ML20013E530

From kanterella
Jump to navigation Jump to search
Technical Requirements Manual, Vol 1
ML20013E530
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 12/20/2019
From:
Detroit Edison
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML20013E530 (36)


Text

DETROIT EDISON - FERMI 2 AUTOMATED RECORD MANAGEMENT DISTRIBUTION CONTROL LIST 12/20/19 PAGE 1 WASHINGTON, DC 20555 Media: 8 1/2 X 11

/

Number Cnt Issue DTC Doc. Serial Number Page Rev Copies Lvl Date Sec Status

=======~===========================~===========c====================

TMTRM TRM VOL I 120 1 IR 12/20/19 AFC Please destroy or mark all revised, superseded, or cancelled documents as such. CONTROLLED stamps must be voided by lining through and initialing.

========c=====c==cc================ccc=== c=====c==============cccc=c=======c

Detroit Edison EF2, C/0 Info Mgmt 140 NOC, 6400 North Dixie Highway, Newport MI 48166. (734) 586-4338 OR (734) 586-4061 for questions or concerns.

Ref: e58683

)

_ LICENSING DOCUMENT TRANSMITTAL FERMI 2 TECHNICAL REQUIREMENTS MANUAL - VOL I Revision 120 dated 12/20/2019 Immediately, upon receipt of the item(s) below, please insert and/or remove the pages indicated.

Destroy the removed pages. Be sure that Revision 119 has been inserted prior to inserting these pages.

SECTION REMOVE and DESTROY INSERT In Front of TRM Manual Title Page Rev 119 05/02/2019 Title Page Rev 120 12/20/2019 Immediately following List of Effective Pages List of Effective Pages Title Page LEP-1 through LEP-4 Rev 119 LEP-1 through LEP-4 Rev 120 12/20/2019 05/02/2019 TR 3.3 Instrumentation TRM 3 .3-1 Rev 106 03/14 TRM 3.3-1 Rev 120 12/19 TR 3.7 Plant Systems TRM 3.7-18 Rev 115 10/18 TRM 3.7-18 Rev 120 12/19 Core Operating Limits Cycle 20, Revision 0 Cycle 20, Revision 1 Report _2_6_p._ages_,_,__*_ _ _ _ _ _ _ _ __ 27 pages

.ote: The changes above reflect those justified and described in LCR# 19-018-TRM, 19-054-TRM, and 19-045-COL.

END

.J Fermi 2 Technical Requirements Manual

  • volume I
  • DTC: TMIRM Date* 12/20/2019 I File: 1754 ARMS - INFORMATIO N DSN: TRMVOL I Recipient I Rev: 120 q-:i.,<

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Paga Revision Paga Revision TRM i Revision 106 TRM 3.3-31 Revision 31 TRM ii Revision 107 TRM 3.3-32 Revision 31 TRM iii Revision 105 TRM 3.3-33 Revision 31 TRM iv Revision 106 TRM 3.3-34 Revision 31 TRM V Revision 107 TRM 3.3-34a Revision 106 TRM vi Revision 31 TRM 3.3-35 Revision 60 TRM 1. 0-a Revision 31 TRM 3.3-36 Revision 104 TRM 1.0-1 Revision 31 TRM 3.3-37 Revision 72 TRM 2.0-1 Revision 31 TRM 3.3-38 Revision 31 TRM 3.0-a Revision 31 TRM 3.3-39 Revision 31 TRM 3.0-1 Revision 63 TRM 3.3-40 Revision 56 TRM 3.0-2 Revision 72 TRM 3.3-41 Revision 56 TRM 3.0-3 Revision 54 TRM 3.3-42 Revision 45 TRM 3.0-4 Revision 72 TRM 3.3-43 Revision 62 TRM 3.1-a Revision 31 TRM 3.3-44 Revision 72 TRM 3.1-1 Revision 31 TRM 3.3-45 Revision 31 TRM 3.2-1 Revision 31 TRM 3.3-46 Revision 31 TRM 3.3-a Revision 31 TRM 3.3-47 Revision 31 TRM 3.3-b Revision 31 TRM 3.3-48 Revision 31 TRM 3.3-c Revision 106 TRM 3.3-49 Revision 31 TRM 3.3-d Revision 31 TRM 3.4-a Revision 31 TRM 3.3-1 Revision 120 TRM 3.4-1 Revision 36 TRM 3.3-2 Revision 116 TRM 3.4-la Revision 71 TRM 3.3-3 Revision 31 TRM 3.4-lb Revision 71 TRM 3.3-4 Revision 31 TRM 3.4-2 Revision 31 TRM 3.3-5 Revision 31 TRM 3.4-3 Revision 31 TRM 3.3-6 Revision 31 TRM 3.4-4 Revision 31 TRM 3.3-7 Revision 31 TRM 3.4-5 Revision 31 TRM 3.3-8 Revision 106 TRM 3.4-6 Revision 31 TRM 3.3-9 Revision 31 TRM 3.4-7 Revision 31 TRM 3.3-10 Revision 106 TRM 3.4-8 Revision 31 TRM 3.3-11 Revision 31 TRM 3.4-9 Revision 31 TRM 3.3-12 Revision 67 TRM 3.4-10 Revision 31 TRM 3.3-13 Revision 74 TRM 3.5-1 Revision 31 TRM 3.3-13a Revision 67 TRM 3.6-a Revision 70 TRM 3.3-14 Revision 67 TRM 3.6-1 Revision 60 TRM 3.3-15 Revision 31 TRM 3.6-2 Revision 67 TRM 3.3-16 Revision 31 TRM 3.6-3 Revision 31 TRM 3.3-17 Revision 31 TRM 3.6-4 Revision 109 TRM 3.3-18 Revision 100 TRM 3.6-5 Revision 87 TRM'3.3-1 9 Revision 31 TRM 3.6-6 Revision 33 TRM 3.3-20 Revision 31 TRM 3.6-7 Revision 31 TRM 3.3-21 Revision 116 TRM 3.6-8 Revision 31 TRM 3.3-22 Revision 31 TRM 3.6-9 Revision 85 TRM 3.3-23 Revision 31 TRM 3.6-10 Revision 31 TRM 3.3-24 Revision 31 TRM 3.6-11 Revision 31

  • TRM 3.3-25 Revision 31 TRM 3.6-12 Revision 31 TRM 3.6-13 Revision 71 TRM 3.3-26 Revision 31 TRM 3.3-27 Revision 31 TRM 3.6-14 Revision 31 TRM 3.3-28 Revision 76 TRM 3.6-15 Revision 31 TRM 3.3-29 Revision 76 TRM 3.6-16 Revision 31 TRM 3.3-30 Revision 31 TRM 3.6-17 Revision 31 TRM Vol. I LEP-1 REV 120 12/20/201 9

