ML20199G250
ML20199G250 | |
Person / Time | |
---|---|
Site: | Perry |
Issue date: | 06/30/1986 |
From: | WESTON GEOPHYSICAL CORP. |
To: | |
Shared Package | |
ML20199G231 | List: |
References | |
CON-#189-8096 2.206, NUDOCS 8606250135 | |
Download: ML20199G250 (281) | |
Text
. - - _,
l l
INVESTIGATIONS OF CONFIRMATORY SEISMOLOGICAL & GEOLOGICAL ISSUES l
NORTHEASTERN OHIO EARTHQUAKE OF JANUARY 31,1986 O
prepared for CLEVELAND ELECTRIC ILLUMINATING COMPANY 1
JUNE 1986
,Wj Weston Geophysical CORPORATION gens 2ggg ggggggo E
l 8
TABLE OF CONTENTS Page j i
LIST OF TABLES l 1 i LIST OF FIGURES i l
P LIST OF APPENDICES
1.0 INTRODUCTION
1 f
2.0
SUMMARY
OF CONCLUSIONS 3 t 1
3.0 SEISMOLOGY 4 {
3.1 Update of Seismicity 4 i
?
3.1.1 Regional Seismicity [200 miles) 4 3.1.2 Local Seismicity [50 miles] 5
, 3.1.2.1 Catalog & Map 5 j 3.1.2.2 Reassessment of the 1983 Earthquakes 5 j t
1 3.2 The January 31, 1986 Earthquake Sequence 6 3.2.1 The Main Shock 6 ;
3.2.1.1 Locations, Magnitude, Mechanism 6 3.2.1.2 Intensity Survey 7 ,
t
! 3.2.2 Aftershock Sequence 11 l 3.2.2.1 Data Acquisition 11 '
3.2.2.2 Data Analysis 11 ,
a i 3.3 Ground Motion Studies 16 l
3.3.1 Introduction 16 3.3.2 Main Shock, January 31, 1986 16 j 3.3.2.1 Acceleration Time Histories & ;
Fourier Amplitude Spectra 16 l 3.3.2.2 Response Spectra - Comparison with New Brunswick Earthquakes 18 3.3.3 Aftershocks of the January 31, 1986 Event 20 3.3.3.1 Introduction 20 3.3.3.2 Velocity & Acceleration Time Histories 21 3.3.3.3 Fourier Amplitude Spectra 22 3.3.3.4 Response Spectra 24 3.3.3.5 Conclusions 28 Weston Geophysical
TABLE OF CONTENTS (continued)
Page 4.0 GEOPHYSICS 31 4.1 Introduction 31 4.2 Aeromagnetics 32 l 4.2.1 Review of Existing Aeromagnetic Data 32 4.2.2 High-sensitivity Aeromagnetic Survey [1986] 33 4.3 Gravity 34 4.3.1 Review of Existing Gravity Data 35
! 4.3.2 Detailed Gravity Survey [1986] 36 4.3 Discussion of Magnetic & Gravity Anomaly Data 38 4.5 Conclusions 43 l
5.0 GEOLOGY 44 I
5.1 Introduction 44 5.2 Reconnaissance Mapping for Potential Earthquake-related Structures 44
]
5.2.1 Site Area 44 5.2.2 Epicentral Area 46 5.2.2.1 Bedrock Geology 46 5.2.2.2 Lineaments 47 5.2.2.3 Structural Geology 47 5.2.3 Interpretation of Reconnaissance Mapping 53 5.3 Structure contour Analyses of
" Packer Shell" & Delaware Limestone 54 5.3.1 General Stratigraphy 55
- 5.3.2 Overview of Paleozoic Geologic History 56 5.3.3 Method of Study 57 5.3.3.1 Basis for Selection of Packer Shell
& Delaware Limestone [" Big Lime"] 57 5.3.3.2 Use of Data from Clinton Gas Wells 57 1 5.3.3.3 Use of Data from Gamma Ray Logs 57 5.3.3.4 Map construction 58 5.3.4 Observations 59 Weston Geophysical
.- -. - - . - . . = _ - . . _ - . - - .-_.
i a
. TABLE OF CONTENTS (continued)
Page 5.3.4.1 Packer Shell Structure contour Map 59 5.3.4.2 Delaware Limestone Structure Contour Map 60 5.3.4.3 Interpretation of Contour Maps 61 i
5.4 Conclusions 61
6.0 CONCLUSION
S 63 6.1 Seismology 63 6.1.1 Main Shock 63 6.1.2 Aftershocks 63
! 6.1.3 Reevaluation of Seismicity 63 j 6.1.4 Intensity Values 64 j 6.1.5 Ground Motion 64 l 6.2 Geology 65 1 6.3 Geophysics 66 6.4 Summary 61 l
REFERENCES 69 TABLES FIGURES 4 APPENDICES i
i j -
l
)
j i
i 1
i i
i 1 - 111 -
} Weston Geophysical
i j
1 LIST OF TABLES TABLE 3-1 Regional Seismicity TABLE 3-2 Local Seismicity
! TABLE 3-3 Historical Seismicity within 50-Mile Radius I
TABLE 3-4 Locations of Seismographs Deployed to Monitor Aftershocks i TABLE 3-5 Sununary of Af tershock Locations f
l 1
1 4
1 i
l 1
l i
j i
i 4
i 4
I
?
1 s
- iv -
Weston Geophysical i
f3 k) s- LIST OF FIGURES SECTION 3.0 SEISMOLOGY FIGUF2 3-1 Regional Seismicity - 200-Mile Radius FIGURE 3-2 Local Seismicity Mile Radius FIGURE 3-3 January 22 and November 19, 1983 Original Locations FIGURE 3-4 Intensities for Eartho.uake of January 31, 1986 on Painesville Quadrangle FIGURE 3-5 Isoseismal Map for Northeastern Ohio for Earthquake of January 31, 1986 FIGURE 3-6 Weston Geophysical Network Configuration - February, 1986 FIGURE 3-7 Weston Geophysical Network Configuration - March, 1986 FIGURE 3-8 Present Weston Geophysical Network Configuration FIGURE 3-9 Distribution of Aftershocks using Weston Geophysical Network Only [13 Stations]
FIGURE 3-10 Distribution of Aftershocks Using All Available Data
[Vp /V, = 1.78]
FIGURE 3-11 Time Distribution of Aftershocks FIGURE 3-12 Distribution of Aftershocks Using All Available Data
[VP/Vs = 1.73]
FIGURE 3-13 First Motions of 13 Aftershocks FIGURE 3-14 Stress Axes of 12 Aftershocks FIGURE 3-15 Composite Solution for 6 Aftershocks FIGURE 3-16 Composite Solution for 4 other Aftershocks FIGURE 3-17 Stereographic View of Hypocenters FIGURE 3-18 Seismograms of March 12, 1986 Microcarthquake at GS2 and WEL Stations FIGURE 3-19 Epicentral Solutions of the March 12, 1986 Microcarthquake FIGURE 3-20 January 31, 1986 Earthquake Accelerograms at the PNPP-1 Reactor Foundation FIGURE 3-21 Fourier Amplitude Spectrum N-S Component P S, Lg-motion FIGURE 3-22 Fourier Amplitude Spectrum Vertical Component P, S. Lg-motion FIGURE 3-23 Fourier Amplitude Spectrum E-W Component P S, Lg-motion n\/ FIGURE 3-24 Fourier Amplitude Spectrum N-S Component P-motion
-v- Weston Geophyscal
- - _ _ _ _= _ . - _ ---
LIST OF FIGURES
(
FIGURE 3-25 Fourier Amplitude Spectrum N-S Component S. Lg-motion FIGURE 3-26 Fourier Amplitude Spectrum Vertical Component P-motion FIGURE 3-27 Fourier Amplitude Spectrum Vertical Component S Lg-motion FIGURE 3-28 Fourier Amplitude Spectrum E-W Component P-motion FIGURE 3-29 Fourier Amplitude Spectrum E-W Component S. Lg-motion i
FIGURE 3-30 Horizontal SSE Response Spectra vs. 1/31/86 Horizontal Spectra FIGURE 3-31 Horizontal SSE Response Spectra vs.
New Brunswick 3-31-82 M=5.0 Horizontal Spect.ra FIGURE 3-32 Comparison with Additional New Brunswick 3-31-82 Horizontal Spectra FIGURE 3-33 Seismograms at Station GS01 Aftershock of February 6, 1986 M=2.5 FIGURE 3-34 Seismograms at Station GS02 Aftershock of February 6, 1986 M=2.5 4
FIGURE 3-35 Derived Acceleration Record at Station GS01 Aftershock of February 6, 1986 M=2.5 FIGURE 3-36 Derived Acceleration Record at Station GS02 Aftershock of February 6, 1986 M=2.5 FIGURE 3-37 Fourier Amplitude Spectrum Vertical Motion, Station GS01 2/6/86 M=2.5 FIGURE 3-38 Fourier Amplitude Spectrum N-S Motion, Station GS01 2/6/86 M=2.5 FIGURE 3-39 Fourier Amplitudo Spectrum E-W Motion, Station GS01 2/6/86 M=2.5 FIGURE 3-40 Fourier Amplitude Spectrum Vertical P-Motion, Station GS01 2/6/86 M=2.5 FIGURE 3-41 Fourier Amplitude Spectrum N-S P-Motion, Station GS01 2/6/86 M=2.5 FIGURE 3-42 Fourier Amplitude Spectrum E-W P-Motion, Station GS01 2/6/86 M=2.5 FIGURE 3-43 Fourier Amplitude Spectrum Vertical S-Motion.
Station GS01 2/6/86 M=2.5 FIGURE 3-44 Fourier Amplitude Spectrum N-S S-Motion, Station GS01 2/6/86 M=2.5 A
FIGURE 3-45 Fourier Amplitude Spectrum E-W S-Motion,
(_)
Station GS01 2/6/86 M=2.5 Weston Geophysical
- vi -
l i
LIST OF FIGURES
- FIGURE 3-46 Fourier Amplitude Spectrum Vertical Motion, Station GS02 2/6/86 M=2.5 FIGURE 3-47 Fourier Amplitude Spectrum N-S Motion, Station GS02 2/6/86 M=2.5 FIGURE 3-48 Fourier Amplitude Spectrum E-W Motion.
Station GS02 2/6/86 M=2.5 FIGURE 3-49 Fourier Amplitude Spectrum Vertical P-Motion,
]
j Station GS02 2/6/86 M=2.5
! FIGURE 3-50 Fourier Amplitude Spectrum N-S P-Motion, I
Station GS02 2/6/86 M=2.5
! FIGURE 3-51 Fourier Amplitude Spectrum E-W P-Motion, Station GS02 2/6/86 M=2.5 FIGURE 3-52 Fourier Amplitude Spectrum Vertical S-Motion.
l l Station GS02 2/6/86 M=2.5 i .. .
FIGURE 3-53 Fourier Amplitude Spectrum N-S S-Motion,
]
1 Station GS02 2/6/86 M=2.5 I
j FIGURE 3-54 Fourier Amplitude Spectrum E-W S-Motion, j Station GS02 2/6/86 M=2.5 l FIGURE 3-55 Vertical Component Response Spectra Main Shock i PNPP-1 Aftershock - Station 001 1 FIGURE 3-56 N-S Component Response Spectra Main Shock PNPP-1 Aftershock - Station 001
]
- FIGURE 3-5~1 E-W Component Response Spectra Main Shock PNPP-1 Aftershock - Station 001 FIGURE 3-58 Vertical Component Response Spectra Main Shock PNPP-1 Aftershock - Station 002 FIGURE 3-59 N-S Component Response Spectra Main Shock PNPP-1 Aftershock - Station 002 FIGURE 3-60 E-W Component Response Spectra Main Shock PNPP-1 Aftershock - Station 002 l
I l i
- vii - Weston Geophysical
( LIST OF FIGURES SECTION 4.0 GEOPHYSICS j
! I t r FIGURE 4-1 Residual Total Intensity Aeromagnetic Anomaly Map of Ohio [
FIGURE 4-2 Residual Total Intensity Aeromagnetic Anomaly Map of l
Northeastern Ohio !
FIGURE 4-3 Residual Total Intensity Aeromagnetic Anomaly }
Map of the Leroy Epicenter Area FIGURE 4-4 Aeromagnetic Flight Lines FIGURE 4-5 Aeromagnetic contour Map FIGURE 4-6 Color Presentation of Aeromagnetic Contour Map FIGURE 4-7 Bouguer Gravity Anomaly Map of Ohio
! FIGURE 4-8 Bouguer Gravity Anomaly Map of Northeastern Ohio ,
) FIGURE 4-9 Bouguer Gravity Anomaly Map of the Leroy Epicenter Area j FIGURE 4-10 Gravity Station Location Map FIGURE 4-11 Simple Bouguer Gravity Anomaly Map FIGURE 4-12 Gravity and Magnetic Cross-section Through Epicenter Area i
FIGURE 4-13 Residual Gravity Map !
FIGURE 4-14 Gravity Modeling Results i FIGURE 4-15 Principal Basement Rock-age and Tectonic Provinces FIGURE 4-16 Basement Drill Lithologies of Ohio and Adjacent Regions FIGURE 4-17 Simple Bouguer Gravity Anomaly Upward Continued 1,000 Feet ,
SECTION 5.0 GEOLOGY ,
e i
4 FIGURE 5-1 Generalized Precambrian Surface j FIGURE 5-2 Precambrian Lithologies - Deep Wells in Ohio i
- FIGURE 5-3 Generalized Stratigraphic Column 1 i FIGURE 5-4 Photograph 1 - Typical Joint !
J FIGURE 5-5 Joint Orientations l FIGURE 5-6 Photograph 2 - Typical Anticlinal Fold Structure f I
! FIGURE 5-7 Rose Diagram of Anticlinal Fold Axes Orientations i FIGURE 5-8 Photograph 3 - Typical Thrust Fault O FIGURR 5-9 Fault Plane Orientations 1
- vii - Weston Geophysical
LIST OF FIGURES
(
FIGURE 5-10 Photograph 4 - Detail of Thrust Fault Deformation FIGURE 5-11 Photograph 5 - Photomosaic of Big Creek Tributary Structure FIGURE 5-12 Detailed outcrop Map - Big creek Tributary Structure FIGURE 5-13 Location Map - Borings, Geophysical Surveys l FIGURE 5-14 Magnetometer and Seismic Refraction Surveys FIGURE 5-15 Boring Log cross-section FIGURE 5-16 Photograph 6 - Photomosaic of Big Creek Structure FIGURE 5-17 Photograph 7 - Grand River Structure j FIGURE 5-18 Gamma Ray Signatures for the Delaware and " Packer Shell" FIGURE 5-19 Regional Structure Map FIGURE 5-20 Cross-sections B-B'. C-C', & AR-AR' FIGURE 5-21 clinton Gas Well Locations FIGURE 5-22 Structure contour Map on Top of Delaware Limestone [ Big Lime]
FIGURE 5-23 Structure Contour Map on Top of " Packer Shell" LIST OF PLATES PLATE 5-1 Geologic & Lineament Map
]
I O
- ix - Weston Geophyscal 1
1 i 3 1
1 1
l LIST OF APPENDICES s
i
,- ' APPENDIX A3.1 Reassessnent of the 1983 Earthquakes in Lake County l'
4
,. APPENDIX A3.2 Earth Physics Branch Data on the Magnitude of the January 31, 1986 Earthquake APPENDIX A3,3 Input Data and Solutions for 13 Aftershocks i
i i APPENDIX A4.1 Gravity Survey & Data Processing Methods APPENDIX A5.1 Boring Logs 1
l i
4 1
5 i
a i
4 e
k e
I
{
j i
b i
- * ~ Weston Geophysical
E O
1.0 INTRODUCTION
In Supplement No. 9 of the Safety Evaluation Report for the Perry Nuclear Power Plant, issued by the US Nuclear Regulatory Commission, eight Confirmatory Activities were highlighted as areas of further study relating to the January 31, 1986 seismic event. Three of these '
were related to the geological or seismological features of either l the epicentral area or the site. The specific issues as stated in the SSER and the location of their discussion in this report are as follows:
CONFIRMATORY ACTIVTTY REPORT SECTION Focal Plane Solutions of the January Sections 3.0 and 4.0 31, 1986 earthquake and its aftershocks and identification of a possible source structure.
Assessment of faults of the plant site. Subsection 5.2.1 as supported by the report.
l Consideration of the impact of enriched Subsection 3.3 high-frequency content.
The NRC requires seismological, geological and geophysical investigations to license a nuclear plant. Detailed investigations are generally required within 5 miles of the nuclear plant site with a more regional approach, reconnaissance in nature, beyond the 5 miles. Consequently, the regional and local geology, bedrock types, faults, folds, glacial features, etc. in the vicinity of the PNPP were well-known before the occurrence of the earthquake. The information was presented in the PNPP FSAR and developed the detail necessary to establish the licensing basis.
Intensive seismological, geological and geophysical studies were conducted to understand the cause and characteristics of the January j 31, 1986 earthquake in Leroy, Ohio. The studies with respect to technical concerns and the criteria for licensing of the Perry Nuclear Power Plant (PNPP) are presented in this report.
Weston Geophysical
The seismological studies included:
- 1. an evaluation of the main and aftershock sequence of the January 31, 1986 earthquake
- 2. a re-evaluation of the regional seismicity to insure that low magnitude events had not been omitted or mislocated:
- 3. an assessment of the earthquake intensity values;
- 4. a study of the ground motion associated with the main shock and the aftershock.
Geological data were updated by collecting 1,500 gas well logs, most of which have been drilled since 1979; several hundred of these logs were used to construct the structural contour maps reported herein.
Recent published and unpublished papers. maps, and manuscripts were analyzed for further geologic information. Field studies consisted of foot traverses of streams and quarries in the epicentral area and surface reconnaissance of the plant site, including the Lake Erie bluff, and a detailed investigation including borings at a possible structure along a tributary of Big Creek.
Regional geophysical data were compiled from existing aeromagnetic and gravity surveys. As part of these confirmatory studies, geophysical investigations included a detailed aeromagnetic and ground gravity survey to assess the deeper geologic characteristics at depths of 2 to 10 km, representing the depth range of the earthquake's focus.
O
~ ~
Weston Geophysical
2.0
SUMMARY
OF CONCLUSTONS Based upon the interpretation of exhaustive seismological geological and geophysical studies of the January 31, 1986 earthquake epicentral area, it is our conclusion that:
- 1. The magnitude 4.9 m Let y earthquake occurred at an b
approximate depth of 4 to 5 km along a strike-slip NNE plane dipping near vertical. The intensity of this event was VI [MM];
no significant elongation of the isoseismals suggestive of a fault trend is indicated. This earthquake was a moderate size event, similar in characteristics to several others that have occurred in the Eastern United States and in the Central Stable Province in particular. The Leroy earthquake is clearly located j within the Grenville tectonic province [ Central Stable I sub province).
1 f' .,
( j 2. Geological field reconnaissance and analysis of stratigraphic sequences in the area did not reveal capable faulting.
Geophysical or geological evidence does not identify a definitive tectonic structure with which the January 31. 1986 seismic event can reasonably be correlated.
l
- 3. The licensing basis previously established in the FSAR placing the PNPP within the Central Stable Province with a design basis earthquake of m 5.3 1 0.5 is reaffirmed.
b O
V Weston Geophysical
3.0 SEISMOLOGY 3.1 Update of seismicity 3.1.1 Regional Seismicity - 200 Miles The seismicity map and catalog used in the FSAR were prepared in the summer of 1979 using the Weston Geophysical data base. Because of the normal time lag of about one and one-half years associated with the publication of catalogs by national agencies, the FSAR catalog ended with a June 1977 entry. This update covers the period from mid-1977 to present, but still reflects the fact that seismicity data published by the USGS and the Earth Physics Branch of Canada for the last two years are in preliminary form. In addition, this update incorporates the results of an intensive effort by EPRI [ Electric Power Renearch Institute] to update and revise the entire earthquake data base for Eastern United States and Canada [EPRI, 1985). These EPRI revisions of locations and sizes of historical earthquakes are
}
complete above a 4.5 m threshhold, and include numerous big improvements below that threshhold. Below the m =3.0 level, the g
EPRI catalog is not uniformly complete for all time periods and regions.
Figure 3-1 and Table 3-1 present the cumulative seismicity around the PNPP, according to the EPRI revised catalog. Circles with 50 , 100 ,
and 200-mile radii around the plant site are shown on the map for reference. Standard threshholds of M greater than 3.0 and Modified Mercalli intensity greater than III were adopted. The important differences between this update and the FSAR presentation are the occurrences of a 5.1 [m ] earthquake in Kentucky on July 27, 1980 b
and a 4.9 [m ] event near Cleveland, Ohio on January 31, 1986.
b Other smaller events detected by local networks since 1977 are also now included, o
NY Weston Geophysical
3.1.2 Local Seismicity - 50 miles 3.1.2.1 catalog and Map Figure 3-2 and Table 3-2 present a more detailed picture of the local seismicity within a 50-mile radius, using the Weston data base. All known events are included, regardless of size. At this low level of seismicity, the Weston data base is preferred for two reasons: it incorporates events of smaller size that may have been omitted in the EPRI data base and covers a more recent time window. Second, it accounts for some research, reported in Appendix 2D-D of the FSAR, on small historical ever.ts, some of which are below the EPRI threshhold. This research is particularly significant since it examines the location uncertainty of some small historical earthquakes and also establishes the non-tectonic nature of some events previously reported as seismic in other catalogs. Table 3-3 summarizes some results of Appendix 2D-D and presents the location
/A) uncertainty of these events included in the 50-mile radius. It also t*J lists these events with a non-seismic or dubious origin. The differences between Figure 3-2 and Figure 3-4 of Appendix 2D-D of the FSAR are the inclusion of the January 31, 1986 sequence and of two events in 1983 with g less than 3. Both additions are discussed separately below.
3.1.2.2 Reassessment of the 1983 Earthquakes Two small earthquakes occurred in northeastern Ohio during 1983. The j first one, on January 22, was reported by NEIS, ISC, and EPB
[Mn =3.3]. The second one, on November 19, was located only by EPB
[Mn =2.5) The proposed locations of these events are based on limited data sets; because of that, the solutions [ Figure 3-3] carry an uncertainty larger than the calculated standard errors. Because questions arose as to the locations of these events relative to the
, January 31, 1986 shock or the injection wells, the NRC recommended
/
(,! that these locations be reassessed. In Appendix 3-1, such a detailed reevaluation is presented.
Wcston Geophysical
In brief, it was found that these two events appear to have a similar location. The suggested relocation, shown on Figure 3-3, is 41.6'iSN and 81.110W with an ellipne of uncertainty oriented NNW and having a major axis of 3 km. This ellipse is the envelope of numerous sensitivity tests which vary arrival times, weights, model, and included phases. Since this new location is about 3 km from the wells, it cannot be precluded that these two events were induced by fluid injection. Nonetheless, the interpretation that they are simply minor tectonic events is equally valid in view of other seismic activity in the area prior to injection.
3.2 The January 31, 1986 Earthquake Sequence 3.2.1 The Main Shock 3.2.1.1 Location, Magnitude, Mechanism
( On January 31, 1986, at 11:46 EST, a moderate earthquake occurred about six miles southwest of Painesville, Ohio, near the boundary of Lake and Geauga Counties. A magnitude 4.9 m for the event was assigned by NEIS on the basis of P amplitudes from ten stations at teleseismic distances. Estimates of m reported soon after the g
event averaged to 5.0, with some higher values from the Eastern Canada Telemetered Network [ECTN] along a limited azimuthal range to the northeast. [See Appendix 3-2 for the EPB analysis of magnitude estimates at Canadian stations.] The maximum intensity [MM] near the epicenter was VI, with isolated clusters of similar intensities at some distance from the epicenter, probably reflecting soil effects.
No major damage to structures was reported. No clearly identifiable foreshocks were found on seismograms nor were any felt. Seismogr ains at John Carroll University, the closest station about 50 km away, do not permit identification of small magnitude earthquakes sinn- the detection threshold is high and quarries near the epicenter can produce equivocal signals.
(]
V Weston Geophysical
The preliminary epicenter by NEIS on the basis of the entire set of global reports and a world-wide crustal model was determined to be 41.649'N and 81.105'W [P.D.E.]. This location was later improved by J. Dewey of the USGS using a subset of forty stations and a more regional velocity model [ Central US] 41.650*N and 81.162*W with depth restricted to 10 km. This location is in very good agreement with the cluster of aftershocks determined with data from local networks.
In a private communication [ June 18, 1986], Dr. Robert Herrmann of St. 1.ouis University has provided us with his preliminary results on the focal mechanism on the basis of his analysis of surface wave radiation. The moment calculated is 1 x 10** dyne-cms. The fault plane trends N25*E and is almost vertical ['70']. The suggested depth for the best-fitting model is 4 km. This location represents a revised solution by Dr. Herrmann based on recently supplied new data from Canadian stations.
p In conclusion, the January 31, 1986 earthquake is a moderate size event, similar in its size, shallownenn, and mechanism to several others that have occurred in the eastern United States and in the Central Stable Province in particular.
3.2.1.2 _Tntensity Survey This section addresses the Leroy earthquake main shock intensity levels in the epicentral area and other areas of northeastern Ohio.
Intensities are evaluated by means of an isoseismal map based on the collected reports from citizens in northeastern Ohio.
Regional Intensity Data Base Citizens' observations of the effects of the Leroy earthquake were collected from numerous sources in northeastern Ohio and at the Perry Nuclear Power Plant site. CEI distributed questionnaires to all
[~'}
U personnel, permitting responses to be collected from a geographically
~l - Weston Geophysical
wide region of northeastern Ohio. In addition, Weston personnel distributed questionnaires to a large number of persons in the immediate epicentral area. They also conducted canvassing traverses in the epicentral area immediately af ter the earthquake to ensure a uniform collection of intensity reports. Those activities were described in Weston Geophysical's preliminary report dated February 1986; the final data are included and evaluated in this analysis.
In all, CEI and Weston collected over 1,000 earthquake observation reports from areas in northeastern Ohio. Many of these reports, especially those reporting minor damage, have been verified through telephone calls or actual site visits. Also, to gain a fuller understanding of the earthquake's effects at the plant itself, Weston conducted a telephone canvas of certain CEI personnel on duty during the event. The selected personnel geographically represented all areas and facilities at the plant site.
/p} Tnterpretation of Intensity Data L/
To evaluate the questionnaires, the locations of all survey respondents were plotted using a street atlas. An intensity value from the Modified Mercalli [MM) scale was then chosen for each location and plotted on United States Geological Survey topographic quadrangle maps, scale 1:24000. Figure 3-4 is an example of one of these maps. The collected responses were sufficiently detailed to allow the assignment in some cases of intensity values falling in between two of the nominal MM values [e.g., "IV-V"). The unabridged version of the modified Mercalli Intensity Scale was used to evaluate the intensity reports.
These data points were plotted and isoseismal contours constructed to indicate regions of different intensity [ nee Figure 3-5). Where there was a localized concentration of intensity reports on the g topographic quadrangle maps, a single intensity value best
() representing the responses was chosen to characterize that local Weston Geophysical
region on the isoseismal map. The isoseismal map shows a maximum intensity of MM VI in the immediate epicentral area. A few instances of damage that could be rated as high as borderline intensity Vil
[ damaged chimneys) were reported. The low number of such reports, however, indicates that an intensity level of VI is, in our judgment, the proper maximum intensity to be assigned to the epicentral region.
The most severe reported or observed effects in the region included a few instances of damaged chimneys above the roof line, cracks in concrete and cinder block walls, cracked plaster, and a few broken windows, dishes, and knick knacks. Some instances of well water turning muddy were also reported.
At the Perry Plant, the earthquake was distinctly felt by personnel, i though no significant damage occurred (see Affidavit of Robert A. l Stratman in Applicant's Answer to OCRE Motion to Reopen the Record and submit a New Contention, dated February 25, 1986, Attachment 1].
/o
\ '
! Maximum effects included a few dislodged ceiling panels, some spilled coffee, and a few instances of unstable objects such as stacks of paper or knick knacks being disturbed. These occurrences correspond to an intensity of IV-V at the plant site.
The contours on the isoseismal map are generally circular, showing a relatively even attenuation of intensities as distance from the epicenter is increased. One exception is the intensity VI isoseismal, which shows a slight east-west elongation. This could be attributed to a sof ter underlying rock formation in that area. In addition, a few intensity V-VI and VII reports are shown in zones immediately outside the epicentral area which are slightly higher than intensities elsewhere at like distances. These intensities, especially those closer to the lake, are likely due to a thicker and softer overburden in those areas, leading to an amplification of the ground motion and somewhat increased ef fects. Notwithstanding these small variations in the intensity pattern, it is concluded that the
(,
contour shapes do not show any indication of an underlying tectonic structure.
Weston Geophysical
Overall, the attenuation of intensity with distance for the Intensity VI and V regions are consistent with the intensity attenuation curves for a magnitude 5.0 mb earthquake developed for the Northeastern United States [Klimkiewicz and Pulli, 1983).
Comparison with USGS Intensity Studies The USGS has independently prepared a preliminary isoseismal map [see USGS preliminary report, Studies of the January 31, 1986 Northeaste;.n Ohio Earthquake, June 3, 1986). The isoseismal contours derived by the USGS appear generally similar in pattern to those on Weston's map although the intensity bands are somewhat wider. For example, the USGS has classified the areas west of the epicenter near the lake and southwest of the epicenter in Geauga County as intensity VI, while in Weston's judgment these areas are best classified as intensity V with some isolated occurrences of intensity V-VI, or VI. This may reflect a difference in data collection and evaluation techniques. Whereas A
Weston has used a large number or individual or small groups of intensity reports as a basis for constructing its isoseismal map, the USGS may have summarized reports for a particular locale and plotted a single intensity value, perhaps emphasizing the higher earthquake intensity reports for that locale. This difference in methodologies would have the greatest effect in the intensity range of IV to VI, in which the variations in earthquake effects are subtle, ranging from strongly felt with no damage to very slight damage.
Ultimately, the difference in judgment here is not significant --
whether deemed to be intensity V or VI, the intensity in this region
[as it is in all regions] is below intensity VII, the Perry design earthquake. In addition, the USGS has assigned a maximum intensity of VI to the Leroy event, in agreement with Weston's assessment.
O U
l I
Weston Geophysical
conclusions The isoseismal map of intensities of the Leroy event, as confirmed by the USGS study, shows a maximum intensity of VI in the epicentral region. This intensity level, which is not inconsistent with the recorded magnitude of the event, falls below the design basis earthquake [MM=VII] for the Perry Plant.
3.2.2 Aftershock sequence 3.2.2.1 Data Acquisition )
l At the request of The Cleveland Electric Illuminating Company, Weston Geophysical initiated, within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />, the deployment of seven ]
portable microearthquake recorders around the epicentral area. After l a few days, six similar instruments deployed by Woodward-Clyde consultants at about the same time were incorporated into a single
/ 'l network. These thirteen instruments operated until April 15, 1986, (V when the network was reduced to nine statioas. These stations are still in operation.
Figure 3-6 shows the station distribution during February, 1986; Figure 3-7 the distribution during March 1986; and Figure 3-8 the present configuration.
3.2.2.2 Data Analysis Hypocenters Weston Geophysical determined preliminary hypocentral locations on the basis of data collected by its network. At a later date, in April, after a mutual exchange of data took place among all participants, new locations were calculated. Figure 3-9 shows the distribution obtained by Weston Geophysical using its own data only, I 'r (wJ i while Figure 3-10 shows the tighter clustering of locations obtained Weston Geophysical
with all data available. Table 3-4 gives station codes, agencies, and coordinates of all sites occupied. Special thanks are given to Dr. Robert Herrmann of St. Louis University, who coordinated the exchange of aftershock data between all participants. By the end of March, the only stations remaining in operation were those operated by Weston Geophysical under the sponsorship of Cleveland Electric.
As of mid-June, thirteen aftershocks have been detected and located.
Their distribution in time is presented in a histogram form on Figure 3-11. Table 3-5 presents in summary form the important parameters of each solution, using a V p/Vs ratio of 1. 'l8 ; for comparison, results with V /V =1.13 are also included and plotted on Figure s
3-12. A three-layer crustal model was used; it includes 2 km of Paleozoic crust, with V =4.25 km/s and 33 km of granitic rock with P
V =6.5 km/s. For this tight network, travel paths never reach the P
Moho interface. Input and output data for each event are included in Appendix 3-3. j D
( ') Besides Weston's effort to analyze the af tershock data, two other l studies were prepared by the USGS. The first was conducted by R.D.
Borcherdt who authored the O.F. Report 86-181 under the sponsorship of EPRI. The second, sponsored by the USNRC, was authored by R. Wesson and C. Nicholson of the Reston, Virginia office and will be released as O.F. Report 86-336. solutions obtained by both groups are very consistent. Small remaining differences are due to I individual preference in the velocity model used, and possibly also to more recent minor corrections in the arrival times and weights selected for readings of particular seismograms; this was done after the data exchange among the parties.
The epicentral distribution of aftershocks is extremely tight, probably because of the relatively large number of stations available to record this sequence. As shown on Figure 3-10 and 3-12. the N-S elongation measures about 1.5 km, and the E-W about 0.'75 km. An Q af tershock located at the southernmost end is not as well located as Weston Geophysical
the others because of some uncertainty in the time correction associated with one of the two master clocks. Without this event, the cluster would have an almost circular shape. If this event is indeed more to the south, then one can see the north-south elongation as a suggestion of the plane of rupture. It should be noted here that the tightness of the aftershock configuration is quite stable; it does not change if the V /V ratio =1.73 is used, as shown on s
Figure 3-12. This stability is attributed to the fact that by pooling all data available, the azimuthal coverage has improved and so, in turn, has the quality of solutions. We infer from these results taken as a set or examined individually that the generalized model used is a satisfactory average for the local crust.
The focal depths obtained with this model range from 3 to 6 km.
Using a more detailed model, the USGS reports depths from 4 to 7 km.
This difference reflects a systematic bias related to model preference. With a good azimuthal coverage, as in this case, model g
( 'j
\'
differences are not latitudes and longitudes.
likely to substantially affect epicentral It should be noted that in such a case, variations in depth are often associated with variations of the calculated origin times. This is apparent here if both sets of results are compared. Our preference for a simplified model is that it assumes a current lack of detailed knowledge of the local crust.
The more detailed a model is, the more likely it will not accomodate lateral stratigraphic changes.
Focal Mechanisms Information on the faulting mechanism of the main shock on the basis of P-motion is not available at this time. W. Person of NEIS
[ personal communication] has indicated that little P-data had been received from the global network, probably because the first motions were emergent. In this case, an analysis of first motions from aftershocks can provide valuable information. Since the cluster of Q aftershocks is small, we can assume that at least some of the larger aftershocks are related to the main event rupture.
Weston Geophysical
After compiling all first motion data made available, we have derived fault plane solutions for each af tershock event having a sufficient amount of data. The computer program FOCMEC, kindly provided by Dr.
Art Snoke of Virginia Polytechnic Institute, was used for this task.
Figure 3-13 presents the first motions for all events, in a lower focal hemisphere projection. Figure 3-14 presents the domains of ;
stress axes for 12 selected events. No solution was possible for the ;
9th aftershock because of insufficient data. On the basis of an apparent similarity, we have separated 10 events into two groups and attempted a composite solution for each group. The two other events did not appear to conform with the mechanisms of the two groups. We have also excluded some data points singled out by the FOCMEC program as inconsistent for the majority of possible solutions.
l l
l Figure 3-15 shows all the data for the composite solution of events Nos. 1, 3, 4, 5, 12, and 13 [ group one). Figure 3-16 shows the same p
j for events 6, ~7, 10, and 11 [ group two). The composite solution for group one indicates a predominantly strike-slip motion; right lateral if the NNE plane is assumed to be the fault plane. The rupture plane is almost vertical. The composite solution for the second group i l
gives a rather different mechanism, with a larger component of dip-slip motion. Orientation of the compressional stress is significantly different; for the first group, the P-axis is close to l E-W, while in the second case it is NNE-SSW.
The hypocentral distribution can help to determine which of the nodal planes is the fault plane. By looking at all the hypocenters along each of the two nodal azimuths, and secondly, at only those included in the first group [ Events 1, 3, 4, 5, 12, and 13), Figure 3-17, we see a slightly better alignment in the NNE direction, while those nearer to the surface appear to be along the WNW orientation. The smaller events which tend to be shallower have very restricted
,-) rupture areas and could be due to minor adjustments between larger U fracture planes.
Weston Geophysical
conclusion The study of the aftershock sequence gives a very coherent picture.
The tight distribution of the hypocenters suggests a rather small rupture. The location of the af tershock activity is centered near the main shock, and the average focal depth agrees well with the best estimate obtained for the main shock. The preferred composite fault plane solution for group one is very similar to the solution obtained from the main shock surface wave study obtained f rom Dr. Herrmann.
The diversity in solutions among the small aftershocks is as expected, considering the usual crustal readjustments after a main rupture. The small number of aftershocks, the brevity of their time span [the last event was on April 10], and their distribution in space suggest that the January 31, 1986 event was a moderate tectonic event typical of the central and Eastern United States and Eastern Canada.
[p
\j) The March 11, 1986 Microearthquake On March 11, 1986 at 8:55 UT, one GEOS instrument of the USGS recorded a small event with a 0.4 second S-P interval. This event was very small, M =-0.37 and to a large extent similar to background noise. Figure 3-18 shows both the amplified playback from the GEOS digital record and the same event as recorded on MEQ-800 at Station VEL located at about the same distance. From those readings that could be obtained from other MEQ-800 records, a solution places the event just about 2 km southwest of the injection wells [ Figure 3-19). Trial solutions suggest that the USGS solution is a fair average location. Because this event is so far away from the af tershock cluster, it is not considered to be an aftershock of the Leroy earthquake. Its occurrence gives some support to the theory that the injection wells and other gas wells in the area could possibly induce small earthquakes. The estimated focal depth of 2.0 p km [USGS] and 1.75 [Weston) places the event in the vicinity of the
.C/ Precambrian-Paleozoic boundary. It is equally possible that this event is simply a very small tectonic earthquake.
Weston Geophysical
3.3 Ground Motion Studies 3.3.1 Introduction The characteristics of earthquake-induced ground motions recorded at several sites in northeastern Ohio, including the PNPP, Unit I reactor foundation, are discussed in the following subsections.
Characteristics to be addressed include peak accelerations, dominant frequencies of motion, and strong motion duration. To aid in this characterization. Fourier amplitude spectra and response spectra have been computed for recorded earthquake ground motions.
Data sets used in these ground motion studies include the main shock accelerograms recorded at the PNPP1 reactor foundation previously discussed in the Kinemetrics, Feb 04, 1986 Strong Motion Data Report. Also, the digital af tershock data discussed previously in USGS Open File Report 86-181 were acquired f rom the U.S. Geological fs
/ } Survey and are used to characterize earthquake ground motions.
(v/
There are two objectives of the ground motion studies: [1.] an attempt to determine whether the origin of the observed high-frequency motions was due to source, path, or local site effects; and [2.] to determine if a coherent scaling relationship exists among the aftershock data and the recorded main shock accelerograms.
3.3.2 Main shock, January 31, 1986 3.3.2.1 Acceleration Time Histories & Fourier Amplitude Spectra strong motion data recorded at the Unit I reactor foundation, elevation 575 feet and on the containment vessel annulus, elevation 682 feet have been previously discussed in the Kinemetrics report m issued on February 4, 1986. The Kinemetrics report describes the instrumentation and data processing techniques employed to produce Q' i corrected accelerograms for the January 31, 1986 event. These Weston Geophysical
details are not repeated here. In addition, the Kinemetrics report provides time history and response spectrum plots for the three recorded components of earthquake motions at the foundation level and on the containment annulus.
Strong motion data recorded at the reactor foundation level are further analyzed to characterize strong motion duration and dominant frequencies. Shown on Figure 3-20 are the first i P'e seconds of ground motion recorded at the reactor foundation level for the north-south, vertical, and east-west components. Maximum P-wave
[ compressional) accelerations occur from the trigger point
[ time =0 sec.] to approximately 0.5 seconds; S-wave [ shear] and/or higher-mode surface waves [i.e. Lg] initiate at 2.1 seconds into the trace. The duration of high acceleration above .05g is approximately 0.5 second. Accelerations are greatest in the N-S component; the peak value is -177 cm/sec' or approximately .189. Strong motion is thus characterized by short duration and several cycles of
/
\,s y high-frequency motions.
Frequency content of the acceleration traces shown on Figure 3-20 are shown on Figures 3-21, 3-22, and 3-23 for the N-S, vertical, and E-V components, respectively. These Fourier amplitude spectra were computed for the first four seconds of each acceleration trace so that both P- and S-wave motions are included. Spectra are plotted on a db-scale; +20 db equals one order of magnitude (a factor of 10]
increase in amplitude of the spectral ordir. ate. It is noted that the Kinemetrics data have been band-pass filtered with a high-frequency cut-off of 40 Hz. The effect of this filtering is seen on the l amplitude spectrum plots by the elimination of signal above this cut-off frequency. !
l Dominant frequencies observed in the N-S component include narrow bands at 21-23 Hz [ highest density), 17-19 Hz [slightly lower p density), and 3-5 Hz [slightly lower density). Amplitude spectra for
(, P- and S-wave motion in the N-S component are shown separately on Weston Geophysical
Figures 3-24 and 3-25, respectively. Spectral content of the N-S component of the P-wave is broad-banded between 3 and 35 Hz: however, the peak density occurs in the narrow band of 17 to 19 Hz. This peak is 3 db (40%] greater than next highest peaks at 30 and 35 Hz.
Spectral content of the S and Lg waves illustrate dominant peaks at 21-23 Hz and at 3-5 Hz.
The spectral density at frequencies greater than 25 Hz falls off substantially in contrast to the P-wave spectrum which maintains a consistent level through 35 Hz.
Vertical, whole record spectra, shown on Figure 3-22, illustrate dominant peaks at 4-5 Hz (greatest density] and at 21-23 Hz [6 db or factor of 2 lower). P-wave spectral density shown on Figure 3-26 is broad-banded from 4 to 35 Hz. S-wave vertical spectral density is shown on Figure 3-27. The predominant features of the whole record vertical spectrum described above are seen to be derived almost (n} entirely from the S, and Lg vertical motion, which has peak densities at 4-5 Hz and 21-23 Hz.
The east-west whole record spectrum is distinguished from the two other components because of the absence of any dominant spectral peaks. Highest spectral densities exist in bands from 8 to 11 Hz and 18 to 22 Hz. These bands are only several db above the density at other frequencies between 2 to 30 Hz. P-wave and 3-wave spectral densities shown on Figure 3-28 and 3-29, similarly show no dominant peaks. P-wave spectral content is broad band to 35 Hz and the maximum density occur at 28-32 Hz. S-wave spectral density is broad band to 2'l Hz; density falls off above this frequency.
3.3.2.2 Response Spectra - Comparison with New Brunswick Earthquakes 1
,, Response spectra for the January 31, 1986 main shock recorded at the l PNPP-1 reactor foundation are discussed and illustrated in the Weston Geophysical
Kinemetrics report [ February 04, 1986]. The north-south and east-west response spectra [5% damping) and the PNPP SSE 5%
horizontal spectrum, which is a Regulatory Guide 1.60 standard shape are compared on Figure 3-30. It can be seen that the SSE horizontal spectrum is exceeded at frequencies greater than 14 Hz. Maximum exceedance is in the frequency band of 20 to 25 Hz.
Response spectra for a similar magnitude event, the 31-MAR-82 New Brunswick af tershock, magnitude 5.0, are shown in comparison to the Perry 5% horizontal SSE spectrum on Figure 3-31. The two horizontal components shown were recorded at the Mitchell Lake Road Station, where the recording accelerograph is reportedly founded on rock. The recording distance is approximate.
- to 6 km [from the epicenter) vs. the 16 km recording distance for the Perry records shown on ,
Figure 3-30. The Mitchell Lake Road records are generally similar to the Perry records in peak amplitude and frequency content for frequencies greater than 4 Hz. These New Brunswick spectra exceed
/,,} the Perry horizontal SSE spectra [5% damping] at frequencies greater than 14 Hz as was the case for the Perry reactor foundation records.
The New Brunswick spectra are further characterized as having lower energy at lower frequencies than the Perry January 31, 1986 spectra; i.e. the New Brunswick spectra fall off more rapidly with increasing period than do the PNPP spectra.
Spectra at two other recording sites in New Brunswick for the 31-MAR-82 event are shown in comparison to the Mitchell Lake Road l
records and the Perry 5% horizontal SSE spectrum on Figure 3-32.
These additional stations. Holmes Lake and Loggie Lodge, are similarly within 4 to 6 km epicentral distance. The composite of New Brunswick response spectra at the 3 accelerograph sites is plotted l
for 2% damping; the Perry SSE spectrum, also shown, is for 2%
damping. It can be seen from this comparison that the New Brunswick spectra exceed the Perry SSE spectrum at frequencies greater than 10 Hz. The similarities in spectral content for the January 31, 1986
() Ohio event and the March 31, 1986 New Brunswick Af tershock, both M=5 Weston Geophysical
events, suggest that Eastern United States [EUS) events are characterized by high-frequency enrichment that is not accommodated by standard spectral shapes, such as Regulatory Guide 1.60. The presence of these high frequencies, however, seem to have little effect on structures, because the observed intensities for these events are MM VI or lower.
3.3.3 Aftershocks of the January 31, 1986 Event 3.3.3.1 Introduction Af tershocks of the January 31, 1986 event recorded digitally by the USGS and discussed in detail in Open File Report 86-181, were obtained from the USGS at the end of May, 1986. The cooperation of Roger D. Borcherdt and Gary Glassmoyer is acknowledged for providing the data tape and documentation on these high-quality digital data.
n (U j Data obtained include three component recordings for six af tershocks that occurred between February 2 and February 10, 1986. These aftershocks range in magnitude from .5 to 2.5 (USGS Open File Report 86-181]. Time histories at all stations that detected a given af tershock were provided by the USGS, however, only ground motions observed at Stations GS 01 and GS 02 are presently discussed. These stations were chosen for analysis because of their azimuth from the epicentral region of the January 31, 1986 event, which is nearly identical to the azimuth of the Perry site to the epicentral region.
The Perry site is located at 16.8 km {AZIM.=NS.2*E] from the preferred epicenter of the main shock [41'39.00'N, 81'09.'l2 ' W) .
Station GS 01 is situated 17.2 km AZIM=N5.5'E, and GS 02 is situated 8.80 km. AZIM=N2.3*E f rom the main shock. Assuming a focal depth of 4 km for the main shock, focal distances to the Perry site and Stations 01 and 02 are 17.3, 17.~l, and 9.7 km, respectively.
Seismic refraction velocity measurements of the near-surface
( \
Q materials were conducted at Stations GS 01 and GS 02. The refraction data at the USGS stations provided compressional "P" and shear "S" Weston Geophysical
wave velocity data to determine the thickness of and the resonant frequency of the soil column.
Results of the refraction survey at the USGS monitoring stations are shown below. Three-component [one vertical and two horizontal]
geophones were used to measure "P" and "S" wave velocities. The resonant frequencies of the inferred soil column at the USGS Stations GS 01 and GS 02 are estimated using the following relationship.
Resonant Frequency = s 4H Where V s = shear wave velocity H = thickness of soil layer USGS STATION SOIL THICKNESS "S"-WAVE VELOCITY RESONANT FREQUENCY
[ft] [ft/sec.] [Hz]
GS 01 13-14 5001 9-10 26 1,5001 14
/ GS 02 8-16 1,0001 16-47 O) 3.3.3.2 Velocity & Acceleration Time Histories The USGS data were provided in a binary format scaled in volts.
Ground velocity time histories sampled at 400 samples per second were computed using the seismometer sensitivity and instrument gains provided in the header information provided for each component. All ground velocity time histories are available in Open File Report 86-181; these are not repeated here in total. Velocity time histories, however, are shown on Figures 3-33 and 3-34 for the February 06, 1986 event [ magnitude 2.5] as recorded on Stations GS 01 and GS 02, respectively. These velocity time histories were verified to accurately represent time and amplitude scaling shown in Open File Report 86-181 for these records.
To enable a comparison of Fourier amplitude spectra and response p spectra for the main shock accelerograms and the aftershocks recorded
() at Stations GS 01 and GS 02, acceleration time histories were Weston Geophysical
computed from the velocity recordings using a numerical differentiation algorithm. Results of this processing of records at Stations GS 01 and GS 02 are shown on Figures 3-35 and 3-36, respectively. Peak accelerations at Station GS 01 are 5 gals
[~0.0059] [ vert], 13 gals [N-S), -8 gals [E-W). Peak values at Station GS 02 are 10 gals [ vert) . -10 galc [N-S], and 13 gals [E-W] .
These peak values are not corrected for geometrical spreading of energy over the 8-km distance between sites GS 01 and GS 02. The geometrical spreading factor for energy radiated from 9.7 km to l 17.7 km [ epicentral distance of Station GS 02 and GS 01, respectively) is approximately 0.74, using the formulation that spreading
- geometrical is proportional to [sina]- . Thus, amplitude at Station GS 02 would be reduced by 261k if it were
{
hypothetically placed at the same epicentral distance as Station l GS 01. This geometrical spreading factor is referred to later in I this discussion for comparison of spectra at Station GS 01 and GS 02. Due to the similarity of distances of the PNPP site and Station GS 01 from the main shock epicenter, the geometrical l spreading factor is minimal and is not used for subsequent comparisons.
3.3.3.3 Fourier Amplitude Spectra l l
Fourier amplitude spectra for velocity time histories have been provided in the USGS Open File Report 86-181. To enable a comparison with Fourier spectra illustrated in Section 3.3.2.1 for the main shock recorded at the Perry reactor foundation, Fourier spectra of af tershock acceleration records have been computed. As for the main shock accelerograms, spectra are provided for the whole record
[P-wave and S-wave energy) and separately for P-waves and S-waves for the three components of motion. Again, the February 6, 1986 magnitude 2.5 aftershock is used to illustrate spectral content of ground acceleration at Sites GS 01 and GS 02.
l n)
- ~
Weston Geophysical
Whole record Fourier spectra at Site GS 01 is shown on Figures 3-37, 3-38, and 3-39 for the vertical. N-S, and E-W acceleration components, respectively. Shown on each figure is the time history segment used in the spectral analyses. The spectra are plotted on a db-scale over the range of frequencies from 0 to 50 Hz. Higher frequencies can be analyzed using the USGS GEOS data [ sampled at 400
. sps], however, the frequency band below 50Hz is used to enable a comparison with main shock data that were high-frequency cut at 40 Hz. No filtering or special " windowing" were used to establish the amplitude spectra shown for the aftershock data.
- Similarities among spectra for Station GS 01 and the PNPP reactor foundation include peaks at frequencies at 17-19 Hz and 21-23 Hz. A distinction is the absence of the strong peak at 4-5 Hz in the Station GS 01 spectra.
Fourier amplitude spectra for the P-wave [ vert. N-S, E-W) are shown on Figures 3-40, 3-41, and 3-42. Spectra for the S-wave [ vert, N-S.
E-W] are shown on Figures 3-43, 3-44, and 3-45. It is noted that the terminology "P-wave" (compressional wave] implies P-energy as well as any early-arriving converted or reflected phases: similarly, S-wave
[ shear wave] implies S-energy and latter-arriving phases including higher mode surface waves.
Comparison of spectra for P-energy and S-energy, separately. l l
illustrate a similarity between the Station GS 01 af tershock records j and the PNPP main shock records. For example, the dominant peak in the N-S P-spectra is in the range of 16-18 Hz at both of these sites. Also, dominant peaks in the horizontal S-spectra exist at frequencies of 21-23 Hz at both of these sites. One feature of interest in the Station GS 01 aftershock time histories [ Figures 3-40, 3-41, and 3-42 is the high-frequency initial P-motion. This initial pulse represents a frequency of 60 Hz. No explanation is provided for this high-frequency initial P-motion; this high-frequency P-motion is not apparent at Site GS 02 discussed next.
Weston Geophysical
Fourier spectra at Site GS 02 for P and S motion, combined, are shown on Figures 3-46, 3 - 4 ~l , and 3-48 for the three components of motion.
Spectra for P-energy and S-energy, separately, are shown on Figures 3-49 through 3-54. Spectra at Station GS 02 differ from those at Station GS 01 and the PNPP site. Spectra at Site GS 02 have dominant peaks at higher frequencies between 25 to 40 Hz. The high-frequency
[60 Hz] initial P-motion observed at Station GS 01 is not observed in the Station GS 02 records. Frequencies of initial P-motion at GS 02 are in the range of 40 Hz. Another distinguishing feature of spectra at Station GS 02 is the presence of a lower frequency peak in the range of frequencies of 10 to 15 Hz. This secondary peak is observed for both P- and S-wave ground motion.
3.3.3.4 Response Spectra Response spectra for a damping ratio of 5% have been computed for all aftershock components recorded at sites GS 01 and GS 02. Five of the six aftershocks discussed in Open File Report 86-181 were detected at Station GS 01. The smallest of the six events, the magnitude -0.5 on February 2, 03:22 was not detected at Station GS 01. All six aftershocks ranging in magnitude f rom -0.5 to 2.3 were detected at Station GS 02.
Vertical response spectra [5% damping] at Station GS 01 are shown on Figure 3-55. First, regarding the aftershock data, it was previously concluded that most aftershocks fell into either of two classes of focal mechanism solution [FMS] [see Section 3.2.2]. Events on 1 February 3 and February 6 [M=2.1 and 2.5] were grouped into the first category of FMS. Two other events on February 7 and February 10
[M=1.0 and 0.7] fell into the second class of FMS' . The remaining event on February 2, 1986 [M=0.5] was concluded not to possess characteristics of either of the two clannes of composite solut ion.
Examination of the vertical spectra illustrates the similarity of spectar. for events previously grouped into a particular, composite l solution and differences in spectral content for events in the l
Weston Geophysical '
l l
different classes of composite mechanisms. For example, the February 3 and February 6 events illustrate a broader high-frequency spectrum than do the February 7 and February 10 events, which are more narrow-banded and centered at a frequency of 18 Hz. In addition, a secondary peak at 8 Hz is more pronounced for the February 7 and February 10 events. This secondary peak is noted in the main shock spectrum; however, it is not present in the February 2 aftershock which could not be grouped into either of the composite FM solutions. The most prominent peak in the main shock vertical spectrum at 4.7 Hz is not observed in the aftershock vertical spectra. The dominant high-frequency peak in the PNPP vertical spectrum is at 23-25 Hz. Similarly, the dominant peak for the February 2 event, not classified into any family of composite solution has a peak at this frequency. The remaining four af tershocks have high-frequency peaks at slightly lower frequency of 18 Hz.
O A second inferenca that can be made upon examination of the spectra V in Figure 3-55 is that high-frequency and low-frequency earthquake motions do not increase in the same manner with respect to event magnitude. It can be seen that at a frequency of 1 Hz, the pseudo-velocity for the M=5.0 main shock is about 2-1/2 orders of magnitude greater than that for the M=2.5 aftershock. This is expected, because magnitude by certain definitions [i.e. m3 b i" proportional to seismic amplitude at frequencies near 1 Hz. Thus, for an increase of 2.5 magnitude units, an increase in amplitude at 1 Hz of 2-1/2 orders of magnitude [320 times) is, by definition, predicted. This normal change in amplitude at 1 Hz vs. magnitude, as is seen on Figure 3-55, suggests that these spectra are consistent and reliable. At the higher frequencies however, spectral scaling vs. magnitude differs. For an increase in magnitude of 2.5 units, high-frequency amplitudes increase by 1 to 1-1/2 orders of magnitude
[10 to 30 times). This observation can probably be extended to predicting response ordinates for slightly higher magnitudes than that of the January 31, 1986 event.
Weston Geophysical
Horizontal component response spectra are shown on Figure 3-56 and 3-57 for the N-S and E-W components, respectively, recorded at PNPP-1 and Station GS 01. Differences observed previously for the vertical component related to class of focal mechanism solution are also evident in the horizontal components. Specifically, events of February ~1 and February 10 [second FNS class] show a pronounced secondary peak in the N-S component at 4-5 Hz; this peak is virtually absent in the February 3 and February 6 events. Also, events on February 7 and February 10 have the highest peaks at 10 Hz in the E-W component, whereas events on February 3 and February 6 have the highest peaks at higher frequencies of 22-23 Hz. Differences in spectral scaling vs. Erequency of motion discussed for the vertical component are also noted for the horizontal components.
A general conclusion made on the response spectra shown for the PNPP 1 main shock and the aftershocks recorded at Station GS 01 is that the seismic source spectrum and overall ray-path geometry are influential in dictating the shape of the resulting spectrum.
Specifically, a change in focal mechanism has been observed to alter the shape of the recorded spectrum by narrow-banding or shifting peaks or introducing new secondary peaks. This observation reduces -
scacwhat the importance attributed to local site conditions in establishing the spectral shape and location of resonance peaks. If local conditions were the controlling factor and observed resonances were largely the result of the transfer function of the local soil or heterogenous rock layer, then similar peaks would be expected regardless of the seismic input. Important changes in spectral shape however are noted for change in FMS. Thus, the role of the local site condition is not seen to be the dominant factor.
Response spectra for six aftershocks recorded digitally at Station GS 02 are shown on Figures 3-58, 3-59, and 3-60 for the vertical, N-S and E-V components, respectively. The January 31, 1986 main shock response spectra recorded at the PNPP reactor foundation are also b
g presented on these illustrations. Spectra at Station GS 02 have not Weston Geophysical
been corrected for geometrical spreading; epicentral distance of the Station GS 02 &ad the PNPP are 9 km and 17 km, respectively. The geometrical spreading factor introduced previously to correct spectra at GS 02 such that they correspond to the distance of site GS 01 is 0.74.
Observations made above on response spectra for af tershocks recorded at Station GS 01 are reaffirmed through comparisons of spectra for recordings at Station GS 02. The change in response spectral signatures for events grouped into the two composite F3S families is observed in Station GS 02 records. In the vertical component, a prominent secondary peak is observed at 10 Hz for events on February 7 and February 10 (2nd composite FMS family). This peak is not apparent in the spectra for the February 3 and Februar/ 6 events [lst composite FMS family). Changes in horizontal spectra are also noted for the two FMS classes. For example, a secondary peak is introduced at 5-6 Hz in the N-S component for the 2nd FMS classes, and the shapes of high-frequency spectra [>10 Hz) are different for events in
' This different FMS classes and similar for events within classes.
observation reaffirms the conclusion previously made that the source spectrum, changes in focal parameters, and their influence on changing ray-path geometry have considerable influence on defining the site spectra. The local condition is not considered to be the overwhelming controlling factor on defining the site response spectra. l l
The influence of local site conditions may best be inferred from the vertical component spectra for sites GS 01 and GS 02. These sites are distinguished by the varying thickness of the soil layers. Site GS 01 has an estimated soil thickness of 40 feet, whereas site GS 02 has a thinner soil overburden estimated to be 8 to 16 feet thick.
Site GS 02, due to the thinner soil layer, has a higher estimated resonance frequency, ranging to 40-50 Hz. Vertical spectra for site GS 02 are characterized by relatively high frequencies ranging to 40 Hz. The high-frequency, initial P-wave pulse [60 Hz) previously described for Station GS 01 and noted on time history plots .
I Weston Geophysical
, .. - _ - . ~ . - - - .-.
[ Figures 3-40, 3-41, and 3-42] can not be explained using the lower resonant frequency (less than 20 Hz) estimated for this site. The nature of influence of the local site condition on definition of the observed spectra thus remains poorly understood.
Further comparisons of spectra for the two sites indicate that spectra at site GS 01 are generally higher for most frequency bands even though spectra at site GS 02 are approximately 8 km closer to the epicenter. Correction for geometrical spreading would further emphasize this observed difference.
It is assumed that sensors placed at these sites have identical response characteristics. Under this assumption of matched response i for instruments at the two sites, the observed higher spectra at site GS 01 would then be attributed to amplification of motion relative to GS 02. A comparison of vertical and N-S spectra for the two larger events [ February 3 and February 6] shows that spectra at site GS 01 exceed those at site GS 02 at all frequencies less than 40 Hz. This observation is not consistent with typical local soil amplification effects. Soil layers normally act as narrow band filters, whereby motions near the resonance frequency of the soil column are amplified. The fact that the entire spectrum at Site GS 01 is raised relative to GS 02 may be argued to result from deeper ray-path differences wherein more energy is focused at Site GS 01 relative to GS 02. This argument is speculative, however, differences in spectra at sites GS 01 and GS 02 are not clearly attributable to local soil amplifications effectc.
3.3.3.5 conclusions Review of strong motion data for the January 31, 1986 Ohio event
[M=5.0], and a similar magnitude New Brunswick af tershock [ March 31.
O 4 Weston Geophysical
1982, M-5.0) and examination of amplitude and response spectra for these strong motion records and certain aftershocks of the Ohio event permit the following observations and/or conclusions to be made regarding characteristics of EUS earthquake ground motion.
