ML22081A028
ML22081A028 | |
Person / Time | |
---|---|
Site: | Fermi |
Issue date: | 03/09/2022 |
From: | Detroit Edison |
To: | Document Control Desk, Office of Nuclear Reactor Regulation |
References | |
Download: ML22081A028 (37) | |
Text
DETROIT EDISON - FERMI 2 AUTOMATED RECORD MANAGEMENT DISTRIBUTION CONTROL LIST 03/09/22 To: 00935 US NRC PAGE 1 DOCUMENT CNTRL DESK 11555 ROCKVILLE PIKE
ROCKVILLE, MD 20852
Media: 8 1 /2 X 11 Number Cnt Issue DTC Doc. Serial Number Page Rev Copies Lvl Date Sec Status
TMTRM TRM VOL I 131 1 IR 03/08/22 AFC
Please destroy or mark all revised, superseded, or cancelled documents as such. CONTROLLED stamps must be voided by lining through and initialing.
Detroit Edison EF2, C/O Info Mgmt 140 NOC, 6400 North Dixie Highway, Newport MI 48166. (734) 586-4338 OR (734) 586-4061 for questions or concerns.
Ref: a71439 LICENSING DOCUMENT TRANSMITTAL FERMI 2 TECHNICAL REQUIREMENTS MANUAL - VOL I Revision 131 dated 03/08/2022 Immediately, upon receipt of the item(s) below, please insert and/or remove the pages indicated.
Destroy the removed pages. Be sure that Revision 130 has been inserted prior to inserting these pages.
SECTION REMOVE and DESTROY INSERT
In Front of TRM Manual Title Page Rev 130 01/19/2022 Title Page Rev 131 03/08/2022
Immediately following List of Effective Pages List of Effective Pages Title Page LEP-1 through LEP-4 Rev 130 01/19/2022 LEP-1 through LEP-4 Rev 13 1 03/08/2022
Core Operating Limits Cycle 21, Revision 0 Cycle 22, Revision 0 Report 31 pages 30 pages
Note: The changes above reflect those justified and described in LCR# 21-019-COL.
END
Fermi 2
Technical Requirements Manual
Volume I
DTE Electric
~--- ARMS - INFORMATION DTC: TMTRM I File: 1754 Rev: 131 Date 03/08/2022 FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I
LIST OF EFFECTIVE PAGES
Page Revision Page Revision
- TRM i Revision 106 TRM 3.3-30 Revision 31 TRM ii Revision 107 TRM 3.3-31 Revision 31 TRM iii Revision 105 TRM 3.3-32 Revision 31 TRM iv Revision 106 TRM 3.3-33 Revision 125 TRM V Revision 107 TRM 3.3-34 Revision 31 TRM vi Revision 31 TRM 3.3-34a Revision 106 TRM 1.0-a Revision 31 TRM 3.3-35 Revision 60 TRM 1.0-1 Revision 31 TRM 3.3-36 Revision 104 TRM 2.0-1 Revision 31 TRM 3.3-37 Revision 72 TRM 3.0-a Revision 31 TRM 3._3-38 Revision 127 TRM 3.0-1 Revision 130 TRM 3.3-39 Revision 31 TRM 3.0-2 Revision 72 TRM 3.3-40 Revision 56 TRM 3.0-3 Revision 54 TRM 3.3-41 Revision 56 TRM 3.0-4 Revision 72 TRM 3.3-42 Revision 45 TRM 3.1-a Revision 31 TRM 3.3-43 Revision 62 TRM 3.1-1 Revision 31 TRM 3.3-44 Revision 72 TRM 3.2-1 Revision 31 TRM 3.3-45 Revision 31 TRM 3.3-a Revision 31 TRM 3.3-46 Revision 31 TRM 3.3-b Revision 31 TRM 3.3-47 Revision 31 TRM 3.3-c Revision 106 TRM 3.3-48 Revision 125 TRM 3.3-d Revision 31 TRM 3.3-49 Revision 31 TRM 3.3-1 Revision 120 TRM 3.4-a Revision 31 TRM 3.3-2 Revision 116 TRM 3.4-1 Revision 36 TRM 3.3-3 Revision 31 TRM 3.4-la Revision 71 TRM 3.3-4 Revision 31 TRM 3.4-lb Revision 71 TRM 3.3-5 Revision 31 TRM 3.4-2 Revision 125
- TRM 3.3-6 Revision 125 TRM 3.4-3 Revision 125 TRM 3.3-7 Revision 31 TRM 3.4-4 Revision 31 TRM 3.3-8 Revision 106 TRM 3.4-5 Revision 31 TRM 3.3-9 Revision 31 TRM 3.4-6 Revision 31 TRM 3.3-10 Revision 106 TRM 3.4-7 Revision 31 TRM 3.3-11 Revision 31 TRM 3.4-8 Revision 31 TRM 3.3-12 Revision 67 TRM 3.4-9 Revision 31 TRM 3.3-13 Revision 74 TRM 3.4-10 Revision 125 TRM 3.3-13a Revision 125 TRM 3.5-1 Revision 31 TRM 3.3-14 Revision 67 TRM 3.6-a Revision 70 TRM 3.3-15 Revision 31 TRM 3.6-1 Revision 125 TRM 3.3-16 Revision 31 TRM 3.6-2 Revision 67 TRM 3.3-17 Revision 31 TRM 3.6-3 Revision 123 TRM 3.3-18 Revision 100 TRM 3.6-4 Revision 123 TRM 3.3-19 Revision 31 TRM 3.6-5 Revision 123 TRM 3.3-20 Revision 31 TRM 3.6-6 Revision 123 TRM 3.3-21 Revision 124 TRM 3.6-7 Revision 123 TRM 3.3-22 Revision 124 TRM 3.6-8 Revision 123 TRM 3.3-23 Revision 124 TRM 3.6-9 Revision 123 TRM 3.3-24 Revision 31 TRM 3.6-10 Revision 123 TRM 3.3-25 Revision 31 TRM 3.6-11 Revision 123 TRM 3.3-26 Revision 31 TRM 3.6-12 Revision 123 TRM 3.3-27 Revision 125 TRM 3.6-13 Revision 123 TRM 3.3-28 Revision 76 TRM 3.6-14 Revision 123 TRM 3.3-29 Revision 125 TRM 3.6-14a Revision 123
- TRM Vol. I LEP-1 REV 131 03/08/2022 FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I
LIST OF EFFECTIVE PAGES
Page Revision Page Revision