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES Page Revision Page Revision TRM 3.6-18 Revision 31 TRM 3.8-12 Revision 31 TRM 3.6-19 Revision 31 TRM 3.8-13 Revision 61 TRM 3.6-20 Revision 31 TRM 3.8-14 Revision 46 TRM 3.6-21 Revision 31 TRM 3.8-15 Revision 31 TRM 3. 6-22 Revision 116 TRM 3.8-16 Revision 31 TRM 3.6-23 Revision 31 TRM 3.8-17 Revision 43 TRM 3.6-24 Revision 115 TRM 3.8-18 Revision 33 TRM 3.6-25 Revision 31 TRM 3.9-a Revision 31 TRM 3. 6-26 Revision 31 TRM 3.9-1 Revision 31 TRM 3.6-27 Revision 31 TRM 3.9-2 Revisio~ 65 TRM 3.6-28 Revision 31 TRM 3.9-3 Revision 80 TRM 3.6-29 Revision 31 TRM 3.9-4 Revision 88 TRM 3.6-30 Revision 31 TRM 3.9-5 Revision 31 TRM 3.6-31 Revision 31 TRM 3.10-1 Revision 31 TRM 3.6-32 Revision 70 TRM 3.11-a Revision 31 TRM 3.6-33 Revision 31 TRM 3 .11-1 Revision 31 TRM 3.6-34 Revision 31 TRM 3.12-a Revision 31 TRM 3.6-35 Revision 31 TRM 3.12-1 Revision 75 TRM 3.7-a Revision 107 TRM 3.12-2 Revision 31 TRM 3.7-1 Revision 60 TRM 3.12-3 Revision 31 TRM 3.7-2 Revision 107 TRM 3.12-4 Revision 102 TRM 3.7-3 Revision 70 TRM 3.12-5 Revision 108 TRM 3.7-4 Revision 73 TRM 3.12-6 Revision 53 TRM 3.7-5 Revision 31 TRM 3.12-7 Revision 31 TRM 3.7-6 Revision 31 TRM 3.12-8 Revision 112 TRM 3.7-7 Revision 31 TRM 3.12-9 Revision 40 TRM 3.7-8 Revision 31 TRM 3.12-10 Revision 31 TRM 3.7-9 Revision 31 TRM 3.12-11 Revision 49 TRM 3.7-10 Revision 44 TRM 3.12-12 Revision 31 TRM 3.7-11 Revision 31 TRM 3.12-13 Revision 75 TRM 3.7-12 Revision 72 TRM 3.12-14 Revision 31 TRM 3.7-13 Revision 31 TRM 3.12-15 Revision 31 TRM 3.7-14 Revision 31 TRM 3.12-16 Revision 75 TRM 3.7-15 Revision 115 TRM 3.12-17 Revision 31 TRM 3.7-16 Revision 115 TRM 3.12-18 Revision 75 TRM 3.7-17 Revision 115 TRM 3.12-19 Revision 31 TRM 3.7-18 Revision 120 TRM 3.12-20 Revision 75 TRM 3.7-19 Revision 31 TRM 3.12-21 Revision 31 TRM 3.7-20 Revision 79 TRM 3.12-22 Revision 31 TRM 3.8-a Revision 31 TRM* 3.12-23 Revision 31 TRM 3.8-1 Revision 31 TRM 3.12-24 Revision 31 TRM 3.8-2 Revision 31 TRM 3.12-25 Revision 31 TRM 3.8-3 Revision 96 TRM 3.12-26 Revision 75 TRM 3.8-4 Revision 113 TRM 3.12-27 Revision 31 TRM 3.8-5 Revision 31 TRM 3.12-28 Revision 31 TRM 3.8-6 Revision 50 TRM 3.12-29 Revision 78 TRM 3.8-7 Revision 114 TRM 3.12-30 Revision 31 TRM 4.0-1 Revision 31 TRM 3.8-8 Revision 50 TRM 3.8-9 Revision 50 TRM 5.0-a Revision 105 TRM 3.8-10 Revision 50 TRM 5.0-1 Revision 119 TRM 3.8-11 Revision 50 TRM 5.0-2 Revision 105 TRM Vol. I LEP-2 REV 120 12/20/2019

FERMI 2 - TECHNICAL REQUIREMENT S MANUAL VOL I LIST OF EFFECTIVE PAGES Revision Revision TRM Bl.0-1 Revision 31 TRM B3.6.2-l Revision 67 TRM B2.0-l Revision 31 TRM B3.6.3-l Revision 87 TRM B3.0-l Revision 63 TRM B3.6.4-l Revision 31 TRM B3.0-2 Revision 63 TRM B3.6.5-l Revision 31 TRM B3. 0-2a Revision 72 TRM B3.6.6-1 Revision 70 TRM B3.0-2b Revision 72 TRM B3.6.7-1 Revision 31 TRM B3. 0-2c Revision 72 T:RM B3.6.8-l Revision 31 TRM B3.0-3 Revision 31 TRM B3.7.l-l Revision 31 TRM B3.0-4 Revision 31 TRM B3.7.2-1 Revision 107 TRM B3.0-5 Revision 54 TRM B3.7.3-l Revision 73 TRM B3.0-6 Revision 72 TRM B3.7.4-l Revision 31 TRM B3.0-7 Revision 72 TRM B3.7.4-2 Revision 31 TRM B3.1-l Revision 31 TRM B3.7.5-1 Revision 31 TRM B3.2-1 Revision 31 TRM B3.7.6-l Revision 31 TRM B3.3.l-l Revision 31 TRM B3.7.7-l Revision 99 TRM B3.3.l-2 Revision 31 TRM B3.7.8-1 Revision 31 TRM B3.3.2-l Revision 31 TRM B3.7.9-1 Revision 79 TRM B3.3.2-2 Revision 31 TRM B3.8.1-1 Revision 31 TRM B3.3.3-1 Revision 67 TRM B3.8.2-l Revi.:sion 31 TRM B3.3.4-l Revision 31 TRM B3.8.3-l Revision 96 TRM B3.3.4-2 Revision 84 TRM B3.8.4-1 Revision 31 TRM B3.3.5-1 Revision 31 TRM B3.8.5-l Revision 31 T:RM B3.3.5-2 Revision 31 TRM B3.8.6-1 Revision 43 TRM B3.3.6-1 Revision 116 TRM B3.9.l-1 Revision 31 TRM B3.3.6-2 Revision 31 TRM B3.9.2-1 Revision 65 TRM B3.3.6-3 Revision 31 TRM B3.9.3-l Revision 31 TRM B3.3.6-4 Revision 31 TRM B3.9.4-l Revision 31 TRM B3.3.6-5 Revision 76 TRM B3.10-1 Revision 31 TRM B3.3.6-6 Revision 76 TRM B3.ll.1-l Revision 31 TRM B3.3.7-1 Revision 31 TRM B3.12.1-1 Revision 31 TRM B3.3.7-2 Revision 31 TRM B3.12.2-1 Revision 112 TRM B3.3.7-3 Revision 106 TRM B3.12.3-l Revision 31 TRM B3.3.8-l Revision 31 TRM B3.12.4-l Revision 31 TRM B3.3.9-l Revision 31 TRM B3.12.5-l Revision 31 TRM B3.3.10-1 Revision 56 TRM B3.12.6-1 Revision 31 TRM B3.3.ll-1 Revision 45 TRM B3.12.7-1 Revision 31 TRM B3.3.12-1 Revision 62 TRM B3.12.8-1 Revision 118 TRM B3.3.13-l Revision 31 TRM B3.3.14-l Revision 31 TRM B3.4.l-1 Revision 31 TRM B3.4.l-2 Revision 71 TRM B3.4.1-3 Revision 71 TRM B3.4.l-4 Revision 71 TRM B3.4.l-5 Revision 71 TRM B3.4.2-1 Revision 31 TRM B3.4.3-1 Revision 31 TRM B3.4.4-l Revision 31 Revision 31 TRM B3.4.5-1 TRM B3. 4. 6_:-1 Revision 31 TRM B3.4.7-l Revision 31 TRM B3.5-1 Revision 31 TRM B3.6.1-l Revision 31 TRM Vol. I LEP-3 REV 120 12/20/2019

FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I LIST OF EFFECTIVE PAGES CORE OPERATING LIMITS REPORT COLR 20, Revision 1 Page Revision Notation Page 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1 14 1 15 1 16 1 17 1 18 1 19 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1

  • TRM Vol. I LEP-4 REV 120 12/20/2019

RPS Instrumentation TR 3. 3 .1.1

TABLE TR3.3.1.l-1 (Page 1 of 2)

Reactor Protection System Instrumentation RESPONSE TIME FUNCTION TRIP SETPOINT (seconds)

1. Intermediate Range Moni.tors
a. Neutron Flux - High S 120/125 divisions of full scale NA
b. Inop NA NA
2. Average Power Range Monitors l*l
a. Neutron Flux-Upscale (Setdown) S 15% RTP NA
b. Simulated Thermal Power - Upscale NA
  • c.

d.

1.

,2.

Flow Biased lg)

High Flow Clamped Neutron Flux - Upscale Inop S O. 62 (W-8W)

S 118% RTP NA (bl + 60. 2%,

with a maximum of S 113.5% of RTP NA NA

e. 2-out-of-4 Voters NA S Q. Q5(a)
f. OPRM-Upscale NA
1. Confirmation Count 16 and
2. Amplitude 1.15
3. Growth 1.3
4. Amplitude 1.3 (continued)

(a) Neutron detectors, APRM channel, and 2-out-of-4 Trip Voter digital electroni.cs are exempt from response time testing. Response time shall be measured from activation of the 2-out-of-4 Trip Voter output relay.

(b) t,;w - 0% for two loop operation. t,;w = 8% for single loop operation .

  • TRM Vol. I TRM 3.3-1 REV 120 12/19

Appendix R Alternative Shutdown Auxiliary Systems TR 3.7.7

  • 82.

FUNCTION TABLE TR3.7.7-1 (Page 4 of 4)

Appendix R Alternative Shutdown Control Circuits 43S-2C Transfer Switch Valve E1150-F015A CONTROL CIRCUIT Transfer SWITCH LOCATION H21-P627

83. 43S-3A Transfer Switch Valve E1150-F017A Transfer H21-P627
84. Recirculation Pump A Discharge Valve B31-F031A Push-button H21-P627
85. Cross-Tie Header Valve Ell-FOlO Push-button H21-P627
86. RHR to Recirculation Inboard Isolation Valve Ell-F015A Push-button H21-P627
87. RHR Recirculation Outboard Isolation Valve Ell-F017A Push-button H21-P627 I
88. 43S-4B Transfer Switch Valve P44-F616 Transfer H21-P628
89. EECW from Drywall Inboard Isolation P44-F616 Selector H21-P628
90. Dedicated Shutdown System Push-button Hll-P811
91. 43S-4CR Transfer Switch Valve P44-F607A Transfer H21-P632
92. EECW from Drywall Outbcard Isolation P44-F6Q7A Pushb1.:ftton H21-P632
93. Alternate QA IM (BOP) power to 72F-4A position 4C-R, Transfer R1600S148 throwover switch valve P44-F607A
94. 72M-3B position 5BR transfer switch Transfer Rl600S011D BOP Battery Charger 2C-l

/

95. 72S-2A position SC transfer switch Transfer Rl600S015A

\

BOP Battery Charger 2Cl-2

  • TRM Vol. I TRM 3.7-18 REV 120 12/19

COLR-20 ~ 1 Page 1 of27 FER MI2 CORE OPE RAT ING LIMITS REP ORT CYC LE2 0 REVISION 1 Prepared by:

Piinl R Kiel

,_. . . . ....._..,...... Teclmical Expert, Reactor Engineeri ng Reviewed by:

.......,", ......w

  • .eer, Reactor Engineering Approved by: I flt;#+
Michael A. Lake Supervisor, Reactor Engineering
  • November 2019

COLR - 20 Revision 1 Page2 of27 TABLE OF CONTENTS 1.0 IN"TRODUCTION AND

SUMMARY

..................................................................................... 4 2.0 SAFETY LIMIT MINIMUM CRITICAL POWER RATIO ................................................... 5 2.1 Definition ................................................................................................................. 5 2.2 Determinat ion of SLMCPR Limit ........................................................................... 5 3.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE ............................................. 6 3.1 Definition ................................................................................................................. 6 3.2 Determinat ion ofMAPLH GR Limit. ....................................................................... 6 3.2.1 Calculation of MAPPAC(P) ........................................................................ 8 3.2.2 Calculation of MAPPAC(F) ...................................................................... 10 4.0 MINIMUM CRITICAL POWER.R ATI0 .............................................................................. 11 4.1 Definition ............................................................................................................... 11 4.2 Determinat ion of Operating Limit MCPR ............................................................. 11 4.3 Calculation ofMCPR(P ) ........................................................................................ 13 4.3.1 Calculation ofKp ....................................................................................... 13 4.3.2 Calculation of 1: ................... ................... ................... ................... .............. 15 4.4 Calculation ofMCPR(F ) ........................................................................................ 16 5.0 LINEAR HEAT GENERAT IONRATE ................................................................................ 17 5 .1 Definition ............................................................................................................... 17 5.2 Determinat ion ofLHGR Limit .............................................................................. 17 5.2.1 Calculation ofLHGRFA C(P) .................................................................... 19 52.2 Calculation ofLHGRFA C(F) ....................................................................21 6.0 CONTROL ROD BLOCK INSTRUMENTATION ............................................................. 22 6.1 Definition ...............................................................................................................22 7.0 BACKUP STABILITY PROTECTI ON REGIONS .............................................................. 23 7.1 Definition ...............................................................................................................23 8.0 REFEREN"CES ...................................................................................................................... 26

COLR - 20 Revision 1 Page3 of27 LIST OF TABLES TABLE 1 FUEL 'fYPE-DE PENDEN T STANDARD MAPLHG R LlMITS ............................. 7 TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS ................................. 10 TABLE 3 OIMCPR10011os AS A FUNCTION OF EXPOSU RE AND 't ............... ............... .... 12 TABLE 4 FLOW-D EPENDE NT MCPRLI MIT COEFFICIENTS ......................................... 16 TABLE 5 STANDARD LHGRLI MITS FOR VARIOUS FUEL TYPES ............................... 18 TABLE 6 FLOW-D EPENDE NT LHGR LIMIT COEFFICIENTS .......................................... 21 TABLE 7 CONTRO L ROD BLOCK INSTRUMENTATION SETPOINTS WTI1I FILTER .................................................................................................................... 22

  • LIST OF FIGURES FIGURE 1 BSP REGION S FOR NO:MINAL FEEDWATER TEivIPERATURE ............. 24 FIGURE 2 BSP REGION S FOR REDUCED FEEDWATER TEMPERATURE ........ .... : 25

COLR - 20 Revision 1 Page4 of27 1.0 JNTRODUCTION AND

SUMMARY

This report provides the cycle specific plant operating limits, which are listed below, for Fermi 2, Cycle 20, as required by Technical Specification '5.6.5. The analytical methods used to determine these core operating limits are those previously reviewed and approved by the Nuclear Regulatory Commission in GESTAR II (Reference 7).