- 1. Strong ground shaking for moderate magnitude EUS events
[ magnitudes near 5.0) are characterized by presence of high-frequency motions ranging to 40 Hz and possibly higher.
Duration of strongest motion is on the order of 0.5 second. For motions near a frequency of 20 Hz, this strong motion duration is characterized by 5 to 10 cycle of motion.
- 2. Review of spectra for af tershocks of the January 31, 1986 Ohio event suggest that the source spectrum and overall ray-path geometry may significantly define the observed EUS high-frequency enriched spectra. This inference is supported by observed changes in response spectral signatures for af tershocks grouped into separate families of composite focal mechanism solutions. Events with the same mechanism produce similarly shaped spectra at a given site. Spectra for events with different mechanisms recorded at the same site show significant differences. This observation tends to diminish the role of the local site condition (i.e. top few tens of meters) in establishing the dominant features of the recorded spectrum.
In addition, spectra at a more distant Station [GS 01) were observed to overly, at all frequencies, the spectra at a nearer Station [GS 02). This observation is best explained by changes in deeper ray path geometry of energy arriving at both stations, such that more energy is focused at GS 01 rather than by the local soil effect at Station GS 01. The local soil effect would more likely be a narrow-band amplification at the soil column resonant frequency, rather than a uniform increase at all )
frequencies as is observed at Station GS 01 vs. Station GS 02.
Weston Geophysical t
- 3. Important differences exist in spectral scaling of observed high- and low-frequency motion. Spectral scaling at 1 Hz for the recorded aftershocks and the January 31, 1986 main shock are noted to be consistent with the definition of earthquake magnitude. For example, spectral ordinates at 1 Hz increase by approximately 2-1/2 orders of magnitude [~320 times) for a change in magnitude from 2.5 [ February 6 af tershock] to 5.0 for the main shock. This is the expected result inasmuch as magnitude is normally determined from ground motion amplitude at frequencies near 1 Hz. At higher frequencies, spectral ordinates increase by approximately 1 to 1-1/2 orders of magnitude [10 to 30 times) for this same change of event magnitude of 2.5 units. These observed spectral scaling trends for low- and high-frequency motion can be used to infer response spectral shapes for larger magnitude events.
O l
l 1
l i
o Weston Geophysical
4.0 GEOPHYSICS 4.1 Introduction As a result of the occurrence of a magnitude Si earthquake on January 31, 1986 approximately 10 miles south of the Perry Nuclear Power Plant, the PSAR geologic information for the Perry plant was reexamined. As part of this reexamination, existing geophysical data were evaluated and additional geophysical data were acquired. Credit is due to Professor William Hinze of Purdue University who actively participated in these studies.
The examination of existing geophysical data included aeromagnetic and gravity data presented in the Perry FSAR and State of Ohio aeromagnetic and gravity contour maps published in 1984, after the preparation of the FSAR. The re-evaluation of the existing data I determined that more detailed gravity and magnetic data were required to fully evaluate basement conditions. Therefore, a high-sensitivity aeromagnetic survey and a detailed gravity survey were conducted.
Gravity and aeromagnetic data encompassing the Leroy epicentral area were analyzed in connection with geologic infore,ation to assist in l the assessment of the regional tectonic setting. Phanerozoic sedimentary rock that overlie the Precambrian basement are essentially non-magnetic and dip gently into the Appalachian Basin; magnetic and gravity anomalies have their principal sources in the Precambrian basement rocks. The aeromagnetic data acquired at relatively low altitudes provide information regarding the lithologies and structure of the upper Precambrian basement rocks. ,
1 The gravity data provide both information to correlate with the aeromagnetic data and information concerning deeper-seated sources than is provided by the aeromagnetic data. The integrated analysis of geology, gravity, and aeromagnetic data provides evidence for various crustal lithologic changes and geologic structures.
(
Weston Geophysical
4 4.2 Aeromagnetics ,
The analysis of magnetic data is an aid in geologic investigations of the Precambrian upper crust. The basement Precambrian crystalline rocks generally have sufficiently variable magnetic mineral content to cause anomalies in the earth's magnetic field. The overlying 4
sedimentary rocks, however, are generally non-magnetic and produce little or no change in the magnetic field. Therefore, analysis of the magnetic anomaly maps provides information on lithologic contrast and structural trends in the Precambrian basement rocks [Hildenbrand and Kucks, 1984).
4.2.1 Review of Existino Aeromagnetic Data The total intensity aeromagnetic anomaly map of Ohio [Lucius, 1985]
shown on Figure 4-1, reveals a complex magnetic field east of the western boundary of the Grenville Province in west-cer. tral Ohio and a relative smooth, less complex magnetic field in western and eastern
- Ohio. The variability of the magnetic field along the western boundary of the Grenville Province is an indication of the complexity of geologic conditions. On this regional scale, there appears to be nothing u. usual about the magnetic data in the epicentral area of the January 1986 event.
A closer examination of the aeromagnetic data of northeastern Ohio reveals a north-northeast trending character change in the magnetic field. The basement drillhole data are insufficient to indicate a lithology change, but the change in the magnetic anomaly texture is clear evidence that a lithologic break occurs along the major magnetic lineament [ Akron magnetic boundary] indicated on i Figure 4-2. Several distinct pattern changes occur on the aeromagnetic maps that reflect the crystalline basement Grenville rock; these rocks are ancient, approximately a billion years old.
These pattern changes such as shown by the Akron magnetic boundary
[ Figure 4-2), represent subprovinces within the Grenville. These Weston Geophysical
i subprovinces represent suites of similar lithologies and structures within the Grenville. These boundaries are commonly and locally distinct on a regional map [ Figure 4-2]. However, in a geological context, they may well be broad and diffuse.
The north-northeast trend of the Akron magnetic boundary is interrupted by minor northwest-trending magnetic lineaments indicating the northeastern magnetic trend is composed of many shorter segments. The aeromagnetic data of the epicenter area
[ Figure 4-3] show a N40*E trend of the previously discussed magnetic character.
The aeromagnetic data shown on Figures 4-1, 4-2. and 4-3 were compiled from magnetic surveys conducted at dif ferent times and with inconsistent flight line spacings and elevations. Because "the overall precision of the anomaly value is difficult to estimate, mainly because of diversities of the surveys used to construct the map" [Hildenbrand and Kucks, 1984], and the two-mile flight line spacing for the existing data collected in the epicenter area, a high-sensitivity aeromagnetic survey was conducted in a 20-mile by 20-mile area with the epicenter as the center of the area of investigation.
4.2.2 High-sensitivity Aeromagnetic Survey [19861 A detailed aeromagnetic survey was conducted by Aero Services, a division of Western Geophysical, Inc. of Houston, Texas using a Varian optically pumped / monitored, alkali vapor, high-sensitivity, airborne magnetometer with a sensitivity of better than 0.005 gamma and a data sampling rate of 152 feet [46 meters). The flight lines
[ flown at a barometric elevation of 1,800 feet) were on a 1/4-mile spacing in the northwest-southeast direction with tie lines at a 2-1/2-mile spacing in the northeast-southwest direction. The actual flight lines and area of investigation are shown on Figure 4-4.
Weston Gecphysical I
I The results of the aeromagnetic survey are shown on Figure 4-5 as a contour map with a 2-gamma contour interval. The contoured area represents the northern twelve miles of the area surveyed. The magnetic data at the southern end of the survey area were unusable
[ highly erratic] due to strong radio signals generated by nearby radio towers. Magnetic anomalies due to identifiable cultural features [ power lines, metal buildings, etc.) have also been removed from Figure 4-5.
The epicenter of the January 31, 1986 earthquake coincides with a northeast-trending magnetic low trending northeast. This low magnetic linear is west of the previously discussed Akron magnetic boundary but appears to have approximately the same azimuth [N40*E].
The northwest-trending magnetic linear shown on Figures 4-2 and 4-3 is also evident on Figure 4-6; a colored presentation of Figure 4-5.
The aeromagnetic data was interpreted using Werner deconvolution processing. Werner deconvolution is a mathematical process by which the depth points, dip directions, and susceptibility values are calculated from magnetic profile data assuming a geometric configuration as the causative body (i.e. dike, contact, fault, prism, lens, basement rock, etc.] [Friedberg, 19'15].
- The results of the Verner deconvolution processing indicate two magnetic features in the survey area: the northwest-trending higher magnetic values west of the epicenter area interpreted as having its source as a larger body at depth; the northeast-trending higher magnetic values east of the epicenter area interpreted as having its source at a depth of 5,500 feet below sea level.
4.3 Gravity The analysis of gravity data is an aid in geologic investigations of the precambrian upper crust. The basement Precambrian crystalline rocks generally have sufficient density contrasts to cause variations Weston Geophysical !
in the gravitational field of the earth. The overlying sedimentary rocks, generally flat-lying, have more gradual density variations and
- therefore provide little or no change in the gravitational field. As a result, analysis of the gravity anomaly maps provides information on lithologic contrasts and structural trends in the Precambrian l
basement rocks.
4.3.1 Review of Existing Gravity Data The Bouguer gravity anomaly map of Ohio [Lucius, 1985] shown on Figure 4-7 reveals a complex gravitational field with steep gradients along the western boundary of the Grenville Province in west central Ohio and a relatively smooth gravitational field in eastern Ohio.
The complexity of the gravitational field along the western boundary of the Grenville Province is an indication of the variability of geologic conditions along this border and the proximity of the I basement rocks to the observation sites. On a regional scale, there appears to be nothing unusual about the gravity data in the epicentral area of the 1986 earthquake.
A review of the complete Bouguer gravity map of Ohio [Hildenbrand and Kucks, 1984] reveals two positive-gravity anomalies in northeastern Ohio [ Figure 4-8]. The southwestern gravity anomaly is approximately 25 milligals [mGals] [1 mGal=.001g] and the northeastern gravity anomaly is approximately 12 to 14 mGals in amplitude. The northeast gravity anomaly encompasses a smaller area and has a steeper gradient. The steeper gradients suggest a shallower source. The epicenter area of the January 1986 earthquake is on the east side of this high anomaly near a change in contour trends.
4 Figure 4-9 shows the relationship of this gravity anomaly to the epicentral area and the station locations that the gravity contours were based on. The station density was sufficient to identify general gravity trends and features; more detailed data was required to better define the gravity contour trends and to establish a dt.ta set that could be used to map short wavelength anomalies.
Weston Geophysical
4.3.2 Detailed Gravity survey (19861 A detailed gravity survey was conducted along roadways in Lake.
Ashtabula, Geauga, and Cuyahoga Counties using a Lacoste and Romberg gravity meter. This survey is thought to be accurate to within 0.1 mGal. Gravity stations were spaced at 0.1 mile in the vicinity of the epicenter and injection wells, 0.2 mile between and east of the epicenter and injection wells, and 0.5- to 1-mile spacings for regional data surrounding the detailed coverage in the epicenter and injection well area [see Figure 4-10]. The data acquisition and data processing procedure used to o'. stain the simple Bouguer gravity values is defined in Appendix A4.1. Terrain corrections for the topography surrounding each station were determined for a number of stations throughout the survey area. The terrain effects are in the order of 0.02 to 0.05 mGals, well within the intended accuracy of this survey. Therefore, terrain corrections were not applied to data obtained in this survey and the results of this survey are presented in the form of a simple Bouguer gravity map.
The results of the detailed gravity survey are shown as a simple Bouguer anomaly gravity map Figure 4-11. The January 1986 epicenter is on the eastern edge of a 12- to 14-mGal positive gravity anomaly.
The epicenter is located near a gravity contour trend change and in an area where the large regional [12 to 14 mGal) ancmaly has an adjacent smaller positive anomaly associated with it. A cross-section [ east-west] of the gravity values through the epicenter area [ Figure 4-12] shows that the epicenter is located at a gradient change between the large gravity anomaly and a smaller anomaly to the east.
The residual or shorter wavelength gravity data can be separated and modeled independent of the deeper-seated, longer cavelength regional gravity data. The residual data can he separated from the regional data in a number of ways. The averaging method, polynomial fitting, and upward continuation and wavelength filtering regional-residual Werjon Geophysical
p separation methods were considered. The upward continuation and wavelength Ciltering method was selected for this project. The Bouguer data were upward continued 1,000 feet to remove high-frequency variations due to observation and reduction procedures and to use an elevation level approximately the same as the aeromagnetic survey for data comparison. A 24,000-foot wavelength high pass filter was applied since visual inspection of the simple Bouguer map indicated that gravity aromalies related to northeast magnetic trends had a half wavelength in the order of 2 to 3 miles.
The results of the regional-residual separation are shown as a residual gravity map on Figure 4-13. The contours of the residual gravity map indicate a northeast trend as well as two northwest trends in the vicinity of the epicenter.
1 Quantitative interpretation of the gravity data to determine potential causative sources of gravity anomalies was achieved by 2-1/2-dimensional modeling. Computer modeling calculates gravity values for comparison with simple geometrical shapes with contrasting densities. The length of the geometric shapes in the third dimension are limited; accordingly the term 2-1/2-dimensional modeling.
A gravity cross-section of the simple Bouguer anomaly west to east through the Leroy epicenter is shown on Figure 4-12. This cross-section was modeled using three geometric shapes
[ Figure 4-14). The polygon furthest to the west is a large body and extends 16,000 feet to the north and 70,000 feet to the south of the cross-section. The top of this body is at a depth of approximately 8,000 feet and it does not subcrop the Precambrian basement. The west side of this body is vertical and the east side dips easterly.
The rectangle above and to the east of the polygon is at the basement surface and extends into the basement for depth of apprcximately 3,000 feet. This body extends 4,000 feet to the north and 12,000 feet to the south of the profile. The rectangle furthest to the east is at the basement surface and extends 1.500 feet into the basement.
This body extends 10,000 feet to the north and 10,000 feet to the south of the profile.
Weston Geophysical
4.4 Discussion of Magnetic and Gravity Anoma1Y Data l
The Leroy, Ohio earthquake of January 31, 1986 occurred within the western flank of the Appalachian Basin where the Paleozoic sedimentary rocks dip monotonically east or southeast from the axis of the Cincinnati Arch in western Ohio. However, the basement rocks of eastern Ohio occur within the southerly extension of the Grenville Province [ Figure 4-15] from the Canadian Shield. The rocks of the Grenville Province have been traced into this region on the basis of the lithology [ medium- to high-grade metamorphic rocks] as shown on Figure 4-16 and isotopic age [1,100 Ma or younger] of basement drillhole samples. The character and pattern of the gravity and magnetic anomalies confirm this e'xtension [Lucius, 1985; Hinze and Zietz, 1986]. The intricate " bird's eye" pattern of magnetic anomalies and the north and northeasterly trends of magnetic belts in Ohio, are characteristic of the Grenville Province [Wynne-Edwards, 1972]. These patterns extend easterly well into Pennsylvania. The western margin of this province as indicated by the truncation of the characteristic anomaly patterns occurs in western Ohio and coincides with the Grenville Front which delimits the western margin of the rocks involved in the G7enville orogenic event. As pointed out by Hinze et al. [1983), this interpretation is corroborated by the continuity of the regional negative magnetic anomaly associated with the Grenville Front Tectonic Zone [Wynne-Edwards, 1972] from the outcrop area in Canada across Lake Huron and Michigan to southern 4
Ohio. It is also noteworthy that the gravity anocalies have a different character on either side of the Grenville Front [Hinze et,t al., 1983). The regional gravity anomalies west of the front are dominated by linear features, while to the east in Ontario, eastern Ohio, western New York, and Pennsylvania, the anomalies are more equi-dimensional and the gradients are subdued suggesting sources deeper in the crust than the Precambrian basement surface. On the basis of this evidence, the Leroy earthquake is clearly located 1
within Grenville tectonic province; a province which extends from i Ontario southerly across Ohio and is bounded on the west in western l l
i Weston Geophysical y - m -* *w "~'W+W#-N y--' 'e Aw --'V-PaM" hw *'*""'"*e+Pe*79--&""ME'"D'""P*"
t Ohio by older Precambrian basement rocks at the Grenville Front and on the east in Pennsylvania by rocks deformed in the Paleozoic Appalachian orogen. Since the orogenic deformation of this region roughly one billion years ago, the area has undergone only slow, broad vertical movements and mild deformation to accomodate the intense Paleozoic structural activity in the Appalachian Mountains to the east [Hinze et al., 1980).
- The complex array of magnetic and gravity anomalies within the Grenville Province in Ohio testify to the variability of the basement lithologies and the difference in the gradients of these anomalies suggest a range of source depths within the crystalline crust.
Wynne-Edwards (1972] has made an analysis of the magnetic anomaly pattern of the Grenville Province in the Precambrian Shield and has related the magnetic anomalies to outcropping basement lithologies.
He states:
"The aeromagnetic anomaly pattern of the Grenville Province is
/ characteristically one of intricate texture and small-scale variation. The local anomalies closely reflect the near-surface geology and are an indispensible aid in mapping. The most prominent subcircular positive anomalies correlate with plutons i
of alkali syenite, quartz-monzonite, mangenite, and gabbro.
Anorthosite massifs in general are associated with negative anomalies, except at their margins where an iron-rich noritic border phase is commonly present. The gabbro, mangenite, monzonita, and migmatic ' green rock complexes' associated with
, anorthosite suite exhibit a strong magnetic texture of contrasting highs and lows, and numerous positive anomalies.
"In areas of gneisses and supracrustal rocks, the aeromagnetic patterns faithfully reproduce the dominant structural grain."
By extrapolation, we can anticipate the same relationships between basement geology and magnetic anomalies in Ohio, although the l
f anomalies will be broadened and attenuated by the increased source / receiver distance due to the overlying Phanerozoic sedimentary rocks. This is particularly true in the far eastern portion of Ohio where the basement surface is at depths of the order of 10,000 feet.
O Weston Geophysical
i s
Characteristically, the magnetic polarization [and thus magnetic t
anomalies in Ohio) increase directly with the mafic mineral content of rocks. Because the density of mafic-rich rocks is greater than i
! that of felsic rocks. gravity anomalies increase in amplitude with enhanced mafic mineral content. As a result, we anticipate a direct relationship between gravity and magnetic anomalies and thus the generalizations regarding magnetic anomalies of Wayne-Edwards can be related to gravity anomalies as well. However, the exceptions to this direct relationship are so numerous [Hinze and Merrit, 1969]
that great care must be exercised in using their generalization and in identifying specific lithologic type from the gravity and magnetic anomalies. This caution is particularly importc7t in dealing with highly metamorphosed rocks such as in the Grenville Province because of the complex relationship between the production and destruction of
- magnetic minerals as a function of metamorphic grade.
The gravity anomaly pattern of northeastern Ohio is dominated by positive regional anomalies which have amplitude in excess of 10 mGals and relatively shallow gradients compared to the anomalies directly east of the Grenville Front [ Figures ~1 and 8]. The low gradients of the gravity anomalies reflect the increasing thickness
- of the overlying Phanerozoic sedimentary rocks, but in addition, they
! suggest sources which do not subcrop at the basement surface. These regional gravity anomalies are without correlative magnetic anomalies
[ Figures 1 and 2]. By extrapolation from the Precambrian Shield
[ Wayne-Edwards, 1972] and the basement drillhole lithologies [ Figure ,
4 4-16), this region appears to be an extension of the Ontario Gneiss '
segment of the Grenville Province. The sour.:e of these positive anomalies is uncertain, but considering the segment of the Province
' in which they occur and the lack of correlative magnetic anomalies, the source is likely a granitic or granitic to intermediate gneiss massif which subcrops at depth. An alternative explanation is that these anomalies are related to uplif t of higher density mid-crustal j
+
range layers during the Grenville orogeny. Another explanation for both these positive anomalies, the one centered in Wayne county and 3
t Weston Geophysical
the smaller anomaly centered in western Lake County, is that they originate from mafic intrusions. This is considered an unlikely alternative because of the lack of a correlative magnetic anomaly.
In contrast, the coincident gravity and magnetic anomalies centered on the border between Sandusky and Seneca Counties is likely related to a mafic intrusive.
The regional ',Iravity anomalies of northeastern Ohio appear to be stretched out in the north-northeast direction. Perhaps most of that effect is related to the overall trend of the geophysical anomalies which are mimicking the general structural trend of the Grenville rocks. However, it is likely that this " stretching" or trend of the anomalies reflects the superimposed gravity effect of long, narrow bands of variable density gneisses which sub rop at the basement surface. In fact, these anomalies are observed extending discontinuously across northeastern Ohio in the residual gravity anomaly maps of Hildenbrand [1986] which delineate the short wavelength anomaly sources.
The magnetic pattern of northeastern Ohio [ Figures 4-1 and 4-2]
consists of a series of discontinuous bands of magnetic highs and lows that generally have glitudes of the order of a few hundred gammas. Locally, the amp' udes are greater where the magnetization of the sources has been enhanced. These anomalies trend onshore from Lake Erie with a northeast trend which abruptly shifts to a north-northeast trend at approximately 41'15'N [ Figure 4-2]. 'Ihis trend continues to the south out of the State of Ohio into Kentucky
[ Figure 4-1]. In general, there is a direct correlation between the sign of these magnetic anomalies and the correlative gravity anomalies [ Figures 4-13 and 4-l'7 ] . They are interpreted as originating from altertiating bands of gneisses with varying content of mafic minerals which cause variability in the magnetic polarization and densities and resulting geophysical anomalies.
O Weston Geophysical i
The prevailing trend of magnetic anomalies is terminated along a lineament which parallels the anomaly trends [ Figure 4-2]. East of this bounding lineament (Akron magnetic boundary; named after the major city located on it] the anomaly amplitudes are subdued and the pattern is not dominated by a particular trend. The conclusion that is suggested and which is consistent with the related gravity and geologic information is that the basement lithologies east of the Akron magnetic boundary are much more consistent and are dominantly felsic in nature. The prominent exception is the region lying between the lineament [ Figure 4-2] and the very northeastern corner of Ohio. The magnetic anomalies in this segment maintain the northeast trend of the lineament, but they are subdued in amplitudes and gradients suggesting that the sources are buried at significantly greater depth. The Appalachian Basin does not deepen appreciably in this region indicating that the source of the northeast trends in the very northeast corner of the state do not subcrop at the basement surface. The conclusion reached is that they represent an outlier of the northeast-trending gneisses to the west or that the lineament is deflected in this region.
The Grenville Province in the United States west of the Appalachian orogen is transected by numerous northwest-trending linears (Figure 4-2]. These linears are particularly evident in the magnetic anomaly pattern from Ohio southerly into Tennessee as deflections and truncations. They are especially prominent west of the Akron Lineament, although they are observable to the east. In fact, Lavin et al., [1982] map northwest-trending features across the Appalachian orogen into the vicinity of northeastern Ohio. It is significant to note that the northwest-trending linears do not appear to markedly offset the Akron Lineament. The most profound northwestern trend occurs near 41'15'N where the Akron Lineament changes strike. A block of magnetic anomalies west of the Lineament and bounded by roughly parallel northwest linears are attenuated and have somewhat shallower gradients.
Weston Geophysical
9 The Leroy earthquake epicenter is located west of the Akron Lineament in the vicinity of a northeast-trending gravity and magnetic minimum
[ Figures 4-2, 4-3, 4-5 and 4-13]. The earthquake occurred west of a minor [1 mGal) positive gravity anomaly and east of the deep origin
+10 mGal amplitude anomaly centered in western Lake County. The geophysical evidence does not localize a unique structure within the Grenville Province basement in this region. The northeast- trending anomalies as observed in the epicenter area are pervasive west of the Akron Lineament across the entire State of Ohio and no unique i northwest-trending linear are observed in the epicenter area.
4.5 conclusions j The geophysical evidence gathered and interpreted does not localize a 4
unique structure within the Grenville Province basement in this region. The northeast-trending anomalics as observed in the epicenter area are pervasive west of the Akron magnetic boundary across the entire State of Ohio and no unique northwest-trending i ( linears are observed in the epicenter area.
i O Weston Geophysical
5.0 GEOLOGY 5.1 Introduction Following the January 31. 1986 Leroy earthquake in northeastern Ohio, an extensive survey of the geology of the epicentral area was undertaken by geologists of Weston Geophysical and Gilbert-Commonwealth. The tasks included examination of structures prcviously reported along Paine Creek in the PNPP FSAR [Section 4 2.5.4.3.6.1]. In addition, outcrop in the epicentral area l
[Painesville, Chardon, Thompson quadrangles) was checked for potential earthquake-related structures.
The 1986 earthquake occurred at a depth of approximately 5 km, in the Precambrian basement which lies beneath 2 km of Paleozoic sediments in northeastern Ohio. The Precambrian erosion surface dips gradually southeastward toward the Appalachian Basin [ Figure 5-1]. Based on limited deep borings and correlation of geophysical signatures with exposed Precambrian rocks in Canada, the basement is comprised of metasediments and granitic gneisses of the Grenville Province
[ Figure 5-2]. Various sediments were deposited in a sequence of subsiding basins on the eroded Precambrian surface from Cambrian through Pennsylvanian.
5.2 Reconnaissance Mappinq for Potential Earthquake-related structures l
5.2.1 Site Area )
In conjunction with an earthquake intensity survey, a field reconnaissance to identify imrc itate earthquake effects such as surface cracks and rock slides wa.- conducted within days of the event
[Weston Geophysical, 1986). Previously defined, currently accessible FSAR structures were examined for evidence of recent disturbance.
Excluding minor rockfalls, no earthquake-related disturbances were observed. These' investigations evolved into more extensive field Weston Geophysical l
i mapping in the epicentral area and structural contour analyses of l Paleozoic units interpreted from well logs of Clinton Formation gas wells. ,
An areal investigation neur the Perry Nuclear Power Plant immediately after the January 31, 1986 earthquake included a reconnaissance of the Lake Erie Bluff. The bluff was observed from the lake edge on f.
February 1, 1986, from 1/2 mile west of the barge slip to the stream
, diversion outfall at the east end of the site. A light snow had J
fallen during the previous night, but did not blanket the slope of the bluff. Except for small slumps near the top of the bluff, which i e
- were apparently caused by saturated soil conditions, no disturbances ,
1
! were noted anywhere along the section. '
I The cooling water tunnel faults and the structures mapped during i
i foundation excavation for the plant were not accessible for observation. However, previous studies described in Sections l 2.5.1.2.3.3 and 2.5.1.2.3.4 of the FSAR [ Cleveland Electric Illuminating, 19'79) concluded that these structures are associated I with glacial processes. The plant site is removed [1'i km) from the epicentral area and no structures we r'e found which indicated a connection between the foundation or tunnel faulting with the epicenter. In addition, the focal plane solutions for the l
January 31, 1986 main shock and aftershocks indicate strike-slip movement on a near-vertical N25'E oriented fault plane. Therefore,
}
t the solution is incompatible with primary motion on the tunnel faults which are low-angle N50*E trending thrust faults. Further, the
] tunnel fault strike is apprcximately parallel to the orientation of t
the measured principal horizontal stress and therefore, is not properly oriented to fail in the present-day stress regime.
1 4
0 I
, ! Weston Geophysical 4
- . - . ....-.-,-.---+4,-,- . . - - - - . . - - . . . . , , , - - . - - - - . - . - - . - ~ , - - - . . ,...-,---,---e,-..-, - - - , ~ m ,~. -+ .e,
5.2.2 Epicentral Area 5.2.2.1 Bedrock Geology Bedrock exposed in the epicentral area includes, from youngest to oldest, the Berea sandstone, Bedford shale, Cleveland shale, and Chagrin shale [ Figure 5-3]. The Berea sandstone is a weakly cemented sandstone with locally well-developed cross-bedding. Locally, a rounded pebble conglomerate is mapped as the sharon conglomerate, for example, in Sidley quarry south of Thompson [ Plate 5-1]. The Berea sandstone accumulated as channel deposits on and eroded into the underlying Bedford shale. For this reason, the Bedford shale is locally absent in northeastern Ohio. Beneath the Bedford shale are shales of the Ohio group subdivided into the Cleveland, Chagrin, and Huron formations. The Cleveland Formation is a black carbonaceous shale, approximately 25 feet thick near Big Creek, thinning rapidly to the east. The Chagrin Formation, a greenish-gray to gray shale with siltstone laminations, extends down for several hundred feet and forms the subcrop beneath much of Lake Plain sediments and tills.
These rock units are Devonian and Mississippian in age, based on fossil evidence, and are located midway in the generalized stratigraphic section of Ohio [ Figure 5-3].
Exposures of the different lithologies vary due to contrasting i
textural and weathering characteristics. The Berea sandstone occurs j in massive beds which are often sculpted by stream erosion into l smooth basins beneath steep cliffs. Waterfalls are generally not abrupt but rather cascade down irregular smoothed walls. The shales have been locally downcut extensively by headward stream erosion.
Larger streams such as Big Creek. Paine Creek and Grand River are often substantially entrenched below tributary streams, forcing rapid erosion and producing young, typically V-shaped tributary valleys with extensive cutcrop. Resistant siltstones in the Chagrin shale 4
form numerous rapids and waterfalls up to 60 feet high, as less j V resistant shales are eroded out of the plunge pools.
Weston Geophysical
5.2.2.2 Lineaments Several sources of aerial imagery were examined for lineament trends, including: low- and high-altitude black and white photographs; Synthetic-Aperture Radar; and the Earth Resources Technology Satellite photos. Lineaments interpreted from these sources are shown in Plate 5-1. The majority of linear features observed on the imagery are related to cultural features such as fence boundaries and power lines that have no relationship to geologic features. Only lineaments with no obvious non geological association were plotted on I Plate 5-1 and subsequently field checked. The only lineament which showed a spatial correlation with geological structure is located on Big Creek just north [ downstream] of the junction of Cascade and Williams Roads. Here, a concentration of north-northeast trending joints was mapped as coincident with the similarly trending lineament. With this one exception, no correlation was noted of lineaments with any of the surface structures mapped in the epicentral area.
5.2.2.3 Structural Geoloqv I
Several categories of structures were observed during field mapping of the epicentral area. These include primary sedimentary
~
structures, joints and fractures, anticlinal folds (pop-ups], and minor normal and reverse faults.
Sedimentary Structures Primary sedimentary structures noted include mud cracks, ripple marks, and load casts found on numerous bedding plain surfaces.
Cross-bedding occurs in thick beds [up to 10 feet] and occasionally is suggestive of structurally tilted bedding. These features are all related to primary sedimentary processes occurring during initial deposition of the Paleozoic rocks. They are not related to n/
y neotectonic processes.
- 4*l -
Weston Geophysical
Joints and Fractures The second category of structures occurring frequently- in the epicentral area cons!.;ts of joints and fractures (Figure 5-4).
Numerous joints of various types observed in the field included the following:
e short planar discontinuous joints, locally intense
- long planar continuous joints, variable frequency 1
- curvilinear joints, variable lengths Joint intensity vcried widely, even between different beds in a continuous outcrop. This is likely related to differing mechanical characteristics of the sedimentary layers. Intersecting joints often produce blocky weathering patterns. The orientation of i concentrations of planar continuous joints are noted on Figure 5-5.
Previously reported regional orientations (Calcagno, 19~19 ) are O somewhat apparent (northwest and northeast). The north-northeast trend generally parallels the preferred fault plane solution and the trends defined in the geophysical data and structure contour maps.
However, none of the joints are related to any mapped anticlines or thrust faults observed elsewhere in the field.
Anticlinal Folds IPop-upsl The third type of structure occurring frequently in the area of investigation consists of small anticlines or pop-ups [ Figure 5-6).
These features are generally of low amplitude [less than 3 feet) and limited lateral and vertical extent. They are most frequently observed in a brittle layer such as a siltstone bounded above and below by softer shales. Some " pop-ups" are symmetrical with both limbs dipping uniformly away from a fractured axial zone. Others are asymmetrical with one limb steeper than the other, to the point of becoming a monocline. The siltstone layer which is of ten breached ,
along 1.hc axial plano of the structure behaves in a simple brittle
- 48 Mh@ d l
h) manner. However, the deformation in the shales below is of ten more complex with minor thrusts, imbrication, gouge, and breccia apparent in the contorted bedding.
Observation of the lateral extent of these features in the epicentral area is typically hindered by lack of cutcrop. However, where these features are observed along the trend of a stream bed they generally do not exceed 100 feet in length. In some cases, a pop-up of a particular or i en t.a t.i on projects into the flank of one with a different orientation. !
Over seventy of these features were mapped during the investigation
[ Plate 5-1]. A compilation of fold axes orientations plotted on a rose diagram shows no preferential orientation [ Figure 5 '7]. These l
features were observed perpendicular and at high angles to stream axes in adjacent stream banks. In several instances, however, a series of discontinuous antic 11nes trended parallel to the stream axis for a considerable distance. Such features are observed elsewhere in northeastern Ohio and several are reported to have been formed very recently [Swinford, 1985). A mechanism that may account for these particular occurrences calls for rapid stream axis unloading due to downcutting in conjunction with lateral loading and compression from adjacent stream valley walls. Other mechanisms previously suggested for these features include unloading due to erosional removal of lithostatic load and cyclical loading and unloading during glaciation. All of these mechanisms are unrelated !
to neotectonic processes.
Faults l
Minor fault offsets are mapped at several locations in the epicentral area [ Plate 5-1]. Thrust faults predominate with low-angle reverse motion [ Figure 5-6], generally less than one foot but up to a maximum of 10 feet. These features are readily observable where a siltstone O
yl layer is offset. Typically the deformation dissipates into bedding I
Weston Geophysical ;
- _ - - __. - - _ . -- .i
plane slip in weak shales above and below. This type of deformation may underlie some anticlinal buckles but is not readily detectable due to removal of the softer shales by stream erosion.
Strike orientations of these structures are shown in Figure 5-9.
Again, the features show no preferred orientation. This pattern may result from a series of variably oriented stress fields or randomly oriented weaknesses in the rock column responding to a uniform stress field.
Larger structures are characterized by complex compressional deformation in the shale layers beneath a thrusted siltstone layer
[ Figure 5-10] . Several thrust surfaces are apparent with associated breccia, gouge and rotated beds. Deformation associated with even these more complex structures terminates rapidly both laterally and vertically and is not associated with subsurface structures that could produce earthquakes. This assessment was readily made except for one structure [ Big Creek tributary structure) discussed in the
{
following section.
Big Creek Tributary Structure
, Thrust fault offsets of brittle layers are observed to die out laterally and vertically in underlying sof t shales and are bounded below by horizontal undeformed beds. However, in the case of one outcrop, a structure located in a tributary of Big Creek (Figure i 5-11), the limits of deformation were obscured by surficial materials including till and alluvial deposits. Because this outcrop is located approximately 5.2 km routhwest of the Leroy epicentral area (Plate 5-1] and has a general structural trend roughly parallel to calculated focal plane solutions, a detailed investigation of the deformation beyond the exposure was deemed warranted. Consequently, a program of investigations was conducted at this site in order to ascertain the nature, style and potential limits of deformation.
O U
Weston Geophysical
Initial excavation and cleaning at the margins of the exposure and approximately 5 feet below stream grade revealed additional structural deformation [ Figure 5-11]. The excavated area was photographed and mapped in detail [ Figure 5-12). A number of asymmetric overturned [ southeast over northwest] folds with thrust faults cutting the lower limbs were mapped. This deformation style is confined to the massive fissile brownish-gray Bedford shale in the central portion of the excavation. Shearing sense [SE over NW) along the lower limbs of the overturned folds is indicated by the rotation and drag of beds adjacent to tb- ir zones. Orientation of the strike of fold axes and thrust planes is generally north-northeast.
A complex deformation zone, including tight chevron folding which incorporates breccia and till, occurs along the upper margin of the outcrop beneath an organic soil mat. The northwestern margin of the excavation is comprised of dark grey to black breccia and gouge with a few areas of coherent bedding. This type of material extends below the area of overturned folds and thrusts and is apparently confined to black carbonaceous shales of the Cleveland Formation
[ Murphy, 1986]. The southeastern margin of the outcrop terminates along the steeply dipping to vertical limb of an anticline which is adjacent to a '. igh t gray gouge or till. Mapping of the excavation provided no clarification of the potential limits of the deformation.
At this point seismic refraction and magnetcaeter surveys were conducted intersecting the strike of the structures and extending to the northwest and southeast along the axis of the tributary stream (Plate 5-1, Figure 5-13]. The seismic refraction survey was conducted to assess any potential low-velocity zones in the bedrock, which could be indicative of fracturing. The refraction results indicate that bedrock with seismic velocities of 10,000 to 11,000 ft/sec. is outcropping or is within a few feet of ground surface. The magnetometer survey would respond to any offsets of rock units with different magnetic susceptibilities or the occurrence V of a weathered fracture or fault zone with associated iron Weston Geophysical
mineralization. The magnetometer survey revealed no anomalies except for two local abrupt deflections, which were determined to be related to metal debris in the field. Both surveys indicate no apparent fracturing or faulting in the vicinity of the outcrop [ Figure 5-14).
Investigations of this structural feature also included a drilling program, carried out from June 5-13, 1986. This program was conducted to provide more information concerning the vertical and lateral extent of the observed deformation. The program consisted of three borings [BC-1, BC-2, BC-3] oriented such that a line drawn between them roughly parallels the N50*W trending face of the outcrop. The location of each boring, relative to Station 040 of the seismic refraction and magnetometer survey lines, is represented in Figure 5-13. The relative ground elevation drops approximately 5.5 feet from Boring BC-1 to Boring BC-3, southeast to northwest. The Big Creek tributary outcrop lies between Borings BC-1 and BC-3, approximately 25 feet to the northeast of Boring BC-2.
5 V
Stratigraphically, the drilling penetrated two Devonian age formations within the Ohio shale group: the Cleveland shale and the Chagrin shale [ Figure 5-15] [ Appendix A-5.1] . The Cleveland shale, overlying the Chagrin, is a fine-grained black, fissile, carbonaceous shale. The Cleveland is characterized by easy-parting, but is only slightly weathered and has high RQD values. The Cleveland is only 20 to 30 feet thick in the study area. The area near the top of rock, generally 15 to 20 feet deep, is characterized by some clay seams and j zones of brecciation. This is especially true in Boring BC-1 and may be related to breccia and gouge seen in the lower portion of the outcrop. j l
I Beneath the Cleveland shale, the Chagrin shale is found in all three holes from approximately 30 feet below ground surface to the bottom of each boring. The Chagrin is a gray to greenish gray shale with a varying frequency of interbedded silt layers. Occasional clay layers V occur throughout the drilled interval with abundant marine fossils l
~ ~
Weston Geophysical
[ Devonian brachiopods] on parting surfaces. The Chagrin is generally soft, slightly weathered, and contains some pyrite.
Results of the boring program show the Chagrin-Cleveland boundary to be an essentially flat contact unbreached by the structure apparent at the surface. This boundary is also evident in an outcrop in Big Creek located approximately 0.6 km southwest of this structure
[ Figure 5-16, Plate 5-1]. Because of this unbroken contact, the surficial structure cannot be attributed to neotectonic faulting originating below the contact in the crystalline basement. The Big Creek tributary structure is thus considered to be a product of glacial or other surface action.
A second feature observed in an adjacent tributary of Big Creek was also investigated. Excavation of the feature readily revealed that deformation is again surficial in nature and is likely related to glacial activity.
O 5.2.3 Interpretation of Reconnaissance Mapping Features similar to those found during the Leroy epicentral area reconnaissance mapping have been widely reported in the literature on northern Ohio, northwestern Pennsylvania, and New York. The several styles of jointing correlate well with joint patterns described in the Ohio shales by calcagno [1919). These include a random fine-scale fracture network observed locally in weak shales; long curvilinear joints which parallel curved sections of river valley beneath steep bedrock cliffs; and long continuous planar joints. No ;
prominent or unique joint systems or correlations with structural features mapped at the surface have been observed in the epicentral area. Observed joint systems are apparently correlated with the accepted regional Paleozoic tectonic framework of Appalachian Basin subsidence and Allegheny orogeny compression followed by uplif t and unloading.
Weston Geophysical l
Anticlinal folds in the epicentral area are numerous and randomly oriented. They can be attributed to several mechanisms, including Paleozoic compression, 11thostatic unloading due to erosion, cyclical glacial loading and unloading, and lateral compression coupled with unloading of incised stream valleys [ suggested by the occurrence of certain structures along stream axes]. The randomness of orientation could be attributed to the interaction of several of these possible mechanisms, all oriented differently, or to differently oriented weak zones in the brittle layers predominantly involved.
Faulting observed in the field area is generally of two styles, normal and low-angle reverse [ thrust]. Normal faults such as those observed in Hell Hollow are readily correlated to nearby slumps and landslides. Thrust faulting is related to compression, with the likely mechanism being direct ice push or shove. Alleghenian compression is another possible mechanism but is considered less likely because these faults are characterized by local occurrences of relatively intense deformation, and would require a transmittal of causative forces over a substantial distance from the Allegheny front in western Pennsylvania. The lack of these features in areas of Ohio south of the glacial ice margin further suggests that their origin is glacial [ Murphy, 1986].
Regardless of which of these various mechanisms is actually responsible for the above features, all of the investigations --
including detailed mapping, borings, and geophysical surveys -- show that even the largest of these structures is limited in lateral and vertical extent to the top 20 to 30 feet of the rock column [ Figure 5-17]. Therefore, these features are unrelated to deep-seated neotectonic structures.
5.3 Structure contour Analyses of " Packer Shell" & Delaware Limestone This section first describes the general stratigraphy and geologic O history of the region. Next, the section describes two structural 0
V/eston Geophysical
b contour maps Weston has constructed of Lake and Geauga Counties and j adjacent portions of Trumbull and Ashtabula Counties [ Figures 5-22 and 5-23] to assess Paleozoic structures in the epicentral area.
I After discussing the methodology of constructing the contour maps, the section addresses whether the maps reveal any association of the l underlying structures to neotectonic mechanisms.
5.3.1 General Stratiaraphy The stratigraphic sequence in the area consists of over 5,000 feet of I limestones, dolomites, salts, sandstones and shales of Cambrian through Mississippian age [ Figure 5-1]. Contour maps were constructed of the top of the Delaware Limestone [ Devonian) and the
- " Packer Shell" [ Silurian]. These units were selected on the basis of
);
their lateral continuity, presence in most logs and unique gamma ray 4 signature.
! The drillers' term " Packer Shell" is applied to two thin carbonate !
f
- units which overlie the "Clinton" sandstones, separated from it and from each other by thin shale beds. Previous investigators (Knight, 1969 and Overby and Henniger, 19'71] have correlated the upper and 1
j lower carbonate units of the Packer Shell with the Dayton Limestone and the Brassfield Limestone, respectively. The Packer Shell is the j deepest laterally continuous formation encountered in the wells which were drilled to the Clinton sandstones immediately below the Packer I Shell. The Rochester shale, which is locally dolomitic, overlies the Packer Shell.
Immediately above the Rochester shale [ drillers' "Niagaran Shale"] is the Lockport Formation, a dense dolomite with localized areas of porous crystalline dolomite that resemble sandstones. These porous
.l zones are collectively known as "Newberg Sands" [Ulteig, 1964]. The top of the Lockport Formation is marked by an anhydrite layer approximately 10 feet thick. Above this anhydrite lie the salts, shales and dolomites of the Salina Group. The top of the Salina i
l I 1 Weston Geophysical
Group is marked by a thick, locally argilaceous and dolomitic anhydrite. The Salina Group is conformably overlain by the argilaceous dolomites [ locally dolomitic shales] of the Bass Islands Group.
The Oriskany Sandstone overlies the Bass Islands Group in northeast Ohio. It is commonly thin, approximately 10 feet, and produces oil locally. The Columbus Limestone, which overlies the Oriskany Sandstone, is indistinguishable from the overlying Delaware Limestone on the gamma ray log. The Delaware Limestone marks the top of the
" Big time," a drillers' term for the " Big Niagaran Limestone". Both the Delaware and the Columbus are cherty.
5.3.2 Overview of Paleozoic Geologic History The Paleozoic geologic history of the area is extremely varied. The transition from the Clinton Sandstones to the overlying Rochester shale suggests a deepening depositional environment. The Packer Shell most likely represents a time of reduced clastic influx when carbonate production flourished. The Lockport through Salina sequence represents a shallowing of the seas and increasing restriction from open marine waters. Small variations in the amount of restriction resulted in deposition of salt, limestone, dolonite
, and anhydrite. The abrupt change from anhydrite in the Salinn to the dense dolomite of the Bass Islands Group is due to a return to more normal marine conditions which prevailed throughout deposition of the Columbus and Delaware Limestones. The Oriskany Sandstone represents a time of increased clastic influx during predominantly carbonate sedimentation. The sharp upper and lower contacts of the Oriskany suggest a minor localized marine regression. The thick, organic rich sediments of the Ohio Shale, which unconformably overlies the Delaware Limestone, represent a deep ocean basin that prevailed for
{
an extended period of time.
O
~ ~
Weston Geophysical
5.3.3 Method of Study 5.3.3.1 Basis for Selection of Packer Shell & Delaware Limestone [" Big Lime"l The selections of the Packer Shell and the Delaware Limestone for contour mapping were based on four requirements for a meaningful map. First, the datum must reflect the structure; second, the datum must be laterally widespread and continuous; third. it must be easily recognizable and correlatable between wells; and fourth, it must have j sufficient well control [Sebring, 1958). Both the Delaware and the l Packer Shell met these requirements.
5.3.3.2 Use of Data from Clinton cas wells In constructing the maps. Weston made use of well logs available from oil and gas industry exploration of Clinton gas wells. The Clinton sands are a group of three, fine-grained, quartz-dominated sandstones that locally produce oil and gas. The sands are variable in thickness and do not occur in every well. Porosity ranges from 3 to 12 percent and usually averages around 8 percent. The Clinton sands have poor permeability due to grain size and clay infilling.
The Clinton sands do not require structure to produce hydrocarbons; rather, they are found in stratigraphic traps. Where favorable 1
porosity, permeability and thick sands occur together the Clinton is l
j considered to have economic accumulations of hydrocarbons. Initial l
drillholes into the Clinton by the oil and gas industry were thus randomly located. Typically, once good production was found, adjoining acreage was leased and more wells were drilled. Drilling was continued away from the original discovery until the production was considered uneconomic.
5.3.3.3 Use of Data from Gamma Ray Logs The Ohio Department of Natural Resources. Division of Geological Survey keeps a record of all wells drilled in the state of Ohio.
4 Weston Geophysical
operators must release logs [if run] within 180 days after completion of the well. These logs are kept at the Division of Geological Survey office in Columbus and are available for public inspection.
Weston purchased copies of logs from 1981 through 1986 for Lake, Geauga, Ashtabula, Trumbull, and Cuyahoga Counties for use in this study, and examined logs from 19'79 and 1980. In all, over 1,500 logs were examined, and 1,200 were analyzed in detail.
The gamma ray log is a measure of the naturally occurring radioactivity in a formation. Shales, for example, contain more radioactivity than other rocks. Changes in rock type are commonly reflected by changes in radioactivity shown on the gamma ray log.
Figure 5-19 shows the gamma ray signatures apparent on these logs for the Delaware and the Packer Shell. Weston also used the gamma ray logs to " pick" the top of the particular formations, with an accuracy usually on the order of a few feet.
O V 5.3.3.4 Map construction of the 1,200 gamma ray logs analyzed in detail, 450 logs [ Figure 1]
were used to construct structure contour maps of the top of the Delaware Limestone and Packer Shell. All depths were converted to elevations [ sea level datum] and recorded. Well locations were spotted by hand on a 1:62,500 base map and are considered accurate to
- within 250 feet. Elevations were placed on the map and contour lines l were drawn. Well control averaged approximately 1 well per square i mile. Where well density was sparse [less than 1 well per 4 square miles], contour lines were inferred and shown as dashed lines on the map. In west central Ashtabula County, no well data was available; therefore, the area was not contoured.
i i
O !
i Weston Geophysical
5.3.4 observations 5.3.4.1 Packer Shell Structure Contour Map The structure contour map on top of the Packer Shell shows a gentle south-trending dip with a variety of secondary features [ Figure 5-22). The formation dips at an average rate of 24 feet per mile with an increase in gradient in southern Geauga County. The increase in gradient is accompanied by a minor shif t in direction toward the southeast [ Figure 5-23] . This is consistent with the regional trend of the Appalachian Basin [ Figure 5-20].
Two areas of structural high interrupt the smooth east-west pattern of the contour lines. In Leroy Township [ north central Lake County]
two small structural highs appear. The larger of the two has a minimum of 40 feet of closure and is elongated in an east-west direction. The other structural high. located in central Geauga County, has only 20 feet of closure but is considerably larger in areal extent. It also shows east-west orientation.
The area between the two highs shows a northeast-southwest-trending high flanked on both sides by slightly less distinct lows. The maximum east-west elevation difference between the high and the lows is approximately 40 feet. This feature appears to terminate at the l structural highs. A similar oscillatory feature is located just south of the Geauga County high. This north-south trending feature has more relief but appears to be less extensive laterally.
I l
A broad area of very gentle dip [10-15 feet per mile] extends i 1
northeast from west central Geauga County well into Ashtabula County. The break in slope is easily recognized in the southern end of cross-section B-B' [ Figure 5-21).
O Weston Geophysical
5.3.4.2 Delaware Limestone Structure contour Map Structure contours on top of the Delaware Limestone show a northeast-southwest orientation and indicate deepening toward the southeast [ Figure 5-23). Like the Packer Shell, the Delaware dips at an average rate of 24 feet per mile. The dip increases slightly toward the southeast.
One large and two small lows dominate the .otherwise uniform dip of the Delaware. The large low located in Burton Township in Geauga County has over 60 feet of relief over less than a mile. It is l elongated normal to strike and has a broad high adjacent to the southeastern end. This low is offset approximately 4 miles to the southwest of the structural high in the Packer Shell.
Immediately to the southwest of the large low is a broad depression trending north-south on the Geauga County - Portage County border.
This small low shows over 25 feet of relief. The other small low is in Perry Township, Lake county, and is flanked by very broad highs.
The low occurs over a distance of about 5 miles and has a maximum relief of about 40 feet. The structure appears to terminate abruptly to the south as it is not observed in the *160-foot contour.
i A narrow high located just south of the Lake-Geauga border trends south then southeast in an arcuate pattern. This feature, about 5 miles in length, is well-defined on both its northern and southern ends and has a maximum of 40 feet of relief along strike.
Deflections observed on the Packer Shell do not correspond one-to-one with those on the Delaware, although the general northeast and northwest trends are present on both horizons. The lack of j correspondence between the two horizons may be due to an intervening sequence of Salina salts absorbing the deformation. )
Weston Geophysical
5.3.4.3 Interpretation of Contour Maps The patterns revealed by the contour maps of the Packer Shell and the Delaware can be attributed, first, to depositional mechanisms. The two highs appear to be primary depositional features parallel to depositional strike. Their lateral extent is limited, which further supports a theory of depositional causes. This lateral relationship is characteristic of organic buildings such as patch reefs bioherms, and algae flats. The other features on the Packer Shell are most likely depositional patterns or the result of erosion, since the dominant orientation of these features is normal to depositional strike.
The oscillatory deflections of the contours, which trend northeast between the two highs, probably represents draping of the Packer Shell limestone over pre-existing sedimentary features. This l conclusion is supported by the fact that the Clinton sands, which lie below the Packer Shell, are deltaic in origin. A channel with overbank deposits that has been differentially compacted would be a reasonable model for this feature. In this model, the northern and
! southern highs would represent sediment source and discharge areas, respectively.
4 Second, the patterns shown on the contour maps could be attributed to Paleozoic folds or f aults. However, because of the low density and limited vertical control of the data points, neither Paleozoic faulting or folding nor depositional processes as described above can
{ be chosen as the definitive causal mechanism. Regardless of which mechanism is responsible, in either case neotectonic processes are not involved.
5.4 Conclusions Based on the results and interpretation of geologic investigations the following conclusions are presented:
1 Weston Geophysical
i f
i
- 1. Geologic field investigations in the site and epicentral areas j since February 1, 1986 have revealed no earthquake-related neotectonic structures. The mapped structural features (joints, anticlinal folds, faults] are correlated with widely accepted Paleozoic, glacial tectonic, and/or loading / unloading causative mechanisms.
i l
- 2. Contour maps of the Packer Shell and Delaware horizons were
! constructed from g u mia ray logs. The features revealed were interpreted to have been associated with penecontemporaneous 1
.l deposition and/or erosion: or possibly Paleozoic folding and j faulting; neither of which is related to neotectonic processes.
i 1
4 i
1 1
i i
O I
Weston Geophysical
6.0 CONCLUSION
S 6.1 Seismology 6.1.1 Main Shock A study of the main shock is based on remote regional and global seismographs; the location of the main shock is 41.65'N and 81.162*W. The magnitude is listed by the National Earthquake ,
Information Service (NEIS) as 4.9mb I "blg magnitudes from seismographs deployed in the central and eastern United States and Canada are slightly higher. The seismic moment calculated for the earthquake is 1 x 10** dyne-cms and its focal plane trends N25'E and is neer-vertical in dip. The relative motion is right lateral strike-slip. The focal depth is estimated at 4 to 5 kilometers. l 4
i 6.1.2 Aftershocks O A detailed study of the aftershocks has been made based on high gain j portable seismographs deployed within 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> of the main shock.
Based on composited data from several of the af tershocks, the focal plane trend is very close to that of the main shock, N25'E. This '
direction appears preferable over the complimentary plane of N'10*W.
i The complimentary plane would have near equal weight based on the I
af tershocks alone which show a slight northeast elongation in their I pattern. Based on the solution of the main shock, however, the N25'E direction is preferred.
I 6.1.3 Reevaluation of Seismicity A reevaluation of the regional and local seismicity resulted in i establishing a more definitive location of two low magnitude 1983 earthquakes. The results of this reevaluation have not shown any significant changes in the regional seismicity pattern.
1 Weston Geophysical
6.1.4 Intensity values The intensity values for the area surrounding the Leroy epicenter were assessed by observations in the field, interviews with residents, a canvas by mail, communications with United States Geological Survey [USGS) personnel, and a review of the soil and geological conditions where the highest intensities were noted.
The epicentral intensity is best characterized by a Modified Mercalli l
intensity value of VI. This intensity is one value lower than the intensity VII used to characterize the Safe Shutdown Earthquake.
< 6.1.5 Ground Motion The ground motion recorded on the foundation mat of Unit 1 of the Perry plant, when represented as response spectra, falls well below the design response spectra for the Safe Shutdown Earthquake except in the frequency range above 10 Hz.
l The relatively high acceleration of 0.189 in the high-frequency band 1
for this earthquake is compatible with ground motions recorded from similar or smaller magnitude earthquakes which occurred in 1982 in New Brunswick, Canada and New Hampshire. These ground motions were of short duration and low energy, borne out by the lack of damage to non-engir.eered buildings and structures and resultant low intensity values associated with these events. These high-frequency vibrations I thus should be distinguished from the damaging higher intensity earthquakes (ranging from I = VI to I =
IX] which were used to construct the site-specific design response spectra.
The generation of the high-frequency motions appears to be primarily l the result of source and ray path ef fects rather than local soil amplification effects. This conclusion applies to USGS stations GS 01 and GS 02 as well cs to the Perry plant. This is consistent j with the interpretation of the bedrock compressional and shear wave l Weston Geophysical
measurements made at the Perry site, which do not indicate any layering in the rock to account for the high acceleration in the frequency band of approximately 20 Hz in the shear wave [v,] train on the recorded motion.
l
! One interesting observation with respect to work completed to date is the increase in a:aplitude of ground motion from low magnitude earthquakes to higher magnitude events. TM spectra from the
]
af tershock of magnitude 2.5 when compared to the magnitude 5.0 main shock would be expected to differ by about 300 times since magnitude is measured on a base 10 exponential scale. This 300 times difference does exist at the lower frequency band, near 1 Hz, where magnitude determinations are made. However, in the frequency band above 10 Hz. the spectra increases only 10 to 30 times for this same magnitude increase of 2.5 units. This indicates that the spectral amplitudes associated with high-frequency motions will increase at a substantially lower rate than those associated with lower-frequency b
v motions for larger magnitude earthquakes.
This is also consistent wi'.h observations of earthquake motion which 1
were used to derive the site-specific spectra. The spectral amplitudes scale upward with increasing magnitude in a consistent f ashion at the lower frequencies [1 Hz) but are inconsistent above 10 Hz where smaller magnitude events many times produce larger high-frequency motion than the larger magnitudes.
We believe that the high-acceleration, high-frequency motion recorded for the perry Plant should be considered as a special subset of data for analysis but is not cause to alter the basic design spectra which 4 represents higher intensity damaging earthquakes.
i 6.2 Geology l The local and regional geological data base prior to the Leroy earthquake was considerable. All known features of significance i
~ ~
l Weston Geophysical
O
( which could have been associated with the earthquake either as a primary or secondary causative fault or even induced by vibratory ground motions were investigated. None of these faults or features showed evidence of geologically recent disturbance.
l The area and re51on around the Perry plant has been subjected to several glaciations. Locally, the top few feet of weaker shales, particularly where interbedded with clay seams, have been shoved and faulted by glacial action. Particular attention was given to these features since they could be interpreted as having the appearance of
. capable faulting. Based on excavations, drill holes, and detailed mapping these features die out with depth and are not indicative of capable faulting.
~
Logs from 1,500 gas wells which have distinct marker beds within the Paleozoic section were used to construct structure contours on the top of the Packer Ehell and Delaware Limestone horizons. The flexures displayed by the structural contours for these formations are concluded to be associated with penecontemporaneous deposition and/or erosion, or possibly Paleozoic folding and faulting, neither l of which is related to neotectonic processes.
Examination of the geology, both regionally and locally, at surface and at depth, by the construction of structural contour maps on i
horizons in the Paleozoic section reveals no structures to which the Leroy earthquake can be reasonably correlated.
6.3 Geophysics Since the earthquake occurred at a depth of four to five kilometers, within the crystalline basement Grenville rocks, and because geological investigations could not identify a causative fault or structure for the earthquake, the basement rock was examined by geophysical means to seek a causative structure. Detailed ,
aeromagnetic and ground gravity data collected in the epicentral area and on a more regional basis, were evaluated to assess the first few l kilometers of crystalline rock.
~ ~
Weston Geophysical
The geophysical data are indicative of several lithologic [ rock type]
changes in the epicentral area. There is a northeasterly trending magnetic low with two disturbances in the magnetic contours which have a northwesterly trend. In addition, the epicenter is on the western edge of a relatively shallow high density, highly magnetic body. Northeasterly trending features on the magnetic map are broken into discrete segments by northwesterly trending features or by changes in trend of 20* or more within the general northeast trend.
The trend of the magnetic low and strike of the earthquake focal plane are similar; the gravity data can be modeled as different lithologic types which may or may not be associated with structure.
There is, however, no real evidence of strike-slip motion revealed by magnetic anomaly offsets along the northeast trend.
6.4 Summary
]
The lack of a well-defined structure based on geological and/or geophysical data together with the absence of a trend of the historical earthquakes precludes a reasonable correlation of earthquakes to a tectonic structure. Consequently, there is no basis to change the tectonic province approach for the Perry site licensing.
The largest historical earthquakes in the Central Stable Platform (selected by the NRC as the tectonic province for the Perry plant]
have a magnitude range of 4.9 to 5.2. The largest earthquakes in the province are the Anna. Ohio [m b=4.9] and Sharpsburg. Kentucky (mb =5.1] earthquakes. The relatively short segments of geological structures as revealed by geophysics and the consistency of the size of historical earthquake attest. to a relatively uniform stress field acting on geologic structures of similar size in the province. The Leroy earthquake is consistent with the geological, geophysical, and
- seismological characteristics of the tectonic province.
i O
l Weston Geophysical
1 i i
t The occurrence of the January 31, 1986 Leroy earthquake has verified that smaller magnitude Eastern United States earthquakes are rich in relatively high-frequency ground motions; hwever, it has provided no i fundamental reason for changing the Perry licensing basis.
i I
i l
1 i
I I 1
'1 ,
1
)
1 1
l l
4 1
t i
i 1
I I
J l
1 Weston Geophysical i
i I
REFERENCES
}
l SECTION 3.0 SETSMOLOGY l
Borcherdt. R.D., 1986 Preliminary Report on aftershock sequence for earthquakes of January 31, 1986 near Painesville, Ohio. (Time period: 2/1/86-2/10/86)
USGS Open File Report 86-181 sponsored by EPRI.
EPRI-SOG, 1985, Seismic hazard methodology for nuclear facilities in the eastern United States 3 volumes, Draft April 30, 1985.
Kinemetrics/ Systems, 1986, Strong Motion Data Report for the Mt 5.0 Earthquake of 11:47 EST, January 31, 1986. Perry, Ohio, for Cleveland Electric Illuminating Company, February 4, 1986.
Klimkiewicz, G.C. and Pulli, J.J., 1983. Ground Motion Attenuation Models for New England, Abstracts, 78th Annual Meeting, Seismological Soc lel y of America.
Wesson, R.L. and C. Nicholson, 1986 Studies of the January 31, 1986 northeastern Ohio earthquake. USGS Open File Report 86-336. 131pp.
