L-15-310, C-CSS-099.20-069, Rev 0, Shield Building Laminar Cracking Limits.

From kanterella
Jump to navigation Jump to search

C-CSS-099.20-069, Rev 0, Shield Building Laminar Cracking Limits.
ML15280A312
Person / Time
Site: Davis Besse Cleveland Electric icon.png
Issue date: 05/06/2015
From:
FirstEnergy Nuclear Operating Co
To:
Advisory Committee on Reactor Safeguards
Shared Package
ML15280A293 List:
References
L-15-310, TAC ME4640 C-CSS-099.20-069, Rev 0
Download: ML15280A312 (43)


Text

Pagei CALCUI.ATION tfOP-CC-3002-01 Flev.03 cALCULAnOilNO. INMANilG I'OCUMEHT I I VcNDOR CALCSUilnAFY C.C$S.O3O.20{69 2588+00o.TCGAM-m00s VENDOR CALCU LATIOI{T{O.

f] BVl fI BVz DB IPY TltlailSubiocl:

ShieldBuildngLaminar Craddng Limib Calrgory E Active E Histon:at EI study Claseiflcellon E Tier 1 Cabulation El Satety-Retated/Augmented Aralty I Nonsafeg.Fetatad Opcn Aasumptions? EYes ElHo lf Yes, EnterTrackingNumber

$yrtem ilumbar DB-SUB099.20 FungtionalLocetlon lvA Gommitmonts: None (Perry & Davir.Beaae Odyl CalculationTvpe: l.l/A HefererrcadIn Atlas? B YeB El No (PerryOnlYl ReferencedIn USARValidetionDatabass I Ves fl t'to GompstGrProgrem{al ProgramName VErsion/ Fevbion Category Status Deecdption ANSYS 13.0 c Aclive Finite ElementAnalytis, validatedundar Bechtel'sQA Program MathCAD 15.0 c Aclive Mathematlcafcompdation Originator Rgdemr/DesignVerifter Approtrur Rev. Affctd Pages (Prtnt.Sftn I ogltell Pdrrt. Sffi? i Date) {mnf SnI Danl 000 All Jevild A. Munshi(Bechfel) Hmgcfiun Uu (8ofitel) I HerJfun L.qF'&1n4n* h tl6lr vv{G, f ltltr Descripliwrof Changn:Inilial issrp Initiailrg Doctrnont 25884-00GTc'GAit-m0os Describewhereths calcufa{onwillbe evaluatedfor 10CFR50.59 apdicaHlfty:l'l/A Odginaor Revlewsr/Dad gn Vadfier Appmwr Rev. tJfoctd Pagoe FinL SfrrnI EJg,tel lPrinl Sbr?t Datel (Prlnt,S@t* Dab.)

001 Ilescdplim of Chango lnitiatlngDocncrient Describerfiers the cabllation will be evalualedh'r 10CFR50.59spdbability.

otl$nabr Reviev*erltleslgnVef fter Approver Rev. AffectedPages lPrint.Skrn Dalta) PrtnI$itr1 A Date) Pililt. Sront Oatel 002 Descriplionol Ghanga InlfiatlngDocunent:

Describotdterolhe cabdafionwillbe avduatedtur 10CFR50.59 eppficability.

Page ii CALCULATION NOP-CC-3002-01Rev.03 CALCULATIONNO. I I VENDORCALCSUM]IlARY C-CSS{199.20-069, Rev.000 VENDORCALCULATION NO.

TABLE OF COI{TENTS COVERSHEET: I OBJECTIVE ORPURPOSE iii SCOPEOFCALCULAT]ON iii

SUMMARY

OFRESULTS/CONCLUSIONS iii LIMITATIONS ORRESTRICTION ONCALCUI.ATION APPLICABILITY iii IMPACT ONOUTPUT DOCUMENTS iii DOCUMENT INDEX iv GALCULATION COMPUTATTON (BODYOF CALCULATTON):

METHODOF ANALYSIS 2 ASSUMPTIONS 2 ACCEPTANCE CRITERIA 2 COMPUTATION 3 RESULTS 17 ATTACHMENTS:

A. ANSYSlnputand Output 13 B. Memofrom Prof.MeteA. Sozen 3 C. Memofrom Prof.DavidDarwin 2 SUPPORTfNG DOCUMENTS(For RecordsCopy Only)

DESIGNVERIFICATION RECORD 1 Page CALCULATION REVIEWCHECKLIST 3 Pages DESIGNINPUTRECORD O PAcCs DESIGNINTERFACE

SUMMARY

o Ps'oFs DESIGNINTERFACEEVALUATIONS 0 ereFs 50.59DOCUMENTS ,{tA OTHER: NIA n YES EXTERNAL MEDTA? (MlCROFlCHE, ETC.)(tFyES, PROVlDELlSTtN BODYOF CALCULATION) aNo TOTALNUMBERoF PAGESlN CALCUTATION (COVERSHEETS + BODY+ ATTACHMENTS) 39 Pages NOTES:

CALCULATION CALCULATIONNO. I I VENDORCALC

SUMMARY

C-CSS-099.20-069,Rev.000 VENDORCALCULATION NO.

OBJECTIVE OR PURPOSE:

The purposeof this calculationis to identifyand definethe limits of crack propagationand crad( widths that ar acceptableunderthe DIN 1 and ib associatadtedtnical basis indudingthe testing programcanied out at Purdue Universityandthe Universityof Kansas.The intentis to establishlimitsin termsof crackprcpagation andwidths, to ensure that the Shield Building(SB) continuesto meet and is in compliancewith the dsign basis reouirements.

SCOPEOF CALCULATION/REVIS ION:

The scopeof thiscalculation is listedbelow:

1 . Performing an analytical upper-bound modalanalysisof the shieldbuildingto estimatean approximate extentof cracking, for whichthe seismicloadsderivedfromthe originaldesignsstillremainvalid.This wasaccomplished by reviewing / re-evaluatingAttachment A of the DIN 1.

2. ldentifying and definingthe acceptablelimitsof crackpropagation and crackwidthsbasedon testing carriedout at PurdueUniversityandthe University of Kansasto definea conservative upper-bound crackingthreshold bothin extentandwidth.
3. Reviewand updateof previouslyestablished effectsof laminarcrackingon stiffness,strength, serviceability,ductilityand long-termdurabilityin viewof bounds(of cracking)established in ltem2.
4. Reviewandupdateof the previously established"CodeCompliance" review(DlN1, Att.L)in viewof bounds(ofcracking) established in ltem2.

SUMMARY

OF RESULTS/CONCLUSIONS:

Based on the above discussedscope, a conservath/eupper-boundcrack c-riterionhas been stablishedin this calculation,which can be usd as a basis to verif, complianceof the Shild Buildingagainstongoingcrack monitoringprogram.With considerable marginpresentedin DIN 1, the limitof crackwidth is concluddas 0.02 inches,andthe limitof crackpropagation hasbeenestablished as following:

Upper-BoundLimitsfor Crack Propagation Reoion-1(EL801.0- 812.75):No crad( (Domeregion)

Reoion-2(EL 774.5- 801.0): 100%of the alea is cracked,# of efiec{ive(unqacked)flutes: 0 Reoion-3(EL 643.0- 774.51: 50% of the ara is cracked,# of efiective(uncracked)flutes:0 Reoion-4(EL 565.0- 043.0): 20% of the area is cracked,# of efiec{ive(uncracked)flutes: 1 Furthermore, it is verifiedthatthe boundsof crackingestablishd hereindo not changethe previouslyestablished codecompliance of the ShieldBuilding(DlN 1, Att.L).

LIMITATIONSOR RESTRICTIONSON CALCULATIONAPPLICABILITY:

N/A IMPACTON OUTPUTDOCUMENTS:

No systemdescriptions are affectedby this calculation.

Page iv CALCULATION NOP-CG3002-01 Rev.03 CALCULATIONNO. I I VENDORCALC

SUMMARY

C-CSS-099.20-069,Rev.000 VENDORCALCULATION NO.

DOCUMENTINDEX o

o {)

c 3 z E  :'

o. o.

z DocumentNumberffitle Revision,Edition,Date eo c 3 o g, o

1 FENOC Calculation No. C-CSS-099.20-063,Shield Rev. 01 tr a u BuildingDesignCalculation 2 OriginalCalculationNo. VC01/801-01,ShieldBuilding-Thermal Stresses- ShieldWall Rev.0, ApprovalDate 10/0111976 n EI tr 3 Bechtel Report25593-000-G83-GEG-000 16, Effectof 2012 tr B tr LaminarGrackson Splice Capacityof No. 11 Bars based on Testing Conductedat Purdue Universityand Universityof Kansas for Davis-BesseShield Building

Page 1 CALCULATIONCOMPUTATION NOP-CG3002-01Rev.03 CALCULATIONNO. REVISION:

c-css-099.20{)69 000 BODYOF Calculation

-List of Sections Sections Pageno.

1. Methodof Analysis 2
2. Assumptions 2
3. AcceptanceCriteria 2
4. Computation 3
5. Results 17

Page 2 Fh#netrru -t CALCULATIONCOTUIPUTATION NOP-CC-3002-01 Rev.03 CALGULATIONNO. REVISION:

c-css-099.20.069 000 1.0 llethod of Analysis The methodof this calculationis listedbelow:

1. Performing an analyticaluppEr-bound modalanalysisof the shieldbuildingto estimatan approximate extentof cracking,for whichthe seismicloadsderivedfromthe originaldesignsstillremainvalid.This was accomplished by reviewing/ re-evaluating Attachment A of the DIN 1.
2. ldentiryingand definingthe acceptablelimitsof crackpropagation and crackwidthsbasedon testing canied out at PurdueUnivEityand the Univesity of Kansasto definea conservativeupper-bound crackingthresholdboth in extentand width.
3. Rvielvand updateof previouslyestablishedefiec'b of laminarcrackingon stifriess, strengfth, serviceability,duc'tility and long-termdurabilityin viemof bounds(of cracking)established in ltam2.
4. Reviewand updateof the previously stablished'CodeCompliance" review(DlN 1, Att.L)in viewof bounds(of cracking)established in ltm2.

2.0 Assumptlons Thero is no open assumptionappliedin this studycalculation.In modalanalysisconduc,ted in Section4.1, the criterion for slecting an acceptable assumed upper-boundcracking scenario is that the new fundamental frequencies and modelshapesare approximately within5% differencesfrom thosedeterminedin the originalFE analysis(DlN.2). Thislimitof 5olodifferenceis baseduponwidelyusedpracticin enginering.

3.0AcceptanceCrlterla The acceptanccriteria of this calculationare establishedby defining limits of acceptablecrack propagationand the crack widths based on testing caried out at PurdueUniversityand the Universityof l(ansas, for ufiich the cunenty established designbasisin DIN 1 remainvalid.

Page 3 CALCULATION COTTI PUTATION NOP-CG3002-01 Rev.03 CALGULATION NO. REVISION:

c.css-099.20-069 000 4.0 Computation 4.1 Upper-BoundModalAnalysis In this section,an upper-boundmodal analysisof the shield buildinghas ben canied out to estimataan approximateextentof crackingfor whichthe sismicloadsde.ivdfrom the odginaldesignsstill remainvalid.

Thiswas accomplished by usingthe samemethodology adoptedin AttachmentA of DIN 1.

As discussedin DIN 1, Attachment A, Figure1 showsthe FiniteElement(FE)modelusedin the originalseismic analysisand designof the SB. As shownin this figure,the SB was modeledas a simplecantilevertpe beam shuctureconsistingof 13 beamelementsand 14 nodesfrom EL 565'to EL812.75'. In DIN 1, AttachmentA, the same methodologyand the same modelingparameterswere used except for the sec'tionalproperties. The sectional propelties of each beam were calculatedconsideringdifierent levels of cracks in the following three differentFE models:

Model-l: No laminarcrackinq This modelwas used as the baselineof the originalFEA resultsand verifiesthe FE modelswith different crackinglevelsdevelopedin DIN 1 Model-2: Laminarcrackinqin all flutes/shoulders This model assumedthat all flutes / shouldersare cracked while no cracking betweenflutes was considered.

. llodol: Laminarcrackinobasedon the crackmao Four differentregionswith difierentcrackinglevelswerc considercdbasedon the crack map, i..

Reoion-1(EL801.0- 812.75):No crack(Domeregion)

Reoion-2{EL774.5- 801.0): 70016 of the areais cracked,# of efiective(uncracked) flutes:2 Reqion-3(EL643.0- 774.5): 20%of the areais cracked,# of effctiv(uncracked) flutes:1 or 2 (dependedon elevation,se AttiachmentA of DIN 1 for detail)

Reoion-4(EL 565.0- O43.0): No crack,# of efiactive(uncracked)flutes:2 Also Notethat each flute has two shoulders.In this calculation,in orderto find out an upper-boundextentof cracking,for which the seismicloads derivedfrom th originaldesignsstill remainvalid, variousassumed cracking-configurations of th shield buildinghave been investigated.lt is concludedthat the followingcase (Model4) can be definedas an upper-boundscenado,for which the extentof crackingpropagationiEstruclurally acceptable.