The cycle specific limits contained within this report are valid for the full range of the licensed operating domain.

OPERATING LIMIT TECHNICAL SPECIF1CAT ION SLMCPR9s19s 2.1.1.2

  • APLHGR MCPR LHGR 3.2.1 3.2.2 3.2.3 RBM 3.3.2.1 BSPREGION S 3.3.1.1 SLMCPR = SAFETY LTh1IT :MINIMUM CRITICAL POWER RATIO APLHGR = AVERAGE PLANAR LINEAR HEAT GENERATIO N RATE MCPR = :MINIMUM CRITICAL POWER RATIO LHGR = LINEARHEA TGENERATI ONRATE RBM = ROD BLOCK MONITOR BSP = BACKUP STABIT.,ITY PROTECTION

COLR - 20 Revision 1 Page5 of27 2.0 SAFETY LIMIT MINIMUM CRITICAL POWER RATIO 2.1 Definition TECH SPEC IDENT OPERATING LIMIT 2.1.12 SLMCPR95195 The Technical Specification SAFETY LIMIT :MINIMUM CRITICAL POWER RATIO (SLMCPR95195) shall be the smallest critical power ratio that exists in the *core for each fuel product. The Technical Specification Safety Limit value is dependent on the fuel product line and the corresponding MCPR correlation, which is cycle independent. The value is based on the Critical Power Ratio data statistics and a 95% probability with 95% confidence that rods are not susceptible to boiling transition. (Reference 20)

The Cycle Specific SLMCPR99 9 presented here is that power in the bundle that is statistically calculated by application of the appropriate correlations and uncertainties to cause some point in the bundle to experience boiling transition, divided by the actual bundle operating power .

  • 2.2 Determination of Cycle Specific SLMCPR The Cycle Specific SLMCPR, which is also known as SLMCPR99 9, is cycle dependent and ensures 99.9% of the fuel rods in the core are not susceptible to boiling transition. (Reference 20)

The Operating Limit MCPR is set by adding the SLMCPR99 9 and the change in MCPR for the most limiting anticipated operational occurrence such that fuel cladding will not sustain damage because of normal operation and anticipated operational occurrences.

The SLMCPR99 9 is set such that no significant fuel damage is calculated to occur if the limit is not violated. Since the parameters that result in fuel damage are not directly observable during reactor operation, the thermal and hydraulic conditions that result in the onset of transition boiling are used to mark the beginning of the region in which fuel damage could occur. Although the onset of transition boiling would not result in damage to BWR fuel rods, the critical power at which boiling transition is calculated to occur has been adopted as a convenient limit.

For this cycle, the Two Loop and Single Loop SLMCPR99 9 values (Reference 2) are:

Two Loop SLMCPR= 1.08 Single Loop SLMCPR = 1.09

COLR - 20 Revision 1 Page 6 of27 3.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE 3.1 Definition TECH SPEC IDENT OPERATING LIMIT 3.2.1 APLHGR The AVERAGE PLANAR LINEAR HEAT GENERAT ION RATE (APLHGR) shall be applicable to a specific planar height and is equal to the sum of the LINEAR HEAT

\ GENERAT ION RATEs (LHGRs) for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the bundle at the height.

3.2 Determination of MAPLHGR Limit The maximum* APLHGR (MAPLHGR) limit is a function of reactor power, core flow, fuel type,

  • and average planar exposure. The limit is developed, using NRC approved methodolog y described in References 7 and 8, to ensure gross cladding failure will not occur following a loss of coolant accident (LOCA). The MAPLHGR limit ensures that the peak clad temperature during a LOCA will not exceed the limits as specified in 10CFR50.4 6(b)(l) and that the fuel design analysis criteria defined in References 7 and 8 will be met.

The MAPLHGR limit during dual loop operation is calculated by the following equation:

MAPLHGR.am- = MIN (MAPLHGR (P), MAPLHGR (F))

where:

MAPLHGR (P) = MAPFAC (P) x MAPLHGRsro MAPLHGR (F) =MAPFAC (F) xMAPLHGRsm Within four hours after entering single loop operation, the MAPLHGR limit is calculated by the following equation:

where:

MAPLHGR (P) =MAPFAC (P) xMAPLHGRsro MAPLHGR (F) =MAPFAC (F) xMAPLHGRsro MAPFAC (P) andMAPFAC (F) are limited to 0.80 The Single Loop multiplier limit is 0.80 (Reference 2) based on assuring a LOCA while in single loop will be bounded by the two loop LOCA. (Reference 12)

COLR. - 20 Revision 1 Page7 of27 MAPLHGRsw , the standard MAPLHGR limit, is defined at a power of 3486 MWth and flow of 105 Mlbs/hr for each fuel type as a fimction of average planar exposure and is presented in Table

1. (Reference 2 an.cl 25) - When hand calculations are required, MAPL:f{GRsw shall be deternpned by interpolation from Table 1. MAPF AC(P), the core power-depend ent MAPLHGR limit adjustment factor, shall be calculated by using Section 3.2.1. MAPFAC(F), the core flow-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 3.2.2.

TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHG R LIMITS GEl 4 Exposure GE14 MAPLHGR GWD/ST kW/ft 0.0 12.82 19.13 12.82 57.61 8.00 63.50 5.00

  • Fuel Types -

2 = GE14-P10CNA B38l-4G6.0/11 G5.0-IOOT-15 0-T6-4372 3 = GE14-PlOCNAB381-4G6.0/9G5.0-lOOT-150-T6-4371 4 = GE14-PlOCNAB381-15G5.0-lOOT-150-T6-4373 5 = GE14-P10CNA B381-6G6.0/9 G5.0-100T-15 0-T6-4374 6 = GE14-P10CN AB385-13GZ- 100T-150-T64 571 7 = .GE14-P10CNAB384-15GZ-IOOT-150-T6-4572 8 = GE14-P10CNAB383-13GZ-100T-150-T6-4573 9 = GE14-PlOCNAB377-15GZ-lOOT-150-T6-4574 (

14 = GE14-PlOCNAB376-4G6.0/9G5.0/2G2.0-lOOT-150-T6-4061 15 = GE14-P10CNA B373r7G5.0/6 G4.0-100T-15 0-T6-4064 16 = GE14-PlOCNAB376-15GZ-lOOT-150-T6-4063 17 = GE14-PI0CNA B379-l4GZ-l0 0T-150-T6-42 59 18 = GE14-P10CNAB381-4G6.0/11G5.0-IOOT-150-T6-4260 19 = GE14-P10CNA B381-4G6.0/1 2G5.0-100T-1 50-T6-4261 20 = GE14-P10CNA B379-15GZ-1 00T-150-T6-4 262 I 21 = GE14-PlOCNAB383-8G6.0/5G5.0-lOOT-150-T6-4478 22 = GE14-PlOCNAB383-8G6.0/7G5.0-lOOT-150-T6-4479 23 ~ GE14-P10CNAB383-2G6.0/11G5.0-IOOT-150-T6-4480 24 = GE14-PlOCNAB383-lOG6.0/5G5.0-lOOT-150-T6-4481

COLR - 20 Revision 1 Page 8 of27

/

3.2.1 Calculation ofMAPFAC( P)

The core power-dependent MAPLHGR limit adjus1ment factor, MAPFAC(P) (Reference 2, 3, 11, & 15), shall be calculated by one of the following equations:

ForO ::SP<25:

No thermal limits monitoring is required.