SECTION 4.0 GEOPHYSICS Hildenbrand T.G., 1986, Gravity Anomaly Map of Ohio: USGS Map GP-963.
Hildenbrand. T.G. and Kucks R.P., 1984, Complete Bouguer Gravity Anomaly Map of Ohio: USGS Map GP-962.
Hildenbrand T.G. and Kuck*, R.P., 1984, Residual Total Intensity Magnetic Map of Ohio: USGS Map GP-961.
Hinze, W.J., Braile, L.W., Keller, G.R., and Lidiak E.G., 1980, Models for midcontinent tectonism, in continental Tectonics: National Research Council, National Academy of Sciences, p. 78-83.
Hinze, W.J., Braile L.W., Keller, G.R., and Lidiak, E.G., 1983. Geophysical-Geological Studies of Possible Extensions of the New Madrid Fault Zone: US Nuclear Regulatory Commission CR-3174, 87 p.
Hinze, W.J. and Zietz. I., 1985. The composite-magnetic anomaly maps of the conterminous United States, in Hinze, W.J., ed. , The utility of regional gravity and magnetic anomaly maps: Society of Exploration Geophysicists.
Tulsa, Oklahoma, p. 1-24.
Lavin, P.M., Chaffin, D.L., and Davis, W.F., 1982. Major lineaments and the Lake Erie-Maryland crustal block: Tectonics, 1, p. 431-330.
Lucius, J.E., 1985, Crustal geology of Ohio inferred from aeromagnetic and gravity analysis: Unpublished M.S. Thesis Ohio State University, 131 pp.
1 Weston Geophysical l l
L_
Wynne-Edwards, H.R., 1972. The Grenville Province, in Price, R.A. and Douglas,
[h s_ ,/ R.J.W., eds. Variations in Tectonic Styles in Canada: Geological Association of Canada, 5 p., Paper 11, p. 263-334.
SECTION 5.0 GEOLOGY Calcagno, F., Jr., 1979, The fracture pattern of the gas producing Devonian
[ Ohio] shale in outcrop in northeastern Ohio: M.S. Thesis, Case Western Reserve University.
Cleveland Electric Illuminating Company, 1979, Final Safety Analysis Report.
Perry Nuclear Power Plant, North Perry Ohio.
Knight, W.V., 1969, Historical and economic geology of lower Silurian-Clinton Sandstone of northeastern Ohio: American Association of Petroleum Geologists. Bulletin, v. 53, no. 7, p. 1421-1452.
Lucius, J.E., 1985. Crustal geology of Ohio inferred from aeromagnetic and gravity analysis: Unpublished M.S. Thesis, Ohio ' tate Univeteity, 131 pp.
Murphy, J.L., 1986. Field study of three areas of disturbed bedrock along Big Creek, Chardon Township.m Geauga County, Ohio, A report submitted to Gilbert Associates, Inc., Reading, PA, 8 p.
Overby, W.K., Jr. and Henniger, B.R., 1971. History, development, and geology
) .
of oil fields in Hocking and Perry Counties, Ohio: American Association of
- ) Petroleum Geologists Bulletin, v. 55, no. 2, p. 183-203.
Sebring L., Jr., 1958, Chief tool of the exploration geologist: the subsurface structure map: American Association of Petroleum Geologists, Bulletin,
- v. 42, no. 3, p. 561-587.
Swinford, M., 1985, Stream Anticlines, Ohio Geological Newsletter. Divison of Geological Survey, p. 5-6.
! Ulteig, J.R., 1964, Upper Niagaran and Cayeagan stratigraphy of northeastern Ohio j
and adjacent areas: Ohio Department of Natural Resources, report of investigations, no. 51.
Weston Geophysical Corporation, 1986, Preliminary report of seismological and geological investigations conducted in epicentral area of January 31, 1986 earthquake in northeantern Ohio, prepared for the Cleveland Electric Illuminatirg Company, 8 p.
l0 Weston Geophysical t
i l
- O l 1
1 I
l t
l 1
1 1 i
\
1
! TABLES ,
i, ,
I i
I l l.
i i
O i
l i
Y I
i 1
}
l I .
,! +
I 6
i f
i I
I. ,
I i
i i ,
r i.
f t I
Weston Geophysical l_ . _ _ _ _ , . - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . _ . _ __ _ _ _ _ _ _ _ . _ _ _ _ . ._ _ , . .
_ _ . _ _ _ . . _ __ ._._____________.m_________._
_ _ _ _ _ _ _ _ _ _ __ . _ _ _ _ _ _ , _ - .m. . . -..m = - -. ._-- _. ___
TABLE 3-1 te j a on al Ses 5m sc a t y IPRI Cata Sase Oa! GIN TIMI HfPCCCNT2AL LCCATION MAGNITU3C REF DISTAhCE REMA255 l TEA 4 Mc C A na M4 SEC LAF. LCuG. 2(KM.3 I( tM3 M3 MN ML PC (KM.)
1754 4 25 2 33 C.C 33.3C304 Ft.5003W W EC 539.22 110 UM= UI= UL=E ITM=
177. 2 21 19 3 C.C JF.203C4 77.430JW WI 4.5 EP 633.73 125 UM=C UI=I UL=I ITM=Z !
I F F. 2 22 3 3 C.C 3F.203C4 FF.4300W IV 55 6J3.73 126 UM= UI= UL*! ITM=
17 F5 3 16 19 15 0.C 37.7C304 Fe.8300W IV 55 497.64 127 UMs UIs UL=E ITMs 1FFs 0 3 C 3 0.C 33.1C3CN 12.3303W VI IU 223.11 128 UMa UI=H UL=E ITM=
17 FF 11 16 7 3 C.C 35.J03C4 34.0300W IV 55 6s9.91 1236 UMs UI= UL=S ITMs 1791 1 13 9 0 0.0 37.73J01 76.8303W IV 55 497.64 142 UM= UI= UL=2 ITMs 1791 1 15 10 3 0.C 37.5CJ04 77.5303W IV ST 570.72 143 UM= UIs UL=5 ITM=
1795 12 26 11 3 0.C 42.303C4 79.0 30 3W v1 LN 214.73 157 UM= UI=8 UL=3 ITM=
1302 8 23 to 3 C.C 3F.40JC4 79.1300W W 55 519.19 164 UM= UI= UL=E ITM=
140F 5 & 9 0 0.C 37.40004 79.1303W W 55 519.18 176 UM= UIs UL=E ITM= !
till 11 27 8 3 0.C 35.10J04 30.2303W IV ST 638.17 181 UM= UIs UL=S ITM=
1d12 2 2 9 33 C.C 37.5030% 77.4333W IV 30 566.16 184 UM= u!= L6=E ITMs 1412 4 22 4 3 C.C 37.5C3CN 77.5303W IV 55 570.72 187 UMs UIs UL*! ITM=
l 1917 1 8 4 3 0.C 35.J0304 30.2303W W 5.0 IP 649.18 194 UM=C UI= UL=E ITM=Q l 1917 12 11 0 3 0.0 38.50JC4 34.5303W IV 3.5 NU 464.81 198 UM=3 UI=H UL=3 ITM=F 1813 12 7 0 3 C.C 46.3CJCm 76.5303W IV WC 451.06 9215 U M= UI=8 UL=C ITMs 1d23 5 33 0 3 C.C 42.5C303 31.0 3 3 3W -
III 3.2 3.7 EP 78.55 213 UM=3 UI=C UL=3 ITM=F 1924 7 15 16 23 C.C 39.703C4 30.5303W IV EU 239.57 218 UM= UI=H UL=E ITM=
1927 5 11 0 3 C.C 35.1C3C1 31.2303W IV ST 632.93 219 UM= UI= UL=3 ITM=
192F S 7 7 3 C.C 3d.3030N 35.8303W t! 4.7 Nu 555.63 222 UM=3 UI=H ULs0 ITMsF
( 1923 3 ') 0 3 0.C 3F.30304 30.0003i. V 5.0 N8 542.05 225 UM=C UIs OLs3 ITM=Z 1933 2 4 0 3 0.C 42.30304 85.6303W WI 4.3 NU 373.00 235 UM=C UI=M UL=I ITM=Z j 1933 8 27 11 3 C.C 3F.F0J04 F8.CJ33W VI 5.0 EP 529.01 238 UM=C UI= UL=E ITM=P 1936 11 2J 19 43 C.C 33.3C304 36.0333W W 4.2 NU 591.91 239 UM=3 u!=H UL=3 ITM=F 1935 7 9 2 15 C.C 41.503C4 81.7303W IV 3.8 Nu 57.12 240 UM=3 UI=H UL=0 ITM=F I 1833 9 5 0 0 C.C 35.40JC3 33.83C3W IV 3.8 NU 421.24 244 UM=3 UI=M UL=E ITM=F 1943 9 13 0 3 0.0 43.20304 79.85C3W - W 4.3 EP 188.32 248 UM=J UIa8 UL=C ITMar 1444 11 24 13 3 0.C 35.30304 33.9 30 3W %I 4.2 NU 636.85 265 UM=D UI= UL= ITM=G ,
266 UM=D UI=C UL=E ITM=F 1945 0 3 0 3 C.C 41.1CJ04 34.2303W II 3.3 NU 256.96 l
tier 1 4 20 3 C.C 44.3CJJ4 78.0003W III EP 354.34 280 UM= UI=8 UL=C ITM=
134F 1 14 0 3 C.C 44.2CGC4 78.2 33 3= III EP 358.65 282 LM= UI=8 UL=C ITM=
1953 to 1 10 25 0.C 41.53304 St.7333W IV 3.5 hu 57.12 339 UMs0 UI=M UL=E ITM=F 1953 to 1F # 3 0.C 37.30JC1 78.4 03 3h IV 55 552.52 310 UM. UI= UL=! IT9=
1s52 4 29 1s 3 C.C 35.50304 31.6 30 3 W WI 4.9 TP 578.77 320 UM=C UI= UL*5 ITMal 1352 11 2 23 35 C.C 37.503C4 FC.6303W WI 4.3 EP 514.83 326 UM=C UIs OL=E ITM=Q 1452 12 15 0 3 C.C 43.3330h F1.2333W III EP 293.57 329 UM= UI=C UL=C ITM=
1953 3 12 to 3 C.C 43.1CJON F9.4303W - W EP 233.48 331 UM= UIsh UL=C ITMs .
1453 5 2 14 23 0.t 33.50JG4 79.=303W -WI 4.6 EP 332.33 332 UM=C UIs UL=3 ITMal 1854 2 12 0 3 C.C 3 7.20 JCu 33.8 30 3W - Z w 3. 5 NU 559.52 351 UM=3 u!=0 UL=5 ITM*F ,
. _ , . _ _ _ _ _ _ _ _ _ _ - ,_ ___._ - _ ,_ _ _ - _ _ _ __ - _, _ _.,__ ,__..,m - _ ,_. , _ . ~ _ , . , , _ . _ . . , _ _ _ _ _ . _ _ . . _ , - - ~ . _
,I.ytsIT C - 1 )3ouliM3P (
3eftcueI 5ettet3tnA ydeI 3 ra e sete 03ISIM IIW F&dOJIM13T1 133Y1 ION dt9N110C3 33d CI51YN33 33WTE35 A3WP WC 3 T H3 Wk 533 1Y1* 13NS* 2 311W* ( I) 6W ( ME WN W1 W3 )1W*(
tF5* Z tE 0 C C *1 tl*;DCOL ?t*SGCCR - tA t*9 Nn 556*52 ESO GW=C nI=3 01=3 11W=d t E5* Z ZF C C D*3 tl*SDC3L Et*O CC CM IA **C 51 579*12 059 GW=3 nI=3 01=C 11W=C t ist E 9 0 C 3*3 tS*20C04 ES*2CCCM lA E*E nn 57B*91 ESS 3W=C nI=W 01=3 liW=d tf5T I
- S C 3*3 C2*C3C3L 23*9CCCR A t*Q 3d 519*Z5 ttO 3W=3 nI= n1=3 11W=C 1655 1 19 8 C 2*3 E6*roCCN 28*lCCCM IA 55 CFt*91 tSZ GW= nI= 01=3 11W= ,
1552 t t t tC 3*3 tt* ECCOL 10*9CCC3 -A t*0 hn 95*71 te9 OW=C nI=W 01=3 11W=d 1652 f O 2( ZC 15 3*3 tt*IDCCA 18*9CCCR tI 34 29C*st E62 4W= nI=W 01=3 11W= l tE55 t t 1 C 0*3 t *tCCDN 29*5CCC4 IA 00 296*17 E61 nW= 01=3 01=3 IAW=
tes( 9 10 11 EC C*3 91*2003M 61*ECCCM IA E*E Nn tt*tS C68 3W=C nI=W 31=3 11W=d !
tE5# t ZZ D C 3*3 t1* tac 3h st*5CCCR IA 3n 5Z0*89 tC9 1W* nI* 01=t 11W= i tt91 0 0 0 C 3*3 tS*t000h st*SCDCM III 51 9tE*80 6220 OW= nI= n1=3 11W=
IF91 t tf 1C 22 D*3 09*ICCCN 91*ICCCM 41 5*t 34 9:t*gE ttO 3W=3 nI=N 01=3 11WeZ tE92 1 t t ZZ C 3*3 tE*CCCCM tt*6CCCM III tt ni 26G*9( t tt OW=C nI=S 01=3 11W=d tP9( Z ZC C C D*1 E5*t0Cet tt*500CM A t*2 ND 5 01
- O E t tO 1W= C nI=W 01=! 11W=d tE9E t 6 lE C D*3 90*lCCDN ED*OCCCM III f** t*C 34 IC[*92 tE6 OW=C nI=0 01=3 IAW=d tE12 Z 9 19 C C*3 tI*SDCCE tE*SCCcM A t*Z t*t 3d ZtS*tf 992 QW=C nI=W 01=3 11W=d t fli '9 5 E C O*3 tt*iDCDE 2B*OCOC9 tA 51 5:6*01 991 GW* nI= 01=3 11W= ^
t E t7 1 t 11 C O*3 91*t0CCN S *ICC3M !II t** NO tI*EC tit GW=C 01=0 01=3 11W=d i 191( t lE 9 1$ O*3 tt*lCCDE E**Z0CcM - IA E*9 Nn ttt*39 tSI OW=C nI=Q 01=3 11W=d IFti t EC 0 C 3*3 tt*teC3C 16*6COC9 IA 3d 16S*E% tSE GW= nI=9 01=3 11W=
- 191( 1 9 tt EC 0*3 tE*C003M 26*5C3CM - 41 t*5 3d tf6*9E 981 1W=H nI=E 31=C 11W=E 161( 1C E 12 95 0*3 I2*Z0CCM 2?* CCCa IA 55 510*02 t(f GW= nI= 01=3 liW=
1515 9 19 lE tt O*3 tC* CCCN 5t*DCCcM otI 5*( nn ZEB*6C S?[ GW=3 01=3 01=0 11W=Z I
t s iS 11 12 1 C 0*3 09*CCCCE tt*OCCCM - tA C*9 Nn 996*61 SET OW=C nI= 31= 11W=9 I
ts15 12 r t 9 95 3*3 C2*SCCCE 23*SCSCM 711 t*5 NG SIB *SP Stt OW=3 nI= 01=3 liWeD l 1915 1 Z1 0 C 3*3 tt*ECC3M 'tt* O CD C R II C*C NO Z E2*t ( stl OW=C nI=3 01=3 11W=d i I 1925 Z 71 0 C D*3 t**tCC3E tE*lCCCM II C*C Nn IEZ*9( 5tS 1W=C nI=3 01=3 11W=d tsiS 9 C 0 C C*3 tC*t000E et*ZCOCM A t*2 hn EC0*IE St6 OW=C 01=3 01=3 IAW=d tEIS tf 7( 9 95 D*3 C2*tCCCN ll*SCCCM IA 55 580*t5 591 3W= nI= 01=3 11W=
ttiS tZ lE 3 C 3*3 tt*i0C3h it*SOCCM IA 55 55C*15 595 GW= nI= 01=3 11W=
1522 1 Z( 21 C 3*3 t$*ECCOL EE*SCCCM !!! C*S NO tS?*Lf 596 OW=3 nI=3 n1=C 11WeZ '
1622 5 t t ZC 3*3 tt*6CC3E 22* 9 5CCM III 3d ZE6*TC 552 nW= nI=a n1 3 IIW=
5912 5 25 0 C 0*3 C9*C003E tt*3C009 - IA t*9 NO 996*61 559 OW=C nI* 01=3 11W=S 1Fti 9 t 0 C 0*3 C2*50C0t ES*aCCCR !!* C*S Nn 911*0Z 559 OW=0 nI=a 31=3 11W=d ttat 9 t a 19 5C 3*3 tI*ECCCC E[*ECCcM - A E7 t*1 34 169*86 556 QW=3 nI=3 01=E 11WeZ ts12 12 t f 9 C C*3 9$*iDC30 29*350CN *II C*C 34 SSt*tf 598 GW=G nI=W 01=9 11W=3 1511 1Z 19 30 C 3*3 95*200348 19*3fCCM A t*( 3d 55t*12 596 AW=C nI=W 01=3 11W=3 tet( 9 21 9 C 3*3 tt* TOC 3N tE*2CCCM tA 3d Z*2*6C 5SS OW= nI=9 01=C 11W=
1691 t ZO D C 3*3 tt*90DCL 95 3C0CM tA C*e Nn tEs tf 921 GW=C nI=W 01=3 11W=d tlet D EC 5 C 3*3 E6*ICC3h tE*aCCOR !II t** Nn E9t*O( 9EE 9W=0 nI=C 01=I 11W=d
_ _ . - - _ - _ _ _ - . _ ~ - . . . . . . . . - . _ . - - . - - - _ . . - - - . . . - _ . - - - - - . . . - _ . - . - _ . - . - - - . - _ . - . - - . ~ . .- . _ . .
- . . _ - . - _ _ - - . - - - _ - _ _ - _ _ _ - _ _ ~ _ _ _ _ - - - _ _ - - - - - - - - ~ _ - - . - -_- ..
C O )
TAHLE 3-1 (continued) 2e ;s an al taassacaty IFt! Data Sase JEIGIA !!M: MY7CC4Ta&L LCCAT13N MAGNITU3C REF JISTAACE 2EMA2F5 TIa2 10 Ja nt M4 IEC LAT. LC4L. 2C8M.) !( th) M2 M4 ML MC ( K 't . )
1102 2 3 20 3 C.C 43.4C3CM f4.230*W W 3.2 NU 330.18 64 2 UM= C 'J! = E ULs3 ITM=I lie' 11 27 23 33 C.C 43.333:u 79.2503h IV EP 235.CF 663 LMs U!=8 UL=C ITMs lie) 2 4 11 3 C.C 42.3C324 35.6JCJh WI 4.7 NU 373.03 674 UM=C UI=[ UL=3 ITM=Z '
1993 3 11 23 5F 0.C 33.53334 F6.4333w IV ST 4 F5.6 0 678 UMs UIa8 UL=C ITMs tid 3 3 12 6 3 C.C 33.303C4 F6.430GW IV WE 4F5.60 640 UMs UIse UL=C ITMs 1993 4 1 6 3 C.C 4 3.25 3Cu F9.8 50 3W 111 EP 112.91 682 UM= UIse UL=3 ITM=
1983 5 23 4 33 0.C 33.40J34 32.6303W IV 3. 4 NU 337.51 684 UM=3 UI=C UL=E ITM=F 1983 9 21 11 45 0.C 36.103C4 29.830JW W ST 643.52 638 UM= UIs UL=S ITMs 1384 3 31 19 3 C.C 33.5CJC4 34.7303W II 3.3 NU 334.63 732 UM=3 UI=0 UL=E ITM=F 0.C 35.3C3CN 34.0 3 0 3 W UIs UL=E ITM=G 136, 8 25 0 45 - IW 3.5 ku 699.91 736 UM=0 144. 9 19 20 14 C.C 43.70334 24.13C3W - #II 5.1 EP 276.28 707 UM=C UI=E UL=3 ITM=H 116. 12 23 23 3 C.C 43.403C4 34.2303W !!! 3.4 NU 330.18 729 UM=3 UI=D UL=E ITMsF 13si 1 3 2 12 C.C 31.2CJG4 77.5333W W SS 422.83 722 UMs UI= UL=E ITM=
1ses 1 15 9 13 0.C 43.3C3:4 76.3333W III ST 639.97 725 UMs UI=8 UL=0 ITMs 1385 1 la 10 33 0.C 41.103Cm 31.4303W IV 3.8 NU 30.74 726 UMs3 UI=H UL=E ITMsF 1385 2 2 12 13 0.C 36.30JC4 81.1333W IV EU 544.15 728 UM= UI= UL*E ITMs 1665 8 6 13 3 0.C 36.203CM 31.6003W V EC 623.07 741 UMs UI= ULs3 ITM=
1345 8 15 4 5 0.C 41.30304 31.1303W - I!! 3.2 4U 55.77 742 UM*3 UI=C UL=E ITM=F i 1985 9 4 to 43 0.C 44.30344 F7.9303W III EP 393.27 743 UMa UI=8 UL=3 ITM=
1995 10 10 4 35 0.0 37.703C4 78.83C3W WI 4.2 EP 437.64 744 UM=C UI= UL=I ITMsZ 1985 3 1 16 3 C.C 33.3030M 15.5003h - IV 3. 5 NU 443.10 753 UM=3 UI=0 UL=E ITMsF 3 des 5 3 3 0 0.C 31.5C304 32.1303W - IV 3.4 NU 268.01 756 UM=C UI=D UL=E ITM=Z Ides 8 19 8 3 0.C 43.503Cu 79.6333W 111 EP 236.52 761 UM= UI=8 ULs3 ITM=
148F 2 19 0 3 0.C 45.3530M 90.03 COW IV 3. 7 EP 434.99 719 UMs0 UI=D UL=E ITM=C 1984 1 11 9 0 C.C 45.30304 F7.10J3W IV WE 550.61 826 UM= UI=H UL=C ITMs 198s 3 17 0 3 C.C 36.403C3 32.53C3h 11 3. 3 40 610.96 838 bM=3 UI= ULs3 ITM=G i
1883 7 11 4 0 0.C 44.40J04 7 7.0 3C 3W I11 EP 443.96 846 UM= UI=5 UL=3 ITM=
! 1943 3 4 23 43 0.C 43.30334 76.C DC 3W W IP 4 77.2 F 853 UMs UI=8 UL=3 ITMs
! 1483 9 0 0 3 0.C 43.4C304 d4.2303W III 3.4 NU 330.18 859 UM*D UI=D UL=E ITMsF 1892 0 0 0 3 C.C 43.40004 14.2303W 11 3.3 nu 330.19 871 UM=3 UI=D UL=5 ITM=F l 1991 2 11 1 45 0.C 36.303CN F8.6303W IW ST 649.13 942 UM= UI= UL=5 ITMs i 1993 3 15 7 3 0.C 4J.30304 34.23C3m IV 3.4 NU 336.24 943 UM=3 UIst UL=E ITM=F l 1997 3 F 0 3 0.C 43.10304 79.2303W IV CP 215.39 951 UM= UIs8 UL*3 ITM=
169F 5 3 17 13 0.0 37.10304 30.7303W #11 4.3 EP 523.33 967 UM=C UI= UL=E ITM*Z 1897 5 31 18 SS 0.C 37.30004 33.73:3W -v!II 5.4 EP 501.20 970 UM=C UI=H UL=C ITM*S 139F 6 29 3 3 C.C 37.303C4 30.7303W W 4.3 EP $31.20 971 UM=C UI= UL=E ITMsQ 189F 9 3 0 3 0.C 37.303C4 30.7330W IV BC 501.2J 973 UMa UIs UL=E ITM=
139F 10 22 3 23 0.C 35.303CM 31.1003h v 55 544.15 977 UMs UI= UL=I ITM=
149F 11 2 7 20 $6 0.C 37.F03;N 77.50C3W IV 55 552.03 979 UMa UIs UL=I ITMs 189F 12 18 23 45 0.C 37.70JC1 F F.5 03 3 W V 4.3 EP 552.03 991 UM=C UIs UL=! ITM=0 O
+ - . - - - - - - . - .
l O C TABLE 3-1 (continued)
- 2. ;a on al 5.asescaty .e41 L sta 3as. ;
JaIGIk TIM: 67PCCC1 TRAL LCCATION MAGN!IU3C REF DISTAhCE 2EMA2F5 TEA 2 90 C A na M:s 5f C LA1. LC1C. 2CKM.) I C 9M ) MS Mu ML MC C E M. 3 1215 2 5 20 3 C.C 37.3CJC1 31.03C06 V! 4.3 EP 533.13 985 UM=C Uls UL=E ITM=3 1 % B3 3 30 1 33 C.C 36.3CJ01 45.833CW III 3. 4 NU 635.02 986 UMs3 JI=D UL=E ITM=F 149s 6 6 8 33 C.C 3F.703Cu 34.3333W III 3.4 NU 529.53 988 UM=3 UI=D UL=E ITM=F 1393 6 26 8 33 C.C 37.733C4 34.3330W III 3.4 uu, 529.53 991 UMs0 UI=C UL=5 ITMsF l 1893 10 29 0 J C.C 41.5J304 31.7303W 11! 3.4 NU 57.12 994 UM=0 UIs0 UL=~ ITM=F l
1394 11 25 20 3 C.C 37.3J304 !!.C33J6 Y 4.6 IP 533.13 996 UMaC UIs UL=E ITM=Z
( 1i93 2 13 9 33 C.C 37.303C4 31.C333W v 4.7 EC 533.18 997 UM=C UI= UL=5 ITM=2 1
1953 3 3 0 3 C.C 36.)CJJ4 76.3333W tv 55 635.62 998 UM= UI= UL=E ITMs 1998 11 12 14 3 0.C 31.30JC4 33.0033W IV 3.5 NU 319.12 1005 UM=D UI=D UL=E ITM=F 130J 4 9 13 3 0.C 41.403CN 31.8003W WI 3.9 NU 70.53 1011 UM=E UI=H UL=E ITM=Z ,
1 601 5 17 7 0 0.C 39.30339 32.5330W W 4.2 NU 333.54 1018 UM=C UI=C UL=3 ITM=2 1902 3 13 6 3 C.C 33.90301 35.2033W - IV 3.6 NU 431.8F 102 3 UM= 3 UI =D UL= E ITM=F l
1702 3 IJ 11 3J C.C 39.iJ3Cu 55.2333W - IV 3.6 NU 401.4F 1024 UMs0 UIs0 UL=E ITM=F 1 932 5 14 4 0 C.C 37.3CJ34 dC.6333W v ;T 501.92 1025 UMa UI= UL=E ITM= -
l 1132 6 14 7 3 0.C 43.30304 11.4J03W - V 4.0 NU 168.04 1027 UM=D UI=H UL=E ITM=F i 1901 1 1 18 33 C.C 39.10304 35.2300W - III 3.2 NU 401.87 1030 UM=D UI=C UL=E ITM=F
! 1903 1 1 23 45 C.C 39.303C4 35.2333W - III 3.2 NU 401.8F 1031 UMs3 UI=C UL=E ITM=F 190$ 4 20 17 33 C.C 41.50J0N 31.703JW 111 3.4 NU 5F.12 1085 UM=D UI=C UL=E ITM=F 110$ 4 23 7 12 0.0 43.70304 43.63G3W v 4.2 NU 239.42 1047 UM=3 UI=E UL=E ITM=F 11Cs 5 8 6 55 C.C 39.503C4 d5.8332b - IV 3.S NU 409.34 1068 UM=C UIs0 UL=C ITM=Z 1306 5 9 6 33 0.0 33.20004 35.9333W IV 3.9 hu 495.83 1091 UM=3 UI=H UL=5 ITM=F l 1905 5 19 9 23 0.C 42. );3Cu 35.7 30 3 W II 3.3 NU 394.70 1094 UM=0 UI=C UL=E ITM=F 190s 6 27 21 13 0.C 43.40JC4 St.6333W - V 3.4 NU 150.24 1098 UM=E UI=M UL=C ITMal 13CF 1 10 9 45 C.C 41.203C4 F7.13CJW IV ST 344.17 1111 UM= UI=8 ULs3 ITM= 1 190F 2 11 13 22 0.C 3F.7030N Ft.3JJ0W %I 55 516.40 1117 UM= UI= ULo! ITMs 1907 4 12 0 0 0.C 41.503C4 81.7333W II 3.0 NU 57.12 1120 UMa3 UI=C UL=E ITM=F 11C7 11 14 5 0 0.C 45.470C'4 FC.6333W 14 3.7 EP 543.84 1126 UM=0 UI=H UL=C ITM=C 190s 7 17 7 10 3.C 45.43304 76.3503W IV 3. 7 EP 558.68 1135 UMa3 UI=M UL=C ITM=C 1903 8 23 9 33 0.C 37.503CN FF.930CW W 55 552.68 1139 UM=f UI= UL=E ITM=
1334 4 2 7 25 0.C 31.4000N Td.C0J3W W 55 3F6.66 1150 UMs UI=E UL=E ITM= ,
~
19C) IG 22 0 3 0.C 34.9C3C1 34.5333W II 3.0 NU 430.12 1163 UMs0 UI=C UL=E ITM=F 1 113 2 8 14 0 C.C 33.30J04 78.73J3W IV 55 392.64 1173 UM= UI= UL=E ITM=
111J 2 25 0 0 C.C 43.2030N 79.8033W IV EP 110.67 1174 UMa UI=8 ULs3 ITM=
1913 5 8 21 13 C.C 37.70334 F8.4330W IV $5 512.42 1179 UM= UIs ULo! ITM=
1111 2 13 10 22 C.C 35.503C4 79.4333W IV 55 596.72 1157 UMs Urs UL=5 ITMs 1912 5 27 12 52 C.C 43.203CM F9.7333W v EP 135.55 1200 LM= UI=8 UL=3 179=
1912 8 7 20 3 C.C 37.FC3G1 F8.4303W IV 3C 512.42 1233 LMs UI= UL=! ITM=
1312 8 6 1 3 G.C 37.FG3C4 78.4333W IV ST 512.42 1234 UM= UI= UL=E ITM=
1313 3 28 21 53 0.C 36.20301 32.7300W #11 4.3 NU 659.SF 1214 UM=E UIs UL= ITM=I .
1313 8 3 16 45 0.0 36.303CM 34.0 33 3W IV 3.9 NU 689.91 1222 UM=3 UI= UL= ITM=G l
l l
l l
--. . _ _ . _- . - _ _ _ - _ - -_~,. . . _ _ __ _ -- .-. _. _ .
TABLE 3-1 (continued)
Keatonal seassicity : Par casa a.5.
I JRIGIk TIME ttTPCCE4T2 A L LCC AT ION MAGNITU3! REF DISTANCE REMARES I TEA 4 MO DA MR MN SEC LAT. LCMG. 2(EM.) IC1M) MS MN ML' Mi (EM.)
l l
I 1913 11 11 14 3 0.C 33.20301 35.8003W IV 3.8 NU 563.71 1226 UM=3 UI=H UL=E ITM=F 1914 0 0 0 J 0.C 40.40J04 14.2JCJW III 3.4 NU 33C.18 1228 UM=3 UI=L UL=E IT M*F 1115 1 14 9 23 0.C 36.5C3C1 J2.2033W - IV 3.6 NU 544.5F 124 3 LM= 3 UI = UL=E ITM=G 1916 8 26 19 36 0.C 35.3030N 21. 0 30 3 W W EO 644.13 1279 UMs UIs UL=5 ITM=
1917 1 25 21 15 0.C 36.1CJ04 3 3.5 3J 0W III 3.4 NU 664.97 1286 UM=0 UIs UL=3 ITM=G 1117 1 26 12 15 0.C 36.10304 33.5303W 111 3.4 NU 664.97 1299 UM=3 UI= UL=3 ITM=G titi 1 27 20 3 C.C 36.10304 63.5 0G O W - III 3. 2 NU 664.97 1292 UM=3 UI= UL=0 ITM=G l t il t 3 5 2 7 0.C 36.303GN 34.0333W III 3.4 NU 689.91 1217 UM=3 UIs UL=D ITM=G I
111F 3 25 19 15 0.C 36.10J04 33.50C3W - IV 3.6 NU 664.9F 1330 UM=3 UI= UL= ITM=G Illi 3 26 12 53 0.C 35.1000N 33.53C3W !!! 3.4 NU 664.97 1301 UM=D UI= UL=3 ITM=G 191F 3 2F 20 3 0.C 36.10304 33.5303W - IV 3.6 NU 664.97 1303 UMs3 UIs ULs ITM=G 1117 6 21 0 3 0.C 36.3000N 33.0 30 3W IV 3.9 90 653.78 1312 UMs3 UIs UL= ITM=G 1115 2 22 0 3 0.C 42.803CN 84.23CJW IV 3. 8 NU 275.34 1323 UM=3 UI=D UL=E ITM=F 1913 4 13 2 9 0.0 35.70J04 F8.43C3W t! EP 415.93 1324 UMs UI=B ULs2 ITM=
191s 4 16 13 43 0.C 33.700C4 78.4J30W IV ST 415.98 1325 UM= UIs UL=E ITM=
1913 6 22 1 3 0.C 36.10304 24.1303W V 3.8 NU 682.70 1326 UM=C UI= UL= ITM=Z 1911 9 6 2 46 0.C 33.80304 78.2003W VI EP 416.72 1352 UM= UI= UL=E ITM=
1923 7 24 0 3 0.C 38.F0004 78.4 30 3W IV 30 415.93 1364 UM= UI= ut=E ITM=
l 1923 12 24 7 33 0.C 36.30304 35.0J03W V 4.2 NU 725.50 1368 UMs0 UI= UL=E ITM=G l 1121 7 15 0 3 0.C 36.60004 32.3300W WI 33 535.98 1377 UM= UIs UL=3 ITM=
1921 8 7 6 33 0.C 37.80J04 78.4300W vt EP 532.51 1379 UM= UI= UL=E IT M=
1921 9 2F 4 32 0.C 42.103CN 40.2003W III EP 85.03 1386 UM= UI=D UL=E ITM=
l 1922 3 16 9 33 0.C 43.J0304 32.5303W III 3.4 3.3 EP 173.79 13 9 3 U M= 3 UI =0 UL= E ITM*F l 1922 3 30 3 21 0.C 36.300CN 22.3033W IV EU 564.10 1398 UM= UI= UL=I ITM=
l 1922 3 33 22 23 0.C 36.5C304'32.23CJW IV 55 595.55 1400 UM= UIs UL=! ITM=
1924 1 5 0 3 C.C 31.103C4 78.1303W IV 55 395.73 1625 UM= UI= UL=E ITM=
l 1924 7 15 0 13 0.C 45.70JCN F6.5300W - VI 4.7 EP 572.15 1433 UM*D UI=H UL=C ITM=C 1924 11 13 to 33 0.C 36.5030N 92.2303W - Y 4.3 NU 584.5F 1438 UM=3 UIs UL=E ITM=G 1924 11 14 1 32 0.C 45.5030N 76.30 COW IV 3.7 EP 566.93 1439 UM=0 UI=H UL=C ITM=C 1924 12 26 4 33 0.C 37.30J04 79.9000W V EO 511.04 1440 UM= UIs UL=E ITM=
1925 3 27 4 6 0.C 31.5C304 8 3.9 30 0W W 4.2 NU 345.84 1457 UM=3 UI=E UL=E IT M=F l 'e 25 4 4 0 0 0.C 39.100CN 34.5003W II 3.3 NU 413.47 1458 UM=0 UI=C UL=2 ITM=F 1 125 4 7 20 IJ 0.C 43.J3304 76.133 0 W III EP 434.63 1459 UMa UIs0 UL=C ITM=
192i 5 16 1 33 0.C 3F.3030N 77.5303W V ST 589.65 1469 UMs UI= UL=E ITMs 1925 7 14 21 23 0.C 37.60304 77.5 30 0W IV 55 561.34 14F9 UMs UI= UL=E ITM=
1921 to 0 0 0 0.C 40.40304 84.2300W Ill 3.4 NU 300.19 1689 UM=0 UI=D UL=E ITM=F 1125 8 23 16 43 0.C 45.80304 77.1300W IV WE 550.61 1528 UMs UI=H ULs3 ITM=
1+2s 10 2d 8 42 0.C 41.703CN 83.6330W III 3.4 NU 234.58 1536 UM=0 UI=H UL=3 ITM=G 1925 to 28 11 0 0.C 41.F0304 93.6303W IV 3.3 40 204.53 1537 UMs3 UI=0 UL=E ITM=F 1925 11 5 14 53 0.C 39.103CN 82.1300W - #11 3.4 Nu 310.70 1538 UM=E UI=H UL=C ITMsZ e
O O O TABLE 3-1 (continued) 2eJaanal Setsmacate tPat Data 3ase JAIGIA TIME HYPCCENTRAL LCCATION NAGNITUDE REF DISTAACE REMARKS VEA2 M3 D A MR M4 SEC LAT. LCNG. Z(KM.) I ( ,1M ) MS MN ML MC (KM.)
1927 2 17 5 33 C.( 43.7033N 32.5000W IV 3.8 Nu 166.94 1555 UM=3 UI=D UL=E ITM=F 1927 2 17 6 3 0.C 43. 70 0C 4 32.5JJ3W II 3.0 NU 166.94 1556 UM=D UI=D UL=E ITM=F 1327 32920 33 0.C 43.30309 76.1033W III E8 436.04 1563 UM= UI=P UL=C ITM=
1927 3 31 21 J 0.C 43.33304 76.1000W 111 EB 436.04 1565 UM= UI=8 UL=C ITM=
1927 3 31 21 33 0.C 43.3030u 76.1030W III E6 436.04 3244 UM= UI=8 UL=C ITMs 1927 6 13 7 16 0.C 33.30304 79.0033W V EC 460.11 1571 UMs UIs UL=E ITM=
1927 10 27 0 0 0.C 36.30304 76.2300W IV ST 765.45 1590 UM= UI= UL=S ITM=
1327 10 29 0 3 0.C 4J.3000M 31.2300W V 4.2 NU 100.13 1581 UM=3 UI=0 UL=E ITM=F 1927 11 13 0 50 0.C 43.1000N 79.0503W IV EP 224.08 1532 UM= UI=2 UL=3 ITM=
1 723 9 9 20 0 0.C 41.5030N 32.0003W W 3.7 NU 78.76 1609 UM=C UI=E ULeC ITM=Z 192J 10 27 0 3 0.C 40.403CM 84.1303W III 3.2 NU 293.03 1613 UM=C UI=D UL=C ITM=Z 1923 to 33 11 45 0.C 37.50304 77.5003W IV SS 570.72 1614 UM= UI= UL=E ITM=
i 132$ 11 3 4 2 49.! 36.1130N 32.8303W VI 55 648.45 1617 UM= UI= UL=C ITM=
l 132) 3 8 9 6 0.C 43.43304 34.200JW V 4.3 4.4 C* 300.18 1639 UM=C UI=E UL=C ITMsI 112) 6 13 0 0 0.C 41.5000N 91.7330W III 3.4 NU 57.12 1645 UM=0 UI=D UL=3 ITMsF 192) 8 12 6 3 0.C 42.20J04 77.2000W III ST 329.74 1647 UM= UI=8 UL=0 ITM=
1923 8 12 8 45 0.C 42.37J04 78.3503W III EP 259.07 1648 UM= UI=8 UL=D ITM=
112) 8 12 11 24 48.7 42.31004 78.4003W 9 VIII 5.2 5.9 EP 257.45 1649 UM=A UI=F UL=C ITM=
1923 9 17 19 19 0.0 41.5030n 31.5000W II 3.0 NU 44.69 1653 UM=D UI=C UL=3 ITM=F 192) 12 2 22 14 0.C 42.90304 78.30CJW W EP 259.44 1667 UM= UI=B UL=C ITM=
192) 12 3 12 53 0.C 42.S0004 78.3303W IV EB 259.44 1668 UM= UI=8 UL=C ITM=
192) 12 26 2 56 0.C 33.1030N 72.5033W %I ST 468.91 1674 UM= UI= UL=3 ITMs l 192) 12 26 5 3 0.C 33.10004 76.53J0W IV ST 468.91 1675 UMa UIs UL=3 ITms
( 1333 2 16 12 17 0.C 42.50304 30.3103W III 3.0 EP 133.83 1685 UM=D UI=0 UL=D ITM=F 193J 6 26 21 45 0.C 43.5030N 34.0000W IV 3.9 3.7 EP 279.90 1696 UM=0 UI=D UL=3 ITMsF l 1 93J 6 27 7 23 0.C 43.5033N 84.0000W IV 3.8 3.0 EP 279.90 1697 UM=0 UI=D UL=3 ITM=F 1933 7 11 0 15 0.C 40.60304 33.2003W IV 3.9 NU 218.01 1698 UM=D UI=D UL=3 ITM=F 1933 92921 15 0.C 43.4030N 34.2000W III 3.4 3.0 EP 330.18 1709 UMs0 UI=D UL=0 ITM=F 133J 9 29 21 15 0.C 4J.3030N d2.4000W 111 EP 197.32 1710 UM= UI=D UL=0 ITM=
1933 9 30 20 40 0.C 40.3030N 84.3303W dII 4.2 NU 313.33 1711 UM=E UI=0 UL=0 ITM=Z 193J 10 0 0 3 0.C 43.40304 34.2300W - IV 3.6 NU 300.18 1713 UM*3 UI=D UL=0 ITMsF 1933 10 16 21 53 0.C 35.30004 33.9300W - IV 3.6 NU 686.85 1718 UM=D UI= UL= ITM=G l
1933 to 17 2 15 0.C 36.00301 34.0003W III ST 689.91 9252 UM= UI= UL=E ITM=
1333 11 1 1 34 0.0 39.10004 76.5030W IV SS 495.02 1720 UM= UI= UL=0 ITM=
1933 11 20 0 0 0.C 42.6000H 33.4000W III 3.4 3.0 EP 206.38 1724 UM=3 UI=D UL=3 ITM=F 1931 3 21 15 43 0.C 43.4000N 34.2000W III 3.4 NU 300.18 1735 UM=0 UI=D UL=3 ITM=F 1931 4 1 0 15 0.0 43.40304 34.0020W III 3.4 NU 295.94 1737 UM=3 UIs0 UL=D ITMsF 1331 4 22 0 0 0.0 42.3030N TC.9300W IV WE 221.56 1743 UM= UIs UL=C ITM=
1931 6 10 8 33 0.C 41.3030N 34.0030W V 3.7 NU 244.69 1749 UM=C UIs0 UL=C ITM=Z 1931 92023 4 54.C 43.4333u 94.2699W 5 #1I 4.6 4.5 EP 333.43 1762 UM=C UI=E UL=S ITM=2
O O O i
TABLE 3- 1 (continued) 2e 2 ton al Sessatcaty EP2! Cata Base ORIGIN TIMZ HTPCCCNTRAL LOCATI3N MAGNIIU3E REF DISTANCE REMARES TEA 2 M0 C A MR MN SCC LAT. LONC. Z(KM.) ! ( .t k ) MB MN ML MC (KM.)
1931 10 8 14 33 0.0 40.400CN 34.2000W 11! 3.4 NU 300.18 1765 UM=D UI=D UL=1 ITMsF 1732 1 5 4 5 C.C 37.6C309 78.4 30 3W IV 55 522.33 1775 UM= UI= UL=3 ITM=
1932 1 21 0 3 0.C 41.10JCN 91.6000W IV EP 36.63 1776 UMs UI=0 UL=0 ITM=F 1132 1 22 0 3 0.C 41.10JON St.5J03W W 3. 6 NU 83.35 17 77 UM= E UI =D UL= 0 ITM=Z 1933 1 27 1 3 0.C 37.2000N 77.4003W IV ST 633.73 1797 UMa UIs UL=0 ITM=
1133 2 23 3 20 0.C 43.30301 34.2303W IV 3.8 NU 336.24 1801 UM=C UIs0 UL=C ITM=Z 1333 5 26 15 13 C.C 33.503CN 33.7303W V 3.6 4.3 EP 416.73 1807 UM=C UI=E UL=C ITM=Z 1 734 to 29 20 7 0.C 42.3030N 30.2303W V 4.0 EP 31.39 1850 UM*A UI=E UL=3 ITM=
1935 2102345 0.C 37.20JON 77.4000W IV ST 603.73 1863 UM= UIs UL=3 ITM=
1135 11 1 8 30 0.C 33.9030N 78.9303W IV 55 374.29 1878 UM= UI= UL=0 ITM=
1136 1 31 19 30 0.C 41.20JON 83.2303W IV 3.8 NU 164.19 1900 UM=D UI=M UL=3 ITM=F 133s 1 31 20 0 0.C 41.20J0N 33.2303W II 3. -) NU 154.19 1901 UM=D UI=C UL=3 ITM=F 1136 8 26 8 55 0.C 41.40JON 30.4303W III EP 76.36 1917 UM= UI=0 UL=3 ITM=
1936 10 8 16 33 0.C 39.300CN 34.4303W III 3.5 NU 391.35 1919 UM=C UI=D UL=C ITM=2 1935 12 26 1 15 0.C 39.1000N 34.5003W III 3. 4 NU 413.47 1931 UM=D UI=D UL=3 ITM=F 1135 12 26 2 5 0.C 31.1030N 34.5030W III 3.4 NU 413.47 1932 UMs0 UI=0 UL=0 ITM=F 1137 2 3 1 26 0.C 37.70004 78.7000W IV ST 531.16 1935 UMs UIs UL=3 ITM=
1937 3 2 14 47 33.2 40.49004 84.2691W 2 #II 4.7 IP 330.01 1937 UMsC UI=F UL=3 ITM=Z 1737 3 3 9 50 0.0 40.703CN 34.0303W V 3.4 NU 268.79 1938 UM=C UI=E UL=C ITM=Z 1937 3 3 9 55 0.0 40.703CN 34.0303W 111 3.4 NU 268.79 1939 UM=D UI=0 ULs3 ITM=F 1937 3 9 5 44 35.! 40.473CN 84.2300W 3 -VIII 4.9 EP 301.94 1940 UM=C UI=H UL=0 ITM=Z 1937 3 25 14 54 0.0 43.10309 78.23G3W III EP 265.92 9253 UM= UI=8 UL=D ITM=
1937 4 23 17 15 0.0 40.7030N 84.0 30 0W !!! 3. 4 NU 268.79 1946 UM=C UIs0 UL=C ITM=Z 1937 4 27 17 3 0.0 40.70JON 8 4.C 30 0W III 3. 4 NU 268.79 1947 UM=C UI=0 UL=C ITM=2 1937 5 2 17 5 0.0 4J.7030N d4.0 0G0W IV 3.8 NU 268.79 1948 UM=3 Uls0 UL=3 ITM=F 1937 10 17 4 25 0.C 39.103CN 34.5000h III 3. 4 NU 413.47 1967 UM=3 UIs0 ULs3 ITM=F 193J 1 24 5 29 2.C 45.5700N 76.269)W 3.0 cP 574.09 19 76 UMs 1 UIs UL=1 ITM=
1933 3 13 16 13 0.C 42.4030N 33.2033W IV 3.8 NU 132.63 1979 UMaD UI=E UL=D IT4=F 1935 7 15 22 46 12.C 40.6830N 78.4 30 3W 1 VI 3.3 EP 259.34 1996 UMaC UI=B UL=C ITM=
193) 1 14 8 10 16.C 43.253CN 79.8500W 3.3 EP 192.91 2027 UM=A UI= UL=C ITM=
113) 2 24 0 23 0.0 42.10309 78.3000W III EB 264.21 2034 UM= UI=8 UL=C ITM=
133) 3 18 0 0 0.0 40.40JCN 34.0 30 0W II 3.0 NU 285.94 2036 UM=D UI=C UL=3 ITM=F 193) 3 Id 14 3 0.0 40.400CN 34.0003W - IV 3.6 uu 285.94 2037 UM=C UI=D UL=C ITM=Z 113) 6 16 3 23 0.C 43.30004 34.0003W IV 3.4 NU 292.28 2044 UM=C UI=E UL=C ITM=Z 1933 7 9 12 53 0.C 40.3030N S4.0000W II 3.0 NU 292.28 2050 UM=3 UI=C UL*3 ITM=F 1933 11 la 2 33 0.C 39.50009 76.6 30 3W IV ST 461.43 20 70 UM= UI=2 UL=3 ITM=
1933 11 26 5 23 0.C 31.503CN 76.6303W W ST 461.43 2074 U M= UI=B UL=0 ITM=
134J 1 e 20 5 0.C 38.30304 35.83C3W III 3.4 NU 555.69 2081 UMs3 UI=0 UL=3 ITMsF 114J 3 25 21 0 0.C 38.3030N 7E.5300W W SC 431.93 2098 UM= UIs UL=3 ITM=
1343 3 25 22 23 0.0 33.30309 78.5 30 3W V 80 401.93 2089 UMs UIs UL=3 ITM=
m
(
t n
I' f) v TABIE 3- 1 (continued)
Re ;4onal Lensmactly EP2I Cata Base JRIGIN TIMI . -tT 7C C E NT R A L LCCATION MiGNITU3E RIF DISTANCE REMARKS TEA 4 MC D A MR MN SEC LAT. LCNG. ICEM.) IC4H) MS MN ML MC (KM.)
1943 3 26 0 1 0.( 3s.30JCN 78.50C3W v to 431.93 2090 UM= UIs ULs3 ITM=
1 143 3 26 3 2d 0.C 33.9000N 78.50 COW IV ST 392.63 2091 UM= UI= UL=3 ITM=
1943 5 27 8 33 0.C 33.20304 35.8J00W - 11! 3.2 NU So3.71 2098 UM=3 U1=0 UL=0 ITM=F 1943 5 31 16 3 0.C 41.10J0t4 31.5303W 11 3.0 NU 83.35 2100 UM=3 UI=C UL=D ITM=F 1943 6 16 4 33 0.0 4 0. 3 3 3 0 t4 32.3333W IV 3.9 NU 139.19 2102 UM=D UI=D UL=0 !TM=F 1743 7 23 9 33 0.C 40.1030f4 92.3300W III 3.4 NU 139.19 2103 UM=D UIs0 UL=3 ITM=F 194J 8 15 10 35 0.C 4J.)C30N 92.3J00W !!! 3.4 NU 139.19 2106 UM=D UI=0 UL=D ITM=F 1943 8 20 3 33 0.C 4 3. )C 3 C t4 32.3300W III 3.4 NU 139.19 2108 UM=3 UIs0 UL=3 ITM=F 1941 3 4 6 15 0.C 36.3030t3 13.9003W I11 3.4 NU 686.85 2126 UM=3 UI= UL=D ITMs 1342 to 7 2 15 0.0 37.503CN 78.4JCOW IV ST 522.3d 2193 UM= UI= UL=0 ITMs 1943 3 9 3 25 24.5 41. 5 3 3 0 f4 $1.3103W 7 v 4.5 SP 23.49 2198 UM=A UIs0 UL=S ITM=
1943 4 13 17 0 0.0 33.3330:4 35.80C3W IV 3.9 NU 555.69 2201 UM=3 UI=0 UL=C ITM=F 1944 1 22 21 55 9.1 4 5. 3 3 J 0 t4 76.7900W 4.3 EP 558.75 2221 UM=A UI= UL=C ITM=
1344 2 5 16 22 0.0 43.803CN 76.2000W 3.7 EB 428.68 2224 UM=A UIs UL=C ITM=
1944 11 13 11 52 0.0 43.40304 34.4300W III 4.3 3.7 EP 314.65 2253 UM=C UI=D UL=C ITM=Z 1)45 4 15 13 15 0.C 43.3000N 76.4000W III EP 412.60 2262 UM= UI=2 UL=C ITM=
1943 10 12 19 3 0.C 37.5030f8 78.5300W IV ST 528.65 2281 UM= UI= UL=5 ITM=
1945 10 30 1 29 0.C 37.50004 78.5303W IV ST 528.65 2284 UM= UIs UL=3 ITM=
1945 to 23 20 36 0.C 41.5030N 76.6303W 3.5 EB 379.97 2305 UM=A UIs UL*3 ITMs 1945 11 10 11 41 23.1 42.3730N 77.45C3W 3.1 EP 326.75 2307 UM=A UIs UL=C ITMs 1947 6 6 12 55 0.C 36.3030ti 34.0000W III 3.4 NU 689.91 2324 UM=D UI= UL=3 ITM=
1947 8 to 2 45 41.2 41.33304 35.0003W 2 V1 4.7 4.6 4.5 EP 320.45 2327 UM=A UI=E UL=5 ITM=
1947 11 3 19 51 0.C 45.7030N 81.2000W 4.5 WE 433.24 2334 UM=A UI= UL=S ITM=
1943 1 4 23 0 0.0 37.5030N 78.60C3W IV 30 514.89 2342 UMs UI= UL=3 ITM=
1943 1 5 1 0 0.C 3 7. 6 0 0 C ta 7 8. 6 J 0 3 W IV BC 514.89 2343 UM= UI= UL=3 ITM=
1943 1 5 2 45 0.C 3 7. 7 0 0 0 tJ TE.3000W IV EU 516.40 2344 UMa UI= UL=3 ITM=
1943 1 .5 3 23 0.C 37.5030ts 78.5000W v ST 528.65 2345 UMa UI= UL=8 ITM=
1943 1 18 0 0 0.C 41.70304 33.6003W III 3. 4 NU 204.58 2350 UM=0 UI=D UL=3 ITM=F 1941 2 13 0 4 0.0 36.4000t4 84.1000W - WI 4.5 NU 651.76 2351 UM=D UI= UL=0 ITM=F 1949 5 8 11 1 0.C 37.50004 77.6000W W 55 556.62 2378 UM= UI= UL=3 ITMs 1 34) 9 17 9 33 0.C 35.73309 92.0000W IV 55 598.51 2398 UM= UI= UL=S ITM=
1953 4 20 0 3 0.C 3).90304 84.2300W IV 3.8 teu 340.39 24'43 UMs0 UI=D UL=C ITM=F 115J 10 29 5 51 26.C 45.9200N 77.1203W 3.0 EP 551.43 2412 UM=A UI= UL=C ITM=
195J 11 26 7 45 0.C 37.7030N TE.3030W v 55 516.4J 2413 UMs UIs OL=S ITM=
1951 3 9 7 0 0.C 37.50304 77.6330W v ST 556.62 2416 UM= UI= UL=S ITM=
1951 12 3 7 2 0.C 41.50304 81.4 0 3 3 W IV 3.2 3.5 EP 30.85 2436 UM=C UI=D UL=C ITM=Z 1951 12 7 0 3 0.0 41.533Cta 31.400JW II 3.0 teu 30.85 2437 UM=0 UI=C UL=3 ITM=F 1351 12 22 4 3 0.C 41.60JON 91.4J00W II 3.C '40 30.86 2441 UMs0 UI=C UL=D ITM=F 1 152 6 11 20 23 0.C 3 5. 3 0 J C f4 82.33CDW IV ST 618.85 2471 UM= UIs UL=3 ITM=
1952 6 20 9 33 8.t 59.64004 3 2. 019 9 W 9 VI 4.1 5.0 EP 251.13 2473 UM=C UI=E UL=3 ITMs!
O O O TAHLE 3-1 (continued)
. Re ) ton al S eisa tc a ty EPRI Cata 3ese 3RIGIN TIMI MYPCCCNTRAL LOCATION MAGNITUDE RIF DISTANCC RCHARK$
VSA4 MC D A MR PN SEC LAT. LCNG. 2(KM.) I(4M) MS MN ML MC CKM.)
1 352 11 20 0 3 0.0 42.1199N 76.5703W III EP 316.74 2414 UM= UI=B UL=C ITM=
1 352 12 25 0 3 0.C 43.3J004 31.0J0]W IV 3.3 3.6 EP 222.31 2497 UM=0 UI=D ULs3 ITM=F 1953 2 7 7 5 0.C 37.7000N 78.1J0]W IV 55 524.70 2535 UM= UIs UL=3 ITM=
1953 5 7 23 32 0.0 31.7030N 32.1003W IV 3. 8 NU 246.81 2521 UM=3 UI=D UL=3 ITM=F 1153 6 12 0 3 0.C 41.7030N 33.6003W IV 3.8 NU 234.5% 2526 UMa0 UI=0 UL=! ITM=F 1953 10 11 4 0, 0.C 35.3030N 32.9300W IV EU 6s6.65 2531 UM= UIs UL=3 ITM=
1)53 11 10 15 45 0.0 36.30304 3 3.9 00 0W IV 3. 8 NU 696.85 2532 UM=3 UI= UL= ITM=
1953 12 5 13 45 0.0 36.300CN 34.0300W IV ST 6d9.91 9256 UMa U1= UL=E ITM=
115. 1 1 2 33 0.C 37.3000N 83.2300W IV 3. 8 NU 530.02 2537 UMa0 UI= ULs ITM=
1954 1 2 3 2 f, 0.C 36.50J0N 83.7000b bI 4.7 NU 618.12 2538 UM=3 UI= UL=C ITM=F 1 354 1 7 7 25 0.0 40.3000N 76.0303W VI CB 463.40 2539 UMa UI=F UL=C ITM=
1 954 1 14 0 3 '0.C 35.3030N 84.0 00 0W IV 55 699.91 1257 UMa UI= ULa3 ITM=
1 356 1 24 3 33 0.0 43.283CN 76.0 30 0k III EP 461.91 2545 UM UI=2 UL=C ITM=
~1154 1 31 12 33 0.0 42.3000N 77.3000W IV IB 339.41 2546 UM= UI=2 UL=C ITM=
, 1954 2 1 0 37 50.C 43.3300N 76.6 50 3W 3.3 EP 396.24 2547 UM=A UIs UL=C ITMs
. 1954 4 27 2 14 8. C (4 3.'10 J O N 79.2300W 4.1 AN 215.39 2562 UM=A UI= UL=C ITM=
1954 8 11 3 4J 0.C 40.3030N 76.0003h IV EB 463.40 2570 UM= UI=B UL=C ITM=
1955 1 6 20 3J 0.C 36.5030N 32.2300W IV 3.8 NU 584.57 2592 UM=D UIm UL= ITM=
1153 1 17 12 37 0.C 37.30J0N 78.4 30 3W IV SS 552.52 2585 UM= UI= UL=3 ITM=
1955 1 20 3 3 0.0 4 J. 3333N 76.0303W IV EB 463.40 2589 UM= UI=B UL=C IT M=
1955 1 25 19 34 0.C 35.0000N 33.9000W IV 3.8 NU 636.85 2594 UM=3 UI= UL= ITM=
1955 5 26 18 1 0.C 41.3000N 31.4 30 0W - V 3.6 4.3 EP 59.60 2610 UM=E UI=C UL=C ITM=Z 1955 6 29 1 15 33.C 41.3030N 31. 4 3 0 3 W IV 3. 6 NU 59.60 2612 UM=E UI=M UL=C ITMe!