Note that the critorionfor seleclingsuch an acceptableassumedupper-boundcrackingscenariois that the nenf fundamental ftequenciesand modelshapesare approximately within5% differences fromthosedeterminedin the originalFE analysis(DlN.2). Thislimitof 5% differenceis baseduponwidelyusedpracticein engineering.

. Model4: Postulatedlaminarclackinoscenario(Uooer-Bound)

Reoion-1 (EL801.0- 812.75t:No crack(Domeregion)

Reqion-2 774.5-(EL 801.0): 100o/oof the areais cracked,# of effective(uncracked)flutes:0 Reqion-3(EL643.0- 774.5): 50%of the areais cracked,# of effective(uncracked) flutes:0 Reqion-4(EL 565.0- 643.0t: 20o/oof the areais cracked,# of effective(uncracked) flutes:1

Page 4 CALCULATIONCOTUIPUTATION NOP-CG3002-01Rev.03 CALCULATIONNO. REVTSTON:

c-css-099.20.069 000 SHIELD.BLDG.

Region-3 Region-4 Figure1. TheFiniteElement(FE)modelusedin the originalSB seismicanalysis

Page 5 CALCULATION COMPUTATION NOP-CC-3002-01Rev.03 CALCULATIONNO. REVlSTON:

c-css-099.20.069 000 Dryis BesseSBstick FE modelingparameters fr/um,berGf nodesj Nrrodel= 14 IUumberof members: Nelmnt:= I i ORIGI\:= I i := I ..Nr,ode I " s.lmnt Secfionafpmperfies. Rirr:=69.5ft (lnnerfaceradius)

Routr=T;ft (Outerfaceradiusl Ag :- .3l.+5fr: (Flutecrosssectionarea.VS01IB1-31

\, := I I t0.r ?# 1SAwallcrosssectioneree*VS01/81-31 Secondmomenfof inertiaof S8:

h s{n}:= \- +- I I 10.; ifr-Ag + 2l.{Jftl Io.+:?$t:83.3lfrJ {vs01tB1-3}

Ri' e 69.5ft

{\+ n.Afl}

R.q,*

  • Ri,i -+1 7r Tri J r\

T* - Ri",r i'r}tq Y

Notethatthe samemethodology in the originalseismicanalysis calc(VS01/81-3l is utilizedto calculate theZndmoment of inertiaof theflute(i e..usingan equivalent fluteareas!"

radiusconsidedng

-icorll= l50Pcf fc := +000psi Ec_used:= -\l.t ?5 *d[ Gc used:=30990tkf {VS01/81-3}

Numhr of l?slesconsidered in the ongina/seismicanalysrs calc(V501/Bl-3):

E.;t*hrt,,r$ Flt-tes;l (s*a b*5. c'til)

EL 5{ 5 {p HL 6;3 -- ?. trl-rtca Gl{ e}

EL G o3 *,r FL.6+1 - a,Flu\et (*lre/t)

EL6+3tp EL cio: *trr*.+ (*r,i,s,tq)

El- L{s {,, E tBol-ob- B r4*rtc+-( r\.1)

Page 6 CALCULATION COTUI PUTATION NOP-CG3002-01 Rev.03 CALCULATIONNO. REVlSlON:

c-css-099.20-069 000

{Node#} {Elevf lr of Flt} tEfrect* of Fh afur crachl

!$odr" :* Elcr. :- FL. :-

t tl t1 $l?"?Jft l3 80Ift IT ?71.Jft ll ?48ft r0 ?Ioft I 692ft I 660ft

?

I 6f6.Jft 6 613ft J 609tr

  • 603ft 3 Jm.tft f

1 t?0.7Ift t J6Jft Notethatthe efrectlus numberoffrutesaflerthe crrck is deternunsd besedon the crackrH8p.

llodel-l: ilo crugklorlglnrl SBdechnl Ax fftr} An r $r* + ru;Ag Aytft'I Ay.,-

+

I lftlf I. :- +- n, ln I

ft-n(a

Page7 CALCULATIONCOilIPUTATION NOP-CG3002-01 Rev.03 CALCULATIONNO. REVTSION:

c.css-099.20-069 000 Alr{fir}: Arl := 1554ftI fut*:= 0ft1 Ay {ltr}:

l {ftr}:

Page 8 CALCULATIONCOMPUTATION NOP-CC-3002-01 Rev.03 CALCULATIONNO. REVISION:

c-css-099.20.069 000 ModelJ: Cracls in someflutes and elsewhere(basedon dre crackmap. rnoreaccurmel Bssdon the cracftmap.the SB 'vrnllis dividedintothefollo,rdng 4 regimshavirgdifferentlevelsof cnacks and/s clifferenteffectiverun$en d flutes.

Resim-ltEL801-0^ 812.75):Fb crack Regint-2tEL 774.5- 801.01,:7Woot the aea is cr*ked @ OF rcbarlqyer Resim-3(EL8f3.0 ^ 774.5I ilI% of the aea is cr*ked @ OF rebarlayer Regim4 tEL565.0- 813.0l: l'lo crck Crosssectisrs arelinearlyproratedby usirg a factol Fck. lpsed m the cnackmap-Fck,.= Oct (Regkm-l )

Fctrr;=?04i (Regim-2) j := 3..8 Fck,:= l0P,i (Reglm-3) j .= 9..14 Fc\ := 0.qir FeOim.ll Reductr'ons of lhe secfrona/a,aandf,heZnd rar,tent of nertiadrc to fhe cmc* aiorEtire OF rebelrlayer AA:= c{ F Sirl A [ : = cc ts 3if, dtt F l'4lin dt t + l.4lir

&. hRu$-,.* - + ; R*.*Rnu-i*.*!

Ao* F ,ri &.1 - *-tt L.* Tin.*-q^*;

LL 4'

tu-\" h -k.

1 e{ = 138-8tJ fr- AI = 3-59?" 105S4 Elev. =

t rro = (ongind# of fldesl FI*. : {Effective# sf fiutes, wtrereno creckl 14 B12.75 0 E 13 801 I e 12 774.5 I 7 11 748 B 7 10 7?0 I 2 g 693 I e B fr60 4 x 7 646.5 4 1 6 tr3 3 2 5 60s 3 2 4 603 2 e 2

a J 5S9.5 7 7 570,75 2 2 1 565 0 0

Page9 CALCUIATI ON COTIPUTATION NOP-CG3002-01 Rev.03 CALCULATION NO. REVTSTON:

c-Gss-099.20.069 000 t

.rt:r.I +r i: Oft-

,= 29$1468fr4 It4,= OA4

\

Page10 fu*fuergy E-:t CALCULATIONCOTII PUTATION NOP-CG3002-01 Rev.03 CALCULATIONNO. REVISION:

c-css-099.20,069 000 ffigdel4 : Assu.mgd, fpmirlar crqcting _Sce nario Region-1 (EL801.0- 812.751:0% of the areais cracked@ OF rebarlayer Region-2 (Et 774.5- 801.0): 10006ofthe areais cracked@ OFrebarlayer Region-3 (EL813.0t 774.51:50%of the areais cracked@ OF nbar layer Region4(EL565.0- 6a3.0f: 20%of the areais cracked@ OF rebatlayer Crosssectionsarelineadypolatedby usinga hctor.Fck.basedonthecrackmap Fch :!F.'t (Region-l)

I Fck* ;= l00o,'1 (Region-z'

  • 3..I t*j  :* 50g.ir (Region.3)
- 9..t-f ft  :* !09'a (Region4)

Rductionsof lhe secliaral areaandtheZndmomentof inerltadrc to the cnck alwg tlrc QF rebarlayer:

AAp cc +- 3in AI .- cc e 3for dlt

  • t.llin dI I
  • l.{lin R..
  • Ro*rt - R..
  • Ro,rt-I t-t
  • { {

Acc

  • t\R.. Icc*

i,(*.*

\-A**

L'- I"a 1

lIA

  • 138.8t2.ft- A t - 3 , 5 9 ? xt O 5 . R {

Nodt. =

I Eltv. = Ei - (onginal# of frutes! FLc.-

t l4 812.75 0 0 13 801 I 0 L2 774.3 I 0 11 748 I 0 10 724 I 0 I 692 I 0 I 660 4 0 7 646.5 4 0 6 o43 3 t 5 609 3 I 4 603 2 I 3 589.5 2 1 2 579.75 2 1 I 565 0 0

Page 11 E-t CALCULATION CO]UI PUTATION NOP-CG3002-01 Rev.03 CALCULATIONNO. REVTSION:

G-CSS-099.20.069 000 1

Ax {ft2}: Axr:- \+ F[cr'.\ - FdiAA Arl :r lt5{ft- Ar.

-- . :- Oft-td Av {fizf:

r fft!l:

It - I99l{6m4 l*

  • 0fr4 Model4hasbeensimulated usingANSYSversion13.0,and resultsare thencomparedwiththoseof Models1-3 as wellas the availableoriginalmodalanalysisresults,whichare presented in DIN1, Attachment A.

As discussedin Attachment A of DIN 1, onlythe naturalfrequencies and modeshapesin the lateraldirectionare availablefromthe originalseismicanalysiscalculation as shownin Figure2, so Model-l represents the original SB designconditionand is considered as a reference/baseline for comparing with modeshapesfromModels2, 3,

&4.

Table1 showsthe naturalfrequencies and MassParticipation Factors(MPFs)calculated fromthe four FE models and the naturalfrequencies from the originalseismicanalysis,and the conesponding modeshapesare also presentedin Figure3. As shownin Table1, the naturalfrequencies for Model4 (upper-bound case)havegood agreementswith the originalones. For the first and secondmodes havingsignificant(MPF is 74o/oand 160/o, respectively) to the dynamicbehaviors,the naturalfrequencydifferencewith the originalone is 4.0%

contributions and 5.1olo,respectively.The naturalfiequencydifferencefor the third mode is 5.9%. However,the associated MPFof this modeis only4.0%,whichis considered insignificant basedon its potentialinfluenceon the dynamic behaviors/responseof the SB. Similarly,the corresponding modeshapesare alsocalculated for Models1,2,3 and 4. All the modeshapesfor the first four modesare comparedand the comparisonshowsgood agreements betweenall fourmodels.lt is thenconcluded thatthe assumedcrackpropagation scenarioconsidered in Model4 can be usedas an "upper-bound" condition, for whichthe structuralevaluations performed in DIN 1 remainvalid.

Page 12 CALCULATIONCOMPUTATION NOP-CC-3002-01 Rev.03 CALCULATIONNO. REVISION:

c-css-099.20-069 000 Table1. Comparison of the dynamiccharacteristic betweenthe modelincludingdifferentlevelsof laminar cracking& the originalmodelusedfor the seismicanalysis Natural frequencies and mass participation factors Frequency differences with Original Model-2 Model-3 respect to the original Mode Model-l Model4 calculation (Yrl no. Calculation (all flute (more (Ref. A3) (baseline) (upper'bound) crack) accurate)

Freq MPF Freq MPF Freq M P F Freq M P F Freq MPF Model Model Model Model (Hz) -1 -2 -3 -4

("/") (Hz) ('/") (Hz) (%) (Hz) f/t (Hz) (T")

1 2.97 2.97 74 2.86 73 2.90 73 2.85 73 0.0 -3.5 -2.2 4.0 2 10.52 Not 10.55 16 10.09 16 10.20 16 9.99 17 0.2 -4.1 -3.1 -5.1 3 20.65 Avail. 20.70 4 19.57 4 19.65 4 19.42 4 0.3 -5.2 4.8 '5.9 4 29.02 29.10 2 27.72 2 27.87 2 27.53 2 0.3 -4.5 -4.0 -5.1 SUM 96 95 95 96 lJ\oJe* I N\oAe.* 2 Ntooer. g iviocie*' 4 Fne X.reNcr=Z.:aB F

  • e X , , " w c . r= l O . : i 2 4 Fro5te uc'i' Za.r"48 F.UXue xcY* 29.O?0 Figure2. Naturalfrequencies and modeshapescalculated fromthe originalseismicanalysis

Page13 CALCULATION COTII PUTATION NOP-CG3002-01 Rev.03 CALCULATIONNO. REVISION:

c-css-099.20-069 000 o4E tl tl tl l l tt tl tt t " _ _ _ "I P P r{- (ts tn tn g c o o

+t P (u (!

o o E IJ.J

-0.5 0, 5 15 -1 -0.5 0.5 Normalized modaldisplr tcement Normalized modaldisplacement a) 1't mode (MPF: 73o, to-74o/ol (b) 2ndmode(MPF:160/o-17%l o,l tr fi .f ln c

o P

(o o

lrJ II lI j

1 I

-0.5 0.5 1.5 -L 5 -0.5 0.5 L.5 N o r m a l i z em d o d a ld i s p lrec e m e n t Normalizedmodaldisplacement (c) 3'd mode (MPF: 4Yo) (d) 4thmode (MPF:2o/ol Figure3. Modeshapescalculated fromthefour FE modelsfor thefirstfourmodes 4.2 Limits of Acceptable Laminar Cracking

Page 14 CALCUISTION COTPUTATION NOP-CC-3002-01Rev.03 CALCULATION NO. REVISION:

c-css-099.20.069 000 The permissibleextent and width of cEcking is evaluatedbased on the testing canied out at Purdue and the Universityof Kansas(DlN 3). This testingcaniedout independently by two differentindustryexpertsevaluated the efiect of laminarcrackingat the most criticallocationi.e. the lap splicesof the Shield Building.To be conservative and to get lower-boundstrengths,testedbeamssimulatdtwo splicesnext to each other and in some cases (Kansastestrs)at only 6 days of strength for concrete. Note that the Shield building splices ar6 staggeredand the actual in-placestrcngth of concreteis much higher than what the test sampleswr at when tested. Despitethese aggressivetest conditions,the lower-boundrssultsfrom testingwere determinedto be well abovethe worst-caseexpecteddesignbasisforces/strssesin the ShieldBuildingwith adquatemargins.