For 25 ::S P ::S 29.5 :

With Turbine Bypass OPERABLE, For core flow< 50 MJbs/hr, MAP FAC (P) = 0. 604 + 0. 0038 (P - 29. 5)

For core flow ~ 50 MJbs/hr, MAPFAC (P) = 0.584 + 0.0038 (P-29.5)

  • With Turbine Bypass INOPERABLE, For core flow < 50 Mlbs/hr, MAPFAC (P) = 0.488 + 0.0051 (P-29.5)

For core flow~ 50 Mlbs/hr, MAPFAC (P) = 0.436 + 0.0051 (P-29.5)

For 29.5 < P ::S 100 :

MAPFAC (P) = 1.0 + 0.005233 (P-100) where: P = Core power (fraction of rated power times 100).

Note: This range applies with pressure regulator in service and, for power >85%, it also applies with the pressure regulator out of service (PROOS) .

COLR - 20 Revision 1 Page9 of27 MAPFAC(P) for Pressure Regulator Ont of Service Limits With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or Equal to 29.5% and Less Than ot Equal to 85% and both Turbine Bypass and Moisture Separator Reheater Operable:

For 25 :S P :S 29.5 :

For core flow< 50 Mlbs/hr, MAPFAC (P) = 0.604 + 0.0038 (P-29.5)

For core flow 2:: 50 Mlbs/hr, MAPFAC (P) = 0.583 + 0.0036 (P-29.5)

For 29.5 < P < 45 :

MAPFAC (P) = 0.680 + 0.00627 (P- 45)

  • For 45 :S P < 60 :

For 60 :SP :S 85 :

MAPFAC (P) = 0. 758 + 0.0052 (P- 60)

MAPFAC (P) = 0.831 + 0.00292 (P- 85) where: P = Core power (fraction of rated power times 100).

COLR - 20 Revision 1 Page 10 of27 3.2.2 Calculation ofMAPFAC(F)

The core flow-dependent MAPLHGR limit adjustment factor, MAPF AC(F) (Reference 2 & 3),

shall be calculated by the following equation:

WT MAPFAC(F) =11IN(C,AF x-+ BF)

JOO where:

WT = Core flow (Mlbs/hr).

AF = Given in Table 2.

BF = Given in Table 2.

C = 1.0 in Dual Loop and 0.80 in Single Loop.

TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFF1CIENTS

/

Maximum Core Flow*

(Mlbs/hr) 110 0.6787 0.4358

  • *As limited by the Recirculation System MG Set mechanic~ scoop tube stop setting.

C

COLR - 20 Revision 1 Page 11 of27 4.0 MINIMUM CRITICAL POWER RATIO TECH SPEC IDENT OPERATING LIMIT 3.2.2 MCPR 4.1 Definition The MINIMU M CRITICA L POWER RATIO (MCPR) shall be the smallest Critical Power Ratio (CPR) that exists in the core for each type of fuel. The CPR is that power in the b~dle that is calculated by application of the appropriate correlation(s) to cause some point in the bundle to experience boiling transition, divided by the actual bundle operating power.

4.2 Determination of Operating Limit MCPR The required Operating Limit MCPR (OLMCPR) (Reference 2) at steady-state rated power and

  • flow operating conditions is derived from the established fuel cladding integrity Safety Limit

Three different core average exposure conditions are evaluated. The result is an Operating Limit MCPR which is a function of exposure and 't. 'C is a measure of scram speed and is defined in Section 4.3.2.

The limiting OLMCPR shall be represented by the following equation:

OLMCPR = MAX{MCPR(P), lv!CPR{F))

The process to calculate MCPR(P), the core power-<lependent MCPR operating limit, is illustrated in Section 4.3.

The process to calculate MCPR(F), the core flow-dependent MCPR operating limit, is illustrated in Section 4.4.

In case of Single Loop Operation, the Safety Limit MCPR (Reference 2) is increased to account for increased uncertainties in core flow measurement and TIP measurement. For Single Loop Operation, the OLMCPR is increased by 0.03 from the Two Loop OLM CPR.

COLR - 20 Revision 1 Page 12of27 In case of operation with one Turbine Pressure Regulator out of service, OLMCPR limits are bounding when reactor power is less than 29.5% or greater than 85%. When reactor power is greater than or equal to 29.5% and less than or equal to 85%, then operation with one Turbine Pressure Regulator out of service is permitted if both Turbine Bypass Valves and the Moisture Separator Reheater are operable. (Reference 2 and 11)

TABLE 3 OLMCPR1001105 AS A FUNCTI ON OF EXPOSU RE AND 't EXPOSURE CONDffiO N (MWD/STI OLMCPR1001105 BOTH Turbine Bypass Valves AND Moisture Separator Reheater Two Loop Single Loop OPERABLE BOCto EOR-4991 't' = 0 126 129

't' = 1 1.38 1.41 EOR-4991 to EOR-2991 't' = 0 1.27 1.30

't' = 1 1.44 1.47

  • EOR-2991 to ONE Turbine Pressure Regulator Out of Service EOC 't' = 0

't' = 1 1.32 1.49 1.35 1.52 AND Reactor Power between 29.5% and 85%

AND BOTH Turbine Bypass Valves and Moisture Separator Reheater Operable BOCtoEO C 't' = 0 1.32 1.35

't' =1 1.49 ' 1.52 Moisture Separator Reheater INOPERABLE BOCtoEO C 't' = 0 1.36 1.39

't' = 1 1.53 1.56 Turbine Bypass Valve INOPERABLE BOCtoEO C 't' = 0 1.36 1.39

't'= 1 1.53 1.56 BOTH Turbine Bypass Valve AND Moisture Separator Reheater BOCtoEO C 't'=O 1.42 1.45 INOPERABLE

't'= 1 1.59 1.62

  • BOC = Beginnin g of Cycle EOC = End of Cycle EOR = End of Rated Conditions .

EOR is defined as 100% power, 100% core flow, and all control rods fully withdraw n.

EOR-4991 means 4991 MWD/ST before End of Rated Conditions.

COLR - 20 Revision 1 Page 13 of27 4.3 Calculation ofMCPR(P )

MCPR(P), the core power-depe ndent MCPR operating limit (Reference 2, 3, 11, & 15), shall be calculated by the following equation:

MCPR(P) = KP X OIMCPR100/105 KP, the core power-depe ndent MCPR Operating Limit adjustment factor, shall be calculated by using Section 4.3.1. OLMCPR10011os shall be determined by interpolation on 'C from Table 3, and

'C shall be calculated by using Section 4.3.2.