- TRM 3.. 6-15 Revision 123 TRM 3.8-9 Revision 125 TRM 3.6-16 Revision 123 TRM 3.8-10 Revision 125 TRM 3.6-17 R~vision 123 TRM 3.8-11 Revision 123 TRM 3.6-18 Revision 123 TRM 3.8-12 Revision 31 TRM 3.6-19 Revision 123 TRM 3.8-13 Revision 61 TRM 3.6-20 Revision 123 TRM 3.8-14 Revision 129 TRM 3.6-21 Revision 123 TRM 3.8-15 Revision 31 TRM 3.6-22 Revision 123 TRM 3.8-16 Revision 31 TRM 3.6-23 Revision 123 TRM 3.8-17 Revision 125 TRM 3.6-24 Revision 123 TRM 3.8-18 Revision 33 TRM 3.6-25 Revision 31 TRM 3.9-a Revision 31 TRM 3.6-26 Revision 31 TRM 3.9-1 Revision 31 TRM 3.6-27 Revision 31 TRM 3.9-2 Revision 65 TRM 3.6-28 Revision 125 TRM 3.9-3 Revision 80 lTRM 3.6-29 Revision 31 TRM 3.9-4 Revision 88 TRM 3.6-30 Revision 31 TRM 3.9-5 Revision 31 TRM 3.6-31 Revision 125 TRM 3.10-1 Revision 31 TRM 3.6-32 Revision 70 TRM 3.11-a Revision 31 TRM 3.6-33 Revision 31 TRM 3.11-1 Revision 31 TRM 3.6-34 Revision 31 TRM 3.12-a Revision 31 TRM 3.6-35 Revision 31 TRM 3.12-1 Revision 75 TRM 3.7-a Revision 107 TRM 3.12-2 Revision 31 TRM 3.7-1 Revision 60 TRM 3.12-3 Revision 31 TRM 3.7-2 Revision 107 TRM 3.12-4 Revision 102 TRM 3.7-3 Revision 70 TRM 3.12-5 Revision 108 TRM 3.7-4 Revision 73 TRM 3.12-6 Revision 53
- TRM 3.7-5 Revision 31 TRM 3.12-7 Revision 31 TRM 3.7-6 Revision 31 TRM 3.12-8 Revision 127 TRM 3.7-7 Revision 31 TRM 3.12-9 Revision 40 TRM 3.7-8 Revision 31 TRM 3.12-10 Revision 31 TRM 3.7-9 Revision 31 TRM 3.12-11 Revision 130 TRM 3.7-10 Revision 44 TRM 3.12-12 Revision 31 TRM 3. 7-11 Revision 31 TRM 3.12-13 Revision 75 TRM 3.7-12 Revision 72 TRM 3.12-14 Revision 127 TRM 3.7-13 Revision 31 TRM 3.12-15 Revision 31 TRM 3.7-14 Revision 127 TRM 3.12-16 Revision 75 TRM 3.7-15 Re:vision 115 TRM 3.12-17 Revision 31 TRM 3.7-16 Revision 115 TRM 3.12-18 Revision 75 TRM 3.7-17 Revision 115 TRM 3.12-19 Revision 31 TRM 3.7-18 Revision 120 TRM 3.12-20 Revision 75 TRM 3.7-19 Revision 31 TRM 3.12-21 Revision 31 TRM 3.7-20 Revision 79 TRM 3.12-22 Revision 31 TRM 3.8-a Revision 31 TRM 3.12-23 Revision 31 TRM 3.8-1 Revision 31 TRM 3.12-24 Revision 31 TRM 3.8-2 Revision 31 TRM 3.12-25 Revision 31 TRM 3.8-3 Revision 96 TRM 3.12-26 Revision 75 TRM 3.8-4 Revision 130 TRM 3.12-27 Revision 31 TRM 3.8-5 Revision 125 TRM 3.12-28 Revision 31 TRM 3.8-6 Revision 125 TRM 3.12-29 Revision 78 TRM 3.8-7 Revision 125 TRM 3.12-30 Revision 127 TRM 3.8-8 Revision 125,TRM 4.0-1 Revision 31
- TRM Vol. I LEP-2 REV 131 03/08/2022 FERMI 2 - TECHNICAL REQUIREMENTS MANUAL VOL I
LIST OF EFFECTIVE PAGES
Revision Revision
- TRM 5.0-a Revision 105 TRM B3.4.6-1 Revision 31 TRM 5.0-1 Revision 119 TRM B3.4.7-1 Revision 31 TRM 5.0-2 Revision 105 TRM B3.5-l Revision 31 TRM Bl. 0-1 Revision 31 TRM B3.6.1-1 'Revision 31 TRM B2.0-1 Revision 31 TRM B3.6.2-l Revision 67 TRM B3.0-1 Revision 63 TRM B3.6.3-1 Revision 87 TRM B3.0-2 Revision 63 TRM B3.6.4-1 Revision 31 TRM B3.0-2a Revision 72 TRM B3.6.5-l Revision 31 TRM B3.0-2b Revision 72 TRM B3.6.6-1 Revision 70 TRM B3.0-2c Revision 130 TRM B3.6.7-1 Revision 31 TRM B3.0-3 Revision 31 TRM B3.6.8-1 Revision 31 TRM B3.0-4 Revision 31 TRM B3.7.1-l Revision 31 TRM B3.0-5 Revision 54 TRM B3.7.2-1 Revision 107 TRM B3.0-6 Revision 72 TRM B3.7.3-1 Revision 73 TRM B3.0-7 Revision 72 TRM B3.7.4-1 Revision 31 TRM B3.l-1 Revision 31 TRM B3.7.4-2 Revision 31 TRM B3.2-1 Revision 31 TRM B3.7.5-1 Revision 31 TRM B3.3.1-l Revision 31 TRM B3.7.6-l Revision 31 TRM B3.3.1-2 Revision 31 TRM B3.7.7-1 Revision 99 TRM B3:3.2-1 Revision 31 TRM B3.7.8-1 Revision 31 TRM B3.3.2-2 Revision 31 TRM B3.7.9-l Revision 79 TRM.B3.3.3-1 Revision 67 TRM B3.8.1-l Revision 31 TRM B3.3.4-1 Revision 31 TRM B3.8.2-1 Revision 31 TRM B3.3.4-2 Revision 126 TRM B3.8.3-1 Revision 96 TRM B3.3.5-1 Revision 31 TRM B3.8.4-l Revision 31 TRM B3*. 3. 5-2 Revision 31 TRM B3.8.5-l Revision 31
- .TRM B3.3.6-1 Revision 116 TRM B3.8.6-1 Revision 125 TRM B3.3.6-2 Revision 31 TRM B3.9.1-l Revision 31 TRM B3.3.6-3 Revision 31 TRM B3.9.2-l Revision 65 TRM B3.3.6-4 Revision 31 TRM B3.9.3-1 Revision 31 TRM B3.3.6-5 Revision 76 TRM B3.9.4-1 Revision 31 TRM B3.3.6-6 Revision 76 TRM B3.10-l Revision 31 TRM B3.3.7-1 Revision 31~ TRM B3.11.1-1 Revision 31 TRM B3.3.7-2 Revision 31 TRM B3.12.1-l Revision 31 TRM B3.3.7-3 Revision 106 TRM B3.12.2-l Revision 127 TRM B3.3.8-1 Revision 31 TRM B3.12.3-1 Revision 31 TRM B3.3.9-1 Revision 31 TRM B3.12.4-1 Revision 31 TRM B3.3.10-1 Revision 56 TRM B3.12.5-1 Revision 31 TRM B3.3.11-1 Revision 45 TRM B3.12.6-1 Revision 31 TRM B3.3.12-1 Revision 62 TRM B3.12.7-1 Revision 31.
