

COLR - 21 Revision 0 Page 15 of31

( KBYP __,_

+ (0.0067 X (29.5 - P)))

OLMCPR100/1os For core flow < 50 Mlbs/hr, where: KBYP = 1.95 for two loop operation

= 1.98 for single loop operation

( KBYP + (0.0156 X (29.5 - P)))

Kp =......_--_----------

0LMCPR100;1os

  • For core flow~ 50 Mlbs/hr, wher.e: KBYP = 2.13 for two loop operation

= 2.16 for single loop operation When Turbine Bypass is INOPERABLE, Kp =......__________

( KBYP _

+ ( 0.0244 X (29.5 - P)))

OLMCPR1 00; 1os For core flow < 50 Mlbs/hr, where: KBYP = 2.35 for two loop operation

= 2.38 for single loop operation For core flow~ 50 Mlbs/hr, where: KBYP = 2.35 for two loop operation

= 2.38 for single loop operation When Turbine Bypass and Moisture Separator Heater are INOPERABLE,

( KBYP + (0.0244 X (29.5 - P)))

Kp = --------------

0LMCPR1oo;10s For core flow < 50 Mlbs/hr, where: KBYP = 2.35 for two loop operation

= 2.38 for single loop operation

( KBYP + ( 0.0178 X (29.5 - P)))

Kp =-------------

OLMCPR1oo;1os For core flow~ 50 Mlbs/hr, where: KBYP = 2.42 for two loop operation

= 2.45 for single loop operation

COLR - 21 Revision 0 Page 16 of31

  • For 29.5 :s P<45:

Kp = 1.150 + (0.0021 X (45 - P))

For 45 :s P < 60 :

Kp = 1.150 For 60 :s P < 85 :

Kp = 1.056 + (0.0038 X (85 -P))

For 85 :s P :s 100 :

Kp = 1.000 + (0.0037 X (100 - P))

  • KP for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service, Reactor Power greater than 29.5%, and both Turbine Bypass and Moisture Separator Reheater Operable:

For 29.5 :s P < 45 :

Kp = 1.303 + (0.0081 X (45 - P))

  • For 45 ,:s P < 60 :

For 60 :s P :s 85 :

Kp Kp

= 1.241 + (0.0041 x (60 -P))

= 1.28 + (0.0033 X (85 - P))

For Reactor Power< 29.5% and Reactor Power> 85%, the Pressure Regulator Out of Service condition is not limiting (Reference 2) .

COLR - 21 Revision 0 Page 17 of31

  • 4.3.2 Calculation of 't The value of 't, which is a measure of the conformance of the actual control rod scram times to the assumed average control rod scram time in the reload licensing analysis (References 4 & 24), shall be calculated by using the following equation:

(rave -TB)

't=----

TA-TB where: 'l'A = 1.096 seconds

'l"B =0.830+0.019x 1.65 w. seconds n

LNin

  • n =

i=l number of surveillance tests performed to date in cycle, Ni = number of active control rods measured in the ith surveillance test,

'l'i = average scram time to notch 36 of all rods measured in the ith surveillance test, and N1 = total number of active rods measured in the initial control rod scram time test for the cycle (Technical Specification Surveillance Requirement 3.1.4.4).

The value of 't shall be calculated and used to determine the applicable OLMCPR100110s value from Table 3 within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of the conclusion of each control rod scram time surveillance test required by Technical Specification Surveillance Requirements 3 .1.4.1, 3 .1.4.2, and 3 .1.4.4.

COLR - 21 Revision 0 Page 18 of31

  • 4.4 Calculation of MCPR(F)

MCPR(F), the core flow-dependent MCPR operating limit (Reference 2 & 3), shall be calculated by using the following equation:

WT For Two Loop Operation MCPR(F)= MAX(121,( AFX-+ BF))

100 WT For Single Loop Operation MCPR(F)= MAX(124,( AFx-+BF))

100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 4.

BF = Given in Table 4.

TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS

  • Two Loop Operation Maximum Cqre Flow*

(Mlbs/hr) 110 AF

-0.596 BF 1.739 Single Loop Operation 110 -0.596 1.769

  • As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

_/ COLR - 21 Revision 0 Page 19 of31

  • 5.0 LINEARHEATGENERATIONRATE TECH SPEC IDENT OPERATING LIMIT 3.2.3 LHGR 5.1 Definition The LINEAR HEAT GENERATION RATE (LHGR) shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length. By maintaining the operating LHGR below the applicable LHGR limit, it is assured that all thermal-mechanical design bases and licensing limits for the fuel will be satisfied.

5.2 Determination of LHGR Limit The maximum LHGR limit is a function of reactor power, core flow, fuel and rod type, and fuel rod nodal exposure. The limit is developed, using NRC 'approved methodology described in Reference 7, to ensure the cladding will not exceed its yield stress and that fuel thermal-mechanical design criteria will not be violated during any postulated transient events. The LHGR limit ensures the fuel mechanical design requirements as defined in References 1, 21, & 25 will be met.

. The LHGR limit during dual loop operation is*calculated by the following equation:

,/

LHGR=rr = MIN (LHGR (P), LHGR (F))

where:

LHGR (P) = LHGRFAC (P) x LHGRsm LHGR (F) = LHGRFAC (F) x LHGRsm Within four hours after entering single loop operation, the LHGR limit is calculated by the following equation:

LHGR=rr = MIN (LHGR (P), LHGR (F))

where:

LHGR (P) = LHGRFAC (P) x LHGRsm LHGR (F) = LHGRFAC (F) x LHGRsm UIGRFAC (P) and LHGRFAC (F) are limited to 0.90 The Single Loop Operation multiplier on LHGR is 0.90. (Reference 2)

COLR-21 Revision 0 Page 20 of31

    • LHGRsm, the standard LHGR limit, is defined at a power of 3486 MWth and flow of 105 Mlbs/hr for each fuel and rod type as a function of fuel rod nodal exposure. LHGRsm is found in the reference cited in Table 5. When hand calculations are required, LHGRsm shall be determined by interpolation of the limits provided in the Table 5 reference. LHGRFAC(P), the core power-dependent LHGR limit adjustment factor, shall be calculated by using Section 5.2.1.

LHGRFAC(F), the core flow-dependent LHGR limit adjustment factor, shall be calculated by using Section 5.2.2.

TABLES STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES For GE14 fuel listed below, the most limiting LHGR for Uranium Only fuel rod is found in NEDC-32868P Revision 6 Table D-2 (References 1 & 21).

For.GE'14 fuel listed below, the most limiting LHGR for Gadolinia Bearing fuel rods is found in NEDC-32868P

  • Revision 6 Table D-4 (References 1 & 21). Utilize the row for 6% Rod/Section wt-% Gd203.

Fuel Types 2 = GE14-PlOCNAB381-4G6.0/llG5.0-100T-150-T6-4372 3 = GE14-PlOCNAB381-4G6.0/9G5.0-lOOT-150-T6-4371 4 = GE14-PlOCNAB381-15G5.0-lOOT-150-T6-4373 5 = GE14-PlOCNAB38 l-6G6.0/9G5.0-lOOT-150-T6-4374 6 = GE14-PlOCNAB385-13GZ-lOOT-150-T6-4571 7 = GE14-PlOCNAB384-15GZ-lOOT-150-T6-4572 8 = GE14-P10CNAB383-13GZ-100T-150-T6-4573 9 = GE14-PlOCNAB377-15GZ-lOOT-150-T6-4574 19 = GE14-PlOCNAB381-4G6.0/12G5.0-lOOT-150-T6-4261 20 = GE14-PlOCNAB379-15GZ-lOOT-150-T6-4262 21 = GE14-PlOCNAB383-8G6.0/5G5.0-lOOT-150-T6-4478 22 = GE14-PlOCNAB383-8G6.0/7G5.0-lOOT-150-T6-4479 23 = GE14-PlOCNAB383-2G6.0/11G5.0-lOOT-150-T6-4480 24 = GE14-PlOCNAB383-lOG6.0/5G5.0- lOOT-150-T6-4481

COLR - 21 Revision 0 Page 21 of31

  • TABLE 5 (CONT.)

STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES For GNF3 fuel listed below, the most limiting LHGR for Uranium Only fuel rod is found in NEDC-33879P Revision 2 Table A-1 (References 1 & 25).

For GNF3 fuel listed below, the most limiting LHGR for

  • Gadolinia Bearing fuel rods is found in NEDC-33879P Revision 2 Table A-2 (References 1 & 25). Utilize the row for 6% Rod/Section wt-% Gd203.

Fuel Types 25 = GNF3-PlOCG3B388-14GZ-83AV-150-T6-4661 26 = GNF3-PlOCG3B399-14GZ-83AV-150-T6-4662 27 = GNF3-PlOCG3B402-16GZ-83AV-150-T6-4663 28 = GNF3-PlOCG3B419-16GZ-83AV-150-T6-4664

COLR - 21 Revision 0 Page 22of31

  • 5.2.1 Calculation of LHGRFAC(P)

The core power-dependent LHGR limit adjustment factor, LHGRFAC(P) (Reference 2, 3, & 15),

shall be calculated by one of the following equations:

For O:5 P < 25 :

No thermal limits monitoring is required.

For 25 :5 P :5 29.5 :

With All Equipment OPERABLE, or MSR INOPERABLE For core flow< 50 Mlbs/hr, LHGRFAC (P) = 0.568 + 0.00156 (P-29.5)

For core flow~ 50 Mlbs/hr, ,

LHGRFAC (P) = 0.568 + 0.00156 (P-29.5) -

With Turbine.Bypass INOPERABLE, or Turbine Bypass and MSR INOPERABLE For core flow < 50 l\1lbs/hr, LHGRFAC (P) = 0.488 + 0.01067 (P-29.5)

For core flow~ 50 Mlbs/hr, LHGRFAC (P) = 0.436 + 0.00511 (P-29.5)

For 29.5 < P :5 45 :

LHGRFAC (P) = 0.713 + 0.00529 (P-45)

For 45 < P :5 60 :

LHGRFAC (P) = 0.791 + 0.00520 (P- 60)

For 60 < P :5 85 :

LHGRFAC (P) = 0.922 + 0.00524 (P- 85)

For 85 < P :5 100 :

LHGRFAC (P) = 1.000 + 0.00520 (P,; JOO) where: P = Core power (fracµon of rated power times 100).

COLR. - 21 Revision 0 Page 23 of31

  • LHGRFAC(P) for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or Equal to 25% and both Turbine Bypass and Moisture Separator Reheater Operable:

For 25 ::: P S 29.5 :

For core flow< 50 Mlbs/hr, LHGRFAC (P) = 0.568 + 0.00156 (P-29.5)

For core flow 2: 50 Mlbs/hr,

. LHGRFAC (P) = 0.568 + 0.00156 (P-29.5)

For 29.5 <PS 45:

LHGRFAC (P) = 0.680 + 0.00626 (P-45)

For 45 < P S 60 :

LHGRFAC (P) = 0.758 + 0.00520 (P- 60) ,

For 60 < P ::: 85 :

LHGRFAC (P) = 0.831 + 0.00292 (P- 85)

  • For 85 < P::: 100 :

where:

LHGRFAC (P) = 1.000 + 0.00520 (P-100)

P = Core power (fraction of rated power times 100).

COLR - 21 Revision 0 Page 24 of31

.* 5.2.2 Calculation of LHGRFAC(F)

The core flow-dependent LHGR limit adjustment factor, LHGRFAC(F) (Reference 2, 3, & 15),

shall be calculated by the following equation:

WT IHGRFAC(F)= MIN(C, AF x - +BF) 100 where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 6.

BF = Given in Table 6.