4.3.l Calculation of l(p The core power-depe ndent MCPR operating limit adjustment factor, Kp (Reference 2, 3, 11, &

15), shall be calculated by using one of the following equations:

Note: P = Core power (fraction of rated power times 100) for all calculation of KP For O::: P < 25 No thermal limits monitoring is required .

For 25::: P < 29.5 When Turbine Bypass is OPERABLE,

( KBIP KP=~~~~~~~~~~

+ (0. 032 x (29 .5 - P)))

OLMCPR 1001Jos For two loop operation, where: l<BYP = 2.18 for core flow < 50 1Y.Ilbs/hr

= 2.46 for core flow ~ 50 Mlbs/hr For single loop operation, where: KBYP = 2.21 for core flow< 50 Mlbs/hr

= 2.49 for core flow ~ 50 Mlbs/hr When Turbine Bypass is INOPERABLE,

( KBfP + (0.076 x (29.5 -P)))

Kp=-'--..c.=.. -------'~~----'- ~~----'--'---'-- -

OLMCPR 10011os For two loop operation, where: KBYP = 2.65 for core flow < 50 Mlbs/hr

  • For single loop operation, where: KBYP'

= 3.38 for core flow~ 50 Mlbs/hr

= 2.68 for core flow < 50 Mlbs/hr

= 3.41 for core flow ~ 50 Mlbs/hr

COLR. - 20 Revision 1 Page 14 of27 For 29.5 < P < 45 Kp = 1.28 + (0.0134 x (45-P))

For 45 $ P < 60 :

Kp=l.15+(0.008 67x(60-P))

KP for Moisture Separator Reheater Operable and Turbine Bypass Valves Operable or Inoperable For 60 $ P < 85 :

Kp = 1.065+(0.0034x(85 -P))

For 85 $ P :S 100 :

Kp = 1.0+(0.004333x(JOO - P))

l(p for Moisture Separator Reheater Inoperable and Turbine Bypass Valves Operable or Inoperable For- 60 $ P < 85 :

Kp = 1.076+(0.00296x(85 -P))

For 85 $ P :S 100 :

Kp = l.0+(0.00507x(JOO -P))

l(p for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service, Reactor Power greater than 29 .5%, and both Turbine Bypass and Moisture Separator Reheater Operable:

For 29.5 :;: P < 45 Kp=l.52+(0.011 93x(45-P))

For 45 :;: P < 60 KP= 1.362+ (0. 01053x (60- P))

For 60 :;: P :;: 85 :

Kp=l.217+(0.00 58x(85-P))

For 85 :;: P :;: 100 :

COLR - 20 Revision I Page 15 of27 4.3.2 Calculation of't The value of 't, which is a measure of the conformance of the actual control rod scram times to the assumed average control rod scram time in the reload licensing analysis (References 4 & 24),

shall be calculated by using the following equation:

w where: 'rA = 1.096 seconds

'CB - 0.830 + 0.019 x 1.65 seconds

  • n =

1-l number of surveillance tests performed to date in cycle, M = number of active control rods measured in the ith surveillance test,

'ri = average scram time to notch 36 of all rods measured in the ith surveillance test, and N1 = total number of active rods measured in the initial control rod scram time test for the cycle (Technical Specification Surveillanc e Requiremen t 3.1.4.4).

The value of 't shall be calculated and used to determine the applicable 01MCPR10011os value from Table 3 within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of the conclusion of each control rod scram time surveillance test required by Technical Specification Surveillance Requirements 3.1.4.1, 3.1.4.2, and 3.1.4.4 .

COLR - 20 Revision 1 Page 16 of27 4.4 Calculation of MCPR(F)

MCPR(F), the core flow-dependent MCPR operating limit (Reference 2 & 3), shall be calculated by using the following equation:

wr For Two Loop Operation MCPR(F)= MAX(L2l, ( _Apx-+ BF))

100 WT For Single Loop Operation MCPR(F)= MAX(l24 ,(AFx-+ BF))

JOO where:

' WT = Core flow (Mlbs/br).

AF = Given in Table 4.

BF = Given in Table 4.

TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS Two Loop Operation Maximum Core Flow*

(Mlbs/br) 110

)

-0.601 1.743 Single Loop Operation 110 -0.601 1.773

  • As limited by the Recirculation System MG Set mechanical scoop tube stop setting .

COLR - 20 Revision 1 Page 17 of27 5.0 LINEAR HEAT GENERATION RATE TECH SPEC IDENT OPERATING LIMIT 3.2.3 LHGR 5.1 Definition The LINEAR HEAT GENERATION RATE (LHGR) shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length. By maintaining the operating LllGR below the applicable LHGR limit, it is assured that all thermal-mechanical design bases and licensing limits for the fuel will be satis:j:ied.

5.2 Determination of LHGR Limit The maximum LHGR limit is a function of reactor power, core flow, fuel and rod type, and fuel rod nodal exposure. The limit is developed, using NRC approved methodology described in Reference 7, to ensure the cladding will not exceed its yield stress and that fuel thermal-mechanical design criteria will not be violated during any postulated transient events. The LHGR limit ensures the fuel mechanical design requirements as defined in References 1 & 21 will be met The LHGR limit during dual loop operation is calculated by the following equation:

LHGRuun- = MIN (LHGR (P), LHGR (F))

where:

LHGR(P)=LHGRFAC(P)xLHGRm, LHGR (F) = LHGRFAC (F) x LHGR.m, Within four hours after entering single loop operation, the LHGR limit is calculated by the following equation:

LHGR.mm = MIN (LHGR (P), LHGR (F))

where:

LHGR (P) = LHGRFAC (P) x LHGRsm LHGR (F) = LHGRFAC (F) x LHGRsm LHGRFAC (P) andLHGRFAC (F) are limited to 0.80

  • The Single Loop multiplier limit is 0.80 (Reference 2) based on assuring a LOCA in single loop will be bounded by the two loop LOCA (Reference 12).

COLR - 20 Revision 1 Page 18 of27

/

LHGRsm, the standard LHGR limit, is defined at a power of 3486 MWth and flow of 105 MJ.bs/br for each fuel~and rod type as a function of fuel rod nodal exposure. LHGRsm is found in the reference cited in Table 5. When hand calculations are required, LHGRsm shall be determined by interpolation of the limits provided in the Table 5 reference. LHGRFAC(P), the core power-depend ent LHGR limit adjustment factor, shall be calculated by using Section 52.1.

LHGRFAC(F) , the core flow-dependen t LHGR limit adjustm{:Ilt factor,* shall be calculated by using Section 5 .2.2. '

TABLES STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES For GE14 fuel listed below, the most limiting LHGR for Uranium I

Only fuel rod is found in NEDC-3286 8P Revision 6 Table D-2 (References 1 & 21).

For GE14 fuel listed below, the most limiting LHGR for Gadolinia Bearing fuel rods is found in NEDC-3286 8P Revision 6 Table D-4 (References 1 & 21). Utilize the row for 6% Rod/Section wt-%

Gd203.