TRM B3.3.13-1 Revision 31 TRM B3.12.8-1 Revision 118 TRM B3.3.14-1 Revision 31 TRM B3.4.1-l Revision 31 TRM B3.4.1-2 Revision 71 TRM B3.4.1-3 Revision 71 TRM B3.4.1-4 Revision 71 TRM B3.4.1-5 Revision 71 TRM B3.4.2-l Revision 31 TRM B3.4.3-l Revision 31 TRM B3.4.4-1 Revision 31 TRM B3.4.5-1 Revision 31
- TRM Vol. I LEP-3 REV 131 03/08/2022 FERMI 2 - TECHNICAL RE_Q_UIREMENTS MANUAL VOL I
LIST OF EFFECTIVE PAGES
- CORE OPERATING LIMITS REPORT COLR 22, Revision 0
Page Revision
Notation Page 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0 16 0 17 0 18 0 19 0 20 0
- 21 0 22 0 23 0 24 0 25 0 26 0 27 0 28 0 29 0 30 0
- TRM Vol. I LEP-4 REV 131 03/08/2022 CO.LR,. 22 Revision, 0 Pagel of30
- FERMI 2.
- CORE OPERATING LIMITS REPORT
CYCLE22
REVISION0........
Prepared by; 1/13/2022 PaulRJ(it;l Date PriP.cipal Technical Expert, Reactor Engineering
Reviewed by: ~ <>o*:l'l~C, 1114/20,2,2 Jeremy J. McGrew Date
]?ri:ncipru. Engw.eer, ReaGtor Enginee:ring
1~11-2:1;.
Michael A. Lake Date S'upetviSor; Reacl<>r Engweering
March 2022 COLR - 22 Revision 0 Page2 of30
TABLE OF CONTENTS
1.0 INTRODUCTION
AND
SUMMARY
.................................................................................... 4 2.0 SAFETY LIMIT MINIMUM CRITICAL POWER RATIO.................................................. 5 2.1 Definition........................................................................................................................ 5 2.2 Determination of Cycle Specific SLM CPR.................................................................... 5 3.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE............................................ 6 3.1 Definition................................. :............................................... ~...................................... 6 3.2 Determination ofMAPLHGR Limit............................................................................... 6 3.2.1 Calculation ofMAPFAC(P).. ;.................................................................................. 9 3.2.2 Calculation ofMAPFAC(F).................................................................................. '.11 4.0 MINIMUM CRITICAL POWER RATIO............................................................................. 12 4.1 Definition...............................................,...................................................................... 12 4.2 Determination of Operating Limit MCPR.................................................................... 12
- 4.3 Calculation of MCPR(P)............................................................................... :............... 14 4.3.1 Calculation ofKp.................................................................................................... 14 4.3.2 Calculation *oft....................................................................................................... 17 4.4 Calculation ofMCPR(F)................................................................................................ 18 5.0 LINEAR HEAT GENERATION RATE.....................*......................................................... 19 5.1 Definition...................... :................ *............................................................................... 19 5.2 Determination ofLHGR Limit...................................................................................... 19 5.2.1 Calculation ofLHGRFAC(P)..............................................................,................... 22 5.2.2 Calculation ofLHGRFAC(F)................................................................................. 24 6.0 CONTROL ROD BLOCK INSTRUMENTATION............................................................. 25 6.1 Definition...................................................................................................................... 25 7.0 BACKUP STABILITY PROTECTION REGIONS............................................................. 26 7.1 Definition.................................................................................... ;................................. 26
8.0 REFERENCES
.................................................... *................................................................... 29 COLR - 22 Revision 0 Page3 of30,
LIST OF TABLES
TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS............................ 7
TABLE 2 FLOW-DEPENDENT MAPLHGR LIMIT COEFFICIENTS................................ 11
TABLE 3 OLM CPR 100110s AS A FUNCTION OF EXPOSURE AND t................................ 13
TABLE 4 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS..................................,..... 18
TABLE 5 STANDARD LHGRLIMITS FOR VARIOUS FUEL TYPES.............................. 20
TABLE 6 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS......................................... 24
TABLE 7 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER 25
LIST OF FIGURES
- FIGURE 1 BSP REGIONS (NOMINAL FEEDWATER TEMPERATURE)......................... 27
FIGURE 2 BSP REGIONS (FEED WATER TEMPERATURE REDUCTION)..................... 28
COLR - 22 Revision 0 Page4 of30
1.0 INTRODUCTION
AND
SUMMARY
This report provides the cycle specific plant operating limits, which are listed below, for Fermi 2, Cycle 22, as required by Technical Specification 5.6.5. The analytical methods used to determine these core operating limits are those previously reviewed and approved by the Nuclear Regulatory Commission in GESTAR II (Reference 7).
The cycle specific limits contained within this report are valid for the full range of the licensed operating domain.
OPERATING LIMIT TECHNICAL SPECIFICATION
SLMCPR9s19s 2.1.1.2
APLHGR 3.2.1
MCPR 3.2.2
LHGR 3.2.3
RBM 3.3.2.1 BSPREGIONS 3.3.1.1
SLMCPR = SAFETY LIMIT MINIMUM CRITICAL POWER RATIO
APLHGR = AVERAGE PLANAR LINEAR HEAT GENERATION RATE
MCPR = MINIMUM CRITICAL POWER RATIO
LHGR = LINEARHEATGENERATIONRATE
RBM 1 = ROD BLOCK MONITOR
BSP = BACKUP STABILITY PROTECTION l
COLR - 22 Revision 0 Page 5 of30
2.0 SAFETY LIMIT MINIMUM CRITICAL POWER RATIO 2.1 Definition
TECH SPEC IDENT OPERATING LIMIT
2.1.1.2 SLMCPR9s19s
The Technical Specification SAFETY LIMIT MINIMUM CRITICAL POWER RA TIO (SLMCPR9s/9s) shall be the smallest critical power ratio that exists in the core for each fuel product.
The Technical Specification Safety Limit value is dependent on the fuel product line and the corresponding MCPR c01Telation, which is cycle independent. The value is based on the Critical Power Ratio data statistics and a 95% probability with 95% confidence that rods are not susceptible to boiling transition. (Reference 14)
The Cycle Specific SLMCPR99_9 presented here is that power in the bundle that is statistically calculated by application of the appropriate correlations and uncertainties to cause some point in the bundle to experience boiling transition, divided by the actual bundle operating power.
2.2 Determination of Cycle Specific SLMCPR The Cycle Specific SLM CPR, which is also known as SLMCPR99.9, is cycle dependent and ensures 99.9% of the fuel rods in the core are not susceptible to boiling transition. (Reference 14) The Operating Limit MCPR is set by adding the SLMCPR99_9 and the change in MCPR for the most limiting anticipated operational occurrence such that fuel cladding will not sustain damage because of nonnal operation and anticipated operational occurrences.
The SLMCPR99_9 is set such that no significant fuel damage is calculated to occur if the limit is not violated. Since the parameters that result in fuel damage are not directly observable during reactor operation, the thermal and hydraulic conditions that result in the onset of transition boiling are used to mark the beginning of the region in which fuel damage could occur. Although the onset of transition boiling would not result in damage to BWR fuel rods, the critical power at which boiling transition is calculated to occur has been adopted as a convenient limit.