1955 6 29 1 17 40.C 43.7730N 79.6303W IV 3.0 IP 251.3d 2613 UM=A UI=B UL=C ITM=
1955 8 16 7 35 0.C 42.1030N 78.3300W V It 254.21 2614 UM= UI=B UL=C ITM=
1155 9 28 7 1 41.! 35.5000N 81.3J0JW V SS 577.59 2618 UM= UI= UL=a ITMs 1155 1 27 11 3 27.C 43.5000N 34.0 30 3W 4.4 EP 279.90 2635 UM=A UI= UL=3 ITMs 1356 1 27 12 3 0.0 43.40004 34.2003W V 3. 8 NU 300.13 2636 UM=C 0!=M UL=3 ITM*I 1956 9 7 13 35 50.! 35.4400N 33.7900W $ VI 4.1 4.1 EP 637.57 2660 UM=A UI= UL=A ITM=
1957 1 25 18 15 0.0 35.50304 33.700"M VI 4.3 NU 618.12 2677 UM=E UIs UL= ITM=
1957 6 29 11 25 9.C 42.1000N 31.3000W IV 3. S 6.2 EP 122.76 2614 LM=0 UI=D UL=3 ITMsF 1957 7 23 13 3 0.0 33.7000N 33.8000W III 3.4 NU 411.82 2616 UM=3 UI=C UL=3 ITM=F 1157 8 21 2 43 33.C 44.9030*4 76.1700W 3.3 EP 523.21 2701 UM=A UIs UL=4 ITM=
1157 11 7 17 15 0.0 36.30009 34.0 30 JW IV ST 639.91 1259 UM= UI= UL=5 ITM=
1953 1 24 17 13 0.C 45.3030N 91.3300W 3. 5 WE 355.65 2715 UM=A UI= UL=3 ITMs 1953 3 19 6 31 25.( 45.3030N 77.1303W 3.1 EP 567.00 2722 UM=A UI= UL=C ITMs 1959 5 1 22 45 31.C 41.50J0N 31.8303W IV 3.9 4.3 EP 64.05 2727 UM=0 UIs0 UL=3 ITM=F 1153 7 22 1 46 40.C 43.30J0N 79.5303W 4.4 EP 189.81 2737 UM= UI= UL=C ITM=
1153 8 4 20 25 58.C 43.1330N 20.0003W IV 3. 8 3.1 EP 175.06 2741 UM=A UI=0 UL=3 ITM=
1953 8 22 14 25 5.C 43.30301 7 9.0 30 0W 3. 5 AN 221.12 2745 LM=A UIs UL=3 ITM=
O 3 O TABLE 3- 1 (cont inued)
Re as onal Seasmicity EPRI Data Base JRIGIN TIME MYPCCENT2AL LOCATION MAGNITUDE REF 015TANCC REMARE5 YEA 2 M0 DA MR MN SCC LAT. LCNG. Z(KM.) ! (,4M ) MS MN ML MC (K M. )
1953 10 23 2 21 44.: 27.203CN 81.9 03 0 W 5 3.0 DL 514.96 2756 UM=S UI= UL=C ITM=G 115) 2 9 0 0 0.0 43.3CJON 31.00 COW IV 3.8 NU 133.72 2765 UMaD UI=0 UL=3 ITM=F 135) 4 23 20 53 39.! 37.39304 90.6300W 1 VI 3.3 EP 471.37 2770 UM=C UI= UL=B ITM=
, 195) 7 7 23 17 0.C 37.3000N 30.7333W IV SS 501.20 2778 UM= UIs UL=0 ITMs 195) 8 21 17 23 0.C 37.3GJON 30.7000W IV SS 501.20 2784 UM= UIs UL=0 ITM=
1963 9 4 18 43 C.C 37.4000:4 75.3J00W IV SO 513.63 2838 UM= UIs UL=3 ITM=
1961 2 22 9 45 3.C 41.2330N 33.2333W V 4.0 NU 191.9) 2814 UM=C UI=M UL=0 !TM=2 1962 3 27 6 35 0.C 43.3000N 79.3033W V 3.0 Ee 231.95 2848 UM=A UI=B UL=C ITM=
1962 9 4 23 40 0.C 3 ) . 5 0 0 0 f4 77.7300W IV EU 387.43 2866 UM= UI=P UL=C ITM=
19o2 9 7 14 0 0.C 39.7000N 78.2000W IV SO 340.93 2867 UM= UI=8 UL=C ITM=
1963 1 17 11 40 26.1 37.3000N 90.1000W IV $5 507.72 2876 UMa UI= UL=S ITM=
1963 1 17 14 26 50.( 37.303CN 60.1000W IV SS 537.72 9261 UMa UI= UL=E ITM=
1 763 2 27 6 0 0.C 43.203Cf4 79.5700W 3.0 EP 202.21 2880 UM=A UI= UL=8 !TMa 1963 to 28 22 33 0.2 36.7000N 81.0003W V 2.1 55 566.47 2920 UM=A UI= UL=S ITM=
1963 10 29 1 57 0.0 36.703CN 81. 0 0 0 0 W IV SS 566.47 2921 UM= UI= UL=S ITM=
1164 2 13 19 46 40.E 40.3800N 77.9603W 1 VI 3.3 EP 310.58 2935 UM=A UI=B UL=S ITM=
1964 5 12 6 45 10.7 40.300CN 76.4100W I VI 4.5 3.2 EP 431.43 2967 UM=A UI=8 UL=B ITM=
1964 7 2S 0 0 0.C 36.J000t1 33.9000W II 3.3 NU 686.85 2992 UM=3 UI= UL=S ITMs 1964 10 13 16 33 0.C 36.0030*4 83.9003W - III 3.2 NU 636.85 2999 UM=0 UI= UL=3 ITM=
1965 3 6 21 13 0.C 45.0030t4 83.00 COW 4.2 WE 385.89 3022 UM=A UI= UL=3 ITM=
1965 4 1 6 30 20.C 46.3030N 30.5000W 3.4 EP 469.42 3326 UM=A UI= UL=S ITM=
1965 4 d6 15 26 19.7 37.3200f4 81.6000W 5 3.5 EP 499.05 3028 UM=A UI= UL=S ITMs 1965 7 16 11 6 57.C 43.3400N 78.0300W 13 IV 3.5 EP 287.27 3033 UM=A UIs0 UL=0 ITM=
1965 8 27 1 55 56.C 43.0000N 78.0 70 0W 13 IV 3.1 EP 295.97 3041 UM=A UI=8 UL=C ITM=
1965 10 8 2 17 27.C 40.3800N 79.7500W 3.3 EP 224.29 3058 UM=A UI= UL=C ITM=
1966 1 1 11 21 20.C 42.3500ta 78.2803W 5 3.0 EP 263.25 3090 UM*A UI= UL=A 11M=
1965 1 1 13 23 39.C 42.3403N 78.2500W 2 VI 4.6 EP 265.03 3091 UM=A UI=A UL=A ITM=
1966 5 31 6 18 59.! 3 7. 66 3 0 f4 78.1300W 2 V 3.7 3.6 EP 527.33 3097 UM=A UI= UL=A ITMs 1965 9 26 0 0 0.0 39.303CN 80.3000W IV 3.3 NU 236.78 3134 UMaD UI= UL=3 ITM=
1967 2 2 6 33 C.C 42.7030N 94.6333W IV 3.8 NU 302.17 3155 UM=3 UI=D UL=C ITMsF 1967 4 8 5 43 30.1 39.65004 92.5303W 1 V 4.0 3.5 EP 266.02 3165 UM=C UI=M UL=3 ITM=Z 1967 6 13 19 3 55.! 4 2. 3 4 J C r4 73.2333W 1 VI 3.9 4.4 EP 256.49 3178 UM=A UI=A UL=A ITM=
1967 12 16 12 23 33.4 37.3600N 31.6303W 2 3.5 3.4 EP 494.64 3212 UM=A UI= UL=S ITM=
1963 3 8 5 33 15.7 37.2830f4 80.7699W 3 IV 4.1 4.1 EP 502.99 3219 UM=A-UI= UL=8 ITM=
1963 10 10 20 13 41.C 45.3000N 31.6600W 18 3.4 EP 446.27 3238 UM=A UIs ULs3 ITM=
1763 10 31 0 0 0.C 43.003CN 33.0303W - IV 3.6 NU 202.73 3256 UM=0 UI=D UL=0 ITM=F 1963 12 11 16 3 C.C 38.3300N 35.8000W V 3.0 NU 555.69 3268 UM=E UI=M UL=C ITM=Z 196) 7 13 21 51 9.1 36.120CN 33.6930W 1 V 4.3 4.2 EP 658.10 3290 UM=A UI= UL=A ITM=
196) 7 14 11 15 0.C 36.3030N 33.9300W II 3.0 !40 696.85 3292 UM=D UI= UL=S ITM=
196) 7 24 18 13 0.0 36.3030N 33.903JW III 3.4 NU 636.85 3293 UM=D UI= UL=3 ITM=
O O O TABLE 3-1 (continued)
Regional Seasmacity EPRI Data Sase ORIGIN TIME r1YPCCENT2AL LCCATIJN MAGNITUDE REF DISTAACE REMaaK5 YEAR MO DA HR MN SEC LAT. LCNG. Z(KM.) !(4K) MS MN ML MC (KM.)
1161 8 13 2 42 24.0 43.3000N T8.2200W IV 2.5 2.3 WC 212.22 3277 UM=A UI=B UL=C ITM=
1967 11 20 1 3 9.2 37.4530N 90.9 30 3W 5 VI 4.7 4.6 EP 493.44 3335 UM*A UI= UL=$ ITMs 1963 12 11 23 44 37.4 3 7. 34 00 f4 77.67C3W 1 V 3. 4 3L 530.83 3306 UMaA UI= UL=0 ITM=
1 373 8 11 6 14 25.1 38.2330N 32.0500W IJ IV 3.8 2.8 EP 433.93 3341 UMs3 UI= UL=C ITM=
1973 9 13 1 41 5.; 36.02J0N 31.4 20 0 W 1 V 4.2 3.1 EP 642.23 3345 UM=A UIs UL=A ITM=
1 771 2 1) 23 11 42.C 37.10004 33.2303W 3.3 NU 551.08 3371 UM*A UI= UL= ITM=
1971 4 1 5 5 11.C 37.40JON 31.6000W 3.3 NU 410.21 3384 UM=A U1= UL= ITMs 1171 9 12 0 6 27.4 33.1530N 77.5999W 5 V 3.4 3.6 EP 536.3d 3412 UM=A UIs UL=0 ITMs 1 371 9 12 0 9 22.t 39.1000N 77.4000W IV 3.2 55 520.70 9264 UM*A UI= UL=C ITM=
1171 11 23 16 32 30.0 45.3300N 76.6203W 13 3.0 EP 5T6.77 3431 UMsA UIs UL=3 ITM=
1972 1 9 23 24 29.C 37.4000N 81.6000W 3.3 NU 490.21 3435 UM=A UI= UL= ITM=
1772 5 20 19 31 6.0 37.0000N 32.2003W 3.3 NU 540.73 3444 UM=A UI= UL= ITM=
1 772 9 5 16 0 0.C 37.6030N 77.7300W IV 3.4 3.3 EP 551.99 3457 UM=A UI= UL=A ITM=
1972 9 12 15 li 13.1 39.50JON 19.9003W III SS 266.07 1278 UM= UI= UL=3 ITMs 1972 12 8 3 3 33.2 40.1400N 76.2403W 2 V 2. 8 EP 452.05 3474 UMa UI=M UL=S ITMs 1173 4 9 23 11 0.C 37.3000N T7.7000W IV 80 500.71 3489 UMa UIs UL=3 ITMs 1974 5 30 21 29 35.2 37.4630!4 80.5400W 5 V 3.6 3.7 EP 484.76 3552 UM=A UI= UL=S ITM=
1974 6 5 0 16 40.; 33.4800N S4.7500W 10 VI 3.6 3.2 EP 479.93 3553 UM=A U1=E UL=S ITM=
1974 8 8 11 55 33.0 45.1330N 76.0 80 3W 18 3.2 EP 613.10 3632 UM=A UI= UL=8 ITM=
1174 9 29 2 26 19.1 41.2130rd 33.4903W 1 3.0 30 236.57 3653 UM=A UI= UL=0 ITM=
1974 10 20 15 13 55.i 31.3600N 81.6103W 4 V 3. 8 EP 306.93 3665 UM=C UI=H UL=C ITM=I 1974 11 7 21 31 4.1 37.7500N 78.2330W IV 2.4 2.4 EP 515.61 3676 UM=A UIs UL=3 ITM=
1975 2 3 10 31 0.0 41.3000N 83.2000W IV 3. 8 NU 180.34 3766 UM=D UI=0 UL=C ITM=F 1975 2 16 23 21 34.4 38.3830N 82.3500W 4 IV 3.8 3.3 EP 340.15 3777 UM=A UIs0 UL=3 ITM=
1')75 3 7 12 45 13.1 37.3200N 80.4dOOW 5 II 3.0 55 500.78 1282 UM=4 UIs UL=S ITM=
1975 6 30 20 15 23.0 43.403CN 79.7691W IJ III 3.3 EP 210.43 3866 UM=A UI=8 UL=S ITM=
1975 11 11 8 13 37.t 37.2230N do.8900W 1 IV 3.2 3.2 EP 509.09 39 72 UM= A UI= UL=C ITMs 1976 1 19 6 20 39.( 36.97JON 83.8600W 1 WI 3.8 3.8 EP 595.36 4047 UM=A UI= UL=A ITM=
1975 2 2 21 14 2.* 41.3800N 33.7300W 5 III 3.4 EP 214.97 4058 UM=A UI=8 UL=3 ITM=
1 376 5 6 18 46 8.1 31.50309 79.9 00 3W IV 55 266.07 9283 UM= UI= UL=3 ITM=
1776 6 11 5 54 13.4 37.3430N 81.6303W 1 V 4.7 3.3 EP 416.85 4180 UM=A UI= UL=C ITMs 1176 9 13 18 54 36.C 36.6200N 80.7699W 9 VI 3.3 3.3 EP 576.11 4235 UM*A U1= UL=C ITM=
117F 2 27 20 5 34.t 37.9030N 78.6 30 3W V 2.4 G5 4 83.5 d 4383 UMaA UI= UL=4 ITM=
117F 6 17 15 31 46.5 40.7100N 84.7103W 1 VI 3.2 EP 322.47 44 F1 LMsa UI=M ULs3 ITM=
1973 2 25 3 53 27.; 36.15JON 19.3203W 21 IV 2.2 30 646.92 4976 UMaA UI= UL=3 ITMs 197d 3 17 18 26 34.E 3 5. F J J0 f1 30.74C3W 15 IV 2.3 2.5 BC 558.54 5071 LM=A U!= ULa3 ITM=
1973 7 16 6 31 29.7 31. )0 3 C 'J 76.22G3W V 3.1 2.8 3.3 :P 465.72 3234 L H= 4 U: 22 UL=5 !TMs 1973 to 6 19 25 47.4 4 J. 3 3 3 0 *4 76.150 3W %I 3.3 3. 3 P 4 51. $ ;139 L t= A U!=S UL=C ITMs 137s 3 18 16 31 12.0 4 5.14 3C *3 T6.4603W 11 3.J :P Sa5.7s S E40 UM= A UI= UL=1 ITM=
1973 11 9 21 21 59.1 3 3. 4 9 3C:1 12.81C36 1 V 3.5 :P 334.01 5277 U Ma A UI=M OL=A ITM=
bl V
h
%_)
TABLE 3-1 (continued)
Rv; tonal 54:ssactty CPRI Data dase t
OR I6 It. TIM *1Y PC CE NT 1 A L LC0ATI3N MAGNITUDE REF JISTANCE RE *t A RK S Y2A4 ;4C La HR M1 5EC LAT. LONG. ZCKM.) I( 4M) MD MN ML HC (KM.)
1963 4 22 3 14 4.t 30.400C3 90.6130W 1 IV 2.9 2.2 50 601.40 6497 UM=A UI= UL=3 ITMs 136J 7 27 18 52 21.4 33.1900N 33.d300W 16 #1I 5.1 5.2 5.2 EP 464.44 6642 UM=A UI=E UL=A ITM=
1 '3 8 J 7 31 9 27 2.2 3d.1930N 33.9300W 19 IV 2.2 2.5 1.9 EP 466.17 6650 UM=A UI=0 UL=A ITM=
1983 8 20 9 34 53.4 41.)S30N 82.9930W 1 3.2 EP 154.63 6680 UM=A UI= UL=S ITM=
1183 8 23 3 47 3.1 37.98JON 84.870CW 1 III 3.1 EP 530.51 6687 UMaA UI=C UL=3 ITM=
1)83 8 25 11 41 38.2 33.1930N 33.7700W 13 IV 2.0 2.5 1.7 EP 460.1) 5692 UM=A UlsD UL=3 ITMs 1963 10 14 0 53 56.4 43.1500N 30.5700W 5 3.4 IP 157.11 $777 UM=4 UIs ULs3 ITMs 1 ) SJ 11 5 21 48 14.7 38.1800N 19.9000W 4 I 3.0 2.4 PO 415.85 6825 UM=A UI= UL=A ITM=
1983 12 30 3 7 8.1 38.2030N 93.9100W 11 III 1.6 30 464.34 6923 UM=A UI=C UL=S ITM=
1381 2 11 13 44 16.4 37.7230N 78.4400W 6 IV 3.4 30 508.87 6986 UM=A UI= UL=A ITM=
1981 2 11 13 53 31.4 37.7500N 78.4100W 13 IV 3.2 80 507.06 6987 UM=A UI= UL=A ITM=
1981 2 11 13 51 38.( 37.7200N 72.4500W 7 III 2.9 BC 508.48 6988 UM=A UI= UL=A ITMs 1981 7 30 11 59 48.1 38.1930N 78.0399W 6 III 1.4 80 478.25 1305 UM=A UI= UL=A !TM=
1 381 8 28 10 51 33.C 43.1500N 30. 5 399W 1 LII 3.3 EP 156.63 7375 UM=A UI=D UL=S ITM=
1 981 9 5 5 43 21.C 42.3000N 31.4103W 1 3.1 EP 113.12 7411 UM=A UIs UL=S ITM=
1981 11 23 13 14 51.C 3d.24004 79.1000W 10 III 2.1 2.1 80 432.16 7521 UM*A UI= UL=4 ITM=
1982 2 3 4 28 20.( 40.2100N 79.0500W 2 IV 2.6 EP 249.50 7693 UM=A UI=8 UL=3 ITMs 1982 4 13 13 4 13.1 36.5099N 32.0400W 3 3.0 BC 592.50 7853 UM=A UI= UL=3 ITMs 1982 9 32314 3.C 45.6699N 76.6103W 12 3.7 EP 563.92 8155 UM=A UI= UL=A ITM=
1983 1 22 7 46 58.C 41.7500N 31.0199W 13 3.3 2P 11.77 3493 UM=A UI= UL=A ITM=
1983 1 27 22 9 35.1 36.0600N 33.6300W 13 3.1 80 672.73 9505 UM=A UI= UL=5 ITM=
i 1983 8 17 14 3 15.0 38.4700N 82.7699W 10 V 3.5 EP 394.96 9832 UM=A UI=H UL=A ITM=
1983 8 28 22 45 7.4 36.6800N S3.6200W 18 IV 3.1 3.0 80 613.61 9857 UM=A UI= UL=A ITMs 1383 to 4 17 13 40.C 43.440CN 79.7900W 2 3.1 EP 21J.23 $892 UM=A UI= UL=3 ITM=
1984 1 14 20 14 31.C 41.6530H 33.4303W v NU 190.95 9140 UMa UI=H UL=3 ITM=
1984 2 14 20 54 30.5 36.13304 33.7400W 10 V 3.6 3. 5 80 668.49 9308 UM=A UI= UL=A ITM=
1984 4 23 1 36 0.0 39.1500N 76.3 70 0 W 4 - VI 4.1 EP 451.80 1311 UM=A UI=8 UL=4 ITM=
1984 10 22 18 58 41.( 36.363DN 81.6903W 11 3.2 TE 605.84 9316 UM=A UI= UL=A ITM=
1986 1 31 16 46 42.2 41.6530N 81.1110W 4.9 WG 17.00 THIS C AT AL0G LIST S 469 2ARTMCUAKES EPICE NTR AL O! STANCES ARE COMPUTED FOR SITE LOCATEJ AT 41.801N 31.144W SEE FOLLOWING PAGC F( R CATALCG EXPLANATICH i
i
(-
TABLE 3-1 (continued)
EtkTHJUAK CATALOG 3xPLANATION MAGNITUDEE INTENSITY I(MM) REFAEKS MB = B3DV mAVE MAC1ITUJE INTENSITIES ARE MAxlMUM ~PI- FA = TOTAL FELT AREA MN = M3LG MAGNITUCI (NUTTLI.19T3) CENT 2AL M03!FIEC MERCALLI MO = SEISMIC MCMENT ML = RICnTER L3 CAL MAGNITUDE INTENSITIESI A LEADING MINUS MS = SURFACE WAVE MAGNITU3E MC = COCA LENGTH MAGNITU3E SIGN INDICATES A RANGEI I.E.
- VII IMPLIES VI - VII 2EFERENCIS REF DATA SCURCC REF DATA SOURCE SB 3RACLEV AN3 SENNETT(1965) MM MCCLAIN AND MYER$(19TC)
SH 30LLIt5ER AND HOPPER (1971) NB NUTTLI AND 2 RILL (1981) NUREG/CR-15TT BK 3R3CRE(196J) NJ NEW JERSEY GEOLOGICAL SLRV:V SD 30LLILGER(1969.1973) NO N.3.A.A. EARTHQUAKE DATA FILC CG U. S. COAST 493 GE30 ETIC SURVEV NS BULLETINS, N3RTHEAST U.S. SEISMcGRAPH NETWORK 00 30CEKAL(1970) NU NUTTLI(1974)
DW 3EWEvtPERSONAL COMMUNICATION) PC PRELIM. DETERMINATION OF EPICENTER $,U.S.G.S.
EH EARTH (UAKE HISTORY OF THE U.S.(1951,19T3) PM PCMEROY(PERS3NAL C3MMUNICATIJN)
EP EARTH PHYSICS 3 RANCH. 3TTAWA. CAN. SL SULLETINS. ST. LJUIS UNIV. S!!$MOGRAPH NETWORK IS INTERtATICf4AL SEISMCLOGICAL SUMMARf SM SMITHC1962,1964)
LD 3ULLETINS, LAMONT-30HERTY GE3 LOGICAL 085. US U.S. EARTH 3UAKES SERIES, 1928-1990 MA MATHEL AND G3CFREYC1927) WE WESTON OSSERVATORY MI BULLElINS. M.I.T. SEISMOGRAPH NEThJEK WG WESTON GEOPHYSICAL CORPORATION I
N s
- v/
TABl.E 3-2 Loc s1 Seasmacity WGC Data Base 3RIGIN TIME HYPCCCui2AL LCCATION MAGN 17U3C RIF 31STANCC 2CMARKS YCAA MC DA .1 R MN SCC LA7. LONG. I(KM.) I(4H) MS MN PL MC (KH.)
1775 0 0 14 0 43.303CN d2.0000W VI NU 212.62 1623 5 3J 0 0 0.( 42.5000N 31.00J3W - Ill WG 78.55 1935 7 8 21 15 C.C 41.5CJON St.70GOW IV dG 57.12 4
1353 to 1 10 25 0.C 41.5030N 31.7303W IV WG 57.12
, 1357 2 28 1 43 0.C 41.3030N 30.6003W - V WG 45.21 1d53 4 10 11 33 0.C 41.7030N 31.3000W IV WG 17.15 166) 4 9 13 3 0.C 42.70JCN 30.83 COW !!! WG 103.82 1373 8 17 14 3 41.25J0N 30.53006 III WG 81.45 1885 1 18 10 33 0.C 41.1030N 31.4303W IV WG 80.74 1985 8 15 4 5 0.C 41.30JON 31.1003W - III WG 55.77 1385 9 26 20 33 43.1699N 30.2300W - IV 00 196.80 1993 10 29 0 3 0.C 41.50JCN $1.7J00W 11! WG $7.12 1102 6 14 7 3 0.0 43.303CN 31.4300W - V NU 168.08 1105 4 2J 17 33 41.5030N 31.7500W III WG 60.55 1921 9 27 4 32 42.1030N 80.2000W Ill WG 85.03 1922 3 16 9 30 0.C 43.30J0N 32.5300W III NU 173.79 1927 2 17 5 33 0.C 4J.70J0N 32.5300W IV NH 166.94 1927 2 17 6 0 0.C 40.7030N 32.5303W !! NU 166.94 1923 9 9 20 0 0.C 41.53J0N d2.0000W V 3.7 WG 78.76 192) 6 13 0 3 0.C 41.50J0N 31.7300W II I NU 57.12 1933 2 16 12 17 42.8330N S0.5199W III WG 125.35 1932 1 21 0 3 41.1000N 31.630JW IV EP 86.69 1932 1 22 0 0 0.C 41.1030N 51.5003W V 3.6 NU 83.35 1934 10 29 20 7 42.J0J0N 30.2000W V 4.0 WG 81.39 SASHAM CT AL 1182 19 % 11 5 20 3 41.8830N 30.3 7C 0W III WG 64.89 1135 8 26 8 55 41.4030N 30.4000W 11 EP 76.36 1943 5 31 16 3 0.0 41.1000N J1.5003W II WG 83.35 194J 6 16 4 33 0.0 43.1000N 32.3JC3W IV NU 139.11 1943 7 28 9 33 0.C 40.)J00N 32.3303W III NU 139.11 1943 8 15 10 35 0.C 43.103CH 32.3303W I1! NU 139.19 1943 8 20 3 33 0.C 43.9000N 32.3003W III NU 139.19 1943 3 9 3 25 24.5 41.5279N 31.3393W 7 V 4.5 OW 23.63 1951 12_ 3 7 2 0.C 41.6030N 81.400]W IV 3.2 WG 30.86 1955 5 26 18 9 23.C 41.3330N s1.4303W - V 3.6 WG 56.50 1955 6 29 1 16 33.C 41.3300N 81.40C3W IV 3. 6 WG 56.53 1957 6 29 11 25 9.C 42.1199N 31.3200W IV 3.8 WG 125.13 195) 2 9 0 3 0.C 43.30301 31.0303W IV WG 133.72 1 963 10 31 0 3 43.300CN 33.000JW - IV 3.6 NU 202.70 1975 2 2 21 14 2.0 42.0030N 92.73C3W III 3.4 NU 131.03 1981 9 5 5 46=%7.C 42.720CN 31.4 2 0 3 W 9 1.9 EP 104.59
O b4 V i
i TABLE 3-2 (continued) .
I Loc al Seismacity WGC 3ata Base ORIGIN TIME HYP0 CENTRAL LOCATION MAGNITUJE REF DISTAhCE REMARKS YEA 2 MG DA HR MN SEC LAT. LONG. Z(KM.) !(4M) MS MN ML MC (KM.)
1981 9 5 5 43 07.C 42.7599N 81.5100W 9 3.1 EP 110.71 1 981 9 5 5 43 21.C 42.3030N 81. 410 0 W 9 3.1 CE 113.12 1 982 12 23 7 6 40.0 42.7599N 91.3900W 10 2.8 EP 138.43 1982 12 23 12 11 45.C 42.77 DON S t.4 00 3W 13 2. 3 EP 109.63 1983 1 22 7 46 50.0 41.T650N 81.1110W 3. 3 WG 4.85 OHIO 1983 9 3 4 49 45.C 42.75J0N 31. 4 9 0 0 W 5 2.6 EP 109.21 1983 11 19 16 22 20.C 41.7650N 91.1113W 2.5 WG 4.85 1783 11 11 23 32 12.C 42.9330N do.5 3C3W 13 2.2 EP 135.23 1185 1 31 16 46 42.2 41.5530N 81.1620W 4.9 WG 16.84 l'385 2 1 18 54 49.4 41.5445N 81.15 2 9 W 1.5 WG 17.40 1985 2 2 3 22 48.7 41.6453N 81.1592W 3.1 WG 17.34 1 935 2 3 19 47 19.( 41.6487N 31.158JW 2.3 WG 16.96 1385 2 5 6 34 02.1 41.5433N 31.15 4 5 W 0.1 WG 16.93 1985 2 6 18 36 22.4 41.5453N 31.1602W 2.5 WG 17.35 1985 2 7 15 20 20.4 41.5535N 81.15 3 7W 1.1 WG 16.74 1983 2 10 2 5 13.t 41.6517N 31.1565W 0.9 W P. 16.62 1986 2 23 3 21 48.! 41.6530H 81.1515 W .1 WG 16.45 1383 2 24 16 55 06.! 41.5475N 31.1600W 0.1 WG 17.13 1985 2 28 1 33 34.1 41.5538N 81.1502W .1 WG 16.41 i 1965 3 8 20 42 49.7 41.6445N 91.15 3 3 W .1 WG 17.43 1985 3 24 13 42 41.2 41.5428N 81.154 3W 1.4 WG 17.59 1985 4 10 6 Sa 35.1 41.5485N 81.1592W .1 WG 16.99 TH!i CATALCG LISTS 62 2ARTHGUAKE5 E PICE NT R AL CIST ANCE S ARE COMPUTED F 3R SITE LOCATEJ AT 41.801N 81.144W SEE F OLLOWING PAG E FLR CATALOG EXPLANATION 1
i 1
4
O b V U TAHLE 3-2 (continued)
EnkTHCUAEE CATALOG EXPLANATION MAGNITUDf5 INTENSITY I(MM) REMAEKS MB = BODY WA d[ MAGNITUOE INTENSITIES ARE MAXIMUM EPI- FA = TOTAL FELT AREA MN = M3LG MAGNITUC: (NUTTLI.1973) CENTRAL MODIFIED MERCALLI MO = SEISMIC MOMENT ML = RICH 12R L JC AL MAGNITU3E INTENSITIES A LEADING MIhuS MS = SURFACE WAVE MAGNITU3E
, MC = C OD A LENGTH MAGNITUDE SIGN INDICATES A RANGE; 1.E.
! - VII IMPLIES VI - VII l REFERENCES 2EF DATA SOURCE REF C AT A SOURCE BB 3RAOLEY AN3 BENNITT(1965) MM MCCLAIN AND MY!R$(1970)
BH SO LL Ih GE R AN3 HOPPER (1971) NB NUTTLT At40 BRILL (1981) EUREG/CR-1577 SK 3R 3CK1(196 J) NJ NEW J.RSEY GEOLOGICAL SURV V SO 80 LL IE SE R( 19 69.19 7 3 ) NC N.O.A.A. EARTHQUAKE DATA FILE CG U. S. COAST AN3 GEODETIC SURVEY NS BULLETINS. NORTHEAST U.S. SEISMOGRAPH NETWORK 00 30CEKAL(1970) NU NUTTLIC1974)
DW 3E WE Y( PE R S 3N AL C OMMUNIC A TI ON) PD PRELIM. OE TE 2 MIN ATION OF EPICENTERS.U.S.G.S.
EH EARTHLUAKE HISTORY OF TH E U. S. (19 5 3.19 73 ) PM POMEROY(PERSONAL COMMUNICATION)
EP EARTH PHYSIC S SRANCH. OTTAWA. CAN. SL SULLETINS. ST. L3UIS UNIV. SEISMOGRAPH NETWORK IS IN T E Rt. AT IO N A L SEISMOLOGICAL SUMMART SM SMITHC1962,1964)
, LD SULLE11NS. LAM 3NT-DOHERTY GCOLOGIC AL 085. US U.S. EAkTHJUAKES SERIES. 1928-1930 MA MA THEE AND G00FR EY(192 7) WE WESTON 08SERVATORY MI SULL ET IN S. M.I.T. SEISMOGRAPH NETWJRK WG WESTON GEOPHYSICAL CORPCRATION S
TABLE 3-3 g di storical Seismic ity within a 53 Mile Radius af PNPP Event Intensity Lo:ation f e ar Month Day (MMI) Uncertainty 18 36 July 03 IV 15 miles 18 50 Octobsr 01 IV 12 miles 18 57 F ebru ary 28 IV-V 20 miles 18 58 April 10 IV 15 miles 1838 October 29 III 15 Siles 1936 April 23 III 10 miles 19 28 S eptember 09 V 20 miles 19 43 M arch 09 V (4.7mb) 8 miles 1951 Oecember 03 IV 5 miles 19 55 M ay 26 IV-V 10 miles 19 55 June 29 IV 13 miles 19 33 J anuary 22 Not Felt 1.3 miles 19 33 N ov ember 19 Not Felt 1.3 miles 19 36 J anuary 21 VI 0.3 mile 2 vents with Duoiots Location or Origin (FSAR Aapendix 20-0 T able 3) 2vant Intensity Remarks Ye ar Month Jay Location (MMI) 18 72 July 23 41.40N 9 2.10 d III Dubious origin.
() 19 30 A pril 09 41.37N 81.854 VI Likely rock fall.
Most likely blast.
1906 June 23 41.37N 21.874 I-II Felt by one person only.
1906 June 27 41.40N 31.60W IV-V Probably blast.
1907 April 12 41.53N 81.701 I Reid says, "not an earthquake" 1929 June 10 41.50N 81.70W III Possibly blast.
(Eennet and Bradley,1965).
19 29 S epte nter 17 41.53N 81.55W II Dubious origin. Reported by one person only.
19 51 D ecember 07 41.65N 81.41W II Dubious occurrence.
I 1951 Oecember 21 41.65N 81.41W II Dubious occurrence. l Around Lakewood.
19 58 M ay 01 41.49N 91.32W IV Dubious origin. Possible jet activity.
O i
. - - _. ._- ._-.~ _- - . _-_ . .- . _ _ - _ . - -- -- - .
i s f""'g TABLE 3-4 Locatiorts of Stations Deployed to Monitor Af tershocks STATION LATITUDE LONGITUDE AFFILIATION tiATES OF STATION LATITUDE LONGITUDE AFFILIATION DATES OF ABBREV. Deg Man Deg Man AbbhEV. OCCUPATION AbbhEV. Deg Man Deg Man AbbhEV. OCCUPATION CON f1N42.06 081W12.55 LAMONT CFD 41 N4 0. 4 5 081W13. 41 WESTON i CAR 41N47.30 C81W10.64 LAMONT CLD 43N31.44 DulW20.19 WESTON HLH 41N41.20 081W07.01 LAMONT HTG 41N17.17 Os0W5 7. 2 7 WESTON HPV 4tN44.41 0 81 W0 3. 0 8 LAMONT MEL 41N32.82 081W06.12 WESTON HSE 41N33.77 081W06.76 LAMONT MFD 41N27.77 081WO4.41 NESTON POP 41N37.23 081WO7.05 LAMvNT MIN 41N33.56 081W15.41 WESTON TTR 43N35.25 081Hil.69 LAMONT PAT 41N33.63 081W21.91 WESTON *
] WkR 41N36.06 081W03.13 LAMONT PEH 41N48.06 081W08.61 WESTON l TOM 41N41. 29 0 81W0 3.09 WESTON i WEL 41N45.00 081Wo9.31 WESTON HSOH 41N35.66 081W07.84 MICHIGAN FEB. 01 - FEB. 02 YMC 41N44.02 081WOT.59 WESTON MTOH 41N36.68 081W03.07 MICHIGAN FEb. 01 - FEB. 02 LOC 41N48s47 081WOT.83 WESTON CHOH 41N35.56 081W11.84 SLU JAN. 31 - FEB. 03 WC01 41N36.90 081W18.OB WOODWAND-CLYDE HAOH 41N36.46 081W08.51 SLU JAN. 31 - FEB. 03 WCO2 41N40.05 081W09.53 "
PAOH 41N45.41 081W11.95 SLU JAN. 31 - FEB. 03 WCO3 41N43.87 081H04.46
- WC04 41N35.10 081H09.36
- WC06 41N32.40 081W01.75 "
CALM 41N34.1 081W10.3 TEIC WC07 41N48.00 081H06.58
- I ELFM 41N36.8 081W10.9 TEIC WCOS 41N40.24 081W14.48 "
FARM 41 N 38. 3 081W10.4 TEIC WC09 41N35.45 081WO9.36
- HOWN 41N35.0 081H07.9 TEIC WC 10 41 N4 0.'0 4 081 W 14 s45 WOOD W ARD-CLYDE MONM 41N36.7 081W02.9 TEIC l
BUR 41N39.24 081W04.94 U.S.G.S FEB. 02 - FEB. 11 g CAL 41N41.21 081WO8.89 DENVER FEB. 02 - FEb. 11 from. USGS Open Fue Report 86 - 336 1
COT 41N34. 7 3 081W05.9 3 EEb. 02 - FEB. 11 CUY 41N33.56 081W10.15 FEB. 03 - FEb. 11 ERJ 41N39.44 081W05.00 FEB. 06 - FEb. 11 FOT 41N38.90 080W59.69
- FEB. 04 - FEb. 11 HAM 41N36.18 081HOS,48 FEB. 02 - FEB. 11 i HAR 41N36.67 080W59.62 FEB. 02 - EEb. 04 HWK 41N41.83 08 0W59.0 3 FEb. 02 - FEb. 11 LOX 41N44.58 081WO2.60 FEb. 02 - FEB. 11 MON 41N35.52 081W02.39 FEB. 02 - FEB. 11 WSH 41N37.61 081W13.30 FEB. 02 - FEB. 11 GS01 41N48.27 081W08.52 U.S.C.S. FEB. 01 - APR. 03 CS02 41N43.75 081W09.47 MENLO PAbk FEB. 01 - APh. 03 GS03 41N39.45 081W10.07 FEB. 01 - APR. 03 CSO4 41N36.85 081W17.55 FEB. 01 - FEB. Il G505 41N35.64 081WO8.19 FEB. 01 - FEB. 04 GS06 41N37.75 081H03.77
- FEB. 01 - APR. 03 GS07 41N32.40 083Wo4.26
- FEB. 01 - FEB. 11 G508 41N32.38 081W12.93 FEB. 02 - FEB. 10
- FEB, 02 - FEB. 10 CSO9 4tN24.81 081W11.91 CS11 41N0a.20 081H04.42 "
FEB. 02 - FEE. 10 GS55 4tN37.10 081WO7.18 FEB. 04 - FEB. 10 l
TABLE 3-5 Summar> of Aftershock Locations
'J Vc /V s = 1. 7 8 YearMo3a HrMn Sec Latituc e Longitude Depth NP Oap RMI ERH IRZ Mag 19363231 135443.35 41 38.( 7 El 9.17 4.35 20 94 .09 .3 .5 1.5 19360202 32248.67 41 38.72 81 9.55 4.E6 37 72 .07 .1 .2 .9 15363233 194719.77 41 32.52 81 9.43 5 33 52 75 .08 .2 .2 2.3 15363235 634 2.47 41 38.5 3 21 9.27 3.73 31 52 .08 .2 .3 .1 19360206 193622.44 41 38.72 81 9.61 5.53 53 47 .0T .1 .2 2.5 15363237 152323.38 41 39.C 3 El 9.22 3.76 44 42 .01 .1 .3 1.1 19360210 20613.61 4t 39.13 El 9.39 4.73 23 70 .06 .1 4 .3 19360223 32348.50 41 39.13 al 9.09 5.48 22 76 .06 .2 .4 -.1 19360224 1655 6.48 41 32.E 5 81 9.63 3.25 10 91 .09 .5 2.7 .1 15363228 13334.21 41 39.2 3 81 9.61 3.91 12 91 .06 .3 .5 -.1 19963308 204249.68 41 38.(7 31 9.23 3.12 20 65 .10 .3 .7 .1 15363324 134241.31 41 3E.21 81 9.31 3.84 12 79 .12 .5 1.8 1.4 19360410 65305.71 41 38.51 21 9.55 5.11 22 63 .08 .2 .3 -.1 Vp/Vs = 1.73 Ye arMcDa HrMn Sec Latituce Longitude 2epth NP Gap RMI ERH ER2 Mag 19363201 135443.32 41 38.( 2 31 9.23 4.87 23 96 .08 .3 .5 1.5 19363232 032243.67 41 32.73 21 9.63 5.14 37 73 .06 .1 .2 .9 g 19363203 194719.74 41 38.57 21 9.53 6.33 52 73 .07 .2 .2 2.3 j 15363105 063402.47 41 32.52 31 9.26 3.99 31 52 .08 .2 .3 .1 19353236 133622.41 41 32.7 5 81 9.67 5.91 49 43 .C6 .1 .2 2.5 15350237 152323.38 41 39.C6 21 9.23 4.35 44 42 .07 .1 .4 1.1 15363210 230613.61 41 39.C2 21 9.41 4.99 29 73 .07 .2 4 .3 19363223 032348.48 41 39.22 El 9.03 5.93 23 76 .C6 .2 .5 -.1 19860224 165506.47 41 38.E2 21 9.59 3.79 13 91 .07 4 1.6 .1 19363228 013934.20 41 39.26 81 9.53 4.23 12 93 .05 .3 4 -.1 19363338 234249.70 41 38.(6 21 9.23 3.33 23 65 .10 .3 .6 -
.1 19363324 134241.28 41 38.29 91 9.47 4.59 12 83 .11 .4 1.3 1. 4 19360410 065305.75 41 38.E7 81 9.58 4.99 22 63 .38 .2 .4 -
.1 Crustal Mo del Vgla 4.25 km/sec h= 2 km Vp2= 6.5 km/see h= 33 km m - - - - - - - - ~ - - - - - 'M V * " ~ '
lO i
l
\
FIGURES :
SECTION 3.0 SEISMOLOGY i
,O i
l r
i O
Weston Geophysical
-8
. EPRI DATA CASE .!
i- i a' .=% y . . . . .
+ a'
- a' o e?
s C
9 l - -
, g;s ' 's,
- s
. ,c . s . +
, e . s
, /o ,
\
s e J. -,e m . s o- ..
- g. .
ie i =
, s a
/ g i g
g i ,o i
gg N' 's y \
I
\
+
o .
=
( '
- 8 e i i e ,
- i i i i
' I I
e et a s Q3 % s /
s %_- i
\ D C / I C
t 3 e b' - . '
$[f s D ' 3_ _ -
. s.
es o
- e. e.*
(o_s . ; -
p -
.j e ,
a
= 'a s e e d
- - . 4
- q. . u....- .
s n
q
. e
= = ..
Qa Q. ,
e
. x
_ -m .. .
t o=
... .._ g 0, . .
g . . .. .
O 100 MILES LEGEND ' '
...t.a..c.,........
igrtssitt taustS reen its te til ei c vine, acei. isu cas un g PEF'RY NUCLEAR POWER PLANT MACNITUDE INTENSIff 'ssNano YHE CLEVELAND ELECTRIC
. . e .
M ILLUMINATING COMPANY e - o -
Q b'
O O'
O '"
~ Regional Seismicity T. .
200-Mile Radius FIGURE 3-1
l
\
l WGC DATA EASE
- ,a .a
)
0 6 6 o l
h h 43* 0.00* 9 e + e + 83* 0.00*
e -
o e *B e
,- ~_
'1828May30 * '
s
<- < gg
/ O% p N
/ \
/ \
/ s 42 * . 0. 00 * + c f+ + + .a*
g 19340ct29 0,00*
I e 1 l 1857Feb28 8834Nov5 0 I l 1858 A pr 10 1983Nov19 l l 1943 Mar 9 1983Jan 22 3 1951Dec3 1988Jan31 I 1908 A pr2O f s .
- 1 5 ct1
\ 1928 Sept 9 18980c129 .
/ 1938Aug28
,1855Au915 f g 1955May28 d 1955Jun29 / 1873Augt?
s '
s O al* 0 00' +
1932Jan22 0 4 1932Jan22
~ __-"-'
1855Jan18 . ,
O l
I O
e 40* 0. 00 * + + 40' O.00'
@ 4 LEGEND 5o ms nAC4t ru0E 444 Cts FROM -s.O r010.0 turrustre envers rnon i r0 all itMc wtwoow etetus 1500 twos 2000 MAGN!TUDE INTENS!ty n,
A PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC cs
- O v ILLUMIN ATING COMPANY g .
g b '
b '"
Local Seismicity b ""
50-Mile Radius I .
T, s / FIGURE 3-2
. _ - _ . = _ _ . ___ _.__ __ _ _ . .__ . . _ _ _ .__ .__ .______ _ _ _ _ _ _
81.2W 81.1 W 81.0W l
- 41.9N + + + + + + + + + + + + + + + + + + + + + 41.9N O . +
+ + +
Jan-1983 U. of M.
+ e + +
Jan-1983 USGS o + ,s
+
! Jan-1983 ISC +
f + c +
1 Nov-1983 EPB
+ + o +
. . +
PNPP 41.8N + + + + + + + + + + + + + + + + + + + +
j + + +
+ + +
+ + +
Jan-1983 WGC 4
INJECTION WELLS Jan-1983 EPB
+ a + o +
a-
+ + +
+ + +
+ + +
+ + +
41.7N + + + + + + + + + + + + + + + + + + + + +
+ + +
+ + +
N
+ + +
+ + 0 5 Miles-Jan-1986 i ! i e i
,. 6
. T .
i 6 i 0 3 KM
+ +
+
- K4
'RNew PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC
+
Y ILLUMINATING COMPANY January 22 and November 19, 1983 Original Locations
, 41.6N + +
FIGURE 3-3 t
IT!Til? 4 ' '\' ( / r.
..I 1 ' , , ' ' '. I >
1,4 - ,
~T > . E 1
. 1' O h I
(-
& &<.m f-
- 8 .7-*i
_ 1
'%hhA a i e in 6 6M p' p Q@?'l_. f
. . .e
@l, . . -
. ~4' yg, .Qm&.-*.=.,,A -f.Dy. f,or . t / .g es,'
l ^ ~ * '
l ;
- 1
,. ' ; J ~~ ' ;. g J,';;,
[ I F b ,, ' h ~ ' h - .', ./[r k )
+-
4,..,,
- 5 w',f." 7,' -
h
'~
T,
~
,k{N s
/ \.e
'h -
s.-:= f h '.= .
' [ .,q'f', # 7*h ,.. y.i, m M55YM . . c' \. ,
ykk 'n' % u I
,, 5
- s*.; -
1 c'.
Y h, .,h s k T h N ~, M D (_ a.~ .
,, j , ' , [.=~~%iT?J*j'.[
?' ' .- h '-f
' \
M l
1 F *i ' 1/ .
'[ r
. d,' ' C ,i *i
-M :- 1 / M pI f j- fl y< -.f. y s..,n
~
t v.-
y y./ s* ..," A[ 9 .
i t /. ,n( . , .
h rr %'
'l
,s
,l 1', Q.g "- '
e'
. .;( Q,.g y s }f,
f
, y A Q* f *J.'T . .-
pr ,,
"4
,/ , g= 1 .. -
,,- i VN
'3' '
g [~/ .$ s-[ it 9 E -- ' ' '" '
h&
W j
l
. 'h [ i j' k MM,,, fk' 'd_
- "4 l y'
- 4. Mfh l)N'h .I'(7-5 4
. 'd.Nf D' ,-
i K
L -d' ' w/ang-?: .i /TF l
(
- - .u.
is - i a -
. na w J-b h, ' '
s'- - .. !'
4 ,- :9 ,. b Nf.[1 n
, -8 x[- q s ,
L(f:.;s-ff l
[ %. ,
- f. .
G ). 'y ,, y * . $ d- ,
l Q~& ,. 8 > ' -
~
g py-
^
% A#l w r
- X, 4. h I
Af l
/
' ,1 ;-o.jh *;I*]/.-] y k4"
's '- ')j _, . +. a=y :C-l',j'j"i 4
/* I' : (.. h ggy,'&'
.4 t
o jT g*
. At$. . , '- ; ' ~
~4 y y' ,ci a
[W1 h. =,.s
,, Y. c.- ,
i$ M *,
- f ;,,](- ,, TT{7.t_
4
. ,h
('.
- 'I,i;.- ; '.
d s '
j-g
- f-_ ),
WN, \
s i.] , %:lt
- s. ,,
-f?' h.f$6~ . ,lf ,v'. , ' ? '
b.,e,-,sj a,a w , , , ,,p d I
s --
, a 7
, ,( _ e[.
,, e 't ' s e , , g, y :
I. , , ,
+
66 ! .f
.{ {l g- b..
.;* . r a. , . >'O 1 MILE g ,s. '
t.. _ __ .
- 1. . 5 -
J -
,L 's . s. . . i. f . . M. . . . s .: . - *:J PERRY NUCLEAR POWER PLANT
'/
MAm8000CK EPICEN g gg gggg G THE CLEVELAND ELECTRIC Intensities for Earthquake lLLUldlN ATING C0edPANY tv BBOOOF9ED bdERCALLI 1 l
IstTatestTY of January 31, 1986 00 0 PELT.100 DAldASE on Painesville Quadrangle l 1 FIELD l i mECOesetAISSAIOCE FIGUEE 3-4 1
Taaveness 1
I e I
I e
f
(
81.5 81.25*
Lake Erie PNPP
/
gy / iv-v iviv-
'" 'V v' V-41.758 -
l ns iv-v 5
iv-v y iv-v 'V-V iv-v iv-v
'V-V V iv-v v
y,y,
- 'V-V V y w- M iv-v IV- v V IV 'V-V V 7-vivlV-Viv iii-ev y-vi v V y
, iy_y iv-vv-vi iv-v v VI Vi g_ y,,
(_. iv-v IV V v V-VI V
Ill av ..
. V'-yi Wv v"c -
,y ND LAKE ,
iy _ y I'y V-VI y
iii-i av IV til-tvl ND l y iii . ,y ,
y iv-v iv - l. v iv-v i iv iv -vi iv sii-iv y_y, y ND IV iv iv iii .
Iv iii \ v_vi l 41.58 - i il-lill ,
iv iii #
iv-v g,g CUYAHOGA . GEAUGA i
1 i
i l
i
\
l l
81*
,, iv-v til- IV 111 ill-IV v s 11:
ni-iv
,y_y,,,"
iv-v IH-ly 'y iv iv iv-v v V iv y y sv-vf 'El IV-\
ni-iv'_ ND ND ND g
'l v CARg y is y{v .
ly Also Available On Aperture Card v .
v-\r I
y ND IV '
y ; Epicenter of Mainshock
, 6 / January 31,1986 v
iv v O 5 MILES iv-v ASHTABULLA ' '
V '
I O 5 KM siv vi v-vi g,y ND z FELT, NO DAMAGE iv ,
IV
-=- - .__. . ..
IV K PERRY HUCLEAR POWER PLANT pNap THE CLEVELAND ELECTRIC lil-tv '
Y ILLUMIN A TING COMP ANY Isoseismal Map for Northeastern Ohio for Earthquake of January 31, 1986 FIGURE 3-5 g(a cco eo/'85-o/
_.. __ .._.m . . . _ . _ _. __ ._= . _ . . _ _ . _ . _ . _ _ _ _ . . _ .. _ __. _ . _
i I
l j a t 5, a 1.2 5' sta l .
41.75* - $ -t- --
o* .
4 c . J.
I CFD .
Q WC2 l l
1 . _. _ . _. R . ! i HTG LAKE g
- ' Q i i l WC4/9 ASHT ABULA
'_._._. --.-.s MIN
]
WC8 I o-Q j O*' I 4..._ + l + _i I
o"'c l l CUYAHOGA GEAUGA
\
l .
I a
4, I
- q. Epicenter of Mainshock
'I January 31,1986
'I I
i o euus 1
e i
o e nu 1
1 g.
pNed PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC i Y ILLUMINATING COMPANY Weston Geophysical l Network Configuration February, 1986 FIGURE 3- 6 I
i
__. . . _ . _ . . . . . . . . . _ . .. _ _ _ _ . . . . . _ _ _ . .-m_m.m_.. _. . . _ _ _ ___.___ _ - __ _ ._. _.__ _
1 i ,
.l f
i l PNPP
{ PER I
41.75' - y -t- h --
WC3 ,
. .J-l Lake Erie r
, you l
I FD -
i WC8/10 Q h WC2
- i, ._.___. R . m.I l LAKE HTG WCt Q
QWC9 l l
'_._.-- ASHTABULA AT KEL
] A WC6 1
U l .
4,..._
+ j g '
i CUYAHOGA GEAUGA I l .
. +
j i
i 1
Epicenter of Mainshocli
'^
January 31,1986
- o a uitts
! o e su
'pNew PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC i
Y ILLUMINATING COMPANY i Weston Geophysical Network Configuration March, 1986 l l FIGURE 3-7 i
- . . _ _ - _ . . . _ , ...~._. .. _ - _ _ . _ . _ . . . _ _ _ _ _ _ _ _ _ . _ _ _ _ - , _ _ . _ _ _ _ . . _ , _ _ _ . _ _ _ _ _ _ _ _ _ _
. = = ~ - . . - _ , - . . _ - - _ . - - . . - ~ . . - - . - . - . - _ . . . - . . - . _ _ _ _ . _ . _ - _ _. ____ --__-
I 1
r
- O g g, 81.25' 81' i l 1 l
! PNPP e toe l
i 41.75' - h h h --
j o*C .
F. ___. _ . _J, Lake Erle tom l
I FD l
l Owcz l
i
. _ . _ _ _ . . . - R .m! j LAKE l '
! l '1 l
\ - - . _
ASHTABULA AT NEL lO 41.S' ~ h i
y _
l-
! j ;
CUYAHOGA GEAUGA l
I i
l.
Epicenter of Mainshock I
January 31.1986 I
i o e metas
, o' s um I K pName PERRY NUCLEAR power PLANT THE CLEVELAND ELECTRIC l
l M ILLUMINATING COMPANY I.
Present Weston Geophysical !
j Network Configuration
, i
, FIGURE 3- 8 i l
I
.-. _- -- . . . . . .._ - . -. - - _ . ._ - - .. - _ . . - . =. - -
81.18W . 81.14W
+ + + +
4 + 41.67N 1
O .
I i
- + + + + +
i i 0 1
e l
+ + C
- O + +
4 i
1 i C !
! + + + + +
4 i c) l l
)
i i
l
+ + + + + 41.63N j Magnitude O 2 0 1 KM
} I f f l 1
3 I I i '
O 1 Mile '
- T 4 g PERRY MUCLEAR power PLANT lpNom THE CLEVELAND ELECTRIC ILLUMIN ATING COMPANY l 5 Distribution of Aftershocks using j Weston Geophysical Network Only
[13 Stations]
,i FIGURE 3- 9 1
81.18W 81.14 W
+ + + + + 41.6 7 N
!O l
1
+ + + + +
F
! e
+ + T+ -
+ + t a - D .
e i
! Da
!O i
+ + + + +
' o 4
l t
i f
+ + + + + 41.6 3 N j Magnitude 0 1 KM 1 Mile O 3 g PERRY NUCLEAR POWER PLANT
'pNew THE CLEVELAND ELECTRIC 4 Y ILLUMINATING COMPANY
! Distribution of Aftershocks Using All Available Data I 5 (VP /V s
= 1.78]
FIGURE 3- 10 l
O r N O
O to O
v>
- ^
v)
X O ED v o v
=
w r
O i--
n a
C33 O '
O N
l j
]
O t -
. L :
a :
i 8 l l I 5
O e O O O O O O m e n m - O (99 30011N9VW 1
g
'pNew PERRY NUCLEAR POWER PLANT l THE CLEVELAND ELECTRIC l M ILLUMIN ATING COMP ANY l
t Time Distribution of l Aftershocks !
I FIGURE 3- 11 I
i _ _ ___ _ _ ___ _ - - - . _
81.18W 81.14 W
+ + + + 41.6 7 N i
lO i
- + + + +
4 i
i r
a 1 l .
, + +g + +
e o
3 1
O ;
i
+ + + + +
m i
i i
l I
I
, , + + + 41.63N i
I Magnitude o 1 KM c) 2 ' '
l i i i 0 1 Mile
- O 3 K
'pNew PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC 4 M ILLUMIN ATING COMPANY Distribution of Aftershocks l Using All Available Data l I 5 [vp/Vs = 1.73]
FIGURE 3- 12
a l
I s
N N N c
C t i
e e
C C C
ce C
01-Feb-86 18:54 M 1.5 02-Feb-86 03:22 M 0.9 03-Feb-86 1 N N N i
0 C
g 6 t
C g a
( - . - . _ .
(
c D
D C g B
l I 07-Feb-86 15:20 M 1.1 10-Feb-86 02:06 M 0.8 23-Feb-86 0:
N N N i i c
& C g e c ,
c e c
/ '
e
( -
e P. f i I 08-Mar-86 20:42 M -0.1 24-Mar-86 13:42 M 1.4 10-Apr-86 0
\
f
F ,
i N N c *e c ,
E 8
e c , e e t *
- c e
a t
B:47 M 2.0 05-Feb-86 06:34 M 0.1 06-Feb-86 18:36 M 2.5 (WC6 not included )
N 6
8 9
C e
e c 2
c c
e e c
- 29 M -0.1 24-Feb-86 16:55 M O.1 28-Feb-86 01:39 M -0.1 gyh esta
'* Abo AvaU s,....,....
o c
K pNass PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC c
ILLUMIN ATING COMP ANY First Motions of 13 Aftershocks o
B:58 M - 0.1 800(o950/95 - OA
N N N
.e* . p
, , a f
ses *
, aos
/g ..i .
e
..~
-( .,3
, ,;. ..' ... , p. .
i.* ,, (, '2 -
,,m,,)
' [.G--
\,/ ,
,, ,,,. .at,. . .
e =',
.e ,,
,, . , ig/
y,, ,
. - %,, - Q, ,
03-Feb-86 11 01-Feb-86 18:54 M 1.5 02-Feb-86 03:22 M 0.9 7 P polarltles 8 P polarities 12 P poli N N N s
, c'.'h..p '. ,,, , , . 5 ..,
. s..,3; ,
( ,f,
' ,,e - a .
,,,e.' p,. =
a
.' .=
.- e e s - e a .
i
_N
. , , ' , , , ,,M,,/
- ... ., .g' , *%g
- a*,
, ,. , .. , ,, , , ,',s ,,
e',',3; r' / **',
, '/
,, ;. /
i , i 07-Feb-86 15:20 M 1.1 10-Feb-86 02:06 M 0.8 23-Feb-86 03:
1 9 P polarities 8 P polarities 7 P pois l
l l
N N %:
.'., " .6
,t 1,4
- e, e
- e *11 P , D e "e ' a,
(,,
p
/', . = . *, . o!
sea s, e a
e a 'e, f,c3
- . - e r . e
- i o
,a 7, ,p
,',, 8esel
/ s.
s P
, 'a ,
- jag ,. ,
. , i . .,.,
., ,;, f ,, ,,F ,a
,'g;w/ .
f \ '
s
,,'.,r;f
,, b I I 08-Mar-86 20:42 M -0.1 24-Mar-8613:24 M 1.4 10-Apr-86 0 f
j 7 P polarities 10 P polarities 7p pay I ,
N N
.s ,
a , .. ,
,.. ..A .,
+ ,' -
a
. 7..A..v.
h
,' e.
(, .),
..g -
, \ p. ,, .
v'/E,,/
t v, ,
i , ',
t gv
,l i:47 M 2.0 05-Feb-86 06:34 M 0.1 06-Feb-86 18:36 M 2.5 iriti 3 8 P polarities 12 P polarities
. (WC6 not included)
- N
. . ... ,.s.
1{i.
M,Q .
- NOT ._ . . . . , , , , _ .
AVAILABLE
- t ?.[ ;'., , , f
/
. , f.,,
/ . ,'
d\\,'[. '..
/
I 29 M -0.1 28-Feb-86 01:39 M -0.1 iritiss 6 P polarities A% t
' \ t- i M
geom *'\gSeU cra
'a '
,sperto g
T.- -.
I
/ j K PERRY NUCLE AR POWER PLANT
, . pNom THE CLEVELAND ELECTRIC
,, Y ILLUMIN ATING COMP ANY of 'T I
Stress Axes of 12 Aftershocks i:58 M -0.1 kritiss RE F M S UOls 950/s5-03
COMPOSITE AFTERSHOCKS (m
t Feb.1.3,5,6, Mar. 24, Apr.10 N
, 56 P polarities CC k o e c ce 2 polarity errors (Station: HLH)
C C o p e
o GEa C
g e et e e N o c C C o
C g oC g V
8 c FIRST MOTION
$e Q N O s : -
/
, Il p- . :~ ~ f k STRESS AXFS f
x4
\
/
/ \
/
N I FAMILY OF ACCEPTABLE FAULT PLANE SOLUTIONS PERRY NUCLEAR POWER PLANT
'K THE CLEVELAND ELECTRIC
]
l ILLUMIN ATING COMP ANY '
Composite Solution for 6 Aftershocks FIGURE 3- 15
COMPOSITE AFTERSHOCKS Feb. 7.10,28, Mar, 8 30 P polarities 00 cg o 1 pol'a rity error (Station: WC1) e e
e t
e C
c N c
oD o Cc D pp FIRST MOTION 8 g P
l l+ -
O- a g
'a Id,, P, f
') STRESS AXES
'b -
.. ~ .W
.' - t I
FAMILY OF ACCEPTABLE l FAULT PLANE SOLUTIONS I
K
'pNap PERRY NUCLEAR power PLANT THE CLEVELAND ELECTRIC l
l ILLUMIN ATING COMP ANY l
Composite Solution for 4 Other Aftershocks l FIGURE 3- 16 l
I
i All Evcnto _
Crcup 1 l
O '
+l$ +lfg ~$ ++?
s
- x x CENTER PolNT C00ROS = 41.646 -81.156 CENTER POINT C00ROS = 41 646 -81.156 CENTER POINT ELEV = -4.5 km CENTER POINT ELEV = -4 5 k m VIEW POINT COORDS = 41.623 -81.070 VIEW POINT C00ROS = 41.623 -81.070 VIEW POINT ELEV = -0.0 km VIEW POINT ELEV = -2 0 km SURF. OlSTANCE (k m) = 8 SURF. OlSTANCE (k m) = :.
AZIMUTH = 110 AZlMUTH = 110 All Events Group 1 O
+,
+,
vr v + +
g5 RY Y f Jf Jf JC Jf CENTER POINT COORDS = 41.646 -81.156 CENTER POINT C00ROS = 41.646 -81 156 CENTER PolNT ELEV = -4 5 km CENTER POINT ELEV = -4.5 km VIEW POINT C00ROS = 41.590 -81 200 VIEW POINT COORDS = 41.590 -81.200 VIEW PolNT ELEV = -2.0 km VIEW PolNT ELEV = -2 0 k m SURF. DISTANCE (k m) = 7. SURF. OlSTANCE (k m) = 7 AilMUTH - 211 AZlMUTH = 211.
I A
'pNpp PERRY NUCLEAR POWER PLANT l THE CLEVELAND ELECTRIC M ILLfjMINATING COMPANY {
Stereographic View of Hypocenters FIGURE 3-17
) USGS Station: GS2
- March 12,1986 08
- 55 GEOS Instrument
- i . ,
%l g Ee - - -
UP i
4 O
1 0.020 -
l f)N) -w-,-- - _ - - - - .