C = 1.0 in Dual Loop and 0.90 in Single Loop.

TABLE 6 FLOW-DEPEND.ENT LHGR LIMIT COEFFICIENTS Maximum Core Flow*

(Mlbs/hr) 110 0.8889 0.2613

  • *As limited by the Recirculation System MG Set mechanical scoop tube stop setting.

COLR - 21 Revision 0 Page 25 of31

  • 6.0 CONTROL ROD BLOCK INSTRUMENTATION TECH SPEC IDENT SETPOINT 3.3.2.1 RBM 6.1 Definition The nominal trip setpoints __ and allowable values of the control rod withdrawal block instrumentation are shown in Table 7. These values are consistent with the bases of the APRM Rod Block Technical ~pecification Improvement Program (ARTS) and the MCPR operating limits. (References 2, 5, & 10)

TABLE 7 -CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER

  • Setpoint Low power setpoint Intermediate power setpoint High power setpoint Trip Setpoint 27.0 62.0

. 82.0 Allowable Value ,

28.4 63.4 83.4 Low trip setpoint 117.0 118.9 Intermediate trip setpoint 112.2 114.1 High trip setpoint 107.2 109.1 Downscale trip setpoint 94.0

  • 92.3 For this cycle, the analyzed high trip setpoint of 111 % bounds the setpoints in Table 7. The OLMCPR associated with the RBM setpoint of 111 % is 1.26 for dual loop operation. (Reference 2)

COLR - 21 Revision 0 Page 26 of31

  • 7.0 BACKUP STABILITY PROTECTION REGIONS TECH SPEC REFERENCE OPERATING Lll\flT 3.3.1.1 Action Condition J Alternate method to detect and suppress thermal hydraulic instability oscillations TRM REFERENCE OPERATING Lll\flT 3.4.1.1 Scram, Exit, and Stability Awareness Regions 7.1 Definition The Backup Stability Protection (BSP) Regions are an integral part of the Tech Spec required alternative method to detect and suppress thermal* hydraulic instability oscillations in,that they identify areas of the power/flow map where there is an increased probability that the reactor core could experience a thermal hydraulic instability. The BSP Regions J are required if the Oscillation Power Range Monitors are inoperable. Regions are identified that are either excluded from
  • planned entry (Scram Region), or where specific actions are required to be taken to immediately leave the region (Exit Region). A region is also identified where operation is allowed provided that additional monitoring is performed to verify that the reactor core is not exhibiting signs of core thermal hydraulic instability (Stability Awareness Region). (Reference 2)

The boundaries of the Scram and Exit regions are established on a cycle specific basis based upon core decay ratio calculations performed using NRC approved methodology.

BSP boundaries for this cycle defined in Figure 1 are applicable when final feedwater temperature is near the optimum range as illustrated in 20.107.02, Loss of Feedwater Heating Abnormal Operating Instruction Enclosure A.. Figure 2 is applicable to operation with Feedwater Heaters Out-Of-Service (FWHOOS) or with Final Feedwater Temperature Reduction (FFWTR) or when final feedwater temperature is l5°F to 20°F below the optimum range. Figure 3 is applicable to operation with Feedwater Heaters Out-Of-Service (FWHOOS) or with Final Feedwater Temperature Reduction (FFWTR) or when final feedwater temperature is 20°F to 55°F below the optimum range .

COLR - 21 Revision 0 Page 27 of31

  • FIGURE 1: BSP REGIONS (NOMINAL FEEDWATER TEMPERATURE)

Cycle 21 BSP Regions (Nominal Feedwater Temperature)

  • la +-'---+--+-~..----+---+--l--l---+--+---+--1--1-----+---+---t--+--+----+----I 30 10 Nominal feedwater heating exists with all feedwater heaters in service, the moisture separator reheaters in service, and reactor water cleanup in or out of service. Nominal feedwater temperature is determined with the Loss of Feedwater Heating Abnormal Operating Procedure, 20.107.02. If feedwater temperature is less than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph provided in Enclosure A of 20.107.02, then Figure 1 can be used.