For this cycle, the Two Loop and Single Loop SLMCPR99_9 values (Reference 2) are:
Two..Loop SLMCPR = 1.08
Single Loop SLMCPR = 1.11 COLR - 22 Revision 0 Page 6 of30
3.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE
3.1 Definition
TECH SPEC IDENT OPERATING LIMIT
3.2.1 APLHGR
The AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) shall be applicable to a specific planar height and is equal to the sum of the LINEAR HEAT GENERATION RATEs (LHGRs) for all the fuel rods in the specified bundle at the specified height divided by the number of fuel rods in the bundle at the height.
3.2 Determination of MAPLHGR Limit
The maximum APLHGR (MAPLHGR) limit is a function of reactor power, core flow, fuel type, and average planar exposure. The limit is developed, using NRC approved methodology described in References 7 and 8, to ensure gross cladding failure will not occur following a loss of coolant accident (LOCA). The MAPLHGR limit ensures that the peak clad temperature during a LOCA
- will not exceed the limits as specified in 1 0CFR50.46(b )(1) and that the fuel design analysis criteria defined in References 7 and 8 will be met.
The MAPLHGR limit during dual loop operation is calculated by the following equation:
MAPLHGRLl},{[T = MIN (MAPLHGR (P), MAPLHGR (F))
where:
MAPLHGR (P) = MAPFAC (P) xMAPLHGR.sro
MAP LHGR (F) = MAP F AC (F) x MAP LHGR.sm
Within four hours after entering single loop operation, the MAPLHGR limit is calculated by the following equation:
MAPLHGRmflT= MIN (MAPLHGR (P), MAPLHGR (F))
where:
MAPLHGR (P) = MAPFAC (P) x MAPLHGR=
MAPLHGR (F) = MAPFAC (F) x MAPLHGRsrD
MAPFAC (P) and MAPFAC (F) are limited to 0.90
- The Single Loop Operation multiplier on MAPLHGR is 0.90. (Reference 2)
COLR - 22 Revision 0 Page 7 of30
MAPLHGRsm, the standard MAPLHGR limit, is defined at a power of 3486 MWth and flow of
- 105 Mlbs/hr for each fuel type as a function of average planar exposure and is presented in Table
- 1. (Reference 2) When hand calculations are required, MAPLHGRsm shall be determined by interpolation from Table 1. MAPF AC(P), the core power-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 3.2.1. *MAPFAC(F); the core flow-dependent MAPLHGR limit adjustment factor, shall be calculated by using Section 3.2.2.
TABLE 1 FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS
GE 14 Exposure GE14 MAPLHGR GWD/ST kW/ft
0.0 12.82 i4.51 12.82 19.13 12.82 57.61 8.00 63.50 5.00
Fuel Types
- GE14-P10CNAB385-13GZ-100T-150-T6-4571 GE14-P10CNAB384-15GZ-100T-150-T6-4572 GE14-Pl0CNAB383-13GZ-l00T-150-T6-4573 GE14-P10CNAB377-15GZ-100T-150-T6-4574 GE14-Pl0CNAB383-8G6.0/5G5.0-l00T-150-T6-4478 GE14-Pl0CNAB383-8G6.0/7G5.0-l00T-150-T6-4479 GE14-P10CNAB383-2G6.0/11 G5.0-100T-150-T6-4480 GE14-Pl0CNAB383-10G6.0/5G5.0-l00T-150-T6-4481
COLR - 22 Revision 0 Page 8 of30
- TABLE 1 (Continued)
FUEL TYPE-DEPENDENT STANDARD MAPLHGR LIMITS
GNF3 Exposure GNF3 MAPLHGR GWD/ST kW/ft
0.0 14.36 9.07 13.78 21.22 13.01 40.82 10.75 57.60 8.00 63.50 6.00
Fuel Types GNF3-Pl 0CG3B388-14GZ-83A V-l 50-T6-4661 GNF3-Pl 0CG3B399-14GZ-83A V-150-T6-4662 GNF3-P 1 0CG3B402-16GZ-83A V-l 50-T6-4663 GNF3-P 1 O,CG3B419-16GZ-83A V-150-T6-4664
- GNF3-Pl0CG3B403-16GZ-83AV-150-T6-4888 GNF3-Pl 0CG3B403-15GZ-83AV-150-T6-4889 GNF3-P 1 0CG3B421-13GZ-83A V-l 50-T6-4890 GNF3-P 1 0CG3B420-13GZ-83A V-l 50-T6-4891 GNF3-P 1 0CG3B404-16GZ-83A V-l 50-T6-4892 GNF3-P 1 0CG3B404-14GZ-83A V-l 50-T6-4893
COLR - 22 Revision 0 Page 9 of30
3.2.1 Calculation of MAPF AC(P)
The core power-dependent MAPLHGR limit adjustment factor, MAPF AC(P) (Reference 2, 3 &
10), shall be calculated by one of the following equations.
For O :5 P < 25 :
No thermal limits monitoring is required.
For 25 :5 P :5 29.5 :
With All Equipment OPERABLE, or MSR INOPERABLE
For core flow< 50 Mlbs/hr, MAPFAC (P) = 0.568 + 0.00156 (P-29.5)
For core flow~ 50 Mlbs/hr, MAPFAC (P) = 0.568 + 0.00156 (P-29.5)
With Turbine Bypass INOPERABLE, or Turbine Bypass and MSR INOPERABLE
For core flow< 50 Mlbs/hr, MAPFAC (P) = 0.488 + 0.01067 (P-29.5)
- For core flow~ 50 Mlbs/hr, MAPFAC (P) = 0.436 + 0.00511 (P-29.5)
For 29.5 < P :5 45 :
MAPFAC (P) = 0.713 + 0.00529 (P-45)
For 45 < P :5 60 :
MAPFAC (P) = 0.791 + 0.00520 (P-60)
For 60 < P :5 85 :
MAPFAC (P) = 0.922 + 0.00524 (P-85)
For 85 < P :5 100 :
MAPFAC (P) = 1.000 + 0.00520 (P-100)
where: P = Core power (fraction of rated power times 100).
COLR - 22 Revision 0 Page 10 of30
MAPFAC(P) for Pressure Regulator Out of Service (PROOS) Limits With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or Equal to 25% and both Turbine Bypass and Moisture Separator Reheater (MSR) Operable:
For 25:::;P:::;29.5:
For core flow< 50 Mlbs/hr, MAPFAC (P) = 0.568+ 0.00156 (P----:29.5)
For core flow 2: 50 Mlbs/hr, MAPFAC (P) = 0.568 + 0.00156 (P-29.5)
For 29.5 < P :5 45 :
MAPFAC (P) = 0.680 + 0.00626 (P-45)
For 45 <P:560 MAPFAC (P) = 0. 758 + 0.00520 (P-60)
- For 60 < P :5 85 :
MAPFAC (P) = 0.831 + 0.00292 (P-85)
For 85 < P :5 100 :
MAPFAC (P) = 1.000 + 0.00520 (P-100) where: P ~ Core power (fraction of rated power times 100).