As indicatedin the aftachedMemo'sfrom Profs.Sozenand Darwin(Attachments B and C), by testingthe bond and developmentat the weakestlocation(lap splices),the testingcarriedout and the resulb thereofcan be interpretedto be conseNativelyapplicableto the whole circumference of the Shied Building. Therefore,any laminarcrack propagationsfrom thqge observedpreviouslywould be coveredand boundedby the rcsults of this tstingup to and extendingthe full cirorrferenceof the ShieldBuilding.

The testing canied out at PurdueUniversityand the Universityof Kansasalso gaveclear insight8on th widthsof laminarcracksat which the spliceswere still adequatelyable to performtheir intenddfunctionof full load transfer.Thesecrackwidthswereobservedto be in excssof 0.03inchesas reportedin the attachedMemo'sby Prof. Sozen and Prof. Darwin. Based on th6se test results and as confirmedby the attachedMemo's,a conservative upper-bound crackwidth limit of 0.02 inchescan be safelyusedas the limitingcriterionfor crack widthsfor whichthe test resultsare deemdto remainvalid.

In summary,basedon the test resultsand as confirmedby Prof. Sozenand Prof. DaMin, any progressionof the existinglaminarctackingaroundthe circurferenceof the Shield Buildingis rcpresentedand boundedby the results of the tests. Also, both experts have independenflyconfirmedthat the test results can be deemd to remainapplicable as a basisfor designcompliance for observedcrackwidthsof up to 0.02inches.

Page 15 CALCULATIONCOTIPUTATION NOP-CC-3002-01 Rev.03 CALCULATION NO. REVISION:

c-css-099.20.069 000 4,3 CodeCompllanceRevlowof AccoptebleLamlnarGracklng A detailedCode Compliancereviewhad been caried out as part of the (DlN 1, AttachmentL) and the obrved laminarcrackingat the time. This reviewhad indicatdthat the Shield BuiHingstill met all of the specific provisions of ACI 31863.

In this calculation, this GodeCompliancestudywas re-evaluated in light of the new crackingboundsdetinedin Sections1.0 and 2.0. All the specificprovisionsof ACI 31843 in DIN 1, AttachmntL werefoundto still rmain valid,as a resultof whichno revisionsto CodeComplianc is wananted. lt shouldbe recognized that the Shield Buildinghassafelybenableto performits intendedfunctionso tar and the observedcrackingis notexpectedto as confirmedby Prof. Sozen in his Memo (see impac'tits overall structuralintegrityor future func,tionality AttachmentB).

Page16 CALCULATIONCOMPUTATION NOP-CG3002-01 Rev.03 CALCULATION NO. REVISION:

c.css-099.20.069 000 4.4 lmpact of AcceptableLaminarGracking Efiect of laminarcrackingon stifiness,shength,serviceability,duc'tilityand long{em durabilitywas discussedin detailas partof the designbasiscalculation(DlN 1, Section3.0). Thiscalculationhad mncludedthat thetewas no appreciable impact to any of these paEmeters that would result in altering the expec{ed bhavior or performance of the ShieldBuildingas a resultof th observedlaminarcracking.

In this calculation,this evaluationwas revaluated in light of the new bounds of cracking establishedin this calculation.This reviewindicatedthat what had beendiscussedin OIN 1, Section3.0 remainedvalidand thre was no impac'ton these parametersor any additionalissuesexpec'tedto be associatedwith the extendedor progressing laminarcrackingfor crackwidthswithin0.02inches.

Page 17 CALCULATIONCOMPUTATION NOP-CC-3002-01Rev.03 CALCULATIONNO. REVISION:

c-Gss.099.20.069 000 5.0 Results This Calculationdefinesacceptablelimitsof crackingfor variationin modalfrequenciesand modeshapes,for whichth originaldesignbasisseismicloadingare deemedto rcmainvalid. Basedon this criterion,extentof acceptablecrackingis stablishedfor the ShieldBuildingas describedbelovv.

Upper-Bound Limitsfor Oack Propagation Reoion-1(EL801.0- 812.75):No crack(Domeregion)

Reoion-2(EL774.5- 801.0'l: 100%of the areais cracked,# of effective(uncracked)flutes:0 Reoion-3(EL&13.0- of the areais cracked,# of effective(uncracked) 774.5): 50o/o flutes:0 Reoion4(EL565.0- 643.0): 20%of the areais cracked,# of effective(uncracked)flutes:1 This calculationalso addressesthe limits of acceptablecrack propagationaround the circumferenceand the crack widths based on testing caried out at Purdu Universityand the Univrityof lGnsas, and defines a conseruativecrackingthreshold,for whichthe cunentlyestablisheddesignbasis Emain valid. lt is concludedthat the ShieldBuildingwill continueto meet its designbasisas long as the obsrvedcrackingremainswithinthe boundsdefinedbelow,especiallycrackwidthof 0.02inches.

Attachment A: ANSYSInputandOutput Calc.No: C-CSS-099.20-069, Rev.000 SheetNo: 1 of 13 SheetRev.: 000 PROJECT  : DAVfS-BESSE 2013 SB new desiqn-basis calc ORIGINATOR  : SHEN WANG CHECKER  : HONGCHUNLIU SUBJECT  : Seisnic analysis evaluation considering lami.nar cracking on SB JOB NO  : 25884 Examine the natural frequencies, MPFs, and mode shapes of SB considering the different leve1s of the laminar concrete cracks. Here, 3 different cases are examined as follows:

! (1) Case-1: Origi-na1 design (VS01/801-03) - No crack, used as reference data point

! (2) Case-2: Cracks in a1t flutes - conservative since not al-l f]utes are cracked.

! (3) Case-3: Cracks in some flutes and elsewhere - more accurate, based on crack map

! (4) Case-4: Postulated upper-bound limits for crack propagation.

! Note that all modeling parameters are taken from the original seismic analysis calc

! except for the cross sectionaf propertj-es of the beam in the cracked area.

FINI SH

/CLEAR, START n_Case : 4 f n a m e = S T R C A T( I S B _ c a s e ' , C H R V A L( n _ c a s e ) )

,/FILNAME, fname,l

/PREP'7

! # # ( 1 ) G E O M E T R Y# #

  • DIM, ELEV, ARRAY, 1.4 IrtrTl INODE#: I 2 3 4 5 t_0 t1 1_2 13 E L E V ( 1 ) : 5 6 5 , 5 1 0 . ' 7 5 , 5 8 9 . 5 ,6 0 3 , 6 0 9 , 6 4 3 , 6 4 6 . 5 , 6 6 0 , 6 9 2 , ' 7 2 0 , 7 4 9 , ' t 1 4 . 5 , 9 0 1 , g I 2 . ' 7 5 t---------

N U M S T RL, I N E , 1

  • D O ,r , 1 , l _ 4 K, II O' ELEV(I)
  • IF,I,GT,1,THEN T T 1
  • ENDIF
  • ENDDO K, 101,1_0,ELEV(1)

!## (2)MATERIAL & SECTION ##

  • DrM, AX1, ARRAY, 13 l [FT^2]
  • DrM, IZI_, ARRAY, l_3  ! [FT^4]
  • DIM, WTI-, ARRAY, 13  ![KIP]
  • i f , n _ c a s e , e q , 1 - .t h e n l ---------

tSLSt *, 1, 2 3 9 10 11 T2 13 AXl-(1-): L]-53.'7, 1153.7, 1153.7, l_175.1, 11,'75.r, 1196.6, 1196.6, 1282.4, 1282.4, 1282.4, t282.4, 1282.4, 1554.0 IZL(L\= 289283' 289283, 289283, 294883, 294883, 3004E3, 3004E3, 3228E3, 322883, 322883, 322883, 3228E3, 299L83

'J,526.A, WTl(1\= 2120.0' 279L.0, L697.0,3526.0,3311.0, 429A.0, 5771,.0,5386.0, 5244.0, 5L02.0, 4687.0t 4035.0

  • else5-f, n_case, eq, 2, then IELEM #: 1 910 11 I2 13 A X 1 ( 1 ) : 1 1 1 0 . 8 , 1 1 1 _ 0 . 8 ,L 1 1 0 . 8 , 1 , 1 L 0 . 8 , 1 1 1 0 . 8 , 1 , 1 1 , 0 . 9 ,1 , 1 1 0 . 9 , l , 1 l - 0 . 9 , 1 1 1 0 . 8 , 1 1 1 0 . 8 , 1 1 L 0 . 8 , l _ 1 1 0 . 8 , 1 5 5 4 . 0 rz1(1):278183, 2'78]-83, 2'78L83, 2'78183, 2'781,E3, 2'r9183, 2'79LE3,2791E3, 2'79LE3, 2781E.3, 2"181E'3,218LE3,2991E3 wrl-(1r: 2120.0, 279L.0, L69'7.0, 3526.0, 3311.0, L526.0, 4290.0, 5'77L.0, 5396.0, 5244.0, 5102.0, 4687.0, 4035.0
  • elseif, n_case, eq, 3, then l - - - -- - -- -

IELEM #: I 2 910 11 LZ -LJ A X 1( 1 ) : 1 1 5 3 . 7 , l - 1 5 3 . 7 , L 1 5 3 . 7 , 1 1 5 3 . 7 , 1 L 5 3 . ' 7 ,1 , 1 0 4 . 5 ,1 . 1 0 4 . 5 ,L 1 2 5 . 9 , L r 2 5 . 9 , L 1 2 5 . 9 , 1 , 1 2 5 . 9 ,1 0 5 6 . 5 , 1 5 5 4 . 0 rz1(1):289283, 2892E3,289283, 2B92E3t 289283, 2?6583, 2'76583, 282083, 282083, 282083, 282083, 264083, 299183 w T ] , ( 1 ) : 2 1 2 0 . 0 , 2 7 9 1 , . 0 ,1 , 6 9.10 , 3 5 2 6 . 0 , 3 3 1 1 . 0 , 1 5 2 6 . 0 , 4 2 9 0 . 0 , 5 ' 7 ' 7 1 . 0 5, 3 9 6 . 0 , 5 2 4 4 . 0 , 5 l - 0 2 . 0 , 4 6 8 7 . 0 , 4 0 3 5 . 0

  • elseif , n_case, eq, 4, then IELEM #: 1. 2 9 10 l1 1,2 13 AXl-(1): 1104.5, 1104.5, 11-04.5, 1104.5, 1104.5, 1141.4, !r4I .4, II4r.4, L 1 4 L . 4 , 1 1 4 L . 4 , 1 , 1 4 1. 4 , 9'72, 1554.0 rzr(1):274583,274583t 2745E3, 274583t 274583,2601_E3, 260L83, 2601E3, 260L83,2601E3, 2601,83,2421,83,299183

!{Tl- ( 1 ) : 2 L 2 0 . Q , 2 ' 7 9 1 , . 0 ,1 6 9 7 . 0 , 3 5 2 6 . 0 , 3 3 1 1 . 0 , 1 , 5 2 6 . 0 , 4 2 9 0 . 0 , 5 7 ' 7 1 . 0 , 5 3 8 6 . 0 , 5 2 4 4 . 0 , 5 L 0 2 . 0 , 4 6 8 7 . 0 , 4 0 3 5 . 0

  • endi-f MP, EX, l, 524757. !ksf MP, GXY,1, 209900. lksf MP, DENS, L, O.