Fuel Types 2 = GE14-PlOCNA B381-4G6.0/I 1G5.0-100T-1 50-T6-4372 3 = GE14-PlOCNA B381-4G6.0/9 G5.0-lOOT-15 0-T6-4371 4 = GE14-PlOCNA B381-15G5.0- lOOT-150-T6- 4373 5 = GE14-PlOCNA B381-6G6.0/9 G5.0-lOOT-15 0-T6-4374 6 = GE14-P10CNA B385-13GZ-1 00T-150-T6-4 571 7 = GE14-P10CNA B384-15GZ-1 00T-150-T6-4 572 8 = GE14-P10CNA B383-13GZ-1 00T-150-T6-4 573 9 = GE14-PlOCNA B377-15GZ-lO OT-150-T6-45 74 14 = GE14-PlOCNA B376-4G6.0/9 G5.0/2G2.0-lO OT-150-T6-40 61 15 = GE14-P10CNA B373-7G5.0/6 G4.0-100T-15 0-T6-4064 16 = GE14-P10CNA B376-15GZ-1 00T-150-T6-4 063 17 = GE14-P10CNA B379-14GZ-1 00T-150-T6-4 259 18 = GE14:.PlOCNAB381-4G6.0/11G5.0-lOOT-150-T6-4260 19 = GE14-PlOCNA B381-4G6.0/1 2G5.0-lOOT-1 50-T6-4261 20 = GE14-PlOCNA B379-15GZ-lO OT-150-T6-42 62 41 = GE14-P10CNA B383-8G6.0/5 G5.0-100T-15 0-T6-4478 22 = GE14-P10CNA B383-8G6.0/7 G5.0-100T-15 0-T6-4479 23 = GE14-PlOCNA B383-2G6.0/1 1G5.0-lOOT-1 50-T6-4480 24 = GE14-PlOCNA B383-10G6.0/ 5G5.0-lOOT-1 50-T6-4481

COLR - 20 Revision 1 Page 19 of27 5.2.1 Calculation ofLHGRFAC(P)

The core power-dependent IBGR limit adjustment factor, LHGRFAC(P) (Reference 2, 3, 11, &

15), shall be calculated by one of the following equations:

ForO ::::P<25:

No thermal limits monitoring is required.

For 25 :::;'p:::; 29.5:

With Turbine Bypass OPERABLE, For core flow < 50 Mlbs/hr, LHGRFAC (P) = 0.604 + 0.0038 (P- 29.5)

For core flow~ 50 l\1lbs/hr, LHGRFAC (P) = 0.584 + 0.0038 (P-29.5)

  • With Turbine Bypass INOPERABLE, For core flow < 50 Mlbs/hr, LHGRFAC (P) = 0.488 + 0.005] (P-29.5)

For core flow~ 50 l\1lbs/hr, LHGRFAC (P) = 0.436 + 0.0051 (P-29.5)

For 29.5 < P:::; 100:

LHGRFAC (P) = 1.0 + 0.005233 (P-100) where: P = Core power (fraction of rated power times 100).

Note: This range applies with pressure regulator in service and, for power >85%, it also applies with the pressure regulator out of service .

COLR - 20 Revision 1 Page20 of27 LHGRFAC(P) for Pressure Regulator Ont of Service Limits With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or Equal to 29 .5% and Less Than or Equal to 85% and both Turbine Bypass and Moisture Separator Reheater Operable:

For 25 .'.S P .'.S 29.5 :

For core flow < 50 Mlbs/hr, MAPFAC (P) = 0.604 + 0.0038 (P-29.5)

For core flow 2:: 50 Mlbs/hr, MAPFAC (P) = 0.583 + 0.0036 (P-29.5)

For *29.5 < P < 45 LH(J-RF.AC (P) = 0.680 + 0.00627 (P- 45)

  • For 45 :SP < 60 :

For 60 :S P :S 85 :

LHGRFAC (P) = 0. 758 + 0.0052 (P- 60)

LHGRFAC (P) = 0.831 + 0.00292 (P- 85) where: P = Core power (fraction of rated power times 100).

COLR. - 20 Revision 1 Page21 of27 5.2.2 Calculation ofLHGRFAC(F) u The core flow-dependent LHGR limit adjustment factor, LHGRFAC(F) (Reference 2 & 3), shall .

be calculated by the following equation:

WT LHGRFAC(F)= MIN(C,AFx-+ BF)

JOO where:

WT = Core flow (Mlbs/br).

AF = Given in Table 6.

BF = Given in Table 6.

C = 1.0 in Dual Loop and 0.80 in Single Loop.

TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS Maxunum Core Flow*

(Mlbs/hr) 110 0.6787 0.4358

  • *As limited by the Recirculation System MG Set mechanical scoop tube stop setting .

COLR - 20 Revision 1 Page22 of27 6.0 CONTROL ROD BLOCK INSTRUMENTA TION TECH SPEC IDENT SETPOINT 33.2.1 RBM 6.1 Definition The nominal trip setpoints and allowable values of the control rod withdrawal block instrumentation are shown in Table 7. These values are consistent with the bases of the APRM Rod Block Iechnical _specification Improvement Program (ARTS) and the MCPR operating limits. (References 2, 5, & 10)

TABLE? CONTROL ROD BLOCK INSTRUMENTA TION SETPOINTS WITH FILTER

  • Setpoint Low power setpoint Intermediate power setpoint Trip Setpoint 27.0 62.0 Allowable Value 28.4 63.4 High power setpoint 82.0 83.4 Low trip setpoint 117.0 118.9 Intermediate trip setpoint 112.2 114.1 High trip setpoint 107.2 109.1 Downscale trip setpoint 94.0 92.3 For this cycle, the analyzed high trip setpoint of 111 % bounds the setpoints in Table 7. The OLMCPR associated with the RBM setpoint of 111 % is 1.26 for dual loop operation .

COLR - 20 Revision 1 Page23 of27 7.0 BACKUP STABILITY PROTECTION REGIONS TECH SPEC REFERENCE OPERATING LIMIT 3.3.1.1 Action Condition J Alternate method to detect and suppress thermal hydraulic instability oscillations TRM REFERENCE OPERATING LIMIT 3.4.1.l Scram, Exit, and Stability Awareness Regions 7.1 Definition The Backup Stability Protection (BSP) Regions are an integral part of the Tech Spec required alternative method to detect and suppress thermal hydraulic instability oscillations in that they identify areas of the power/flow map where there is an increased probability that the reactor core could experience a thermal hydraulic instability. The BSP Regions are required if the Oscillation Power Range Monitors are inoperable. Regions are identified (refer to Figures 1 and 2) that are either excluded from planned entry (Scram Region), or where specific actions are required to be taken to immediately; leave the region (Exit Region). A region is also identified where operation is allowed provided that additional monitoring is performed to verify that the reactor core is not exhibiting signs of core thermal hydraulic instability (Stability Awareness Region). (Reference 2)

The boundaries of the Scram and Exit regions are established on a cycle specific basis based upon core decay ratio calculations performed using NRC approved methodology.

BSP boundaries for this cycle defined in Figure 1 are applicable when final feedwater temperature is near the optimum range as illustrated in 20.107.02, Loss of Feedwater Heating Abnormal Operating Instruction. Figure 2 is applicable to operation with Feedwater Heaters Out-Of-Service (FWHOOS) or with Final Feedwater Temperature Reduction (FFWTR) or when final feedwater temperature is below the optimum range .