! Note: Pressure regulator in service and out of service limits are identical for power >85%.
COLR - 22 Revision 0 Page 11 of30
3.2.2 Calculation ofMAPFAC(F)
The core flow-dependent MAPLHGR limit adjustment factor, MAPF AC(F) (Reference 2, 3, &
10), shall be calculated by the following equation:
MAPFAC(F)=MIN(C,ApX-+ BF) WT JOO where:
- WT = Core flow (Mlbs/hr).
AF = Given in Table 2.
BF = Given in Table 2.
C = 1.0 in Dual Loop and 0.90 in Single Loop.
TABLE2 FLOW-DEPENDENT MAPLHGR LI1'fiT COEFFICIENTS
Maximum Core Flow*
(Mlbs/hr)
110 0.8889 0.2613
COLR - 22 Revision 0 Page 12 of30
4.0 MINIMUM CRITICAL POWER RATIO
TECH SPEC IDENT OPERATING LIMIT
3.2.2 MCPR
4.1 Definition
The MINIMUM CRITICAL POWER RA TIO (MCPR) shall be the smallest Critical Power Ratio (CPR) that exists in the core for each type of fuel. The CPR is that power in the bundle that is calculated by application of the appropriate correlation(s) to cause some point in the bundle to experience boiling transition, divided by the actual bundle operating power.
4.2 Determination. of Operating Limit MCPR
The required Operating Limit MCPR (OLM CPR) (Reference 2) at steady-state rated power and flow operating conditions is derived from the established fuel cladding integrity Safety Limit MCPR and an analysis of abnormal operational transients. To ensure that.the Safety Limit MCPR is not exceeded during any anticipated abnormal operational transient, the most limiting transients have been analyzed to determine which event will cause the largest reduction in CPR. Three different core average exposure conditions are evaluated. The result is an Operating Limit MCPR which is a function of exposure and 't. 't is a measure of scram speed and is defined in Section 4.3.2.
The limiting OLMCPR shall be represented by the following equation:
OLMCPR = MAX(MCPR(P), MCPR(F))
The process to calculate MCPR(P), the core power-dependent MCPR operating limit, is illustrated in Section 4.3.
The process to calculate MCPR(F), the core flow-dependent MCPR operating limit, is illustrated in Section 4.4.
In case of Single Loop Operation, the Safety Limit MCPR is increased to account for increased uncertainties in core flow measurement and TIP measurement. For Single Loop Operation, the OLMCPR is increased by 0.03 (Reference 2) from the Two Loop OLMCPR.
COLR - 22 Revision 0 Page 13 of30
In case of operation with one Turbine Pressure Regulator out of service, OLMCPR limits are
- bounding when reactor power is less than 29.5% or greater than 85%. When reactor power is greater than or equal to 29.5% and less than or equal to 85%, then operation with one Turbine Pressure Regulator out of service is permitted if both Turbine Bypass Valves and the Moisture Separator Reheater are operable. (Reference 2 and 3)
TABLE 3 OLMCPR 100110s AS A FUNCTION OF EXPOSURE AND T
EXPOSURE CONDITION <MWD/ST} OLMCPR10011os
BOTH Turbine Bypass Valves AND Moisture Separator Reheater Two Loop Single Loop OPERABLE BOCto3133 't = 0 1.44 1.47
't = 1 1.44 1.47 3133 to EOR-5491 't = 0 1.29 1.32
't = 1 1.38 1.41 EOR-5491 to EOR-3991 't = 0 1.30 1.33
't = 1 1.40 1.43 EOR-3991 to EOC 't = 0 1.33 1.36
- 't = 1 1.43 1.46 ONE Turbine Pressure Regulator Out of Service AND Reactor Power between 29.5% and 85%
AND BOTH Turbine Bypass Valves and Moisture Separator Reheater Operable
BOCto3133 't = 0 1.44 1.47
't = 1 1.44 1.47 3133 to EOC 't =O 1.33 1.36
't = 1 1.43 1.46 Moisture Separator Reheater INOPERABLE BOC to 3133 't = 0 1.44 1.47
't = 1 1.48 1.51 3133 to EOC 't =O 1.37 1.40
't = 1 1.48 1.51
BOC= Beginning of Cycle EOC = End of Cycle EOR = End of Rated Conditions.
EOR is defined as 100% power, 100% core flow, and all control rods fully withdrawn.
EOR-5491 means 5491 MWD/ST before End of Rated Conditions.
COLR - 22 Revision 0 Page 14 of30
EXPOSURE CONDITION (MWD/STI OLMCPR100110s Turbine Bypass Valve INOPERABLE BOC to 3133 1' = 0 1.44 1.47 1' = 1 1.47 1.50 3133 toEOC 1' = 0 1.35 1.38 1' = 1 1.47 1.50 BOTH Turbine Bypass Valve AND Moisture Separator Reheater INOPERABLE BOC to 3133 1' = 0 1.44 1.47 1' = 1 1.50 1.53 INOPERABLE 3133 to EOC 1' = 0 1.38 1.41 1' = 1 1.50 1.53
4.3 Calculation of MCPR(P)
- MCPR(P), the core power-dependent MCPR operating limit, shall be calculated by the following equation:
MCPR(P) = Kp x OLMCPR100 ; 1 os
KP, the core power-dependent MCPR Operating Limit adjustment factor, shall be calculated by using Section 4.3.1. OLMCPR10011os shall be determined by interpolation on 1' from Table 3, and 1' shall be calculated by using Section 4.3.2.
4.3.1 Calculation of KP
The core power-dependent MCPR operating limit adjustment factor, KP (Reference 2, 3, & 10),
shall be calculated by using one of the following equations:
Note: P = Core power (fraction ofrated power times 100) for all calculation of Kp_
For 0:::;P<25:
No thermal limits monitoring is required.