Attachment A: ANSYSInputandOutput Rev.000 Calc.No: C-CSS-099.20-069, Sheet No: 2 o t 1 3 Sheet Rev.: 000 GRAV: 32.L'7 4 I fr / <ar^2

  • D O ,r , l _ , l _ 3 R , I , W T 1 ( I ) / G R A V ,, W T 1( I ) / G R A V
  • ENDDO

! ## (3) ELEMENT ##

ET, l_, BEAM188 E T , 2 , } 4 A S S 2 I, , , 2

  • D O ,r r 1 , 1 3 SECTYPE, I, BEAM, ASEC SECDATA, AX1 (I ) , IZI (r ) , 0 . 0 , IZI (I ) , , 100 s E c c o N T R o L S , A X l ,( r )
  • 2 0 9 9 0 0 . 0 / 2 . 0 , , A X 1 ( r )
  • 2 0 9 9 0 0 . 0 / 2 . 0 sEcNUM, r
  • ENDDO
  • D O ,r , L , L 3 LSEL,S, LINE, , I 1 , A T T , 1 ,, 1 , , 1 , 0 1 -,,r
  • ENDDO ESIZE, 100 LSEL, ALL LMESH, ALL
  • nn V V T

L 1

L , L t?

J NN=NODE( O, ELEV ( I+ 1 ) , O )

TYPE,2 REAL, I E, NN

  • ENDDO N N = N O D(E0 , E L E V ( 1 ) , 0 )

D,NN,ALL ALLSEL,ALL EPLOT

! ## (4)ANALYSTS +#

/SOLU N_FREQ:20 ANTYPE,MODAL MODOPT,LANPCG,N-FREQ ALLSEL,ALL

/OUTPUT, fname,'OUTr SOLVE

/POSTl

  • DO,I,1rN_FREQ ctrTIT P R N S O LU , ,X
  • ENDDO SAVE FTNISH
          • ANSYS SOLVE COMMAND *****
      • NOTE *** CP: 4.664 TIME: 18:02:30 There is no title defi-ned for this analysis.
      • NOTE*** 4.664 TIME:18:02:30 N o m o d e s a r e b e i n g e x p a n d e d ( M X P A N Dc o m m a n d ) a n d t h e r e f o r e the element resul-ts wifl not be written to the mode file. For more efficient calcul-atj-on of element results ln the expansion pass of any downstream mode superposition analyses, expand al-l- modes during the modat analys j-s.
      • sElEcilo*o:-::l#-3r;ff3il?133'5fi";:R-APPLTcABLE ELEMENTS ***

ELEMENTTYPE 1 IS BEAM]-88 K E Y O P T ( 1 ) : 1 I S S U G G E S T E DF O R N O N - C I R C U I , A RC R O S S SECTIONSAND KEYOPT(3):2 ]S ALWAYS SUGGESTED.

ELEMENTTYPE 1 IS BEAM1BS KEYOPT(15) IS ALREADY SET AS SUGGESTED.

SOLUTION OPTIONS P R O B L E MD I M E N S I O N A L I T Y . .3-D DEGREES OF FREEDOM. . UX UY UZ ROTX ROTY ROTZ ANALYSIS TYPE . .MODAL EXTRACTION METHOD. .PCG I,ANCZOS

Attachment A: ANSYSInputandOutput Rev.000 Calc.No: C-CSS-099.20-069, SheetNo: 3 o f 1 3 Sheet Rev.: 000 NUMBER OF MODES TO EXTRACT. 20 GLOBALLY ASSEMBLED MATRTX .SYMMETRIC LOAD STEP OPT]ONS LOAD STEP NUMBER. 1

      • NOTE *** CP : 4.680 T I M E : 1 8: 0 2 : 3 0 The PCG solver has automaticallv set the l-evel of difficultv for this model to 5.
        • CENTER OF MASS, MASS, AND MASS MOMENTSOF INERTIA CALCUI,AT]ONS ASSUME ELEMENT MASS AT ELEMENT CENTROID TOTAL MASS : 1538.1 MOM. OF INERTIA MOM. OF INERTIA CENTEROF MASS ABOUT ORIGIN ABOUTCENTEROF MASS xc : 0.0000 IXX = 0.7672E+09 IXX : 0.8654E+07

'702.26 YC: rYY  : 0.000 IYY = 0.000 zc : 0.0000 IZZ  : 0.'76'l2E+09 rzz : 0.86548+07 rxY  : 0.000 rXY : 0.000 rYz  : 0.000 rYz: 0.000 rzx -- 0.000 rzx: 0.000

      • MASS

SUMMARY

BY ELEMENT TYPE ***

TYPE MASS 2 1 5 3 8. 0 7 R a n g e o f e l e m e n t m a x j - m u mm a t r i x coefficients in globar coordinates Maximum : 3.900'742325E+11 at element 6.

Minimum  : 4.3351-70757E+10 at efement 5.

      • ELEMENT MATRIX FORMULATION TIMES TYPE NUMBER ENAME TOTAL CP AVE CP 1 13 BEAM188 0.000 0.000000 2 L3 MASS21 0.000 0.000000 Time at end of element matrix formulation Cp : 4.68002987.

Form Preconditioner  : 0 Cum. Iter.: 1 Cp= 4.696 Load Step: 1 Mode= 1-.

curEqn: 1,4 totEgn: 84 Job CP sec: 4.696 Factor Done: l-8 Factor WaIl sec= j'706.884 rate= 0.0 Mflops Iteration= 12 Number of eigenvalues converged: 5 Wall= 0.0 Iteration: 22 Number of eigenvalues converged= 10 WalI: 0.0 Iteration: 29 Number of eigenvalues converged= 17 Wall: 0.0 Iteration: 32 Number of eigenvalues converged: 20 WalI: 0.0 Iteration= 33 Number of eigenvalues converged: 20 Wa1l= 0.0 fteration: 34 Number of eigenval.ues converged: 20 WalI: 0.0 Iteration: 35 Number of eigenvalues converged= 20 WatI: 0.0 Iteration= 36 Number of eigenvalues converged: 20 Wall= 0.0 Iteration: 37 Number of eigenvalues converged= 20 Wall= 0.0 Iteration: 38 Number of eigenval-ues converged= 20 WaIl: 0.0 Iteration: 39 Number of ej-genval-ues converged: 20 Wa11: 0.0 PCG LANCZOS EIGENSOLVER HAS CONVERGEDSUCCESSFULLY THE REQUESTED 20 MODES HAVE BEEN FOUND SUCCESSFULLY

          • ANSYS - ENGINEERINGANALYSIS S Y S T E M R E L E A S E1 3 . 0 *****

ANSYS Mechanical 00203236 V E R S I O N : W I N D O W xS6 4 18:02:30 JAN 27, 2015 Cp: 4 . ' 72 ' 7

          • F R E Q U E N C I E SF R O M P C G T , A N C Z O SI T E R A T I O N * * * *
  • MODE FREQUENCY (HERTZ)

I 2.850178754283 2 2.850178754283 3 9.262645555431 4 9.991914384583

AttachmentA: ANSYS InputandOutput Calc.No: C-CSS-099.20-069, Rev.000 Sheet No: 4 o t 1 3 Sheet Rev.: 000 5 9.991914384583 6 19.42260098850 1 19.42260098850 8 2't .5269959519"7 9 2'7 .526995951_9'7 10 2'7 . 98 4L'7669L7 6 11 33.51142453937 1.2 33.51L42453937 l-J 4 L . 2 9 3 ' 76 2 3 4 8 4 4 I4 4L.293'7 6234844 15 46.15446548341 1,6 48.8326ss81876 L1 48.83265581876 18 59.0411,1_149597 19 5 9 . 0 4 1 1 1 1 49 5 9 7 20 63.2389I'724720

          • A N S Y S - E N G I N E E R I N GA N A L Y S I S S Y S T E M R E L E A S E 1 3 . 0 *****

ANSYS Mechanical 00203236 VERSION=WINDOWSx64 18:02:30 JAN27, 2015CP: 4.'72'7 X DIRECTION CUMUI,ATTVE RATIOEFF.MASS FREQUENCY PERIOD PART]C. FACTOR RATIO EFFECTIVE MASS MASSFRACTION TO TOTAL MASS r 2.8501_8 0.35086 33.492 1.000000 rtzr.14 0.751057 0.'7293L2 2 2.850r,8 0.35086 1.8441 0.055062 3.40086 0. 753334 0.221,11,LE-02 3 9. 2 6 2 6 5 0.10796 0.20983E-08 0.000000 0.440300E-17 0.753334 0.286267E'-20 4 9.99191 0.10008 0.8'7429 0.026L04 0 .'7643'76 0 . 7 5 3 8 46 0.496969E-03 5 9.9919L 0. r_0008 1 5. 9 6 1 , 0 . 4 ' 76 5 6 9 2 5 4 . ' 76 " 7 4.924425 0.165640 6 19.4226 0.514868-01 0.47962 0.014320 0.230037 0.924579 0.149561-E-03 1 79.4226 0.51486E-01 1 .6323 0.22'788r 58.2517 0 . 9 6 3 5 81 0.378731_E-01 I 2'7.52'70 0.36328E-01 5.6't'73 0.1_69512 32.2322 0.985162 0.209562E-01 9 2 7. 5 2 ' 7 0 0.36328E r .2002 0.035835 1.44050 0.986L2'7 U. YJbSOZI!-UJ 10 27.9842 0.35734E-01_ 0.18036E-08 0.000000 0 . 3 2 5 3 06 E - 1 7 0.986L27 0.2L15028-20 11 33.5114 0.2984LE-01_ 3.79'75 0.113384 1 4. 4 2 1 , I 0.995'782 0.937606E-02 Lt JJ.5-Ll-4 0.298418-0l_ 0.42940 0.012821 0.184384 0 . 9 9 5 9 06 0.119880E-03 13 4L.2938 0.242]-7E'-0]- 0.95700 0.028574 0.915848 0.996519 0. s954s1E-03 14 4L.2938 0.242L7E-0L 0.98068E-01 0.002928 0.96I"1298-02 0 . 9 9 6 s 26 0.6252818-05 15 46. 1545 0.21666E-01 0.17104E-11 0.000000 Q.2925358-23 0.996526 0.1901968-26 16 48 .832'7 0.204788-01 0.2't378 0.008L74 0 . 7 49 5 3 9 E - 0 1 0.996576 0.4873238-04

[t 48.832'7 0.20478E-01 0.67084E-01 0.002003 0.450029E-02 0 . 9 9 6 5 79 0.292593E-05 18 59.0411 0.16937E-01  ?.2396 0 . 0 6 6 86 9 5.015?8 0.999937 0.326108E-02 19 59.0411_ 0.l_6937E-0L 0.306s7 0.009153 0.939853E-01 1.00000 0. 6110588-04 20 63.2389 0. t_5813E-01 0.325018-10 0.000000 0.105632E-20 1.00000 0.686780E-24 sum L 49 3 . 5 4 0.9'7104'7 Y DIRECTION CUMUI,ATIVE RATIO EFF.MASS FREQUENCY PERIOD PARTIC.FACTOR RATIO EFFECTIVE MASS MASSFMCTION TO TOTAL MASS L 2.85018 0.35086 -0 .22I31E-08 0.000000 0. 4900508-17 0.3322848-20 0.318613E-20 2 2.85018 0.35086 0.862768-09 0.000000 0.1 44362E-18 0.382756E-20 0.483957E-21 3 9.26265 0.10796 35.667 1.000000 L212.II 0 . 86 2 5 6 s 0.82701'7 4 9.99191 0.10008 0.l_0371E-08 0.000000 0.107565E-17 0.862565 0. 699348E-21_

5 9.99191 0.10008 -0.13188E-09 0.000000 0.173935E-19 0.862565 0.1130868-22 6 19.4226 0.51486E-01-0.32953E-08 0.000000 0.108588E-16 0.862565 0."7060028-20