.n,o
, 0.015 -
m 2 0.010 -
0.005 -
~
I f,$,k' . ,. -m----
ff -n.go 4 =_ _-- - - _ -
i I
O 26 28 30 1
1 minute i
6 Weston Geophysical Station: WEL F.;
MEO-800(Z) Instrument y,3,. _,; ._ - =.= wa=
e -- -
~
08:5
,p
.= 4
, . . - . - . - E I. 1 A .f.,
'g; g-
- }. Ns =
PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC ILLUMINATING COMPANY kwg ,,2 8
~
, ; . :- = =~ n \
Seismograms of March 12, 1986 Microearthquake N"
aca en at GS2 and WEL Stations g,Q .
FIGURE 3-18
l 81.18 W 81.14 W i
+ + + +
41.76N + l I
+ + + E + +
INJECTION WELLS E
+ + + + +
O O
O O
+ + + + +
b00 0
+ +
41.7 2N + + +
0 1 KM i
e i i i I i 0 1 y;;,
March 12,1986 K PERRY NUCLEAR POWER PLANT d Original USGS solution Nam THE CLEVELAND ELECTRIC ILLUMINATING COMPANY o WGC trial solutions O Epicentral Solutions of the I March 12, 1986 Microearthquake FIGURE 3-19 i
JANUARY 31,1986 EARTHQUAKE PNPP-1 Reactor Foundation 200 , q pw - ' S s ,' ' ,
O "
, too -
e'->
Horizontal Component -
e lk% . y ::.= . .
f 3 -too _ l __
4
-200 L I I I I _J 0.0 1.0 2.0 30 4.0 50 F ' ' '
g V - 165I1V 100 _
Vertical Component _
i k* WW# ^
-100 _ _
-aco L I I I I _J 0.0 10 20 3.0 40 50
- O 2cc F I I I l
- S- 165I1L North - South 100 -
Horizontal Component-
" I k*
3 -ioo _
Yt h _
-aco L i i l I _J 0.0 10 20 30 40 5.0 TIME (s e e) g (pNew PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC ILLUMIN ATING COMPANY January 31, 1986 Earthquake .
( Accelerograms at the PNPP-1 Reactor Foundation '
FIGURE 3-20
JANUARY 31,1986 EARTHQUAKE
"" - ' " * * ' ' ""d*"
40 North - South Horizontal Component l P,S,Lg - motion m 20 o j i f 3 r p i h '
p i l k
- I
- l l
E i i v)
. F o J u
O O -20 ~~ 1.
-40 0 10 20 30 40 50 FREQUENCY (h z)
Time Window 0 - 4 sec g
' New PERRY HUCLEAR POWER PLANT THE CLEVELAND ELECTRIC ILLUMIN ATING COMPANY Fcurier Amplitude Spectrum O
N-S Component P, S Lg-motion FIGURE 3-21
l l
JANUARY 31,1986 EARTHQUAKE 40 PNPP-1 Reactor Foundation Vertical Component P.S.Lg - motion
- 20 .L
.a e '$
s
> \ ,I
( !
o ! > j c.
'l e
O i i j
-lj
'l 1
lI bp I P i et i ! p '
M I I l a h e
o i O -20 vs
-40 0 10 20 30 40 50 FREQUENCY Ch z )
Time Window 0 - 4 see PERRY NUCLEAR POWER PLANT
.pNo THE CLEVELAND ELECTRIC w ILLUMIN ATING COMPANY Fourier Amplitude Spectrum V Vertical Component P. S. Lg-motion FIGURE 3-22
JANUARY 31,1986 EARTHOUAKE PNPP-1 Reactor Foundation 40 East - West Horizontal Component P.S.Lg - motion m 20 c )
2 l I
/;Y i E '
, 4
.E f i I l h O
g'l E. O !
l i en e
U O
J
-20
\
1
-40 0 10 20 30 40 50 FREQUENCY (h z )
1 Time Window 0 - 4 see I I
PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC ILLUMIN ATING COMP ANY Fourier Amplitude Spectrum O E-W Component P, S Lg-motion FIGURE 3-23 l
40 JANUARY 31,1986 EARTHQUAKE PNPP-1 Reactor Foundation North - South Horizontal Component P - motion 20 2
3 E
- O }l b a.
I i!
h tn j
\
- ) l 1
\
e o
u
-20 MA-i r . . . ,g O
-40 0 10 20 30 40 50 FREQUENCY (hz.)
4 .; F I I I l j ico __ _
- o -_---_- s e
< -ion _ _
-seo L I I I _J 00 05 10 1.5 2.0 1
TIME (see)
PERRY NUCLE AR POWER PLANT THE CLEVELAND ELECTRIC
_ ILLUMIN ATING COMPANY Fourier Amplitude Spectrum l O N-S Component P-inotion l
FIGURE 3-24
40 JANUARY 31,1986 EARTHQUAKE PNPP-1 Reactor Foundation North - South Horizontal Component S.Lg - motion f
- 20 0 m s) i
- r'y ,
o i
- I 0 ,
w )
> j 0 I
-20 4
O
-40 0 10 20 30 40 50 FREQUENCY (hz)
F- 1 I I 7 l100 __ j I
(ion __
l
-noo L I i 1 _J 2.0 25 30 35 4.0 TIME (see)
PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC
% PLLUMINATING COMPANY Fourier Amplitude Spectrum N-S Component S Lg-motion FIGURE 3-25
40 JANUARY 31,1986 EARTHQUAKE PNPP-1 Reactor Foundation Vertical Component P - motion m 20
.c 3
E t 3
i 0 ,
\
h h a, n l 1 n'
) r i l
4 4A l j y h 1 1
\
U )
! E
-20 N l \
l
'O
-40 0 10 20 30 40 50 1
FREQUENCY (h z)
F- 1 I I l
! ion _ _
1 i a
- _. _ .-- -- w l-ion _ _
. oo L I I I _J 00 0.5 1.0 1.5 20 T,lME (sec)
PERRY NUCLEAR POWER PLANT Nem THE CLEVELAND ELECTRIC ILLUMINATING COMPANY Fourier Amplitude Spectrum O- Vertical Component P-motion
, FIGURE 3-26 l
40 JANUARY 31,1986 EARTHQUAKE PNPP-1 Reactor Foundation Vertical Component S.Lg - motion n 20 A c
3 I
)
E !
5 3
C- {,
1 o
- l
- o. O l i A
- yp L
o I l u
o j
-20 '
lhQ O -40 0 10 20 30 40 50 FREQUENCY (b r)
F- 1 I I 1 j ion _
jo f)!
- 1
- -ion __
no L 1 I I .J 20 25 3.0 3.5 40 TIME (s e e)
PERRY NUCLLAR POWER PLANT THE CLEVELAND ELECTRIC
, ILLUMINATING COMPANY j
Fourier Amplitude Spectrum Vertical Component i i
S. Lg-motion
- FIGURE 3-27 '
40 JANUARY 31,1986 EARTHQUAKE PNPP-1 Reactor Foundation East - West Horizontal Component P - motion m 20
.c 3
E s
0 I A btA , M c5 l~ 'l , y n \
(
j- \
E
-20 l%
O
-40 0 10 20 30 40 50 4
FREOLIENCY (h z) r 200 I I I I 1 jico __ _
=:==~
}o noo L I i l _J 0.0 0.5 10 1.5 2.0 TIME (s e e)
PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC ONo ILLUMIN ATING COMPANY Fourier Amplitude Spectrum O E-W component i
P-motion FIGURE 3-28
i 40 j JANUARY 31.1986 EARTHQUAKE I PNPP-1 Reactor Foundation East - West Horizontal Component S.Lg - motion 20
.c I
\
I /
o 1
/
O ; '
v> 1 p\
n c l u 1 2
-20 l
0 -40 0 10 20 30 40 50 FREQUENCY (h z)
, _" F- 1 I i -I s
iion __
k* "Y } '
-; -ion __
-no L. I I I __I 2.0 25 3.0 3.5 4.0 TIME (s e e)
PERRY NUCLEAR POWER PLANT fp@No' I THE CLEVELAND ELECTRIC ILLUMIN ATING COMP ANY Pour ter Asaplitude Spectrum J E-W Component S. Lg-inotion FIGURE 3-29 1
2 PNPP REACTOR FOUNDATION 31-JAN-1986 Damping - 0.05 10
/-
1 I I Ii ll I I I II Il i I i Ii i+
O _ _
m _ _
O PNPP-1 SSE w
M 1
\
10 -
g Y
/ N _
g _ _
o _ _
a w
I O
c 0 I D 10 Q V /
+5 N _
J
.; E.,
-1 .
10 I I I I IIl l I I I IIl i I i l I11
-2 -1 0 1 10 10 10 10 PERIOD (SEC) lltill:8i8 ,
tinis"di
'pNot PERRY NUCLEAR power PLANT THE CLEVELAND ELECTRIC m ILLUMINATING COMPANY Horizontal SSE Response Spectra vs. 1/31/86 Horizontal Spectra FIGURE 3-30
2 MITCHELL LAKE RD.. N.B. 31-MAR-82 Damping = 0.05 10 .
1 I I I i ' ll l I I ii li I I I Ii b PNPP-1 SSE W
W 1 N
10 O
O _
J W
l O
o 0
, D 10 t
-1 N '
10 I I I I Iil l I I I Iil i I I I Iil
-2 -1 0 1 10 10 10 10 PERIOD (SEC)
Ri3IE:8i8
- ini!"di K
fpN PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC ILLUMIN ATING COMPANY Horizontal SSE Response Spectra vs. New Brunswick 3-31-82 M=5.0 Horizontal Spectra FIGURE 3-31
PNPP jo HORIZONTAL SSE 2% demping i l 1 1I I I I II I I I IlilI PNPP-1 SSE l
10 o'
[\ -
l!):'$;'s; .,r?
- ' ~
is S ; .
. i J -
\ b f,>,d(:'\'
I, g ..,
s (1 '. .
, s
- i. . .. V, ,
A...,\. ,...'-
/l$)7 3o \ ,i
-. t t w
- a. \ :r~ , / -
t
\ \\ pa N HL
~
\ /# A,' _
Y.,h, .
\ %.;,'M L -
n g 'LL 1
10 I I I I III I g [ gll ' 'M L l l l l lll
_2 -1 0 1 10 10 10 10 ACCELEROGRAPH StTES PERIOD (SEC)
ML = Mitchell Lake Rose HL = Hoime: Leke ,y ,,ct,,,,,,,,,g,,,
- Lo9918 lod 98 b M
,,,TNE CLEVELAND ELECTRIC ILLUMIN ATINe. COMP ANY NEW BRUNSW1CK comparison with Additional
- 3/3)/1982 New stunswick 3-31-82 5 0 mb Horizontal Spectra 4 km- 6 km MGURE 3-32
0.05 I l l l l 1 7 N-S Comp -
2 Q
l 0.03 _ _
f O $3 s $i i hh@+N: M* F4 ***" "+ =.s l u -0.03 _ -
-0 05 _ _ S
-0.07 L i I I I I l i 0 2 4 6 8 10 12 g iime (s e c) 0.05 F 1 I I I I l s c 0.03 _ vert Comp _ g uim. b'l nNab n L L o l... u . 2 ._ m .,
) -0.01
~ - -
u 77F"lF' ( ITTP T 'e rm & g
-0 03 _ _ j
-0.05 L l I I I I ._J !
0 2 4 6 8 10 12 5N iime (s e c) 0 07 0.05 b I ! I I I E-W Comp _
y 0 03 _ _ i iu !s$i
-0.03
[hf4hi%%h&W h =~ ~E _
ly
~
-0 05 _ _ g
-0 07 L I I I I I __J i 0 2 4 6 8 10 12 hn iime (Sec)
PERRY NUCLEAR POWER PLANT fp No THE CLEVELAND ELECTRIC ILLUMINATING COMPANY Seismograms at Station GS01 Aftershock of February 6, 1986 M=2.5 FIGURE 3-33.
0.10 0.08 [ l l I l l N-S Comp ] h
" 0.06 _ _ 0
- 0 04 _ _ t 0.02 _ _ b 0 "
=^ ;
@ 4W ^ '= ^=
^^
2 _
I ^2 o -0.04 _ _
t
-0.06 _ _ ;;
-0.08 "
-0.10 E I I I I I ] E O 2 4 6 8 10 12 8 iime (s e c) 0 05 F I I I I I l i u 0.03 _ vert camp _ e U '
, 0 0) _ , .
g gg _ i N ^
~
~
^
e -0.01 o
i 1 B' [ I, -
e t
-0 03 _ _ ;;
-0 05 L I I I I I _.I !
0 2 4 6 8 10 12 8 O
V ilme (sec) 0 07 O
0.05 I I I I I E-w comp ) !
, 0 03 _ _
{
m 0.01 i
) -O.01 _ M-M*^t ^ ^~" ,j ihghh,g7 M h W * ^"'#' _
o -0 03 __ _
-0.05 _ _ 5
-0.07 L I I I I I __J i 0 2 4 6 8 10 12 8 kime (5eC) l K, PERRY HUCLE AR power PLANT DNok THE CLEVELAND ELECTRIC O_ ~ ILLUMfN ATING COMPANY
,n seismograms at Station GS02
(.), Aftershock of February 6, 1986 M=2.5 FIGURE 3-34
20 o
v F I I I I I N-S Comp l s+
w 10 - _ y O:w o
- :i:t * == * -
a NE -10 - -
o u
-20 L I I I I I _J E O 2 4 6 8 10 12 8 1ime (s e c) 9 o 7 [ l l I l l v rt Camp ] 5 m 5 - - y N 3 _
, _ r g1 u~ . ,
7r r - Qrofk g ,qu.m .,. ,,,
.. ..r. a, _, . ._ , _ ..
_- B 3
, g s -
I _ m e -5 _ _ 3 o -7 0
-9 [ l l l l l ] i 0 2 4 6 8 10 12 8 O time (3ec) 10 o r o I i i l I E-W Comp l ;
C
=s _
g U0 50: ew=m jf/MgAHhe***e -- =~
NE -s i o "
-10 L I I I I I __I i 0 2 4 6 8 10 12 h kime (SeC)
PERRY HUCLEAR POWER PLANT ,
'p N THE CLEVELAND ELECTRIC !
w ILLUMIN ATING COMPANY Derived Acceleration Record at Station OS01 Aftershock of February 6, 1986 M=2.5 FIGURE 3-35
'O o
o r I I I I I N-S Comp 1 s g
o 5 _
t N E o .f o O a 2 a, w-, wq
. .I l..t nn r ium
'rrr ' yp 71
. . u.a. . . m .u .m _
w' 7T' vr" " ' r' T' 'T
C m ,I o
NE -5 _
!I - 5 g
-to L I I I I I J E O 2 4 6 8 10 12 g time (S e C) 3 F l I I I I y ,,com, l j m5 _ _ y c
U0 O )(,p$l '
h $1 k;?u ? : em-' - = E o
NE -5 _ _ 5 o "
-to L I I I I I J !
0 2 4 6 8 10 12 hN I
Iime (SCC) 20 o
o F I I I I i E-W Comp 1 2 Q
O to _ _ =
%o w
d,';>.+ W e w p w.# r = m = - -
n" NE -lo - ~ -
o u
-20 L i I ( l l J i i 0 2 4 6 8 10 12 h N kime (36C)
PERRY NUCLE AR POWER PL ANT
'N THE CLEVELAND ELECTRIC w lLLUMINATING COMPANY Derived Acceleration Record at O Station GS02 Aftershock of February 6, 1986 M=2.5 FIGURE 3-36 l
l
0 g
O I 5
-20 - ] ! .
I E L e ;
I E -40 _ -
k 3
8 I
-60 . -
-80 l I I I O 10 20 30 40 50 O ensousscv cnz>
$e 5
[ l l l l l ]$ -
o 3 ~E
^
A ltY(Q:l.i'":4:Mi' '!l$7 ,fthRh&$#$$-ty.H&
3 5
~
-9 [ I l l l l ]
2.0 30 40 s.o s.o 7.0 8.o TIMs (sec)
K
'pNew PERRY NUCLE AR power PL ANT THE CLEVELAND ELECTRIC Y ILLUMIN ATING COMPANY Fourier Amplitude Spectrum Vertical Motion.
Station GS01 2/6/86 M=2.5 FIGURE 3-37
20 O -
5 0 -
I n _
.c h h l20 e
a ff I o ql i \
{ }
s l
7 I
d I -
t v)
\e T A
g f i o I
_4o _
f( _
-60
% 'l I I I O 10 20 30 40 50 O FREQUENCY (hz) a 20
@ I l l l l l l$
{e 10 _
_~g 5
- 0 E
^;, y v. - w -- --< .
kf 'y Q & M ).+;; y,- , w :.:L .y, =:u g -
S -10 _
-20 L i I I I i _.]
i 2.0 30 40 5,0 6.0 7.0 8.0 TIME (sec) l PERRY NUCLEAR POWER PL ANT
,9No THE CLEVELAND ELECTRIC Y ILLuulN4 TING C0p*ANY O Fourier Amplitude Sp2ctrum N-S Motion.
Station GS01 2/6/86 M=2.5 FIGURE 3-38
O O
1 I I I 3, i f
{ t i
~'
lH $ p
~
p f 1h p1),41)
\
2 3 -20 _ ,
l J t V'\ ) I
> ; t E l }
l 2 0 3
o g -so _
I
) -
e i
g -40 _ -
J
-50 _ -
-60 I I I I O 10 20 30 40 50 FREQUENCY (hz) i a lo l 8 F I I I I I ls
{ 5 _
_j w
fo 0
-5 _
4cgwy,ym.ex eerge.-
.,k} %ggggg* l
-io L I I I I I _]
2.0 3.0 4.0 5.0 60 7.0 8.0 i TIME (sec)
K, PERRY NUCLEAR power PL ANT
'pNew THE CLEVELAND ELECTRIC Y ILLUMIN ATING COMP ANY Fourier Amplitude Spectrum O E-W Motion, Station GS01 2/6/86 M=2.5 FIGURE 3-39 l
o t
O ' ' ' l i
i b
g -20 _ -
e
( I g -40 _ -
m Io O
-60 -
! -80 I I I I O 10 20 30 40 50 O FREQUENCY (hz)
> n g
! E 7 [ l l l ]$
-5 3 5 E
~
~
1%/P
~~E~! \
< -7
~
-9 [ l l l ]
20 25 30 35 40 TIME (sec)
PERRY MUCLEAR power PL ANT THE CLEVELAND ELECTRIC
% ILLUMIN ATING COMP ANY Fourier Amplitude Spectrum Vertical P-Motion.
Station GS01 2/6/86 M=2.5 FIGURE 3-40 a-. -,_-%_,.____-.p, -
7y yy-p . _ _ , _ . - - - - - . , - - _ . - . - _ _ _ _ . , __ - _ _ - - - - _ - - . _ _ . _ _ - , - - - . _ . _ .
i 0 ,
O '
i E
m -20 _ -
$ f E
2 o
g -40 a
p h
f-i 8 Y
-60 _
-80 I I I I 0 10 20 30 40 50 FREQUENCY (hz) 3' a 3 I I l i 15 o
_g .
l 1
l E
- 3
-5 L i I i _J 2.0 25 3.0 3.5 40 l
TIME (sec) l PERRY NUCLEAR POWER PL ANT THE CLEVELAND ELECTRIC ILLUMIN ATING COMP ANY Fourier Amplitude Spectrum N-S P-Motion.
Station GS01 2/6/86 M=2.5 FIGURE 3-41
o ,
g l l l y
.0 i.
8 m -20 _ -
m E I 5 N 8 -40 _ -
i \
8
-60 _ -
-80 l I I I I 0 10 20 30 40 50 FREQUENCY (hz) 2 3" F- 1 I I 15 2.o _
_E
- 4 Ni j h y & fpI&Nf 3 -1 0 - (
i f
-20 L I I i _J 2.0 2.5 3.0 3.5 40 TIME (sec)
PERRY NUCLE AR POWER PL A'NT DNp THE CLEVELAND ELECTRIC Y ILLUMfNATING COMPANY Fourier Amplitude Spectrum O E-W P-Motion, Station GS01 2/6/86 M=2.5 FIGURE 3-42 s
0 l l l l 0 O i g -20 _
b l _
=
ll v # i z
g -40 _
- 8 Y
3
-60 _
i
-80 l i i I
, 0 10 20 30 40 50 FREQUENCY (hz) n 7 \
.S 5 -
I ! ! 1b t 3 _
_9 E
i i
I n hN I
< -5 _
-7 L I I I .J l 45 5.0 5.5 6.0 6.5 l TIME (sec) l PERRY NUCLE AR power PL A'NT
.pNew THE CLEVELAND ELECTRIC V. _ ILLUMIN ATING COMPANY Fourier Amplitude Spectrum v Vertical S-Motion.
Station GS01 2/6/86 M=2.5 FIGURE 3-43
o ,
O i
-10 -
l 8
~
3 h H 3 (N
-20 _ . -
E j e \
ti i g -so _
j \ -
m g -40 -
l
-50 _ -
i
-60 I I I I O 10 20 30 40 50 FREQUENCY (ha)
^ 20 l 8
m F I I i 15 -
g to _
l ._g
. > 2 i
S -10
~'
l i RWiM-m E
-20 L I I I _J l 4.5 5.0 5.5 60 6.5 l TIME (sec) e PERRY NUCLEAR power PLINT THE CLEVELAND ELECTRIC ILLUMIN ATING COMPANY Fourier haplitude Spectrtaa Gi N-S S-Motion.
Station GS01 2/6/86 M=2.5 FIGURE 3-44
1 I I I $
O i
-10 _
v -20 r
< \a I9
_ l -
-30 M f
v)
Y 8 -40 _ -
-50 l
-60 I I I I O 10 20 30 40 50 O rasoussov cnz)
^ 10 8
w F I I I l$ -
8 t -
,1 s i ! -9 h
-10 L I I i _J 4.5 5.0 5.5 6.0 6.5 TIMs (sec)
PERRY NUCLE AR POWER PL A'NT M LLuutAT c co A Y Fourier Amplitude Spectrum E-W S-Motion, Station GS01 2/6/86 M=2.5 FIGURE 3-45 I
l l l 1 0
- k lh '
ll}
\ Y\
g/
1
< 4
)lfu
> 6 l
~
m -20 _
(t 5t'
/ i g
l-f ll j Af i
- r h
! ]'( l bi '
0 -40 _ 1 -
k, [$
8 h'
-60 -
-80 I ! I I 0 10 20 30 40 50 FREQUENCY (hz) g F- 1 I I I I lG RO 5 _
_E
- f0 3 -s -
fM 'NWh' MhhNf WHFhW#4:**M
-20 L i I l l I _J l 2.0 3.0 40 5.0 6.0 7.0 8.0 TIME (sec)
PERRY NUCLEAR POWER PL ANT THE CLEVELAND ELECTRIC GN ILLUMIN ATING COMPANY p Fourier Amplitude Spectrum V Vertical Motion, Station GS02 2/6/86 M=2.5 FIGURE 3-46
20
, ; l l I O
- a 0 _
l l -20 O f f l
I
, O[ hf h kt l
$ l
_. -40 _
v i -
-60 _
1 l
-80 I I I I I
o 10 20 30 40 50 FREQUENCY (hz) l 3'
" 5 l-1 I I I I lG; l WHb 1 h$ \ Y % k%$\ W $Y?%>>" l 3
-5 _
-10 L I I I I l _I 20 3.0 4.0 5.0 6.0 7.0 80 ;
TIME (sec)
PERRY NUCLE AR power PL A'NT LLuuINAT No coWPANY Fourier Amplitude Spectrum N-S Motion.
Station GS02 2/6/86 M=2.5 FIGURE 3-4~1 l
l l
20 ,
l i i I t O -
G 0 _ g - 8
^
f I 5
-20 _
k h b@ l
} (Vl f; e i g -40 _ -
8 -
i
-60 _ _
-80 I I I I O 10 20 30 40 50 O eneousscv cnz>
a 20 8 I I I I l l 7t
$m 10 -
_5:
0
--Mhdf= % I f? h h h & N p A : m p m :; ::p ;:r :: m S -to _
-20 L I I l l l _j 20 3.0 4.0 5.o s.o 7,o g,o j TIME (sec) l PERRY NUCLEAR POWER PLINT
.pNew THE CLEVELAND ELECTRIC U% ILLUMIN ATING COMP ANY Fourier Amplitude Spectrum O- E-W Motion.
Station GS02 2/6/86 M=2.5 FIGURE 3-48 1
1 I i i ?
O i
-10 _ l g e
v -20 -
- IJ V -
2:
0 -30 -
Y g -40 -
-50 _ -
)
-60 I I I I i
0 10 20 30 40 50 O rasouency (nz) l
^ 10 8 F I i 15
{ 5 _
_l j
- -5 _
~
yi l
N ,
k l
-10 L 1 1 J 20 25 3.0 35 TIME (sec)
K fpNom PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC ILLUMIN ATING COMP ANY Fourier Amplitude Spectrum v Vertical P-Motion, Station GS02 2/6/86 M=2.5 FIGURE 3-49
0 i ! , , g t
O i
- x
-10 _
E i 8 l 2
3 -20 Y
'I E
m l 2: ,
1
-30 _
h w I ,
i 4o '
40 -
N
-50 _
-60 I I I I 0 10 20 30 40 50 O rasoussev (nz)
^ 10 8 F I I 15 I
t
$5 -
) 3
-! I M k 3 -5 _ l'
-10 L l I _]
20 2.5 3.0 3.5 TIME (sec)
PERRY NUCLE AR POWER PL A'NT THE CLEVELAND ELECTRIC Y ILLUMIN ATING COMPANY Fourier Amplitude Spectrum N-S P-Motion, Station GS02 2/6/86 M=2.5 !
FIGURE 3-50
1 I i 1 5 O i; m -20 _ b
) -
e E
o 5e /
-40 _ -
($
d
-60 . -
-80 l I I I O 10 20 30 40 50 O FREQUENCY (hz)
^7
! 8 5 I I I 1 .5 i D 3 _
E i3 '
-3
+4V' MWbuweew!
e i r
< -5 _
_ l
-7 L. I I J l 2.0 25 3.0 3.5 i TIME (sec) e PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC ILLUMIN ATING COMP ANY Fourier Amplitude Spectrum E-W P-Motion, Station GS02 2/6/86 M=2.5 FIGURE 3-51
0 1 I I l C O i g -20 _ _
1 g
N L k 1 >
-40 _ ,
i 3
-60 _ _
l
-80 I I I I l
0 to 20 30 40 50 l
FREQUENCY (hz) l l
- 7
$5 t s
[
l I I 7G E
I i d
< -5 _
-7 L I l l ]
3.5 4.0 4.5 5.0 5.5 TIME (sec)
PERRY NUCLEAR POWER PLINT M LLUM N ATING COMP ANY Fourier Amplitude Spectrum Vertical S-Motion, Station GS02 2/6/86 M=2.5 FIGURE 3-52
o l I l l 0 0 J i
-10 _ _ P I
2 3 -20 _ f _
E
-30 _
\ l f f I
= i 0 -40 _ _
N
-50 _ __
-60 I I I I O 10 20 30 40 50 O ensoussov (nz)
$ l~ l l 1 15
$8 - '
> > i -!
-5 _
l
-10 l_ l l ) _l 3.5 40 4.5 5,0 5.5 TIME (sec) l l
PERRY NUCLEAR POWER PL4NT THE CLEVELAND ELECTRIC ILLUMIN ATING COMP ANY Fourier Amplitude Spectrum N-S S-Motion, Station GS02 2/6/86 M=2.5 l
FIGURE 3-53 I
l l l 0
~' - -
, $h / ! !
2 u A g -30 _ N@ l v>
-40 -
-50 _ -
-60 I I I I O 10 20 30 40 50 O FREQUENCY (hz)
^ 20 8 F l i I 15 g to _
_g 3
0
-io
%i
/ hW M l
-20 L i I I _] ;
3.5 40 45 5.0 5.5 TIME (sec)
PERRY NUCLE AR power PL A'NT DNp THE CLEVELAND ELECTRIC Y ILLUMINATING COMPANY Fourier Amplitude Spectrum O E-W S-Motion.
Station GS02 2/6/86 M=2.5 FIGURE 3-54
1 Damping Rstio s 5%
10 C l l \ l llll l l l ! llll l I l ~-
1-31-86 M = 5.0 PNPP-1 ~_
0 10 A h
M O
-}
s l 10 _
=
=
c -
- Z
+
~
-2 o 10 s -
O I --
J Z __
2-6-86 M s2.5 -
g _
2-3-86 M = 2.1 _ ;
-3
=o 0 0
,0 N
a E
- t. E Z
)
l
-4 10 \\ 2-1o-86 u s o.7 Z
E VW _ 2-7-86 M = 1.OZ E
j
_ 2 8 6 M = 0.,5_
-5 l 10 i i I I illi I i i i l t il i I I
-2 -1 0 10 10 10 PERIOD (s e e)
,K PERRY NUCLEAR POWER PLANT
'pNom THE CLEVELAND ELECTRIC Y ILLUMIN ATING COMP ANY s Vertical Component Response Spectra Main Shock PNPP-1 Aftershock - Station 001 FIGURE 3-55
--.m - - - - -
1 D:mping R:tio=5%
10
= i l i I i lil ! I I I I I 11 i ! 1 2
h
~
1-31-86 M = 5.0 0 PNPP-1 z \NW v
=
2 r o
-)
m 10 _ _
N Z Z c -
C -
2-6-86 M = 2.5
- -2 \ l
~
O 10 _
- -86 u = 2.i N _
o C Z l _J -
2-10-86 M = 0.7 -
~
LLI 2 __
h 2-7-86 M s 1.0
\-
O8 M
~
LLJ 10 '
\ / -
C./) C \ Z 1 2 2-2-86 M = 0.5 _-
-4 10 k- I Q
~
E = 1 E
N E i
-5 10 I I I I I Ill I i i l i 1I1 i I i
-2 -1 0 10 10 10 PERIOD (s e e)
K, PERRY NUCLEAR POWER PLANT
'pNew THE CLEVELAND ELECTRIC V. _ ILLUMIN ATING COMP ANY N-S Component Response Spectra Main Shock PNPP-1 Aftershock - Station 001 FIGURE 3-56
1 10 CC ""8 " '" * " 5'
= 1 1 l l 1 Ill I i ! I I t il I i I r.
2 O 2
~~
~
1-31-86 M: 5.0 PNPP-1
)0 \
Z Z
' -1 10
% E E C - -
__ ~_
2-6-86 M = 2.5 -
>- 3-86 M = 2.1 -
~
-2 0 10 a =
s a _
w : :
a _
a -3
( .
3 w
en 10 _
/,
.u MN -~ N ~
=
0,_ -
~
2-7-86 M =1.0 _-~
^
2-10-86 M = 0.7 _
~4 2-2-86 M = 0.5 10 N
x_ w-
E x E
-5 10 I I I I l i ll I I I I I ill I I i
-2 -1 0 10 10 10 PERIOD (s e e)
K' fpNew PERRY NUCLE AR POWER PL ANT THE CLEVELAND ELECTRIC Y ILLUMIN ATING COMP ANY w E-W Component Response spectra Main shock PNPP-1 Aftershock - Station 001 FIGURE 3-57
l 1 !
"2*"'" "*"5' 10 i 1 i i I i l 11 I I I I I i 11 I i in 1
1-31-86 M a s.O PNPP-1 _
0 10 A >
- 10 '
N r
~
l
_ 2-6-86 M = 2.s -
C -
>- - 2-3-86 M = 2.1 -
10 8 \-
E E m = =
LLJ _
2-7-86 M = 1.0 _
Q - -
o -3 O 3 LLJ 10 s o T x W
m E E 2-10-86 M
- 0.7 _
2-s-86 u=-o.s '2-2-86 M. o.s -
_4 10 ww z
m
-5 l 10 i I i I i I ll i I I I I Ill i i i
-2 -1 0 1 10 10 10 l PERIOD (s e c) g, DNom PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC Y ILLUMIN ATIN'3 COMPANY Vertical Component Response Spectra Main Shock PNPP-1 Aftershock - Station 002 FIGURE 3-58 1
}
Ocmping Ritine 5%
}Q
=
l l l l l lll l l l l llll 1 I l ~-
_ ~_.
- ~
1-31-86 M= 5.0 PNPP-1
~ ~
,O
= xV -
/\ =
=_ : --
c -1 10 3 2-6-86 M = 2.5 E 5 : :
>- - 2-3-86 M= 2.1 -
! * -2
~
o 10
=
O s Q _
= -
J Z 2-7-86 M = 1.0 ~_
LLJ _
l O _
Q -3 h (9 3 10
} //
s A '
2-2-86 M = 0.5 N
~
- c. : :
~
~
4 2-10-86 M=0.7
=
, s =_
Z 2-5-86 M= -0.5 /- Z 3 10 l i I I l l li I i i llili ! ' i
-2 -1 0 10 10 10 PERIOD (s e e) g,
'pNap PERRY NUCLE AR POWER PL ANT THE CLEVELAND ELECTRIC Y ILLUMINATING COMPANY
% N-S Component Response Spectra Main Shock PNPP-1 Aftershock - Station 002 FIGURE 3-59 l
OcmpiIg R; tis = 5%
=
l l l l 1Iil I i l iilit i i 1r -
/
. U}
~ ~
1-31-86 M = 5.0 PNPP-1 10 N -
Z _-
u -1 e 10 _ --
N -
g _ -
- -2 g 10 -
a
= N _
/ =
1 1.1J ~ _
O __ 2-6-86 M = 2.5 _-
o -3
~NN\ W O D to 10 _
- j -
x -
M = 2.1 -
2-7-86 M = 1.0 _
-4
)Q 2-10-86 M = 0.7 E 5 N E e M= o.5
% 2-5-86 M -0.5 -
10 I I I i lill I I I I l ill i i I
-2 -1 0 10 10 10 PERIOD (s e e) pNew PERRY NUCLE AR POWER PL ANT THE CLEVELAND ELECTRIC ILLUMIN ATING COMPANY i
E-W Component Response Spectra O
Main Shock PNPP-1
., , _ . Aftershock - Station 002 FIGURE 3-60
- O I
I FIGURES SECTION 4.0 GEOPHYSICS 1
O I
1 I
O Weston Geophysical
,84 cr+ + 1 T WK WV 2< aggye em o!W(
9
- m%%A?F ;VtM g
- S < @ L *y. e
' "r e C 3 D Q:q'b w 3GRENVILLE
,~g o Vg 7,',
yy@ c e sy~
~
g % PROVINCE wamn sg o1 O
oe
,p i
g 2
_L.39
) I" ).'_^ '
81
.,f I ~ lp 4" y} ,
0 60
.L 0 70 y
?
Contour interval: 100 nT from: Lucius,1985 g PERRY NUCLEAR POWER PLANT LLUM N ATING COMP ANY 1
Residual Total Intensity Aeromagnetic Anomaly Map of Ohio FIGURE 4-1
's k
~
d I'
. _ _ .1 i
' ~
D
,, A.
4 ,j0 g
~
1J i 5 h ' o ,_ <
\ ! ~
gh o _.o... .geo;i .
~
I
'. AKRON MAGNETIC BOUNDARY .
qf $ ' -
f m i
! TO v/* l
~ . - ; .
o'o
\
t' m O \
0,5 . l
.I _.
5; & Y
,9
, 0 l
\1 l
.' i
" ~
, p Y_ -
~_ - ~_-~ ~ - -
from: T.G.Hildenbrand and 3 THE C EVELAND ECT IC R.P.Kucks,1984 Y ILLUMINATING COMPANY
[3 Contour interval: 50 gammas Residual Total Intensity Aeromagnetic Anomaly Map of
? litiriittiilisis Magnetic trends flortheastern Ohio FIGURE 4-2
I m
m/.
s ar W /e%
T d
,y_
3 ____ __;1 Q C L)<1)a-vrkuf -4r e
h
.-.w-~-
, - e/ I e
0 _ _
, f J
J i
( L APERTIME TT
- f. p y i
ct TM f'
- I Also Availall1" Or
. Apertur-
" % i i N Epicenter of Mainshock January 31,1986 II Illllllllgggggg II llllllsiggggggggggggggi
- lIIIllllllllllllllllllllliggggggggggggy ASH a A h 5 KM AKRON MAGNETIC BOUNDARY from: T.G.Hildenbrand and R.P.Kuc k s, 1984 6 . . . . ._
Contour interval: 50 gammas 11111tlll1111111' Magnetic trend
[ y,
.pNam PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC M ILLUMIN ATING COMPANY l Residual Total Intensity i Aeromagnetic Anomaly Map of the Leroy Epicenter Area ;
FIGURE 4-3 f f - - _ _ -_ --
B5 7%d'
% ~%
81.5' ll .
l . . ,
. 4 i
/
'f ' i [t ' PNPP
. ',:. ;,y l
- ,s x, ,.
, , . , ~ i
,, s. ,s x
.o,
..~ ~ ,
~~
_.; s'~-.. w ,,,. ; ,,
.. .,f'< s, -n2 . .*4 2
- t - - ~ . - .c s,.,;,,
.s . ~ty c : N.x
- e. . , , : a
~
x
' ~
s- ,~.s 41.7 5 q - n r.,'.4 ~~ < ~
~' , .. -
- , , '
- l; q.'. _ -no l ~ : < .: .
-pj s N ~. .
y ;..
g ;- 4 :..
y i.~~ ~.. .s , f ~ :. e i
e,s x = ~.~. <~ : ~.~m. .r _. ~ ,~ . v, ._,4, -
,; .+s . _
- w. . ~ . ,
-o s .. . : . . 1 xe
,s
_m c _~:.g
.On~
eL ' m n/:
x o
~, m:~2,m - :~ :.s , , _ , , , t:
Lake Erie n:
c . , i. . : . x n -
1 := ,.-
s, 2
, w%'7 ,.
4, '~.' e :w. ,.- - a.
e k.n' pe,3.s . : -~.-.n +4
.z~ . [m *' ~,..
<-/ N **4.' 7 s'w f 4 ' $w
- Q' !'w. . . , s: _--~
- at,-a : .:
s, ;%'.
K.i i
,s,In,m-:;/.:+.. -: ~ c: w.In,,~z+w: -tz:b';, ;rm.
- ~ . s ~ ~ . ~ ~
u ~, L s,. . ~ , . p y%
4.~~4%
.. %:m:., , .., .~.
. . ,,. ~ ,.
. _.. ~. .t . . -.,g
.,n ;.~ ,s-,.t,._~-
j .
4 ' .N..gs 6
- C i L A K'.E,d' .m s &v~6.,'T*,, . , .,
fi' . ', -
M' t.
~<
, _e)U N'N 'c . . N I ' . * '
.r[ '" ,,.,: '!.',',.e:
e d. ' ,;2~. . , -' ' ' , e
,s
,ss ! 4,.,
o t ,
m s -o
\ t a
e't
- ~,.-b s *-
.'M
%~~- M.
~-
- ~ *_ 6 a
NgO 8%
g
~- ~ ~ ' + ~ , , ,
0 d '#4 e ,#,e, 4,' .h %s g
..x x kN, ,
+
, -s
.s
,p
..t.'.
- NN~? w N ' ,
. e. 4f
?- 'x ~; ~.*- 2..>. 4
% ' - , , s.
! ,,A 44N~ , x NN..' , ~.c~N. N s x' s
! ' ' b,. '- <f, .
a J , ~.' . ; .' L . {c< ,' ' ,..x ,t.-
, ;q i* -a r q x2
~ ~
..,~ ~ .;. g ;-
,xs ,'Q... %.' ~~ f 4~t'_ s N,e y' s. '., , * ,.
,/ ,,* : ~
7 ,t- , <;
--- n t . +3
. . i_ . .
e, n , '~ f, ,, ~ . ~;N, . +.~.--~.g_
<. ..~
- u -- n. - u n n -~w
,,. .*~4 C% , ~s #.
s
%a ' { .s I ~s . ..s - j,"
.N
~,.
s.
N ~ ,, -* J, '-
- 6 e
- t. _x;
-( x, <pm. . 3 1n- n. 'f .; ~
{ ;<. ,;;
t .
L:s-;~- ,,
,N~-
- n , -.. :.- ,, . V v .* . *
- ~.. n. -.
- +- . . ~ . -
. .. ~ . 6 ., ,.
. a. c; -
I
. N ;~ y :? . .: . :. c ,. t.-
. ' _.~'
s ; ,~' ,,f.,. ' .,. ..
' . ~ /.- . ,
41.5' - '
'.',-,','. l' ' -
o Lf',- ?f, ,#
, ,g - ,
- e. '
9 d
se . --
- ._a -g.
CUYAHOGA , GEAUGA l
9 I
I s
ei.
t
.s
~~ -
- y. :~~w~r
. s. wv% *T."
- y - .
pn)p4':;-N .%c'- u M.e.vx. mwe':4,x
. w.s s#.
l TI APERTURE Y
$$w~a!h.~~?nl?50~.l...~..
w.-g %m .w%
n ,. 2 : - 1 l Q' g m~. h w ? . M k $.Mc(A,. . .@w :$' &~8 0 2. ,s,!Also Ava%le 0, s
js3 Shs ~
n .~ .
w' ~ . i fh:'k;% EM,Q [;->$[jk'x-;z,',Q. khC-:M_ 'kT['f APerture Card
- Nk N
M l yty!Q->:, :,Q n s .: x. .~ ,0,.,
cs-
w.- :m' a:., ,y < l3,4. ~ . .r a" l
- ' :M' ^u; '=
s
'fa'-4;;,:'9':v:lg
. '2': 4 e
.L.y;,n #
-: !'i' ' y" : .- p ;. '; p . '.
m:
y yOscenter of yyin hach x~ : 4.;e.g .,,(3
'f;L -:. .
pq3 Q.
x,:~ .2 -#.e. c, .u > Jr . j a?
- 9,L,
,s .8, '
Janua O'*1986 c; ,
n -; ~ -- f. ~, ;w. .~ , ' , -x 4
- s.-O
- y i~. q,- s q : . , . :.~~, , - ,!,s ::>:j -.. ,.~.R.n: '; ' : ., . i p
. W ,s.;-&. ' e ,' N:
y.
.~
- h ! O 5 MllES
[N'*W~:$:S:'!:'&.'. - .n -:n *: . ww w '.kQ'l4f-g H T A B U L 4
- t :..r e
.c.:s':n:~s:.r;: 4,f . - A ,' .xf'.cm.
n tsx y; i
' O i :.w,q.~ < i *S3=,'e~j. k sx',l1.:
- se . '. ,s qa-f l'Q; 4 x
,O:.
x s oA.Ns x'
- q. ; .ys, s' 4
N~J s ,L.'-
qs ,a -s 's' *e m
.,g ; Q '- 3 : V n - ::::
s
,1
' ,( .f.'* ,
?'. u,. '.f'*'? ?
s2 xx1-
- %_4
~ ~ l l 7 :,-- - * ~~ j~ ;_ _
. , -w__~~
g,y A. -l' . * ' s.
- ,,, .p* gx; s ;
- :.,
. ' ~ , .
.~; ;,.
- ~ s .:.
' ?' ,,-
',j. g* .
' ,2 :.'
s ....; ,
. v .*;;
ax
. f ~~ -t-s 7:~;.i x . ._
~ .;- --
~ s. . . <; ;%.. :
K
~ .
,, PERRY NUCLEAR POWER PLANT
., ... e DNap THE CLEVELAND ELECTRIC M' ILLUM1NATtNG CCMPANY t
heromagnetic 2119 ht Lines FIGugg
(
M Oloa5 o1%S-og
r; mm 81.5'
,Y^
E RNPP f ,
41.75' - I 5.
- Jh MI ,
p3" i e p g g'1 x :s w
O lhW
jiv :
LAKE ,
~K # + .
a
'd j
i
. .a 41.5' - 1 CUYAHOGA , GEAUGA I
I
81' O
h.
.f 'Uf'*{'9',.si,_
g JJ V y%l?Q;;; gyggqmn%
lh a7, Y' q -, l 5 ~
- /f Also Available 68-1
~
- "O Aperture M j
N. .
g'
. ,k
~
- NNI b Epicenter of Mainshock January 31,1986
- e. . ZM:'Ad.14I\
Jt s
l N' " -ll [U , '.f!'JQy !
O 5 MILES
%'Q'L
\\,%(A /f SHTABULA -
.- Ly 0 f KM
. I i
Contour interval: 2,10 & 50 gamma K
DNpp PERRY HUCLEAR POWER PLANT THE CLEVELAND ELECTRIC l
M ILLUMIN ATING COMP ANY Aeromagnetic Contour Map FIGURE 4-5 !'
%(oOtoR6 D/36-Q Q 6
81.25' 81*
O -
l,,,
- u '.
- . x. .
41.75' - ','A , ;[
s;,r.%
~ A: y >
.-# 7
~
? y .
..' 1 .s.,,
u ..e m v w*_ . . , . ..g:
- s .,,u :). ,
,~ , -
.,; y 1, b
,..,',y.. .. .-.
w
-- *: . s
'J j+r, .r. . s gvw. O,9 f
-g y+ ac;.
-~~ce .
s n
,, $ .7 J.l_ f.$& M f
~'
- ,- .T ..{ s' 3+
.Q+. '
i - ;s k f_ Q: 4 fN ;$'f,c g~-
g
- x. , {;g;s,lyffwh( ;;r'~ ~~ e .
a :qe+ c;
- c g
- ' ?y l7
'- g ' g -/ -
f _
. , , , / .
LAKE -
- .~ ^ ,'
~ ' ' ' '
j
-- ' h' .l.
N' l
O e4ups SHTABULA 56,a950 56,900 e 56,850 '
l:: } l :<J,800
, 56,750 41.5 ' - _-- -
l .
- 56,700
. 56,650 56,600 GEAUGA l 56,550 ,
56,500 Contour interval: 50 Gammas G
7/$
Epicenter of Mainshock January 31,1986 PERRY NUCLE AR POWER PL ANT THE CLEWLAND ELECMIC
~
_. , ILLUMIN ATING COMPANY O 0 6 MILES Color Presentation of Aeromagnetic Contour Map O 5 KM FIGURE 4-6 l
l
84*
O-4t+ 4 7- g 1 .
3l
% ]b W ' U -
J -
d7 c
5'b VP/M
/T l.re N
)
9
/ Y o
? , k
-e GRENVILLE -
g .., .,
g ny, s
~
r PROVINCE , ;
01 c
o f>)fTh(% ;
el v/p
) b f
~
I O rM [ .
h ( h39' L 0 60 DI Contour interval: 5 mgals from Lucius,1985
's= THE EVELAND ECT IC l ILLUMIN ATING COMP ANY l Bouguer Gravity Anomaly Map of Ohio
]
FIGURE 4-7
+ ..
4- / .
yi + . .
- g. . c.
...)-.
s . I o - ;p W) f. *
, N. J ,,,- , 1 . ,
~
o
~
.f
.- ~h
- ~. /.
. . ':...h. ,.
^
.N
~-
.i Q] ... g '.
(
)' f..: .
,,p.; * ,
f.. ,.: :i d..
/.
- k. ..
ww . .o
.i
. cc
,.l .
h
~
O
- - ; 5,I I- ,
.>. ?
"d .l
\.
x '
5 e . !. b .2 .
e.
'($> )
.~.'.>.c i.
.o
~ -
> i O
7::m. :. , . ' . .1 ., i i_.
- ( h. l.
V./it j. :{' :;..V/.'.iisi' S.
l gb .)AQ'4(bldl.. .]f_ "n=~. :m . ,;_ ; ._:-
from: T.G.Hildenbrand and ,Q PERRYN CLEAR POWER PLANT R.P.Kucks,1984 M ittuMINATING COMPANY
) Contour Interval: 2 milligalc Bouguer Gravity Anomaly Map of Northeastern Ohio FIGURE 4-8
-~~ .
1.5a '
a 1.7 5 5-o u
1
, Lake Er* C o
i r g Q J o < u e L/.5
.t G...-
6&< k. Vi g
, so % em j eneA
'~
! i
V i 81* ,
1 i .
)
, o
_J. o TI APERTURE
- CARD o o Also Available On p '
Apertur,. r,
' o
,-.]
Epicenter of Mainshock O
. January 31,1986 O O O O O 5 MILES o A HTA lbl A ; '
0 5 KM o0 0 o O
, from: T.G.Hildenbrand and R.P.Kucks,1984
~
0 O contour interval: 2 milligats o' o ,
o OI
[ ;
) g
'pNew PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC Y ILLUMIN ATING COMPANY Bouguer Gravity Anomaly Map of the Leroy Epicenter Area P
FIGURE 4-9
%O b R'50136 - (D7 -
l 81.5 81.25' I
l PNPP
~
./
.f 41.75' -
h *, * . ,
. .i
'1 Lake Erie .
i
- .r
. N s .
LAgg .* '.
,L a .
.l.. .
.a . .
s p
41.5' - . . . . . I l
CUYAHOGA , GEAUGA I
1 l
t l k
\ l i
i
l 81* '
. . 1 1
. \
S -
y 7 ,. .. . . . . .
. . . .. TI
. .. . . . . . . . . . APERTURE
._- ' ~ r - ' l CARD
'> p.' i-. _ __ .. .. . . . . . .
_ j--_ __ _; . Also Available On.
/ .
Aperture Card
/.
- \ . . ' .
/...
Epicenter of Mainshock
/ ..
J January 31.1986 O 5 MILES A S H T: A B U L A . .
O 5 KM 0.1 mile station spacing
0.2 mile station spacing
-=- - . . . _ regional stations K
'PNa p PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC M ILLUMINATING COMPANY
. 1 Gravity Station Location Map l
, t FIGURE 4-10 S La. O ls # 5 O I s 6 - o El '
~
8 1. . '
, - a 'q G 5/ i f y l[(
/
(l:. '
o p
o
) 5
81' E
s ,. _. APERTURE
^
s A, CARD
, % 'l c pggpp h',;. j Also Available On i
inerture Card
/? d
~
\
p'W r g'/ q N ( '
rik~I. J Q
[ {/ Epicenter of Mainshock January 31,1986 S TABULA $""
O 5 KM s
. ~
Contour interval: 1 mgal t
NF A PNpp PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC (Y ILLUMINATING COMPANY 9
b O' g
(% simple souguer Gravity Anomaly Map FIGURE 4-11' g Qocoa60/s5- 09
[
MAGNETICS (GAANAS) o o o o o o o e a n m n - a ~ m e e . m
. . .e .e e e. m. .
m m m m m m m m ON l i ~l l I l l l 9
-E W i l- + +
I l
s
> m o- 3 l
.2 7
_ id
- 5 !
0 I k 9 uJ 3
o- -o j -
- I I
, g_ - - - _ ,_. _._4__ ___
I
$ h-~'l
]+
g 0 ". I 5MyJ 8
- s. .
a
- g I2 ! :*
- + g, 1 +
3 ._.
f.' 53 i mW 2E i 04 !
-N h
=! .
U 2 J !
~g + ;
+ :*
~@ M t@ ,
$ s e 6 ; 3
- O 1 b -S
- 7. . 3 e
9
-Gi 9
-e 9
i a i i i $
- e. e. a. m. e. s.
OM) A.LIAYWD PERRY NUCLEAR POWER PLANT No THE CLEVELAND ELECTRIC ILLUMIN ATING COMPANY j Gravity and Magnetic l Cross-section
. Through Epicenter Area FIGURE 4-12
81.5* ;
v o @ @> o '
......- oD o@ o
/n g g <. g ,. ~,
go 4 ' 5. _
O g o
~-
l e m@@.
e:
o We , ]- ~
bm
l 81' v E
'NPF M f N
'd O J) n o o O' APERTURI CARD 3 I b~
i
~, Also Available Os Aperture Card a- \.
)
. _./J W
y Epicenter of Mainshock D . ' / January 31,1986 O
7 0 5 MILES
/
SHTABULA : -
O 5 KM i
Contour interval: 0.5 mgal 7 . .
'O .
@ PERRY NUCLEAR POWER PLANT h.UMIN ATING COMPANY O' '/
i i Residual Gravity Map
[g' (O s FIGURE 4-13 l gaotoR60/36-/Q _
W E o
m I
-q SIMPLE BOUGUER GRAVITY VALUES V _
O OBSERVED
+ CALCULATED
~ G Cil C 9 4 e w
0 b n.,,.... .. ,,, -
u D
EPICENTER to h i biiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii'i83'''''''''''''''''''''''''''''''''''''pjh*0 DISTANCE (KILOFEET) o';:32x13XXXmm rms a a u m a a m a n a a a s u a a a == a m a a u m a un a a a a a a ma n a a a a a a m m a un a n u m a a a rm man as zu a a a u m e n a a a a ma n a a a a a a a n a a m a a a a a mm a a a m a n, .
O 2.75 g/cm3 ij _
N O e S -
2.7 g/cm3 2.8 g/cm3 I
2.7 g/cm3 8
o.
O m
.. e l l l I
..**- + +
1 4 a .. . s o. Epicenter of Meinehock-7 - _ . .J I
W sen or,si,iese t I i
E 6ase l - _ u_ - l e ! I L __ _ _ _a .........
I i
i
. . . 4 l I
t [--___ .
No PERRY NUCLEAR POWER PLANT l g g y, THE CLEVELAND ELECTRIC sava sea l asavea '
I l ILLUMIN ATING COMPANY e i I i O SRM Gravity Modeling Results FIGURE 4-14
_ __ _ -._____ _ - ~ , . _ - _ . - _ _ . - _ _ - . . _ _ . . _ ._ _
h'k t}slQ l((,5 ' f ^ '- ~ - .. ..
I f \
Tsk 's sk k,, ,- si- N -
.i
%,, f I' _shf
- B g g
' ' '4. sy i
. I , -J '
h \ 'f \
b~M~~ '
~
--** ~ ' A '
- - .'_..':..i'sks's)~i- ni-k-lr/)T
< \s[~ -
,e
..~
z n l \, ~ -
~
i.,s's
$'i '^
T 4 '
~
..klf 1 , , . - ,~.\
.. r p ,
, ,v -
...x . is :! k t' , -
y
, , ' - d t-r q g
Ic i
- Ag s s. .
~
I ' t /k ,~/ .kJ/k / o l' *g v p \
l ,' c r.-M Y. ^ g'r y 4.! a , 'a\ ,y
' 'f ,
~
M5*wch=pW':.'g' -
^>LY 9 1 gm T, s.s ', v ^ 4- %'
/,,' ' y' u_ J s r'
?,g,
, , 17 <si T .1 Ih Y 7 d
'v M
'l
~ '4tr- ' . !h'p
(
4 g V
y3 4 gI/ V kk ,
a 4 '"
- 2. I ~ 39- _ _F ,
-f y~
' ,[ , , . - ~ '
7 1% h > y b L yi A/ /
.7 L-A LPv t- i, ',1
., e ,
~3
,, _k g - s, N
,,y A
f q 1 D !
l- Tl \ '\
i sc u n i y u --y .4- '% r -_ __ as' ,
_ _,.1.7 I I
)
,g .
'\ '
'} [_ _ _, r - _. -- w
/
\ 1100 M.Y. or Younger llIl))Il Rif t Zone
}. " >l 1200-1500 M.Y. l. -1 Transition Zone
[, Q,'s] 1800-2500 M.Y. l % . .,,,, l Orogenic Trend
~f'f' 2500 M.Y. or Older af ter: Lidiak in Hinze et al.,1986 K
'p N ap PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC ILLUMfN ATING COMPANY p Principal Basement Rock-age L./ and Tectonic Provinces FIGURE 4-15 l
N
+
/ .
+ .. f
+
\ J
==
s
. "s. *%*
.=
o
.p* **~ t
- o. + .+ n' =
. 4 a +
,, g O -
..+ -
4
, .* + +
.. . *+
4 + , .
s .
=.
p^
~
- Granite a Basalt a Rhyolite
- Trachyte PERRY NUCLEAR POWER PLANT
+ Amphibolite 6,, ~ ,, ,, 18, cosy,uso stec1,ic
'"""'"^"" ' "^*'
a Hb/Bt Schist O + oiorite - eabbro Besement oritt tienotosies oc
" '"# ^#$ "' * * ""
+ Granitic - Gneiss o Sedimentary Rock ercuas 4-te
n, 81.58 81.25*
/ N 41.75* -
~
I
" ' ~
Ni .
[ <
.1...dava% ,
81*
A p 'N
/
/
/
- c. k N.'H
~
PNPP I 1
i,C 0
m APERTURE CABD
[; _
{,
l Also Available On
, Apertiere faral r
S : .
.-' .4 ._!
Epicenter of Mainshock January 31,1986 1 0 5 MILES u) TABULA :
O 5 KM CJ
/
/ O/ ,
~
Contour interval: 1 mgal (0 .L7 l l
l G A'
,% PERRY NUCLEAR POWER PLANT C 'pNew THE CLEVELAND ELECTRIC 8
M ILLUMIN ATING COMP ANY Simple Bouguer Gravity Anomaly Upward Continued 1.000 Feet
\ .
7 FIGURE 4-17
% olp%5D %5~ { '
i O
i 4
i l
i E
1 t
FIGURES SECTION 5.0 GEOLOGY O
i I
1 1
a i
j l i
i lO 1
Weston Geophysical l
. . _ _ _ _ _ _ _ _ _ _ . _ . . _ _ . - . _ . . _ . . _ . _ . . . _ ~ . . . . _ . _ . __ _ _ _ _ . _ _ _ - . _ _ _ . -
~~
l [ / / /
81.5' /
L
/ / //!
/ /
/ PNPP
/ P-6 {
41.75' - l 0
--536 2n Lake Erle 6"
0 i
.z 7-
'//
41.5' -
CUYAHOGA f GEAU,GA
///
[l / l / !/
a b .
1
) l I
. So l '
P-193 2 --
I 5 i -5947 8
-191 8 -5205
-576 e' O -6168
, -6185 le On A TA 4TL , perture Card
.6500 1000
,' j
/ ,'
/ '
f j /
le -
M ILLUMIN ATING COMPANY CONTOUR INTERVAL: 100 FT.
Generalized Precambrian Curface FIGURE 5-1
% O lo960 /'66 - / c%. i
/
4_ ,o O ( k '
= l o'% wr x, v , i,ja t .g,
, 4 8 h j
% m O Lg% fpe
> +
9 B' ' "
a i
b el L- 0 Y j/~ g R 1 &
3 ~
qlN d a s+L -
O -
r;:, ra e
- 1 A -
ID C
L
/ hk__ Ef -gl k i ag O A rh 1)
I 1 N Metamorphic rusive Igneous 8 (Meta) sedimentary a Felsic - rhyolite 9 Hornfcis A Intermediate - trachyte 0 Marble - dolo =itic A Mafic - andesite O Schist G A=phibolite Intrusive Igneous -
O Gneiss O Felsic - granite, quartz monzonite Granite gneiss
@ Intermediate - syenite, monzonite O Undifferentiated G Mafic - diorite, gabbro + No sample or indeterminate Source: Lucius,1985 K
'pNap PERRY NUCLEAR POWER PLANT THE CLEVELANo ELECTRIC Y ILLUMINATING COMP ANY Precambrian Lithologies Deep Wells in Ohio i
FIGURE 5-2
-~
in n ie i, tpD P4 p l wt % I 84 44 Ist weslo tt a tt 4 ( s e aIgg g 4g lgl D e (eg g ti m," i ,n, n, . .i ,i _g.u. , .ti . ,
.~',, i, ; .,,
= .i ui.n _'. >.i, 3 ,
i c.1 '. ,. :} 2, 121l9
},
...'. E i, s ss is s
- jyn I s 31 1 y , ". g
.I : 13,= 1,.=+., =,. ... .
. i=n, ,,, ... r r u, , ,
III l!!!!!IilI!!!! . }!!I!!!i!I !!!!!, l!!!j!Ij i
. I}i! IIII ! IU i e
- i , , I
- . 4
.i I* ,n . > , , ,
- m. ; 1 ,= ,
! !! ! i j I " , I 3 4 a
s s :
' .' i I I j } I ,- t * <
[ I m. .. j -.l <-- l I ,., g! > j m..,
- y .-.
.g, n=l s.,,.
( ............. l i
/
t
TI APERTURE (', ARD
,7.J.,.. .. Also Available On 2....... Aperture Card .CC , - 8 I I s! I 1111l J ... l .... } $' *'- I j }$jli = .JJ l !
1
. .l. .) i t p' .
i ii i 15- ! t -; ; 31 i 11 i 3
! fi 4 14 t - -
1 1 (1 J i J)t
- = ' . ,. I, ,,5 I " ){l . - _ ~ .~ , , '. , 3(
j: tl 3 == , 3 j N'i) i j{ t i ! i 2 1
? -i is 2 3 I ' ! l I' I I , 3 3- ,
l l')# ill{'!! :' , ft I - s 1
) i .: : ) ; **I I 'I ! I } J .i }
li !- i ,! . .I } j i (. i \ s,-
. )~--- } , ,,,, , ) s.- t-l c. j ) c.~ l ..
pl u.. l s. , i c._ lco....,c7 ,
- s. c . j
[.. ....... y ......o.. . ........ , ;;;,, ( l g PERRY NUCLEAR POWER PLANT
'pNam THE CLEVELAND ELECTRIC M ILLUMIN ATING COMP ANY Generalized Stratigraphic Column i
FIGURE 5- 3
l
- O 1
J
/ >- N j s t ! - ~ \ . .