COLR - 22 Revision 0 Page 15 of30
For 25=::P<29.5:
When All Equipment is OPERABLE,
For core flow< 50,Mlbs/hr, Kp = -'-------------'( KBYP + ( 0.0067 X (29.5 - P)))
oiMcPR1001105
where: KBYP = 1.94 for two loop operation
= 1.97 for single loop operation
For core flow~ 50 Mlbs/hr, Kp = -'------------'( KBYP + ( 0.0156 X (29.5 - P)))
oiMcPR1001105
where: KBYP = 2.13 for two loop operation
= 2.16 for single loop operation
For 25 =:: P < 29.5: (continued)
When Moisture Separator Reheater is INOPERABLE,
- For core flow< 50 Mlbs/hr,
( KBYP + ( 0.0067 X (29.5 - P)))
- OLMCPR 100; 105 Kp = -----------'-
where: KBYP = 1.95 for two loop operation
= 1.98 for single loop operation
For core flow~ 50 Mlbs/hr, Kp -..a.,_ ________ __._ _ ( KBYP + ( 0.0156 X (29.5 - P)))
OLMCP R10o/ios
where: KBYP = 2.13 for two loop operation
= 2.16 for single loop operation
When Turbine Bypass is INOPERABLE,
Kp - -'-------------'-_ ( KBYP + ( 0.0244 X (29.5 - P)))
oiMcPR1001105
For core flow~ or< 50 Mlbs/hr, where: KBYP = 2.35 for two loop operation
= 2.38 for single loop operation COLR - 22 Revision 0 Page 16 of30
When Turbine Bypass and Moisture Separator Heater are INOPERABLE, For core flow< 50 Mlbs/hr, Kp =....:..,_ ( KBYP + ( ________ ----'-0.0244 X (29.5 - P)))
oLMcPR1001105
where: KBYP = 2.35 for two loop operation
= 2.38 for single loop operation
For core flow~ 50 Mlbs/hr, Kp =....:...,_ ( KBYP + ________ ----'-( 0.0178 X (29.5 - P)))
oLMcPR1001105
where: KBYP = 2.42 for two loop operation
= 2.45 for single loop operation
For 29.5::: P < 45 :
Kp = 1.150 + (0.0021 x (45-P))
For 45 ::: P < 60 :
Kp = 1.150
- For 60 ::: P < 85 :
Kp = 1.056 + (0.0038 X (85 - P))
For 85 ::: P ::: 100 :
Kp = 1.000 + (0.0037 X (100 - P))
KP for Pressure Regulator Out of Service Limits With one Turbine Pressure Regulator Out of Service, Reactor Power greater than 29.5%, and both Turbine Bypass and Moisture Separator Reheater Operable:
For 29.5::: P < 45 Kp = 1.303 + (0.0081 x ( 45 - P))
For 45 ::: P < 60 Kp = 1.241 + (0.0041 X (60 - P))
For 60 ::: P ::: 85 :
Kp = 1.159 + (0.0033 X (85 - P))
For Reactor Power< 29.5% and Reactor Power> 85%, the Pressure Regulator Out of Service condition is not limiting (Reference 2).
COLR - 22 Revision 0 Page 17 of30
- 4.3.2 Calculation of 't'
The value of 't, which is a measure of the confonnance of the actual control rod scram times to the assumed average control rod scram time in the reload licensing analysis (References 4 & 16), shall be calculated by using the following equation:
where: 'T'A = l.096 seconds
TB - 0.830 + 0.019 x 1.65 W, seconds
i=I n = number of surveillance tests performed to date in cycle,
N; = number of active control rods measured in the ith surveillance test,
'!'i = average scram time to notch 36 of all rods measured in the ith surveillance test, and
N1 total number of active rods measured in the initial control rod scram time test for the cycle (Technical Specification Surveillance Requirement 3.1.4.4).
The value of 't shall be calculated and used to determine the applicable OLMCPR1oonos value from Table 3 within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of the conclusion of each control rod scram time surveillance test required by Technical Specification Surveillance Requirements 3.1.4.1, 3.1.4.2, and 3.1.4.4.
COLR - 22 Revision 0 Page 18 of30
4.4 Calculation of MCPR(F)
MCPR(F), the core flow-dependent MCPR operating limit (Reference 2 & 3), shall be calculated by using the following equation:
For Two Loop Operation MCPR(F)= MAX(l.21,( AFx-+ BF)) WT 100 WT.
For Single Loop Operation MCPR(F)= MAX(l.24,( AFx-+ BF)) 100
where:
WT = Core flow (Mlbs/hr).
AF = Given in Table 4.
BF = Given in Table 4.
TABLE 5 FLOW-DEPENDENT MCPR LIMIT COEFFICIENTS
Maximum Core Flow *
(Mlbs/hr) AF BF
- Two Loop Operation 110 -0.596 1.739
Single Loop Operation 110 -0.596 1.769
COLR - 22 Revision 0 Page 19 of30
5.0 LINEAR HEAT GENERATION RATE
TECH SPEC IDENT OPERATING LIMIT
3.2.3 LHGR
5.1 Definition
The LINEAR HEAT GENERATION RATE (LHGR) shall be the heat generation rate per unit length of fuel rod. It is the integral of the heat flux over the heat transfer area associated with the unit length. By maintaining the operating LHGR below the applicable LHGR limit, it is assured that all thennal-mechanical design bases and licensing limits for the fuel will be satisfied.
5.2 Determination of LHGR Limit
The maximum LHGR limit is a function of reactor power, core flow, fuel and rod type, and fuel rod nodal exposure. The limit is developed, using NRC approved methodology described in Reference 7, to ensure the cladding will not exceed its yield stress and that fuel thermal-mechanical design criteria will not be violated during any postulated transient events. The LHGR limit ensures the fuel mechanical design requirements as defined in References 1, 15, & 17 will be met.
- The LHGR limit during dual loop operation is calculated by the following equation:
LHGR/JMJr = MIN (LHGR (P), LHGR (F))
where:
LHGR(P)=LHGRFAC(P)xLHGR=
LHGR (F) = LHGRFAC (F) X LHGRsrv
Within four hours after entering single loop operation, the LHGR limit is calculated by the following equation:
LHGRLJ},nr = MIN (LHGR (P), LHGR (F))
where:
LHGR(P)=LHGRFAC(P)xLHGR=
LHGR (F) = LHGRFAC (F) X LHGRsrv
LHGRFAC (P) and LHGRFAC (F) are limited to 0.90
- The Single Loop Operation multiplier on LHGR is 0.90. (Reference 2)
COLR - 22 Revision 0 Page20 of30
LHGRsm, the standard LHGR limit, is defined at a power of 3486 MW th and flow of 105 Mlbs/hr
- for each fuel and rod type as a function of fuel rod nodal exposure. LHGRsm is found in the reference cited in Table 5. When hand calculations are required, LHGRsm shall be determined by interpolation of the limits provided in the Table 5 reference. LHGRF AC(P), the core power dependent LHGR limit adjustment factor, shall be calculated by using Section 5.2.1.
LHGRF AC(F), the core flow-dependent LHGR limit adjustment factor, shall be calculated by using Section 5.2.2.
- TABLE6 STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES
For GE14 fuel listed below, the most limiting LHGR for Uranium Only fuel rod is found in NEDC-32868P Revision 6 Table D-2 (References 1 & 15).
For GE14 fuel listed below, the most limiting LHGR for Gadolinia Bearing fuel rods is found in NEDC-32868P Revision 6 Table D-4 (References 1 & 15). Utilize the row for 6% Rod/Section wt-% Gd203.
- Fuel Types
GE14-P10CNAB385-13GZ-100T-150-T6-4571 GE14-P10CNAB384-15GZ-100T-150-T6-4572 GE14-P10CNAB383-13GZ-100T-150-T6-4573 GE14-P10CNAB377-15GZ-100T-150-T6-4574 GE14-Pl 0CNAB383-8G6.0/5G5.0-1 0OT-150-T6-4478 GE14-P10CNAB383-8G6.0/7G5.0-100T-150-T6-4479
- GE14-P10CNAB383-2G6.0/11G5.0-100T-150-T6-4480 GE14-P10CNAB383-10G6.0/5G5.0-100T-150-T6-4481
COLR - 22 Revision 0 Page21 of30
- TABLE 5 (CONT.)