't L9.4226 0.51486E-01-0. 69610E-09 0.000000 0.484550E-18 0.862s65 0.315037E-21 B 2 ' 7. 5 2 1 0 0.36328E-01 0.31891E-09 0.000000 0.101703E-18 0.862s65 0.66L233E-22 9 2 " 1. 5 2 1 0 0.36328E-01 0. 14540E-10 0.000000 0.2I]-4t88-21, 0.862565 0 .1,3'74568-24 t0 2 ' 7. 9 8 4 2 U.J5 i J4T!-UI 1,1.226 0.314761 IIO.UJJ 0.948023 0.819421_E-01 11 33.5114 0.29841E-01 0.16663E-10 0.000000 u.z t tb5utl-lJ_ 0.948023 0.1805188-24 12 33.51_14 0.29841E-01 0.33587E-09 0.000000 0. 112807E-18 0.948023 0.733421E-22 13 4r.2938 0 .2421,78-01, - 0 . 2 1 8 2 8 E - 0 9 0.000000 0.4'76441E'-]-9 0.948023 0 .309'7648-22 t4 4t.2938 0.242L'7E-0\ - 0 .55586E-10 0.000000 0.308977E-20 0.948023 0.200885E-23 15 46.1_545 0.2r.6668-01 -6.8136 0.191037 46.4256 0 . 9 79 5 0 3 0.3018438-01 16 48.8321 0.20478E-01 0.71758E-11 0.000000 0 . 5 1 49 2 6 8 - 2 2 0 . 9 79 5 0 3 0.3347868-25 L'7 48.832"7 0 .20478E-01 0.94716E-10 0.000000 0.8971-06E-20 0 . 9 79 5 0 3 0.583266E-23 18 59.0411 0.16937E-01 - 0 .194048-10 0.000000 0 . 3 76 5 06 E - 21 0 . 9 79 5 0 3 0 .244'1908-24 19 59.0411 0.16937E-01 - 0 .53213E-1L 0.000000 0.2831588-22 0.979503 0. t-84099E-25 20 63.2389 0.1581-3E-01 5.4981 0.154153 30.2292 1.00000 0 . 1 9 6 5 39 E - 01 sum I 4 ' 74 . 1 9 0. 958857

Attachment A: ANSYSInputandOutput Calc. C-CSS-099.20-069, Rev.000 Sheet 5of13 Sheet 000

          • PARTICIPATION FACTORCALCULAT]ON ***** Z DIRECTION CUMUI,AT]VE RATIO EFF.MASS MODE FREQUENCY PERIOD PARTIC.FACTOR RATIO EFFECTIVE MASS MASS FRACTION TO TOTALMASS r 2.85018 0.35086 -7.8441 0.055062 3.40086 0.22'7704E-02 0.22Lr1,3,8-02 2 2.85018 0.35086 3 3. 4 9 2 1. 0 0 0 0 0 0 112]-.7 4 0.753334 0.72931_2 3 9.2626s 0.1-0'796 -0.30208E-09 0.000000 0.912548E-19 0.753334 0.593306E-22 4 9.99191 0.10008 15.961 0.4'76569 2 5 4 . ' 76 7 0 . 9 2 39 1 3 0.165640 5 9.99191 0.10008 - 0 . 8 ' 74 2 9 0 . 0 2 6 10 4 0 . 7 6 4 3 ' 76 0.924425 0 . 49 6 9 6 9 E - 0 3 o J-y.qzzo 0.51486E-01 7.6323 0.22'788r 58.25L'7 0 .96342'7 0.3?8731-E-01 7 L9.4226 0.51486E-01 -0.4'7962 0.014320 0.230037 0.963s81 u.14y5bItl-uJ I 2 ' 7. 5 2 ' 7 0 0.36328E-07 -7.2002 0.035835 1.44050 0.964546 0.936562E-03 9 2 ' 7. 5 2 7 Q 0.36328E-01 5.6'7'73 0.169512 32.2322 0.986L2"t 0.2095628-01 10 21.9842 0.35734E-01 -0.4'72558-09 0.000000 0.223304E-L8 0.986127 0.1451848-21 0 . 2 9 8 4 1 _ E - 0 1- A . 4 2 9 4 Q 0.012821. 0. 184384 0 . 9 86 2 5 0 0.119880E-03

).2 33.51_14 0.29841_E-01 3.'7975 0.113384 ).4.42L). 0.995906 0 . 9 3 76 06 E - 0 2 13 4r.2938 0 . 2 4 2 1 " ' t E . - 0 1- 0 . 9 8 0 6 8 E - 0 1 0.002928 0.96]-"7298-02 0.995912 0 . 6 2 5 2 81 E - 0 5 1_4 4r.2938 0 .2421.'18-01 0. 95700 0.028574 0.915B48 0.996526 0.595451_E-03 15 46.1545 0.21666E-01_0.111,70E-10 0.000000 0.1_247'7'78-21 0.996526 0.8L125'7E'-25 L6 48.8327 0 . 2 0 4 7 8 E - 0 1 _- 0 . 6 7 0 8 4 E - 0 1 0.002003 0 .4500298-02 0.996529 0.292593E-05 1'7 48.832'7 0.204788-01 0.213'78 0.008174 0 . 749539E-01 0 . 9 9 6 5 79 0 .48'73238-04 18 59.04r.1 0 . r _ 6 9 3 7 E - 0 1- 0 . 3 0 6 5 7 0.009153 0.939853E-01 0.996642 0. 6110588-04 l-9 59.0411 0.1_6937E-0L 2.2396 0.066869 5 . 0 15 7 8 1.00000 Q.3267088-02 20 63.2389 0.1-58138-01 0.31341E-09 0.000000 0 .9822628-L9 1. 0 0 0 0 0 o .6386318-22 sum 1 49 3 . 5 4 0.971047

          • PARTICIPAT]ON FACTORCALCUI,ATION*****ROTX DIRECTION CUMUI,ATIVE FREQUENCY PERIOD PARTIC. FACTOR RATIO EFFECTIVEMASS MASS FRACTION 1, 2.8501-8 0 . 3 5 0 86 - 7 3 7 8. 8 0.0ss062 0 . 1 9 0 1 - 0 4 E + 0 7 0.2524848-02 2 2.85018 0.35086 2s041. 1.000000 0.627039E+09 0.835318 J t. zozo3 0.10796 -0 .17185E-06 0.000000 U.19'JIZE-TJ 0.835318 4 9.99191 0.10008 9 2 9 ' .70 0.37]-275 0 . I 6 43 43 E + 0 8 0.950114 5 9.9919L 0.10008 -509.24 0.020337 2s9329. 0.9504s8 6 19.4226 0.51486E-01 4431.5 0.L'769'7I 0.196381E+08 0.976541

'7 L 9. 4 2 2 6 0 . 5 1 4 8 6 E - 0 L - 2 ' 7 8. 4 8 0.011121 77551.1, 0.976644 8 2 ' 7. 5 2 ' 7 0 0.36328E-01 -681.83 0.02'7229 464893. Q.9'7726r 9 2 7. 5 2 ' 7 0 0.36328E-0]- 3225.3 0. 128800 0.104023E+08 0.99L077 1_0 27.9842 0.35734E-01 -0.210678-06 0.000000 0.'7326328-1"3 0.991077 1T JJ.5-LI4 o.2984L8-01. -245.1,2 0 . 0 0 9 7 89 60084.6 0.991156 12 33.511_4 0.298418-0L 2L6'7.8 0.086571 0 . 46 9 9 3 5 E + 0 7 0 . 9 9 7 3 9 8 L3 41-.2938 0 .2421"'7E'-01" -55 .2'76 0 .00220'7 3055.47 0 . 9 9 ' 74 0 2 t4 41.2938 0 .242I'7E.-0L 539.42 0 .021542 2909"7t. 0.997788 15 46. 1545 0.21666E-01 0.63793E-08 0.000000 0.406959E-16 0.997?88 L6 48.832"t 0.204788-01 -38.574 0.001540 1 4 8 ' 7. 9 6 0.99'7'190 1'7 48.8327 0.204?8E-0t L 5 7. 4 2 0.006287 24'782.5 0.997823 18 5 9 . 0 41 1 0 . 1 - 6 9 3 7 E - 0 1 - 1 7 3 .6 3 0.006934 30146.3 0 . 9 9 7 86 3 L9 59.Q41"7 0 . 1 6 9 3 7 E ' - 0 3 . L 2 6 8. 4 0. 050653 0 . 16 0 8 8 4 E + 0 7 1.00000 20 63.2389 0 . 1 - 5 8 1 - 3 E - 0 10 . 1 7 6 6 5 8 - 0 6 0.000000 0 . 3 1 2 06 1 E - 1 3 1.00000 sum 0 . 7 5 29 3 5 E + 09

          • P A R T I C ] P A T I O N F A C T O R C A L C U I . A T I O N* * * *
  • R O T Y DIRECTION CUMULATIVE FREQUENCY PERIOD PARTIC.FACTOR RATIO EFFECTIVEMASS MASS ERACTION 1_ 2.85018 0 . 3 5 0 86 0.0000 0.000000 0.00000 0.00000 2 2.85018 0.35086 0.0000 0.000000 0.00000 0.00000 3 9.26265 0.10796 0.0000 0.000000 0.00000 0.00000 4 9.99191 0.10008 0.0000 0.000000 0.00000 0.00000 5 9. 99191 0.10008 0.0000 0.000000 0.00000 0.00000 6 19.4226 0.51486E-01 0.0000 0.000000 0.00000 0.00000 7 19.4226 0.51486E-01 0.0000 0.000000 0.00000 0.00000 I 2't .527Q 0.36328E-01 0.0000 0.000000 0.00000 0.00000 9 2't .52"10 0.36328E-01 0.0000 0.000000 0.00000 0.00000 10 2't .9842 0.35734E-01 0.0000 0.000000 0.00000 0.00000 q,11/t 11  ?? 0.29841E-01 0.0000 0.000000 0.00000 0.00000 r2 33.51-14 0.29841E-01 0.0000 0.000000 0.00000 0.00000 13 4L.2938 0.242L7E-0L 0.0000 0.000000 0.00000 0.00000 14 41.2938 0.242L'78-07 0.0000 0.000000 0.00000 0.00000 15 4 6 .1 5 4 5 0.21666E-01 0.0000 0.000000 0.00000 0.00000

AttachmentA: ANSYSInputandOutput Calc. c-css-099.20-069, Rev.000 Sheet No: 6of13 000 IO 48.832'7 0.20478E-01 0.0000 0.000000 0.00000 0.00000 I'7 48.8327 0.20478E-01 0.0000 0.000000 0.00000 0.00000 l_8 5 9 . 0 41 1 0.1,6937E-01 0.0000 0.000000 0.00000 0.00000 1v 5 9 . 0 41 1 0.16937E-01 0.0000 0.000000 0.00000 0.00000 20 63.2389 0.15813E-01 0.0000 0.000000 0.00000 0. 00000

          • P A R T I C I P A T I O N F A C T O RC A L C U I , A T I O N* * * *
  • R O T Z DIRECTION CUMULATIVE FREQUENCY PERIOD PARTIC.FACTOR RATIO EFFECTIVE MASS MASS FRACTION 1 2.85018 0.35086 -25041. 1.000000 0.627039E+09 0.832793 2 2.85018 0.35086 -1378.8 0.055062 0.190104E+07 0.83s318 J 9.26265 0. 10796 -0. 119368-05 0.000000 0.L42462E-LL 0.83s318 9.991_91 0.10008 -509.24 0.020337 259329. 0.835662 5 9.99r_91 0.10008 - 9 2 9 ' 7. 0 0.3'7I2'15 0.8643438+08 0.950458 6 1 9. 4 2 2 6 0.51486E-0]- -218.48 0 . 0 1 1 1 2L 77551.1 0.950s61

'7 -4431.5 L 9. 4 2 2 6 0.51486E-01 0 . t ' 76 9 ' 7 I 0.196381E+08 0.9'76644 8 2 1. 5 2 ' 7 0 0.36328E-07 -3225.3 0.128800 0.104023E+08 0.990459 9 2 7. 5 2 ' 7 0 0 .36328E-01 -681 . 83 0.02't229 464893. 0.991-077 10 27.9842 0 .35734E-01 -0 . 10215E-05 0.000000 0.104345E-11 0.991077 11 33.5114 0.2984t8-0L -2161 .8 0.086571 0 .4 69935E+07 0.997318 L2 3 3. 5 1 1 _ 4 0.29841E-0L -245.r2 0.009789 6 0 0 8 4. 6 0.997398 13 41.2938 0.242I'tE-01 -539.42 0.021,542 29Q9'7L. 0.99't'784 I4 41.2938 0 .242L'78-01, - 5 5 . 2 ' 76 0.002207 3055.47 0.997788 15 46 . 1 5 4 5 0.216668-01 -0.972438-09 0.000000 0.945614E-18 0.997788 16 48.832't 0.20478E-0t - 1 . 5 1. 4 2 0.006287 24'782.5 0.99782r L'7 48.8321 0.20478E-01 -38 .574 0.001540 148'7.96 0.997823 59.0411 0 . 16937E-01 -L268 .4 0 . 0 5 05 s 3 0.160884E+07 0.999960 rY 59.0411 0.16937E-01 -173. 63 0.006934 3 0 1 46 . 3 L.00000 2Q 63.2389 0 . l_5813E-01 -0 .I832rE-07 0.000000 0.335659E-15 1.00000 0.752935E+09