< . .. ,' .s - ' 3 % .' ,
. [^ } ' * ** - y . ,. 'y ' 4.f % .e. 4.;,lw . A .. cw~.:x ; .n s ~ . 1 -
4 ) - c.w.-~^ { ~**.'. (,.' 4 .
.y s
4 ~ n _,, e . w (* ,
.s g , - % y*( _ .a 4 , $1 I ,E { . e, = "' C 6, q ^ Qr. L~.,
R..*;%?-'3' R :RR- s.
. ?^',._'
ms
's*'. . ', \
j .T -ft8 # .
,-T L%erK ,.],
- a
- j l' 'Yhj.* '
, ,p . '% y . 4pp" jf ,, aan y -1 I,' . * !O .4 j * *
- g .-
_ [. h . . 4 DNA W -e .-M . M' **
. Q ,e: / y: s ,py .-w, +
l
,4 ,o J : yyrf- ~ ,, s . - .N y .% xAs- "" * ' l ; -~ - + _.
c-r ;; h h d ,; yg=b ~ __, ~. -< .u. , sawz. I i A, PERRY NUCLEAR power PLANT
'p N p p THE CLEVELAND ELECTRIC M ILLUMIN ATING COMP ANY l ; Photograph 1 l Typical Joint FIGURE 5-4 l
I i
N i O
\
W E l ! 1 .
- o /
i 8 Lower Hemisphere Equal Area Projection n 20 l K, PERRY NUCLEAR power PLANT DNo# THE CLEVEl.AND ELECTRIC Y ILLUMINATING COMPANY Joint Orientations FIGURE 5-5 4
'l i O - a . v l 7
,9 ( '/ , 'g, -
4 l
- j s .4 '
i
- f.
}
y_
,,l .
l .%*' g 8, I - g
. l Y
b R_ .
;;, l 4%.* / , I I k ' '
f , .. 9 4 '\ ~ . - V i
%7 4
4k - e eug
., ' 5 ' ~
Y . . 4,.. ..
.t. < , . ~
i ,
,..- . . .a .
gY,N ' ,
; t . ' -
1 l o l , i.
~~ -Q. ' ~
] .( i . 3 .- w..A e 3 9 - K pNob PERRY NUCLEAR power PLANT THE CLEVELAND ELECTRIC
~M ILLUMIN ATING COMPANY l
Photograph 2 ) Typical Anticlinal Fold Structure l FIGURE 5-6 l
1 i, O N < 4 , j l
,- ~
1 \ ! f \ 7
\ \ ,
I i \ \ i w 'l ' '
; , , ; E
{ 10% 5% 0% 6% 10% i I O 1 2 i i, l l l l <
- i
.o
! n=72 l
1 i i i , i l l PERRY NUCLEAR POWER PLANT
! K's WNos THE CLEVELAND ELECTRIC l
4 Y ILLUMIN ATING COMP ANY I Rose Diagram of Anticlinal Fold Axes a Orientations l
; FIGURE 5-7 1
i
[ # e
~l ,, . .h
{ 8 l i h N j, l
'j s R*
g 31 f
't i l
l' p l s x j
/ ' ; ,f 7L.
1
}-
4
. ~, j, l'j~
g - '( f
- , . j .,
- t l
_' [' + 4.* l . y ;
-). ; '., ' A .- 3 /
Qy-_ _
~*'.
f-s ; , ' ...s'
'.' ~ .
RW ' t. ,
-'.-4.. -: - - ,.,g z$, y . @* n , ,., ^ ,',j.
s i T M A. N . l :V f{h , . .+ .r .,
%gg& E_?- g. - ' (-l gry lw%. ' ~ .t.' . :
i .; . - .,: s.
'.f 497: ,p,. __, , $ ; s -n .
y ? .v p- . . - .9 - _A . ,.z .ein:..- i I . ,y . . .
-y : .x .g ;, , ..T . g: ~ - *y'c__. - -{ . - -g; 4 - ~ \ _. -g e.,
z. q- g c
- er /p
, v..- ,>
,. _ ~ ..,.4.
y; .'.p. . . ;, . :.- ,: -
.~ ?h*a.. &g..; A$:. '. .;, . ~ *- - , '* ,. ' ' s. h f ~ '*..;Q ?'- . y : . '; .- x .h.n . .'< :',: y ; th i - * >
_ :' ' m 1.T. {. [4, #q' . :,v f;{. y4 . , I ,, . *[g . . AQ[z ! q ., e '-. _ _ ., ,,..k.((4!.h'h ! ! , ' h f., .7,. l
'. l h .. y..; *y,* * . ". . c . .G a - ., . 7 . ' v _ .p. . g ,- :/g. .. 1 , -.
a '.:: Q s .
. ., K
- k :
.g?- % a,.e .- - . . . ;.,. g , . ;. y .
_ . . .. 1:,_ .g y , 9 ;- _
)
g kr.;0 .~' .-h:f Ag
"".m ;rg : &5 ' ?- -
l p : p . , . , 1. ~ .; v;" , 6 w ' ~ - i ..! '- 0 b-
=
1 l PERRY HUCLEAR POWER PLANT pNo THE CLEVELAND ELECTRIC l Y ILLUMINATING COMPANY i i O Photograph 3 Typical Thrust Pault l i t FIGURE 5-8 v 2 l
- I
N O
- - N i l
4
\ l W- ny > * *E I
l O x
\ s /
N l i l i S Lower Hemisphere Equal Area Projection n = 17 KDNpp PERRY NUCLEAR, POWER PL ANT THE CLEVELAND ELECTRIC Y ILLUMINATING COMP ANY Fault Plane Orientations FIGURE 5- 9
f; f O $,ff / 4E>; , ! ih: i. cys
;.t. i e
- i. ,
, ipd-e
[4 .
'{ ,? < t ~ ,w. '
th.;', Vi
~
- lk.
_ , ' .*, ' . l
'^
l O ~
,: m ; ~ ., ;( / , ,, ,; ,,
6'.'g3g,
' }h a s .
fh ' ,(5.,~5. khy . Y' '
. .. t 'Q-t 'y - ) ,. i, 1,y * 'l:l ' ' k. < .e'.+ .
K', PERRY NUCLE AR POWER PL ANT LLUM N ATING COMP ANY i O Photograph 4 Detail of Thrust Fault Deformation FIGURE 5-10
a l V "' _, i
, y l '
s ( '~
, , , .. i.. . .
4'g d . ~ l . .<z
~:
7 l en ._ s' j ,
; ', p. ~~ ,._c s ~ ^1 IA,[N gr 3n . ,
m_ %:. _ _ _
U ".; s i ' } ', .) i } .j * ' - s . . ,f
,. s . - s, . s , , * '
- JP
-',i, .. . j .i ;~ ., ,e ' n .h - - ; , i- .. , , , p= /. . . , J.>~ , -M. . , .. d s.. 4Q .'r '4 s' " ry 3 . . .
Wh' y ' - s d, e'
~
0 sf . -.
. .- ,p , r' $,p*$ s
- a. . u - .
4 s -
.s 1./ID; 1 ,-- > ~~ s , - ,R . , 4r De ' Gr =' .'-'. - ' _Ag fls"p. a. lN $ ..s.. .-+-~ ..s i ,*'
v.T . .. ' 3TF .?' i
.,g-t Q ':. .' ,'- g - , e '..'
- g 6.
a g p% ,, .E. .; % a y ,q' a u f.z y.7
.1 b> . ~ . , 4 . w- . ,c h .' e .d l 3..phl e
r .gf,5T g k ' ~ g - l 4t ' ..
** g%[* . \ }
[ ..b.- Q
*e *'._s . .- ) .& ' - . ,...O, .;. ~ ~- y $ ' ' g ~ ' ' ' !chp g k Wm c! 4' g R. :e$g* *% g& ~<
d
'%a .
A u'hl-lll f. $ .
,r.
g*
.n
{ L
. I '% t,, ' y .. * .. Q . . %
- 4 s '
. . :- ,%g ;
{
'8,1, ' % .' M 'e s '* % .f. 2 % J ~ ~~ M' . '(. .q#hMNh 4; .
s .n
,4I = '
suouasot w
,',s, PERRY .4UCLE AR POWER PL ANT
- d. at h pNap
,.'*- ',. jp s., ~V THE CL E VE L ANO E L ECTRiC ILLUwlN ATINO COMP ANY _
Photogtaph 5 Photomosaic of Big Creek Ttibutary Structure FIGURE 5-11
l l
'I 4[*z s OVERSIZE DOCUMENT i PAGE PULLED SEE APERTURE CARDS -
NUMBER OF PAGES: 1 i ACCESSION NUMBER (S): 2(10(19.66/65-/5 i 7 3. ,,, , . APERTURE CARD /MARD COPY AVAILABLE'FROM RECORD SERVICES BRANCH,TIDC FTS 492 = S989
owfe ?
- a . a ;. ; ,;;-
s .. _ . . , _~ "c 1 l l r . . - , . , . , - - - - _ _ . - . - - - . _ _ , . . _ _ _ _ , , . . . . - - , . , _ , , , - - - - . , _ , . . _ . - . . - _ . . . - , , _ , , _ . . . , - , . _ . , . . . , , . . ,
O O O 0 20 BC-3 Scale in Feet e OUTCROP g
- ~ 50' =
0+00 BC-2 O- BC-1 e 9 e 100.9' ~ o Big breek
<'- Zero point for seismic refraction line 8' (* and magnetometer traverse 3
5 C O h 5c N nz N 3 ,, I"E BIG CREEK TRIBUTARY STRUCTURE u, 1 =g 4
.'. E5 5E E' 2%3 u, e e<
C >O 2 5, . A ~; , vi z
d% n BIG CREEK TRIBU' NW e.ee am t.ee e.o. e.,o , ,q l I l 8 l g 5s.50s - EsCavaiense
! l l e .oe - ' ~ %~
a eeno. - NW BIG CREEK TRIBUTARY REFRACTION TRAVERSE e.co p.oo e.oo se . 3. , ,,,, I I O I f I p Cteefte OF f #f eeCM
, g, I ___J -g _ _ _ . _ _ _ _
M A- -
] ; so.ooo-i e ooo .soo , . . , _ , , isoo e it I no -
1 i l 1"
\v. l i / l \
r , _.m..
I-e 'ARY MAGNETOMETER TRAVERSE
$E 1 -2 00 -3*00 - .
- 00 - . *00 - .*00 - F *00
\ ' ~ ~ -
SE
, *00 0 00 . 0. . . - .
0..-......-..--.. ___c _ e . . . - . . _ .
- n. , . 00. . - . . . . . . . . . .
_ ,0 . .0 00 TI
..m ."'
APERTURE CA"D Also Available On
~
Aperture Card K ANpp PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC Y ILLUMIN ATING COMPANY Magnetometer and Seismic Retraction Surveys , FIGURE 5- 14 i l
i$ 1, I l 1 l l l l l l 22-uQ n o-2: 7 i e i
,$ l5 I^') %s $oe .1 ag; $e fg - ;h.a*$.
o5 l33 e I I l l I l I I I l I l l I
} I I I
I l I l 1 l 5 I I E2- l l l~L oo, , f,baAh 'W#%%d y Eji ?! {1,1 !:i o :a t 1. 1!i" 2 m sjg 3 g: oa l g ;1 i i a i l l I o \ l
\
I
\ l I
i I
\
I
\
I i \
-.c l a La ,V' Nh* J h hy'h oo- . ,
e i 1-- b E
.y, m .
oaw s. o g s.>.h o ses , J.. I I l l i I i l l l l N '2 e I. I. I. I. I. I. N. N. . N. NOl1VA313 031yrelig3 K
'pNew PERRY NUCLE AR POWE R PL. ANT THE CLEVELAND ELECTRIC Y ILLUMIN ATING COMPANY Q soring t.og cross-section i
FIGURE 5- 15
m mma ,e,smm wmms.-=w --wm.v - = ---------oma -n---a a_ma mea --w.--- - _ , - - - . a- -a -.a.-ma , a r.,1_ n , a
==
l h,"
. . s. .
L q[b ' fg p 7 . f,'
- 7 .h ,' ,
i
- ' _ }. ~*
m.
+. .
sL A, .'*%.
) W a% - - , *W . . '[$ .
q& .. 4 (
- L- - s. . ?&r ~ A1+' .
pgW
- x ... F,..
_ - \ J,.%'el
,e ~~ .
T M.--- s'.n- " . l . ; * , ,. s, a'. , ! = : 'A' j
~
l % * ' a Q* p-,- - - $g c..e. ... ( i g\
,. *.~~~*.k .
I g . . ;&,,
-<s . .t,m.m .~,,,
egg_._ .
.z~ ;..e,..-~ %_.-
w...- - , -
~ .S [ /'[ vy* - at-< .,, m, ,
_ _m_ - w
.l M
i I I i 1
= == 'E =
N
'7 A
m _A
. l -% =
m~ c , i 'r ]
* . wk _
rs. Y. . (
) , - }
1 ' 3C j
~
N.r.' m m &
...~ ~ . . ~__
{
' ~ ,.
M x g f h j N.,
~
m,8 -:/ . . ., . x
--g -/,4.s. .sy, , . -
p.; 5-E '. . .. .; t . il p t.s . . , , ' T s * . _7 f t ; _e, <.:.' * '.*' t. y jr . . w Ypy4_ .- -
~ .;b wie3c m m ,[g- - .~. - , . 's 1 - =
i N * . ,. sf .._ ' ~ L ,
?j ,,, ,,
U' = . E C , .- '. . , _=
,, ,'" [ ,[ g *#
3 j.
,-- ,+% 4. '**
H a / - ,
.iq * . s _
O Y* "" d- Q%wed* . g y y , Asm,esm..se%esie 4 4
* -~%*' @p, a e '& _.
m
~
f, n WWd':'E"?wadm5%:$ Rk
=
m.
~
3_
- s PERRY NUCL E AR PCwE R PL ANT --
DNDD '"'.
~ 'E E AN: F.E:'c .LLW'NA' N [. [CyrAsv h b Ehotograph 6 7 _
Photmosaic of ]
; Big Creek Structure T FIGURE 5 lb M -w _
(*" 'M o ,? I . i,-
> l - ---G a , . _ . . . . _ . , . . . . , J
I I O l l e s p y'. ..;,
-w ,
(laA. f 5 s d .. - - n,
, j M ". ' - .p ,.* . , ,
1 ;l $$ , 0 p, , f',
- 5S5 I yf 4 P-
} ,
R-& S '4, .l,
. _ p..- .,- , 'f' - l ? .. * '. Y,, '
r . ,,
}' s '.$ ^
7 , _ ,
; [,. -_ .,.,s ,_ , ' ";
hg&ol sh2Vdwase ' feDe M<!"U'" 2'- '.W J/ L . 1=r=.gL.m
- M t @ . a ~ .. l T y, PERRY NUCLE AR POWER PLANT
'PNap THE CLEVELAND ELECTRIC M ILLUMIN ATING COMPANY Photograph ~7 i
O Grand. River,Structur'
~ '
e gf ,* FIGURE 5-17' ' l
" PACKER SHELL* DELAWARE O , 200 API , , 200 API ,
i i i
- J f _
LOCKPORT - _ OHIO SHALE _ TOP OF ROCHESTER T TOP OF DELAWARE # 10 FT. - 1
~
O _ TOP OF
- PACKER SHELL* -
TOP OF
*CLINTON* -
1st
*CLINTON
- SAND API - AMERICAN PETROLEUM INSTITUTE K
.pNpp PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC Y ILLUMIN ATING COMP ANY Gamma Ray Signatures for the Delaware and " Packer Shell" FIGURE 5- 18
O O O [f
~
I - N / $' B A S I N'# D
- c o"""' '"
.k .l' k- [,
1 E\ Y " .. .
~
k== ,
,, . h e& [~f . ,/ F A ; ; ,\
4.,
, ,,,d - / '" l %, l )
Ol p /\ f(h "3 h l r
- f. . .
if
. lL L.l N O lS - 4' q'T ' ts ~
x i x
.n$ 1 o' ,i B ASIN $/'y[',d
- S -g , s
< nociONat Sraucrune ,[s+.owas aara oruar mvistic 0 - e nz *- v eas= amo g m s z
c 7,' r , f
.s '.
T, '
.. f a c., s,s, s. -ca n a .,,ca, a as, if3 " g. , ,, f ,. 3 Q amo crutnatisto sinucrunt o., entcaussiam ' f Lf f
l $
"o" 7r ' y; ~
o
'f y*o jf ?
j' y y
*g E
Y ;' g v q CONTOUR INTERVAt 2000*
' ^ SCALE" ' * "'Mit.cs R $' i N/ ., = n; From: Ultelg,1964 k
r-8 South sE A LEVEL
-930 -4 Top of Delaware Lemestone 3000 - -1500 -t l -2000
- I Top of " Packer Shell*
-a sco - ~___
i l 1
-330C
- C ce west Ea st sea LEhEL ,
-503 q ,
Top of Delaware Limestone 300 C 6
-1000 ,,,
l -
.^- -isso J -2003 - l l I 1
! r . on pa..., sn.ii-I -2500 -
-3300a ,
AR Northwest SE A LEVEL m
-500
- op of Ogggware Lim 88 tone w
-1000 M -1 BOG % -2000 ** ,.p.....
c N
-2soo -
4
/
k f
B' North ' l _ 81.5 - 81' l
~
PNPP B' , 41.75' h Y - - l AR , Lake Erie {'
, t I
l C C' ! _ LAKE l l 4t l l AR'i 1 1 e,= j l j si. ta x v.t. I h i CUYAHOGA . l GEAUGA l B l
# 0 I ;, j t 4 Ecicenter of Mainshock [-
January 31,1986 - I !
, o s uites l
o s nu N _ AR' A i:' h a I U sooin....
~;oi; i
Also Available Os Aperture Card s i l K, PERRY HUCLEAR POWER PLANT L ANpp THE CLEVELAND ELECTRIC Y ILLUMIN ATING COMP ANY F Cross-sections B-B*, C-C', & AR-AR' FIGURE 5-20 L oto26o135-lff
k
,r i
s 81.50 81.25' PNPP C 41.758 -
+ .
c
.:s '
Lake Erie . t
- r. .
y LAKE . . l l .-
~ '
I
- l. .. a - 1. . ....c 41.58 - 1 -
CUYAHOGA - GEAUGA* I . ( _ 9
/
I f
81* l
. l
~
- . p' Epicenter of Mainshock January 31,1986 " 0 5 MILES H
A S H:T A B U L A ' g e . ' 5"" g ,vuRE
~
m __J. . .' . . . . Also Av.11mble On Aperture Card
- K PNpp PERRY NUCLEAR POWER PLANT ' THE CLEVELAND ELECTRIC Y ILLUMIN ATING COMP ANY Clinton Gas Well Locations FIGURE 5- 21 moMeo/ss-n
, 81.25*
PNPP
/ / /
41.75' - ,d
'a- ,~~ ' .' ,s ,s ~_
s /
,'p '/ ' ls ' ' ' ~ _ _ , ' ,
Lake Erle
/ ', /
__ ____ ,/
/ / / - ,/ - /,' ' ,i ,/ / ,, f /
f ,,: - ,
; ',// ,- / s' / c- / - " / ,, ' s s' / / ,',' LX E/ / ' ' /
s' /
.# s' ' ' , ' , 's ' , ' / ,'/ , .' , / ,/ ' / ' ,/,'/. ',l ,' ,$' ,/ , .' '. .a / / ' / ,,po ,' / 1 ( */ ~~__- ' l l, l,' / I ,I ,i / / ,/ , ~ , ,1 / , / \ ~
41.5 * - / Il
)) Q( / / ,- - - ,, s s' ,' / ,/, /, ' \\ ,/ ,' / ,' ', ' ', ' 'nD CUYAHOGA ' ,,' ' ( ' / / ,' / ,$d (
l',' i / // N v J' i ,, ,t/ 't ,' ,/ l 1
) / \
1
I l 81*
/ .l ' '
I /
, s 'I o' / y-pS ',', / 'I I , f- ** ~-
v / / ~,
' //}
- f ,- i 'l, *
,9 / , / t' .,/', / -e og ' ./ - ,' APERT W ,@ /' ,a,
- D,, /
f t'ATlD
,s ',,- -/
l' e ' ,, ' - - Also Available Um l t,- , Aperture Car 3 7 ,p / ,
, s " , ,f ' /,,s, W e
Epicenter of Mainshock January 31,1986
/ ' / .' l .so /'/ O 5 MILES RTABULA : ' ,/ \ / /
f, CONTOUR INTERVAL : 20 FT.
'il / C ~~ ~ ~ ~ / > /, ? ,/ g PERRY NUCLEAR POWER PLANT / [// / ,/,//,,,/ pNap THE CLEVELAND ELECTRIC / ,-
V ILLUMIN ATING COMP ANY Structure Contour Map on Top of Delaware 1imestone { Big Lime] FIGURE 5-22 8000850/1% -90
sQ 81.5' ' PNPP w - N I 41.75' - i - _ _ _ _ _ O
'm -j-~-
N' s,_----,.-, , , ;,,;r s s Lake E rie s'
- ~ -, 'd s ._ _
s ' s -~~ - s N
~, N ,' ,/, ,'}_'- W -.-. ' ~~- __,, '
n.-
~~. __ - ~ , . w. , -:- ;.-Q, -w_
Q-Q
'~~:'~-- N^. ' ~'s ,f ~~ ,r ' ' ~~~~
i
,' ,- w ~~~'-~--~ / ,i
_ _ _ % _ a. , i i
/ ,i l s' e / / // ll / I / / , ~~ _~~~ - , /
g J C f 41.5 * ---
,..',./,/i,fk'd, i
l-CUYAHOGA ,-
, :EzA U G l ,,,/ <. ~ \ ,i,',',,',,',. ,. , - /,,'.,-~,',
4 / \ r
- -~
8to C N s
'v -'s %w=
['~.,,s, , v -- ,22:~ _,' . n b5
' ',[, /
N s
's s Qo#-*---- ' \PERTURE e'ATtT) - -~- -:c,_ _ -:
Also Available On Aperture Card
' ], -
- t ,
~& ~ ~~~ ' - e' , , . - Epicenter of Mainshock January 31,1986 ,K>
m lI , o 5 MILES y',,'A S R(A' B U L A ' u- mj / : ; h -,, ,
, O 5 KM ,~_- g,% ,,,.:600 s %s,-e ~
s"
, a ,-,,_~s ,
CONTOUR INTERVAL: 20 FT.
/ ,' s ', / , ' , ' ' s' T" , ,
s' ' J _-._ /
,- = = . f/ /<-},','
i N /,e' j '
' K ANap PERRY HUCLEAR power PLANT THE CLEVELAND ELECTRIC I/ - -- 'm ',
Y ILLUMINATING COMPANY Structure Contour flap
" TOP of " Packer Shella <
FIGURE 5- 23
OVERSIZE DOCUMENT PAGE PULLED SEE APERTURE CARDS f ! NUMBER OF PAGES: / I ACCESSION NUMBER (5): g&o&mso/se- m l APERTURE CARD /HARD COPY AVAILABLE FROM RECORD SERVEES BRANCH,TIDC FTS 492-8989
}
O l t 6 i i l t APPENDIX A3.1 i l REASSESSMENT OF THE 1983 EARTHQUAKES IN LAKE COUNTY f O O Weston Geophysical
I TABLE OF CONTENTS i O
- Page ,
LIST OF TABLES LIST OF FIGURES 3.1 The January 22, 1983 Earthquake 3 3.1.1 Published Solutions 3 , 3.1.3 Sensitivity Analysis 3
- 3.1.4 conclusions 3.2 The November 19, 1983 Earthquake 6 REFERENCES 8
!r! O i I
; J .t l
<i j O Weston Geophysical 8
--..w .,,_,,r,.-,,em-,-----,- ---r --- .m.. -, --.,--.,.r r.,_._.- .-, -- .,- - - - . , - -. - --,3--. -,,-.-r-.m-,,.m,m--.-,-.- , . ,
1 h LIST OF TABLES TABLE 3.1-1 Solutions for the January 22, 1983 Earthquake l TABLE 3.1-2 Variations in Hypocentral Locations for the January 22, 1983 l Earthquake TABLE 3.1-3 Solution for the November 19, 1983 Earthquake l i l I i I i I O ' l i e 1 i J i l O i Weston Geophys4 col 1 4
._,.-,,.--,---_.-----w--, ~ . - - - , - - - - - - - , ---.n,... .n., - . , ,., , er, , _..-a,,.w,,,,,, -. . . - - , . . , - - - , _ .
LIST OF FIGURES FIGURE 3.1-1 January 22 and November 19, 1983 Original Locations FIGURE 3.1-2 Cleveland Seismograms - January 22, 1983 FIGURE 3.1-3 University of Western Ontario Seismograms - January 22, 1983 FIGURE 3.1-4 Station Configuration for the January 22, 1983 Earthquake FIGURE 3.1-5 Variations of Epicentral Locations - January 22, 1983 [VP/Vc=1.78] FIGURE 3.1-6 Variations of Epicentral Locations - January 22, 1983 J
; [Vp/Vc=1.73 FIGURE 3.1-7 University of Western Ontario Seismograms - November 19, 1983 FIGURE 3.1-8 Cleveland Seismograms - November 19, 1983 FIGURE 3.1-9 Comparison of the January 22 and November 19, 1983 Earthquakes l
l l l l l 0 Weston Geophysical
Reassessment of the 1983 Earthquakes in Lake County After the occurrence of the 1986 earthquake 17 km south of the PNPP, the question of location uncertainty was raised about two small events that had occurred on January 22, 1983 and November 19, 1983. The locations of the January 22, 1983 event separately proposed by the EPB, NEIS, and ISC suggested distances to the 1986 earthquake ranging from 15 to 21 km, and did not support the hypothesis of a common source zone. Nonetheless, because of the proximity of the events to two pressure injection wells located in the vicinity to the north of the 1986 earthquake, a hypothesis of induced seismicity as a cause of the 1983 earthquake, and possibly the 1986 event, has been advanced. For this reason, Weston has reevaluated the epicentral locations of the 1983 events. 3.1 The January 22, 1983 Earthquake 3.1.1 Published Solutions Table 3.1-1 presents the hypocentral solutions for the January 22, 1983 earthquake calculated by the EPB, NEIS, and'ISC. Although the standard errors of location are relatively small, the diversity of the solutions indicates that the true error in location is much greater. Another solution by the University of Michigan is similar to that of the ISC and NEIS. Figure 3.1-1 shows all four published epicentral locations, our proposed relocation, and also the locations of the injection wells and that of the January 31, 1986 event. l The input data sets are relatively similar but they are rather limited. In this case, differences in locating techniques can produce diverse solutions. To assess the location uncertainty and choose the most credible solution, we have reviewed the basic data and performed various sensitivity tests. 3.1.2 Review of the Basic Input Data As shown in Table 3.1-1, the NEIS and ISC input data are very similar and their results are practically the same. The EPB data set is more restricted and the difference in location more pronounced. For all three, the closest station Weston Geophysical i
4" available is DLA, at about 115 km. Usually, the ISC and NEIS base their calculations on a global model; the EPB uses a Canadian model, which probably matches better the crust of the region of observat ions. For this review, Weston first obtained additional data. An important acquisition was three seismograms from John Carroll University, in Cleveland, [CLE), about 4*7 km from the epicenter. Although three short-period seismograms were found, only two horizontal ones could be read with some confidence. Figure 3.1-2 show the CLE seismograms, made available by the Reverend Ott of John Carroll University. Through the kindness of Woodward-Clyde Consultants, copies of 13 seismograms from the ESEERCO network were obtained but could not be used. These stations in New York and New Jer sey were located too far away to provide readable data. Similarly, D. Christensen of the UniversiLy of Michigan informed us that his attempt to obtain usable data from stations in Pennsylvania was unsuccessful. Secondly, we contacted observers who had read the data presented in Table 3.1-1 and obtained appropriate weights for their readings. Seismograms were also obtained from the University of Western Ontario [Dr. R. Mereu] and we were able to select our own weights and decide that all secondary arrivals were indeed usable at stations DLA, LDN, and ELF. Seismograms are reproduced on Figure 3.1-3. We also discussed with Drs. R. Mereu and D. Christensen the question of an appropriate crustal model. Both seemed quite satisfied with a simple generalized two-layer model, considering the state of present experimental knowledge for this region, and the fact that more specific layering would not account for all horizontal variations of tht region. Figure 3.1-4 presents the distribution of reporting stations arod%d t e. epicentral area, and illustrates visually the variations in distance an Az'u ,:h. 3.1.3 sensitivity Analysis Weston performed various types of sensitivity tests on the basic input data by using the Hypoellipse location program [Lahr, 1985). Not all results of these Weston Geophysical
tests are discussed in detail in this report, as there are too many and some of them simply confirm the validity of others. We first attempted to mimic as closely as possible the results achieved by NEIS, ISC, AND EPB using their specific data set. We have then been able to assess, at least in part, the effects of certain variations, such as changes in weights and omissions of certain readings with relatively high residuals. We have also examined the effect, given a selected input data set, of varying the generalized model, e.g., P-velocity in the crustal layer [6.1, 6.2, 6.3 km/s], or at the mantle boundary [8.1, 8.2 km/s], change in the V /V, ratio [1.73, 1.78), and the crustal thickness [36, 38 km]. I Secondly, we examined the effects of using and excluding the readings of CLE, the nearest station, as well as the effects of using P arrivals only versus P and S together. We also considered focal depths fixed at 2, 3, and 5 km versus free depth. Our review suggests that variations in weights, in V /V, ratio, in omission of S phase arrivals and in the exclusion of CLE readings are more significant than simple velocity variations. Table 3.1-2 presents two typical sets of results, using the same input with respect to weights, model, and arrival times, and variations of phases included, focal depths, and two different V /V ratios [1.73, 1.78]. Figures 3.1-5 P s and 3.1-6 illustrate the corresponding epicenters. Systematic spatial shifts can be observed within each set and between sets. It should be observed that the RMS [ root mean square] residual obtained with a 1.78 ratio is always equal to or smaller than the one obtained with a ratio 1.73. In all cases, the inclusion of CLE pulls the epicentral location towards the southwest, along the station azimuth. The omission of S phases tends to displace the location slightly to the southeast. The larger number of s phases reported north of the epicenter, at the University of Western Ontario stations, biases the location along that azimuth.
\
l Weston Geophysical
We also noticed that the RMS variations are relatively small and not clearly associated with any given type of tests, except possibly that lower RMS values tend to be associated with shallower depths. 3.1.4 conclusions considering that most parametric variations used in these tests have some validity and none of them are ab extrinsico defensible as superior, except that P arrivals should have larger weights than S arrivals, we chose the center of all these resulting epicenters as a fair approximation of the true location. The coordinates of this point are 41.~765'N and 81.110*W. The envelope of the results could be considered a fair indication of the location uncertainty. This relocation of the January 22, 1983 earthquake would suggest that the event is not associated with the same source as the January 31, 1986 shock. It brings the epicenter closer to the injection well, giving some support to a possible causal relationship. With the presence of numerous shallower wells in the area, the hypot hesis of induced seismicity cannot be ruled out. Yet, in this context, we see no reason to infer an increase of the potential for larger events in view of the limited thickness of the sedimentary rocks [about two kilometers). It is suggested nonetheless that this earthquake could simply have been another small tectonic event, similar to several others that have occurred in the region historically prior to the existence of the disponal wells. 3.2 The November 19, 1983 Earthquake The Earth Physics Branch [EPB] of Canada was the sole agency reporting a microearthquake in Ohio on November 19, 1983. The solution given in the National Summary is reproduced in Table 3.1-3. This earthquake has a smaller magnitude Mn=2.5 compared to the M n= . m same agency for On January 22, 1983 event. It is not uncommon that EPB magnitude [M ] estimates tend to be higher than NEIS m blg values for small events. Considering the difference reported for the January 22, 1983 event, Mn =3.3 [EPB] versus 2 . ~1 [NEIS), one would expect NEIS to have reported an m magnitude of about 2.0 if b it had recorded the November event at enough stations to attempt a solution. Weston Geophysical
The estimated EPB location of the November 1983 event is plotted on Figure 3.1-1. One can see that it is north and west of the EPB solution for the January, 1983 event. This can be explained by the fact that the three stations from the University of Western Ontario dominate the meager data set for the November, 1983 event. Figure 3.1-7 reproduces the seismograms recorded by the University of Western Ontario, made available to us by Dr. R. Mereu. Figure 3.1-8 shows the seismograms from John Carroll University; the event is so weak and the station magnification so low that no reading can be made. Seismograms from the ESEERCO network also present the same problem. Lef t with this lack of additional data, we feel it is impossible to attempt a formal relocation. The best compromise is to compare the recordings frort. the University of Western Ontario for the two 1983 events. In Figure 3.1-9, we have attempted to correlate the best developed phases. We find a striking, but not perfect, similarity. First, the S and 1.g phases are in good coincidence; the reflected phases PP are also on time; unfortunately, the P arrivals of the November event are not identifiable from the noise. Nonetheless, on the bcsis of the comparison, we conclude that the two sets of recordings are quite similar and support an almost similar, if not identical location. For practical purposes, we suggest and have adopted for both events the same relocation, i.e., 41.765'N and 81.110*V. O
-3 Weston Geophysical
l
! REFERENCES 4
Lahr, J.C., 1985. HYPOELLIPSE/VAX: A Computer program for determining local earthquake hypocentral parameters, magnitude and first-motion pattern, USGs Open File Report. 84-519, 35p. h F f i 'I O
- I t
! O Weston Geophysical _.,w- ,e--.. - - , . -
,y _ - ~, , - , , , - . , - , . , _ ..y 4,----.-,,s- ,,,, ,--- , , --c-- .-.-,c_. . - . - , -r +m. -- . - - -
TABl.E 3.1-1 Solutions for the January 22. 1983 Earthquake EPB National Summary (1983) 04fE M-Ilmiluti L4111UCE LONG11UDE DEPTH RP5 MAGN!!LDE h0. OF#hD. OE 1983 N DocegGINElful h0atwinca0 bE$f40UEST Pa0FONDEUs 5im PMA MAG H a 1 CEG Of G sm 5 JamtJas 22 07 46 58.103 41.7580.018 81 0210.023 10tGB L.4 Mh*3.3to.38 5 8 3
- OMID CH10 NOT REPCa1EO FELT Pra50NNE hE L'A RAPP0aff RES$thil 130 mm 5 5809 Ota 130 mm 5 CE OLA CL4830122074?P 471767 473379 t048301220747P 472073 473846 ELF 8301220767P 472304 474292 DE00301220747P I4750 848218 4831 010 123 036 GAC8301220747P I4812 s4951 020 101 015 011830122C747P 84938 040 C79 011 Am88301220747p 47394 AN98301220747P 47439
&%78301220747P 47363 A h 3 8 301220 74 7P I47377 147387 148095 AN18301220747P 47413 8vl8301220747P 47360 PN FM PG FM $4 $G T a APP lSC (1983) nets 22a o7~ dern s7ss. 4 s *su <a r 2w. hs*~', tess rehab:e $2flon hDS MDLg 2 7 thDSi OTT 22co7s tr $es 41*7Nx81*CtW h10"*, MN 33 ISC 22: 07a 46- 5764 :0527,41!84N: *026,81!15W : ?O36 h5e. n 14 n 1401 ' 14. Ohio DLA Delaware (Ont) 1.07 343 Pg 07 47 17.6 - 1.0 DLA De a*are 'Ont ; tG 0747 337 LON London (Ont) 1.20 359 Pg 0747207 - 0.6 LON Lo'wcr iOrt tG 0747 384 ELF E!igmfield 1.36 355 Pn 0747230 - 0.1 O ELF Ehgtnf e c tG 0747429 WVLY West V 2.02 71 Pn 0747330 + 0.7 VWLY West V S 07 48 012 -3 SANY Sanborn 2.15 51 Pn 0747356 + 1.4 SANY Sa*.Dorn 5 0748055 -4 AN7 Anna 2.28 245 Pn 07 47 36.3 - 0.1 AN3 Anna 2.39 238 Pn 07 47 37.7 00 AN3 Anra Pg 0747387 AN3 Anna Sn 0748095 DHN Doyle Hits 2.40 65 Pn 07 47 38.7 - 0. 9 DHN Doyie MS tG 0748 115 AN12 Anna 2 46 249 Pn 0747394 - 0. 7 ANI Anna 2.63 240 Pn 07 47 41.3 - 0.1 AN9 Anna 2.77 247 Pn 07 47 43.9 +08 WEO Weicome 2.98 42 P' 07 47 50 - 0.7 WEO [29nm os tc) Sn 07 48 218 WEO we:corre tG 07 de 31 BV1 Bath County 1 3 83 162 Pn 0747560 - 2.2 GAC Glen Almond 5 64 45 Pn 07 48 12 -11.8 GAO [75 w 05.'O} 1G C7 49 51 NElS EDR (1983) , ,, , s ,,, ,,,3 ,,, ,,, s,,,3, e,,3, .1.e5= N 2 1.I 81.!*1 *1 1.6**
DEPf> s 5.0== (9eoparsicist) OM10 Le71) etL9 2.7 (NE!5). CLA 1.C= 3ee P e7 17.e7 -C.* LLN 1.19 0P 67 20.75 G.3 ELF 1.3= 356 * =7 23.G. -C.1 mWLY s.46 72 P e7 33.06 =0.= 5 e6 01.19 SANY 2.16 52 P 47 35.68 .C.e 5 et C5.5C AN7 4.40 2e* k *? 36.3G -C.2 AN3 2.37 237 P =7 37.70 -C.*
- x. DMN g.=3 65 P =7 3e.79 -0.2 5 se 11.55 4%I2 d.us 2e8 P 47 34.e0 C.*
ANI 2.61 239 P +7 *1.30 -9.2 AN9 g.7e 246 P 47 m).90 C.5 5.0. : 0.u on 11 cf 11 oca.
O t J TABLE 3.1-2 Variations in Hypocentral Locations for the January 22, 1983 Earthquake Wp/Ws = 1.74 , ID T e arm oD a HrMn Sec L atit ude Longitude Copth 1P RMS ERH ERZ SQD Comments A 19830 122 074657.9 41. 76 7 5 N 81.1172W 1.3 18 0.41 1.4 2.4 0C CLE Incl. 5 Incl. Neo Readings Nee Weight CC Change in Model J 8 19830122 076657.7 41. 7 610 N 31.1113W 0.6 18 0.36 1.6 2.4 CLE Incl. 5 Incl. C 19830122 074557.8 41.7642N 81.1084W 1.3 16 0.37 2.2 4.4 CD CLE [act. 5 Incl. Rest $ame as Model 5 3 C 19830122 074657.9 41.7632N 81.1074W 2.5 12 0.34 3.5 5.5 CD CLE Eac1. 5 Escl. E 19830122 074657.7 41. 7 610 N 91.1113W 0.6 16 0.36 1.6 2.4 CC CLE Incl. 5 Incl. EE 19830122 074657.7 41.7523u 81.1017W 0.6 13 0.31 2.3 3.1 CC CLE Incl. 5 Eucl. i F 19830122 074658.1 41.7693N 81.1161W 5.0 13 0.37 2.2 2.8 CC CLE Incl. 5 Eucl. H = 5 , G 19830122 074657.9 41. 7 616 N 81.1096W 3. 0 13 0.34 2.3 2.9 CC CLE Incl. 5 Eucl. H = 3 1 H 19830122 074657.8 41.7577N 81.1063W 2.0 13 0.32 2.3 3.0 CC CLE Incl. 5 Eucl. H = 2 I 19830122 074657.8 41.7650N 81.1149W 2.0 18 0.38 1.6 2.3 CC CLE Incl. 5 Incl. H = 2 J 19830122 074657.9 41.7683N 81.1171W 3. 0 18 0.40 1.6 2.2 CC CLE Incl. 5 Incl. H = 3 K 19830122 074658.1 41. 77 3 8 N 91.12 2 8 W 5.0 18 0.44 1.6 2.1 CC CLE Incl. 5 Incl. H = 5 L 19830122 074658.1 41.7797N 81.1134W 5.0 16 0.40 2.3 4.4 CC CLE Eucl. 5 Incl. H = 5 P 19830122 074657.9 41. 7 7 09 N 81.1107W 3.0 16 0.35 2.2 4.4 CD CLE Eucl. 5 Incl. H = 3 N 11830122 074557.9 41.7671N 81.1095W 2.0 16 0.37 2.2 4.4 C D CLE Enct. 5 Incl. H = 2 C 19830122 074658.1 41.7723N 81.1142W 5.0 12 0.37 3.5 5.4 CD CLE Eucl. 5 Eucl. H = 5 P 19830122 074657.9 41.7626N 81.1089W 3.0 12 0.35 3.5 5.5 CD CLE Eucl. 5 Escl. H = 3 C 19830122 074657.8 41.7578N 81.1062W 2.0 12 0.34 3.5 5.5 CD CLE Eucl. 5 Euct. H = 2 Wp/vs = 1.73 Longitude Depth 1P RMS [RH [RZ SQD Comments ID T e arm oD a HrMn Sec Latitude ---
-------.-----------------------------------------------------------------------------------------------------------------ights A 19830122 074657.9 41.7496N 91.0373W 1.3 16 0.56 2.1 3.0 0C CLE Incl. 5 Incl. Nee Readings Nee We 91.0824W 18 0.51 2.1 3.0 0C CLE Incl. 5 Incl. Change in Model 8 19830122 074657.8 41.7445N 1.3 2.3 4.5 00 CLE Esc!. 5 Incl. Rest Same as Model B C 19830122 074657.8 41.7456N 81.0 7 8 2W 13 16 0.53 C 19830122 074657.9 41.7602N 81.1074W 2.5 12 0.34 3.5 5.5 CD CLE Enc 1. 5 Eucl.
E 19830122 074657.8 41.7445N 91.0324W 1. 3 18 0.51 2.1 3.0 0C CLE Incl. 5 Incl. EE 19830122 074657.7 41. 75 2 3 H 81.1017W 0.6 13 0.31 2.3 3.1 CC CLE Incl. 5 Eucl. F 19830122 074558.1 41.7633N 81.1 161 W 5.0 13 0.37 2.2 2.8 CC CLE Incl. 5 Eucl. H = 5 G 19830122 074657.9 41. 7616 N 91.1096W 3. 0 13 0.34 23 2.9 CC CLE Incl. 5 Eucl. H = 3 H 19830122 074657.8 41. 7 5 7 7 N 81.1063W 2.0 13 0.32 2.3 3.0 CC CLE Incl. 5 Escl. H = 2 St.0845W 2.0 18 0.53 2.1 2.9 0C CLE Incl. 5 Incl. H = 2 1 19830122 074657.8 41. 74 68 N 2.9 CC CLE Incl. 5 Incl. H = 3 J 19830122 074657.9 41. 74 39N 81.0875W 3.0 18 0.55 2.1 81.0 93 4W 5.0 18 '0.61 2.1 2.8 DC CLE Incl. 5 Incl. H = 5 K 19830122 074658.1 41.7561N 0.60 2.4 4.5 00 CLE Enct. 5 Incl. H = 5 L 19830122 074658.1 41. 7 6 0 5 N 81.0 8 39W 5.0 16 0.56 2.4 4.5 00 CLE Eucl. 5 Incl. H = 3 M 19830122 074657.9 41.7525N 81.0903W 3.0 16 16 0.54 2.3 4.5 00 CLE Eucl. 5 Incl. H = 2 h 19830122 074657.9 41.7436N 31.0 79 5W 2.0 0.37 3.5 5.4 CD CLE Esc 1. 5 Encl. H = 5 C 19830122 074659.1 41.7723N 81.1142W 5.0 12 81.1089W 12 0.35 3.5 5.5 CD CLE Esc 1. 5 Enc!. H = 3 P 19830122 074657.9 41.7626N 3.0 5.5 CD CLE Eucl. 5 Eucl. H = 2 C 19830122 074657.8 41.7578N 81.1062W 2.0 12 0.34 3.5 i
TABLE 3.1-3 Solution for the November 19. 1983 Earthquake
)
EPB National Summary (1983) Datt M*f!Mlluft Lat!?UDI LONGtTUOf Of*fW ens astuttu0f NO. Ofi40. Of 1983 M O'Delstattful NDerwince0 utstiOutti Pe080=0fue sim 'wa ans M M S Ott Ott am 3 , a0V/m0V 19 16 22 20.tli 41.0380.06) 81 0980.05) letGI 0.9 hast.St I $ 9 1
- l 0410 Oulo 120 sn 5 800m Ottavant, Out. 120 mm 5 08 Ottavante Omf.
OLa43111916228 22392 22930 4045311191622P 22412 22582 ELis111191622P 22437 23027 0809311191622P 2293 23135 030 to 15 stDe311191622P 32312 23417 030 S5 to I Pm Fa PG tm 5m SG T s app 4 0 4 O i i f
- - - - - , - , - , - - . . - - - - - - - -----,.---v. -4 - - - - - - - - - - - - - - - - -----.-----,-----------.---------4---- - - - - - . . - - - - - - - . - - -
81.2W 81.1 W 81.0W 41.9N + + + + + + + + + + + + + + + + + + + + + 41.9N O
- Jan-1983 U. of M.
. e . .
Jan-1983 USGS o
. cJan-1983 ISC . +
Nov-1983 EPB
. . o .
PNPP 41.8N + + + + + + + + + + + + ++ + + + + + + Jan-1983 WGC o . INJECTIO.N WELLS Jan-1983 EPB o .
+ . .
41.7N + + + + + + + + + + + + + + + + + + + + + l l 1
. . O 5 Miles-Jan-1986 i , , , , i . T .
i 4 6 i 0 3 KM
+ +
K
'pNom PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC ILLUMIN ATING COMPANY January 22 and November 19, 1983 Original Locations 41.6N + +
FIGURE 3.1-1
1 I i l January 22,1983 2:47 AM EST mm:P:S'o
- s' >..'
,: *. . : e:. . :it.s.
y\'In%%';;f.v%%.v:pm, V* v/,%:<. . A. . . ~.-
%i ' ,%',E
- v.^,4 y ' gW/.W.s'
. 4 .y .% ;
S's E
* ' N 2-2:47 AM EST g/, '
i **/,**f *. g* * 's,*/,. - l
'u. ~:
vertical c r{'.W. , 'p,w.U.t>.,'f,[/
.r..
6=. w **' ; V . s'//%'.'t,':y c. 7. e- ?.~. - , 1 i ine re
- /M.'.p... l.kif s.,\
- WN*W.%. ://. w. M.v'.
e.
- f.J>r .v.%'s :* i %"l':\'A'!//;.//i:.~;,,\?.'
M,, y *,A.? . ?'. & .R.'V W .q d. -e.\*.r:/ l
'* ' \'.%.i l~'*.\ m s'.s* . .;:. * . l:g:y/&'.'%\~:+.*^ ,s . . . . . ..s A
t.v'.>i. . '.Gt;y\'.y.*,',;;.=% '
%.; jl':l:4l \
t
^
- e' - *: --r. :::,: ^ ; '_, '::% -
- ^--.***
s ___ ::;." ^^_ _ . _ _ '
^ ^ ^ :: __ _ f;,: _^.","f: - ^ -- : ^:*nna ^^ .~ - : = _- : ::_ . - . _ ,:: :::__ : = - -
- l s*:_ :: :_^: -_ : .=' :_ :_ ,: :,: ::. _ :_" ;'omar I 2:47 AM EST * ^ N'^- - ^ '"^ ^'- ~--^ ^ ^^ ^ ^^
- ~ -- ^ ' ^ \ / -- 4 :. :_ . .z- -c _ _m _
N-S HorizontalM_ = ::aa== ,f. M vfl % w W - wc-':_-^ :. . - c- '.=, p __ ;__ _ a -J.;;
,___:__--.__ . ;_ ;_ 9,*,,,, . ! 4 _w.sse a.------m - m_____m _, _.. __ .__.___ _ _ _ - .-
e .^" - , v , m h _ _ :::::- :: ^
- -___ _ ^
^;,enn, . y == :: = : =::==. .* . _ :.= - = : = .:: .. ,.. : : *,*:-^^.-_ J:,- _,n :_ r , :: : :::. ___: _, _ .*,,o ,e e,,. .
i
.e- _ _ _ _ - _-___r- -
o I
,~ .,,. l 2:47 AM EST 1 en. '
- E-W Horizonta%,l . -
. -P _-;r,);*p'p h,a;;:::::;.: . =
- * ,- _ _ ^ __ -
. = - _:- -- - -__ - -
i l n 1 minute g fpNew PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC Y ILLUMIN ATING COMDANY Cleveland Seismograms January 22. 1983
- FIGURE 3.1-2
_ _ _ _ _ . - - _ . _ ._. . _ _ . _ ~ _ - . . _ _ - . . . _ - . _ _ . - - - . . - -_ - . - - . . - _ _ - - -
O - O O January 22,1983
,.,...,..7........._...,......,....;......,,...7,............7.,-,....,..,.,..._.,..,.......,..,...,....,,. .. . . _ _ , . .,_7-...., . .. !7 1: ! }t' ii Q L+ i.c._,[L, _ . !lj:21 I' I, 3 h! ,
1 ; ,J ' ~!i 'p
,+ --=*,WH$5k}M ' -
Y
.hf4ff k k{ k}Ahf ly i! ri-H.< w ii __m h --+ w___i. iturn T 7; .., . ._.m, ........, ,.....).,.,.,,;......,...,...,
LL_p.!iii_Lil_i_d_u_._m.]-M_n
.,,..3.,........,...-.,.....,, -,........,..,..,..,..q....,.,.. ..,.....,p..,........7...,,, .,,-._7, ._ c , , - ' 7 m -, ' _
m -- ,m
. . ,;,,- _ . ,. ;r I '
u.4..J4 . . . 1l i,: ,; '"t. . , LDN Vertical * ' ~' l'
. . *i ;
g c . . _ . ...
; ,,,c , , , . !, ..
ELF Vertical q
~ ~ - = _ _ - . .-: .m:.n.l py !gW? Qpt y,y(,y.,e, 8 ;a; , ,.
f C l 5 O m g$" c nz g r* C N C{~' W f f t % . I MY%hrPT~1~~VDV 4WW,&CO,r~ x3 C13 Q C O f, "< y- -_ _ . . _ . _ . _ _ _ . _ _ . _ _ _ _ _ _ _ . . _ , _ . . . . _ . _ _ . _ _ _ . _ . _ . _ . . . . _ _ _ _ _ _ _ _ _ . _ _ _ .
." 3 ~* r " - E g$ 5:=
6 "
'< , n o=
y a mO Er*
,mm No . 3 $0" ~E, <",'
Z w *O W _e l
D OGAC l
' l t?
l l l gWEO '
+ \
DELF OSANY OLDN ODLA ODNH OWVLY C ANA OC
.J \
j Il . OBVI , NL j, i> PERRY NUCLEAR POWER PLANT
,pNo THE CLEVELAND ELECTRIC ILLUMINATING COMPANY Station configuration for the January 22, 1983 Earthquake FIGURE 3.1-4
81.2W 81.1 W 81.OW 41.9N + + + + + + + + + + + + + + + + + + + + + 41.9N O . . . Jan-1983 U. of M..
. o .
Jan-1983 USGS. o .
. Jan-1983 o ISC . .
Nov-1983 EPB +
+ + 0 . +
PNPP 41.8N + + + + + + + + + + + + + + + + + + + + 41.8N
. +
Co . . Jan-1983 WGC ' Vp/Vs - 1.78 INJECTION WELLS Jan-1983 EPB O . s a
. o .
41.7N + + + + + + + + + + + + + + + + + + + + + 41.7N
. . 0 5 Miles-Jan-1986 i i i
t i e i I i 1
, -[" ,
0 3 KM PERRY NUCLEAR POWER PLANT
. . No THE CLEVELAND ELECTRIC , ILLUMIN ATING COMPANY
- l Variations of Epicentral Locations
\ * +
January 22, 1983 41.6N + + IVp/Vs = 1.78] I FIGURE 3.1-5 l l
81.2 W 81.1 W 81.0W 41.9N + + + + + + + + + + + + + + + + + + + + + 41.9N O + + + i + + +
+ +
i + Jan-1983 U. of M.+
+ c +
Jan-1983 USGS + e +
; Jan-1983 ISC ' + c + +
i Nov-1983 EPB
+ + e +
l PNPP 41.8N + + + + + + + + + + + + + + + + + + + + 41.8N
+ + + + + +
e .
. e .
Jan-1983 WGC El +
+
3 +
- e Vp/Vs -1.73 Jan-1983 EPB O +
INJECTION WELLS E a
- e
%eo e o * + + + + + + + + + + + +
41.7N + + + + + + + + + + + + + + + + + + + + + 41.7N
+ + + ~
O 0 5 Miles-I f ' ' I Jan-1986 i I e i i
- 7
- O 3 KM
+ +
gpNeb PERRY NUCLEAR POWER PLANT THE CLEVELAND ELECTRIC O ILLUu1NATING COMPANY Variations of Epicentral Locations I
*
- Jantsry 22, 1983 i 41.6N + + IVp' Vs = 1.73]
FIGURE 3.1-6
O O November 19,1983 j.,....,,.,,, . , . , , . ,_,.,_..,,...m.,,,_,_
~~
l- .FT.I~
~~~ ~ ._ r y- ,p4-J ._ ,TI_U. PT.4'i,lq.: . 7... p.T.T, T, F. ..T-. J -J f TT i.- 4i +r Tr,1.. 3.g.1. 2_ .7
- T[..r. ).
7
] b= ^
h . , - -- ..4, "i:pg.
^ . i a. ; , . , !,,_.I.',>,, q i . , i e!- :.fr!, ., ..r f . . L...-.-.,y. l G. =.- i- . 7 i H I f Ifl I i i-} [l 1 [ {. Id ! L1L F f-H- R i- E - i.i - L -l-s-4 -- ,
l r 1 i-il rFil rw, +LE f,,,.,.., 7. ,,, 7, _.,,.T~"'.T.,.',"~L7~, '}'"]", ~ ' ~ ' ' ' ' ' ' 4 , . - . . .- 4 3 ,1 t. I, (; y f -- . j , F- 6~ . ' '~T'. l f' "_ -C ' ""'""I','.".''d,~'.--~.-.,'a..'l-,
;,.,,._..,7. .._-4,_, -$ 4- .[ .J- }. 6 - e 4;J, t J- e r-} l3-. { ,1j ~ T' r ----e - . - r [. c . .- ,44-3 i- ,- : fe _
e. i 1,^ F ' '- a -. - - m ri - 3 ' ::_ _ . , ' T LDN Verticat a t __i:: s . . ;, .cy _ _. t.-- *,:' _'L t-_u, i 'y. I .F , **
,_ }. -a" Hl ~ " "[ . pf- ..:;;,':4;x_ :; .]4, , _. -~,:_:_
i _r ,. ._ . . _ . . . i ;
.--.-5.}.. .
y- r; o
...7 _ , .[ , , , ._. . . _ p _, .__.
7
, . . , 3 1 -.,...,,...r'*r' l t~t' ;*'"''-""r', '"' * -' [ r -r -r r ! . . i r r r g .. r .--
g--.-+, .' 7 - , , r + ,- . p , - -i-.r, ELF Vertical y.=,_-. - = . - p n, _ ,; -- yg&YdNg;gyg:l.::. - w en e C 3 _ _ _ _ . . _ . _ _ _ __m. __ __
.__.-.~__.__..__.__._.._.._....-.--2__
3 < O 4 ** in M 1 Se as/2scos se MM 84 98* y g g
=iO G
gi5 e nz E f* C
)WWWWWTOMM(%'W(WVVT ' ~
g g j O . _ M. -_ .1 1 ! 1 1 1 1 8
- 2 r a t 1 ._,,_^* i
~ ~
r i ~ W < e >m
@W **f*
- s c' z>
OZ, ty 4 8"l e M n U 1 4 M 3 OMO gr4 ee 1 M t'l Q >
. e, Z "* M Op *431F g
M B-8= n>Z co O w
1 November 19,1983 11:22 AM EST
- 1 -- -
;-_g 7c__ - - --_ ",.-==i mamas - _ .r - , .: _ _ :- _ . :_.
- _ w_ -
,- _ :::-:_ ; ; + -- m _ _ _ _ __ _ .___ ., , - _,m- _
_^^-,"_ - [ _^^_
, _ _^:^
__^ ^.^ ^_ ^ :_, _ _ , _^ ^_ " , - - _^";__^f___^- _
. ,w -w w - ,
w, ,. w w ,v _
^ _ ^_ _ _~
Vertical - : _ge',._- ^~--' ^[~_--
^ ^^. _- ^ -
7, :_^- _ ^ _^_ m - m . _ w w _
, w w , __
11:22 AM EST # ^~ ~ ~ '^' ~ ~ ~-
~ ~ ^ ^ ^ - -- ' -"^
w_ % _ _- -_ _
- : . :: _ . _ - - . __ , - :pn .: -_ + %- __- .:__- ---- =.:- - . ::, : ::,_z
- : :w - - _- :_- -
m; - . _-_ : : _ _ ,v:::.:-, : : ,: ::, e LJ 9 .
? . e o ~
n i ammmmmm.o e ammmmmmme N-S Horizontal amm==mma*- e-summmmuns a et _ __. A sumammenen - _ . _ 11:22 AM ESTYo e asumemumsmm i e esumaeuuness ammmmmmmme i o e I
.immmmmmmmme
- i
_; ; r_ _ _- '.,meme ,wam
=- _ _
_w
.,_W w
_-_.V - 3
..-_-m g -y w ,
l ~W _ __ --. _ p = - - w
=-- ~ m -w v- W - ,_. _ w y .-_ . _- , m . ^ ^^
__._ -_ - f,_ ^ - , - , r _ __ _ ,
^^^ ^ ^ ^ ^ , ::: :::: _ ^ ^ ^ _--:---_-- _ ^
E-W Horizontal __mj_-s,--:.- A:- :::::, _
. -?_--- : :n :- : * : :,m 11:22 AM EST p# ^^ ^- - - - ,, , , - ^^ ^J^ -
Jr ^ r- %^ ^ ^ -
% _ :,% :_ . _r _ _:.::-__: _:,. - - ~. :x- :_: __ ._ y .- -_;___ _ _ __
_ y___ ._
- ^g -- -: : - :--- ^
^ . ^ _- %__ ^ -
a nnam,,, mom.oney -y :,- ; : _ _ _ p :-::, ., - ;;-- y_ _ l 1 1 minute i i PERRY NUCLEAR POWER PLANT No$ THE CLEVELAND ELECTRIC w ILLUMIN ATING COMPANY l Cleveland Seismograms November 19, 1983 i l PIGURE 3.1-8
- _ _ _ _ _ _ _ _ - _ _ __ ____ _ _______._..._..~_______ ___ ___ _ ._.
;. . c. . )... ; , ,. , e , . .. , , , , , , , . , r. ,7 , .
i 'T'" '
~~ .r: .nn... I,- . m. r, -
r -}" . _,. ._7,- .- ' . ' _ dJ-{~ .' _l'_ . 4 .___ . '
;nLG, , . g 'g~. *+'yi t.1, . g - ~" g . _ , -.
2an 22,1983 DLA V I ~ . E.1_ '~, i F l . JZ
-a gl . . - _ _ _ _ _ -7#,YM hA.l..MiM Y8. W W Y,N M..+ ,. . . _ ? -
M h
' l.gI r 7Wtl [, h$h;g$/ho' 9 lh .
L.T .- - ._.-. f, i
._m,_.m_y___________.. , '(' .-. +_ n.._..$,,... 7. _ .7 -
- v. ,
', ...,.e . h, ., . 0, . w , _ , ,[, ..hc. .,. .! :;,&. ..d;, N', , A,.q,A. . , , ,.._, _,,, rw .,~._..u y~ i~~. d. d.N.,t-~_U. - . r',1~. ,b.~rh.,_ ~C m=.. .1.
y ,. ..,. ., . T - ~ " , . .N._,. y~
~) *~~~~~~*# ~" .NoiE19;!19 t , 58;3. 'DLWV ". I il. _ , i;_ a . . . _ .. . ... . .. ^- # ,__+...a p Lt. .._ 4 . . %. c t t ,-^ ,- , I l 4 . 6 , .. ,9+
_.,._.4 . .,..-__..; 4 L7, .,i -_ -
; 2 g . .. ...._.-.-. . - . - .- ;- . .t.- - _ . . ~ ,&---o-,---,--,-+--n-.-,,_---<,--..,,--n -,,-_,.,7_._._.., v. - ., , m -, . .-m --+ , n s ., ' i i i l I i i I i ! I I !
_, ~ 2 '- - . _ . , , . !_ .. . _.. __ . . L L .I . a.,__.__ ._,...i i_.,_L. __ Jan 22.':1983 LDN Y ~ ~ ~: _ Etf f _t ~.f. 5 1 ~_'-~~.* :__ _ __ .: ' __ U . .. ' '-*T _~__ . - ~ ~ ~Z " ; T . - E Z_T^C _ __t _7 ._ _
~~
_'.W_. _': . - , . ~ ' _ . , J ,h_ _ . . ._. __ ___ __ ___ ... . ,_ _.._.. ~' k' _.,.__% i__ _ . _ . . _ _ ._-. . _ .