STANDARD LHGR LIMITS FOR VARIOUS FUEL TYPES
For GNF3 fuel listed below, the most limiting LHGR for Uranium Only fuel rod is found in NEDC-33879P Revision 2 Table A-1 (References 1 & 17).
For GNF3 fuel listed below, the most limiting LHGR for Gadolinia Bearing fuel rods is found in NEDC-33879P Revision 2 Table A-2 (References 1 & 17). Utilize the row for 6% Rod/Section wt-% Gd203.
Fuel Types GNF3-P10CG3B388-14GZ-83AV-150-T6-4661 GNF3-P10CG3B399-14GZ-83AV-150-T6-4662 GNF3-P 1 0CG3B402-16GZ-83A V-l 50-T6-4663 GNF3-Pl 0CG3B419-16GZ-83A V-l 50-T6-4664 GNF3-P 1 0CG3B403-l 6GZ-83A V-l 50-T6-4888 GNF3-P10CG3B403-15GZ-83AV-150-T6-4889
- GNF3-P10CG3B421-13GZ-83AV-150-T6-4890 GNF3-P10CG3B420-13GZ-83A V-l 50-T6-4891 GNF3-P 1 0CG3B404-16GZ-83A V-l 50-T6-4892 GNF3-P 1 0CG3B404-l 4GZ-83A V-l 50-T6-4893
COLR - 22 Revision 0 Page 22 of30
- 5.2.1 Calculation ofLHGRFAC(P)
The core power-dependent LHGR limit adjustment factor, LHGRF AC(P) (Reference 2, 3, & 10),
shall be calculated by one of the following equations:
For 0$P <25:
No thermal limits monitoring is required.
For 25$P$29.5:
With All Equipment OPERABLE, or MSR INOPERABLE
For core flow < 50 Mlbs/hr,.
LHGRFAC (P) = 0.568 + 0.00156 (P-29.5)
For core flow~ 50 Mlbs/hr, LHGRFAC (P) = 0.568 + 0.00156 (P-29.5)
With Turbine Bypass INOPERABLE, or Turbine Bypass and MSR INOPERABLE
For core flow < 50 Mlbs/hr, LHGRFAC (P) = 0.488 + 0.01067 (P-29.5)
- For core flow~ 50 Mlbs/hr, LHGRFAC (P) = 0.436 + 0.00511 (P-29.5)
For 29.5 < P $ 45 :
LHGRFAC (P) = 0.713 + 0.00529 (P-45)
For 45 < P $ 60 :
LHGRFAC (P) = 0.791 + 0.00520 (P-60)
For 60 < P $ 85 :
LHGRFAC (P) = 0.922 + 0.00524 (P-85)
For 85 < P $ 100 :
LHGRFAC (P) = 1.000 + 0.00520 (P-JOO)
where: P = Core power (fraction of rated power times 100).
COLR - 22 Revision 0 Page23 of30
LHGRFAC(P) for Pressure Regulator Out of Service Limits
- With one Turbine Pressure Regulator Out of Service and Reactor Power Greater Than or Equal to 25% and both Turbine Bypass and Moisture Separator Reheater Operable:
For 25 :::; P:::; 29.5 :
For core flow < 50 Mlbs/hr, LHGRFAC (P) = 0.568 + 0.00156 (P-29.5)
For core flow~ 50 Mlbs/hr, LHGRFAC (P) = 0.568 + 0.00156 (P-29.5)
For 29.5 < P:::; 45 :
LHGRFAC (P) = 0.680 + 0.00626 (P-45)
For 45 <P:::; 60 LHGRFAC (P) = 0. 758 + 0.00520 (P-60)
For 60 < P :::; 85 :
LHGRFAC (P) = 0.831 + 0.00292 (P - 85)
For 85 < P :::; 100 :
LHGRFAC (P) = 1.000 + 0.00520 (P-100) where: P = Core power (fraction of rated power times 100).
COLR - 22 Revision 0 Page24 of30
5.2.2 Calculation ofLHGRFAC(F)
The core flow-dependent LHGR limit adjustment factor, LHGRF AC(F) (Reference 2, 3, & 10),
shall be calculated by the following equation:
LHGRFAC(F)=MIN(C,AFx-+ BF) WT JOO where:
WT = Core flow (Mlbs/hr).
AF = Given in Table 6.
BF = Given in Table 6.
C = 1.0 in Dual Loop and 0.90 in Single Loop.
TABLE 7 FLOW-DEPENDENT LHGR LIMIT COEFFICIENTS
Maximum Core Flow*
(Mlbs/hr)
110 0.8889 0.2613
COLR - 22 Revision 0 Page25 of30
6.0 CONTROL ROD BLOCK INSTRUMENTATION
TECH SPEC IDENT SETPOINT
3.3.2.1 RBM
6.1 Definition
The nominal trip setpoints and allowable values of the control rod withdrawal block instrumentation are shown in Table 7. These values are consistent with the bases of the APRM Rod Block Iechnical.Specification Improvement Program (ARTS) and the MCPR operating limits. (References 2, 5, & 9)
TABLE 8 CONTROL ROD BLOCK INSTRUMENTATION SETPOINTS WITH FILTER
Setpoint Trip Setpoint Allowable Value
- Low power setpoint 27.0 28.4 Intermediate power setpoint 62.0 63.4 High power setpoint 82.0 83.4
Low trip setpoint 117.0 118.9 Intermediate trip setpoint 112.2 114.1 High trip setpoint 107.2 109.1
Downscale trip setpoint 94.0 92.3
For this cycle, the analyzed high trip setpoint of 111 % bounds the setpoints in Table 7. The OLMCPR associated with the RBM setpoint of 111 % is 1.44 for dual loop operation from beginning of cycle to 3133 MW dist and 1.29 from 3133 MW dist to the end of cycle. (Reference 2)
COLR - 22 Revision 0 Page26 of30
7.0 BACKUP STABILITY PROTECTION REGIONS
TECH SPEC REFERENCE OPERATING LIMIT 3.3.1.1 Action Condition J Alternate method to detect and suppress thermal hydraulic instability oscillations
TRM REFERENCE OPERATING LIMIT 3.4.1.1 Scram, Exit, and Stability Awareness Regions
7.1 Definition
The Backup Stability Protection (BSP) Regions are an integral part of the Tech Spec required alternative method to detect and suppress thermal hydraulic instability oscillations in that they identify areas of the power/flow map where there is an increased probability that the reactor core could experience a thermal hydraulic instability. The BSP Regions are required if the Oscillation Power Range Monitors are inoperable. Regions are identified that are either excluded from planned entry (Scram Region), or where specific actions are required to be taken to immediately leave the region (Exit Region). A region is also identified where operation is allowed provided that additional monitoring is performed to verify that the reactor core is not exhibiting signs of core
- thermal hydraulic instability (Stability Awareness Region). (Reference 2)
The boundaries of the Scram and Exit regions are established on a cycle specific basis based upon core decay ratio calculations performed using NRC approved methodology.