      • NOTE *** cP= 4.'72'7 TIME= 18:02:30 Solution is done !
      • AI{SYS BINARY FILE STATISTICS BUFFER SrZE USED: l-6384 0 . 0 6 2 M B W R I T T E N O N E L E M E N TM A T R I X F I L E : S B _ c a s e T . e m a t 0.062 MB WRITTEN ON ELEMENTSAVED DATA FILE: SB_caseT.esav 0.062 MB WRITTEN ON MODAL MATRIX FILE: SB case?.mode FIN]SH SOLUTION PROCESSING 4 .'789
          • A N S Y S R E S U L T S I N T E R P R E T A T I O N( P O S T l ) * * * *
  • ENTER /SHOW,DEV]CE-NAME TO ENABLE GRAPHIC D]SPLAY ENTER FTNISH T O LEAVE POST1
  • DO LOOP ON PARAMETER= I FROM 1 .0000 To 20.000 BY 1.0000 USE LOAD STEP 1 SUBSTEP 1 FOR LOAD CASE 0 SET COMMANDGOT LOAD STEP: 1 SUBSTEP: 1 CUMUI,ATIVE ITERATION:

TIME/FREQUENCY: 2.8502 TT TT T-PRINT U NODAL SOLUT]ON PER NODE

          • P O S T ] . N O D A L D E G R E E O F F R E E D O ML I S T I N G * * * *
  • LOAD STEP= 1 SUBSTEP: l-FREQ= 2.8502 LOAD CASE: 0 THE FOLLOWING DEGREE OF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0.55497E-03 4 0.265468-02 6 0.44188E-02 I 0.52638E-02 10 0.106338-01

Attachment A: ANSYSInputandOutput Rev.000 Calc.No: C-CSS-099.20-069, SheetNo: 7 of 13 SheetRev.: 000 12 0.11225E-01 74 0. 13577E-01 1-6 0.19468E-01 18 0.24790E-01 20 0.30062E-01 22 0.34845E-01 24 0 .39436E-01 26 0.41196E-01 MAXIMUM ABSOLUTE VALUES NODE 26 VALUE 0.41196E-01

  • ENDDO TNDEX: T
          • P O S T 1 N O D A L D E G R E E O F F R E E D O ML I S T I N G LOAD STEP= l- SUBSTEP= 2 FREQ: 2.8502 LOAD CASE: 0 THE FOLLOW]NG DEGREE OF FREEDOM RESUL?S ARE IN THE GLOBAL COORDTNATE SYSTEM NODE UX 1 0.0000 2 0.30557E-04 4 0.14617E-03 6 0.24331_E-03 8 0.28983E-03 10 0.58549E-03 12 0.61807E-03 t4 0. ?4755E-03 16 0.10719E-02 18 0.13650E-02 20 0.165538-02 22 0 . 1 9 1 86 E - 0 2 24 0.21,'7L4E-02 26 0.226838-02 MAXIMUM ABSOLUTE VALUES NODE 26 VALUE 0.22683E-02
          • P O S T 1 N O D A L D E G R E EO F F R E E D O ML I S T I N G *****

LOAD STEP: 1 SUBSTEP: 3 FREQ: 9.2626 LOAD CASE: 0 THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE TN THE GIOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 -0.255168-l_0 4 0.64713E-10 6 0.11991E-10 I -0.960628-11 10 0.3I20I8-I2 L2 -0.34919E-12 14 - 0 . 8 5 6 46 E - 1 1 16 -0.18s068-10 t8 0.19154E-10 20 0.91-901_E-11 22 -0.12330E-1-0 24 0.15519E-12 26 0.20766E-11 MAXIMUM ABSOLUTE VALUES NODE 4 VALUE 0.64?13E_10

          • P O S T 1 N O D A L D E G R E EO F F R E E D O ML I S T I N G *****

LOAD STEP: 1 SUBSTEP: 4 FREQ: 9. 991-9 LOAD CASE= 0 THE FOLLOWING DEGREE OF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0 .0000 2 0.17151-E-03 4 0.72650E-03 6 0.10951E-02 8 0.L2449E-02 10 0.1881-2E-02

Attachment A: ANSYSInputandOutput Rev.000 Calc.No: C-CSS-099.20-069, SheetNo: 8 o f 1 3 Sheet Rev.: 000

).2 0.I9L628-02 14 0.19960E-02 16 0.18049E-02 18 0.L22528-02 20 0 .36510E-03 22 - 0 .56026E-03 24 -0.15067E-02 26 -0 .r'7 9298-02 MAXIMUM ABSOLUTE VALUES NODE 14 VALUE 0.19960E-02

          • P O S T ] - N O D A L D E G R E E O F F R E E D O ML I S T I N G LOAD STEP: 1 SUBSTEP: 5 FREQ: 9.9919 LOAD CASE: O THE FOLLOWING DEGREEOF FREEDOMRESULTS ARE TN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0.313128-02 4 0.13263E-01 6 0.19992E-01 I 0.22'7288-0L 10 0.34344E-01 1 _ 2 0 . 3 49 83 E - 0 1 L 4 0. 3 6 4 3 9 E - 0 1 16 0.32951E-01 18 0.2236'78-0r 20 0.66654E-02 22 -0.I0228E-0L 24 -0.27508E-01 26 -0.32'132E-0I MAXIMUMABSOLUTEVALUES NODE )-4 VALUE 0.36439E-01
          • P O S T 1 N O D A L D E G R E EO F FREEDOMLISTING LOAD STEP: 1 SUBSTEP= 6 FREQ= L9.423 L O A D CASE: O THE FOLLOWING DEGREE OF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1- 0.0000 2 0.35s36E-03 4 0. t-46208-02 6 0.20337E-02 B 0.220098-Q2 10 0.20300E-02 12 0.19155E-02 1,4 0.13133E-02 16 -0.80245E-03 18 -0.20607E-02 20 -0.795268-02 22 -0.64539E-03 24 0.13389E-02 26 0.I"7582E.-02 MAXIMUMABSOLUTEVALUES NODE 8 VALUE 0.220098-02
          • P O S T 1N O D A LD E G R E E O F F R E E D OL MI S T ] N G LOADSTEP= 1 SUBSTEP= 1 FREQ= L9.423 LOAD CASE: 0 THE FOLLOW]NG DEGREEOF FREEDOM RESULTSARE IN THE GLOBALCOORDINATE SYSTEM NODE UX 1 0.0000 2 0.56549E-02 4 0.23265E-01 6 0.32363E-01 8 0.35024E-01 10 0.323048-01 t2 0.30482E-01 14 0.20898E-01

Attachment A: ANSYSInputandOutput Rev.000 C-CSS-099.20-069, 9 of13 000 16 -0.12770E-01 18 -0.327928-0L 20 -0 .31072E-01 22 -0.10270E-01 24 0 .21307E-01 26 0.27978E-01 MAXIMUM ABSOLUTE VALUES NODE 8 VALUE 0.35024E-01

          • P O S T 1 N O D A L D E G R E E O F F R E E D O ML I S T I N G *****

LOAD STEP= L SUBSTEP: I FREQ: 21 .52'7 LOAD CASE: 0 THE FOLLOWING DEGREE OF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 4.84249E-02 4 0.32982E-0I 6 0.40291-E-01 B 0.40089E-01 t0 -0 .744928-03 L2 -0.484248-02 14 -0.19781E-01 l-6 -0.32883E-01 18 -0.17965E-02 20 0.31080E-01 22 0.268288-01 24 -0.125898-01 26 -0.207388-01 MAXIMUM ABSOLUTE VALUES NODE 6 VALUE 0.40291E-01 LOAD STEP: 1 SUBSTEP: 9 FREQ= 21.527 LOAD CASE=

THE FOLLOWING DEGREE OF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0 .0000 2 0.178L0E-02 4 0.69726E.-02 6 0.851_76E-02 8 0.84750E-02 10 -0.15748E-03 L2 -0.1023'78-02 t4 -0.4]-81'tE-02 16 -0. 69515E-02 18 -0.37978E-03 20 0.65705E-02 22 0.56715E-02 24 -0.266L3E-02 26 -O .43841,E.-02 MAXTMUMABSOLUTE VALUES NODE 6 VALUE 0.85176E-02

          • P O S T 1 N O D A L D E G R E EO F F R E E D O ML ] S T I N G *****

LOAD STEP: 1 SUBSTEP: 10 FREQ: 27.984 LOAD CASE:

THE FOLLOWING DEGREE OF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0 .tI4 90E-l_0 4 0.45585E-10 6 -0.30387E-10 B -0.18692E-10 10 0.l_2469E-10 1,2 0.224298-IL 14 -0.585058-11 76 0 .432'7'7E'-12 18 0.852788-12

Attachment A: ANSYSInputandOutput Rev.000 Calc.No: C-CSS-099.20-069, Sheet No: 1 0o f 1 3 Sheet Rev.: 000 20 -0.10438E-11 22 0 .87 669E-1.2 24 -0.'7'7049E.-]-2 26 0.454208-1,2 MAXIMUM ABSOLUTE VALUES NODE 4 VALUE 0.45585E-10

          • P O S T 1 N O D A L D E G R E E O F F R E E D O ML I S T I N G *****

LOAD STEP: ]- SUBSTEP: 11 FREQ= 33.511 LOAD CASE:

THE FOLLOWING DEGREE OF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0.835'728-02 4 0.31_516E-01_

6 0.33778E-01 I 0.30579E-01 10 -0.30990E-01 L2 -0.32943E-01 l-4 -0 .32292E-01 t 6 0.21441E-01 18 0.28399E-01 20 - 0 . 1 4 5 46 E - 0 1 22 -0.30996E-01 24 0.'78297E-02 26 0.15804E-01 MAXIMUM ABSOLUTE VALUES NODE 5 VALUE 0.33778E-01

          • P O S T 1 N O D A L D E G R E EO F F R E E D O ML I S T I N G *****

LOAD STEP= 1 SUBSTEP: 12 FREQ: 33.511 LOAD CASE:

THE FOLLOWING DEGREEOF FREEDOM RESULTSARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0.944998-03 4 0.35636E-02 6 0.381,94E-02 I 0.34577E-02 10 -0.35042E-02 12 -0.37250E-02 L4 -0.36514E-02 16 0.242518-02 18 0.32111E-02 20 -0.1-6448E-02 22 -0.35048E-02 24 0.88534E-03 26 0. t-7870E-02 MAXIMUMABSOLUTEVALUES NODE 6 VALUE 0.38194E-02 LOAD STEP: 1 SUBSTEP: ]-3 FREQ: 4L.294 LOAD CASE:

THE FOLLOWING DEGREEOF FREEDOM RESULTSARE IN THE GLOBALCOORDINATE SYSTEM NODE UX 1 0.0000 2 0.31925E-02 4 0. t_1189E 6 0.91731E-02 B 0.654L'78-02 l _ 0- 0 . 2 2 3 1 , 1 E - 0 1 t2 -0.20632E-01 1 4 - 0 . 6 6 0 46 E - 0 2 16 0.41758E-01 18 -0.34862E-01 20 -0.19192E-01 22 0.42340E-01

Attachment A: ANSYSInputandOutput Rev.000 Calc.No: C-CSS-099.20-069, Sheet No: 1 1o f 1 3 Sheet Rev.: 000 24 -0.423308-02 26 -0.15095E-01_

MAXIMUM ABSOLUTE VALUES NODE 22 VALUE 0.42340E-01

          • P O S T 1 N O D A L D E G R E E O F F R E E D O ML ] S T I N G LOAD STEP: 1 SUBSTEP: 14 FREQ: 4L.294 LOAD CASE= O THE FOLLOWING DEGREE OF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0.32'7t58-03 4 0.LI466E-02 6 0.94001E-03 8 0.67036E-03 10 -0.22863E-02 12 -0.2].1428-02 14 -0.67680E-03 16 0.427928-02 18 -0 .35'724E-02 20 -0.t96678-02 22 0.43387E-02 24 -0.43378E-03 26 -0.15469E-02 MAXIMUM ABSOLUTE VALUES NODE 22 VALUE 0.43387E'-02
          • P O S T 1 N O D A L D E G R E E O F F R E E D O ML I S T I N G LOAD STEP: 1 SUBSTEP: 15 FREQ= 46.1-54 LOAD CASE: 0 THE FOLLOWING DEGREE OF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0.11755E-13 4 0.322688-13 6 -0.13877E-l_2 8 0.14389E-13 10 0.19671-E-11 1-2 -0.50107E-11 L4 0.28'7028-]-2 16 0.51810E-14 18 0.93631E-14 20 -0.968458-14 22 -0.552998-14 24 -0.39957E-15 26 0.67851E-14 MAXIMUM ABSOLUTE VALUES NODE 1-2 VALUE -0.50107E-11
          • P O S T 1 N O D A L D E G R E E O F F R E E D O ML I S T I N G LOAD STEP: 1 SUBSTEP: 1.6 FREQ: 48.833 LOAD CASE= 0 THE FOLLOWING DEGREE OF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0.128068-02 4 o.4t'7L4E-02 6 0.22'731E-02 8 0.84293E-03 10 -0.949568-02 L 2 - 0 . ' 7 ' 79 8 8 E - Q 2 1_4 0.2'731_'78-02 16 0.18277E-01 18 -0.400768-01 20 0.49665E-01 22 -0.34084E-01 24 0 .36305E-03 26 0.10252E-01