. _ . __ . . . _.a ._ .__ _._. .. . _ . _ , e - . , - . , . . , . . . , . , , _ , . . ., , .., .., ,, , . , - . , _ . . ., , ,.. r>r r- ra ta r* i e -t-* er t s *-
- r a' t
'*t' t- t ! -- e- t' P-} +s ar i 4 -
m
-r
_, , ,. o- - . ., ., y,_,__ __ L _w y . ,. _ _,+'1,. _ -- _., _, _ Nov .19."_1983 LDN 'V. . _r .".g,. , .**,.".p~^ ,_ __ ",g _ w, _ r y...~._ +_- a+-~ m* y:- . .- . - . - _ - - -
- - h ~ ~ m,. ' ' # *_ --+, --+------r-_ -
- m. ..
, - - . , -, -- 2 4- +--.---.--.m - _-+___.".-_~~.._~_~s'.. _ ._.__...m__ -_.____.,g .
e-__.. Jan 22,1983 ELF V .
-:.:.4mm=._ - - - . ..- m }ly &, f) f 't ph -- _ _ . . - . - ~ ~ - , . _ . . _ . _ . _ _ _ . _ . - _ _ _ _ _ _ . - _ _ _ . . . _ _ _ _ _ . . . _ _ . _ . _ , _ . _ _ _ _ . . . . . .
Nov 19,1983 ELF V -~ -- ~
^-- ^~ -
mWWWWMv'.-^ :-v;- ^^^mWN;lk}h!,$l'il y
- M,Ki/M,vk++'
/T(4, TfT@h% Yr 'u M OW7DT iT g
fpNew PERRY NUCLEAR POWER PL ANT THE CLEVELAND ELECTRIC Y ILLUMIN ATING COMP ANY comparison of the January 22 j and November 19, 1983 University of Western Ontario Seismograms FIGURE 3.1-9
O APPENDIX A3.2 EARTH PHYSICS BRANCH DATA ON THE MAGNITUDE OF THE 3ANUARY 31,1986 EARTHQUAKE O j l l l O 1 Weston Geophysical
I A, Energy, Mines tnd Gnergie, Mines et
't Resources Canada Ressources Canada Earth Sciences Sciences de la Terre !
Earth Physcs Branch Directon de la physcue du globe Deson of Seismology Dmson de la seismologe and Geomagnetism et geomagnetisme 1 Observatory Crescent 1. place de rObservatoire Ottawa. Ontano Ottawa (Ontare) w *= vee **we K1 A 0Y3 K1 A 0Y3
- b. we reen.
4215-7 April 7, 1986
~
Dr. C. Leblanc Weston Geophysical Corporation - P.O. Box 550 AP.9 2 'e s03 Weston, Massachusetts 01581 ' ' ., ,, ' U.S.A. b4 1
Dear Gabriel:
I have asked Bob Wetmiller to collect the data for the magnitude of the January 31 event near Cleveland. Attached is a table which shows the data derived for the event from the Canadian networks, including the readings of trace amplitude, magnification and period and the individual magnitudec calculated at each station. Also attached are three histograms which show O the distribution of the individual magnitude readings. You will perhaps recall that we read 1/2 the maximum peak-to-trough Lg amplitude in mm, convert to ground amplitude in microns and divide by the associated period to calculate a Nuttli local magnitude. We use the 1973 formula defined for distances greater than 400 km and periods 0.7 - 1.3 sec, i.e., j l' M = -0.1 + 1.66 Log (km) + Log (A/KT) but apply the formula to readings at all distances beyond 50 km and for all periods. In our experience this scheme produces magnitudes which are i consistent with Nuttli's original definition and which blend with teleseismic mb magnitudes around mb 4.0. For the January 31 event we have 24 readings varying from 4.8 to 5.7 with a mean at 5.3. These data are shown in histogram (1). The distribution has two distinct peaks, one at 5.0 and the second at 5.5. The stations contributing to the higher peak are mainly ECTN stations lying in a limited azimuth range northeast of the epicentre, as well as the standard station, FRB, which also lies in this same azimuth range. The stations I l l
.../2 ).
Coophysics Division / Division de la g6ophysique Geological Survey of Canada / Commission g6ologique de Canada Canadn'
! i , contributing to the lower peak are mainly standard and regional stations O to the west and north of the epicentre but also include ECTM stations LMN, KLN and GGN and regional stations GBN and HAL, which lie at a more easterly azimuth from the epicentre than the rest of the ECTN. We I l interpret this distribution to represent relatively more efficient propagation of Lg across eastern Canada to the northeast from the epicentre than at other azimuths, resulting in higher magnitudes at stations to the northeast. A similar effect was er. countered with the -I sharpsburg earthquake of July,1979, and may be present for other large i events in eastern North America. l Histogram (2) shows the magnitude readings that conform to the period i restriction suggested by Nuttli (1973). The distribution is quite similar i to (1) with the two peaks still evident. Histogram (3) shows the j distribution of data used to calculate the ab magnitude (as supplied to us { by NEIS). The ab values have a mean of 4.9 and show a range of values
! from 4.5 to 5.4. It is clear from the histograms that the ab magnitudes have values lower than any of the local values calculated from the Canadian stations. However, we do not expect an exact agreement between our local magnitudes and ab in every case, and consider that the ; differences evident here may be due to the general uncertainties of magnitude calculations. The ab readings did contain values as high as 5.4 so at least at some azimuths the event appeared stronger even at teleseismic distances.
Our general policy concerning the magnitude of large events in or near
- Canada is to use well determined ab magnitudes in the range of about 4.5 i to 6.0 as the best comparison of event size. For the Erie event, we will
! adopt the final ab magnitude calculated by NEIS as the magnitude of the event in our Catalogs and for seismic hazard estimation purposes.
However, we are interested in improving local magnitudes determinations in i general and resolving some of the difference seen between the local i magnitudes of events in or near Canada with ab magnitudes. To this end I would appreciate it if you would send to Bob Wetailler any similar data on the local magnitude determinations for the Erie earthquake that you may collect from U.S. agencies so that we may have a copy of the information ,' for our own research puposes. ! With best regards, Yours sincerely, l a - i i M.J. Berry - 1 Geophysics Division i l 1
,_,____,.,--,ermy__. _ _ ._____,--,_.,_n.,_mmm._,%,--___,___-__._.--r-_,_.-___ _ _ . . _ . __._,m.m.__., - _ _ __-+_._._-_-,r__ -.- __ m
i ERIE EARTHCUAKE January 31, 1936 Magnitude Va!ues. froT. Canadian Stations STATION DISTANCE AZ T K AFF MAG . Mm see mm i FPS 2581 14 1.3C C2C 23.5 5.5 JAQ !?99 15 0.80 100 190.5 5.5 EED 599 19 0.60 O!C 106.0 5.7 4 f VDO 761 !? C.37 100 302.6 5.6 l MN? 1361 4C e.73 100 224.1 5.6 l OTT 594 45 0.00 100 41".E 5.6
)
HTO 1290 4E C.'T 100 220.5 5.5
- GSD !?52 4? C.70 1C0 103.5 5.5 i
i GNT E67 51 ?.77 100 415.0 5.5 L*? le77 51 0.57 100 131.5 5.4 Mf!T 7?? 5? 0.47 103 2EE.O 5.4 4 E9N 1200 51 C.4' 100 75.C 5.2 4
~
280 94? 5? C.70 100 395.5 5.5
; WLN 13e? 59 1.00 1C0 1C5.7 5.1 i
LMN 1389 e5 0.7C 100 42.9 4.3 GON 1214 67 0.70 100 SS.2 0.0 GBN 1E?O E9 1.ee enz 25.C 5.0 H 91. !d5E 7: C.CC C72 4C.2 5.0 PMS 2Pl? 3?2 0.?C C?? 16.0 5.1 cec ?!?? 320 1.10 035 15.0 5.0 ( YV C ?!S? ??? 1.00 042 7.0 4.9 eCC PCS? ??? !.1C 075 29.5 5.C PF9 77?? ?57 1.10 075 17.3 5.2 I G'. ?t7? 3?? 1.00 0C5 2 .0 5.2
~. ~. - - _ _ -
.4-4 1 4 s ! M*?NI"_'DE Vs'_'. TEE FO' Tir EP IE E ARTHO'.'AKE i .a?.uarr 31, 19S6 1 4 j 1 EPF Marr! tide 2. %:t t l i Mernitude 3. NEIS mb Maanitude 1
=
1, . j e... 5....le P... 5... 10 0... 5... 1C t i, 1------------ I----------- I------------ i { 4.51 4.51 4.5IX i ! ! ! ) I T IXX l I I !XXX IXX IXX IX , 5.eIXXXXX 5.PIXXXX.V 5.CI IXX IYX I , M IXXX M IXX M IXXX IX IX ! { IXX I IX 5.51XXXXX 5.5IXXXXX 5.5I , IXXX IX I IX ! ,1 I I I I I I 6.e! 6.e! 6.01 r____________ y____________ g____________ i O 4 j
]
l I f , l l i i 4 0 l l' l
,new, .-,.-,e,-w<,e,. -. .~,--,r-- - - - - . - , - ~ ~ ~ , - - - - ~ ~ ~ , . , , - - - . - - -
l O l 1 1 I APPENDIX A3.3 INPUT DATA AND SOLUTIONS FOR 13 AFTERSHOCKS O O Weston Geophysical
t usi wuessesoog oNs6-e9 O t smtous( epeeeeesse dp99tfel mad 3gi y!a!!tO ) tettdit( se ee ee e attA)tt &!tslit latalC( tt*439( 435115( 435439( 43!131( 635410( sit 436( 48111891 43la)888 4888881( 43$4388( tivetssi t3tS 9 t7 C t* te t* 3'0580 5*80tO 9*SCOG *t'0tte t*0090 9*0085 ttO'9009 S'0930 8 5809 l'0009 03114 46 t'ftte f* f O l*
't 91 ( t* 0t et 3 *e le t l*8440 l*0008 et*stte 2*ff00 s'ette t tO'ttet ll'0000 0'* E 00 8 t*0009 ) art 391 u3811 3 a31O? t 14 tIdam 9*t59 S'0 tt 9* l f f f*9tO s'ttO tl*ffe tsO sgger sses d3t 33 sdt sda td9m tet9 I tdas 3091 1910 10et l' t' ttf' t*ts 9 0 5 0 t t tttttO 91 tI'90 03 50*04 E
l eorntnusaat ) set etst t914 a9143$ 54940t40 340CD $ 50fAlaage4$ 45s44 5 0819 194 e lle t a c* da m te eat tasat tse 34 et ta 89 Ge OF 0994 010e et 0191 010= tt 0191 0104 82 9 96't9 9t=9t*0$ etatS*39 G*08 f e'll 9'C3 300 t $S *9*90 et*t9 t'49t6t*69 t E*40 8*90 9*t9 tI t9 l'49 tI *l'tt*9a tta s'ta 9*49 t t* tI t*ts tte t'*00 9*90 et*t9 t*49 t*t9 t'*( 50*03 0't9 e'00 8 9*99 ll *9'90 0* t9 *l'09 *r*56
!t 9e't691*tt'94 94* tt* 6*td 9 85 C C*t6 at*t* 998 t'09 *9*90 t*19 t'49 *l*09 et*te t 95 8*90 t'eS O94 0'09 0'00 8 94*ES91*ft'94 tt* 6*ti 9 '* E S t C*05 f*tS T!O l'tt *** 90 t' 89 1*49 0'0# O'88 0 '* 9 $ e*39 9* t'ff 8'59 8'40 0'00 9*t9 0' 0'00 l
atla 03111 e 1sa e 1349 # ttetu met nE tu ted e ts1 tem 008 0 190 etr te em tas tse em sanu $tse ed saes tsod I tettes 3959 94*tS *t-te'91 01+ 6*14 **ts te t 49 8 0'06 0*( 4*l 9 tte t'92 le 28 0*00 0'08 0 G*9 G*0 0 0'0 S'O t j tat tits tiu fle dres eT=e d.tt3 adats a4391 314 de t 4 313 4. og t ma e e s 3 313 3 tuts tse eue detS tnes 3 343 4305$ $*031 t*ed 34 92( t* 9 E96 t t E t oR C t t it E& l'tf 0*61 8*03 ?'09 l't4 9 0 44 9 81 8 50'06 t'69 eS'tI t( weem 9*l 191 lit d 8 1859 !t'98 l C' 1*ts l'tf t*00 t' tf t'lO 0 t 8'S 0* O 9 3$ i ll*!S t*06 S*14 e'96 8' l dia l'9 ti t it t dn i t s 19 t t* 4a s'ti t
- tt B*00 le 0 0 0*84 9 I 939
)e co 9*9 192 81$ tsAC tels lt'de s' 9 21( tte e i tt it s t' aO t'59 t*ti t'91 t'96 t' ti 0*tS t't6 G*tS *t*39 t'tf t'96 9
9 0 8 0'00 9 4*00 9 31 t i I ll'tI ll'tI
!*ft *0*04 t'99 *0*t(
B*t6 t'49 01 i tt* t S f*40 0'0$ 8'44 elC* 1'ES l sac = 91( ll 9* 6 tte lit e
- tt it tt*t8 6*t 11( tta d t t919 tt*ts t*ts f* fO( tset tt3t 11'96 l'il 99 3*le t'O(
!'l&
t*SO f*ti s'tS t*02 C*tS et*$S t'll t'lE 4 0 G 9 8 E 0*0( 9 S OG 9 S09 9 al i tf*fO 81 i l t* t 9 t'!l *0'01 8*46 0*tI G*44 0*d* l 931 4sa t I' 9 ttE ttt tsri ttit ll'42 8 l l 9 te t tt tdo t 5119 st*45 t't4 t* t'6$
!*ti t*99 t*tS C*t8 C*te t*tt t'tf t*
B*lf 0 0 0 6 0'00 9 9*09 9 81 i ll'il
% 6 68 4$
t*60 *4*ttoot'st 9*90 *$*02 e*SS l /g,, gge t 9* t tS( sa sdni t9 59 tt*tf !*ts t'na C*tI f*08 l'ts $ $ 0'00 9 t t tt'*lA l*!! s'tI 8'89 r ? [ l l [ ! 3 I l i t n t
. - . - - - --- . - - -. . ,-- --- - -.* -- ~ _ - - - - -
Q l senue vu.mm os-oc-se )co si.m.( eceeeoeove dr3*9tes mad 3tt 1*a:t:3 3 9#t 57414 eeeeees 8114354 8F1812( 131436( tiltlet 43513$( 4314394 831831( 481439( 488436( 13t&3tC( 4E54381( el t4 3 t it 5 311318 4 lavets00 9*t9f9 8 83 C **00t9 8*353( s'0009 9*9tsE *9*9480 8'8008 s 0085 500'0600 0*9044 8 leet t'8008 etlla nO t*tteS te'9t?t 5* I*0389 9*8538 s'00t9 t*0009 *t'a008 t'ttec s0006 t00'0004 ts's000 0'*5080 8*0004
)eptavi u3031 1 43103!84 8Idam **rtS s'ttE 9*E00 r
- O CC G*tet tt* 9t9 taf seivt sdyS 401 ti sus sde tdne tet9 ta tdae 1433 isse 10es s* 1* 259' t*ff 9 9 8 9 t t tcetit 91 9t'00 01 80'80 90tal&ulual tset etsilfi d*4T1A31 519e0589 308881 99tnlaule1$ 4934e I est9 tes e 1CeT
- fidAm am 3mI tseot 1s3 34 0194 81te ti ties 010a 02 0194 01Ce 92 01 s a 01 &e 03 9C tt*IS*38 1 80 t C*lE 0*t0 388 l*88 -9'88 -S'89 f*Stelt*61 8'lE tE'lE lE 4*t4 8'85 *9*00 +0*59 !*8(
t88 ,s'96 9t* 99 99* 6$ etets tt lett'*tI t**t '0 t t1* 4*99 tta 6*94 4 '* 0 ( 9*f9 I 8*tI f*19 997 :*00 atago *S*68 t4 909 CS *9'90
- 0 50 3*0( t*t( t*te ts'99 8'06 00 t*08 t 05 0* 0*08 09 0 13 0t*t6 00 58 9*00 at*ta
*9'09 0' *0*tf 0'09 9 9e*9a *tettatE st* 6*35 *'91 ft G*
G*8404 *E'tS 5* vos t* t'49 **'09 9'*68 t*tt +1'00 0*f9 .t'*00 8'09 0' s I S S'OG 6*00 0*CG 8*89 9 ot'91 t t*tt
- 4f et* 4 'i s **t9 t s'04 8'84 tif t*88 ***00 *S*le r*01 t*0( *8'09 0' 0'05 t'ef 0'08 s'tS 8'*84 0*44 0'00 0'00 3:43 ett?te 1sA e llet e C3 dam dtS 4G tu tte e eut asu let 0 138 90t ta sa tas ese sa sesu SOIm ne sada sasa 3 settet E!! ot*ed ttat s'4? 01+ 6*65 t'89 84 t 82 I e*04 8'l t*f e ttv e'ti te 56 t*ts t*06 9 9*0 8*t 0 9*0 8'0 9 tse tt*g tte ele dnes ates d.173 adats td3:131asat d*335 dema f ua eiS 391E a te 9 tot eud euF9 lena $*543 418051*831 lae8 34 31( 3* t lit 899 d O !!r 98*97 C*41 0
- 85 C*08 t*tS l'91 0 0 00 9 $ 9 tt*tS t*00 8 11 I 93# r* 4 t tot tor ( tif e t* t6 t*ti t'82 **et t*tS s'91 0 0 0'09 9 t t st*tI t 91 =0'*t9 t'96 tI metw *** tot sti e0 tif ts'ti t*ti t*tI 08 C*02 t*98 3 0 0'99 9 03 9 se'90 t'*45 *9 06 S'OG die S* 0 tS ttE tiRC !tt lt*II 1*** l* 88 t'tS C* t'09 t*69 O O t'0 O* 0 9 t t ll'80 tf 0'* t9 3dc= 9* t tes 816 eI !!f 3C*00 l'tE t'$0 S'09 *f'14 8*04 0 0 t'89
- t*EE *808 86 II t tt*te t al G*
eje 9* 4 tas tte tdn* ?** 3C*ts t'96 t*t9 C*08 *t*tI t*la 0 t O'90 9 t I ll'86 I62 *0*tS O'tI m3 em a* ( 891 lit d ! tif lC*tS t'59 s lt 8*88 t'99 t'56 0 0 9*04 9 8 9 58*95 aG *0'09 e'66 I'
)te 4*
- tte 819 tdat :ti st*te s'ta I'93 f*tS C*04 8'lE t 0 G*90 9 1 t lt*tI r'99 31 0't9 359 G* f 305 ttE et tif st*et t*de s a l 8*tS t*08 s'le 0 9 0'08 9 t t tt*45 t'00 E* *G'tf 0* 0*46 91( s' t t tte d i tIF 3t*59 s'ti t'84 t*t9 C*00 lO 0 0 8*80 9 1 8 61*69 f *t6 *S*08 O'84 e
,ve ttat tte tte 3d3$ tt: tt l'tt !*09 O*te t*ts s'lA t* 9 O O'90 9
- 19 t ta t tst te9 eI fs
- 38"94 ie :*t6 t*!t 8 09 f 00 0*:S 9 0 taeS 9 89 sr'94 **00 e ta e te 938 t ta s ta tt9 ! dot *l' 93g t l* ( ?se tel te I !*? tt*t9 l'tA !*tI ltsa :*ts t're t*tS .t'09 t*69 0 9 8*90
- II t tt*69 t'84 *0'88 G*40 t 08 t' t t t*t9 0 4 e*00 9 1 i tI'99 E'64 4*t9 8'96 ets t t* 9 t;g 103 dRt !!! tt*t3 f*ts t5 t09 e f'll s 19 8 8 00 9 81 8 ll'6S 9*8$ S'08 t'IS dege t t* 0 t*$ t99 4 C :tf at*t9 !**( !' t't6 8*89 f*t9 t '* l f 9 0 8'00 0' 9 81 6 li'SS t'tt *0*82 8*92 ede tse 98 tot !d3( 'tt 81*:3 *sI :'le s* 09 *t* tI 1*te e O O*00 9 3 8 lE*t4 **lG *S*tf 0*86 gge t t* g tta 333 3d t *;t 31*ti !*t4 :*03 e't9 t*tt 9*tI 8 8 8*90 9 41 I st*48 6*49 *0'02 8886 sll t ge g g teg 4t *;* st*t9 tart t*lf t*09 f*II t*96 0 0 9*90 9 t t tt*tI l'99 0'00 0*84 310 t0*0 tte 66 aI tt? tt*tS f*lf t' 91 e*te t'09 0'ts $ 0 0*46 9 81 8 se'94 G*68 *0*ttse0'09 r
I i I l i l l t
e O 90's 98*0 fe'd 49'At 9 $ 9 40*0 0 0 9t*0 91't St*C l*** ll** Ft 't ! 19 61 5 4 66 4tt 8 *tt 619 34*C E 8 *0 84*9 05'9f ! 10 t 09*0 0 0 to't 48*t et's as't' Itat 39 *s t 4
- lt ens tet tot * *s t See St*0 44*S* El*l St*ll 9 10 9 80't 0 0 (**t It*f* St*C tl't (l't 8t 'l t (* b1 (34 ft1 4TF f *0F 813 St'0 9t'8 49*6 et'll 9 5 9 00'0 0 9 Od*C 8t*f SE*t 01 *t 02 *t gg'It gett t d ett t **gt 153 00'0 et*G $4*6 05'52 e il 9 80'4 0 0 ta*C St*te 8t*t 6t's (t *t it';f 4*lt I e 90t 191 f *4 8 914 00*t Ol'O. 09'9f 9 $8 9 C O* O 8 9 64't I!*t. St*C *t 'E (f *r et*** 4951 tRd ett
- O'41 sid 50*t it*0. 40**92'l It'll i 13 9 90*0 6 9 59'l et*t. 3r*C tt*t 36*r si'. ; 49 51 test ett
- s 91 a39 9t*t 60'0* It's 6t**! $ $
- 90'0 0 0 St*1 *t*f 83*t 59*I 1t* l**; f telt I e att 4 ? ! ( **1 394 48*8 8t'8 Se** Sl**I
- 1 9 88*0 t 8 9t'l st*f SB's El*t ta'? Gl * : F 4 9 51 1 e att to f ** 1 sti (4*G 6t*0 44'* 49*9F I 1 9 99*0 0 0 9t't 6t't St*t It*f 84*? de' ' 3951 I e g!t 6*t t**1 Att ta'0 60*O f*** 68'91 I I 9 09*9 6 0 +4't st*t CC*t 9t*T 89'? $2 s 4951 i e 6tt Ft r t'il Ist id*8 I t 's . E ! *
- St'9f ' 53 9 CO*O 9 9 19't 91't* GL*C 90't It '
- 31'; f tal! ett ett t'l 6 *t t ele 9 St'$ 4 8 St*C it't CC*C 6t** St "l
- t *I f &
- ll
- e 911 157 f *t t *ll it*0 8 t '0 - 5 6 't it *E t & S 9 80'S f 9 ft'l Et*t et *t 4: 6;'. st '.
- 4e nt I a 111 t't J *t t *Cd 94*$ 80*6 10*9 84*4# I 1
- CD'S 0 8 Il*l E f *f . O t 'E 9 't 1 T St '.? ge tt 1 et 1ti at l*t t 139 9E't fl't. 96*t it'll i 1 9 CD'S 8 9 $$*1 ff*te St*C Sf 's 9t*f !G*1* 4951 Ene 911 181 t 't t 91 4 at*t St*ta ll*6 42*ti 8 5 9 80'8 & 9 ft'l ( *
- f - (t *C I t '. et*t 34*.* .*ll I e 915 let f *01 af) et*teett*t. 86*t 8d'If I 13
- 89*8 8 0 Ol'l it*t tr's It'F tt'r ts *tt s* St ete ett *e 4 *6 oc!
GE'S 50'0* &l'E 93't! t S
- 90'0 0 0 ft'l tt'e et*C 18 "I 66
- t 24*t l'il 1 e til t*1 t '6 AC3 ft*1 It'O. it'E 80*tt 9 1
- 90*O t 9 O6't 9t*t- et*t 6f'1 90't 19't? telt t e att att 9 *6 ste) 9f'$ el'8 t!'E 80*E r C 5 9 49'O O 9 El'1 *t*t. 00*C 06*1 ff*t #1'10 set! t 4 411 5 6 '8 253 S&*0 *0'e= tt*t 66*t! F $ 9 GO'S 0 0 fl*t St*t st*C 34*1 44*t 95*1? tell t d 6tt 181 f *0 953 St'l 60'0* (6*f 01*!! 0 1 9 00*4 0 9 tl't f f *C OB*C 44*1 (A*1 fl'1r 49 51 t a 171 tot 9 's so)=
It*9 81*8 S t *t it*tt t 5 9 00*G 0 9 It'l St*t et*C el*l 14*t fl'If 1951 tes FFt e t r $ *4 044 9 00*4 8 0 al*t 94*r 05'0 ll*1 9d*1 a**1? 4951 todt (!t ett r *4 es3 69'S st*0. It*t SE*tt t t
- 80'0 0 0 25*1 et*t 9t*G E9't 95*1 s tner of t ett l 'a ett ta'e St*8 86*l $4*lf 9 5
- 00'0 0 9 Ot*t 9t'e Ge's ($*l te*t 3,t*tt
*ttA*41495t t e itt 50 t '9 Ba8 at*0 60'0* tl*! SE*It t I
- 90'S 8 0 It*t 09't it't 89'I ll'1 ff*l 4951 I e 4FI l*t 0 *$ ett 9 08'O 9 0 85*1 St*f St*0 (**1 69't 9f*If d'Et todt 111 6t * *5 ele 90't 19't. 60*I 99'1f 9 I 9 90'S S S St'l 10*C* 30'8 19'l 6t*t 91*1F 4951 1 e Ett $91 f* ute 66*e 61*t fl*2 St*tt i 1 9 08*0 0 9 E**1 ft't St*G Ft*1 (**1 f**1t 8951 C e ett a t t * *,l esis 90'S $9*9 Ad*t *$ *if 9 8 9 09*0 0 0 0t*8 41*t 00*8 ff*I 19'I 9t*tt isnt 9 e 6Et 11 f ** 193 9 00*G 0 0 ll'l 80*f 80*C !!*I *1'1 16*tt tell CRet 011 ett l'r 239 ll't It'O. It*1 69*tt 91
- 90'S 9 0 ll*1 IC*ta St* 0?'l 90*l Ef*Cf 1957 0 e 991 9?t t *t Ell 44 an $ $30-1 18051 335-5 seal Stud aus set Stes a sit) ase set An e lated tera 13 19341 50'es 371 4 mete send ett s?e atte eAl 9 0*8 t*0 0 9'8 0'S 0 9t*0 09't 99 Of 11*8 ttt t t'0 f*O 90'0 I la t il (O's s * *l -10 76
- t t -19 44*lt s ett ter889 I as35 seat et escl este se set eat On #3 fit C91 t let sta les e ett at tu See madtt e 9631 a avi et?ttt 33:3 Ot*0 08*8 9t*9 ff*0 ft'0 90'0 09*0 ff*G E9*9 14*I 24*0* SA*t* 90*t fit 9t 'e 09 *0 t it*l B e* 6 10 T6* Br at t 41'41 9 St*e St*8 00*O 90'0 80'0 90*t 90't= 90*ta (0*t IA*! 24'9* S4*E* St*1 tot PS't 30*C 1 (8'l 99*4 +18 F6
- tr-t
- t t *t t e St*4 90*8 11*t. 00*8 9t*0 00'0 00*l 70'9 89*1 tt*f IA*S* Id*f. 00*t tes Ft't. If *C I te'l f**6 -10 S S' S t *t
- 0 d *41 8 00*l 08*9 00'S tt'0 80'0 00'8 99*99 98't* 14'8 34*! It'0* $4't= 40*I vet *1 *S
- It*C 1 11't E t* 6 *18 9 6* 9t-1
- F4 *t t f l&*! It ' 0- 61 *t a it*4 61*8 tl'8 40*tt FA*tt *t**t914*! IA*S* S&*E Og*I st) St *C 0* *0 t tt*$ f3'0!-10 SS'1**t
- t l'E l I to e tic 6913 I4 9t1C 4910 It eOlt 4910 te sa ic Av1c g3 ;st legat leg og egg 3e a *eti e sti 3139 t SIst! $2elsalnt03 18008B 08904911 $3n19A-s itI&tte les) lle3ellnt39 90*95 10 09*19 39 titett 0 8 6 5 9 * $4*t *tt? *t *l 3891 0151 33C3 neet 88 1981 6443 ses ten 92 tes stas rtiga s!!
tt31 913 s13*151145 Ostea St9*lt Of f *O SC9't 00l*9 tet*G ti t ** eld 30 all M194 1 iltie 993 trg3 OCSC'1 8996*e 0t90'51 00ft'981 Geff*e 90tt'T 8004*t= C0f0*t SC00*l t259'8 Ot3t*1 (300*l trit *e 93 11130 Sett*t tatt'e 9t90*0 00tO*Ott St9C'S 20C9't 9840*9 000t*9 Ster *l (318*3 erst *: Cit **01 0*3t'e 3tetetal (8 8 3113 4 (213 8 5 3 A tit) Alta (9 3) A134 8634534 (034134 (138534 8978531 (3)&131 t')Alia (f3&t33 (*lalla (t)Atta eseteto 84dslist 3 *:1 rett T43 dam tutB9Std eess e* *e te (suolMS trE) 99-CO-ZO IPoysJouy pJtyi
O 94*0 00*9 26*4 69'at 9 8 9 00't 9 9 9f 't G l 's 96*f 19*9 $5 ** tt *t t 19 5! 8 e to att f *f t 459 ta'e (S*0 E&*9 06'98 2 18 9 90*G G G lt'l Al*C St*9 44*t' t a 'i 39 *t & # 51 (9e it1 198 f*tt 9de 88*9 44*0= $4*l GE*lt 9 il
- 40'0 0 0 E**t IC*f. St*t 95't (l 's at*tt test (34 2ft att (*92 913 08*4 9t'0 49'l 99*lt 9 9 9 00*0 0 6 S&*9 Ot*t St*C St*t 8 't at *!! 1918 2 e ett * * *a t 119 40*4 *I*S Ed*l SE*lt 9 13 9 00'8 0 0 EA*C S t*t. SC *C 60 *t it *t 02 *: t 4 9 41 I e off tti (*41 944
- 09't 86'0* (0** 99'et 9 il 9 80*G G 9 64*C tt't. St*C *t*t (f*! 09'7' 49%1 fnd oft
- 0*t t Off 50*t it*ta st*l 80'6! I 13 9 00*9 6 0 $9*l 96*t. at*6 f t *t la't 11*.* Selt tedt 9tt
- 6 *t t 439 9t'a 68*0 29't 6t**! t t 9 08*8 9 8 81*t 90*t 00'0 69'I 31*: it
- T
- 19 51 1 e ist sa t (**8 sed 40*0 It*0 04** 55'92 9 1 9 90'0 0 0 9t'l II*t 94*5 (4*I (&* 35*.* 194! ! 4 att 29 f **l sti 81*0 50*0 S&*9 at*tt t 5 9 90'S 9 0 #E*C 60't 08'8 19't 94*f 49*t* 4918 i e 4:t tot t ** f Att (l'8 59*0 f**9 68't! t t 9 00*O e 0 94*e E 0 *f 00*C ts*t t**f l**t* 4948 i e 6tt Ett t*tt 011 24*8 ll*0= E!** 9Eatt ! 13 9 20*0 0 0 te'l 81't. SC*C 99'T t 'l 31*;* 1*li c:a 6tt 9tt 6*t t ole 9 00*f 8 9 0 0 't it *f at *C 6t*: it *? 1 *4 : L*St 9 e 3tt Ilt 8'It 919 tt'e 8t'O. 16*E #9'It ! E 9 89's t 3 ff*t it*C #C*t 4:*: 6**. It',' 4911 . e fit t'l A *t t 9td 9&*S E0*O 10** 04*Lt ! t 9 80*9 6 4 28*t f f *t. Ot *C 9:*r .**f it".? 4* 11 1 di 117 at l*t t (39 9t's fl*t= tl*t IE*tt t 4
- C9*G f 3 Olat it*t OC*C lt 's et*f flat: 49%! tad 918 **t (*f t 11 4 9 00*8 4 8 (I*t IG*C. 00*3 6t 'i 9t** $4*, ot t i el to fit t *t t sie (1*I 80*S* 9t** 19*9 I t!
- 09*8 9 0 85'1 teat
- 90*C St** *E*! 10'* *t t c:sf 66 fff 9 'r t 13e SE*6 (8't* 94*t E9*9 t1 9 84*9 C 0 ER*1 00*C BC*t tr*. of't it'* 989 I e 66 ft! 1 *t t 959 It's tr*0. El*t 90'9 8 il 9 03*e 0 0 ll'8 80*C 04*E El'! Et*! It** *ts 20st CEt 9t * *1 t (39 Il*l SC'0* 8t*l 54*5 31 9 08*9 0 0 ft'l 99*t. 00't 66*t it*t st** *f p ae tot ett 0s ee 3e
- 80's S 9 la*8 60 *t. 80 '0 as*1 Ba't St** *tt i et Ett (9 a *s met 94't 88*0 St*t it'l i1 9 00'0 9 9 94'8 SC*C 9t*0 &&*1 (g*1 st*, et t : 4 Ett 055 0 *6 ft) at*9 Ol*$ gl't 98 'l tt
- 50*G 9 0 96*8 Et*C 90*8 95*1 ll*t it** *tt CSet 9tt 992 9*4 sat 9t*8 ft'G* It*I 96** I1 9 89*0 8 0 *l'8 E8't 00's (l't 15't (t** *tt test 40 s Ett *'s ect 48*0 At*ta SE*I 90** t 13
- 84*O G G 91'1 ft't Ot't (**1 35*t it*t et t I e att (9 t f *4 939 9 90'0 0 0 ll's 90*C St'0 6t*I (**! 14 *t *t t tRe S t t t e r * *9 3#3 It's 9t't SE*! E0** f1 9 08'O 8 0 fl*t 40't et*C E!*t SE*t sL*C *t t 2 341 9 t t 95 t as e se st*O 4t*0 st*f 29*' ( t 9 00't 0 0 89*l ll*C 00*8 tt'l it*t %9't 981 C 4 C25 til * * * $551 Or*0 Of*g. g4*l et** tt 9 tt's 0 t 95'1 st*# 00*C 31*t St*f 29*t et t enal 9:t let * *
- dce St*l 50*0* lt'l 26 *E I 13 9 80*6 8 9 el*l 30't is's 90'0 te't SE*t 95 7 cast (95 ist f *! F3e 24*0 ll*8* Ef*l 40*t tt 9 00'S e 0 *l'1 Ot *t. CS *C (f's (1*B Sf*t *t t td 19f *t t 0 *! esed
$4*O !!*0 El*t 00*9 f1 9 89*0 8 0 $$'t Ot*C 00*C 64*0 64't it*6 *t t te ist Ett l *t- (13 la Ae-1 lia*t least 335-8 test tous and see Stas a sit) see sus 14-d tas-e im/41* 193a4 16344 331.e ==se need eIt ett lit e eat t 9*0 t*0 0 4*9 0*G S 9t*8 00*8 ft et 46*t Utt e l's (*e 90't 1 t$ t ti (t's 1 *4 -19 Seatt.t* 4**r *t9 E tte tt I ed31 seat da usGE stas as 899 sat au at est (St 8 233 mal lue e ett eC to Ste wtelt 9 Sa 31 4 4t1 altist 31 3 69*9 00*0 98*0 it*t fl*0 (I'8 If*9 Of*t Ft*0 19't St*t= Ot*9= 00*1 viv 90*$ 09 *0 t it*t !!* 6 att 04*tt.to 49't t 0t*9 08*9 90'S 80*O Sa's (I's 80't. 00*t. St*8 49't St*t. Sf*t. St*t **v (C *t af at t Et*C A ?*4 -10 46* st*t e Ol*r t 96*1* dl*G ff*G Et*4 St*0 9t*0 99*tt tr*l 0 9 't 49's 01*1- 02**. 08"I ett st*t- et*e t 49's st*6 -tB gg*tt.to 99*r i 19'O 31't+ 9t*t Al's 6t'e !!*O Of*t 40*98 9t*19t19'0 st*t 02*9- 8t't 923 Ot*C 19'O I (S*t #3*tt-te ($*t' t* 6t*f 8 20 4010 8910 20 eC10 trie 20 4090 1910 20 et10 A v 1C d2 031 148at tus t0 widI3 e feci g 391 Sig0 I sist& 1Aslullates 1808a3 Osf04 tit Slalta.d 1Titate (ms) San 3matntet 89*03 te CO*tt It GItgtt t I t 5 t 9 94
- t *f t! *t *l se 01 Savi 3383 esel et stat kie: ens ses 13 toe avse 29tes 912 at 3
- Et 9t t 's 800*f Ot t *9 CC1't S E ! **
m1413 4 813D13 8 8 13 C ?u 1:11P83 8000*t 8096*G S000*lt 4000*005 St00'0 C0tr*t ett1*ta tese*E 0338*1 t?t3*9 ?t30*t sitt'l 9 tit *e 34 title Statal 9005'0 9000't 80C0'005 SE98*9 Set 9*t SC&l'9* Otte** 3t9t'l CCl3*8 ft3t*: c3t3'01 atst*f 0090evnt tillallt (I8 345 34 tit 34t S t (tilalla (6 3 45 31 (931534 (434134 (914534 (511134 (*3stia (t )1? 14 (Z31111 (134194 eeeeees tesest/9 3 ?;t:s?9 112 dam tuss 99td seee ee ee es
- - .. - n . _ e
l 1 l l l O l l l 1 08*t tr a 66 6 5 (t *6f 9 1 9 08 0 8 0 88*8 91 f et 9 is 4 E!*t 19'It etat ee et raf 15s Illt 00's 36*8 re A tr*CE e1 e 80'0 8 e st*C 40*C GC 8 6t** 19'* 66*t r titt i e 06 Att 6 sr 659 (t*8 &l*C 9&*9 G r *6 I 14 e OS e 9 0 00*l et*e St 6 B A *t (8*t 49 Stit I et 888 991 1 *I t See e t0*0 t 0 r$*0ee62*r SC*t 89't ta*t gr's: tilt test Ett A r t 6 *61 113 et 8 68 8 et's al tr i l
- C0's 0 0 t&'s 80 t 90'0 93*4 r 't 99's 9( 11 : a rat s 44 Ill 9 00*8 9 9 4 *1 (1*t* CE*c 6C t 94 : o**C 9(11 I el Ett 9t1,11 Sa4 SE*4 88 0- 8t's 18'ar t la e Se'0 e e es't et*t- 00*0 4c *n st*t 6t's: St at e ns! E t t s r*A t 13e 9&*8 64*8* tc's to ar : 53
- 80*0 0 0 95'1 6c't to t et*: 94*r 29's: at t enes ett att e *t t e39 St 6 Gl'C* ss 9 68 dr i 1
- 8 9 tr't vt t- oC 8 Al's Et'r at*s: 9:1! I d SCI F9 9 'e t 301 Sa's 6c'8- St** 26'9 !l ,00*8 60 8 8 9 66*0 60*t. tc C is*: As*r It'e: till E e 958 Ott 6 *t t all e4 0 (C*0 Os't rt'ar 9 5 t 88*G 0 9 tr'l st*t CC e ts*r as r *!*t? St1T t a 9C1 Et 9 *t t AC s GC*c BC'C II t 9A*tt *1 9 CO O C 3 1t*0 e c 't CC't Ot - St*: *t + T 5:1 ae att i t t t *t t et:
E6*C st*B- $ C in C 8 *s's St*t. 8t C it's 3a 9: 9t1? E s *r t gla as c 0. 9C',s s.5 or* 4: ,e Ce*0 ,l ' et ett set
, Ortsr rt isi re- , cs 0 e e ri t sc r 3C c st . f-
- t es .: it s:- ten:
Sc c si o tr , et ti szse ,r si is , Csl
. g II lsaii:st 4. r- tg;*c 14'.: ,r : at 6 ti <3
- 6. . C. as t s .. : a;.. ;. a; 4. ;. :.* s tr i: ):e<t CCI tra irt a ii ar e s: e- es t Os se . si
- e s *-*c (: r st t +t - v:': st a? : s: :ti r= t *s .:a s.t i t ra.is in c- ts s 66 se : . eo CC es e e ,s's sc t :: t c0 St : , ,: st at f:e rit 451 0 31 is4,S a * + :
et*t r t 0. ti t e4 se E 5 , c3 s 0 0 tr*E *: *r 3e c u 's <*1 : .t it t , (11 et e6 se e,*t so o. Ot E +4 se a t
- te o c e f: t stat. ee c II 46 8 : ,: ,tti I , .: I
,t t6 rs)
Se C er s. se E 6,*st , s + es e e 8 fr t se t es c vi*i et's t +: st it i e sti s.: e6 an) 30*c as s- as t Is se r s + #0 0 0 0 to t at t- St e as t es*i s t**r et ii ee sti ret 9 ess
, et 6 e 0 e, 1 se t- ee C *s t vs 1 St ,r et it Ca e r s:t 4:t .4 uti et*c ,r s es t rs se , t , Oe 0 t a re I sc C sc t s** si*: : ,: stit ener r:t
- r ea-a,
,s00 e o s:'1 sc t- c0*: ss i :s t >6 : 3rit I en art att .s3 a .a e, t 6e e- Ee r as se t : , to o e a sr 1 re t- es r ts 1s's :a tr exit ie *ri e4 s ** ru
- e o ir* ac*e- ts's ee se I s3 ,se's ee O O 8 t**t as t (c'8 as i st t et's ,,*t a+
- e. i es t Sc ,: stat en.: srt itt r
- ts* : etit teen are et es 3.ai.3 re t te e- 6. r (6 *r s
- Go o e 3 er* at C et 6 s. t 4. te : st it t 6:1 e,r s s .s.
so 0 6, 0 6:*: st ,r , s , ee O e o tr i ec't- et c *t i s: i na t: st at t rts ret es 94 so o 6r e re r ee se , s , es 0 0 e er t es t Oc t it's st i st tr stit t . .ct et a. its e es o e 0 es*: cC ag's 6:'i It* s t: ir ti toni sti ett s, ecs
, a0 0 e a 6e t re t Ot e St i es t es t: etsi caer rst t s *r 13e to t it e et i 0,*,r a t , te o e 0 04 t *C f se*C ve*t et* rs t: St it t e set sit s its 40 44-$ lle-t 5s054 3BS-s east swad ens not tous a sis) sad sov so-e 13a-v 1mia13 15344 tt3dA 335-d esta need elv mit atto tal E 0's 68 8 0*6 4*0 e te *0 09*0 19 et 't'r vtv e r*0 10 de*8 1 49 i 25 95*8 I t 's - 8 9 ri e t-t
- t+* r r 9191 etitle 3 seOS edes de mECl sa6e me oss sat et mI CGT 031 0 rs3 map les a est ur ce sie mae3t A se31 e nel e:*:50 71:3 Se*8 Oc'O St'0 tr t 91*e 60 e 09't 9 *0 te*G 98*r ts 't = 10 **= 90 1 T,re 9: t it *C 1 ts 1 19*6 -l e ra
- st-19 ** tr t 9C*0 00*8 90*G tr t 00*C 08't st*8 ts't= E0',- OC'1 ts's -se et
- tt-t e ** t r t st r- 00 0 61 8. E r 0 Oc 0 St*0 et*t.
El 801st e ee',t-te* 99'r
,s*r +6*0- Ee *. 90*1 t W t t C
- 4 C 't
- t at *e= rt *t t I
te's 1 *6 .te ts'st-t o st arr r t ,*
- 6 9t*r 9s'O fe t- 06't 51*C tl*6 t<*6e s**ft as*4sete r ts*0. <C*t. et*t vt3 St*e 7t*C r Ct's 93*st-18 2 9' t **I t 6 T'r! I r0 WC10 1913 r0 eC10 1910 r0 40,0 1910 r0 et1C Avit e3 Out levat See *3 *147C e SmC1 e 3:1 31:3 3 eista laulettatcv $3Caa3 eneCotat SinitA-d 19140f# (ms) $163masnt!v 80 01 to C4 te 19 titSit t 1 e I e 9 ft*t 'tsr t *s tec1 31p1 33E3 eset 3! Sve; hid! edi tus SI 104 avst reise Sir trat St) 933uTP13dv midtd etO*st et 1 *f Ste*r 90s*9 CCO*9 es r *,
utdIS s a t :313 e I 13 tle it a 1Pg 3 SCDC*l cets 3 939t*18 9 00*808 BC9e 0 tetr*r DC0&*t- 9000't 3ctt's CS$t*S et0C*t E3te's erst *t DJ 335B8 eCOs t 480s*0 863t*5 C000*tti sitt*9 09Co f 9041*t. Cote ** OCoC*; t050 0 trot ! C1t3*01 et31 t Ortt9985 tit 3&l:4 (r 3 34s 34 (81)ssit E t t 34t ta (6333 33 (83&t31 (4 4132 C934534 Es>&Isa 69341:4 tt31*:4 t!1ttia (131113 e se es es (54#st/1 3 3:!!a:3 140446 tu?tated eeee ee ee ts n .... - .. n _ ... - e
Slath Aftershock 02-07-86 (24 Stations)
. Pa6604at tPeri e..:s22 8 6,15,703 .
185ftl3 1!!t823 ft11833 tilit*3 1811853 8811863 181987)2.0s03 188188) tilff9) 18 8tt883 0.30:5 see.s300 f tlttill s.5808 9.9:3e feltt 23 f3.3:40 flfill) sia.oaa 4.stes le.c 36 3 2.3:33 0.e lt l s.3e32 4.08:4 *e.8730 Ossit 30 0.sl83 s.8463 a.8:30 0.05:0 s.08ae i.es#3 * . vees 2 2:08 0.eest 108. east al. Oste e.50e8 a.0 3e CaJS t as aC 3t L i altas t t f S:#fu 4.2 58 0.833 6.544 2.438 4.4 34 39.&38 att salad afaa PC1 :s s.1 sto IPLu 2e46 I4 Iran COSI Late tems
- 8. 8. 254. 3.78 4 3 5 3 3 8 334843 64 43 03 08 89.08 abJuntatell (te) Pa8184L P=Tatut$ Stah8480 ett005 49Juttatatl tasth I CRIG Lat a L3ma e at#se 29 agl seeps la0 (P St a t Dt a n 62 Stat OL8m 02 9tal 0496 Of stat St ae 32 8 24.81 48-41.43 s t= 8 0.6 3 5.80 2 3.43 8.9t Cta 4.99 =3.94 =8.36 9.80918.47 76.82 0.35 9.83 0.32 8.00 *l.04 =l.00 0.80 2 28.45 4&*30.57 St* 9.22 3.00 2 9.Se =8.19 asa 4.98 +3.94 -1 08 0.90 36.33 8.lt 19.29 0.08 0.08 6.28 f.30 0.80 *t.24 2 20.64 44*39.83 St= 9.22 3.16 2 4 33 =4.82 a64 4.68 -3.94 .a.OS 9.00 =8.04 -8.88 0.28 0.89 S.44 0.32 6.90 0.09 0.80 2 20.30 44*39.83 s a. 9.;2 3.16 2 8.cf *.05 a2a 3.00 -3.94 =4.30 9 00 0.86 e.05 0 28 0.98 S.09 8.33 0.00 0 80 p.ts tatt 42tG3m Lat n 64,6 h 3873u pas m3 3a sat a ens ten 802 4 SCO ASJ tu na 490 saa me 4Was less at avpn SCOs I st 8201 4528 20.38 44-3 9.82 8t= 9.22 3.16 46 2 42 1 0.07 0.3 8.3 a a3a 4.21 se 44 0.08 4.8% 0 0.0 0.0 0 9.0 0.0 3 lie $$$1 Sie aIn Dans m6an P.12C IPCl31PCat CLD/ml **005 **ut 448 *tt Catt a saa6 ans one Snas sans l=lIC 18695 5-0951-of CT 6C2 8. 9 Bet 447 Put it2C 28.29 8.98 9.03 3 80 3.90 8.56 e 0 6.00 4 8 3 21.64 8.24 -0.22 0.89 (at 6. 5 7 all 9 8 8124 21.93 8.13 8.31 6.80 3.46 5.54 0 0 8.00 4 5 3 22.30 2.09 0.80 0.49 037 6.5 138 189 1793 3:28 21.53 8.13 1 42 8.30 J.08 2.11 4 0 0.00 6 5 3 22.31 8.79 =0.23 9.39
*La S. 3 37 gle 3Pg 3 33 2g 23.5 6 8.21 8.?$ 0.08 3.04 2.85 0 0 0.00 4 8322.34 1.96 +0.17 0.36 ese h6 469 534 # I 8124 24.la 3 30 8.24 4.08 -3.34 4.99 0 8 0.00 4 5 2 42.64 2.08 =0.86 8.67 082 5. 9 03 III # 3 8128 28.71 1.36 1. 12 8.84 3.03 0.52 0 0 8.00 6 5 3 22.75 2.33 =9.92 0.93 65= 6.2 265 Sat P 3 3!24 28.74 8.31 1.33 3.88 3.01 0.53 4 4 0.00 4 3 3 22.92 2.44 9.41 0.93 (FC 6.e les gle le 1 at 8 J1.38 1.32 1.39 8. 0 0 = 3. 3 7 1.14 0 9 0.00 4 Il 3 22.64 2.22 =9.fl.es.00 (Ca 3.3 32 g 383 3 00 1125 21.03 8.53 1.54 4.00 3.82 2.33 0 0 0094 & 3 22.84 2.40 -0.22 0.19 bC6 f.3 343 337 3pc3 1828 21.94 1.53 B.52 8.09 3.31 8.99 8 0 0.00 4 8223.36 3.78 9.08 l.03 110 f.e 286 886 3703 112& 22.34 8.64 4.59 8.88 J.07 2.35 0 8 0.48 6 5 4 25.69 3.87 0.23 0.90 Ele 1. 9 431 180 # 3 at*6 28.9% t.e4 3.62 3.00 -J.88 2.82 0 0 0.00 4 1 3 25 22 2.86 =0.04 0.51 s,,,/ ($2 e.1 358 134 P I 452C J2.19 B.75 8.73 3.30 -3.82 3.99 0 0 S.88 4 4 3 23.39 3.01 -8.09 0.92 Cut 88.2 103 492 P 3 1!:S 22.33 2.33 t.96 3.39 3.83 0.52 6 8 0004 5 3 23.99 3.58 6.03 0.53 6C3 38.4 36 438 IP83 31*8 22.45 2.37 2.30 3.90 =J.03 2.89 0 0 8.08 4 & 2 24.61 3.67 +4.56 3.94 83* 84.8 326 338 P 3 152E 22.56 2.80 2.15 3.80 3.03 0.52 0 0 0.86 4 8 3 24.99 3.73 +0.12 4.68 til 82.9 252 99 IPC 3 Al*& 22.48 2.42 2.37 4.88 3.35 2.06 0 0 0.48 4 5 2 24.51 4.39 =0.02 8 84 Pat 88.2 81 99
- 3 1128 22.82 2.65 2.42 c.33 3.93 0. 52 0 0 0.50 4 5 3 24.75 6.33 0.03 9.52
*It sk3 226 99 p 3 4125 2*.ft 2.32 2.42 3.00 -3.50 1.99 0 0 6.99 4 5&& the 283 99 8 3 412& .*.13 2. 93 2.43 3.30 +3 12 0.47 0 0 0.83 4 5 3 24.64 4.24 =0.01 9.58 490 ILS 42 58 9 3 112. ...at 2 41 2.56 S.34 -3.33 9.92 0 0 0.00 4 5 3 26.92 4.$4 8.3e 8.49 6C6 86.1 464 Of SPU) $1*. 23.3C
- 92 . 2.31 9.00 J.8f 1.98 0 3 0.80 4 5 2 25.43 S.35 =S.03 4.02 El4 47.5 3 SF 3*2s 3.3Ct13.8g 3.31 0.g8 8.88 0 0 0.88 4 1 2 25.09 5.*2 0.01 3.49 6C3 & &. 9 37 Its 172 2 24 36 24.75 *
. *7 2.24 3.33 =3.33 3.42 C 0 0.80 4 f14 26.64 6.22 0 36 4.00 6Cl 32.2 254 838 IPL. 34 34 **.72 2.34 2.33 3.1C 3.33 3.62 0 8 9.03 4 !& 2 26.46 4.02 +0.32 9.37 pth 8%t are 800 IF 3 at 36 26.f* * . 25 2.27 6.20 -3.88 4.54 0 9 4.03 4 f5 3 24.10 4.34 -9.11 3.33 (58 % d.4 2 3 8 13e # 2 4826 26.6* 2.31 2. 50 4.33 3.30 8.91 8 0 8.80 4 &4 26.74 4.32 S.99 8.00 031 13.4 et 334 8 1 14Jt 25.J2 2.55 2.56 8.33 3.33 S.25 0 0 0.08 4 54 27.02 4.90 e. 91 0.08 617 8L8 4to 894 7 3 1864 **.31 2.67 2.57 3.34 -3.05 0.39 0 0 0.00 4 & 2 26.02 4.68 at.99 0.35 600 84.4 42 Sal P & ILJ6 28.37 2.43 2 61 0. 33 + 3.34 8.It 0 4 8.44 4 1 3 27.09 4.69 +9.84 9.30 6Ce 8 6.8 ilt 334 !*W3 Illa 't.*C J.96 2.58 3.83 3.25 3.54 0 0 0.98 4 IS 2 27.45 9.94 +0.99 9.76 6CT 47.2 3 433 IPUG At 34 25.49 3.35 '3.87 8.03 =J.32 8.59 8 8 8.00 6 IS 3 47.02 3.30 +0,08 4.30 956 87.4 138 883 te 1 1134 25.44 2.96 3.39 0.03 +3.13 1.37 8 8 0.08 4 i (18 13.9 5 182 P 2 1836 25.64 3.22 3.34 8.48 3.88 0 0 4.00 4 5 3 20.32 9.40 e.tt 0.30 (LG 48.9 227 138 IPO3 ille 24.26 5.14 3.48 8.08 4.29. 0.10 0.02 0 8 0.00 4 #FC II.S 168 890 8P 1 li st 24.27 3.83 3 13 8.30 3.12 1.00 8 8 6.00 4 95 3 29.24 4.14 9.19 d.33 (19 26.9 447 99 P l it le 24.99 4.45 6.3% 6.38 4.81 8.30 0 0 0.08 4 S4 38.26 f.92 0.98 8.06 G$ll Sb.4 8 72 96 74 1836 18.63 9.21 8.95 4.30 3.34 8.00 0 0 0.00 4 34 30.43 39.99 9.33 8.00 i
1 l I i f-x 1
) %)
b
I I 1 O
#4*C EC'8 29'l (C'il 21 9 00'0 t 3 SC*S 9t*C t t 's SC M 3.t tt *C 8 17 Oc t
- 0 *s t It s 9 00*6 C 3 54*1 It'f* 8C't It ". 68*7 95 l 9 i* ine: 1(1 4t1 ( *t t 939 8C*C li'C E4*9 9t*Et
- 3
- 00*8 t 0 99'c #C *t- t t 't 9*. 19*. C f 's' ! I 1: E a Ett (9 t *t t a:1 0:'t 8t's 89** l!'St *1 * (O's E 9 it*C 6t*t *t*C 29*; 3 5 *. $1'41 9 ** t d tet is l'E t saa 68*4 St*C- Sl*9 84*18 25 9 CO*0 0 9 (I'l (t*f= ff*C 4t*! *E*! It 'l t 9 9' I e 9tt t'F A *t t 339 9 CS*0 8 0 99't it St *C ::'T tt** tt'st 9 1* E e Ett *T1 F *f t ved 80*C 40*0- 9A*t SE*At !5 9 E9'O 4 3 54*I S D *t - CC *C 9t*& 97'. Al*t t 9 3! C 3s! 931 at F *t t (39 80*O et*C st*t 6E*At tt 9 te*0 0 3 (9*0 9 't CC's it*r 1t*: 74'51 9 17 t e att 90s (*21 an3 59'O 90 '0
- St 'E It'98 ( l 9 90'S S 0 59*8 50*C et*C af*1 ft*1 95*11 9 ?? I d 6Ct eat * *6 st) 59*0 SG'8 9t*C 54*91 C 1
- 30*O O 9 9t'l FS*r 9t't 9&*I 6A'l **tt 9 1? I d 11t att 9*0 ft) 9E*1 (C'0* BS*C 19*91 15 9 00'0 0 4 18't St*C tt*t Sa'l 14*1 ft'll 9 1* C e fit t e s r *g 913 00*C 98'O 40*E 89*91 9 5 9 GC*t 4 0 94's 6t*f Ot*C 9t*t 94't St'll 9 3! test (It 9t r 0*4 a44 00*O 36'0- IE*! E6*St 9 1 9 CO*0 0 9 20*t S t *t. 90 *C 65*1 95'l Et'll 9 37 CCat sts est * *4 93e 8t*C 9t*S* SE*! 61*95 E$ 9 80'0 0 0 0t*1 SC*t at*C 95's 95't t**lt 9 3? teet 911 1st O's eC3 29's ll*0 E9*2 9t'98 8$ 9 Ot*8 0 0 99*0 Et*r St*C 19*l 59't 9t*ll 9 St t 4 0:t to t *v ta3 OO*t 99*8 St*t 98'95 9 5 9 60*6 0 0 09*8 9t*C 80't 19"I $$*1 91'll 9 1: ( e ett 19F 1 *9 e19 96*0 96'0* $9*l 9t*ll
- 5 9 80's t 9 60'0 6t*t- St*0 et*I l!*1 et**l 9 3r ! d (t att 1 *5 ove 99*8 10*e 9E *2 16*St t t 9 40*0 6 9 (0*1 (0*C 00'0 ST*t !E*1 (6*91 9 SF CCat $!! E9 1 *$ mie 60'0*ett*0* t&*t el'lt i 1 9 00'0 t 0 90'1 20*C Os*C 92't 93*1 8t*91 9 1; cast sit att A** dts St*G Ot*O St*! ta'll
- 1 9 00'0 8 0 09*0 ft't CC*C S1*l 8:*1 6t*91 9 37 9 a Ett et 4 ** 1v3 SC'ceelt*t. Ot*I 60**l t t 9 00'0 0 0 90*l IC*t St*C St*C 10't 91'91 9 3 that 951 tit f *t F39 13 Au-l 535-5 54351 335-5 seat tems end tot Sven a als) sie att au-d sle-v tu/4131:348 163d4 335-e mesu maad elv ute atte all E S*8 S*0 0 0'0 0'S S $0*O 09*0 et et 99's sty v 9's I's 90's t 94 F SF ta'* tt*6 -It 3t*ttate 19*ft 9 f t 31tett
& es01 esas em eatt maar me s9 gav 8e et ces ($$ t 303 u!3 lug u est et ce tes mis); e Sn31 e ag) *!?Ir0 54v3 90's Gt'S 9t*0 6t'S 81*8 St*0 9t*e 9t*0 09*0 Ol's 9t *0 - 59't
- 00 *1 v3 St *t 18'O 2 t&'t 6 :* 6 -10 ft*6t-19 19*tt t 80'0 00*8 0t*0 St*0 It'0 90'0 St*ta 9f*0 00*t. 45*0 95*8- 59't* 9t*1 ver tC *t- 90 *C 7 (&** 4 :*6 *t t S t'E r-t
- F9'E l I 50't* OC'S (t*G TE'S 84't 9t'8 E9's 9t*8 $$'t 05't 98*8- 59'f* GC*f ver 69't 40*C F f l* l ( :* 6 +10 E 9* 6t =19 99 'C l t 85*8 90'0- 59't- 09*0 91't El*9 9t*! 08"At #4*t9986*0 90 '8 * $9 't - 08
- 1 vC3 St*O 19't 6 ft'. 33*t1-10 C S
- 19-19 $9'El I 3G #C 14 Avic IC et10 4910 20 af ic 
 80 scic Av1C 43 3st 5 dust Ims 63 mad 33 e teC1 e Av1 9:s3 I e3 5v4 lasistlntCT 18Cs95 Ca9Gavat limita-d lv!Aave (#53 $1his& tar $v 08*05 10 00'19 19 Sittet t : C $ C 9 Ol'1 *tif *t 'l snel 31v1 23C3 eset et *1s! hid: ses fen 31 534 sees Pfl9s est telt IF) 333eltitet u&hlagt St9'Et DC l *$
BCO'I 09 t *9 3C3*t ti t 's utd73 4313013e I 13:3m 1931f 33 St00*1 000l*S GCSt'll 8000'995 0800*0 fttr't Gtta't- COCO't 9030*5 (152*4 CCSC*t t100*$ telt*t f 4 3I108 St48'l 0805*8 GCSC*O 89te'988 litt*t etOS*! Grat*t- 09t0*9 et*t'l (959'S stat *: C3t0*tt St58't Sa v** W il til34531 Ell 3&t3; (1834531 (88 38t es (63&l34 (#34531 (438181 (934534 ($34134 (9311;& (El&1*1 t:31$34 E 13 &t l8 esseees t tgit tet 3 *:tt ait id 3d a> sers?ted e s** ** ** De (suonens tg) es-ot-co incysJessy giu'Aos
Elshth Aftershock 02-23-86 (12 Stations)
.. . eas 6 .. . testa att:::: t a,8s,703 .. ..e t85114) t!!?823 ftLit33 I!11 top tilitlB tilit43 1159893 tilttel 1851598 18598883 11818889 tilf tit) tiltit3D lineasse 4.363a a8.03t 3 2.3:48 e.st:3 9.es3e 4.0 3e 8 2.0 sea e.se S See.tese e.neeg 0. leet i.etse eilti 36 s.alle S. :43 8 3s38 a. Sc8 5.e030 8.e300 .- 8.?stee. t t 38 s.sise s.asse see.eBe3 ll.4e et e. leet i.000e (aJ$ tat nCatt &
WIL E;8 8 9 918tm 4.2 64 4.038 6.546 2.838 6.806 31 83 e i sia setta apaa PCs 36 ses afa Ippt 333C lt IP8h (38f Late LSet '
- l. 8. 254. 8.78 4 0 1 4 8 e 840014 el 48.se 84 te.00 80Juttatets taal PeattaL P.estuft StanDent letDel 40Juttaf ett tatte 8 6816 tat e Laus e Steta $a nel start stb (p pt De St Stat DL Ds 03 DL at DL De et DL a t DL De Of I 45.45 48*44.48 48-16.63 8.88 2 c. 34 a.se C38 8.se .DLat 3.51 -3.24 8 34339 44 94.44 84.64 0 19 9.83 4.87 +3.57 +8.84 8.30 2 4e.54 48 39.47 88= t.4 B e.30 2 0.09 1.38 2.34 0.38 4.03 8.83 0. e4 0.48 0.le 0.et =0.te 8 48.64 44-39.30 48+ 94i S.48 2 J.44 3.33 saa 3.Be ses 43 80 00 .+3.11 al.26 3.57 =3.26 4 30 +8.e4 c.3 9 al. De 0.00 0.30 e.06 9.08 e.80 e.80 3 40.50 48-39 80 88- 9.Lt 5.49 2 0.04 8.30 424 s.40 3.59 *4.26 3.34 4.Se 4.34 0.93 e.43 0.88 e.48 e.00 0.00 0 4e tatt 03:41 s Lat h LC EG h stete a46 a0 >n saa a en s een tet 9 les a8J tu me att see se afsa $0se er affe seen 3 643233 329 48.59 48-39.16 04- 9.69 S.40 22 2 te 8 e.es 42 c.4 a a3a 0 92 It a4 9.8e 8.04 0 e.8 e.0 0 9.9 8.0 3 8th 8841 ele att Ptes m&mh f.58C iPCl3 iPCat CLtrul P.et t p.rt ens peg (4&B e En64 ses pop paag lens l*lEC S.et St 4C2 8.7 339 360 IPv4 429 49.59 8.05 8. 3% 8.90 3. S e 8.07 0 9 e.0 0 4 1 3 $0.18 15095 3.etl.46.tl 037 4. 4 842 834 58U2 229 49.32 4. 3J B.30 9.90 0.02 8.05 0 0 e.0 0 4 1.40+0.944 5 3 90.41 8.97 *e.It .0.00 PLa 4. 7 34 833 IPC 3 425 49.14 8.34 8.38 8.38 3.95 3.03 0 0 0.08 4 8 3 56.98 2. 3 8 + 3. 6 3 e.44 (Se 1.2 Sie 828 IPwe 229 $3 84 8.44 1 48 0.38 2.33 3.03 8 8 0.00 4 8 3 31.48 2.98 0.04 0.41 4C0 f.7 2et 8 89 IPu t ;29 $3.88 4 45 8 19 4.3e -3.94 8.37 0 0 4.00 4 5 2 98.13 3.93 e. 9 9 0.98 fte 0.8 234 889 88 8 J;l SJ.2% 1.79 8.to 3.30 J.01 3.39 e 6 0.00 4 5 2 91.14 3 84 t.06 8.46 108 92 el 414 E8 3 26 83.20 a.FC 4.09 8.'e +3.89 8.33 e 8 6.68 4 El 3 19.75 3.25 +0.33 0.44 4C3 S e. e at 484 LP 3 425 63 58 2.84 2.12 9.38 3.04 e.45 e 3 0.09 4 &I 12.28 B.18 e.tl 8.34 stL 13.9 164 l as 4 8 J 225 IJ.8! 2. 3! 2. f r 0.38 3.33 3.19 0 0 0.00 4 I; 4 12.39 3. 4 9 + 0. t o 0.68 4CB 8 3. 2 2 5 B 339 1803 ;;9 33.el 2.43 2 47 0.3e +3.46 8.19 0 0 0.08 4 Il 8 5 2.19 4.29 =0.00 9.30 g 88e 83.4 228 834 gru2 ;2; g 3.;; ;.6% 2.*2 8.3* 3.12 9.90 0 0 0.08 4 In ! 93.85 4.99 9.99 9.44 tC6 46.2 att 3 3317 3 ;.$ 11.45 ;. 33 2 88 3.tg 3.37 3.43 3 0 g.a 3 4 34 3 53.18 S.Il 0.83 0.44
- - _ _ ~ _ . . _ . _ - _ - - . - - _ ._ - - - _ _ _
1 m Ninth Aftershock 02-24-86 (6 Stations) 4
.. e casa.: .trar aivist: i a si l,rt .