BSP boundaries for this cycle defined in Figure 1 are applicable when final feedwater temperature is near the optimum range as illustrated in 20.107.02, Loss of Feedwater Heating Abnormal Operating Instruction Enclosure A. Figure 2 is applicable to operation with Feedwater Heaters Out-Of-Service (FWHOOS) or with Final Feedwater Temperature Reduction (FFWTR) or when final feed water temperature is l 5°F to 5 5°F below the optimum range.
COLR - 22 Revi sion 0 Page 27 of30
- FIGURE 1: BSP REGIONS (NOMINAL FEEDW ATER TEMPERATURE)
Cycle 22 BSP Regrons (Nomfnal Feedw a ter Temperature)
30.....t9f,Ufesl~in~P1¥5~~9nmctni
......... i. J11;i.mmal f\\VI i)mJ)etatiinL
- + !.Region oL!\\);101,0i&idosure
30 50 61) 70 l'.iN:entfl(,J dfll1:ted C!lt* tiow
Nominal feedwater heating exists with all feedwater heaters in service, the moisture separator reheaters in service, and reactor water cleanup in or out of service. Nominal feedwater temperature is determined with the Loss of Feedwater Heating Abnormal Operating Procedure,
20. 107.02. If feedwater temperature is less than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph provided in Enclosure A of 20.107.02, then Figure 1 can be used.
COLR - 22 Revi s ion 0 Page28 of30
FIGURE 2: BSP REGIONS (FEEDWATER TEMPERATURE REDUCTION)
Cycle 22 BsP Reg ions (SSF Temperature Reduction)
- ,.. 10
1i f J so+- - \\--...l- --:::,,,...::::;.....;_-1i-~-i-_;._ ~.,,,e:.-1--+-~~- ~,,--+---!-~-li-_:.,.-i--+- -I i so + - -f__;_----,- -:::;,,.-F---;;:c;s:,------, ---.,,,c;.-- 1--- ~ :.----..:;._-1-- -+-----:-- ~ --i--+----, :-----;
~ I!
.to
- 0,_
- F9r u~'cluring'
30 --t-. ---,- -;;;;,""""'+--"--:-----1----+-------+--.. t..-q5~S,~F+/-~ ':"lO'i0'.v--iith~ ~~t-:i' llffll)e(Jtl/:te fil'l EndosurcA
- 20 +-"--+--------11-~-1,-----+--'l---+- ---+-------+--il- __..,_,.
- 30 40 50 60 70 Pl!rt~n t(%}otf!a ted CllreFiow
Reduced feedwater temperature is analyzed for a 55 degree Fahrenheit reduction in feedwater temperature. If feedwater temperature is between 15 degrees Fahrenheit to 55 degree s Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph provided in Enclosure A of20.107.02, then Figure 2 should be used.
COLR - 22 Revision 0 Page29 of30
8.0 REFERENCES
Core Operating Limits Report references are cited for two purposes. Many references are used as the basis for information, numbers, and equations found in COLR. These references tend to be fuel type or cycle specific. Other references are listed as basis information for the content and structure of COLR but are not Cycle specific.
- 1. "Fuel Bundle Information Report for Fermi 2 Reload 21 Cycle 22," Global Nuclear Fuel, DRF 006N0352, Revision 0, July 2021 (LHGR Limits), DTC: TRVEND, DSN: Cycle 22 FBIR
- 2. "Supplemental Reload Licensing Report for Fermi 2 Reload 21 Cycle 22," Global Nuclear Fuel, DRF: 006N0351, Revision 0, July 2021 (MAPLHGR Limits, SLO Multiplier, MCPR Limits, SLMCPR, Off-Rated Limits, Backup Stability Regions, OPRM setpoints, RBM setpoint, PROOS), DTC: TRVEND, DSN: Cycle 22 SRLR
- 3. "GNF3 Fuel Design Cycle-Independent Analyses for Fermi 2 Power Plant," GE-Hitachi, 004N7423, Revision 0, November 2019. (GNF3 and GE14 ARTS Limits, RR Pump Seizure, PROOS), Edison File Number: T19-158
- 4. Letter from Greg Porter to B. L. Myers, "Scram Times for Improved Tech Specs." GP-99014, October 22, 1999 containing DRF A12-00038-3, Vol. 4 information from G. A.
Watford, GE, to Distribution,
Subject:
Scram Times versus Notch Position (TAU Calculation), Edison File Number: Rl-7242
- 5. NUMAC Power Range Neutron Monitoring System (PRNM) Surveillance Validation, Design Calculation DC-4608 Volume 1, Revision G (RBM A and B Setpoints), DTC:
TDPINC, DSN: DC-4608 VOL I
- 6. Detroit Edison Fermi-2 Thermal Power Optimization Task T0201: Operating Power/Flow Map, Edison File Number: Tl3-050 (P-F Map for BSP figures)
- 7. "General Electric Standard Application for Reactor Fuel (GESTAR II)," NEDE-24011-P-A, Revision 31 with amendments, Edison File Number: Rl-8103
- 8. "TRACG Application for Emergency Core Cooling Systems / Loss-of-Coolant-Accident Analyses for BWR/2-6," GE-Hitachi, NEDE-33005P-A, Revision 2, May 2018, DTC:
TRVEND, DSN: NEDE 33005 PA, Edison File Number: Rl-8509
- 9. "Maximum Extended Operating Domain Analysis for Detroit Edison Company Enrico Fermi Energy Center Unit 2," GE Nuclear Energy, NEDC-31843P, July 1990 (RBM Setpoints), Edison File Number: Rl-7177 COLR - 22 Revision 0 Page30 of30
- 10. "Fermi 2 TRACG Implementation for Reload Licensing Transient Analysis", Revision 1,
- 0000-0128-8831-Rl, June 2014, (GE14 ARTS Limits), Edison File Number: Rl-8124
- 11. "Methodology and Uncertainties for Safety Limit MCPR Evaluations," NEDC-32601P-A, August 1999, Edison File Number: Rl-7239
- 12. "Power Distribution Uncertainties for Safety Limit MCPR Evaluations," NEDC-32694P-A, August 1999, Edison File Number: Rl-7240
- 13. "R-Factor Calculation Method for GEl 1, GE12, and GE13 Fuel," NEDC-32505P-A, Revision 1, July 1999, Edison File Number: Rl-7238
- 14. "Fermi 2 - Issuance of Amendment No. 214 Re: Technical Specifications Task Force (TSTF) TSTF-564, "Safety Limit Minimum Critical Power Ratio" (EPID L-2019-LLA-0028)" Letter from Sujata Goetz, NRC, to Peter Dietrich, DTE Electric dated November 5, 2019 (SLMCPR)
- 15. "GE14 Compliance with Amendment 22 ofNEDE-24011-P-A (GESTAR II)," NEDC-32868P, Revision 6, March 2016 (LHGR Limits), Edison File Number: Rl-7307
- 16. Letter from G. G. Jones to A. D. Smart, "Fermi 2 Technical Specification Changes,"
February 17, 1989 (Tau)
- 17. "GNF3 Generic Compliance with NEDE-24011-P-A (GESTAR II)," NEDC-33879P, Revision 2, March 2018 (LHGR Limits), Edison File Number: Rl-8483
- Analysis," GE-Hitachi, 005N1475, Revision 1, November 2019, Edison File Number: T19-137