Attachment A: ANSYSInputand Output Rev.000 Calc.No: C-CSS-099.20-069, SheetNo: 1 2o f 1 3 Sheet Rev.: 000 MAXIMUM ABSOLUTE VALUES NODE 20 VALUE 0. 49665E-01

          • P O S T 1 N O D A L D E G R E EO F F R E E D O ML I S T I N G *****

LOAD STEP: 1 SUBSTEP: I'7 FREQ= 48.833 LOAD CASE= 0 THE FOLLOWING DEGREE OF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0.31379E-03 4 0.r022L8-02 6 0.55699E-03 8 0 .20654E-03 10 -0.23267E-02 12 -0.19110E-02 1,4 0.669368-03 16 0.44786E-02 18 -0.981998-02 20 0.12169E-01 22 -0.83518E-02 24 0.88959E-04 26 0.25t2I8-02 MAXIMUM ABSOLUTE VALUES NODE 2Q VALUE 0.12169E-01

          • POST1 NODAL DEGREE OF FREEDOU LISTING LOAD STEP: 1 SUBSTEP= 18 FREQ: 59.041 LOAD CASE= 0 THE FOLLOWING DEGREE OF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0.15283E-01 4 0.423258-0I 6 0.254858-02 I - 0 . 1 -6 1 3 8 E - 0 1 1-0 -0.48959E L2 -0.31784E-01 L4 0.57827E-01 16 -0.14382E-01 l-8 0.4'79328-02 20 -0.16833E-02 22 0.530058-03 24 0.18440E-03 26 -0.23037E-03 MAXIMUM ABSOLUTE VALUES NODE 14 VALUE 0.57827E-01
          • P O S T 1 N O D A L D E G R E E O F F R E E D O ML ] S T ] N G *****

LOAD STEP: ]- SUBSTEP: 19 FREQ: 59.041 LOAD CASE= 0 THE FOLLOWING DEGREEOF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0.20920E-02 4 0.57938E-02 6 0.34886E-03 8 -0.2209LE-02 10 -0.67018E-02 12 -0.43508E-02 7 4 0 . 7 9 15 8 E - 0 2 16 -0.19686E-02 18 0.65612E-03 20 -0.230428-03 22 0.7255'7E-04 24 0.252428-04 26 -0.31534E-04 MAXIMUMABSOLUTEVALUES

Attachment A: ANSYSInputandOutput Rev.000 Calc.No: C-CSS-099.20-069, Sheet No: 1 3o f 1 3 Sheet Rev.: 000 NODE ].4 VALUE 0.79158E-02

          • P O S T 1 N O D A L D E G R E E O F F R E E D O ML I S T I N G LOAD STEP: 1 SUBSTEP: 20 FREQ: 63.239 LOAD CASE: O THE FOLLOWING DEGREE OF FREEDOMRESULTS ARE IN THE GLOBAL COORDINATE SYSTEM NODE UX 1 0.0000 2 0.57438E-13 4 0.645L18-L2 6 -0.81878E-12 I Q .s 8 s 2 8 E - r _ 2 10 -0 .6'76LLE-L2 L2 -0.8225'78-L2 1_4 -0 .239348-L2 16 0.14029E-11 18 -0.LI622E-II 20 -0.65539E-12 22 0.142888 24 -0.I4L94E-12 26 -0.509068-12 MAXIMUM ABSOLUTE VALUES NODE 22 VALUE 0.14288E-11
      • NOTE *** cP : 4.805 T I M E : 1 8: 0 2 : 3 0 DELETED BACKUP FILE NAME: SB case4.dbb.
      • NOTE *** cP : 4.805 TIME: L8:02:30 NEW BACKUP FILE NAME: SB case4.dbb-ALL CURRENT ANSYS DATA WR,ITTEN TO FILE NAME: S B _ c a s e 4. d b FOR POSSIBLE RESUME FROM THIS POINT EXIT THE ANSYS POST1 DATABASE PROCESSOR
          • R O U T I N E C O M P L E T E D* * * *
  • CP : 4.820

CalculationC-CSS-099.20-069,Rev. 0, AftachmentB, Page 1 of 3 To: Mr.Javeed Munshi FROM: MeteA.soz*n,5E {filinois}[{.tc *,i{a" u-*

RE: On The Effectof LaminarCracksObservedin the ShieldStructure of the Davis-Besse NucfearPowerStation DATE: 25 March2015 Not havingmadethe crack-width measurements in person,let me startwith a iummaryof whatI knowaboutthe distribution anddevelopment of laminarcracksobserved in the shellof the structure. Asdocumented in TableI of thisnote,a totafof 15boreshavebeensubjected to repeatedcrackwidthmeasurements overthe courseof 2 to 3 years. Noneof the repeated measurements identifyanappreciable trendof increasing crackwidth.

Crackwidthsreportedin 2011rangefrom 5 to 13mils.Thosemadein 201?and?013range from5 to 10mifs.

In the datareportedin Table1, thereis no trendthat wouldbe inferredto suggesta changein the strengfhof the structure. Thisconclusion is in agreement with the standardexpectation that, unlessthere is a seriousdisturbance in its surroundings, a reinfurcedconcretestructure that hasbeenbuilt decadesagoshouldnot havecriticafchangein its propertieswithinits expectedlife span.

Resultsof experimentscarriedout at BowenLaboratoryin 2012focusingon the effectof laminarcrackson strengthof unconfinedlapsplicesof #11reinforclngbarsprovidea basisfor understanding the strengthstateof the ShieldStructureat the Davis-Besse NucleafPower

Station, Thequestion to be ansrfi,ered is simpleanddirect.Giventhatthe observed laminarcracksin the ShieldStructurwerenot causedby bondstress,the questinnis "Whatfractionof the yield stressof the relnforceme nt canbe developedby a splicewith an existinglaminarcrackof a Bivenmagnitude?"

Eightof the twelvetestsreportedwerefocusedon that questionr.Testgirderswith 120-in.and 79-in.spfices (Figure1 & f l wereloadedto developlaminarcracks, unloaded, andthenloaded to failurets determinethe effectof "existingl'cracks.Theirresultsin relationto the question to be answeredaresumrnarized in Table2. TheglrdersmeasuredL7 518by 30 in. in cross section.

In the testswith 120-in.spfices (SeriesAl, it wasobserved that a splicewith anexistingcrackas largein thickness as120milsdeveloped120%of the measurd yieldstressof the reinforcement. ln the testswith 79-insplices(Series B),it wasobserved that a splicewith an t

M. A. Sorenand5. Puiol,'An Investlgation of Theeffectsof LaminarCrackson $trengthof UnconfinedLapSplicer of *11 reinforcingbars,' e reportsubmittedto FirstEnergyNuclearOperatingComBany, OakHarbqr,Ohio,Xl July 2012.

CalculationC-CSS-099.20-069,Rev. 0, AttachmentB, Page 2 of 3 existing crackwidthof 30 milsdeveloped 105%of the measured yieldstrersof the reinforcement.

In bothcasesthe existingcrackwidthsexceeded thosemeasured in the ShieldBuitding.

Themea$urements madein the testsat BowenLaboratory confirmthatthe reportedlaminar cracksin the ShieldBuildingsf the Davis-Besse NuclearPower$tationwill not preventthe structurefromfulfillingitsdesignmissionof ductilityin the eventof impulsively appliedinternal or externalforces.

It is relevantto notethe ACI318-63documentstatesin Article805"Splices at pointsof maximum tensilertressshsuldbe avoidedwhereverpossible; suchsplices whereusedshallbe welded,lapped,or otherwisefullydeveloped." In the testsmadeat BowenLaboratory wlth faminarcracks, the 120-in.splicesdeveloped a minimumot77 ksiandthe 79-in.splices developed a mlnimumof 59 ksi.Theminimumreinforcement stressdeveloped in bothtypesof spliceexceeded the nominal yield (60 stress ksi)asrequiredby ACt318-63..

Recommendetlon Baseduponthe studyof the testsperformedat BowenLaboratory, 0 conservative lswerbound erack-width canbe establlshed.lf the measured laminarcrackwidth doesnot exceed0.0?

inches,the spliceswifl continueto satisfythelr originaldesignobjective.

TABUT ml TU l0t3 ID Cncklttidth Date CndWdh Drte CrdWldth Date Cn*lilifth Oate CnckWidthDate 0ffilin. 0.Ol ln. 0Olin. 0"filtin. $ffiiil.

$tmil.s lUtUt0ll efiutsH 5+ea$$ 1$2ff20'11 NoCl6 t/illou u$/lCI$

s773.16 u2unfi lt 9fi5/Ifi!

s665.S& 10/2sil11 s5rul!

s7-6$',t.S25 xonryro}r e/sn0$

5S653.$9 1T5/trynu tloCllG uz{eu t{oC}lG ffiunu INe/u/st:

5$666.$11 ilrumll sltw ifoClG USm: f'loCl6 ilvlot3 e$/$t!

tln5.?a5 {0 10/3U20u (I0 5NWlt lloCllG wlffi2 ilo[tf6 g#mu el34l?ou tu-5617'1)il0 $fi{m: elluHs 511"569.$l? 10[6/mil e/u/m$

5U-666S4 10124/r0trtioCl6 iltVmu ililm: 1l elluilu 5lt66S8 1Uyt01t lt u$nfit 9ls613.$46s10 $/251rur NoCHG u$/nu r{ 9H4lt01 r+n4,o3.5 <lll EB/NU erulslr flnt${ 131u4l0u  !{oCHG uB/40il t{oCtlS g3/101: 1( elB/mu

Calculation C-CSS-099.2S069, Rev.0, Attachment B, Page3 of 3 TABTEZ Test Girder lD txlrtlng CrackWldth TesileStress Yield$tress Developedin Reinforcment 0,001 In. ksi ksi A1 150 79 66 A2 80 7g 66 A5 80 79 65 A6 60 77 66 B2 30 69 65 B3 15 7A 66 B5 25 72 66 B6 15 72 $6 t L{t cd I I' flrE 3ffi-

?r Eomr It

-r I L, Ir I

'.J l-,oJ 3 rg ,, L_,u l-FigureI TestGirderSeriesA q

Er$r.f $lH Rcd I 1' Tr Sarrn I L.

rl s-a3"_l ,. f.r 3,L- s4s'--l r'.r (Llp Sprat tmdrr 3a'{'

Figure2 TestGirderSeriesB

CalculationC-CSS-099.20-069,Rev. 0, AttachmentC, Page 1 ol2 DAVID DARWIN, consuftins Eneinesr 1901Camelback Drfve ralEngineering Struc'tu Lawrence,l(ansEs66&t7 Engineedng Matefials 78ffi6+3827 78S41-2888 Cll 785-764-9922 MEMORAT{DUM TO: JaveedMunshi FROM; David Darwin DATE: March24,2A15

SUBJECT:

PotentialLimits 611lqminar Qs6[iag in Davis-Besse ShieldBuilding This memois in response to threequestionsaddressing the laninar crackingin the Davis-Besse Shield Building.

l. Do thetestingandresultsreportedia Universityof KansasCenterfor Research, Inc. SL Report12-2, daredJuoemlz, in anyway placea limit on the laniaar crackingaroundthe ShieldBuilding?In other words,if tbe laminarcrackingis p,resent thtougboutthe ShieldBuildin& are the rcstsandtestresults valid?

Response: Thet$tsandtestresultsreportedin SLRportl2-2 covertheconditiooof firll del"'niqationin thevicinityof splices,andthus,conespond to laninarcrackingthroughoutthe ShieldBuilding.

2, Is therea limit to the crackwidth thatcanbe allowedbasedoa tbetstresultsrcportedin SL Rport r2-2?

Response: Five of the six test specimens described in SL Reportl2-2 werefabicded usinga coldjoint (obtainedusingtwo colrcrctcplacements) to simulmea laninar crack Threeout of thesefive specimens werepreloaded to obtainla"'ina' cracksin theplarc ofthe splicedbarswith wi&hs in thennge of20 to 35 mils (0.020 to 0.035in.). Thosespecimens weresubsequently reloadedlo failure- a ftilure thatwas governedby spliceshength.Oneof thetbreepreloaded specimens hada splicelenglhof79 in" Ils initial l6qdingresultedin a laminarcrackwidth of 20 mils (0.020in.). Uponsubsequent reloading,a sbessof 57,000psi wasobtainedin the splicedbar.Priorto Gachingthis stress,a l+'ninr crackwi&h of 35 mils (0.035in.) was measuredThe other two preloadedspecimenshad spliceleogthsof 120 in- These specirnens werepreloadedto producelaminr crackwidths of 35 and 30 mils (0.035aod0.030is),

respectively. Uponreloading,the specimens achiwedrespectivebar stresses at splicefailmeof 67,000 and69,000psi. Giventhatall tbreebeamsachiweda laminarcrapkwidth of at least30mils (0.030ia.),a crackwidthof 20 mils (0.020in.) wouldbeaprudentupperlimit for theShieldBuilding.