COLR - 20 Revision 1 Page24of27 Figure 1- BSP Regions for Nominal Feedwater Temperature


i-

-- - - ------- .~-~-

  • 20 +--L.....-+---:-+---,i----+---+-- - - + - - - i- - + - - - + ---1----+- - t - - - - + -- - t ----+--'

30 40 Pwunt (") of Rated Cor9 flow 50 60 Nominal feedwater heating exists with all feedwater heaters in service, the moisture separator reheaters in service, and reactor water cleanup in or out of service. Nominal feedwater temperature is determined with the Loss ofFeedwater Heating Abnormal Operating Procedure, 20.107.02. If feedwater temperature is less than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph provided in Enclosure A of 20.107.02, then Figure 1 can be used.

COLR - 20 Revision 1 Page25 of27 Figure 2 - BSP Regions for Reduced Feedwater Temperature

-i 80

--MELLLARod Line ---*

---=;-~

~

l

~~+--~r--- --=----='--"--+-~.r-------+--- -:,L--+-- --,l------,--- ~ --t--1 j

I~~+-- - -~- - - - ,~ - - --+'=

i; g

~

140+-------t--~ ~---~ ---~---t--~ ~--==-=-------* OPRM Enabled

  • Region ,

30 + - ----'--1--- - -----~::+--- - - - - - ' - --

__+--- - -- + - - - -----,---- .- - - t -l L_

30 40 50 60 Percent I") of Rated Core Flow Reduced feedwater temperature is analyzed for a 50 degree Fahrenheit reduction in feedwater temperature. If feedwater temperature is more than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph provided in Enclosure A of 20.107.02, then Figure 2 can be used .

COLR - 20 Revision 1 Page26 of27

8.0 REFERENCES

Core Operating Limits Report references are cited for two purposes. Many references are used as the basis for information, numbers, and equations found in COLR. These references tend to be fuel type or cycle specific. Other references are listed as basis information for the content and structure of COLR but are not Cycle specific.

1. Fuel Bundle Information Report for Enrico Fermi 2 Reload 19 Cycle 20," Global Nuclear Fuel, DRF 004N4270, Revision 0, July 2018 (LHGRLimits), DTC: TRVEND, DSN: Cycle 20 FBIR
2. "Supplemental Reload Licensing Report for Enrico Fermi 2 Reload 19 Cycle 20," Global Nuclear Fuel, DRF: 004N4269, Revision 0, July 2018 (MAPLHGR Limits, SLO Multiplier, MCPR Limits, SLMCPR, Off-Rated Limits, Backup Stability Regions, OPRM setpoints, RBM setpoint), DTC: TRVEND, DSN: Cycle 20 SRLR
3. "GE14 Fuel Cycle-Independent Analyses for Fermi Unit 2", GE-NE-0000-0025-3282-00 dated November 2004 (ARTS Limits equations, RR Pump Seizure)
4. Letter from Greg Porter to B. L. Myers, "Scram Times for Improved Tech Specs." GP-99014, October 22, 1999 containing DRF A12-00038-3, Vol. 4 information from G. A.
  • Watford, GE, to Distribution,

Subject:

Scram Times versus Notch Position (TAU Calculation), Edison File Number: Rl-7242

5. NUMAC Power Range Neutron Monitoring System (PRNM) Surveillance Validation, Design Calculation DC-4608 Volume 1, Revision G (RBM A and B Setpoints), DTC:

TDPINC, DSN: DC-4608 VOL I

6. Detroit Edison Fermi-2 Thermal Power Optimization Task T0201: Operating Power/Flow Map, Edison File Number: TB-050 (P-F Map for BSP figures) *
7. "General Electric Standard Application for Reactor Fuel (GESTAR II)," NEDE-24011-P-A, Revision 27 with amendments
8. "The GESTR-LOCA and SAFER Models for the Evaluation of the Loss-of-Coolant Accident - SAFER/GESTR Application Methodology," NEDE 23 785-1-PA, Revision 1, October 1984
9. Fermi-2 SAFER/GESTR-LOCA, Loss-of-Coolant Accident Analysis," NEDC-31982P, July 1991, and Errata and Addenda No. 1, April 1992
10. Maximum Ex.tended Operating Domain Analysis for Detroit Edison Company Enrico Fermi Energy Center Unit 2," GE Nuclear Energy, NEDC-31843P, July 1990

COLR - 20 Revision I Page27 of27

11. Fermi 2 Pressure Regulator Out of Service Evaluation- Verified Final Report, Letter 1-,

2LHRMS-4 dated February 10, 2011. DTC: TRVEND, DSN: l-2LHRMS-4 Edison File Number: Rl-8100 (PROOS Limits)

12. DTE Energy Enrico Fermi 2 SAFER/PRIME-LO CA Loss of Coolant Accident Analysis" DRF: OOON1319-RO dated March 2015
13. Letter from T. G. Colburn to W. S. Orser, Fermi Amendment No. 87 to Facility Operating License No. NPF-43 (TAC NO. M82102)," September 9, 1992 .
14. Letter from J. F. Stang to W. S. Orser, "Amendment No. 53 to Facility Operating License

. No. NPF-43: (TAC No. 69074)," July 27, 1990

15. Fermi 2 TRACG Implementation for Reload Licensing Transient Analysis", Revision 1, 0000-0128-8831-R l, June 2014, Edison File Number: Rl-8124
16. Methodology and Uncertainties for Safety Limit MCPR Evaluations, NEDC-32601P-A, August 1999
17. Power Distribution Uncertainties for Safety Limit MCPR Evaluation, NEDC-32694P-A, August 1999
  • 18. R-Factor Calculation Method for GEl 1, GE12, and GE13 Fue~ NEDC-32505P-A, Revision 1, July 1999
19. "Turbine Control Valve Out-Of-Service for Enrico Fermi Unit-2," GE-Nuclear Energy, GE-NE-Jl 1-03920-07-01, October 2001 .
20. Fermi 2 - Issuance of Amendment No. 214 Re: Technical Specifications Task Force (TSTF)

TSTF-564, "Safety Limit Minimum Critical Power Ratio" (EPID L-2019-LLA-0028 )"

Letter from Sujata Goetz, NRC, to Peter Dietrich, DTE Electric dated November 5, 2019 (SLMCPR)

21. "GE14 Compliance with Amendment 22 ofNEDE-24011-P- A (GESTARII)", NEDC-32868P, Revision 6, March 2016 (LHGR Limits), Edison File Number: Rl-7307
22. Fermi 2 - Issuance of Amendment Re: Measurment Uncertainty Recapture Power Uprate (TAC No. MF0650)" Letter from Thomas Wengert, NRC, to Joseph Plona, DTE Electric dated February 10, 2014
23. Qualification of the One-Dimensional Core Transient Model for Boiling Water Reactors-Volume 1, NED0-24154-A, August 1986, Edison File Number: Rl-7389.
24. Letter from G. G. Jones to A. D. Smart, "Fermi 2 Technical Specification Changes,"

February 17, 1989

25. "Cycle Management Report for Fermi-2 Cycle 20," 004N4278 Revision 0, October 2018 Edison File Number: Rl-8497 (Fuel Type Table)