COLR - 21 Revision 0 Page 28 of3 1

  • FIGURE 2: BSP REGIONS (20°F TEMPERATURE REDUCTION)

Cycle 21 BSP Regions (20F Temperature Reduction) 90 +---!--+'-+--....;..-+--+---+--+--+--+-'1.-+--1......+--!----r-~ ~ ~ +-l

~~~ -~;..,&~ .i *---~--L_L____,

~ core Frew=too,Oflflb/ht ____J--::~aij;~~Lt=t=t:~~

80 +-~ -+--+---'--+- +----"- * -'"-

I - + - -...:io..,.---i'----'-----,,~'4--------+--*- -+- - ~ --~~~::_*,..*.....

~ ~ +-........,...,-'------'---+--.;----~..-;;..- ~<-,-----,,~-,--+--+-,-.,~--'---;---;--'--~

I J~+--+--+-~ --+----~~~-+-+----+--+-;-~

J

'I i ~ .T -f-+-i---;--7"-+--i-;:;.....,~-+----+---,"--,----+--+--:--:--i--+--'--~

t!:

I

  • 60 70 Reduced feedwater temperature is analyzed for a 20 degree Fahrenheit reduction in feedwater temperature. If feedwater temperature is between 15 degrees Fahrenheit to 20 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph provided in Enclosure A of 20.107 .02, then Figure 2 should be used .

COLR - 21 Revision 0 Page 29 of31

  • FIGURE 3: BSP REGIONS (55°F TEMPERATURE REDUCTION)

Cycle 21 BSP Regions (SSF Temperature Reduction) 90 ~---,-----,------,---,-----,--.,-----,-

i -,----,-,-----,,----.---,--,---,-----:::,.,.--,---,

IO T~ :_ : -~WA!~¥ ---'.-----~!~==* -

t--L----....---.--.J---+---:----+--f--"~ ---i-_;....~.,.,e.::y"---;7--'---'-f--c--,--+----j Reduced feedwater temperature is analyzed for a 55 degree Fahrenheit reduction in feedwater temperature. If feedwater temperature is more than 20 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph provided in Enclosure A of 20.107.02, then Figure 3 should be used .

COLR - 21 Revision 0 Page 30 of31

8.0 REFERENCES

Core Operating Limits Report references are cited for two purposes. Many references are used as the basis for information, numbers, and equations found in COLR. These references tend to be fuel type or cycle specific. Other references are listed as basis information for the content and structure of COLR but are not Cycle specific.

1. "Fuel Bundle Information Report for Fermi 2 Reload 20 Cycle 21," Global Nuclear Fuel, DRF 004N8821, Revision 0, November 2019 (LHGR Limits), DTC: TRVEND, DSN: C21 FBIR
2. "Supplemental Reload Licensing Report for Fermi 2 Reload 20 Cycle 21," Global Nuclear Fuel, DRF: 004N8820, Revision 0, November 2019 (MAPLHGR Limits, SLO Multiplier, MCPR Limits, SLMCPR, Off-Rated Limits, Backup Stability Regions, OPRM setpoints, RBM setpoint, PROOS), DTC: TRVEND, DSN: C21 SRLR
3. "GNF3 Fuel Design Cycle-Independent Analyses for Fermi 2 Power Plant," GE-Hitachi, 004N7423, Revision 0, November 2019. (GNF3 and GE14 ARTS Limits, RR Pump Seizure, PROOS), Edison File Number: T19-158
4. Letter from Greg Porter to B. L. Myers, "Scram Times for Improved Tech Specs." GP-99014, October 22, 1999 containing DRF A12-00038-3, Vol. 4 information from G. A .

Watford, GE, to Distribution,

Subject:

Scram Times versus Notch Position (TAU Calculation), Edison File Number: Rl-7242

5. NUMAC Power Range Neutron Monitoring System (PRNM) Surveillance Validation, Design Calculation DC-4608 Volume 1, Revision G (RBM A and B Setpoints), DTC:

TDPINC, DSN: DC-4608 VOL I

6. Detroit Edison Fermi-2 Thermal Power Optimization Task T0201: Operating Power/Flow Map, Edison File Number: Tl3-050 (P-F Map for BSP figures)
7. "General Electric Standard Application for Reactor Fuel (GESTAR II)," NEDE-24011-P-A, Revision 29 with amendments, Edison File Number: Rl-8103
8. TRACG Application for Emergency Core Cooling Systems / Loss-of-Coolant-Accident Analyses for BWR/2-6," GE-Hitachi, NEDE-33005P-A, Revision 2, May 2018, DTC:

TRVEND, DSN: NEDE 33005 PA, Edison File Number: Rl-8509

9. NotUsed
10. "Maximum Extended Operating Domain Analysis for Detroit Edison Company Enrico Fermi Energy Center Unit 2," GE Nuclear Energy, NEDC-31843P, July 1990 (RBM Setpoints),

Edison File Number: Rl-7177

COLR - _21 Revision 0 Page 31 of31

  • 11. Not Used
12. "DTE Energy Enrico Fermi Unit 2 TRACG ECCS Loss-of-Coolant Accident (LOCA)

Analysis," GE-Hitachi, 005N1475, Revision 1, November 2019, Edison File Number: T19-137

13. Letter from T. G. Colburn to W. S. Orser, "Fermi Amendment No. 87 to Facility Operating License No. NPF-43 (TAC NO. M82102)," September 9, 1992
14. Letter from J. F. Stang to W. S. Orser, "Amendment No. 53 to Facility Operating License No. NPF-43: (TAC No. 69074)," July 27, 1990
15. "Fermi 2 TRACG Implementation for Reload Licensing Transient Analysis'", Revision 1, 0000-0128-8831-Rl, June 2014, (GE14 ARTS Limits), Edison File Number: Rl-8124
16. "Methodology and Uncertainties for Safety Limit MCPR Evaluations," NEDC-32601P-A, August 1999, Edison File Number: Rl-7239
17. "Power Distribution Uncertainties for Safety Limit MCPR Evaluations," NEDC-32694P-A, August 1999, Edison File Number: Rl-7240
18. "R-Factor Calculation Method for GEl 1, GE12, and GE13 Fuel," NEDC-32505P-A,
  • Revision 1, July 1999, Edison File Number: Rl-7238
19. Turbine Control Valve Out-Of-Service for Enrico Fermi Unit-2," GE-Nuclear Energy, GE-NE-Jl 1-03920-07-01, October 2001, Edison File Number: Rl-8160
20. "Fermi 2- Issuance of Amendment No. 214 Re: Technical Specifications Task Force (TSTF)

TSTF-564, "Safety Limit Minimum Critical Power Ratio" (EPID L-2019-LLA-0028)"

Letter from Sujata Goetz, NRC, to Peter Dietrich, DTE Electric dated November 5, 2019 (SLMCPR)

21. "GE14 Compliance with Amendment 22 ofNEDE-24011-P-A (GESTAR II)," NEDC-32868P, Revision 6, March 2016 (LHGR Limits), -Edison File Number: Rl-7307
22. "Fermi 2 - Issuance of Amendment Re: Measurment Uncertainty Recapture Power Uprate (TAC No. MF0650)" Letter from Thomas Wengert, NRC, to Joseph Plona, DTE Electric dated February 10, 2014
23. Qualification of the One-Dimensional Core Transient Model for Boiling Water Reactors -

Volume l, NED0-24154-A, August 1986, Edison File Number: Rl-7389.

24. Letter from G. G. Jones to A. D. Smart, "Femii 2 Technical Specification Changes,"

February 17, 1989

25. "GNF3 Generic Compliance with NEDE-24011-P-A (GESTAR II)," NEDC-33879P, Revision 2, March 2018 (LHGR Limits), Edison File Number: Rl-8483