186t(1) 1:5ft:) 2:$9833 1 ttson ftstits Stif 185147) 9311883 tiltttp testin83 1151433) lettill) t ilti n 33 sia.aset 4.iale it.s s 3 :.3cas c.cles 5.8sle 4.03te) 3 +0.0:38 2.seet 8.eell ist. Sets s.8:30 e.ltes 3.e030 08507 f t 4.4138 5.6463 4.8433 0 8988 8.8838 lettea *I.1880 2.2800 0.0000 100.0300 89.9000 0.5888 4.8949 C 4Jll a6 sc386 3 ti&0E110 CIPim
, 6.240 0.834 4.lJ6 2.8 3C 4 448 31.038 1
i its shima af aa pt1 It era 87P 3894 :e&C It tore (SOf Late L0we i S. 8. 258. Sota 4 3 5 8 8 8 134313 48 41 93 85 48.80 j I i i j a3Aw119fe15 ten) paattat p*tOLufl Stastate tes003 a0Jultatsfl tanta ' I Salt Let a L3ms e tipta 9a seg avsps sea (8 Stat DL 3m 42 OLal Stem el Stat SL34 D2 GLat DL es ?! t 6.32 44**8.83 State.63 S.03 + 3.et 3.34 (39 1.88 +4. 61 + 8. 5 9 0.08:47.58 3.79 6.88 0.32 0.20 0.00 +4.68 +0.59 0.30 ! J- 2 6.92 41*34.51 01* t.d 3 1.00 + 4.1: *0.13 asa B.08 +4.48 +8.19 8.08 4.10 0.39 8.94 0.38 0.00 8.24 9.43 0.89 +4.79 i 3 6.52 48-30.85 01* 9.43 3.25 5 4.89 +8 8e a49 1.08 *4.68 +8.59 0.30 +t.00 +4.30 0.4p 8.08 0.94 8.04 9.00 0.00 9.90 l 2 6.40 4 4-3a.4 5 86* 5. a 3.25 9 4.43 3.8C 02t 8.38 +4.61 +0.55 8.84 0.03 0.24 0.25 8.28 8. 30 2.7B 0.08 0.00 6 00 l ] tatt casste tat a tes; h aspin aa6 at am sat e eel tan at2 3 SC3 a32 le ne asa aag me assa 50:n up avse gese 3 i 840224 le t t 6.40 48-34.01 9 t
- 9.66 3 25 la $ 95 4 4.99 05 2.1 8 830 8 86 la II 4.80 8.07 8 89 0.0 0 8.8 8.0 3 J
i Sth O!nt aim aIn pena anon p*l!C 17:51 9 P(at Citrut F*tt$ p*e1 ses pas Cats a se&6 est 728 e446 Sta8 S*$tt 85895 l*atl $*ef tt 4 63p 4. 4 133 til 1883 lall F.6E 4.28 8.11 s.30 3.3% 2.96 8 3 0.88 4 53 0.52 B.04 *0.84 4.49 eta S. 6 40 147 38v8 nell F.?! 4.21 3.25 3.90 3.88 2.09 6 3 8.40 4 63 0.45 2.17 +0.47 8.52 (De 7. 2 325 183 3794 lais f.94 B.et 3.49 8. 38 + 3.8 3 2.se 9 0 0.88 4 53 9.94 2.06 0.21 4.30 l tia 3.3 284 443 IF 4 lal: 8.81 1.59 4.tt 8.30 3.3% l.02 6 8 0.88 4 13 9.97 2.49 +8.34 0.44
, 4(3 11.7 87 97 last 3. 0 8 99 3. 3 C 2.37 8.36 8.00 0 0 0.98 4 ES 3 19.29 3.77 *e.it 9.49 6CI 82.3 253 97 17 e atts f.98 8 41 2.27 8.80 +3.08 8.39 0 0 8.08 4 IS 3 18.39 3.01 +0.17 8.** )
f T r h
--- _ _ _ _ _ . . _ _ _ _ _ _ _ _ - _ - _ - --. , - - . m _ _ _ _
h Tenth Aftershock 02-28-86 (7 Stations)
.4...... .a8 aa.. ...C., a ,,,:; t 8,,,,,4, .......
filitl3 tillt:3 t;&ttl3 1:3ft43 t!lftt) St5ftal 1881(13 tilt (43 tilit 9 9 18 518 8 8 3 18314 t 3 3 tilf t s t) ttstt:33 StattatC 4.8830 84.03(4 !.3C38 8 8583 5.8430 4.638L *0.0130 2 8988 0.Sett 800.0000 0.0006 9.5800 8.0000
#Elt t 18 4 4580 5.046J 1.3533 8.8583 9.0880 8 0948 *1.7030 2.2408 0.0080 808.0803 85.0834 0.9899 1.9634 CaJ&taL aC3th I ftLL;3ft C187#
4.268 0.838 4.188 2.038 4.448 39.830 sta estaa seat pg5 IC an2 spa tabs teaC te Ipan (SCI Latt L 0 ma
- 5. 8. 253. 8.78 4 0 $ 3 8 8 Sletta et 44.08 ft 18.08 aCJullgrall (sel paattat p.valut$ llampas0 8800e3 ADJuttstett 1a.fm I 0836 Let a L3m; u afeta ge tes ava#$ lat CF 0441 DL ee 92 DLat Dios et Okal DLen St Dtaf DL e m S2 2 34.44 48*44.48 as=35.C8 S.48 2 0.33 0.08 Cet 4.80 +3.59 +8.94 0.00127.47 3.70 0 80 0.32 0.29 8.04 +3.59 +0.54 0.00 2 34.23 43 39.06 St* 9.s a 5.00 2 8.39 4.13 a38 3.40 +3.59 +8.54 8.05 2. 34 8.09 4.49 8.2C 9.00 9.92 0.38 0.98 =B.09 3 34 22 44 39.23 St. 9.44 3.94 2 3.84 +8.81 att 8.00 -3.59 -0.94 8.84 +3.89 +3.00 0.44 0.04 8.84 0.40 9.04 0.99 0.00 2 34 28 48-39.23 en* 9.a t 3.94 2 8. 64 8.8s att 4.00 +3 59 =8.54 4 00 8.26 4.82 8.62 8.39 8.23 0.49 0.80 0.00 0.80 CATE Gs3&In Let a LegG e StP14 ma4 t0 3a Gap a tal tew 902 0 sta 40J In me set sat en asen Esse ne avea tees t 440220 139 34.23 41 39.22 ta= 9.68 3.98 32 2 98 8 6.44 8.3 0.5 0 436 1.13 80 33 9.00 0.04 8 0.0 00 0 0.0 e.4 3 8th Olst aim sta pasa R$nk P $2C TPCf 5 TPCaL CLt#N3 P Rfl 9 wt 843 FSI CsLE a apaGSAs fBFPas$Sthe $.$tC flC15 l-Gl$$=t1 Cf 4C2 1. 9 4 354 I'u3 839 35.88 8.39 0.12 3.80 3.07 2.84 0 8 4.88 e un 2 36.78 B.49 8.03 939 S. 8 334 117 E' 2 339 35 41 8 24 8.22 3.98 3.02 8.82 0 0 0.08 4 5 3 3a.05 tese -0.33. 0.528 82 the 5. 8 45 187 IPCJ 339 35.43 8.22 1.22 8.88 3.38 2 84 6 0 0.88 4 8 3 36.28 2.00 -0.17 0.43 CDs 4. 4 322 188 IPua 839 31.41 1.44 8.43 3.38 3.83 2.03 8 8 8.08 4 5 3 36.60 2 39 "9.34 Sett 6C9 f.8 aff 889 IP 4 339 35.78 4.45 8.et 4.80 3.01 0.00 0 0 8.00 4 TTE 7.9 288 S$7 IPC8 339 35.78 8.57 8.62 0.34 *J.05 3.82 0 0 0.00 4 6 3 37.83 8.92 8.84 S.90 6CE 82.5 264 800 EPv3 alt 36.48 2.39 2. 38 8.30 3 90 0.40 0 0 0.08 4 tl 3 38.88 4.99 *8.03 e.49 I
i l l l J
$s Eleventh Aftershock 03-08-86 (11 Stations) .. .... . . Pa c 20 a. .tPCT: 8;i:t:C ( s,il,tes .4.....
185158) 1:1tt:3 t!!181) 1!17t43 ft1Till 1 tit (6) 18$181) tilften 315t89) 18518883 ff878333 tillit2) ttstill) siensaan e. 034 it .s at a 2.3s3e c .s te s s.sels 4.0e00 .e.svee 2.s08 e. eels ist.Seet 0.0 48 e.see3 1.s00e sisti 78 6.el30 s.s ec a 3 3:20 C. essa s.Stan s .s et e -1.vese 2 21e8 e. ease set.es08 si.eese 0. leet i.eese C0J11st mL3C L L et LL;4 79 C!Dta 4.258 0.930 6.538 2.030
- 8. 4
- 39.033 21e antaa spaa PC5 It ami Spr !Phe : pac It t#at CDC! Late L048
- 9. L. 253. 3 19 4 8 5 4 3 8 834488 43 41 48 03 10.99 aCJU51steil (aa) Patitat P-vaLull 816ecat0 Bette$ a0Juttatuts tests t ORI6 Lat h L3t& b 219T4 Ce til avept Is0 CP DL at 0400 02 DLal DL Om 02 DL a t DL 3e 32 DL a t DL OW Of 8 44.Se 4 5-44.8 3 08-10.83 5.83 2 3 47 3.08 Cat 4.88 =4.32 -a.32 0.6223F.06 30.30 8 27 0.20 9.24 9.19 + 4. 32
- t . 32 0.62 2 49.65 48-36.67 08- 9.C5 5.42 3 8.12 +3.11 sea 3 84 -4.32 -1.32 0.62 6.46 1.Se 30.01 0 08 S.it 9.51 0.00 0.22 *2.le 3 49.7 3 4 4-3e .4 7 83- 9.;3 3.12 3 3.30 -3.35 see 1.00 -4.32 +3.32 8.42 8.14 -1.88 +4.00 6.85 0.88 0.00 8.80 0.00 8.30 2 49.60 44-38.67 81- 9. 3 3.t* 3 4.30 3.se a2a 4.se -4.32 -3.32 4.62 9.44 0.00 8.02 8.17 0.36 8.67 0.00 0.00 0.00 Catt 8 43 61m Let a LC 4G e SIPtn pas as in cap p en s tan it! 0 SCD a3J to et osa ase an avas Essa me avf a SOPP I saales 2342 49.60 41 34.41 SI- 9.20 2.82 29 3 65 8 0.18 9.3 0.7 a als 2.51 Il 22 0.00 6.00 0 88 0.0 0 0.e 0.0 3 lle 8343 aim att Pana nsan F* lit IPC31 TPCat ettral P.at s P.uf aes pas C AL s a sna6 Ana f ee f aa6 Sa ma 1.ltC 15C48 l-fil 5-WT ST 4C2 2.4 384 3 28 IPu t ;4 42 $ 3.44 J. 82 0.03 0.88 3.10 1.80 0 8 4.88 4 05 2 98.08 8.37 +0.80 S te 4C9 4.8 12 tal IP S 2C 4; 13. 9C 3.22 3.30 8.00 -3.31 3.02 0 0 9.00 e 95 3 91.90 2.22 -0.00 0.45 CPC 4.7 J et t al 179 3 ;C 4; St.31 1.31 1.43 8.03 J.03 8.44 8 0 0.00 4 El 4 St.95 1.87 =0.a3 9.00 4C4 f.9 2 92 tas Ipua 2C4; f1.34 4.42 3 50 0.03 3.04 1.82 6 4 4.85 4 En P S t.68 2.92 0.30 0.44 sIL 13.4 850 to IP 5 2(42 51.3S 2.37 2.16 3.30 J. 9 3 9.45 8 9 4.00 4 El 3 9 3.58 3.52 -0.02 8.45 4C3 33.7 3* to IP08 2642 II.71 2.37 2 14 8.00 -3.9% 3.F4 8 9 0.00 4 IS S S S. le 3.82 -0.83 3.35 ott 88.I 359 06 E8 3 2C 4; 33.81 2.17 2.17 0.30 3.08 9.45 8 9 8.88 4 R$ 2 93.45 3.T1 +0.09 0.87 bC1 12.8 J S$ 96 29W3 25 42 S t.08 2.22 2 33 8.00 3.33 3.93 0 8 8.t e 4 il 2 93.00 4.12 -0.93 9.09 ott 81.4 434 el IPU3 2t 42 12.64 2.92 2.74 8.04 3.37 3.94 0 0 8.08 4 El 3 St.fl 5.07 0.87 0.39 976 84,8 et to 2& 44 3.38 911.3C 2. B5 3.00 0.00 8 4 8.84 4 En 3 54.80 S.12 -0.83 0.42 fat 26.6 242 to 8703 4:4; 13 25 3.57 3.43 3 0e 3.84 8.60 0 0 0.58 4 48 3 95.75 6. 07 = 0. 84 0.43 OA
O Twelfth #fiershock 03-24-86 (10 Stations) 'Q i.e.. e .4 .. ...: .ia :4 4.t av sea. se.. ..... a. a
. eas..........: .:r 2* a.c :9 esi..........: nel 24 8s . 0 24 . . .. .. .. .. l g ; 3 .. - .. = .= -
44# 3e24 i3se2 Ges 3#24 13#42 (--. .-.a 3Julf at ef t to Pe teCI94L Olt t C TIcel-... --3t 43Jetf at ets St a0J11. tastel I Let Lee 6 &tPfm Bel 93 Peel Jaap .a 2 #:*--17 t P--- 5 f .al#39. 5f E P...S t al#3P--5119---it Olav DL ee 02 BI B 44.4 40.0 6.8 4.18 3 P . 5 5 0 . 8 9 F* 0 2 261# 28635302 il8# 9 =l.39 1.26 344#01 .9943 2.90 +5.3 -I.2 1.49 .Staf l.3OL0m al.2 1.9 2 38.8 9.8 4.7 3.30 12 .333 .589-32 261# 3 197# 5 .elte .171 8/05 +3.24 2.14 .300 0.3 6. 3 - 3. 3 3 30.3 9.3 3. 4 3.33 32 .325 .48!.02 261# 8 3233 .023 .902
.994 142# 3 . 0 0 7 .19 8 34 5#8 7 .92 60 3.04 .0 2 3.03 91 .930 = 3.3 0.3 0.9 4.9 4 34.3 9.4 4.3 3.43 32 .124 .84:.42 264# 4 042 .928 sett 4 .0619 .744 344#86 . 899 3.05 .029 .01 =.60 0.0 0.4 -0.6 9 38.3 9.3 3.7 9.13 32 .324 .48!*82 261# 0 .3456 901 3 6 2# 4 *.8 09 . f 6 3 34 4#86 . 2474 3.49 .03 .049 .268 0.0 0.9 9.3 a 38.3 9.3 4.8 8.12 3 2 .t al . 5 0 !-32 261# 8 .819 etal 86t# 4 *.088 .760 345/96 *.560 3.24 .05 .02 .14 0.0 9.4 -0.2 3 38.3 9.3 3.s 0.12 32 .324 .889-92 268# 4 . Sell .007 362# 4 .902 .750 344/06 .0985 3.35 .002 .904 .998 0.0 0.0 0.3 3 38.3 9.3 3.9 J. t! 12 .6 34 .3 4: 3 8 241# 0 342# 4 344#06 4.0 9.0 - 0.1 0 30.3 v.3 3.0 3.12 12 .324 .it!-31 26t# 9 .3095 .097 162# 4 .032 .750 344!06 .ette 3.33 .002 006.999 0.0 0.0 0.8 3 34.5 9.4 3.9 4.12 12 .030 .361*38 lair e left 4 344#04 6.0 0.9 +0.8 0 34.3 9.3 3.0 3.12 32 .324 .13!*30 248# e .0850 .041 842# 4 .002 .936 344#04 .04t4 2 34 9.00 .005 .5a3 0.0 0.0 0.9 8 38.3 9.3 3.0 0.12 32 .324 .30!-32 24t# 0 .0055 .897 842/ 4 .092 .750 344#86 .9918 3.39 .002 .006 .098 8.8 S.8 8.0 aC 0 8 t e s1&L L eitftsat sinskt vasta0LE (13tf 3 6tt.Cm! St 53Last COnFIDiatt 0.62 51Inf = tevat$
0.60 88 e 1.19 OuaL3ft a e at o 3 a. 82 e 31. Em1 14 Wad t 688 (2D373 !LLIP$! Stelastl . 0.64 sa sec 0.13 e n
$4 GP 9016 e 0.88 101 st maast a Jr 3 f t sa fl0ml
- O Da s s e 458.00 $tDUteCt ovatt0 e
& ama P and BC1 80f n b 5E D si (LCit 31 Statica Eafl Gd3&It Laf LC ms 3 tete ma6 m3 33 6ap 0 eat tas t03 4 103 a0J Is na are ase se avse 50 n er aves $0se sa3324 B 34 2 41,3 8 41el s. 3 3 el s 3. 3 3 3 84 32 3 79 3 0.12 0.5 1.0 5 0 a 0.89 10 82-0.0 3 0.09 0 0.0 0 0.0
(* Ef a f 34m Dat a .3 (--- -- p.easi 70avit.t tet cats set (!L ael 3 wan t t.--. 5-uset taavet-tint S af a --St--- este tt wet Sata . 3 lie 0151 aim als est; pe na.1 coa.3.f1Dt*11C AL C=0Lat-:tLt.P-0t5 P-st futC sitt sans if08 ftCat 5 0t 5 3.rf ans 70 seat O Ps# Fea6 et2 L2 385 Bla 42.5018:0 8.89 8.91 1 .064 0.16 8.333 ese 6. 3 101 834 42.lt:fC6 1.89 1.23 L =0.04 3.333 CfD 6. 9 305 839 62.6?!ft9 3.!: 1.46 8 .049 0.30 0.153 43.4388 4 0.00 8 02 -0.30 See e( 8 0.8 297 834 43.33;fC4 1.69 1.63 3 0.36 E.333 TCe 30.3 67 332 43.20! fat 1.97 3.9e 3 .076 0.02 0.190 64.00t$ l 8 60 1.37 0.02 let att 33.1 gle 133 43.$31r;9 2.52 2.06 I .645 0.32 0.159 49.53t1 1 B.70 3.46 0.02 ler eta 12.3 33 3:3 43.391s00 2.24 2.27 3 .047 -0.07 3.333 45.3955 2 4.04 4.04 =0.00 0.500 oth 4 2.
- 8 3 3 6 4 3. 7 3 31 C t 2.42 2.2e t .639 =0.18 0.150 45.4315 8 1 10 8.a0 -4.88 Se*
est 82.9 256 3 33 4J.6015 00 2.29 2.29 3 .353 -0.0$ 3.333 g ele 15.2 434 90 44.1818;0 2.79 2.70 8 . Set 9.03 8.333 44.05t1 2 4.74 4.00 *S.If 9.500 \ Gaft 4016:e Let Lee Sir m3 kJ 3ete Cat tal ast all ask att G GL Cl 00 84832 8342483 41.6304 el.nlle 3.8 40 12 3 79 8.5 0.5 11 0.4 4.0 5 6 0 e
&LALITT testuaf33m 83a64taL1 te G.Ll3 CF Ef.4 6fm t mE es le St i e ats. Of inD P&IhTS 0.28 4.47 C.16 0.77 0.79 0.80 4.83 i.
s .
/
- __ .. ~. - - _ _ _ .
h Thirteenth Aftershock 04-10-86 (12 Stations)
..... . Passaa.: .i p: rs sz s:; I a rm s, ra n .......
tillitt it$tt:3 f:5145) 1:51(4) f!51tS) 185188) ft&1813 finital 345189) TE31sts) 1111831) 19514823 1151(373 sia.;a nc a.as3e is.e:c a 2 3cas e.sia) s.sa 0 4.0 ee -e.0120 2.ee08 e.esis ses.este 0.0e0s 0.se08 i.eess e:Str to a.asas s.saca s.Staa s. sic 3 s.e:8s i.e908 -i.itas 2 2:ea 0.e000 ist.eSe8 as.sc3e 0.seet s.es3e CRJ$1at nC 3!L 1 s t L DCI t t StPtn 4.2s0 e.9a3 4.584 2.830 0.4J0 St.eae 238 so t ad spat PCS 3C ses sPs tout lea & 18 tris COCf Left 40se
- 5. 8. 25a. 8.70 4 3 5 3 3 \ 3 3304t3 43 48.00 81 88.88 ASJu51st 411 (E R) Pattlet P*VaLut$ StascaED E80385 ASJulistall tasta 3 8086 La1 m L0m% e afpf4 04 895 avats 1st (P DL a1 DL es 02 DLal DL0t 02 DLal Stae 92 DLa1 DL 0u 0F 8 5.63 48*41.83 91* lt .t e $.e8 2 3.48 8.0C Cet 8.90 ~3.90 =0.62 5 70200.62 33.36 39.54 0.21 0.le e.48 +3.89 *t.62 3.te 2 S.78 48-38.91 Bl* 9.t l 4.78 2 3.83 -8.85 40a 1.70 0.44 al.08 89.99 0. Se 0. 00 0.30 e.99 0.0e -1.67 2 6.73 4 a*38.9 8 BI- 9.! S 1.31 2 8 3e +0.32 asa 1.08 3 00 =3.9e 3.03 .0.52 3.42 8.70 -1.80 -3.00 0.96 0.05 S.88 0. 30 0.00 0.99 0.90 2 9.11 48 30.98 St. 9.!$ 1.18 2 8 38 8.35 sta t.38 3.30 -8.62 8 70 0.77 0.35 8.43 8.17 8 13 0.34 e.80 8.3e 9.30 taid 633 Elm L11 m L C *G 6 StPin mas as an tap a am5 tan fat 8 SC3 ADJ 3e se are saa en avan 80sa as avf e St.' 1 840418 650 5.73 43-38.92 St. 9.15 S.st 22 2 63 8 8.88 0.2 8.3 a a3a 1.67 IS 24 0 05 0.06 6 0.8 4.0 0 08 8.2 3 Sie O!6f 42m a:n Paan as an P.S!C TP:35 TPCaL CLvint 7-R25 P-mi ans pas Cats a suas ena pnp pass 50ms S-5fC T1095 l-Ell lak? ff tC2 2.1 1 154 IPC 3 456 6.F? 3.34 1.82 8.30 3.94 8 73 8 3 0.08 4 IS 0 7.62 8.78 =0.58 1.60 CPO 4. 3 218 3 23 2PC S i;8 F. I! 8. 44 1.44 0.98 3.$1 8.70 e 3 0.03 4 ES 2 9.4e 2.69 0.14 0.f4 bl9 4. 4 878 822 3PC 3 s58 f.12 1.43 8.48 3.80 -3.07 8.44 e 3 4.08 4 El 4 f.07 2.16 =0.47 0.se eCle 1.1 287 819 IPC S e$8 f. 2 7 8.56 E.50 8.90 -J.01 5.70 9 9 e.00 4 21 3 0.12 2 08 8.93 8.42 I;n 18.8 e4 11C I'* 3 e 14 7.95 2.84 3 10 8.30 J.87 3 29 e 8 0.00 4 15 2 9.39 3.64 0.77 t!L 13.3 2 880 IPC 3 458 7.05 2.14 2.37 9.40 -3.03 a.67 0 3 0.88 4 11 3 9.48 3.49 .8.32 0.17 0.38 6~3 11.4 JS IST Ep 4 a la 3.30193.30 2 21 3. 3 8 -F.92 0.00 9 9 8.03 4 El 3 9.59 3.90 +0.04 0.41 8~L 32.2 557 4 34 t* 2 4 58 9.40 2.25 2. 31 3.00 -3.08 6.83 8 3 9.83 4 85 3 9.75 4.04 .s.07 3.43 6C8 82.4 253 S ee IP* 3 est 7.19 2.28 2. 34 3.34 -J.ss 1.44 e 8 e.0 0 4 15 1 9.94 4.17 +0.02 1.24 DC4 16.2 130 3 32 (P 3 a ll 0.55 2.14 2. Se 3.00 -3.32 8.63 0 3 0.09 4 35 2 39.99 S.18 0.02 0.52
'\ Pf6 83.4 133 138 E P 3 e 50 a. I* 3.19 3. 3 t 3.30 2.12 3. 58 e f 9.t 9 4 85 3 88.89 5.31 =0.e8 9.39 fat 89.8 24e 138 EP 3 t it 3 2C 3.49 5 44 3.38 J.36 3.40 0 8 8.88 4 15 2 B2 00 6.29 9.30 0 27 i
f i J
f i (, O ! 5 i
?
f r I r I I i APPENDIX A4.1 ! i GRAVITY SURVEY & DATA PROCESSING l l i C i i l i i O Weston Geophysical
t I 1 The gravity survey method is a potential field technique which involves measuring i the variation in the earth's gravitational field at discrete points. The observed values are due to combined effects from all depths, the desired range of interest can be separated from the additional contributions through processing techniques and station spacing. Extremely small variations in the gravitational field are monitored by using a highly sensitive instrument. Variations in the value of observed gravity depend upon changes in the density of earth materials in the vicinity of an observation point, elevation, latitude, the surrounding terrain variations and the variation in the earth's field manifested in tidal fluctuations. The unit of measure for the acceleration of gravity is centimeters per second [cm/sec'] in the cgs system, which is termed a gal by geophysicists. The acceleration of gravity at the earth's surface is 980 cm/sec* or 980 gals. In exploration work the ancmalies of interest are commonly as small as one ten-millionth of the earth's field. Therefore, the most common unit used in gravity
-3 surveying is the milligal which equals 1 x 10 gal. Microgravimeters have 1
been developed for identifying even smaller magnitude anomalies and for the microgravity technique the unit of measure is the microgal which equals 0.001 milligal or 0.000001 gals. The Lacoste-Romberg gravity meters [used by Weston Geophysical] measure the amount of elongation of a spring supporting a weighted beam. The amount of elongation of the spring is proportional to the increment of gravity required to produce the measured displacement. The principle of operation of the Lacoste- ! Romberg gravimeter is illustrated in Figure 1. DATA ACOUISITION j Independent of the type of gravity survey conducted, regional or site specific, the location and elevation of each gravity station is important. The location of a gravity station may be located on a topographic map for a regional survey and should be surveyed for a site specific survey. Potential target size and - depth will dictate station spacing, required accuracy of survey and type of instrument [either conventional gravimeter or microgravimeter). l 0129K *1* Weston Geophysicci
At each station location the gravimeter is set up on a metal tripod to help O V provide a stable base. The instrument is leveled using the two horizontal and mutually perpendicular levels contained in the instrument. Three readings are commonly taken at each station to ensure data quality and minimize operator error. DATA REDUCTION Gravity data obtained in the field must be corrected for elevation and rock density, latitude, earth-tide variations and the influence of surrounding topo-graphic [ terrain) variations. All gravity stations within a common data set must be reduced to a common datum plane. Sea level is the datum plane most often used for regional surveys although it is only necessary that a common datum, whatever it may be, is used for all data shown on a single map. The data reduction [ corrections) are further discussed in the following section: Elevation Correction The gravitational acceleration decreases with increasing distance from the earth's core, therefore the elevation correction must be applied to the data because each station is a different distance from the core of the earth. Correcting the data for elevation consists of two parts termed the free-air correction and the Bouguer correction. The free-air correction accounts for the distance between the station and the datum plane, and the Bouguer correction accounts for the density of the material between the station and the datum plane. Assuming a rock density of 2.0 g/cm* the combined free-air and Bouguer correction is 0.0685 milligal per foot difference in elevation between the gravity station and the datum plane. Latitude Correction Due to the ellipsoidal shape of the earth, the gravitational attraction is greater at the poles than at the equator. Therefore, gravity data must be . adjusted to account for differences in latitude between stations. Theoretical gravity is calculated for each station in regional surveys based upon the following formula: g = 978.03185 [1 + 0.005270855 sin */0 + 0.000023462 sin */0] 0129K e 2+ Weston Geophysical
where: g is in gals O O 9 is the degree of lititude. converting to distances, this means that w, the change in gravity with distance north and south is represented by w = 1.307 sin 28 milligals/ mile where: 8 is again degree of latitude. An arbitrary datum latitude is chosen for most smaller scale surveys and the data are then adjusted to the common datum latitude. At a latitude of 45' the resultant correction is approximately 10.025 milligan per 100 feet north or south displacement from the datum. Earth-Tide Correction The acceleration of gravity will vary cyclically at any one point during the day due to variations in the earth's gravitational field as manifested by tidal fluctuations. This variation may be as much as 0.3 milligal during the course of a day. The usual method to account for this variation is to reoccupy a base station at sufficiently short intervals so that the effect of the variation is minimized. Terrain Correction Terrain corrections are applied to the gravity data dependent upon size of predicted anomaly and the variation in terrain in the vicinity of each gravity station. Nearby hills result in an upward component of gravity which effectively diminishes the measured downward pull exerted by the earth's field, and nearby valleys resuit in an apparent loss of inass between the station and daturr elevation. Both effects diminish the measured gravitational field, therefore, the terrain correction is always added to the data. A final important point to be made is that when considering applying terrain corrections a significant amount of time must be allott:rd for this extremely tedious and time consuming task. 0129K *3* Weston Geophysical
l O APPENDIX AS.1 BORING LOGS lO I l l l O Weston Geophysical
FILLO BORING LOG BORING NO. BC-1 SH. L OFL PROJECT CE! 793 $1TE PNPP OATE ST ART 5-5-86 FINISH 5-10-86 LOCATION Bia Creek. Chardon CROUND ELEV. - TOT AL DEPTH FT. 300.0' CASING IO NW CORE SIZE NX INCLINATIONVERTI(AL BEARING - CONTRACTOR Herron Consultants LOCCEO BY PJT CHECKED BY PJT SAMPLE SCALE STRATA TYPE 8 LOWS DEPTH RQD S0lt & ROCK DESCRIPTION /ComMENis IN CHANGE & NO OR RANGE % BRE AKS [Untf ted soti class system. Rock description. FEET REC [ FEET) water table. Loss of drill water, etc.)
- ~d ~5.0 SS-1 05-12-13 5.0* LIGHT GRAY PEB8LY SIL1Y CLAY [TILL]
[ . 6.5'
~10.0 SS-2 12-22-55/6* DARK GRAY PE88LY $1LTY CLAY [TILL] WITH 10.0 BLACK SHALE FRAGMENTS
[ p 11.5
~
15.0*
~15 .0 ~
NX-1 5.0 24% MEDIUM. BLACK FINE-GRAINED SHALE. SEVERAL ZONES OF SHALE BRECCIA IN CLAY [ MATRIX. PARALLEL BEDDING. 0.5' THICK [20.0 20.0' gg NX-2 4.5' 8% MEDIUM. BLACK FINE-GRAINED SHALE U 25.0 25.0' [ NX-3 5.0' 84% MEDIUM. BLACK FINE-GRAINED SHALE, AS A80VE
~ ~
30.0' 30 .0 b5 - _31.3 [ ,. 31.3 CHANGE FROM BLACK SHALE TO
- i. GREENISH GRAY SHALE.
_35.0 "
.. NX-4 10.0' 90% SOFT 10 MEDIUM. GREENISH GRAY FINE-GRAINED SHALE.
[ INTERBE00E0 WITH LIGHT GRAY SILTSTONES.
~40.0 40.0* MEDIUM. GREENISH GRAY FINE GRAINED SHALE.
E-'~~~' 40.4*-40.6' SHALE 8ED. SILTSTONE LOAD L- 'c - STRUCTURES rm":m
~
42.0' PYRITE Lb - 100%
~~45.0 9.7' ~
F^>9 L-
- NX-5 46.6'-46.7' VERY LIGHT GRAY SILTSTONE
, r+- LAMINAE
[50.0 50.0 SAMPLE IDENTIFICATIGN SUP44ARY
$$ SPLIT SPOON SAMPLF D DENISON T SHELBY P PIT CHER O'.ERBURDEN: 12.5' U FIXEO PIST ON C ROCX CORE ROCK 287.5' O OSTERBERG OC ORIENT ED ROCK CORE TOTAL DEP1H 300.0' HOLE NO. 8C-1 r
V) 04943
i l FIELO BORING LOG BORING NO. BC-1 '~ SH. 1 OF i \d PROJECT CEI 793 SITE PhPP OATE ST ART 5-5-86 FINISH 5-10-86 LOCATION Bia Creek. Chardon CROUND ELEV. - TOT AL OEPTH F T. 300.0-C ASINC IO NW CORE SIZE _ NX INCLINATIONVERTICAL BEIRING_ CONTRACTOR Herron Consultants LOCCEO BY PJT. BRF CHECKEO BY PJT S AMPt.E SCALE STRA1A TYPE BLOWS DEPTH ROD S0lt & ROCK DESCRIPTION /COMPENTS IN CHANGE & NO OR RANGE % BREAKS [Unifted soll class system. Rock description, FEET REC [ FEET) water table Loss of drt11 water, etc.) 50.0'
~
_55.0- (.- NX-6 10.0' 95%
~ ' "
y MEDIUM GREENISH GRAY FINE. GRAINED SHALE [ WITH INTER 8E00E0 SILTSTONES
~ - -60 .0' p-+ 60.0' ~
NX-T 10.1' 90% [ ._.
-- SOFT, GREENISH GRAY FINE-GRAINED SHALE WITH SILTSTONE LAMINATIONS, LOAD STRUCTURES,
_65.0' _ = CLAY SEAMS
~~~
[ , _TO.0' . J- . , 70.0' NX-8 10.2' 86% \) _
~
T5 .0 SOFT TO ME01UM, GREENISH GRAY FINE. GRAINED SHALE, LESS DISTINCT LAMINATION, LESS CLAY CONTENT _ [ W [80.0 80.0 NX-9 9.T' 86% p. [85.0 SOFT TO ME01UM, GREENISH GRAY FINE. GRAINED SHALE, _ AS ABOVE
~.90.0 90.0'
_ NX-10 10.0' 95%
~95.0 Lc. . _ SOFT TO MEDIUM, GREENISH GRAY FINE GRAINE0 SHALE, %, AS ABOVE, BEODING EVIDENT, MARINE FOSSILS ON >***N BREAKS k u aaw ep 'A*+y'e #7
[100.0 , 100.0 __ SAMPLE IDENTIFICATION
SUMMARY
SS SPLIT SPOON SAMPLF 0 OENISON T SHELOY P PIT CHER OVERBURDEN: 12.5' U FIXEO P!S10N C ROCK CORE ROCK 287.5' O OST ERBERC OC ORIENTEO ROCK CORE TOTAL DEPTH J00.0* HOLE NO. BC-1 m Q 04943
FIELD BORING LOG BORING NO. BC-1 SH.1 OFL kN PROJECT CEI 793 SITE PNPP DATE ST ART 5-5-86 FINISH 510-86 LOCATION Bio Creek. Chardon CROUNO F. LEV. - TOT AL DEPTH FT. 300,0' CASING !D NW CORE SIZE WX - INCLINATIONVERTICAL BEARING - CONTRACTOR Herron Consultants LOGGED BY BRF CHECKED BY P3T SAMPLE SCALE STRATA TYPE BLOWS DEPTH RQD SOIL & ROCK DESCRIPTION /COMMENi$ IN CHAhGE & NO OR RANGE % BREAKS [Unifled $011 Cla55 System, Rock description. FEET REC [ FEET) water table. Lo15 of drill water, etc.) 100.0' { SOFT TO MEDIUM, GRAY FINE-GRAINED SHALE
~105 NX-11 9.9' 98% WITH SOME LIGHT GRAY SILTS 10hE LAMINATED,
[ MARINE FOS $1LS.
/ "
[ _110 110.0' --
~_ j, ,
[115 NX-12 10.1' 98% SOFT TO MEDIUM GRAY FINE-GRAINED SHALE, _ , SILTSTONES, LAMINATED FOSSILIFEROUS AS ABOVE [120 120.0'
~\ _
i [125 _ N1-13 10.0' 8T% SGFT TO MEDIUM, GRAY FINE-GRAINED SHALE, $1LTV 8AN05, LAMINATED, FOSSILIFEROUS, AS ABOVE _ 122.9 - 123.9' CLAYEY WI ZONE a [130 k^ 130.0' l:
~135 ~
NX-14 10.0' 86% CLAYEY, SOFT To MEDIUM, GRAY FINE-GRAINE0 SHALE LAMINATED
~ WITH SILT LAYERS, SOME VERY SOFT CLAYEY ZONES, LESS C0HERENT THAN ABOVE, FOS $1LIFEROUS 140 140.0' ~
E. ; __145 Ny 15 10.0' 92% SOFT TO ME01UM, GRAY FINE-GRAINED SHALE, MORE COMPETENT, ' _ AS ABOVE w 2150 (- 150.0' S AMPLE IDENTIFIC ATION
SUMMARY
SS SPLIT SPOON SAMPLE O DEN! SON T SHELBY P PITCHER OVERBURDEN: 12.5' U FIXED PISTON C ROCK CORE ROCK 287.5' O OSTERBERC OC ORIENTED ROCK CORE TOT AL DEPTH 300.0' HOLE NO. BC-1 1 V 0494J
FIELD BORING LOG BORING NO. BC-1 /, ,\ SH._i, OFJt_ ', / PROJECT CEI 793 SITE PNPP DATE ST ART 5-5-86 FINISH 5-10-86 LOCATION Bio Creek. Chardon GROUND ELEV. - TOT AL DEPTH F T. 300.0' C ASINC ID NW CORE SIZE NX INCLINATIONVIRTIC AL BEARING - CONTRACTOR Herron Consultants LOGCED BY BRF CHECKED BY P.1T SAMPLE SCALE STRATA TYPE BLOWS DEPTH RQ0 S0lt & ROCK DESCRIPTION /COMMEN15 IN CHANGE & NO OR RANGE % BREAKS [ Unified soli class system. Rock description, FEET REC [FIET) water table, Loss of drill water, etc.] _ L 150.0'
~ -- SOFT TO MIOluM. GRAY FIN!-GRAINED SHALE, ~155 ~
NI-16 9.1' 92% LAMINA 1EO, SILTSTON! INTER 810DEO, OCCASSIONAL LAY RICH ZONES. MARINE FOSSILS PROVICE SOME PLANES [ L OF WEAKNESS. [160 ! 160.0' _ g-p
' ' SOFT TO ME0!UM, GRAY FINE-GRAINE0 SHAll, AS A80VE, LESS CL
[165 NX-li 10.0' 91%
~ ~
[170 # 170.0' w
'S . 3- SOFT TO MEDIUM, GRAY FINE-GRAIN [0 SHAlt, AS ABOVE, NK-18 10.0' 95% - NO CLAY g,,+
[1T5 L, - mp < [ h"_"
~
r -m-- _180 180.0' ~" SOFT TO ME01UM, GRAY FINE-GRAY SHALE WITH SMALL INTER 8E0fA { NX-19 10.1' 83% SILTSTONE LAYERS, OCCASIONAL CLAY SEAMS APPEAR TO BE IN PL [ 185 t SOFT SHALE - DARKER COLOR
~~
N l
~ ;,190 190.0' __
_ V _ M
~
_195 N1-20 9.9' 60% SOFT TO M1010M, GRAY FINE-GRAINED SHAlf, AS ABOVE, I MORE CLAY, BROKEN. WX l _ 1 m 1
- \
[200 t - 200.0' W S AMPLE IDENTIFIC ATION SUh44ARY I l SS iPLIT SPOON SAMPif O DENISON ! T SHELBY P PITCHER OVERBURDEN: 12.5' ! U FIXED PISTON C ROCK CORE ROCKJ87.5 ' O OST ERBERG OC ORIENTED ROCK CORE TO1 AL DEP1H 300.0' HOLE NO. BC-1 l (h ) i
\
(./ 0494J l l l l l
I 1 i FIELD BORING LOG BORING NO. BC-1
- p. SH._)_OF L
' PROJECT CEI 793 SITE PNPP DATE ST ART 5-5-86 FINISH 5-10-86 LOCATION 8ta Creek, Chardon CROUND ELEV. - TOT AL DEPTH FT. 300.0' CASINC ID NW CORE SIZE N1 INCLINATIONVIRTI(Al BEARING _ __ CONTRACTOR Herron Consultants L.OCCED BY BRF CHECKED BY PJT 5 AMPLE SCALE STRATA TYPE 8 LOWS DEPTH RQD SOIL & ROCK DESCRIPTION /COMMEN15 IN CHANGE & NO OR RANGE % BREAKS [ Unified soil class system, Rock description, FEET REC ,[ FEET] water table, Loss of drt11 water, etc.)
-205 NX-21 10.0* 92% SOFT 10 MEDIUM GRAY FINE-GRAINED SHALE WITH LIGH1 GRAY THIN SILTSTONE INTERBEDS. STRESS DISTORTION EL. ~
IN $1LTSTONE. NO CLAY SEAMS EVIDENT. E d, [210 F 210.0' e,
- ..,, n F
[215 NX-22 9.8' 92% SOFT TO MEDIUM, GRAY FINE-GRAINED SHALE WITH SILTSTONE, AS AB0VE, FOSSILIFEROUS
.. t um::nw
[ F# 220.0' _220
,_.s [ g, NX-23 10.1' 94% SOFT 10 MEDIUM, GRAY SHALE WITH $1LTSTONi, AS ABOVE (g) _ ~,
__225 , . hr [230 % 230.0' - e-4:s 10.0' __235 NX-24 91% SOFT TO MEDIUM, GRAY FINE-GRAINED SHALE WITH MINOR SILT $it
-I INTERBE00ED, FOS $1LIFEROUS, AS ABOVE
_ L , .f . l
. N1 ~240 F" 240.0' ~_ WM
[245 b NX-25 10.0' 10% SOFT TO ME01UM, GRAY FINE-GRAINED SHALE, AS ABOVE, CLAY RICH SEAMS, MORE BROFEN UP
~250 250 SAMPLE IDENTIFIC AT!ON SLNMARY SS SPLIT SPOON SAMPLF D DENISON I SHELBY P PITCHER OVERBURDEN: 12.5' U FIXED PISTON C ROCK CORE ROCV_ 287.5' O OSTERBERG GC ORIENTEO ROCK CORE TOT AL DEPTH 300.0*
HOLE NO. BC-1 04943
)
m l l l
FIELD BORING LOG BORING NO. BC-I SH. _{tOF,j,., %j
) PROJECT CEI 193 SITE PNPP DATE ST ART 5-5-86 FINISH 510-86 LOCATION Bic Creek. Chardon CROUND ELEV. -
TOT AL DEPTH FT. 300.0' C ASINC ID NW CORE SIZE NX INCLINATIONVERTICAL BEARING _ CONTRACTOR Herron Consultants LOCGED BY BRF CHECKED BY PJT SAMPLE SCALE STRATA TYPE BLOWS DEPTH 200 S0IL & ROCK DESCRIPTION / COMMENTS IN CHANGE & NO OR RANGE % BREAKS [ Unified soll class system, Rock description, FEET REC (FEET) water table, Loss of artl1 water, etc.} _ r ? i. J SOFT TO MEDIUM, GRAY FINE-GRAlhED SHALE, [ 7' WITH SILTSTONE'INTERBE00ED, AS ABOV! [255 k.t,1 NX-26 9.5' 91%
$ N, P'-...
- ~
[260 A~ 260.0' ======="
+% .- )
e O l4} [265 ,'y-iNX-27 9.9' 94% SOFT TO MEDIUM, GRAY FINE-GRAINED SHALE WITH SILTSTONE v .f ' _ g1 AS ABOVE 1 . [270 W dht 270.0'
- - - - SOFT TO MEDIUM, GRAY SHALE WITH SILTSTONE fcg , ?- NX-28 9.8' 77% AS ABOVE
( ) _ %. [275 enn [280 j 280.0'
- m - Wum::: -
- _285 tTA ~s,.
SOFT TO MEDIUM, GRAY FINE-GRAINED SHALE WITH MINOR $1LTST0k _ . .iwestj 4X-29 10.0' 84% N INTER 8EOS, BROKEN, g<.p., FOSSILIFEROUS, AS A80VE, PARTS [ASILY iu e ,
~290 hP8CF 290.0' 2 M
_ =~ (m [295 4X-30 10.0'
, '_7 94% SOFT TO M 3IUM, GRAf FIht-GRAINED $ HALE, AS ABOVE, SLIGHTLY HIGHER SILT CONTENT THAN ABOVE. $300 300.0' __ BOTTOM OF bORlWG AT 303.0' S AMPLE IDENTIFIC AT!ON
SUMMARY
SS SPLIT SPOON SAMFLE D DENISON T SHELBY P PITCHER OVERBURDEN: 12.5' U FIXED PtsTON C ROCK CORE ROCK 287.5' O OSTERBERG OC ORIENTED ROCK CORE TOTAL DEPTH 300.0' HOLE NO. 8C-1 [\ ) g 04943 v
FIELD BORING LOG e ,, BORING NO. BC-2 / SH. L OF,2_ V) PROJECT CEI 793 SITE PNPP DATE ST ART 5-11-86 FINISH 5-Il-86 LOCATION Bio Creek. Chardon CROUND ELEV. - TOT AL DEPTH FT.100.0' CASINO !D NW CORE SIZE NX INCLIN ATIONVE R Y lC AL BE ARING_,,,,, CONTRACTOR Herron Consultants LOCCEO BY BRF CHECKED BY PJT
$ N LE SCALE STRATA TYPE BLOWS DEPTH RQD SOIL & ROCK DESCRIPTION /COPMENTS IN CHANGE & NO OR RANGE % BREAKS [ Unified soil class system. Rock description, FEET REC (FEET) water table, Loss of drill water, etc.)
_ W * *S
)
l
~ ~5 * $ 5.5' , e .$ SS-1 26 SOFT, DARK GRAY 10 BLACK, FINE-GRAINED SHALE, WX
[ 50/5' 7.0'
~10 ~
10.0' SS-2 32 33- 11.5' MEDIUM, DARK GRAY 10 BLACK FINE-GRAINED SHALE, UNEVEN [ 36 BREAKS, AS ABOVE
~15 15.0'
[ $$-3 26 16.5' MEDIUM, DARK GRAY 10 BLACK FINE-GRAINED SHALE, WX 50/6" [ _ NX-1 3.8' 28% SOFT, 8 LACK FINE-GRAINED SHALE, HOMOGENEOUS, BROKEN, W1 _= ia O ~20 20.0' [ MEDIUM, BLACK FINE-GRAINED SHALE, AS ABOVE NK-2 4.5' 82% MORE COMPE1ENT, SCARCE LIGH1 GRAY BANDS [25 25.0'
~30 ~
NX-3 9.7' 69% r 29.7' CHANGE FROM BLACK SHALE TO GRAY
~
- a SHALE
~ ^22
- SOFT 10 MEDIUM, GRAY FINE-GRAINED SHALE WITH SIL1510NE, WX, SLIGHT CORE FRACTURE, LOAD STRUCTURE, IRON PYRITE,
[35 35.0' CLAY SEAM LAMINATIONS, 9 31.5* CLAY RICH [: SOFT 10 MEDIUM, GRAY FINE GRAINED SHALE, AS ABOYE [40 N1-4 10.0' 89%
'[ l
_ l [45 i. 45.0* _ _ _ - NF-5 10.2' 87% AS AB0VE [50 l l SAMPLE IDENTIFICATION
SUMMARY
SS SPLIT SPOON $AMPLF D DENISON T SHELBY P PIT CHER OVEFtBURCEN: 5.0' U FIXED PISTON C ROCK CORE ROCK 95.0' O O OSTERBERG OC ORIENTED ROCK CORE TOTAL DEP1H 100.0* [v I NOLE NO. BC-2 0494.1
FIF.LD BORINC LOG
'N - BORING NO. BC-2 SH. 1 OF L PROJECT CEI 193 SITE PNPP DATE $1 AR15-11-86 FINISH 5-11-86 LOCA110N Bio Creek, Chardon CROUND ELEV. - TOT AL DEPTH F T.100.0' CASING ID NW CORE SIZE NX INCLINAllONV!R11 CAL BEARINCn CONTRAC10R Herron Consattants LOCCED BY BRF CHECKED BY PJT SAMPLE SCALE STRATA 1TPE BLOWS 0[P1H B00 SOIL & ROCK OESCRIP110N/COMMEN15 IN CHANGE & NO OR RANGE % BRIAKS [ Unified soll class system. Rock description, IEET REC (IEET) water table. Loss of drill water, etc.) ~ ~
b NX-5 10.2' 87% Sit PAGE 1 t
~ ~ ~55 55.0' SOf f 10 MEDIUM, GRAY l]N[-GRAINED SHAll WiiH SIL1510NE. SOFT LAMINATED, AS ABOVE .
t [60 NX-6 10.1 90%
~ ~65 R /. 65.0' v; w . - ,1 10.0' SOFT 10 MEDIUM GRAY FINE GRAINED SHALE, AS AB0VE
,/] [70 . NX-7 89% v _ - I e.
~
_75 ,.. 75.0' g ,
!" SOFT 10 MEDIUM, FINE-GRAINIO SHALE WITH SIL1510NE.
[ LAMINAlto. AS ABOVE, NO CLAY SEAMS _80 t{NX-8 9.9' 95% [ ' e [85 85.0- [90 NX-9 10.1' 100% SOFT 10 MEDIUM, GRAY f!NE-GRAINIO SHAlf. AS ABOVE 7 .
~95 C ;,g 95.0' ~
IMY ls NX-10 5.2 100% a5 ABOVE wy,
~100 CUCM 100.0' 8011CM 0F BORING SAMPLE IDENTIFICAT!ON
SUMMARY
SS SPLIT SPOON SAMPLit D DENISON T SHELBY P PITCHER OVERBURDEN: 5.0' U FlxED PISTON C ROCK CORE ROCK 95.0* O OSTERBERC OC ORIENTED ROCK CORE 101 AL DEPlH 100.0' HOLE NO. BQ-? , 0494J
FIELO BORING LOG BORING NO. BC-3 SH. 1 OF 1 (,/ PROJECT CEI 193 SITE PNPP OATE ST ART 5-12-86 FINISH $-13-06 LOCATION Bla Creet. Chardon CROUND ELEV. - TOT AL DEPTH FT.100.0' CASING IO NW CORE SIZE NX INCLINATIONVE RTIC AL BE ARING_ _ CONTRACTOR Herron Consultants LOCCED BY BRF CHECKED BY PJT
$ AMPLE SCALE STRATA TYPE BLOWS DEPTH RQD S0lt & ROCK DESCRIPT10N/C0mMtN15 IN CHANGE & NO OR RANGE % BREAKS [ Unified soil class system. Rock description, FEET REC [ FEET) water table. Loss of drill water. etc.) ~5 55-1 12-17-26 4.5-6.0' LIGHT GRAY SANDY $1LT TRACE CLAY,$ LIGHTLY COMESIVs [TILL) 55-2 13-32-42 9.5-11.0' SOFT, DARK GRAY TO BLACK, SHALE. LAYERED, BROKEN
[10 [15 55 3 50/.3' 14.5-14.1 ' NO RECOVERY PROBABLY SHALE, AS ABOVE BEGIN ROCK CORING S 15' NX-1 5.0' 64% ..,. SOFT, DARK GRAY TO BLACK FINE-GRAINED SHALE, [ SLIGHTLY WX, PARTS E ASILY OCCASIONAL HIGH ANGLE JOINT, SOME LIGHTER GRAY BANDS _20 l20.0' i [ NX-2 10.0' 83% o e = r -? MEDIUM, CARK GRAY 10 BLACK FINE GRAINE0 SHALE. AS ABOVE [25 25.6' CHANGE FROM BLACK SHALE TO y- GRAY SHALE [30 30.0'
,-N,
[35 NX-3 10.0' 86% SOFT TO ME01UM, GRAY FINE GRAINED SHALE WITH SILTSTONE LAYERS SHOWING CONTORTION. SHALE. CLAY RICH SEAMS - AS ABOVE 2 ._G_I-
~
140 % 40.0' j Je_ - 2 Sy" [45 NX-4 9.8' 96% SOFT TO MEDIUM, GRAY FINE GRAINED SHALE, AS ABOVE L. 250 h 50.0' S AMPLE IDENTIFICATION SLANARY l 1 l SS SPLIT SPOON SAMPLF 0 DENISON i T SHELBY P PITCHER OVERBURDEN: 7.0' )
~
U FixEO PISTON C ROCK CORE ROCK 93.0' O OSTERBERG OC ORIENTED ROCK CORE TOTAL DEPTH 100.0' HOLE NO. BC-3 O 0494J
FIELD BORING LOG BORING NO. BC-3 [] SH. 1 OF 1 \j PROJECT CEI 793 SITE PNPP DATE ST ART 5-12-86 FINISH 5-13-86 LOCATION Bio Creek. Chardon CROUND ELEV. - TOT AL DEPTH F1.100.0' C ASINC ID NW CORE SIZE NX INCLINATIONVERilCAL BEARING _ CONTRACTOR Herron Consultants LOCCED BY BRF CHECKED BY PJT S AMPl.E SCALE STRA1A TYPE BLOWS DEPTH 800 S0IL & ROCK DESCRIP110N/ COMMENTS IN CHANGE & NO OR RANGE % BREAKS [ Unified soil class system. Rock description. FEET REC [FIET) water table. Loss of drill water. etc.]
, 50.0' p ,. ~55 ~. NX-5 10.0* 97% SOFT TO MEDIUM, GRAY FINE-GRAINED SHALE. '
[ kQ, he g j WilH SILISTONE BEDS. SLIGHILY FRACTURED. CLAY RICH l
. J m:9 ~60 kr 60.0' , Cm r
- g. ,
[65 i' 7 5-c ' NX-6 10.0' 71% SOFT TO MEDIUM. GRAY FINE-GRAINED SHALE WITH SILTSTONE. L+ AS ABOVE [ '# CLAY $1AMS MORE BROKEN f
'i " = = = - -70 70.0
{ A 2 k ./ \ _ [15 . SOFT TO MEDIUM GRAY FINE-GRAINED SHALE. AS AB0VE.
. [ NX-1 10.0' 77% SLIGHTLY DARKER WITH LESS $1LISTONE LAMINAt IN SOME , AREAS
[80
~ - 80.0 9.7'
[85 NX-8 86% SOFT TO MEDIUM. GRAY FINE-GRAINED SHALE WITH SILTSTONE. pJ AS ABOVE. LOCAL ZONES OF DARKER SHALE WITH LESS , _ _ SILTSTONE i [90 90.0' h. wn W [95 DT 9.9' _ SOFT TO MEDIUM GRAY FINE-GRAINED SHALE WITH SILTSTONE (._y 1 NX-9 70% ANO DARKER SHALE AS ABOVE 1
- 1 'w k~#4n
_-100 y= ,- 100.0' _ _ . _ BOTTOM 0F BORING 10G.0' SAMPLE IDENTIFIC ATION SUhNARY SS SPLIT SPOON SAMPLE D DENISON j T SHELBY P P11CHER OVERBURDEN: 7.0' ' (J FlxED P!STON C ROCK CORE ROCK _.11.9 0 OSTERBERG OC ORIENTED ROCK CCNtE TOTAL DEPTH 100.t* HOLE NO. BQ-) h) gj 0494J 1}}