3. Assumhgifu4theShieldBuildinghaslaminarcrackingaroundits firll cfuumference aodthatthecfiack widtbs aremaintainedwithin the limits to your rsponse to Erestion2, how doesthis situationin the ShieldBuilding meet the provisions of ACI 3I E-63?

Response: Splicedesignin accordance with ACI 318-63rcquiresthat qplicesfransfcrtheentireoomputed shess from bar to bar without exceeding tbree-quarters of the permissiblebondvalues(expressed asan ultimatebondsbess).Thelap lengthmustbeincreased by 20%for contactsplicesspecedlderally closer than12bardiameters or locatedoloserthan6 in. or 6 bardiamaerstom m ousideedge.thesecritaia wereconsidered for theinitial de"igrrof theSbieldBuilding.NeitherACI 318{3 nor anyotherACI code

Rv.0, Att8chmentC, Page2 of2 CelculationC-CSS-099.2G069, JaveedMunstd I{arch24,2015 Page2 addrcsses thepresenceof lanrinarcractsin theplaneof theeinforement.Thatsaid,thetestsandrsults describedin SL Reportl2-2 demongtrate that barstresses of 57,000psi andgrearercnbeprovidedby splicesin the p,resence of laminarcrackswith widlhsof 20 mils (0.020in.) or gIaler,Thus,lhe dcsign forcesin the barscanbe maintainc4evenfor concretethathasmdergonesignificat laminarcracking with crackwidtbscqualto or greatertbantherecomncnded upperlimit of 20 mils (0.020in).

Page I of 1 DESIGNVERIFICATION RECORD NOP-CC-2@i-01Rev.00 DOCUMENI(S yACTrVfTy TOBEvERTFlED:

ShieldBuiklinqLaminarCrackinq Limits,C-CSS499.20{69Rev0 El SNrEW RELATED fI nUcUENTEDQUALITY f] NONSAFETY RELATED SUPPORTING/REFERENCE DOCUMENTS Referto the body of the calculation.

DESIGNORIGINATOR:grtntandSr'grName) DATE ShenWang W 0lft*/ug VERIFICATIONMETHODf0necl ono) 8 OeSrcNREVIEW(Comptateoes,gn EI ru-fenNATECALCULATION TESTING il OUru-tflCATlON Review CDeclr/isfu Calculation Review Chacklisl)

JUSTIFICATION FOR SUPERVISOR PERFORMING VERIFICATION:

APPROVAL: (PrintandSrgnName) DATE EXTENT OFVERIFICATION:

VerifiedusingGalculation ReviewChecklist COMMENTS, ERRORSOR DEFICIENCIES IDENTIFIED? E VCS A NO RESOLVEDBY: (PrintaN SignName) DATE VERfFIER' (PrintandSrgnNane) DATE JaveedA.Munshi Fforr,lthurr [:a {nr IaUg&tlt4,lnflr', do. or/ob/wlt APPROVEDBY: (PfintaN Signft/ame) DATE HongchunLiu o5fo6l"ou

E F!o ss 8R 0

o I

s?

?efi E =E J gF

? o 3 u- r . ' :

L' .

J>O=

<iuoz oE<:t 5

= CL

.g

-E c o

!t C

ts aIc or c')

c ltj E 8 ct (E

PO n c

I ol

.s E E, wt! o E

.9 e5 c

o o ul o

-o G'E s H ao-a G

c g ;I to 9-o C r.,

.9 c

o ll o

.3p It0' o po po CD a tr .9 c

o OErr E ee P.E E qt

=-o g* E(,:

o= D tn

0) .>

G tr O ' E E3 E

z 8 E FE c (6o. E IE 6 E G c o .g ':- (c , ' c E* x e FSR o

(,

E (, c IE tr o)

IF .9 BiE ll(! c o ctt o o o .9, co psf h o

IJ bl9 o E o o C'g p'

o gE (! It at tr o SE

'=Eo > E o

s o

o u, (t g

.EE c o Eg rt EE aC a ( )

3 '3'r o

() -o EH o

J 3 oP E

^g c

(! ()u o 8E O) r0 E 8 o o o 3 .o 5 ,; E$ E.E g6 e

.E o

-g tl o.'

o 8o r)r drg s

'ga t! ,tr o C) C) o o

htt lgG E .F o=

.E o c E6 (r,o tro. 3H sf, J tt 6g ?( lt , oo CL o E 0 o 8.9 J^

ql

.o E , 8 ;E9 8

>\c E o GI (U l\, (l)

TE o zg o E o E o

f;E o r[o c.

TH E F .s'3 tt  : o o o. o.

vB ct 6

.o

= o o o qr3 CL

(! G-o cS 5 -g !F v0}

e,E (f,

o 8 s8 s 6 CL a  : E

'5 s o o

rt, ob .E ssl C' SE c'cL

f FHfi (lt F

= gE E E TJ o ulg E!

c)

C) CL tl o

(t o oP o c(6 E sl tr fis E!

Fg o o E o v o'i3 d c c-tr rE

.>- 5:

E E E o F-S EE s 9 tsE o (J sE ag O .J

' .$c o T'3
d. o o Fr! tt tr-g (J (t 5EE o

z tt o o"o c 3(,l

!?s (U 3eS

-!P .q FiE o 4 .E tt o

.cl G' ct 58 Q

---t r o 6Ep G .9 a. E 3

8 8 <

O b g;

.c o

o a

$$g o>

E ES G -

al 3n

{,

(t ^.

=l l i, to

-5(E 9E

$Eg

frE es

-o qE bp EEfi

< oE o

o o

s8E$$ H c,.rly')

q(ll O(o rt .Cl -o oE8 6:i EO s-8 E$E

  • o Ncl ss flR z s? o tr 3l' 3 3n J I o o

lr,

= $: tr
8 7 xt E 3e i;si

(,G<3 p

2 UJ E

E o

()

F a

I J o v z x O ct o x x x x x x x x x x x >< x x x x x X llJ

- ( x x x

()- =

(\. .9 s.

o o c o (\. I o.

tt 'c

= o t, p o o a s. ' go o

1A o E o

wl o F.

ltj 3 o

.e5 f o

o o r oc o o

= o 7 o o (6 o U' tr I

(t I o o o (J

E !r (,  ; E] o

.g I o E

s 9"8 TE o !l o e E o

.;c I{6  !,

c o

o c

(6 tt a

tUl cl E uJ 5 E o o

tr G c (, .E o

TE g E g fi q a e o

'5 tr a o E o o

g)

(E

-c o

u o

c

.9 qt o

E o

o a

g o

D E ()

6 c\

o .9 c

{I g

G o

g o

E TE T'

o o IA o o a cr E

z EE .! C'

.g t o ct o (\. E 5 .o o

.o a

u, 3 e G

= a (J E o (n IJ o

,c ocs

.E3 r! cI g 1' c

o o

I

)

O o

a EE =

>E Qo (5

o T' c

to o

o.

cl,

'cc e,

o c E o

o o

o c

E Io o c, o

c E s g o

t=, (E 3 (,

o EE

't o F5 ao C

gt o E c

o o o 6 E

o F o z

ut gs =

z o.

.g o

o

.g o

o o

It c

o o

.g (\

o

-o o

3 n E c g

.9

.E o

s(U lt CE P g

.A (J

tr cll nf(D .g c

$r G c't E oots .g ttlG S a 3 o o .9 o c, - .{=

J IL o oE o

tt o

t o at J

I -rU gt E 6 o o

=o E Eg !t o s T'

cDc

.E',=

.gl th o

E @ E e

IJ d, g o rE o b.e IJ G' rU E

=

o z o c Eg (U6 o

(E o o

o N

c E

l1' CI .e

'a o

E 2 E

o tt o

o t o 9E cto

-c) d c s E 9 .-E E c.

o C

ol c Pd 8..8 g

o I' g-E oE E Er e tt o !t to tt o c

E G EE oc) h3 .t2 ':i $

J c' o

()

o

(, x o C' F

o .g (f !t EE C o

6 E c o

c s. k 5 E Q d . g o =(!

E EE E o o o o -0D t' rr' -ct >

u, u.l c !t o $  !! c -o .E ! Eg D:

O; f

o Eo ll, tr s o E o

E st o o Q

c I

c

.o o

c g o (0 o

D

'6

$! FE b: &

_-o (!

rg G

3 cl, $

o o

?

.9 E 3 CL tr o E a ,g c, (!

5 o

.l o ctl o

a c

(0 It o .o I o

3 g6 o

EE o-go Eg E 3 ,oct:l o .9, tr o t0 a E o o

+ o tr o 6 crt

=o e

o c

o G

g o

o

'aln o

o o c e o C'

o g cot o

6 E o G

-g .o

.o E IU 3

o E E'E qC 6g o -IJ (E F C f i =

FF iE o oo ttt {g c lt, o f o

(U F tn o

(t, o

TE c

o (J

'- o c o 5 G t :t .g o

o = o c 5

c EE H8 6(E o FF E E o E9 o (, o 6  ; c ,h .:. F o o!t o

I0-E E

T- ' eb s- . . CLrr. x6 a,

t ii O i r tt .9 r.:t o .;5 q r!

c c

.g g

5! a oc

.E{d 5

U' o

6 0 !to E 9o c CL r('ra f :to  !' o

.;F E . Eco E Et c E E b ?i -g _: os o o o.

o z

ol e ;ET= o

o

=e o.

o u

JG o lt o o oc C' ; o E o s .tr o -o .9 o o :(t o

.g aE E3 C

o JO L'O 6(/)

o .g c

o.

o

=Oui gE B o.o v@

E E o EeoPQ Oe E F>

=O o F T E o oc c E o tn o

!t C

o o o c' o o

.9 c 5:E E F*o FO

( o t 9E -g t oE c g 6'6 (! o (, o (B o o .U E5 te Ho og 9 . o o (!f 3

CL tr b8E tr.c f CI

,-e6 so rt gr l Ets I E # o.g E

4ts o

=

5 o

c o nE c

E E Ito oCtl E r-E.E 'jt (It - : -o do Q'-

6o E o

E*

EC\

5g eaE tt.lP .i; Ro ar (0 o

(t 6 o S o o .8 e

!w rc ot E Eo Z E G o E t! - O 8.r .E o o - =ocT t = o Z =

o o g s G s uf6 9tr E 9d 9'6

!o 9E gEE FTI

-au 5E E

I o E . EEoCt r Fe9

-(f!t o$

o 19c o _. o 3 I.(t

.t go g o E o

a 6

- o 9o E s ,,8 dla ll,)

a} g, 6 o arE

(C E

g r[

9 - g 1 6 ( ' ' 5a .r CO J8> e IEH e r 6 fo 9E Ir! >a

= f

t 9.r-
< {' ! E YA s ra)

FTL l0 dig IO I z tl ( ?. I

l. i. an

!ro -

oi rt N

I N

rrt

$l ect t, al lt st

{i ot GI sl ci o

CO Estc) () d q (vl (o t f \

(t, i(9 rO (r) o, (n trt st tt c\i t

(v)

\'

$o}

$s f;R oi or I

o 6

I o <=

d 2; Z, -!g i,iE 1\

c' (v) r\

a rt

t}

lll g

o o

o

(!

F a-J t

o-e t

g$

v .si *N:

o uJ

[=

E *g

'5 r{

c) .9 8l-3 UJ o

o

.o c

EI; CD I

.A o

!t E nJ .g c

rE o

E E o

(,

z c, E sg E o

'6 EE;  ; q o iei o

o co t5cl c

o { tt c( l(* U ()

o (U c 5 o

94 F 3 o'-.

.eS o o

o CL!-

tt' c

.9 cE c EgE oo E J (o 6*

o 3 E l,(! tro -(!

5 IJ EEg

$Eg r{f C)

J

()

o r*

.s.g

(!

(t 88

--59 .6E0E GO SE iii o- t

.9() gr o; .E o

g 5a ie

-cL E

FUJ 6

e= a EJ G

o o

ea E*

-f ' - C r-o g; F5 q{

lt o

G o,

E

)

o

( 0P =

eH

-tlo o E

.o

\l C

AcF

-tl rtJ o- S eE If

.9 d

c ErJ 6

F5

.Jr r!$

iio

EEg

}FE

'6>

ott oo oc

!g$E o

E o 5 iP ot,' sr5

{o ao p

(] $gE6 fl E